
Separating Regular Languages by Locally Testable
and Locally Threshold Testable Languages
Thomas Place∗, Lorijn van Rooijen∗, and Marc Zeitoun∗

LaBRI, Bordeaux University, France, firstname.lastname@labri.fr

Abstract
A separator for two languages is a third language containing the first one and disjoint from the
second one. We investigate the following decision problem: given two regular input languages, de-
cide whether there exists a locally testable (resp. a locally threshold testable) separator. In both
cases, we design a decision procedure based on the occurrence of special patterns in automata ac-
cepting the input languages. We prove that the problem is computationally harder than deciding
membership. The correctness proof of the algorithm yields a stronger result, namely a description
of a possible separator. Finally, we discuss the same problem for context-free input languages.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases Automata, Logics, Monoids, Locally testable, Separation, Context-free

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.363

1 Introduction

Context. The strong connection between finite state devices and descriptive formalisms,
such as first-order or monadic second-order logic, has been a guideline in computer science
since the seminal work of Büchi, Elgot and Trakhtenbrot. This bridge has continuously been
fruitful, disseminating tools and bringing a number of applications outside of its original
research area. For instance, compiling logical specifications into various forms of automata
has become one of the most successful methods in automatic program verification [26].

One of the challenging issues when dealing with a logical formalism is to precisely
understand its expressiveness and its limitations. While solutions to decide such logics often
use a compilation procedure from formulas to automata, capturing the expressive power
amounts to the opposite translation: given a language, one wants to know whether one can
reconstruct a formula that describes it. In other words, we want to solve an instance of the
membership problem, which asks whether an input language belongs to some given class.

For regular languages of finite words, the main tool developed to capture this expressive
power is the syntactic monoid [16]: this is a finite, computable, algebraic abstraction of the
language, whose properties make it possible to decide membership. An emblematic example
is the membership problem for the class of first-order definable languages, solved by Schützen-
berger [19] and McNaughton and Papert [14], which has led to the development of algebraic
methods for obtaining decidable characterizations of logical or combinatorial properties.

The separation problem and its motivations. We consider here the separation problem as
a generalization of the membership problem. Assume we are given two classes of languages C
and S. The question is, given two input languages from C, whether we can separate them by
a language from S. Here, we say that a language separates K from L if it contains K and is

∗ Work supported by Agence Nationale de la Recherche ANR 2010 BLAN 0202 01 FREC.

© Thomas Place, Lorijn van Rooijen, and Marc Zeitoun;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 363–375

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.363
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

364 Separation by Locally Testable and Locally Threshold Testable Languages

disjoint from L. An obvious necessary condition for separability is that the input languages
K,L be disjoint. A separator language witnesses this condition.

One strong motivation for this problem is to understand the limits of logics over finite
words. Notice that membership reduces to separation when C is closed under complement,
because checking that a language belongs to S amounts to testing that it is S-separable
from its complement. Deciding S-separation is also more difficult than deciding membership
in S, as one cannot rely on algebraic tools tailored to the membership problem. It may
also be computationally harder, as we shall see in this paper. Thus, solving the separation
problem requires a deeper understanding of S than what is sufficient to check membership:
one not only wants to decide whether S is powerful enough to describe a language, but also
to decide whether it can discriminate between two input languages. This discriminating
power provides more accurate information than the expressive power.

While our main concern is theoretical, let us mention some motivating applications. In
model checking, reachable configurations of a system can be represented by a language.
Separating this from the language representing bad configurations proves to be effective for
verifying safety of a system. Craig interpolation is a form of separation used in this context [12,
9]. In this line of work, Leroux [10] simplified the proof that reachability in vector addition
systems is decidable [11]: he proved that a recursively enumerable set of separators witnesses
non-reachability. Finally, questions in database theory also motivated separation questions [5].

Although the separation problem frequently occurs, it has not been systematically studied,
even in the restricted, yet still challenging case of regular languages.

Contributions. In general, elements of C cannot always be separated by an element of S
and there is no minimal separator wrt. inclusion. We are interested in the following questions:

can we decide whether one can separate two given languages of C by a language of S?
what is the complexity of this decision problem?
if separation is possible, can we compute a separator, and at which cost?

A motivating but difficult objective is to understand separation by first-order definable
languages, whose decidability follows from involved algebraic methods [7, 8]. A first step is
to look at easier subclasses. Indeed, the question was raised and solved for separation by
piecewise-testable languages [5, 18], and unambiguous languages [18], which sit in the lower
levels of the quantifier-alternation hierarchy of first-order logic. In this paper, we look at yet
another widely studied class, whose properties are orthogonal to those of the above classes.

We investigate the separation problem by locally and locally threshold testable languages.
A language is locally testable (LT) if membership of a word can be tested by inspecting
its prefixes, suffixes and infixes up to some length (which depends on the language). The
membership problem for this class was raised by McNaughton and Papert [14], and solved
independently by McNaughton and Zalcstein [27, 13] and by Brzozowski and Simon [4]. This
class has several generalizations. The most studied one is that of locally threshold testable
languages (LTT), where counting infixes is allowed up to some threshold. These are the
languages definable in FO(+1), i.e., first-order logic with the successor relation (but without
the order). Again, membership is decidable [24], and can actually be tested in Ptime [17].

Our results are as follows: we show that separability of regular languages by LT and LTT
languages is decidable, first for a fixed threshold, by reduction to fixed parameters: we provide
a bound on the length of infixes that define a possible separator. This reduces the problem to
a finite number of candidate separators, and hence entails decidability. For LTT-separability,
we also provide a bound for the threshold. We further get an equivalent formulation on
automata in terms of forbidden patterns for the languages to be separable, which yields an

T. Place, L. van Rooijen, and M. Zeitoun 365

Nexptime algorithm. We also obtain lower complexity bounds: even starting from DFAs,
the problem is Np-hard for LT and LTT (while membership to LTT is in Ptime). Finally, we
discuss the separation problem starting from context-free input languages rather than regular
ones. Due to lack of space, several proofs only appear in the journal version of the paper.

The main arguments rely on pumping in monoids or automata. The core of our proof is
generic: we show that if one can find two words, one in each input language, that are close
enough wrt. the class of separators, then the languages are not separable. Here, “close enough”
is defined in terms of parameters of the input languages, such as the size of input NFAs.

Related work. In the context of semigroup theory, it has been proven [1] that the separation
problem can be rephrased in purely algebraic terms. Solving the separation problem for a class
S amounts to computing the so-called pointlike sets for the algebraic variety corresponding
to S. While it has been shown that the varieties corresponding to both LT and LTT have
computable pointlike sets [2, 20, 21], this approach suffers two drawbacks. First, being purely
algebraic, the proofs provide no insight on the underlying class S. In particular, they provide
only yes/no answers without giving any description of what an actual separator might be.

Finally, the separation problem for the class of piecewise-testable languages has recently
been shown Ptime-decidable, independently and with different techniques in [5] and [18].

2 Preliminaries

Words and Languages. We fix a finite alphabet A. We denote by A∗ the free monoid over
A. The empty word is denoted by ε. If w is a word, we set |w| as the length, or size of w.
When w is nonempty, we view w as a sequence of |w| positions labeled over A. We number
positions from 0 (for the leftmost one) to |w| − 1 (for the rightmost one).

Infixes, Prefixes, Suffixes. An infix of a word w is a word w′ such that w = u · w′ · v for
some u, v ∈ A∗. Moreover, if u = ε (resp. v = ε) we say that w′ is a prefix (resp. suffix) of w.

Let 0 6 x < y 6 |w|. We write w[x, y] for the infix of w starting at position x and ending
at position y − 1. By convention, we set w[x, x] = ε. Observe that by definition, when
x 6 y 6 z, we have w[x, z] = w[x, y] · w[y, z].

Profiles. For k ∈ N, let k` = bk/2c and kr = k − k`. A k-profile is a pair of words
(w`, wr) of lengths at most k` and kr, respectively. Given w ∈ A∗ and x a position of w,
the k-profile of x is the pair (w`, wr) defined as follows: w` = w[max(0, x − k`), x] and
wr = w[x,min(x+ kr, |w|)] (see Figure 1). A k-profile (w`, wr) occurs in a word w if there
exists some position x within w whose k-profile is (w`, wr). Similarly, if n ∈ N, we say that
(w`, wr) occurs n times in w if there are n distinct positions in w where (w`, wr) occurs.

bac c caab c baab ba

x y z

(ε, bac) (aab, cba) (aab, ba)6-profiles of x, y and z:

Figure 1 Illustration of the notion of k-profile for k = 6.

FSTTCS 2013

366 Separation by Locally Testable and Locally Threshold Testable Languages

Intuitively, the k-profile is the description of the infix of w that is centered at position x.
Observe in particular that the k-profiles that occur in a word determine the prefixes and
suffixes of length k − 1 of this word. This is convenient, since we only have to consider one
object instead of three in the usual presentations of the classes LT and LTT.

We denote by Ak the set of k-profiles over the alphabet A. It is of size exponential in k.

Separability. Given languages L,L1, L2 over A∗, we say that L separates L1 from L2 if

L1 ⊆ L and L2 ∩ L = ∅.

Given a class S of languages, we say that the pair (L1, L2) is S-separable if some language
L ∈ S separates L1 from L2. When S is closed under complement, (L1, L2) is S-separable if
and only if (L2, L1) is, in which case we simply say that L1 and L2 are S-separable.

Automata. A nondeterministic finite automaton (NFA) over A is denoted by a tuple
A = (Q,A, I, F, δ), where Q is the set of states, I ⊆ Q the set of initial states, F ⊆ Q the
set of final states and δ ⊆ Q×A×Q the transition relation. The size of an automaton is its
number of states plus its number of transitions. If δ is a function, then A is a deterministic
finite automaton (DFA). We denote by L(A) the language of words accepted by A.

Monoids. Let L be a language and M be a monoid. We say that L is recognized by M
if there exists a monoid morphism α : A∗ → M together with a subset F ⊆ M such that
L = α−1(F). It is well known that a language is accepted by an NFA if and only if it can
be recognized by a finite monoid. Further, one can compute from any NFA a finite monoid
recognizing its accepted language.

3 Locally Testable and Locally Threshold Testable Languages

In this paper, we investigate two classes of languages. Intuitively, a language is locally
testable if membership of a word in the language only depends on the set of infixes, prefixes
and suffixes up to some fixed length that occur in the word. For a locally threshold testable
language, membership may also depend on the number of occurrences of such infixes, which
may thus be counted up to some fixed threshold.

In this section we provide specific definitions for both classes. We start with the larger
class of locally threshold testable languages. In the following, we say that two numbers are
equal up to threshold d if either both numbers are equal, or both are greater than or equal to d.

Locally Threshold Testable Languages. Let L be a language, we say that L is locally
threshold testable (LTT) if it is a boolean combination of languages of the form:
1. uA∗ = {w | u is a prefix of w}, for some u ∈ A∗.
2. A∗u = {w | u is a suffix of w}, for some u ∈ A∗.
3. {w | w has u as an infix at least d times} for some u ∈ A∗ and d ∈ N.

LTT languages can actually be defined in terms of first-order logic. A language is LTT if
and only if it can be defined by an FO(+1) formula [2, 25], i.e., a first-order logic formula
using predicates for the equality and next position relations, but not for the linear order.

We also define an index on LTT languages. Usually, this index is defined as the smallest
size of infixes, prefixes and suffixes needed to define the language. However, since we only
work with k-profiles, we directly define an index based on the size of k-profiles. Given words

T. Place, L. van Rooijen, and M. Zeitoun 367

w,w′ and natural numbers k, d, we write w ≡d
k w
′ if for every k-profile (w`, wr), the number

of positions x such that (w`, wr) is the k-profile of x is equal up to threshold d in w and w′.
One can verify that for all k, d ∈ N, ≡d

k is an equivalence relation of finite index.
For k, d ∈ N we denote by LTT[k, d] the set of the finitely many languages that are

unions of ≡d
k-classes. We have LTT =

⋃
k,d LTT[k, d]. Given L ⊆ A∗, the smallest LTT[k, d]-

language containing L is

[L]≡d
k

= {w ∈ A∗ | ∃u ∈ L such that u ≡d
k w}.

As it is often the case, there is no smallest LTT language containing a given regular language.

Locally Testable Languages. The class of locally testable languages is the restriction of
LTT languages in which infixes cannot be counted. A language L is locally testable (LT) if it
is a boolean combination of languages of the form 1, 2 and the following restriction of 3:

4. A∗uA∗ = {w | w has u as an infix} for some u ∈ A∗.

No simple description of LT in terms of first-order logic is known. However, there is a
simple definition in terms of temporal logic. A language is LT if and only if it can be defined
by a temporal logic formula using operators X (next), Y (yesterday), and G (globally).

Given two words w,w′ and a number k, we write w ≡k w
′ for w ≡1

k w
′. For all k ∈ N,

we denote by LT[k] the set of languages that are unions of ≡k-classes, and LT =
⋃

k LT[k].
Given L ⊆ A∗ and k ∈ N, the smallest LT[k]-language containing L is

[L]≡k
= {w ∈ A∗ | ∃u ∈ L such that u ≡k w}.

4 Separation for a Fixed Threshold

In this section, we prove that if the counting threshold d is fixed, it is decidable whether
two languages can be separated by an LTT language of counting threshold d (i.e., by an
LTT[k, d] language for some k). In particular, this covers the case of LT, which corresponds
to d = 1. All results in this section are for an arbitrary d. Our result is twofold.

First, we establish a bound on the size of profiles that need to be considered in order to
separate the languages. This bound only depends on the size of monoids recognizing the
languages, and it can be computed. One can then use a brute-force algorithm that tests
separability by all the finitely many LTT[k, d] languages, where k denotes this bound.
The second contribution is a criterion on the input languages to check separability by an
LTT[k, d] language for some k. This criterion can be defined equivalently on automata or
monoids recognizing the input languages, in terms of the absence of common patterns.

The section is organized into three subsections: our criterion is stated in the first one,
and the second and last ones are devoted to the statement and proof of the theorem.

4.1 Patterns

In this section we define our criterion that two languages must satisfy in order to be separable.
The criterion can be defined equivalently on automata or monoids recognizing the languages.

FSTTCS 2013

368 Separation by Locally Testable and Locally Threshold Testable Languages

.
u0 u1 ui−1 ui+1 un−1ui un

v1 vi vi+1 vn

Figure 2 An A-compatible P-decomposition u0v1u1v2 · · · vnun.

Block Patterns. A block is a triple of words b = (v`, u, vr) where v`, vr are nonempty.
Similarly, a prefix block is a pair of words p = (u, vr) with vr nonempty, and a suffix block is a
pair of words s = (v`, u) with v` nonempty. Let d ∈ N. A d-pattern P is either a word w, or
a triple (p, f, s) where p and s are respectively a prefix and a suffix block, and f is a function
mapping blocks to the set {0, . . . , d}, such that all but finitely many blocks are mapped to 0.

Decompositions. Let w be a word and let P be a d-pattern. We say that w admits a
P-decomposition if w admits a decomposition w = u0v1u1v2 · · · vnun with n > 0 and such
that either n = 0 and P = u0 = w, or P = (p, f, s) and the following conditions are verified:
1. p = (u0, v1) and s = (vn, un).
2. for all blocks b, if f(b) < d, then there are exactly f(b) indices i such that (vi, ui, vi+1) = b.
3. for all blocks b, if f(b) = d, then there are at least d indices i such that (vi, ui, vi+1) = b.

Sometimes, we just say P-decomposition to mean P-decomposition of some word. Let
α : A∗ → M be a morphism into a monoid M , and let s ∈ M . A P-decomposition is
(α, s)-compatible if α(w) = s and α(u0 · · · vi) = α(u0 · · · vi) · α(vi), for 1 6 i 6 n. Similarly,
if A is an automaton, we say that a P-decomposition is A-compatible if there is an accepting
run for w and each infix vi labels a loop in the run, for 1 6 i 6 n, as pictured in Figure 2
(where edges denote sequences of transitions).

Common Patterns. Let d ∈ N and M1,M2 be two monoids together with morphisms
α1 : A∗ → M1 and α2 : A∗ → M2 and accepting sets F1 ⊆ M1, F2 ⊆ M2. We say
that M1,M2 have a common d-pattern if there exist a d-pattern P, two elements s1 ∈ F1,
s2 ∈ F2, and two P-decompositions of (possibly different) words that are respectively (α1, s1)-
compatible and (α2, s2)-compatible. Similarly, if A1,A2 are automata, we say that A1,A2
have a common d-pattern if there exist a d-pattern P and two P-decompositions of words
that are respectively A1-compatible and A2-compatible. In particular, by the very definition,
A1 and A2 have a common 1-pattern if there are successful paths in A1,A2 of the form
shown in Figure 2 with the same set of triples (vi, ui, vi+1).

A useful property about common patterns is that whether such a pattern exists only
depends on the recognized languages, and not on the choice of A1,A2,M1,M2.

I Proposition 1. Fix d ∈ N. Let L1, L2 be regular languages and let M1,M2,A1,A2 be
arbitrary monoids and automata recognizing L1, L2, respectively. Then M1,M2 have a
common d-pattern if and only if A1,A2 have a common d-pattern.

4.2 Separation Theorem for a Fixed Threshold
We can now state our main theorem for this section.

I Theorem 2. Fix d ∈ N. Let L1, L2 be regular languages and letM1,M2,A1,A2 be arbitrary
monoids and automata recognizing L1, L2 respectively. Set k = 4(|M1||M2|+ 1). Then the
following conditions are equivalent:

T. Place, L. van Rooijen, and M. Zeitoun 369

1. L1 and L2 are LTT[l, d]-separable for some l.
2. L1 and L2 are LTT[k, d]-separable.
3. The language [L1]≡d

k
separates L1 from L2.

4. M1,M2 do not have a common d-pattern.
5. A1,A2 do not have a common d-pattern.

Observe that Item 3b is essentially a delay theorem [22] for separation restricted to the
case of LTT: we prove that the size of profiles (i.e., infixes) that a potential separator needs
to consider can be bounded by a function of the size of the monoids recognizing the languages.
By restricting Theorem 2 to the case d = 1, we get the following separation theorem for LT.

I Theorem 3. Let L1, L2 be regular languages and let M1,M2,A1,A2 be arbitrary monoids
and automata recognizing L1, L2 respectively. Let k = 4(|M1||M2|+ 1). Then the following
conditions are equivalent:
1. L1 and L2 are LT-separable.
2. L1 and L2 are LT[k]-separable.
3. The language [L1]≡k

separates L1 from L2.
4. M1,M2 do not have a common 1-pattern.
5. A1,A2 do not have a common 1-pattern.

Theorem 2 and Theorem 3 yield algorithms for deciding LT- and LTT-separability for a
fixed threshold. Indeed, the algorithm just tests all the finitely many LTT[k, d] languages as
potential separators. This brute-force approach yields a very costly procedure. It turns out
that a better algorithm can be obtained from Items 3d and 3e (the proof is available in the
full version of the paper). This yields the following corollary.

I Corollary 4. Let d ∈ N. It is decidable whether two given regular languages are LTT[l, d]-
separable for some l ∈ N. In particular, it is decidable whether they are LT-separable.

More precisely, given NFAs A1,A2, deciding whether L(A1) and L(A2) are LT-separable
is in co-Nexptime. It is co-Np-hard, even starting from DFAs.

It remains to prove Theorem 2. The implications (3c) ⇒ (3b) ⇒ (3a) are immediate
by definition. We now prove (3a) ⇒ (3e) ⇒ (3d) ⇒ (3c). The implication (3e) ⇒ (3d) is
immediate from Proposition 1. The implication (3a)⇒ (3e) is a consequence of the following
proposition.

I Proposition 5. Let d ∈ N and let A1,A2 be NFAs. If A1,A2 have a common d-pattern,
then, for all k ∈ N, there exist w1, w2 accepted respectively by A1,A2 such that w1 ≡d

k w2.

An immediate consequence of Proposition 5 is that as soon as A1,A2 have a common
d-pattern, the recognized languages cannot be separated by an LTT[k, d] language for any k.
This is exactly the contrapositive of (3a)⇒ (3e). We now prove Proposition 5.

Proof of Prop. 5. Let P be a common d-pattern of A1,A2. If P = w ∈ A∗, then by
definition, w ∈ L(A1)∩L(A2), so it suffices to choose w1 = w2 = w. Otherwise, P = (p, f, s)
and there are w1, w2 having an A1-, respectively A2-compatible P-decomposition. Let
w1 = u0v1u1v2 · · · vnun and w2 = u′0v

′
1u
′
1v
′
2 · · · v′mu′m be these decompositions. For k ∈ N, set

w1 = u0(v1)k(d+1)u1(v2)k(d+1) · · · (vn)k(d+1)un

w2 = u′0(v′1)k(d+1)u′1(v′2)k(d+1) · · · (v′m)k(d+1)u′m

By definition of compatibility, w1 ∈ L(A1) and w2 ∈ L(A2). From the fact that (p, f, s) is a
d-pattern, it then follows that w1 ≡d

k w2. J

FSTTCS 2013

370 Separation by Locally Testable and Locally Threshold Testable Languages

b aa c b c ba a

x

bk/2c-profile of x
k-profile of x

w` wr
u

for i = 1, 2, αi(w`) = αi(w`) · αi(u)

Figure 3 A position x admitting a k-loop u: αi(w`) = αi(w` · u), for i = 1, 2.

The remaining and most difficult direction, (3d) ⇒ (3c) is a consequence of the next
proposition whose proof is outlined in the next subsection.

I Proposition 6. Let α1 : A∗ →M1 and α2 : A∗ →M2 be morphisms, and k = 4(|M1||M2|+
1). Let d ∈ N and let w1, w2 be words such that w1 ≡d

k w2. Then there exists a d-pattern P, an
(α1, α1(w1))-compatible P-decomposition, and an (α2, α2(w2))-compatible P-decomposition.

Before explaining how to show Proposition 6, let us explain how to conclude the proof
of Theorem 2. We prove the contrapositive of (3d)⇒ (3c). If Item 3c does not hold, then
by definition there must exist w1 ∈ L1 and w2 ∈ L2 such that w1 ≡d

k w2. If w1 = w2,
L1 ∩ L2 6= ∅, therefore, M1,M2 have a common d-pattern. Otherwise, by Proposition 6 we
get a d-pattern (p, f, s). Since w1 ∈ L1 and w2 ∈ L2, the d-pattern (p, f, s) is common to
both M1 and M2, which ends the proof.

4.3 Proof of Proposition 6
We set w1, w2, k and d as in the statement of the proposition. Observe first that if w1 =
w2 = w, then it suffices to take P = w. Therefore, we suppose for the remainder of the
proof that w1 6= w2. We proceed as follows: we construct two new words w′1, w′2 from
w1, w2 admitting respectively a (α1, α1(w1))-compatible P-decomposition and a (α2, α2(w2))-
compatible P-decomposition, for some d-pattern P = (p, f, s). In this outline, we only
provide the construction, the proof of correctness is available in the full version of the paper.

The construction of w′1, w′2, amounts to duplicating infixes in w1, w2 verifying special
properties. We first define these special infixes that we will call k-loops.
k-loops. Let w ∈ A∗, x be a position in w, and (w`, wr) be the bk/2c-profile of x. We say
that x admits a k-loop if there exists a nonempty prefix u of wr such that α1(w`) = α1(w` ·u)
and α2(w`) = α2(w` ·u). In this case, we call the smallest such u the k-loop of x. See Figure 3.

For our construction to work, we need k-loops to have three properties that we state now.
The first two are simple facts that are immediate from the definition: k-loops are determined
by profiles and can be duplicated without modifying the image of the word under α.

I Fact 7. Let x be a position. Whether x admits a k-loop, and if so, which k-loop x admits,
only depends on the bk/2c-profile of x.

I Fact 8. Let w be a word and let x be a position within w such that x admits a k-loop u.
Then for i = 1, 2, αi(w[0, x]) = αi(w[0, x]) · αi(u).

The last property we need is that k-loops occur frequently in words, i.e., at least one of
bk/4c consecutive positions must admit a k-loop. This follows from pumping arguments:

T. Place, L. van Rooijen, and M. Zeitoun 371

I Lemma 9. Let w be a word and let x1, . . . , xbk/4c be bk/4c consecutive positions in w.
Then, there exists at least one position xi with i < bk/4c that admits a k-loop.

Construction of w′1, w′2. We can now construct w′1 and w′2. If w, u are words and x is a
position of w, the word constructed by inserting u at position x is the word w[0, x] ·u ·w[x, |w|].
From w1 (resp. w2), we construct w′1 (resp. w′2) by inserting simultaneously all infixes (ux)k′

in w1 (resp. w2) at any position x that admits a k-loop, and where ux is the k-loop of x.
Using Fact 7, Fact 8 and Lemma 9 one can then verify that w′1 admits a (α1, α1(w1))-
compatible P-decomposition and w′2 admits a (α2, α2(w2))-compatible P-decomposition, for
some d-pattern P = (p, f, s). The proof is available in the full version of the paper.

5 Separation by LTT Languages

This section is devoted to LTT. Again, our theorem actually contains several results. In the
case of LTT, two parameters are involved: the size k of profiles and the counting threshold d.
The first result in our theorem states that the bound on k of Theorem 2 still holds for full
LTT. This means that two languages are LTT-separable if and only if there exists some
counting threshold d such that they are LTT[k, d]-separable with the same bound k as in
Theorem 2. It turns out that this already yields an algorithm for testing LTT-separability.
The algorithm relies on the decidability of Presburger arithmetic and is actually adapted in
a straightforward manner from an algorithm of [3] for deciding membership in LTT.

While this first result gives an algorithm for testing separability, it gives no insight about
an actual separator. Indeed, the procedure does not produce the actual counting threshold d.
This is obtained in the second part of our theorem: we prove that two languages are LTT-
separable if and only if they are LTT[k, d]-separable, where k is as defined in Theorem 2,
and d is bounded by a function of the size of the monoids (or automata) recognizing the
input languages. Note that this result also gives another (brute-force) algorithm for testing
LTT-separability. We now state our theorem. Recall that Ak denotes the set of k-profiles.

I Theorem 10. Let L1, L2 be regular languages and let M1,M2,A1,A2 be arbitrary monoids
and automata recognizing L1, L2. Set n to be either max(|M1|, |M2|) + 1 or max(|A1|, |A2|) +
1. Let k = 4(|M1||M2| + 1) and d = (|Ak|n)|Ak|. Then, the following conditions are
equivalent:
1. L1 and L2 are LTT-separable.
2. There exists d′ ∈ N such that L1 and L2 are LTT[k, d′]-separable.
3. There exists d′ ∈ N such that M1,M2 do not have a common d′-pattern.
4. There exists d′ ∈ N such that A1,A2 do not have a common d′-pattern.
5. L1 and L2 are LTT[k, d]-separable.
6. The language [L1]≡d

k
separates L1 from L2.

Observe that decidability of LTT-separability is immediate from Item 3e by using the
usual brute-force algorithm. As it was the case for a fixed counting threshold, this algorithm
is slow. In the full version of the paper, we obtain a faster algorithm by using Items 3c
and 3d.

I Corollary 11. It is decidable whether two given regular languages are LTT-separable. More
precisely, given NFAs A1,A2, deciding whether L(A1) and L(A2) are LTT-separable is in
2-Expspace. It is co-Np-hard, even starting from DFAs.

By definition, a language is LTT if it is LTT[k, d] for some natural numbers k, d. Hence,
the equivalence between Items 3a, 3b, 3c and 3d is an immediate consequence of Theorem 2.

FSTTCS 2013

372 Separation by Locally Testable and Locally Threshold Testable Languages

Therefore, we only need to prove Items 3e and 3f, i.e., the bound on the threshold d.
Unfortunately, these are exactly the items we need for Corollary 11. However, we will prove
that by reusing an algorithm of [3], Corollary 11 can also be derived directly from Item 3b.

We now explain how to derive the first part of Corollary 11 from Item 3b without relying
on the actual bound on the counting threshold. The bound itself is proved in the full version.

5.1 Decidability of LTT-separability as a consequence of Theorem 2
As we explained, the equivalence of Item 3b to LTT-separability is immediate from Theorem 2.
We explain how to combine this fact with an algorithm of [3] to obtain decidability directly.

In [3], it is proved that once k is fixed, Parikh’s Theorem [15] can be used to prove that
whether a language is LTT[k, d] for some d can be rephrased as a computable Presburger
formula. Decidability of membership in LTT can then be reduced to decidability of Presburger
Arithmetic. For achieving this, two ingredients were needed: a) a bound on k, and b) the
translation to Presburger arithmetic. It turns out that in [3], only the proof of a) was specific
to membership. On the other hand, separation was already taken care of in b), because
the intuition behind the Presburger formula was testing separability between the input
language and its complement. In our setting, we have already replaced a), i.e., bounding k,
by Item 3b. Therefore, the argument can be generalized. We explain in the remainder of
this subsection how to construct the Presburger formula. The argument makes use of the
notion of commutative image, which we now recall.

The commutative image of a word w ∈ A∗, denoted π(w), is a vector of length |A| of
natural numbers counting, for all a ∈ A, how many occurrences of a there are in w. This
notion can be easily generalized in order to count profiles rather than just letters. Let k ∈ N.
The k-image of w, πk(w), is a vector of length |Ak| of numbers counting for every k-profile
(w`, wr) the number of positions in w with k-profile (w`, wr). If L is a language, the k-image
of L, πk(L) is the set {πk(w) | w ∈ L} ⊆ NAk . The definition of ≡d

k yields the following fact.

I Fact 12. Let w,w′ ∈ A∗ and k, d ∈ N. Then w ≡d
k w
′ if and only if πk(w) and πk(w′) are

equal componentwise up to threshold d.

A well-known result about commutative images is Parikh’s Theorem [15], which states that
if L is context-free (so in particular if L is regular), then π(L) is semilinear, i.e., Presburger
definable [6]. As explained in [3], Parikh’s Theorem extends without difficulty to k-images.

I Theorem 13. Let L be a context-free language and let k ∈ N. Then πk(L) is semilinear.
Moreover, a Presburger formula for this semilinear set can be computed.

Proof. For k = 1, this is Parikh’s Theorem. When k > 1, let L′ ⊆ A∗k such that w′ ∈ L′ if
there exists w ∈ L of the same length, and such that a position in w′ is labeled by the k-profile
of the same position in w. One can verify that L′ is (effectively) context-free, and that the
k-image of L is the commutative image of L′, which is semilinear by Parikh’s Theorem. J

We can now explain how to decide LTT-separability. By Item 3b in Theorem 10, L1, L2
are LTT-separable if and only if they are LTT[k, d]-separable for k = 4(|M1||M2|+ 1) (where
M1,M2 are monoids recognizing L1, L2) and some natural number d. Therefore, whether
L1, L2 are LTT-separable can be rephrased as follows: does there exist some threshold d
such that there exist no words w1 ∈ L1, w2 ∈ L2 such that w ≡d

k w
′? By Fact 12, this can be

expressed in terms of k-images: does there exist a threshold d such that there exist no vectors
of natural numbers x̄1 ∈ πk(L1), x̄2 ∈ πk(L2) that are equal up to threshold d? It follows from
Theorem 13 that the above question can be expressed as a computable Presburger formula.
Decidability of LTT-separability then follows from decidability of Presburger Arithmetic.

T. Place, L. van Rooijen, and M. Zeitoun 373

6 The Case of Context-Free Languages

In order to prove decidability of LTT-separability for regular languages, we needed three
ingredients: Parikh’s Theorem, decidability of Presburger Arithmetic and Item 3b in Theo-
rem 10. Since Parikh’s Theorem holds not only for regular languages but also for context-free
languages, we retain at least two of the ingredients in the context-free setting.

In particular, we can reuse the argument of Section 5 to prove that once the size k of the
profiles is fixed, separability by LTT is decidable for context-free languages. For any fixed
k ∈ N, we write LTT[k] =

⋃
d∈N LTT[k, d].

I Theorem 14. Let L1, L2 be context-free languages and k ∈ N. It is decidable whether
L1, L2 are LTT[k]-separable.

An interesting consequence of Theorem 14 is that LTT[1]-separability of context-free
languages is decidable. A language is LTT[1] if and only if it can be defined by a first-order
logic formula that can only test equality between positions, but not ordering. This result is
surprising since membership of a context-free language in this class is undecidable. We give
a proof of this fact below, which is a simple adaptation of the proof of Greibach’s Theorem
(which is in particular used to prove that regularity of a context-free language is undecidable).

I Theorem 15. Let L be a context-free language. It is undecidable to test whether L ∈ LTT[1].

Proof. We reduce universality of context-free languages to this membership problem. Fix L
a context-free language over A and let # 6∈ A. Let K 6∈ LTT[1] be some context-free language
and set L1 = (K · # · A∗) ∪ (A∗ · # · L). Clearly, a context-free grammar for L1 can be
computed from a context-free grammar for L. We show that L = A∗ iff L1 ∈ LTT[1].

If L = A∗, then L1 = A∗ · # · A∗ ∈ LTT[1]. Conversely, assume that L1 ∈ LTT[1],
and suppose by contradiction that L 6= A∗. Pick w ∈ A∗ such that w 6∈ L. By definition,
K = {u | u#w ∈ L1}. One can verify that LTT[1] is closed under right residual. Therefore,
K = L1(#w)−1 ∈ LTT[1] which is a contradiction by definition of K. J

Theorems 14 and 15 may seem contradictory. Indeed in the setting of regular languages,
membership can be reduced to separability (a language belongs to a class if the class can
separate it from its complement). However, context-free languages are not closed under
complement, which makes the reduction false in this larger setting.

An interesting question is whether decidability extends to full LT and LTT-separability
of context-free languages. This would also be surprising since membership of a context-free
language in LT or LTT is undecidable. Such a result would require to generalize our third
ingredient, Item 3b in Theorem 10, to context-free languages. This means that we would
need a method for computing a bound on the size of the infixes that a potential separator
has to consider. It turns out that this is not possible.

I Theorem 16. Let L1, L2 be context-free languages. It is undecidable to test whether L1, L2
are LT-separable. It is undecidable to test whether L1, L2 are LTT-separable.

It was already known [23] that separability by a regular language is undecidable for
context-free languages. The proof of Theorem 16 is essentially the same since the reduction
provided in [23] actually works for any class of regular separators that contains languages
of the form K1A

∗ ∪K2 where K1,K2 are finite languages. Since this is clearly the case for
both LT and LTT, Theorem 16 follows.

FSTTCS 2013

374 Separation by Locally Testable and Locally Threshold Testable Languages

7 Conclusion

We proved separation theorems for both LT and LTT. In both cases, algorithms to test
separability, in co-Nexptime and 2-Expspace respectively, are derived from these theorems.
Another contribution is a description of possible separators, given by bounds defining them.

Several questions remain open in this line of research. A first one is to obtain tight
complexity bounds for both classes. While we have co-Nexptime and 2-Expspace upper
bounds for LT and LTT respectively, we have only co-NP lower bounds. The upper bounds
rely on a reduction to the case k = 1, i.e., a translation to the special case when the size
of infixes is fixed to 1. This translation is exponential wrt. the size of the input automata.
Improving the upper bounds would likely require improving this reduction.

Another question is to consider other fragments for separability. A natural generalization
of LTT is LTT+MOD, in which infixes can now also be counted modulo constants. The
most interesting fragment is of course full first-order logic. While the problem was shown
decidable [7, 8], the proofs rely on involved algebraic techniques and give an algorithm that
provides only a yes/no answer. Furthermore, the techniques bring no insight on the expressive
power of first-order logic. It remains a challenging open problem to obtain a combinatorial
proof that FO-separability is decidable, as well as a description of a separator.

References
1 J. Almeida. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen,

54(suppl.):531–552, 1999. Automata and formal languages, VIII (Salgótarján, 1996).
2 D. Beauquier and J. E. Pin. Languages and scanners. Theor. Comp. Sci., 84(1):3–21, 1991.
3 M. Bojańczyk. A new algorithm for testing if a regular language is locally threshold testable.

Inf. Process. Lett., 104(3):91–94, 2007.
4 J. Brzozowski and I. Simon. Characterizations of locally testable events. Discrete Mathe-

matics, 4(3):243–271, 1973.
5 W. Czerwinski, W. Martens, and T. Masopust. Efficient separability of regular languages

by subsequences and suffixes. In Proc. of ICALP’13, pages 150–161, 2013.
6 S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas and languages. Pacific

Journal of Mathematics, 16(2):285–296, 1966.
7 K. Henckell. Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure Appl.

Algebra, 55(1-2):85–126, 1988.
8 K. Henckell, J. Rhodes, and B. Steinberg. Aperiodic pointlikes and beyond. Internat. J.

Algebra Comput., 20(2):287–305, 2010.
9 T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs.

In Proc. of POPL’04, pages 232–244. ACM, 2004.
10 J. Leroux. Vector addition systems reachability problem (a simpler solution). In The Alan

Turing Centenary Conference, Turing-100, volume 10, pages 214–228, 2012.
11 E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput.,

13(3):441–460, 1984.
12 K. L. McMillan. Applications of Craig interpolants in model checking. In N. Halbwachs

and L. D. Zuck, editors, Proc. of TACAS’05, pages 1–12. Springer, 2005.
13 R. McNaughton. Algebraic decision procedures for local testability. Math. Systems Theory,

8(1):60–76, 1974.
14 R. McNaughton and S. Papert. Counter-free automata. The M.I.T. Press, 1971.
15 R. J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
16 J. E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook of

language theory, Vol. I, pages 679–746. Springer, 1997.

T. Place, L. van Rooijen, and M. Zeitoun 375

17 J. E. Pin. Expressive power of existential first-order sentences of Büchi’s sequential calculus.
Discrete Math., 291(1–3):155–174, 2005.

18 T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages by piecewise
testable and unambiguous languages. In Proc. of MFCS’13, 2013.

19 M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and
Control, 8(2):190–194, 1965.

20 B. Steinberg. On pointlike sets and joins of pseudovarieties. IJAC, 8(2), 1998.
21 B. Steinberg. A delay theorem for pointlikes. Sem. Forum, 63(3):281–304, 2001.
22 H. Straubing. Finite semigroup varieties of the form V ∗D. J. Pure Appl. Algebra, 36, 1985.
23 T. G. Szymanski and J. H. Williams. Noncanonical extensions of bottom-up parsing tech-

niques. SIAM J. Comput., 5(2), 1976.
24 D. Thérien and A. Weiss. Graph congruences and wreath products. J. Pure Appl. Algebra,

36:205–215, 1985.
25 W. Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci., 25(3):360–

376, 1982.
26 M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifi-

cation. In Proc. of LICS’86, pages 332–344. IEEE Computer Society, 1986.
27 Y. Zalcstein. Locally testable languages. J. Comput. Syst. Sci., 6(2):151–167, 1972.

FSTTCS 2013

	Introduction
	Preliminaries
	Locally Testable and Locally Threshold Testable Languages
	Separation for a Fixed Threshold
	Patterns
	Separation Theorem for a Fixed Threshold
	Proof of Proposition 6

	Separation by LTT Languages
	Decidability of LTT-separability as a consequence of Theorem 2

	The Case of Context-Free Languages
	Conclusion

