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—— Abstract

Given a source string u and a target string w, to decide whether w can be obtained by applying
a string morphism on u (i.e., uniformly replacing the symbols in u by strings) constitutes an
NP-complete problem. For example, the target string w := baaba can be obtained from the
source string u := aba, by replacing a and b in u by the strings ba and a, respectively. In this
paper, we contribute to the recently started investigation of the computational complexity of the
string morphism problem by studying it in the framework of parameterised complexity.
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1 Introduction

Many of the typical string problems are concerned with special kinds of string operations
like, e. g., concatenating strings with each other, deleting symbols from or inserting symbols
into a string or replacing symbols by other symbols or even by other strings. Among the
most prominent of these string problems are string-to-string correction, sequence alignment
as well as the longest common subsequence and shortest common supersequence problem. The
complexity of these problems have been intensely studied, both in the classical sense as well
as in the parameterised setting (see, e.g., [1,9]).

In this work, we investigate string problems that arise from a less well-known operation
on strings, i.e., mapping a source string u to a target string w by uniformly (i.e., by a
mapping) replacing the symbols of u by strings. For example, we can turn the source string
u := abba into the target string w := bbaaaaabba by replacing a and b of u by the strings
bba and aa, respectively. On the other hand, w’ := abaaaaaabb cannot be obtained from
w in a similar way. The string morphism problem (denoted by STRMORPH) is to decide
for two given strings u and w, whether or not w can be obtained from u by this kind of
operation. Due to its simple definition, variants of this A/P-complete problem can be found
in many different areas of theoretical computer science. In fact, many respective results
are scattered throughout the literature without pointers to each other and consulting the
existing literature suggests that variants of the string morphism problem have emerged and
have been investigated in different contexts without knowledge of other related work.
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A Brief History of the String Morphism Problem

The origin of the string morphism problem is usually traced back to the 1979 paper by
Angluin [3], in which she introduced the model of pattern languages (the membership problem
of which is essentially the string morphism problem), but, independently and at the same
time, it has also been studied by Ehrenfeucht and Rozenberg in [11]. Garey and Johnson [17],
by referring to a private communication with Aho and Ullman from 1977, report the NP-
completeness of the problem REGULAR EXPRESSION SUBSTITUTION, for which, on close
inspection, the string morphism problem turns out to be a natural subproblem.

Since their introduction, Angluin’s pattern languages have been intensely studied in the
context of learning theory and formal language theory. While questions of learnability as
well as language theoretical properties were the main focus of research, results regarding the
complexity of their membership problem (except of its general N'P-completeness) were sparse
and only appeared as by-products (see, e. g., [3,18,20,28]). In the pattern matching community,
independent of Angluin’s work, the string morphism problem has been investigated in terms
of a special kind of pattern matching paradigm, called parameterised pattern matching
(see [2,4,8,13]). The string morphism problem can also be seen as the solvability problem for
word equations where one side does not contain variables (for more details on word equations,
see Mateescu and Salomaa [24]). Combinatorial properties of the operation of uniformly
replacing the symbols in a string by other strings are investigated in numerous other areas of
theoretical computer science and discrete mathematics, such as (un-)avoidable patterns (cf.
Jiang et al. [22]), the ambiguity of morphisms (cf. Freydenberger et al. [16]) and equality
sets (cf. Harju and Karhuméki [19]). Last but not least, the string morphism problem can
also be found in practical applications. More precisely, it constitutes a special case of the
matchtest for regular expressions with backreferences (see, e.g., CAmpeanu et al. [6]), which
nowadays are a standard element of most text editors and programming languages.

The Contribution of this Paper

A systematic study of the computational complexity of STRMORPH has been taken on just
recently. In [25-27], several possibilities are presented of how to restrict the structure of
the source strings, such that STRMORPH can be solved in polynomial time, and in [13], the
NP-completeness of a large number of strongly restricted versions of STRMORPH is shown.

In the literature mentioned above, different variants of STRMORPH are considered, each
tailored to different aspects and research questions. The most common variants arise from
whether or not we allow symbols to be erased (i. e., replaced by the empty string), whether or
not we allow constants (also called terminals) in the source string, which cannot be replaced
and whether or not the replacement function needs to be injective (i.e., different symbols
cannot be replaced by the same string). While the subtle difference of whether or not symbols
can also be erased has a substantial impact on decidability questions for pattern languages,
the differentiation of STRMORPH in an injective and a non-injective version is motivated
by pattern matching tasks. In addition to these different variants of STRMORPH, we can
observe many natural parameters (in the definition of the following parameters, let u be a
source string over the alphabet A and let w be a target string over the alphabet B).

p1: The cardinality of A.

p2: The length of w.

p3: The cardinality of B.

ps: The maximum length of the strings substituted for the symbols in u.

p5: The maximum number of occurrences of any symbol in wu.
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In [13], for every variant of STRMORPH and for every subset of the above parameters, it is
shown whether the chosen parameters can be bounded by constants such that the resulting

version of STRMORPH can be solved in polynomial time or whether it is still A/P-complete.

For example, if the cardinality of A is bounded by a constant, then all variants of STRMORPH
can be solved in polynomial time. This trivially follows from the fact that there is a simple
brute-force algorithm that runs in time that is exponential only in p;. Close inspection
reveals that STRMORPH can also be solved in time that is exponential only in py (for
details, the reader is referred to [18] and also [13]). Consequently, in terms of parameterised
complexity, STRMORPH parameterised by p; or ps is in XP and the question arises whether
these problems are in FPT. Unfortunately, as a main result of this work, we report that both
of the above parametrisations are W[1]-hard, even if additional parameters are taken into
account. More precisely, we show that the following versions of STRMORPH are W[1]-hard:

1. all variants of STRMORPH parameterised by (p1,ps,ps),

2. all variants of STRMORPH (except the nonerasing ones) parameterised by (ps2,ps3, P4, ps).

For obtaining the first result, we extend a result by Stephan et al. [29], who showed the
W1]-hardness for a special variant of STRMORPH parameterised by p; and in order to
prove the second result, we devise a new reduction from k-MULTICOLOURED-CLIQUE. With
respect to the parameters defined above, this leaves only very few parameterised variants of
STRMORPH that could possibly be in FPT. In this regard, we report the fixed parameter
tractability of the following versions of STRMORPH:
3. all variants of STRMORPH parameterised by (p1,p2),
4. all variants of STRMORPH parameterised by (p1,p4),
5. all nonerasing variants of STRMORPH parameterised by po,
6. the nonerasing, injective variant of STRMORPH parameterised by (ps, ps).
The above results 1 to 6 (in conjunction with results from [13]) completely settle the fixed
parameter tractability of all possible parameterised variants of STRMORPH, with respect
to the parameters p; to ps. We complement these results by showing for all the W[1]-hard
cases W[1]-membership or W|[P]-membership.

We conclude the paper by demonstrating the unlikeness of a subexponential algorithm
for an important variant of the string morphism problem by applying the Fxponential Time

Hypothesis. Due to space constraints, for most of our results we only provide proof sketches.

2 Preliminaries

Let N:={1,2,3,...}. For an arbitrary alphabet A, a string (over A) is a finite sequence of
symbols from A, and ¢ is the empty string. The notation AT refers to the set of all non-empty
strings over A, and A* := A" U {e}. For the concatenation of two strings wy,ws we write
wy we. We say that a string v € A* is a substring (or factor) of a string w € A* if there
are uy,up € A* such that w = u; vus. The powers w’, i € N, of a string w are inductively
defined by w! := w and w® = ww'~!. The notation |K| stands for the size of a set K or the
length of a string K. By |wl|p, we denote the number of occurrences of b € A in w, by wli, j],

we denote the factor from position 4 to j in w and w[i] ;== w[i,i]. Let A and B be alphabets.

A mapping h : A* — B* with h(uw) = h(u) h(w), for every u,w € A, is a morphism. It can
be easily verified that a morphism is uniquely defined by the images h(b), b € A. If, for every
be A, h(b) # ¢, then h is said to be nonerasing. If, for all b,c € A with b # ¢, h(b) # € and
h(c) # e implies h(b) # h(c), then h is E-injective and h is injective if it is E-injective and
nonerasing. The size of a morphism h is defined by |h| := max{|h(b)| | b € A}. Let A and B
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be alphabets with B C A. A morphism h : A* — B* that satisfies h(b) = b, for every b € B,
is a substitution.

» Example 1. Let w1 :=zzyzy, us :=raybyxy, w; := ababababab, wy := bacbabbacb
and ws := abaabbababab. The nonerasing morphism hy defined by hi(z) := hi(y) :=
hi(z) := ab satisfies hi(u;) = wy. However, u; cannot be mapped to wib =: w] by a
nonerasing morphism. If, on the other hand, we do not restrict ourselves to nonerasing
morphisms, then ha(ui) = w), where ho is defined by ha(x) := ha(y) := € and ha(z) := wj.
It can be verified that g1 (uz) = wa, where g; is a substitution defined by g;(z) := bacb,
g1(y) := € and ga(u2) = ws, where gy is a substitution defined by ga2(z) := g2(y) := ab.
Furthermore, us cannot be mapped to ws by a nonerasing substitution and us cannot be
mapped to ws by an E-injective or injective substitution.

Next, we define several variants of string morphism problems. The following is the most
general string morphism problem, which shall serve as a base for the definitions of all the
further restricted versions.

STRMORPH
Instance: Two strings u and w over some alphabets A and B.
Question: Does there exist a morphism h : A* — B* with h(u) = w?

By STRSUBST, we denote the version of STRMORPH, where instead for a morphism we
are looking for a substitution. By adding the prefixes NE, INJ and NE-INJ, we denote the
variants of the problems STRMORPH and STRSUBST, where the morphism (the substitution)
needs to be nonerasing, E-injective and nonerasing injective, respectively. Let SMP be the
class containing exactly these 8 variants of the string morphism problem, i.e.,

SMP := {Z- STRMORPH, Z- STRSUBST | Z € {¢,NE, INJ, NE-INJ}}.

Next, we fix some notation that shall be used throughout the paper. For an instance
(u, w) of one of the above defined string morphism problems, u is called the source string, w
is called the target string and the respective alphabets A and B with v € A* and w € B*
are called the source and target alphabet, respectively. From now on, the target alphabet
is always denoted by X and the source alphabet is X for string morphism problems and
(X UX) for string substitution problems, where X C {1, 22, 3,...}. The symbols in ¥ are
called terminals and the symbols in X are called variables. For any string v € (X U X)*, by
var(u) we refer to the set of variables occurring in u and |uly,, is the maximum number of
occurrences of a variable in w, i.e., |tu|vay := max{|ul, | z € var(u)}.

For the problems in SMP, we consider the following parameters: |var(u)| (the number of
variables in the source string), |X| (the cardinality of the target alphabet), |w| (the length of
the target string), |u|vay (the maximum number of occurrences of a variable) and |h| (the
size of the morphism or substitution). A list of parameters is a tuple [p1, p2, ..., pr], where
1<k<5{p1,p2,...,pk} C{|var(u)|, |Z|, |w], |u|var, |h|}. For example, [[var(u)|,|X],|h|] is
a list of parameters. For every K € SMP and every list L of parameters, by L-K, we denote
the problem K parameterised by the parameters in L, e. g., [| 2], |t|var]-NE-STRMORPH is the
parameterised version of NE-STRMORPH, where the cardinality of the target alphabet and
the maximum number of occurrences per variable are parameters. We wish to point out that
all parameters but |h| are implicitly given by the source and target string. In particular, for
negative instances of the string morphism problems, the parameter |h| is undefined. Hence,
as a convention, whenever we consider parameterised problems L-K, K € SMP, where L
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contains |h|, we assume that the parameter |h| is explicitly given as input along with the
source and target string.

In the following, we briefly recall some of the main concepts of parameterised complexity
theory (for an overview, the reader is referred to Flum and Grohe [14]). The class of fixed
parameter tractable problems is denoted by FPT and in order to show fixed parameter
intractability, we use the class W1]. The CLIQUE problem parameterised by the size of the
clique is denoted by k-CLIQUE and k-MULTICOLOURED-CLIQUE is the problem to decide for
a graph G := (V, E) and a partition V1, Vs, ..., Vi of V| such that every V; is an independent
set, whether or not G has a clique of size k. It is a well-known fact that both k-CLIQUE
and k-MULTICOLOURED-CLIQUE are complete for W[1] (with respect to parameterised
reductions) [12]. Another Wl]-complete problem that we use is SHORT-NTM-CoMP, i.e.,
to decide for a nondeterministic Turing machine M, a string w over the input alphabet of
M and a parameter k € N whether or not M has an accepting computation for w with at
most k steps (see Cai et al. [5], Downey et al. [10], Cesati [7]). The classes of polynomial
and nondeterministically polynomial time solvable problems are denoted by P and NP,
respectively.

In Section 4, in order to argue for the unlikeness of a subexponential algorithm, we shall
apply the Ezponential Time Hypothesis (ETH) by Impagliazzo, Paturi, and Zane [21], which,
informally speaking, is the conjecture that 3SAT cannot be solved in time 2°("). For an
introduction to ETH, the reader is referred to [15,23].

3 The Parameterised Complexity of String Morphism Problems

In this section, we show for every list of parameters L and for every K € SMP, whether or
not L-K is fixed parameter tractable or W[1]-hard. We start with the hardness results and
then present fpt-algorithms for all the other cases. This section is concluded by showing
W [1]-membership and W[P]-membership for the W[1]-hard cases.

3.1 W]l]-Hardness

As explained in Section 1, it can be easily seen that all variants of STRMORPH can be solved
in polynomial time if |var(u)| or |w| is bounded by a constant. Furthermore, as shall be
explained in Section 3.2, it also follows trivially that all variants of STRMORPH are in FPT if
parameterised by |var(u)| and |w| at the same time. Hence, the most interesting question is
whether this also holds if either |var(u)| or |w| is a parameter. We shall show that this is very
unlikely, since the corresponding parameterised versions of the string morphism problems
are Wl]-hard. First, we consider the case that |var(u)| is a parameter and |w| is not a
parameter, for which we can show W{l]-hardness, even if |u|y,y and |X| are parameters, too.

» Theorem 2. For every K € SMP, [|[var(u)|,|X|, |u|var])-K is W[1]-hard.

In [29], Stephan et al. give a reduction from k-CLIQUE to [|var(u)|,|X|, |u|var]-NE-
STRSUBST, which proves its W[1]-hardness. This reduction can be extended to a paramet-
erised reduction for all problems [|var(u)]|, |2|, [t|var]-K, K € SMP, which implies Theorem 2.

Next, we consider the case where |w| is a parameter instead of |var(u)|. In this regard, we
can state a rather strong result, i.e., the WW[1]-hardness for all (but the nonerasing) variants
of string morphism problems parameterised by all the considered parameters except |var(u)].

» Theorem 3. For every Z € {INJ,e} and K € {STRMORPH, STRSUBST}, the problem
[wl, |5, [ulvar, [h[]-Z-K is W[1]-hard.
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It shall be explained later in Section 3.2 that the nonerasing variants of the string
morphism problem are trivially fixed parameter tractable if parameterised by |w|.

The reductions that have been used in order to prove Theorem 2 are of no use for
proving Theorem 3, since they produce target strings whose lengths depend on the size of
the graph and not on the size of the clique. For the proof of Theorem 3, we utilise the
problem k-MULTICOLOURED-CLIQUE, i.e., we define a mapping ® that maps a given graph
G := (V, E) and a partition Vi, Va,..., Vi of V to a source string v € (XU X)* and a target
string w € X1, where ¥ :={ag; ;3 |1 <i<j<k,i#j}U{$} and X := {z. | e € E}. For
the sake of concreteness, we define, for every 4, 1 <i <k, V; := {v;1,v;2,...,0;,,}. Note
that, for every i, j, 1 <i < j <k, i # j, the symbols ay; j1 and ay; ;3 are considered identical.
For every 4,7, 1 <i < j <k, we define

Ei,j = $‘T5i,j,l xei,j,z . xei,j,li,j $ and Ei,j = $ a{i7j} $ 5

where €;;1,¢€;,2,---,€4,1,,; i an enumeration of exactly the edges between V; and V;.
Furthermore,

U:=Up2U13.- - ULLU23U24 - - UL «-- Uk—1F

W:i=wi2W1,3.. Wi kW23 W2 4. . W2k - Wk—1,k -

Next, for every i, 1 < i < k, we define a gadget (u;,w;) in the following way. For
every j,p, 1 <p <t;, 1 <j <k, i#j, wedefine Uy ; = x¢, ,, Ze, Ty where
€p,j,1>€pj,2, - -+ Ep s, ,; 15 an enumeration of exactly the edges between vertex v; , and some
vertex of V;. Next, for every p, 1 < p <'t;, we define

Wi,p += Wip,1 Ui,p,2 - - Ui,p,i—1 Ui,p,it+1 Uip,it2 - - Uipk -

We are now ready to define the gadget (u;, w;):

A~ ~9

~  ~2 2

Us i=Us Uz g ... Usy,,

~ 2
wi = (agi1} agi2} - - Afii-1} a1} a2} - - Afik}) -

Furthermore, we define © := $u;$u2$...8u,$, w := $w, 3w $...8w, $ and, finally,
uw:=tuuand w:=wWw.

» Lemma 4. Let G := (V, E) be a graph, let V1,Va, ..., Vi be a partition of V, such that
every V; is an independent set and let (u,w) := ®(G, V1, Va, ..., V). There exists a clique of
size k in G if and only if there exists an E-injective substitution h of size 1 with h(u) = w.

Proof Sketch. Every variable z. € X corresponds to the edge e € E. Due to the gadgets
(Wi,j, W, 5), 1 <i<j <k, for every edge e between V; and V; the corresponding variable
can either be substituted by symbol ay; ;3 or by the empty string ¢, but, for every i, j,
1<i<j <k, i#j, exactly one variable corresponding to an edge between V; and V;
must be mapped to ay; ;3. So mapping u to w corresponds to choosing exactly one edge
between each two sets V; and V;, 1 < i < j <k, i # j. In order to conclude that these
edges are the edges of a clique, we somehow have to impose the condition that, for every
i, 1 < i <k, all the chosen edges connecting a vertex from V; to vertices from each Vj,
1< 75 <k, i+#j, are adjacent to exactly the same vertex of V;. This condition is guaranteed
by the gadgets (u;,w;), 1 <1i < k, which can be seen in the following way. For a fixed ¢,
1 <4 <k, u; contains all vertices between v; 1 and vertices in V7, then all vertices between
v;,1 and vertices in V5 and so on until all vertices between v; 1 and Vj, are listed (this is
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represented by @; 1). Then, in the same way, all vertices between vertex v; o and vertices
in Vi, Vs,...,V} are listed, and so on. The string w,, i.e., the counterpart to u;, contains a
listing of edges between V; and the other sets V;, 1 < j <k, i # j. The fact that all the u; p,
1 <p<t;, in u; are squared and w; is a square, too, allows us to conclude that the whole
string w; must be completely generated by one u; p, for some p, 1 < p <t¢;. This means that
there is actually one distinct p, 1 < p < ¢;, such that all the edges between V; and the other
sets Vj, 1 < j <k, i # j, are adjacent to this vertex v; , € V;. <

We note that @ is an fpt-reduction with respect to the parameters |w|, |3|, |u|var and |h].

» Proposition 5. Let G be a graph, let V1, Vs, ..., Vi be a partition of V and let (u,w) :=
®(G,V1,Va, ..., V). Then |w| and || are bounded by a function of k and |u|var = 3.

However, the reduction ® only works for the problems Z-STRSUBST, Z € {INJ, ¢}, but it
can be extended to the problems Z-STRMORPH, Z € {INJ, e}, as well, i.e., to a mapping
®' that maps a k-MULTICOLOURED-CLIQUE instance to a source string v’ € X and a
target string w’ € 7. To this end let G := (V, E) be a graph and let Vi, Va,..., Vi be
a partition of V, such that every V; is an independent set. Since @’ is very similar to @,
we shall only point out in which regards they differ. The main difference is that for ®’,
instead of using occurrences of the symbol $ in u, we use an occurrence of a new variable
per each occurrence of §. Furthermore, in order to maintain the E-injectivity, each of these
new variables has to match its own individual symbol in w. More formally, for every i, j,
1 <i<j <k, wedefine w;j 1= z¢, ; Te, ;, Te; ;. Loy g, Feys Wi i Cijagig G and
U= Z$, ﬂl 28, 172 Zgs e B8y ﬂk Z$k+17 w = $1 ’L’l71 $2 ’LEQ $3 . $k 7I)k- $k+17 where the factors 172
and w;, 1 <14 < k, are defined as in the definition of ®. Furthermore, analogously to the
definition of ®, we define  and w to be the concatenations of the factors u; ; and w; j,
respectively. Finally, we define v/ := 2o, Zg, 2% S 2 U g, U and v =%%%r %u% w, where
s is a concatenation of all the new variables of form z,, ; and zg, and r is the corresponding
concatenation of the symbols ¢; ; and $;. We note that Lemma 4 as well as Proposition 5
still hold with respect to ®’, which concludes the proof of Theorem 3.

» Lemma 6. Let G := (V,E) be a graph, let V1,Va,..., Vi be a partition of V', such
that every V; is an independent set, let (v, w') := ®'(G, V1, Va,..., Vi) and let (u,w) :=
O(G, V1, Va,..., V). There exists an E-injective morphism h with h(u') = w' if and only if
there exists an E-injective morphism g with g(u) = w.

» Proposition 7. Let G be a graph, let V4, Vs, ...V, be a partition of V and let (v/,w’) :=
(G, V1,Va,...,Vi). Then |w'| and |X| are bounded by a function of k and |u/|yar = 3.

3.2 Fixed Parameter Tractability

We now present two brute-force algorithms for the string morphism problems. Let u be
a source string and let w be a target string. The algorithm BF-1grryoren On input (u, w)
works as follows. All tuples (w1, w2, ..., Wyar(u)|) of factors of w are enumerated and if for
such a tuple h(u) = w holds, where h(z;) := w;, 1 <4 < |var(u)|, then the output is YES and
NO otherwise. Obviously, BF-1grgmoren (4, w) = YES if and only if there exists a morphism h
with A(u) = w. In an analogous way, for every K € SMP, we can define an algorithm BF-1,
which solves the problem K. We only have to make sure that, depending on the problem
K, we only enumerate m-tuples of factors of w that induce an injective, a nonerasing or an
injective nonerasing morphism (or substitution).

» Proposition 8. Let K € SMP. The runtime of BF-1 (u, w) is O (|u| X |w] % (|w\2)|var(u)‘).
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We now slightly change the brute-force algorithm BF-1x from above. To this end,
let u be a source string, let w be a target string over some target alphabet 3 and let
k € N. The algorithm BF-2gqvorpn On input (u, w, X, k) works just as BF-1gramonrpn, but
instead of enumerating all tuples (wy,ws, ..., Wyar(wy) of factors of w, it enumerates all
tuples (w1, wa, ..., War(u)|) of strings over ¥ with |w;| < k, 1 <4 < |var(u)|, and checks
whether one of them induces a morphism h with h(u) = w. It can be easily verified that
BF-25rmnoren (4, w, X, k) = YES if and only if there exists a morphism h of size k with
h(u) = w. In a similar way as done for algorithm BF-1gpyoren, for every K € SMP, we can
extend BF-2grryoren t0 BF-2x, which solves the problem K.

» Proposition 9. Let K € SMP. The runtime of the algorithm BF-2x (u,w,X, k) is
0 (\u| x kx (kx \Z|k)|var(u)|).

By applying the above brute-force algorithms for solving the string morphism problems,
we can conclude the following fpt-results:

» Theorem 10.

A. For every K € SMP, [|var(u)|, |w|]-K is in FPT.

B. For every Z € {NE,NE-INJ} and K € {STRMORPH, STRSUBST}, [|w|]-Z-K is in FPT.
C. For every K € {STRMORPH, STRSUBST}, [|h], |2|]-NE-INJ-K is in FPT.

D. For every K € SMP, [|var(u)|, |h|]-K is in FPT.

Proof Sketch. Obviously, BF-1k is an fpt-algorithm for [|var(u)|, |w|]-K, K € SMP, which
proves A. For the NE variants of the string morphism problems, we can assume |w| >
|u| > |var(u)]; thus, for every Z € {NE,NE-INJ} and K € {STRMORPH, STRSUBST},
BF-12_g (u, w) has a runtime of O(|u| x |w| x (Jw|?)*!)), which proves B.

For every k € N, there are | := Zle |¥|* different non-empty strings over ¥ with
length at most k. Thus, if |var(u)| > I, then every morphism h with |h| < k is necessarily
non-injective and if, on the other hand, |var(u)| < I, then BF-2xp_1n;-x (u, w, X, k), K €
{STRMORPH, STRSUBST}, has an fpt-runtime since |var(u)| <. This proves C.

Finally, in order to prove D, we note that, for every £ € N, a morphism or a substitution
h of size k can introduce at most |var(u)| x k new symbols. Hence, for every K € SMP,
BF-2k (u,w, T, k) solves [|var(u)|, |h|]-K in fpt-time, where I (with |T'| < |var(u)| x k) is the
alphabet over which the images with respect to h are defined. <

We conclude this section by pointing out that the results presented in Section 3.1 and 3.2
completely settle the fixed parameter tractability of all possible parameterised variants of
string morphism problems, with respect to the parameters considered in the context of this
work. In order to verify this claim, it is helpful to recall these results in form of a table.

’ Problems ‘ [var(u)| ‘ |w] ‘ [t]var | |B] ‘ || H Complexity | Reference
SMP p p - - | = ||FPT Thm. 10.A
{NE, NE- INJ}-{STRMORPH, STRSUBST} - p| - | |- ||FPT Thm. 10.B
NE- INJ-{STRMORPH, STRSUBST} - - - | p|p|lFPT Thm. 10.C
SMP P - = [p[-1FpPT Thm. 10.D
SMP p - p | — | 6 ||W[l]-hard |Thm. 2
{e, INJ}-{STRMORPH, STRSUBST} - p 3 1| p ||W][l]-hard |Thm. 3

In the above table, an entry p means that the problems denoted in the row are paramet-
erised by the parameter in the column and an integer entry constitutes a constant bound for
this parameter. We note that all the cases parameterised by both |var(u)| and |w]| are settled
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by row 1. Furthermore, all the cases parameterised by |w|, but not by |var(u)| are settled by
rows 2 and 6, and all the cases parameterised by |var(u)|, but not by |w| are settled by rows
4 and 5. In order to see that all the cases parameterised neither by |var(u)| nor by |w| are
settled as well, we need to take a closer look.

From row 5, we can only conclude that as long as |h| is not a parameter, then all variants
are W[1]-hard. However, for the cases where |h| is a parameter, we can only conclude from row
6 the W([1]-hardness for all but the NE and NE-INJ variants, and, in addition to that, from
row 3 we can conclude the FPT-membership for the NE- INJ variant, where |X| is a parameter,
too. Consequently, for every K € {STRMORPH, STRSUBST} and Z € {NE,NE-INJ}, the
following cases are open: (1) [|A], |t|var, |2[]-NE-K, (2) [|h],|X]]-NE-K, (3) [|h], |t|var]-Z-K
and (4) [|h|]-Z-K. In [13] it has been shown that the problems NE-K are N'P-complete even
if the parameters |h|, |u|var and |X| are bounded by constants, which implies that, unless
P = NP, the problems of cases (1) and (2) are not in XP; thus, they are not in FPT. The
same holds for the problems Z-K with respect to parameters |h| and |u|var, Which, in a
similar way, implies that the problems of cases (3) and (4) are not in FPT.

3.3 W][1]-Membership and W [P]-Membership

In this section, we investigate the W [1]-membership and W[P]-membership for the W1]-hard
variants of string morphism problems. In this regard, we first explain why the problems
[lvar(u)|, |ulvar]-K and [|w|]-K, K € SMP, are in W[1].

» Theorem 11. Let K € SMP. The problems [|var(u)|, |u|var]-K and [Jw|]-K are in WT1].

Proof Sketch. We sketch a reduction from the problem [|var(u)|, |t|var]-STRSUBST to the

problem SHORT-NTM-CoMP, which can be extended to the other problems [|var(u)|, |t|var)-

K, K € SMP. To this end, let w := uoy1 w1 Yo u2y3 ... YnUn, ¥ € X, 1 <i < n, u; € ¥,
0 < j < n, be the source string and let w € ¥* be the target string. The Turing machine
starts with the string v’ := y1y2 ...y, on the tape. It then guesses a subset S C var(u)

and replaces every occurrence of a y; € S by T (which means that this variable is erased).

Every occurrence of a variable y; ¢ S is replaced by Tj(flg, for some j, k, 1 < j <k < |w]
(which means that the i®" occurrence of a variable is allocated to factor w[j, k] of the target
string). It now only remains to check, for every factor T](fl,zl TEZ Tj(f,z?, 0 <1< n—2, whether
Uiy Wiy 41 - - Uiy—1 = w[ky + 1, j2 — 1], and to check, for every iy,i2, 1 < iy < iy < n, with
u'[iy] = Tj(fj,;, u'lis] = 1}(;2,22 and y;, = ¥i,, whether wlji, k1] = w[jo, k2]. All the data
that the Turing machine requires to perform these checking procedures can be computed
beforehand in polynomial time by the transformation machine; thus, the number of steps of
the Turing machine is bounded by g(|u/|), for some function g. Since |u/| < |u|var X |var(u)|,
the number of steps is bounded by a function of the parameters. This reduction can be easily
adapted to all the other problems [|var(u)]|, |u|var]-K, K € SMP.

In order to reduce the problems [|w|]-STRSUBST to SHORT-NTM-CoMP, we need a
slightly different approach: the Turing machine performs its computation on the target string
instead on the source string. More precisely, the Turing machine starts with the target string
w on the tape, nondeterministically initialises a counter ¢, 1 < ¢ < |ul, and then moves
over w from left to right. In every step, a terminal symbol is replaced by the number ¢ and
then ¢ is nondeterministically set to a value j, ¢ < j < |u|. After this procedure, the input
tape contains an increasing sequence of |w| numbers between 1 and |u|. Every consecutive
sequence of occurrences of the same number 4, 1 < ¢ < |u|, means that the corresponding

factor of w is “produced” by u[i] (note that this can be a variable or a terminal symbol).

Now it only needs to be checked whether this allocation of factors from w to the symbols of
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u induces a substitution that maps u to w. All the data required for this checking procedure
can be computed beforehand in polynomial time by the transformation machine; thus, the
number of steps of the Turing machine is bounded by g(|w]), for some function g. It is
straightforward to adapt this reduction to the other problems [|var(w)|]-K, K € SMP. <

We wish to point out that if a problem L-K, K € SMP, has shown to be in W[1], then
this W[1]-membership is preserved if we add other parameters to L. Hence, Theorem 11
implies W[1]-completeness for all the W[1]-hard versions of string morphism problems, except
[[var(u)|,|%|]-K and [|var(u)|]-K, K € SMP, for which W[1]-membership does not follow,
since in the above reduction, we need |u|v,, as a parameter, too. However, for the problems
[[var(u)|]-K, K € SMP, we can show a weaker result, i.e., their W[P]-membership (which
then also carries over to the problems [|var(u)|, |X|]-K, K € SMP).

» Theorem 12. For every K € SMP, [|var(u)|]-K € W[P].

Proof Sketch. A problem II parameterised by k is in W[P] if and only if there is a computable
function h, a polynomial p and a nondeterministic Turing machine M deciding IT such that on
every run with input w the machine M performs at most p(Jw|) steps, at most h(k) x log(|w|)
of them being nondeterministic (see Flum and Grohe [14]).

We only show how [|var(u)|]-NE- STRMORPH can be solved by a Turing machine with the
above properties (this procedure can be easily adapted to all other cases). Let u# w be the
input, where u = y1 Yo . . . Ym, ¥i € var(u), 1 <i < m, is the source string and w is the target
string. The Turing machine nondeterministically guesses numbers I1,l2, ..., l|jvar(u)| € N,
which induce a factorisation of w that fits to u, i.e., w = wyws ... w,,, where, for every
i, 1<i<m,yj,1<j<|var(u)|, lw;| =1; if y; = z;. The Turing machine then accepts
if, for every p,q, 1 < p < q < |u|, yp = y, implies w, = w,, and rejects otherwise. The
correctness of this procedure is obvious, it only remains to show that it satisfies the above
mentioned conditions. All the tasks that need to be performed by the Turing machine can
be carried out in time polynomial in |w| and |u|. Furthermore, the only nondeterministic
steps are the ones that are performed in order to guess the factorisation of w and these are
O(Jvar(u)| x log(Jw|)) many, since the factorisation is completely determined by the lengths
of the |var(u)| factors and each of these lengths is bounded by |w|. <

4 A Lower Bound

For most string problems, it is a natural assumption that the alphabet 3 is fixed (in fact, it
often has very small cardinality as, e.g., 2 if we are dealing with binary numbers or 4 in the
case of DNA sequences). Furthermore, if we use strings with variables (i. e., source strings)
for specifying a class of similar string objects (which is a typical application of strings with
variables), then, for many applications, there are only finitely many string objects that can
replace the variables. Hence, the problems [|h]| < k1, |X| < ko]-K, K € SMP, ky1,ks € N (i.e.,
the parameters |h| and |X| are bounded by k1 and ks, respectively), are of special interest.
We recall that Proposition 9 demonstrates that, for every constants k1, ko € N and for every
K € SMP, [|h| < ki,|%| < ko]-K can be solved in time O(|u| x k; x (ky x kit)lvar@l) —
lu| x 2002 (W) Next, we show that if ko > 2, then, for every K € {STRMORPH, STRSUBST},
there does not exist an algorithm that solves [|h| < k1, |¥| < ko]-K in time (Jul|w|)®™M) x
2o(lvar(w)l) " ynless ETH fails.

To this end, we define a reduction ® from 3SAT to STRSUBST. Let C := {¢1,¢2,...,¢m}
be a set of three-literal-clauses with variables vy, vs,...,v, (—v; denotes the negation of
v;). We define U := ¢x1 Ty ¢x2Ta¢...¢x, Ty ¢, W := ¢(ac¢)” and, for every clause ¢; :=
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. ~ o S
{piupizupia}’ 1 << m, we define Ui = CYiy Yiy Yiz %31 23,2 CZ45.1 25,2 Z’i,l zi,2¢ and w; =
caaacaac, where y;, = z;; if p;; = v;; and y;; =T, if p;;, = —w;;, 1 < j < 3. Finally,
Ui=TUUL U .. . U, W = WW, Wo ...W, are the source and target strings constructed by .

» Lemma 13. Let C be a SCNF formula and let (u,w) := ®(C). The formula C is satisfiable
if and only if there exists a substitution h of size 1 with h(u) = w.

We note that ®(C) produces a source string u with |u] = 3n + 1 + 12m and a target
string w € {a,¢}* with |w| = 2n 4+ 1 4+ 8m, where n is the number of Boolean variables
and m is the number of clauses of C. This implies that, for every ky,ko € N, ko > 2, if
[|h| < k1, |%| < ko]-STRSUBST can be solved in time (|u|[w])®™) x 20(var(@)D  then 3SAT can
be solved in time (m + n)OM) x 20(m+n),

Furthermore, the reduction ® can be extended to morphisms, i.e., to a reduction @’
that maps a Boolean formula C' with n variables and m clauses to a source string u that
only contains variables, i.e., u € X*, with |u| = O(n) + O(m). To this end, let C be a
set of m three-literal-clauses with n variables and let (u,w) := ®(C). First, we obtain
a source string v’ € X* from u by substituting every occurrence of ¢ by an occurrence
of the new variable y,. Next, we define u” := y, y. (v/)? and w” := ¢c¢(w)?. Obviously,
|u”| = 2]u| +2 = O(n) + O(m). In order to prove that ® is a valid reduction, it is sufficient
to show that there exists a substitution h of size 1 with h(u) = w if and only if there exists a
morphism g of size 1 with g(u”) = w”. The only if direction is obvious, since if h(u) = w,
then g(u”) = w”, where g(x) := h(x), € var(u), and g(y,) := ¢. For the if direction, we
observe that if g(u”) = w” and g(y.) = ¢, then g(u) = w holds as well. If, on the other hand,
9(ye) = €, then g(u?) = w”, which is a contradiction, since w” is not a square.

Hence, for every ki,ko € N, ky > 2, if we can solve [|h| < k1,|X| < ko]-K, K €
{STRMORPH, STRSUBST}, in time (|u||w]|)CM) x 20(v2r(WD then 3SAT can be solved in time
(m +n)PM x 20(m+n) - Fyurthermore, by applying the Sparsification Lemma (see [21]), we
can obtain the following result.

» Theorem 14. For every K € {STRMORPH, STRSUBST} and ki,ks € N, ks > 2, [|h| <
k1, || < ko]-K cannot be solved in time (|u|jw])©™) x 200var(D “yniess ETH fails.

—— References

1 F. N. Abu-Khzam, H. Fernau, M. A. Langston, S. Lee-Cultura, and U. Stege. A fixed-
parameter algorithm for string-to-string correction. Discrete Optimization, 8:41-49, 2011.

2 A. Amir and I. Nor. Generalized function matching. Journal of Discrete Algorithms, 5:514—
523, 2007.

3 D. Angluin. Finding patterns common to a set of strings. In Proc. 11th Annual ACM
Symposium on Theory of Computing, STOC 1979, pages 130-141, 1979.

4 B. S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of
Computer and System Sciences, 52:28-42, 1996.

5 L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. On the parameterized complexity of
short computation and factorization. Archive for Mathematical Logic, 36:321-337, 1997.

6 C. Campeanu, K. Salomaa, and S. Yu. A formal study of practical regular expressions.
International Journal of Foundations of Computer Science, 14:1007-1018, 2003.

7 M. Cesati. The Turing way to parameterized complexity. Journal of Computer and System
Sciences, 67:654—685, 2003.

8 R. Clifford, A. W. Harrow, A. Popa, and B. Sach. Generalised matching. In Proc. 16th
International Symposium on String Processing and Information Retrieval, SPIRE 2009,
volume 5721 of LNCS, pages 295-301, 2009.

65

FSTTCS 2013



66

On the Parameterised Complexity of String Morphism Problems

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

R.G. Downey, M.R. Fellows, B. Kapron, M.T. Hallett, and H.T. Wareham. Parameterized
complexity of some problems in logic and linguistics (extended abstract). In Proc. 2nd
Workshop on Structural Complexity and Recursion-theoretic Methods in Logic Programming,
volume 813 of LNCS, pages 89-101, 1994.

A. Ehrenfeucht and G. Rozenberg. Finding a homomorphism between two words is NP-
complete. Information Processing Letters, 9:86-88, 1979.

M. R. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the parameterized complex-
ity of multiple-interval graph problems. Theoretical Computer Science, 401:53-61, 2009.
H. Fernau and M. L. Schmid. Pattern matching with variables: A multivariate complexity
analysis. In Proc. 24th Annual Symposium on Combinatorial Pattern Matching, CPM 2018,
volume 7922 of LNCS, pages 83-94, 2013.

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

F. V. Fomin and D. Kratsch. Ezact Exponential Algorithms. Texts in Theoretical Computer
Science. Springer, 2010.

D. D. Freydenberger, D. Reidenbach, and J. C. Schneider. Unambiguous morphic images
of strings. International Journal of Foundations of Computer Science, 17:601-628, 2006.
M. R. Garey and D. S. Johnson. Computers And Intractability. W. H. Freeman and
Company, 1979.

M. Geilke and S. Zilles. Learning relational patterns. In Proc. 22nd International Con-
ference on Algorithmic Learning Theory, ALT 2011, volume 6925 of LNCS, pages 84-98,
2011.

T. Harju and J. Karhuméki. Morphisms. In G. Rozenberg and A. Salomaa, editors, Hand-
book of Formal Languages, volume 1, chapter 7, pages 439-510. Springer, 1997.

O. Ibarra, T.-C. Pong, and S. Sohn. A note on parsing pattern languages. Pattern Recog-
nition Letters, 16:179-182, 1995.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences, 63:512-530, 2001.

T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with and
without erasing. International Journal of Computer Mathematics, 50:147-163, 1994.

D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the Exponential Time
Hypothesis. FATCS Bulletin, 105:41-72, 2011.

A. Mateescu and A. Salomaa. Finite degrees of ambiguity in pattern languages. RAIRO
Informatique théoretique et Applications, 28:233-253, 1994.

D. Reidenbach and M. L. Schmid. A polynomial time match test for large classes of
extended regular expressions. In Proc. 15th International Conference on Implementation
and Application of Automata, CIAA 2010, volume 6482 of LNCS, pages 241-250, 2011.

D. Reidenbach and M. L. Schmid. Patterns with bounded treewidth. In Proc. 6th In-
ternational Conference on Language and Automata Theory and Applications, LATA 2012,
volume 7183 of LNCS, pages 468-479, 2012.

M. L. Schmid. On the Membership Problem for Pattern Languages and Related Topics.
PhD thesis, Dept. of Computer Science, Loughborough University, 2012.

T. Shinohara. Polynomial time inference of pattern languages and its application. In Proc.
7th IBM Symposium on Mathematical Foundations of Computer Science, pages 191-209,
1982.

F. Stephan, R. Yoshinaka, and T. Zeugmann. On the parameterised complexity of learning
patterns. In Proc. 26th International Symposium on Computer and Information Sciences,
ISCIS 2011, pages 277-281.



	Introduction
	Preliminaries
	The Parameterised Complexity of String Morphism Problems
	W[1]-Hardness
	Fixed Parameter Tractability
	W[1]-Membership and W[P]-Membership

	A Lower Bound

