
Böhm Trees as Higher-Order Recursive Schemes
Pierre Clairambault1 and Andrzej S. Murawski2

1 CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon, Laboratoire LIP
2 DIMAP and Department of Computer Science, University of Warwick

Abstract
Higher-order recursive schemes (HORS) are schematic representations of functional programs.
They generate possibly infinite ranked labelled trees and, in that respect, are known to be equi-
valent to a restricted fragment of the λY -calculus consisting of ground-type terms whose free
variables have types of the form o→ ⋯→ o (with o being a special case).

In this paper, we show that any λY -term (with no restrictions on term type or the types of
free variables) can actually be represented by a HORS. More precisely, for any λY -termM , there
exists a HORS generating a tree that faithfully representsM ’s (η-long) Böhm tree. In particular,
the HORS captures higher-order binding information contained in the Böhm tree. An analogous
result holds for finitary PCF.

As a consequence, we can reduce a variety of problems related to the λY -calculus or finitary
PCF to problems concerning higher-order recursive schemes. For instance, Böhm tree equivalence
can be reduced to the equivalence problem for HORS. Our results also enable MSO model-
checking of Böhm trees, despite the general undecidability of the problem.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs, F.4.1 Mathematical
Logic

Keywords and phrases Lambda calculus, Böhm trees, Recursion Schemes

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.91

1 Introduction

Higher-order recursive schemes (HORS) are a class of programming schemes introduced to
account for recursive procedures with higher-order parameters [7]. They can be viewed as
grammars describing a potentially infinite tree. As tree generating devices, HORS can be
identified with a limited fragment of the λY -calculus [19] consisting of ground-type terms
whose free variables have types of order at most 1. The free variables play the role of tree
constructors. HORS have recently been intensively investigated in connection with program
verification. Notably, Ong [16] showed that monadic second-order logic (MSO) is decidable
over trees generated by HORS and Kobayashi [12] took advantage of the result to propose a
novel approach to the verification of higher-order functional programs.

As already mentioned, HORS are naturally viewed as a fairly small fragment of the λY -
calculus: they generate potentially infinite trees, whereas normal forms of arbitrary λY -terms
additionally contain variable bindings. This binding information cannot be represented in
HORS explicitly. In fact, it turns out that MSO becomes undecidable over Böhm trees of
λY -terms, if the binding relation is included in the signature. Nevertheless, as we show
in the paper, HORS still allow one to generate faithful representations of (η-long) Böhm
trees of λY -terms, where binding is encoded indirectly via De Bruijn levels [8]. We also
prove an analogous representation theorem for the finitary (finite datatypes) variant PCFf
of PCF [17].

© Pierre Clairambault and Andrzej S. Murawski;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 91–102

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.91
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

92 Böhm Trees as Higher-Order Recursive Schemes

Our results make it possible to recast a variety of problems related to the λY -calculus
or finitary PCF as problems concerning higher-order recursive schemes. For example, we
obtain a reduction of Böhm tree equivalence in the λY -calculus or PCFf to the (tree)
equivalence problem for HORS. Unfortunately, the latter is currently not known to be
decidable and is closely related to the equivalence problem for deterministic collapsible
pushdown automata [10]. The Böhm tree equivalence problem for PCFf also has semantic
significance, because PCF Böhm trees [2] are concrete representations of the strategies
representing the terms in game semantics, and therefore characterize contextual equivalence
in PCF with respect to contexts featuring state and control effects.

Other consequences, in the form of decidability results, can be derived by applying Ong’s
decidability result to representations of Böhm trees obtained through our theorems. In this
way, one can show that numerous problems for λY or PCFf are decidable. Examples include
normalizability, finiteness, solvability or having a Böhm tree prefixed by a given finite term.
Some of the results are already known, while others appear new.

Thus far, higher-order verification based on HORS focussed on model-checking trees
extracted from programs. Our contribution opens the perspective of applying model-checking
to terms with binding and arbitrary free variables, such as higher-order components of closed
programs.

2 λY -calculus

2.1 Böhm trees of λY -terms
We work with simple types built from a single atom o using the arrow type constructor.
They are defined by the grammar given below.

θ ∶∶= o ∣ θ → θ

The order of a type is defined as follows.

ord(o) = 0 ord(θ1 → θ2) = max(ord(θ1) + 1,ord(θ2))

Terms are considered up to α-equivalence, and equipped with β-reduction and η-expansion
(respectively written →β and →η). We write ≃βη for the symmetric reflexive and transitive
closure of →β and →η. We shall consider several extensions of the simply-typed λ-calculus
over the types introduced above.

The λ�-calculus additionally contains a constant �o ∶ o. More generally, we shall write �θ
for terms specified as follows.

�θ = { �o θ ≡ o
λxθ1 .�θ2 θ ≡ θ1 → θ2

For λ�-terms, let us define a partial order ⊑ (relating only terms with equal types) by

M ⊑M �o ⊑M
M1 ⊑M2

λx.M1 ⊑ λx.M2

M1 ⊑M ′

1 M2 ⊑M ′

2

M1 M2 ⊑M ′

2 M
′

2
.

We will also consider the extension of the λ�-calculus to infinite terms, which we refer
to as the λ�∞-calculus. The partial order ⊑ can be extended to λ�∞-terms to yield an
ω-cpo.
The λY -calculus contains a family of fixed-point operators Yθ ∶ (θ → θ) → θ, where θ
ranges over arbitrary types, equipped with the reduction rule Yθ M →Y M (Yθ M).

P. Clairambault and A. S. Murawski 93

I Definition 1. Given a λY -term M and n ∈ N, the nth approximant of M , written M ↾ n,
is a λ�-term defined by

x ↾ n = x λx.M ↾ n = λx.(M ↾ n)
M N ↾ n = (M ↾ n) (N ↾ n) Yθ ↾ n = λfθ→θ.fn(�θ).

I Definition 2. The η-long Böhm tree of a λ�-term Γ ⊢ M ∶ θ, written BT(M), is its
β-normal η-long form. For a λY -term Γ ⊢ M , the η-long Böhm tree, also denoted by
BT(M), is defined to be ⊔nBT(M ↾ n).

Being η-long, these infinite normal forms might be more adequately called Nakajima
trees [15]. However, their PCF counterparts are generally called PCF Böhm trees [6]. So, for
consistency, we call them η-long Böhm trees, and for conciseness we will often omit η-long.

I Definition 3. λY -terms satisfying Γ ⊢ M ∶ o are called ground. Given n ≥ 0, we shall say
that a ground term Γ ⊢ M ∶ o is of level n if, for all (x ∶ θ) ∈ Γ, we have ord(θ) < n.

Note that the free variables in a ground term of level 2 can have types of order 0 or 1, i.e.
they are of the form o→ ⋯→ o, where o has at least one occurrence. Thus, Böhm trees of
such terms are (possibly infinite) trees.

The restrictions on types of free variables in ground terms of level 2 are analogous to
the restriction concerning types of terminal symbols in higher-order recursion schemes [7].
In fact, it can be shown that the Böhm trees of level-2 ground terms coincide with trees
generated by higher-order recursive schemes [18], and therefore have a decidable MSO theory.

In this paper, we are interested in the study of the Böhm trees of arbitrary λY -terms.
Unlike in the case of level-2 ground terms, Böhm trees of arbitrary λY -terms involve binders,
as illustrated by the following example.

I Example 4. Consider G = Yo→(o→o)→o (λfo→(o→o)→o.λyo.λxo→o. b (x y) (f (x y))) a,
which has type (o→ o)→ o in context a ∶ o, b ∶ o→ ((o→ o)→ o)→ o. Its Böhm tree is

λx1. b (x1
~~

a) (λx2. b (x2cc
(x1

yy
a)) (λx3. b (x3

{{
(x2

ww
(x1jj a))) (λx4. . . .

where the arrows indicate binding information: for each variable occurrence, the arrow
indicates the location of the associated binder. Note that because all bound variables are
used infinitely often, countably many variable names are required to represent binding.

This binding information is far from innocent: in fact, we prove in the next section that
it makes MSO undecidable. In particular, the term G above has an undecidable MSO theory.

2.2 Undecidability of MSO with binders
Let us first make formal what we mean by MSO on Böhm trees with binders.

I Definition 5. A binding structure B = (S,→) is a labelled transistion system, namely
a set of states S and a relation →⊆ S ×L × S, where L is the set of labels L = N ∪ {λ}. For
l ∈ L, we write a l→ b for (a, l, b) ∈→.

Every λ�∞-term M defines a binding structure B(M) in which the states are nodes in
the syntax tree of M , a n→ b holds if b is the n-th child of a and a λ→ b expresses the fact that

FSTTCS 2013

94 Böhm Trees as Higher-Order Recursive Schemes

(a) The Böhm tree of G

.

g1,3
R //

U

OO

g2,3
R //

U

OO

g3,3

U

OO

g1,2
R //

U

OO

g2,2

U

OO

g1,1

U

OO

(b) The half-grid in BT(G)

Figure 1 Construction of the half-grid.

b is a binder-node λx and a an occurrence of x. The MSO formulas over binding structures
are given as follows.

φ ∶∶= X x ∣ x λ→ y ∣ x n→ y ∣ ¬φ ∣ φ ∨ φ ∣ φ ∧ φ ∣ ∃x. φ ∣ ∀x. φ ∣ ∃X. φ ∣ ∀X. φ

We write the first-order variables x,y in a different font to distinguish them from the variable
names of the λ-calculus. The validity of an MSO formula φ on a binding structure B, written
B ⊧ φ, is defined as usual.

I Theorem 6. MSO is undecidable on binding structures corresponding to Böhm trees of
λY -terms.

Proof. We reduce the well-known undecidable problem of deciding MSO on the infinite
half-grid to MSO over binding structures generated by λY -terms. In particular, we will show
that the binding structure B(BT(G)) contains an MSO-definable half-grid. The nodes of
the half-grid will be occurrences of bound variables in BT(G), which are definable by the
formula grid(x) ≜ ∃y. x λ→ y.

We say that a bound variable occurrence xi is at layer j if it occurs after j applications
of b. Then for any 1 ≤ i ≤ j, there is a unique occurrence of the bound variable xi at layer j,
we denote it by gi,j . The gi,j ’s will be the nodes of the half-grid; in Figure 1a we describe the
intended correspondence between occurrences of bound variables in BT(G) and the half-grid.
The following two relations correspond respectively to moving right and up inside the grid.

x R→ y ≜ y 0→ x

x U→ y ≜ ∃z. z 0∗→ x ∧ z 10∗→ y ∧ ∃x′. x λ→ x′ ∧ y λ→ x′

where e1e2→ and e∗→ are respectively the relational composition of e1→ and e2→ and the transitive
closure of e→, both MSO-definable. The relations define the half-grid in the sense that for any
1 ≤ i ≤ j and 1 ≤ i′ ≤ j′ we have gi,j

R→ gi′,j′ iff i′ = i + 1 and j′ = j, and gi,j
U→ gi′,j′ iff i′ = i

and j′ = j + 1. Consequently, the half-grid is MSO-definable within BT(G) and, thus, the
latter must have an undecidable MSO theory. J

2.3 De Bruijn representations of binders
Theorem 6 exhibits a difference in expressivity between HORS and the λY -calculus. Non-
etheless, in the following, we shall show how to construct HORS that faithfully capture

P. Clairambault and A. S. Murawski 95

Böhm trees generated by λY -terms. To that end, we shall use binder-free representations.
As a consequence, we will be able to recast problems concerning the λY -calculus in the
setting of HORS. In particular, we will retain the decidability of MSO model-checking such
representations, which will provide us with a technique to verify a variety of properties of
λY -terms in spite of Theorem 6.

Our binder-free representation scheme will rely on De Bruijn levels [8]: each bound
variable x is given an index i, where i is the sum of a starting index and the number of
lambdas enclosing the binding location (De Bruijn levels should not be confused with De
Bruijn indices, which associate numbers to variable uses and not their points of introduction,
and can associate different numbers to different occurrences of the same variable).

I Example 7. Consider the term M = λf (o→o)→o.Yo (λyo.f (λxo.b x y)), of type ((o→ o)→
o)→ o in context b ∶ o→ o→ o. The Böhm tree of M , annotated with De Bruijn levels, has
the shape λx1.x1 (λx2.x0 x2 (x1 (λx3.x0 x3 (x1 (λx4. . . . , where b ∶ o → o → o is given an
index of 0. Note that each variable introduction and use are now labelled with a natural
number. This representation is unique, in the sense that, for a fixed choice of indices for
free variables and a choice of a starting index, two α-equivalent terms must have the same
representation.

With De Bruijn levels, λ�-terms can be represented as level-2 ground terms, typable in a
special context defined below.

I Definition 8. Let Γrep be the following context.

{ z ∶ o, succ ∶ o→ o, var ∶ o→ o, app ∶ o→ o→ o, lam ∶ o→ o→ o}

Given n ∈ N, we write n for the term succn(z).

In particular, the terms n will be used to represent binding information as De Bruijn levels.

I Definition 9. Let Γ ⊢ M ∶ θ be a λ�-term and let ν ∶ Γ → N be an injection. We define
another λ�-term Γrep ⊢ repν(M,n) ∶ o by

repν(�, n) = � repν(λx.M,n) = lam n repν⊕{x↦n}(M,n + 1)
repν(x,n) = var ν(x) repν(MN,n) = app repν(M,n) repν(N,n).

Note that, as long as n > max(x∶θ)∈Γ ν(x), repν(M,n) faithfully represents the syntactic
structure of M . Given Γ ⊢ M ∶ θ, where Γ = {x1 ∶ θ1,⋯, xk ∶ θk}, let ν ∶ Γ→ N be defined by
ν(xi) = i − 1. We define rep(M) to be repν(M,k).

For any finite λ�-term M , rep(M) gives a binder-free representation of M as a ground
λ�-term in context Γrep. Being monotonic, the function rep preserves ω-chains, and therefore
can be used to represent the Böhm tree of any λY -term as a ground infinite λ�∞-term in
context Γrep. This invites the question whether this infinite λ�∞-term can always be obtained
as the Böhm tree of a level-2 ground λY -term.

I Example 10. Consider again the term M of Example 7. The binder-free representation
of M ’s Böhm tree can be captured as an open (infinite) term in context Γrep, namely,
M∞ = lam 1 T (2), where

T (n) = app (var 1) (lam n (app (app (var 0) (var n) T (n + 1))))

More precisely, we have ⊔n rep(BT(M ↾ n)) = M∞. In this case, it is easy to extract
a λY -term Γrep ⊢ Mrep ∶ o such that BT(Mrep) = M∞ from the definition of M∞. This

FSTTCS 2013

96 Böhm Trees as Higher-Order Recursive Schemes

can be done by expressing the coinductive definition of M∞ inside the λY -calculus as
Mrep = lam 1 (Yo→o Mstep 2), where

Mstep = λT o→o. λno.app (var 1) (lam n (app (app (var 0) (var n)) (T (succ n)))).

Consequently, the Böhm tree of Mrep is a binder-free representation of the Böhm tree of M .

In our paper, we show how to obtain such representations in a systematic way.

I Theorem 11. Let Γ ⊢ M ∶ θ be a λY -term. There exists a level-2 λY -term Γrep ⊢ Mrep ∶ o
such that BT(Mrep) = ⊔n rep(BT(M ↾ n)).

Next we describe the construction underlying our proof of Theorem 11. In this section we
only provide the necessary definitions, delegating the proof and a methodological discussion
to Section 3. The construction uses normalization by evaluation [9] and, in particular, the
observation that the technique can be internalized within the λY -calculus in our case.

Consider Γ ⊢ M ∶ θ with Γ = {x1 ∶ θ1,⋯, xk ∶ θk}. First we apply a simple transformation
on type annotations inside M and substitute o→ o for o: let M∗ be defined as M[o→ o/o].
The substitution is meant to be applied to types θ occurring in λ-abstractions (λxθ.M) and
fixed-point combinators (Yθ). Observe that x1 ∶ θ∗1 ,⋯, xk ∶ θ∗k ⊢ M∗ ∶ θ∗, where

o∗ = o→ o, (θ′ → θ′′)∗ = (θ′)∗ → (θ′′)∗.

Next we define by mutual recursion two families of λ-terms {↓θ}, {↑θ}, subject to the following
conditions: Γrep ⊢↓θ ∶ θ∗ → o → o and Γrep ⊢↑θ ∶ (o → o) → θ∗. We write λ.M for λzo.M ,
where z does not occur in M .

↓o = λxo→o.x

↓θ′→θ′′ = λx(θ
′
→θ′′)∗ . λvo. lam v (↓θ′′ (x (↑θ′ λ.(var v))) (succ v))

↑o = λxo→o.x

↑θ′→θ′′ = λeo→o. λa(θ
′
)
∗

. ↑θ′′ (λvo. app (e v) (↓θ′ a v))

Now, with all the definitions in place, it turns out that one can take Mrep to be

↓θ M∗[↑θ1 λ.(var 0)/x1 , ⋯ , ↑θk λ.(var k − 1)/xk] k.

In the next section we shall prove that Mrep indeed represents the Böhm tree of M in the
sense of Theorem 11. Before that, we illustrate the outcome of the construction on an
example.

I Example 12. Let us revisit the term M from Example 7. We have

M∗ = λf ((o→o)→(o→o))→(o→o).Yo→o (λyo→o.f (λxo→o.b x y))

and, thus, Mrep =↓((o→o)→o)→o M∗[↑o→o→o λ.(var 0)/b] 1. By unfolding the definitions of
↓θ, ↑θ and applying β-reduction the term can be rewritten. In fact, taking advantage of the
β-equivalences

↑o→o→o ≃β λeo→o1 .λao→o1 .λao→o2 .λvo2. app (app (e1 v2) (a1 v2)) (a2 v2)
↓((o→o)→o)→o ≃β λx(((o→o)→o)→o)

∗

.λvo1. lam v1 (x Maux (succ v1)),

where Maux = λa(o→o)
∗

.λvo2. app (var v1) (lam v2 (a (λ.var v2) (succ v2))), one can show
that Mrep is β-equivalent to

lam 1 (Y (λy. λv.app (var 1) (lam v (app (app (var 0) (var v)) (y (succ v))))) 2),

the manually constructed term from Example 10.

P. Clairambault and A. S. Murawski 97

3 Internalized normalization by evaluation

In this section, we present the mathematical development that led to the term transformation
of the previous section. As already mentioned, the main idea comes from normalization by
evaluation (NBE). NBE is a general method used to construct normal forms for terms through
their denotational semantics; the reader is referred to [9] for an introduction. The basic idea
is to interpret terms in a suitable semantic universe. By soundness, the interpretation will
be invariant under syntactic reduction. Moreover, if one uses a class of domains expressive
enough to encode representations of normal forms, then one can attempt to extract a
representation of the normal form of a term from the semantics. Notably, the extraction can
be performed by evaluating the interpretation map on well-chosen elements of the domain,
which yields an entirely semantic normalization procedure. NBE has been described for a
variety of languages, including the simply-typed λ-calculus [5] as well as richer languages
with coproducts [4], or type theory [1]. Our presentation of NBE follows along the lines of [9].
The main novelty is the internalization of the process within the λY -calculus itself, which
ultimately allows us to present NBE as a term transformation.

3.1 Semantic NBE for the λY -calculus

We first describe a domain semantics for the λY -calculus that will be exploited to obtain
an NBE procedure. We assume the basic vocabulary of domain theory, e.g. [20]. Let us
recall that an ω-cpo is a partial order where each ω-chain (of the form x1 ≤ x2 ≤ . . .) has a
supremum. We will interpret types as pointed ω-cpos, i.e., ω-cpos with a bottom element
written �. A function f ∶ A→ B is continuous if it preserves suprema of ω-chains. The set of
continuous functions from A to B, ordered pointwise, is itself a pointed ω-cpo, denoted by
A→ B.

Our NBE procedure will generate representations of Böhm trees of λY -terms as elements
of the pointed ω-cpo of λ�∞-terms of ground type in context Γrep, henceforth referred to
as E. Representations based on De Bruijn levels lack compositionality: the indices present in
a subterm depend on the number of variables abstracted in the context in which the subterm
occurs. In order to overcome the difficulty, instead of constructing directly De Bruijn terms
in E, we will construct term families [9], intuitively functions N → E, which - unlike De
Bruijn terms - can be manipulated compositionally.

We now describe our semantic NBE for λY . In our case, E will also be used to represent
natural numbers, so term families will be interpreted as elements of the pointed ω-cpo
Ê = E → E, where the first E plays the role of N. For the sake of clarity, we will sometimes
write N instead of E to highlight subterms representing natural numbers. This should not
create any confusion.

Our NBE relies on the standard interpretation of the λY -calculus with JoK = Ê. Note
that we write λ, rather than λ, to stress that the semantic operation of function abstraction
(on continuous functions between pointed ω-cpos) is meant.

JoK = Ê JxKρ = ρ(x) J�Kρ = � Jλxθ.MKρ = λaJθK.JMKρ⊕{x↦a}

Jθ1 → θ2K = Jθ1K→ Jθ2K JM NKρ = JMKρ(JNKρ) JYθKρ =⊔
n

λf JθK→JθK.fn(�)

We claimed above that unlike raw De Bruijn terms, term families can be constructed
compositionally. This is done with the help of the following continuous functions, which

FSTTCS 2013

98 Böhm Trees as Higher-Order Recursive Schemes

generalize term constructors of E to Ê.

v̂ar = λvN .λnN .var v ∶ N → Ê

âpp = λeÊ1 .λe
Ê
2 .λn

N .app (e1(n)) (e2(n)) ∶ Ê → Ê → Ê

l̂am = λfN→Ê .λnN .lam n (f(n)(succ n)) ∶ (N → Ê)→ Ê

Using these extended constructors, one can define families of continuous functions, tradition-
ally called reification (⇓θ ∶ JθK→ Ê) and reflection (⇑θ ∶ Ê → JθK).

⇓o x = x ⇓θ1→θ2 x = l̂am(λnN . ⇓θ2 (x(⇑θ1 (v̂ar(n)))))
⇑o e = e ⇑θ1→θ2 e = λxJθ1K. ⇑θ2 (âpp(e)(⇓θ2 (x)))

For closed terms ⊢ M ∶ θ, the normalization-by-evaluation function can now be defined by
setting nbe(M) =⇓θ (JMK)(0). In order to apply the same method to open terms Γ ⊢ M ∶ θ,
where Γ = {x1 ∶ θ1, . . . , xk ∶ θk}, we need to build a canonical inhabitant of JΓK by defining
the canonical semantic environment ρΓ ∶ Πxi∈ΓJθiK, associating ⇑θi (λ_N .var (i − 1)) ∈ JθiK
to any xi. This leads to a generalized variant of the normalization function, defined by:
nbe(M) =⇓θ (JMKρΓ)(k).
I Proposition 13. For any λ�-term Γ ⊢ M in β-normal η-long form, nbe(M) = rep(M). For
any λY -term Γ ⊢ M ∶ θ, nbe(M) = ⊔n rep(BT(M ↾ n)).

Proof. The first part is proved by induction onM . For the second part, we reason equationally
as follows: nbe(M) (1)= ⇓θ (JMKρΓ)(k)

(2)= ⇓θ (⊔nJM ↾ nKρΓ)(k)
(3)= ⊔n ⇓θ (JM ↾ nKρΓ)(k)

(4)=

⊔n ⇓θ (JBT(M ↾ n)KρΓ)(k)
(5)= ⊔n rep(BT(M ↾ n)) where (1) is by definition of NBE, (2)

is by induction on M from the definition of interpretation, (3) is by continuity of ⇓θ and
application. Since M ↾ n is a simply-typed λ�-term, it has a normal form BT(M ↾ n)
such that M ↾ n ≃βη BT(M ↾ n). By soundness of the domain semantics, this implies that
JM ↾ nKρ = JBT(M ↾ n)Kρ and (4) is true. Finally, (5) follows from the first part. J

3.2 Internalization
Following Section 2, for any λY -term Γ ⊢ M ∶ θ, we define the syntactic NBE by snbe(M) =↓θ
M∗[↑θi λ.(var i − 1)/xi] k so that Γrep ⊢ snbe(M) ∶ o (↓θ and ↑θ are the terms defined in
Section 2). In the remainder of this section we show the correctness of snbe, namely
BT(snbe(M)) = ⊔n rep(BT(M ↾ n)), by noting that snbe amounts to an internalization of
the NBE procedure inside the λY -calculus, i.e., that the following triangle commutes.

λY

snbe(−)
��

nbe(−)

!!
λY

BT(−)
// E

To carry out the argument, below we introduce another interpretation of terms Γrep,Γ ⊢ θ,
written j−o, which will treat variables from Γrep as constants. Accordingly, the sequents will
be interpreted by a continuous function from jΓo to jθo, with Γrep omitted. Similarly, the
semantic environment for a context Γrep, x1 ∶ θ1, . . . , xk ∶ θk is simply ρ ∶ Πxi∈Γjθio. In the
same vein, whenever we write Γ ⊢ M ∶ θ from now on, we will assume that none of the
variables from Γrep occurs in Γ (this does not affect the generality of our results, as free
variables of a λY -term can be renamed to avoid clashes with Γrep). Below we let z range
over the variables from Γrep.

P. Clairambault and A. S. Murawski 99

joo = E jxoρ = ρ(x) jvaroρ = λnE .var n
jθ → θ′o = jθo→ jθ′o jM Noρ = jMoρ(jNoρ) jappoρ = λeE1 .λe

E
2 .app e1 e2

jλxθ.Moρ = λajθo.jMoρ⊕{x↦a} jlamoρ = λnE .λeE .lam n e

jzoρ = z jYθoρ = ⊔nλf jθo→jθo.fn(�) jsuccoρ = λnE .succ n

The interpretations J−K and j−o are related by the following lemma, which is easily
proved by induction. We apply j−o to M⋆ on the understanding that Γ ⊢ M ∶ θ implies
Γrep,Γ⋆ ⊢ M⋆ ∶ θ⋆ and that JΓK = jΓrep,Γ⋆o.

I Lemma 14. For any type θ, JθK = jθ⋆o. For any λY -term Γ ⊢ M ∶ θ and any semantic
environment ρ ∈ JΓK, we have JMKρ = jM⋆oρ.

On the other hand, j−o is related to Böhm trees by the following lemma.

I Lemma 15. For any λY -term Γrep ⊢ M ∶ o, we have jMo = BT(M).

Proof. Suppose first that Γrep ⊢ M ∶ o is a λ�-term in β-normal η-long form, i.e. M = BT(M).
Then M must be an applicative term built from �, z, succ, var , lam and app. By induction
on M it follows that jMo =M and, thus, jMo = BT(M).

Now consider arbitrary Γrep ⊢ M ∶ o, and n ∈ N. By construction, M ↾ n is a λ�-term.
By normalization of the simply-typed λ-calculus, M ↾ n has a Böhm tree BT(M ↾ n)
such that M ↾ n ≃βη BT(M ↾ n). By soundness of the denotational model, it follows that
jM ↾ no = jBT(M ↾ n)o. By the first part above, we can deduce jM ↾ no = BT(M ↾ n). The
lemma then follows by continuity. J

Putting all the lemmas together, we arrive at our main result.

I Theorem 16. For any λY -term Γ ⊢ M ∶ θ, BT(snbe(M)) = ⊔n rep(BT(M ↾ n)).

Proof. From the following calculations. BT(snbe(M)) (1)= jsnbe(M)o (2)= j↓θ M∗[↑θi
λ.(var i − 1)/xi] ko

(3)= j↓θo(jM∗oxi↦j↑θiλ.(var i−1)o)(jko)
(4)= ⇓θ (JMKxi↦⇑θi(λ.(var i−1)))(k)

(5)=

nbe(M) (6)= ⊔n rep(BT(M ↾ n)). (1) follows from Lemma 15, (2) and (3) from the definitions
of snbe and j−o respectively, (4) is a consequence of j↓θo =⇓θ, j↑θo =⇑θ and Lemma 14. Finally,
(5) follows from the definition of nbe and (6) from Proposition 13. J

We conclude this section with a discussion on the effect of the M ↦ snbe(M) transformation
on the order of terms (the order of a λY -term, written ord(M), is the maximal order of
the types of its subterms). We note that, given Γ ⊢M ∶ θ, the term snbe(M) is of order at
most ord(M) + 2, because it contains ↓θ, which has type θ∗ → (o → o) of order ord(θ) + 2.
However, as in Example 12, snbe(M) can be simplified by one size-decreasing β-reduction
step to M ′ of order ord(M) + 1. Furthermore, if one is interested in obtaining an equivalent
HORS then M ′ can be transformed into a HORS of order ord(M) [18].

4 Generalization to PCF

Here we show that the methodology of the previous section can be applied to PCF [17]. This
brings us closer to realistic programs, which can branch on data values. PCF extends the
λY -calculus in that the ground type o is replaced with the type of natural numbers, basic
arithmetic and zero testing. It was designed to be Turing-complete, so in order to avoid
obvious undecidability we focus on its finitary variants. In what follows we consider boolean
PCF2 in which o is the type of booleans, but it should be clear that the techniques extend
to any finite ground type.

FSTTCS 2013

100 Böhm Trees as Higher-Order Recursive Schemes

4.1 PCF2 and PCF2 Böhm trees
PCF2 types are defined by the grammar θ ∶∶= B ∣ θ → θ and terms are given by M,N ∶∶= tt ∣
ff ∣ if M then N1 else N2 ∣ x ∣ λxθ.M ∣M N ∣ Yθ M . The following typing rules apply.

Γ ⊢ tt ∶ B Γ ⊢ ff ∶ B
Γ ⊢ M ∶ B Γ ⊢ N1 ∶ θ Γ ⊢ N2 ∶ θ

Γ ⊢ if M then N1 else N2 ∶ θ

For PCF2, the canonical forms that we wish to generate are PCF Böhm trees: they are
(potentially infinite) trees generated by the rules displayed below.

Γ ⊢ �, tt,ff ∶ B
Γ,ÐÐÐÐÐÐÐÐ→. . . , xi ∶ Ai, . . . ⊢M ∶ B

Γ ⊢ λÐ→x .M ∶
Ð→
A → B

ÐÐÐÐÐÐ→
Γ ⊢Mi ∶ θi Γ ⊢ N1,N2 ∶ B (x ∶

Ð→
θ → B) ∈ Γ

Γ ⊢ if x Ð→M then N1 else N2 ∶ B

Such trees were first introduced along with the game semantics for PCF [11, 2], serving as a
syntactic counterpart to strategies. Later developments in game semantics [3, 13] showed
that two terms of PCF have the same strategy, i.e. the same PCF Böhm tree, if and only
if they are indistinguishable by evaluation contexts having access to computational effects
such as state and control operators. This makes PCF Böhm trees a natural candidate for a
representation of higher-order programs to be used for verification purposes, since purely
functional programs are eventually executed in runtime environments that have access to
such effects.

We also consider the variant PCF2,� consisting of Y -free terms of PCF2, extended with a
constant � ∶ B. They are partially ordered by the obvious adaptation of the partial order ⊑
on λ�-terms, still written ⊑. As before, this partial order extends to an ω-cpo on infinite
terms of PCF2,�, referred to as PCF∞

2,�.
The operational semantics for PCF2 for which PCF Böhm trees can be taken to be

canonical representatives is obtained by adding the rules listed below to β, η and Y . For
brevity, if M then N1 else N2 is written as if(M,N1,N2). The rules are restricted to the
cases where both sides typecheck.

if(tt,N1,N2)→β′1 N1 M →η′ if(M, tt,ff) if(M,N1,N2) N ′ →γ1 if(M,N1 N
′,N2 N

′)
M →η′ if(M, tt,ff) if(if(M,N1,N2),N3,N4)→γ2 if(M, if(N1,N3,N4), if(N2,N3,N4))

We write ≃PCF for the corresponding equational theory. For PCF2,� we also add the rule
if(�,N1,N2)→� �. The following property can then be established by standard means.
I Proposition 17. For any term Γ ⊢ M ∶ θ of PCF2,� there is a PCF Böhm tree Γ ⊢ BT(M) ∶ θ
such that M ≃PCF BT(M).
To define Böhm trees of arbitrary PCF2-terms Γ ⊢ M ∶ θ, we define the nth approximant of
M , written M ↾ n, by replacing fixpoint combinators Yθ with λfθ.fn(�θ), yielding a term of
PCF2,�. In the general case, the PCF Böhm tree is then defined by BT(M) = ⊔nBT(M ↾ n).

4.2 Representability
We would like to represent PCF Böhm trees of PCF2-terms as level-2 ground λY -terms. To
that end, we shall use a new context Γpcf , defined as Γrep augmented with { tt ∶ o, ff ∶ o, if ∶
o→ o→ o→ o} to take the shape of PCF Böhm trees into account. Just as before, the set of
ground λ�∞-terms typed in context Γpcf forms a pointed ω-cpo. It will be the target of our
transformation and, again, we will denote it by E. The representation function rep(−) of
Section 2 extends easily to a function mapping any PCF2,�-term Γ ⊢ M ∶ θ to a λ�-term
Γpcf ⊢ rep(M) ∶ o using De Bruijn levels. Our representation result for PCF2 can then be
stated as follows.

P. Clairambault and A. S. Murawski 101

I Theorem 18. For any PCF2 term Γ ⊢ M ∶ θ, there is a level-2 λY -term Γpcf ⊢ Mrep ∶ o
such that BT(Mrep) = ⊔n rep(BT(M ↾ n)).

To construct Mrep from M , we first apply the following syntactic transformation translating
types and terms of PCF2 to λY -terms, combining the operation (−)∗ on λY -terms defined
in Section 2 with an elimination of booleans based on Church encodings.

B∗ = (o→ o)→ (o→ o)→ (o→ o) tt∗ = λao→o.λbo→o.a

(θ′ → θ′′)∗ = (θ′)∗ → (θ′′)∗ ff ∗ = λao→o.λbo→o.b

(if M then N1 else N2)∗ = λÐ→x
Ð→

θ∗ .λao→o.λbo→o.M∗ (N∗

1
Ð→x a b) (N∗

2
Ð→x a b)

where, in the last equation, N1 and N2 have type
Ð→
θ → B. The translation (−)∗ can be

extended to all the other term constructors in the obvious way. Note that, since this
translation gives us a λY -term, we can already apply the transformation of Section 2 and
obtain a λY -term generating the Böhm tree of M∗. To get the PCF Böhm tree of M instead
one can modify the ↓θ, ↑θ terms as follows.

↓B= λxB∗ .x (λ.tt) (λ.ff) ↑B= λeo→o.λao→o.λbo→o.λno.if (e n) (a n) (b n)
↓θ′→θ′′ = λx(θ

′
→θ′′)∗ . λvo. lam v (↓θ′′ (x (↑θ′ λ.(var v))) (succ v))

↑θ′→θ′′ = λeo→o. λa(θ
′
)
∗

. ↑θ′′ (λvo. app (e v) (↓θ′ a v))

Assuming Γ = x1 ∶ θ1, . . . , xk ∶ θk, we can then set Mrep =↓θ M∗[↑θi λ.var i − 1/xi] k.
The notion of order on types and terms is generalised to PCF2 by setting ord(B) = 0. As

for λY , Mrep can be simplified by one β-reduction step to M ′ of order ord(M) + 2. M ′ can
then be transformed into a HORS of order ord(M) + 1 [18].

5 Conclusion

We have shown that faithful representations of η-long Böhm trees of arbitrary λY -terms and
PCF Böhm trees of PCF2-terms can be generated by higher-order recursion schemes. We
can use the result to reduce various decision problems related to the λY -calculus or PCF2 to
problems for higher-order recursive schemes.

The first class of problems to which the reduction technique can be applied are equivalence
problems.

I Corollary 19. The following problems are recursively equivalent: HORS equivalence, Böhm
tree equivalence in the λY -calculus, PCF Böhm tree equivalence in PCF2.

The decidability status of these problems is currently unknown, but they are known to
be related to two other interesting problems: the equivalence problem for deterministic
collapsible pushdown automata [10] and contextual equivalence for PCF2-terms with respect
to contexts with state and control effects (contextual equivalence for PCF2-terms with respect
to purely functional contexts is undecidable, even without Y [14]).

In a different direction, we can exploit the decidability result for MSO on trees generated
by HORS [16] to decide a variety of properties of Böhm trees. Here the undecidability result
for binders places a limit on the kind of binding-related information that can be captured by
MSO on our representations. However, many interesting problems on Böhm trees still fall
within the range of our representation.

I Corollary 20. The following problems are decidable for λY - and PCF2-terms: normal-
izability (is a given term equivalent to a Y -free term?), finiteness (is the Böhm tree/PCF

FSTTCS 2013

102 Böhm Trees as Higher-Order Recursive Schemes

Böhm tree finite, i.e. a λ�/PCF2,�-term?), solvability (is the Böhm tree/PCF Böhm tree
non-empty after leading abstractions?), prefix (does the Böhm tree/PCF Böhm tree have a
given finite prefix?).

The results follow from the fact that all the relevant properties are expressible in MSO.
Normalizability and solvability for the λY -calculus were already known to be decidable [19].
To the best of our knowledge, the other consequences are new. In future work, we would
like to understand the exact complexity of these problems and see whether our results yield
optimal bounds.

Acknowledgment. We would like to thank Sylvain Salvati for pointing out to us the
undecidability argument for MSO on trees with binding. This research was conducted while
the first author was in Cambridge, supported by the Advanced Grant ECSYM. The second
author gratefully acknowledges the support of the EPSRC (EP/J019577/1).

References
1 A. Abel, T. Coquand, and P. Dybjer. Normalization by evaluation for Martin-Löf type

theory with typed equality judgements. In LICS, pp 3–12, 2007.
2 S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Inf. and Comput.,

163:409–470, 2000.
3 S. Abramsky and G. McCusker. Linearity, sharing and state. In Algol-like languages, pp

297–329, Birkhaüser, 1997.
4 T. Altenkirch, P. Dybjer, M. Hofmann, and P. J. Scott. Normalization by evaluation for

typed lambda calculus with coproducts. In LICS, pp 303–312, 2001.
5 U. Berger and H. Schwichtenberg. An inverse of the evaluation functional for typed lambda-

calculus. In LICS, pp 203–212, 1991.
6 P.-L. Curien. Abstract Böhm trees. Math. Struct. in Comput. Sci., 8(6):559–591, 1998.
7 W. Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982.
8 N. G. De Bruijn. Lambda calculus notation with nameless dummies. In Indagationes

Mathematicae (Proceedings), volume 75, pages 381–392. Elsevier, 1972.
9 P. Dybjer and A. Filinski. Normalization and partial evaluation. In APPSEM, LNCS 2395,

pp 137–192, 2000.
10 M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata

and recursion schemes. In LICS, pp 452–461, 2008.
11 J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF. Inf. and Comput.,

163(2):285–408, 2000.
12 N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In POPL, pp 416–428, 2009.
13 J. Laird. Full abstraction for functional languages with control. In LICS, pp 58–67, 1997.
14 R. Loader. Finitary PCF is not decidable. Theor. Comput. Sci., 266(1-2):341–364, 2001.
15 R. Nakajima. Infinite normal forms for the λ-calculus. In Proc. Symp. λ-calculus and

Computer Science, pages 62–82. Springer-Verlag, 1975.
16 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In

LICS, pp 81–90, 2006.
17 G. D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5:223–

255, 1977.
18 S. Salvati and I. Walukiewicz. Recursive schemes, Krivine machines, and collapsible push-

down automata. In RP, LNCS 7550, pp 6–20, 2012.
19 R. Statman. On the lambdaY-calculus. Ann. Pure Appl. Logic, 130(1-3):325–337, 2004.
20 G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993. Found-

ations of Computing Series.

	Introduction
	Y-calculus
	Böhm trees of Y-terms
	Undecidability of MSO with binders
	De Bruijn representations of binders

	Internalized normalization by evaluation
	Semantic NBE for the Y-calculus
	Internalization

	Generalization to PCF
	PCF2 and PCF2 Böhm trees
	Representability

	Conclusion

