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Abstract
A deep connection exists between the interleaving semantics of concurrent processes and in-
creasingly labelled combinatorial structures. In this paper we further explore this connection
by studying the rich combinatorics of partially increasing structures underlying the operator of
non-deterministic choice. Following the symbolic method of analytic combinatorics, we study the
size of the computation trees induced by typical non-deterministic processes, providing a precise
quantitative measure of the so-called “combinatorial explosion” phenomenon. Alternatively, we
can see non-deterministic choice as encoding a family of tree-like partial orders. Measuring the
(rather large) size of this family on average offers a key witness to the expressiveness of the choice
operator. As a practical outcome of our quantitative study, we describe an efficient algorithm
for generating computation paths uniformly at random.
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1 Introduction

The mathematical structures underlying concurrency theory are most often considered as
abstract entities from an algebraic point of view, and are much less often scrutinized under
the meticulous lens of concrete mathematics. From the combinatorial point of view, even
very basic process operators prove quite intricate. Indeed, we show in [3] that the study
of the classic merge (or interleaving) operator requires non-trivial analytic combinatorics
techniques.

In this paper we study the rich combinatorics of partially increasing structures underlying
the operator of non-deterministic choice [11]. Note that this is a major departure from
related studies involving regular shuffle in automata theory, e.g. [12]. Although we are still
far from a full-fledged process algebra, the increase of expressiveness if compared to pure
merge is noticeable. When unfolded as computation trees, the resulting process behaviours
prove much more difficult to deal with. We show in this paper, however, that the analytic
techniques we rely on – based on the symbolic method of analytic combinatorics [9] – scale
relatively well to cover this enriched model. In Section 3 we give precise – average-case –
results concerning the number of computation paths induced by typical non-deterministic
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processes, hence providing a quantitative measure for the so-called “combinatorial explosion”
phenomenon. As we make clear in the paper, this phenomenon is not only a worst-case
situation but it is also quite perceptible in the average case.

Our quantitative study also establishes deep links between the combinatorics of increasing
structures and partial orders. Indeed, we can interpret non-deterministic choice as an
encoding of a family of tree-like partial orders or tree-posets [2]. Measuring the (indeed
exponential) average size of this family on average offers a key witness to the expressiveness
of the choice operator. This is discussed in Section 4.

As a practical outcome of our quantitative study, we aim at developing techniques
to analyze properties of the computation trees without explicitly constructing them. As
an illustration, we describe in Section 5 an efficient algorithm for the generation of non-
deterministic computation paths uniformly at random directly from the syntax of process
specification. This algorithms is based on a compact polynomial representation of the uniform
distribution of the computation paths.

2 Processes as combinatorial structures

In this section we define the mathematical objects that represent the syntax of process
specifications on the one side, and the semantics of process behaviours on the other side.

2.1 Syntax: process trees

The syntax of formal languages is most often defined as a context-free grammar yielding tree
structures: (abstract) syntax trees that will be called process trees in what follows. For the
minimalist process calculus we discuss in this paper, the (semi-formal) grammar of process
trees is the following : P ::= P‖ | P+ (process)

P‖ ::= α | α. (P ‖ . . .) (prefixed parallel)
P+ ::= P‖ + P‖ + . . . (non-deterministic choice)

If compared to most algebraic-oriented presentations, we do not use binary constructors.
The main reason is that the parallel and choice operators are associative. We could of course
encode the process terms using binary syntactic trees. However, if this is quite transparent for
the tree structure, the encoding would have a sizable (and somewhat gratuitous) impact on
the analytic developments. For similar reasons the prefixing construct is intermixed with the
merge constructor for parallel processes, which means that each branch of a choice is prefixed.
Hence we consider in essence what is often called guarded choice in the literature. To avoid
an ambiguity in the model, we also require a choice to have at least two sub-processes.

The process specification that we will use as a running example in the paper is the
following one: a.

(
[b.(c ‖ d) + e] ‖ f. ([g + h.(i ‖ j) + k] ‖ l)

)
Note that we use distinct labels for actions because our purely structural study does not

reflect on the identity nor the nature of the atomic actions performed by the processes. So
we do not distinguish among e.g. internal vs. external choice. In fact, we study the effect of
non-determinism (i.e. the branching in computation trees) rather than its cause.

To formalize the process specifications as combinatorial objects, we rely on the symbolic
method of analytic combinatorics [9]. Our starting point is the following combinatorial
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Figure 1 A process tree (left) and the first three layers of its computation tree (right).

specification of process trees: A = A‖ +A+ (process trees)
A‖ = Z × Seq (A) (trees with action/parallel root, counted by Z)
A+ = A‖ ×A‖ × Seq(A‖) (trees with choice root)

There is a strong correlation between this specification and the grammar discussed
previously. The definition here is formal: this is the combinatorial class A of process trees.
We remind the reader that a set is a combinatorial class if each element of the class has a
known finite size. A further requirement is that there is only a finite number of elements
in the class for a given size n. The + operator on combinatorial classes denotes disjoint
union. Thus a process tree is defined here as being either a merge tree in class A‖ or a
non-deterministic choice in class A+. A merge tree has a labelled root and its sub-trees form
a (possibly empty) finite forest, as specified by the Seq constructor. The Z mark explains
that the label of the root node is counted and thus the size of a merge tree is the sum of the
sizes of its sub-trees plus one. Finally, the non-deterministic choices are trees with a root
that is not counted for the size and a sequence of at least two merge sub-trees. Since they are
not counted, the choice nodes cannot nest otherwise arbitrarily large sub-trees of the same
size could be constructed. In the same spirit, the prefixing of parallel nodes with actions is
justified to avoid arbitrarily large intermixes of operators. Hence, as noted previously, there
is a precise combinatorial motivation for guarding the choices.

The process tree representing the example given above is depicted on the left-hand side
of Figure 1. For the sake of clarity we explicitly mark the nodes with ‖ and + labels but
only the action could be shown without any ambiguity. According to the specification for
class A given above, this tree has size 12 (only counting the atomic actions).

Following the principles of analytic combinatorics, the combinatorial class A admits a
counting sequence An consisting of the number of objects of A of size n. This sequence is
linked to a formal power series A(z) such that A(z) =

∑
n≥0 Anz

n. The n-th coefficient of
A(z) is commonly denoted by [zn]A(z) = An. Various analysis techniques can then deployed
to “dissect” such power series, e.g. study convergence, find closed formulas and derive
asymptotic results. Indeed, the class A is a quite classical tree model, as e.g. studied in [9,
chapter I] .
I Fact 1. The combinatorial class A of process trees satisfies:

A(z) = 1
2

(
1− z −

√
1− 6z + z2

)
; An ∼n→∞

√
3
√

2− 4
4πn3

(
3− 2

√
2
)−n

.

The integer sequence An (precisely, shifted by 1) is known as Large Schröder Numbers and

FSTTCS 2013
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appears naturally in lattice paths’ context [13]. See for example [9, p. 475], or the Online
Encyclopedia of Integer Sequence: OEIS A006318.

2.2 Semantics: computation trees

A classical semantic domain for process behaviours is the class of computation trees that we
intend to study as combinatorial structures, a study that will cover most of the remaining
material of this paper.

From an algebraic point of view, computation trees can be characterized quite concisely,
for example using the following inference rules:

α.P
α−→ P

(act)
Pi

αi−→ P ′i 1 ≤ i ≤ n
P1 + . . .+ Pi + . . .+ Pn

αi−→ P ′i
(sum)

Pi
αi−→ P ′i 1 ≤ i ≤ n

P1 ‖ . . . ‖ Pi ‖ . . . ‖ Pn
αi−→ P1 ‖ . . . ‖ P ′i ‖ . . . ‖ Pn

(par)

In combinatorics, these rules are interpreted as the transformation of a syntactic process
tree T into a computation tree, denoted [[T ]], with quite a constrained structure. In the
special case of a process without any occurrence of the choice operator – as thoroughly
studied in [3] – then each branch of the corresponding computation tree is a full traversal
of the initial process. With the choice operator, one must first select exactly one branch
for each choice – an operation we call a global choice – and only then traverse the resulting
“choice-free” process. On the right-hand side of Figure 1 we depict the first three layers of the
computation tree corresponding to our example process. Each node of the tree corresponds
to a labelled transition that can be proved by the inference rules above. We further abstract
from the process states since the transitions capture the required information. Note that the
computation tree of Figure 1 is not represented entirely since it has a total of 1120 leaves!
The calculation is detailed in Section 5.2.

There is a fruitful reinterpretation of this semantic construction in terms of partial orders.
With pure parallel processes, the process trees can be seen as tree-like partial orders or
tree-posets, as studied in e.g. [2]. The associated computation trees then encode the sets of
their linear extensions, i.e. the strict orderings induced by the posets. In the presence of
the non-deterministic choice, the process trees encode a family of tree-posets (one for each
possible global choice) and the associated computation tree is the combination of all their
linear extensions. For example, if we take the process tree of Figure 1, then 〈a, e, f, l, g〉 is
a valid linear extension, whereas 〈a, f, l, e, b, d, c〉 is not because b and e occur in distinct
branches of a choice node, and should thus be mutually exclusive. Also, 〈a, e, l, f, g〉 is invalid
since f precedes l in the partial order.

3 Quantitative study I – number of computation paths

The understanding of the computation trees generated by non-deterministic processes as
combinatorial objects requires a meaningful notion of size. The measure that conveys the most
important information about the computation trees is their number of leaves, or equivalently
the number of computation paths. Indeed, this measure directly relates (asymptotically, by
a constant factor) to most other natural measures such as the total number of internal nodes
(this is discussed at length in [3]).
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Figure 2 Three partially increasing trees based on the process tree of Figure 1.

3.1 Partially increasing trees
Consider T a process tree of size n. In [3] we show that the corresponding computation tree
[[T ]] has as many computation paths as the number of distinct ways to label the process tree
T with increasing labels in range [1..n].

If we add the choice operator, then the isomorphism with increasing trees is less direct
since only the nodes that have been selected in a global choice must be labelled: exactly
one branch for each choice node. All the other branches must be unselected in the resulting
total number of possible computation paths. For this, we relax the total increasing labelling
by allowing unlabelled nodes in the counting. To illustrate this combinatorial model, three
distinct partial labellings for our running example are depicted on Figure 2. For example the
leftmost case corresponds to a possible increasing labelling when the b and k branches are
taken (a global choice labelled {b, k}). The unselected branches are labelled by the silent
mark •. Note that there are 1117 other possibilities of such partially increasing trees to count
the total number of computation paths induced by the process tree of Figure 1.

The symbolic method can once again be used to formally define the combinatorial class
of the partially increasing trees, denoted by B, as follows:

B = B‖ + B+

B‖ = W�W ? Z × Seq(B)
B+ = (B‖ ×A‖ × Seq(A‖)) + (A‖ × Seq(A‖)× B‖ × Seq(A‖))

The specification above uses two distinct counting variables: Z for all the nodes and
W only for the increasingly labelled nodes. A partially increasing tree in B may either be
with a parallel or a choice root node, respectively in class B‖ and B+. The root node of a
parallel node has two counts: one (totally) increasing in W and one for the total size in
Z (including the unselected sub-trees marked with • in Figure 2). Its sub-trees consists of
partially increasing trees in B. The box notation W�W specifies that the labelling counted
by W must be increasing. This box operator introduces non-trivial differential functional
equations, cf. [9, p. 139] for further details. The choice nodes can be formed out of two
possibilities depending on where we select the branch in the semantics. In the first case, the
leftmost branch of the choice has been selected, and thus below we need a partially increasing
parallel tree in B‖ (we remind the reader that choice nodes cannot nest directly). The rest of
the sub-trees are in A‖, which means that they are not labelled. The other possibility is that
the branch we select is not the first one. This decomposition is required because a choice
node must have at least two sub-trees to avoid any ambiguity with parallel nodes with only
one sub-tree.

The most notable characteristic of partially increasing trees is that their specification
mixes the box operator together with the unlabelled variant of the classical combinatorial
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constructs. To our knowledge, this is the first study of such a mixed labelled/unlabelled
combinatorial class, which represents, we believe, a contribution in the field of analytic
combinatorics.

3.2 Average case analysis
The combinatorial class of partially increasing trees can be directly translated to the following
system of generating functions: B‖(z, w) =

∫ w
0

z
1−B‖(z,t)−B+(z,t) dt

B+(z, w) = B‖(z,w)·A‖(z)
1−A‖(z) ·

(
1 + 1

1−A‖(z)

)
.

Here, the generating functions are bivariate with variable z for marking all the nodes and
w marking only the increasingly labelled ones. We see here also the interpretation of the
box operator as an integral. As usual with the symbolic method, the passage from the
specification to the generating functions is completely automatic.

This system of generating functions is not trivial to study in analytic combinatorics.
Resolving it requires the use of holonomy theory and related advanced techniques. In fact a
computer algebra system must be used because some calculations are very intricate. We do
however get a workable result.

I Theorem 2. The generating function that enumerates the accumulated number of compu-
tation paths induced by all the process trees of a given size n is:

B̂(z) =
∫ ∞
w=0

(B‖(z, w) +B+(z, w)) exp(−w)dw.

This function satisfies a linear homogeneous differential equation1 of order 9 whose coefficients
are polynomials with highest degree 15.

Now, using the holonomic equation of B̂(z), we can compute very efficiently its first terms
(several thousands of terms can be obtained in a few seconds). For a more general complexity
result, we are now interested in the asymptotic behaviour of the coefficients of B̂(z).

I Theorem 3. Assuming the Hayman-admissibility of the function B̂, the asymptotic of the
average number of computation paths induced by all the process trees of a given size n is:((

6− 4
√

2
)
n

e

)n e
√

2π√
3
√

2− 4
n1/2 + 1

48
e
√

2π
(
12
√

2− 7
)(

3
√

2− 4
)3/2 n−1/2 +O(n−3/2)

 .

Roughly speaking, a function C(z) is Hayman-admissible if the distribution of law (P(N =
n) = anz

n/C(z))z tends to a Gaussian distribution when z tends to infinity. The Hayman-
admissibility of B̂ is unequivocal, although the complete proof requires the difficult Wasow’s
theory [14]. Beyond H-admissibility, the proof of the theorem is based on saddle point
analysis, cf. [9, Section V] for similar technical developments.

In the case of pure merge trees, we show in [3] that the average number of computation
paths is (n− 1)!/2n = Θ(

√
n(0.5 · n/e)n). In comparison, the asymptotics for the process

trees with choice nodes is approximately Θ(
√
n(0.34315 ·n/e)n). It is interesting to note that

1 The differential equation cited in Theorem 2 is not informative in itself, it is thus left omitted.
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Figure 3 The global choices induced by the process tree of Figure 1.

the latter is exponentially smaller, which gives us a quantitative measure of the “cutting”
effect induced by the choice operator. However, the reduction in size is not large enough
for any algorithm requiring the explicit construction of the computation trees (even in some
compacted form) to be of practical interest in general. Put in other terms, the combinatorial
explosion phenomenon is thus not just a worst-case situation, but it is also quite perceptible
in the average case.

4 Quantitative study II – average number of choices

In the previous section we obtained a precise although not really surprising negative result
about the average number of computation paths. We now aim at measuring the choice itself.
As explained previously, the choice operator – when interpreted globally – can be seen as
encoding a family of computation trees resulting from choice-free process trees. In this section
we study the average size of this family. This provides a rather precise characterization of
the expressive power of the choice operator: the amount of information it encodes.

4.1 Generalized hook length formula
Let T be a process tree. A global choice of T is obtained by selecting exactly one sub-tree
for each choice node of T . In Figure 3 we describe the set of all possible global choices for
the process tree of Figure 1. There are indeed 6 possible global choices depending on the
pairs of branches selected for the two choice nodes. Each choice can be identified by the root
labels of the two selected sub-trees.

The important question of interest is the number of such possible global choices that can
be expanded from typical process trees. Indeed, if we find that there are only a few possible
choices on average, like for the example in Figure 1, then one might expand these choices
and apply the efficient algorithms developed in [3] to analyze the computation trees without
constructing them explicitly.

As a matter of fact, there is a tight connection between the possible number of such
global choices, for a given process tree T , and the number of leaves of its computation tree
[[T ]] that we quantified in the previous section.

I Lemma 4. (Generalized hook length formula) Let T be a process tree. The number `T of
computation paths in [[T ]] is given by the following formula:

`T =
∑

C global choice of T

|C|!∏
S sub-tree of C |S|

.

This theorem is justified as follows. If we make a global choice in a process tree (or if
there is no choice to make), then we obtain a pure merge tree and in this case the number
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432 The Combinatorics of Non-determinism

of computation paths is given by the “standard” hook length formula (cf. [3]). Then by
summing over all the possible global choices we obtain the desired result.

4.2 Choice expansion
Our objective is to count, for average process trees, the number of summands in the formula
of Lemma 4. To this end we start with the following specification: Ā = Ā‖ + Ā+

Ā‖ = Z × Y × Seq
(
Ā
)

Ā+ = Ā‖ ×A‖ × Seq(A‖) +A‖ × Seq(A‖)× Ā‖ × Seq(A‖)

Each tree in class Ā is either a parallel or a choice tree. In the case of a parallel node, there
are two distinct counts: Z counts the number of parallel nodes as previously, and Y only
counts the nodes that are part of a given global choice. The sub-trees of parallel nodes are
zero or more trees in Ā. In order to obtain a non ambiguous specification for Ā+, we split
it in two parts: either the first branch is in Ā‖, in which case the second and possibly the
others are in A, or it is another branch that belongs to Ā‖. In both cases, the choice nodes
are not counted. Their sub-trees are formed by a single sub-tree in Ā, i.e. counted by both
Z and Y , and all the other sub-trees only counted by Z by combinatorial class A of “normal”
computation trees, as defined in Section 2.

Working with the generating functions, we obtain the following result:

I Theorem 5. The average number k of choices in a process tree of size n is, asymptotically,
such that there are two constants A and B with k = A ·Bn. We have the following estimates2
for the constants: A ≈ 1.4408 and B ≈ 1.11062. Moreover, the average size of a choice in a
process tree of size n is, asymptotically, equal to C · n where C ≈ 0.49636.

This shows that on average the number of choices induced by non-deterministic processes
is exponential. Thus, even if it is clearly more efficient to resolve the choices first and then
work on the choice-free systems, this does not yield tractable algorithms in general, in the
average (and not just the worst) case. From another perspective, this result appears to us
as a fairly good quantitative witness of the expressiveness of the non-deterministic choice
operator. The syntactic choice construct indeed provides a particularly succinct encoding at
the semantic level of an arbitrarily large family of global choices.

5 Uniform random generation of computation paths

We describe in this section an algorithm to generate non-deterministic computation paths
uniformly at random for a fixed non-deterministic process. This provides a basic building
block for e.g. (uniform) random testing or statistical model checking (cf. [7]). As our
quantitative study makes clear, the approaches of (1) constructing the computation trees or
(2) expanding the non-deterministic choices first, both yield impractical algorithms even in
the average case. Thankfully the symbolic method of analytic combinatorics leads to a more
tractable approach.

2 In Theorem 5 we have presented approximations instead of exact expressions for the constants, for the
sake of brevity. In fact we have calculated the exact values but their expression is very intricate and
does not bring any essential information.
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5.1 Polynomial representation
Let T be a process tree, T1, T2, . . . its children and act(T ) the root action of T . We specify,
in the sense of the symbolic method, the set S(T ) of all runs of T :

S(T ) = S‖(T ) + S+(T )
S‖(T ) = Z�

act(T ) ? Seqi(S(Ti))
S+(T ) = S‖(T1)× S(T2)‖ × . . .

This is very similar to the specification of the semantic trees except that each parallel
node is counted by a dedicated variable Zact(T ) that records the action performed at the root
of T . If a parallel node has a root action labelled a then the variable is denoted Za. In fact,
we consider the process T as a combinatorial class itself.

For our running example (cf. Figure 1), we get the following specification:

S(T ) = Z�
a ?

((
Z�
b ? (Zc ×Zd) + Ze

)
×Z�

f ?
((
Zg + Z�

h ? (Zi ×Zj) + Zk
)
×Zl

))
.

This is almost a paraphrase of the process tree under study. The idea, then, is to apply
the recursive method of uniform random generation developed by Nijenhuis and Wilf [15]
and latter generalized to combinatorial classes (cf. the papers [10, 16]). However this is
not possible in a direct way, because, to our knowledge the box operator has not been fully
integrated in these methods. For instance, even if we obtain a correct selection of the Z’s,
this would not tell us in which order the action labels must be taken. Thus we propose to
adapt the recursive method by decomposing the approach in two distinct phases: (1) the
selection of a global choice and (2) the generation of a computation path. For the first phase,
we do not require to mark all the action labels but only those involving a non-deterministic
choice, i.e. actions just below choice nodes. We thus apply a simple substitution on the
specification, denoted as follows:

S ′(T ) = S(T ){Z/Zv, ywZ/Zw} label w is at the root of a plus branch and v otherwise.

We thus keep a unique mark yw for each branch the choices, and we anonymize all the other
actions. Applied to our example, we obtain:

S ′(T ) = Z� ?
((
ybZ� ? Z2 + yeZ

)
×Z� ?

((
ygZ + yhZ� ? Z2 + ykZ

)
×Z

))
.

We now recall the principles of the recursive method, albeit adapted to fit the special
requirements for the box operator. The generating function corresponding to a weighted
specification S ′ is a polynomial defined inductively.

I Definition 6. Let S′(T ) be a weighted choice specification for a process tree T . The
polynomial of T is PS′(T )(x) in the single variable x depending on the parameters yv’s of
S′(T ) and constructed according to the following rules: PZ�?Seq(S′

i
)(x) =

∫ x

0

∏
i PS′

i
(t)dt

PSeq≥2(yvi
×S′

i
)(x) =

∑
i yvi
·PS′

i

Note that in particular we have PZ�?∅(x) = x. For our example we obtain:

P(x) =
∫ x

0

[
yb ·

∫ t
0 u

2du+ ye · t
]
×
[∫ t

0

(
yg · u+ yh ·

∫ u
0 v2dv + yk · u

)
× u du

]
dt

= x9

405 · ybyh + x7

315 · (5yb(yg + yk) + 3yeyh) + x5

15 · ye(yg + yk)
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If compared to the specification S ′(T ) the polynomial P(x) provides a decomposition of the
available global choices in terms of size given by the degree of each monomial in x. In our
example, there are global choices of size 9, 7 and 5. The weight of each choice in term of the
distribution on the computation paths corresponds to the coefficient for each monomial.

The algorithm to generate the polynomial P(x) only requires a single traversal of the
initial process tree. Using a compact representation (based on directed acyclic graphs for
sharing common sub-terms), the size of the polynomial is at most Θ(n2). This is because in
the worst case the maximum degree of this polynomial is n (the size of the process tree),
and each of the coefficients contains at most n occurrences of the parameters yv’s.

5.2 Sampling algorithm

Algorithm 1: weighted random generation of a global choice
Data: a process tree T and its polynomial PT (x) =

∑
d
xd

Cd
λd

Result: a set C = {v | v a label of T} identifying a global choice in T
πT := {nd = Γ( x

d

Cd
λd{yv ← 1 | v a label of T})}

Pick m ∈ [1;
∑
d πT (nd)] at random

Select d s.t. S < m ≤ S + nd for nd ∈ πT and S =
∑
d′<d nd′ for nd, nd′ ∈ πT

return V (λd)
def=


{v} if λd = yv⋃
i{V (λi)} if λd =

∏
i λi

V (λj) if λd =
∑
i λi for j identifying wj

with wj taken randomly in W def= {wi | wi = λi{yv ← 1 | v a label}, λ =
∑
i λi}

Based on the polynomial representation discussed previously, Algorithm 1 is used to
sample a global choice with the correct relative weight according to the uniform distribution
of computation paths. We illustrate this process with the same example as previously. In
the first step of the algorithm we use the polynomial P(x) to construct πT , an integer
partition of the total number of computation paths of the process tree T . Each element of the
partition is calculated by taking the Γ-transform (in x) of a monomial (of a given degree d;
Γ(αd · xd) = αd · d!) where all the constants yv’s are simply replaced by 1’s. For our example
we obtain the partition {n9 = 896, n7 = 208, n5 = 16} (thus the total number of computation
paths is

∑
d πT (nd) = 1120). In the next step, we sample an integer m in [1; 1120], for

example m = 900. Consequently, we select the monomial in x7 (choices of size 7) with weight
208 in the partition πT . We are thus considering the coefficient λ7 = 5yb(yg + yk) + 3yeyh in
the root polynomial.

To compute V (λ7) in the next step, we must eliminate the outermost sum, which
corresponds to the third (and most complex) case in the computation. For this we use the
distribution W as defined in the algorithm. Each summand is associated in distribution W to
a given weight wi obtained by substituting all the yv’s of the choices of a given degree d and
summand λi. One of the wi’s is taken arbitrarily (because the choice is non-deterministic).
In our example, suppose we have w1 = 10 for the left side and w2 = 3 on the right side
for the two summands of λ7. To choose uniformly one of the two summands, we can pick
a random integer in [1; 13], for example 9. We thus select the left summand 5yb(yg + yk).
The top-most product is eliminated by simply computing the V of its operands. For the left
operand, the label b is selected and in the right operand the sum is eliminated as already
explained. If at the end we select the label k then we obtain V (λ7) = {b, k} which identifies
a single choice in the starting process tree T . This global choice corresponds to the tree
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named {b, k} in Figure 3. Since we obtain a pure merge tree, the dynamic multiset random
sampler of [3] can be used to obtain a computation path uniformly at random.

I Theorem 7. Let T a process tree of size n. A computation path can be generated uniformly
at random in O(n2) arithmetic operations and with O(n2) space complexity.

The global choice is obtained from Algorithm 1 in time linear in the size of the polynomial
P(x) (represented as a DAG) because each coefficient contains at most one occurrence
of a parameter yv. Once the choice is sampled, the generation of the linear extension
from a choice-free process is achieved in time O(n logn) where n is the size of the sampled
choice. Thus, the overall complexity of the proposed random generator is dominated by the
construction of the polynomial P(x), which already involves O(n2) operations.

Random generation is only one of various questions we can answer thanks to the symbolic
representation of the problem. For example, we can count the number of computation
paths in quadratic time. Using a similar process, we can also compute the probability of a
given computation prefix, which would be useful to guide the search of counter-example in
statistical model-checking. The paper [3] gives the detail about these algorithmic variations,
in the choice-free context.

6 Related work

The algebraic properties of “pure” non-deterministic processes have been extensively studied,
cf. e.g. [1, 5]. However, the underlying concrete combinatorial objects remain mostly
undiscovered.

Related forms of choice and shuffle (or parallel) operators naturally appear in the
framework of regular languages. In terms of analytic combinatorics the regular shuffle on
disjoint alphabets has already been studied with basic quantitative results in e.g. [8], and
more thorough properties studied in the work of Mishna and Zabrocki [12]. They prove,
interestingly, that the algebraic properties of the shuffle directly translates to the nature of
the generating functions that encodes the enumeration problems. However the connection
with the non-deterministic choice studied in the present paper is rather loose. First in
regular language the non-deterministic automata can be determinized, which gives a too
abstract view of concurrent processes in the general case. This indeed amounts to consider
trace-equivalence versus bisimilarity when comparing languages vs. processes [11]. In both
case a form of abstraction is proposed, although it is far more radical in the case of regular
languages because one can simply forget about the tree structure of the process behaviours.

The application of uniform random generation of execution paths to software testing is
discussed in [6]. The major difference is that the random generation is based on the semantic
structure whereas in our approach only the (exponentially smaller) syntactic structure needs
to be constructed.

The complexity of counting of linear extensions for arbitrary partial orders is ]P-complete
as shown by [4]. In [3] we show that for tree-like partial orders it is linear (whereas the
previously known algorithm was quadratic [2]). With non-deterministic choices the present
paper shows that a quadratic worst-case algorithm exists and we conjecture this is also a
lower bound. We emphasize the fact that the algorithm computes the number of linear
extensions for a potentially exponential number of tree-like partial orders.
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7 Conclusion

The quantitative study of the non-deterministic choice operator is an important milestone
towards our goal of reinterpreting concurrency theory from the analytic combinatorics point
of view. In the next step in our study, we shall investigate various forms of synchronization,
in general corresponding to reflecting the action labels within the semantics. This calls for
a non-strict variant of increasing structures. This in turn would allow a deeper study of
the causes of non-determinism, e.g. the combinatorial interpretations of internal choice vs.
external choice.

Another interesting continuation of the work is to study the compaction of the computation
trees by identifying common subtrees. This would amount to study the semantic trees up-to
bisimilarity. Note that our algorithmic framework would not be affected by such study, since
the explicit construction of the semantic trees (whether compacted or not) is not required.

Finally, as pointed out by a kind reviewer of the paper, the process trees we consider are
finite trees whereas in practice more expressive classes must be considered. An important goal
we seek next is to apply our algorithmic framework in the context of e.g. regular processes.
We do think an approach in the spirit of partial-order unfoldings of processes is feasible.
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