Complexity classes on spatially periodic Cellular
Automata

Nicolas Bacquey

GREYC — Université de Caen Basse-Normandie / ENSICAEN / CNRS,
Caen, France, nicolas.bacquey@unicaen.fr

—— Abstract

This article deals with cellular automata (CA) working over periodic configurations, as opposed
to standard CA, where the initial configuration is bounded by persistent symbols. We study
the capabilities of language recognition and computation of functions over such automata, as
well as the complexity classes they define over languages and functions. We show that these
new complexity classes coincide with the standard ones starting from polynomial time. As a
by-product, we present a CA that solves a somehow relaxed version of the density classification
problem.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

Keywords and phrases Language recognition, Cyclic languages, Computable functions,
Algorithms on Cellular Automata, Linear space, Polynomial time, Density classification problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.112

1 Introduction

Spatially periodic computation on cellular automata is a natural and well-defined notion
(see e.g. [5]), though it seems it has not been studied extensively. This paper deals with
algorithms and computational complexity of cellular automata (CA) acting on spatially
periodic configurations, or, equivalently, on ring-cellular automata, i.e., CA whose underlying
structure is a ring. The input of a ring-CA is a circular word, that is a finite word defined up
to shift (around the ring). Clearly, a language recognized by a ring-CA is a cyclic language
(as defined in [1], [2]), i.e., a language which is closed under shift, power and root. To our
knowledge, our results are the first ones to deal with computational complexity on such
automata.

A natural problem is the following, denoted MINIMAL-PERIOD: Given a spatially peri-
odic configuration, compute its lexicographically minimal period, or, equivalently, given an
input word w around a ring, compute its canonical root u, i.e., the lexicographically minimal
word u such that w = u? up to shift, for some (maximal) integer p. We exhibit an algorithm
on a ring-CA that computes the MINIMAL-PERIOD problem in polynomial time. This
basic result allows us to compare computational complexity of ring-CA with complexity of
standard CA whose input word is bounded by persistent symbols. Informally, we prove
that the complexity classes on ring-CA and standard CA coincide down to polynomial time
complexity. More precisely, we prove the following equivalences, for any cyclic language L:

L is recognizable on a ring-CA iff L is LINSPACE;

L is recognizable in polynomial time on a ring-CA iff L is recognized by a standard CA
in linear space and polynomial time.

r
31st Symposium on Theoretical Aspects of Computer Science (STACS’14). l_ ASPECTS
Editors: Ernst W. Mayr and Natacha Portier; pp. 112-124 a OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

© Nicolas Bacquey; SYMPOSIUM
Bv licensed under Creative Commons License CC-BY ﬁv ON THEORETICAL
4

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.112
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. Bacquey

Moreover, we naturally extend those complexity results to functions, and use these results
to show that the density classification problem (a well-studied problem defined in [6]) can
be solved if we can use more states than the input alphabet {0, 1}.

2 Definitions and context

2.1 The computational model

We will use along this article the standard definition of cellular automata (CA) as a tuple
A = (d,Q,N,d) (see [5]). In these lines, we will work with d = 1, i.e. cellular automata
of dimension 1, so the underlying network will be Z. @ denotes the set of states, and
N ={-1,0, 1} is the standard neighbourhood. The local transition function of the automaton
is denoted by ¢ : Q1101 5 Q. As we work with cellular automata from the point of view
of language recognition, we will identify a particular ¥ C @ as the input alphabet. We also
introduce the global transition function Fs : Q% — Q% defined by the global synchronous
application of § over configurations of Z by VC € Q% (F5(C))(i) = 6(C(i—1),C (i), C(i+1))).

We suppose that the reader is familiar with the notions of signals and computation layers
on cellular automata. If it is not the case, we strongly encourage the reading of [5] or [7] for
such general matters on cellular automata.

» Definition 1. We define a Ring-Cellular Automaton (ring-CA) as a cellular automaton
whose initial configuration (and therefore any subsequent configuration) is periodic. Note
that this model is equivalent to an automaton that would work on a finite, ring-like cell
network. Let u € ¥*, we denote C,, € Q7 the bi-infinite repetition of u (C, = ... uuu...).

2.2 Recogpnition on ring-CA

On a standard CA where the input word is bounded by persistent states, it is easy to identify
a particular cell of the configuration (e.g. the first one). We say that a word is accepted
(or rejected) when this particular cell enters a persistent acceptance (or rejection) state (see
[11] for all subjects related to language recognition on CA). However, if the configuration we
are working on is periodic, the identification of a particular cell is intrinsically impossible.
Therefore, we must define the acceptance or rejection of a word as a global phenomenon.
Here are the two definitions of acceptance that we will use on ring-CAs:

» Definition 2. We say that a language L C X* is ring-recognizable if there exists a ring-CA
C such that for all u € 3*, the automaton C given the periodic configuration C, as an input
evolves in such a way that for some time ¢:
weak recognition: All cells enter the same particular subset of states, either S, C @ (for
accept) or S, C @ (for reject) and never leave it afterwards.
strong recognition: All cells enter the same particular state (S, and S, are singletons),
with the transition function defined so that this configuration is a fixed point of the
global transition function Fj.

Note that our definition of strong recognition is the best recognition we can hope for
on a ring-CA, due to its intrinsically spatially periodic nature. Also note that due to that
very nature, for any language that is weakly or strongly recognized, there exists a time
exponentially bounded in the length of the period after which all the cells are in their
definitive subset of states (S, or S;).

113

STACS’14

114

Spatially periodic computation on Cellular Automata

While it is obvious that any strongly recognizable language is weakly recognizable (actu-
ally by the same automaton), we will show that those two definitions are actually equivalent
in section 4.

» Definition 3. We introduce the shift function denoted as o : ¥* — ¥* and defined for all
U= Ujls...uy € X* by o(u) = ug...upug.

Since one cannot discriminate between configurations produced by a word, and those pro-
duced by shifts, powers or roots of this word, every language recognized by a ring-CA must
be closed under shift, power and root operations. More formally, we can only recognize
cyclic languages defined as follows:

» Definition 4. A language L C ¥* is said to be cyclic (see [2]) if Vw € ¥*,Vk > 1:

w e L iff oF(w) € L,

w € L iff wk € L.
We say that a cyclic language L is strongly (resp. weakly) ring-recognizable if there exists a
ring-CA that strongly (resp. weakly) recognizes it.

2.3 Computability of functions on ring-CA

We can also design our ring-CAs to compute functions, as an extension of language recog-
nition, which is a particular function with {0,1} as its output set. Intuitively, we want to
give the input of the function as a periodic configuration of the CA, wait some time, and
read the result of the function when the CA has reached a fixed point. We now give the
following formal definition of a computable function:

» Definition 5. Let f : X* — I'* be a function over words of X*.

f is said to be ring-computable if there exists a ring-CA A such that Vu € ¥* :
there exists an integer ¢ such that F{(Cy) = Cy),
Fs5(Cry) = Crruy (i-e. Cpy is a fixed point of Fy).

We define the time complexity of the computation of such a function f on a ring-CA C
over a word u as the smallest ¢ such that Cy,) = F}(Cy).

We define an analogous to cyclic languages in the case of functions. As we read the
output of the function on the automaton where the word was input, we need an additional
condition on the length of the output of those functions (||w]|| is the length of the word w):

» Definition 6. A function f : X* — I'* is said to be cyclic if Vu € ¥*,Vk > 1:
flo"(u)) = o*(f(w)),
fb) = fw)k,
I1f (@) = [Jll-

2.4 Complexity classes and results

» Definition 7. Due to the circular nature of the model, we define the size n of an input as
the length of its minimal period.

We note that, as a consequence of the fact that our work space can be seen as a finite
ring, we can’t use more than a linear space for our computations on ring-CAs, with respect
to the input size. Therefore, every language or function we study must be in LINSPACE,
which is a robust complexity class. Then we give the following definitions:

N. Bacquey 115

» Definition 8. We denote the complexity class of languages that are strongly recognizable
in polynomial time on a ring-CA as TIM E,;nq(POLY (n)). We also denote the complexity
class of languages that are recognizable in linear space and polynomial time on a bounded
input CA (or equivalently, classical models such as Turing machines, RAM machines...) as
SPACETIME(n, POLY (n)). We will abusively use this notation to talk about complexity
classes of functions.

We will prove our results along these lines:

» Theorem 9 (Recognition of languages). Let L be a cyclic language, then:
L is strongly ring-recognizable <—= L € LINSPACE,
L € TIME,;n4s(POLY (n)) <= L € SPACETIME(n, POLY (n)).

» Theorem 10 (Computability of functions). Let f be a cyclic function, then:
f is ring-computable <= f € LINSPACE,
f € TIME,;,,(POLY (n)) <= f € SPACETIME(n, POLY (n)).

3 From the cyclic model to the standard model

Throughout the rest of the paper, L C ¥* will denote a cyclic language. In this section, we
will prove that L is ring-recognizable implies L € LINSPACE.

This part of the proof is quite straightforward: Indeed, if we consider a ring-automaton C
that weakly recognizes L, it is easy to design a standard cellular automaton A that recognizes
it: it suffices to add an additional layer to C, in which A will write the mirrored input word in
a preprocessing phase. The automaton will now simulate two computations of C in parallel,
connecting the beginnings and ends of the two simulated configurations (see Fig 1). After
this linear time preprocessing, A will simulate C step-by-step.

Though, one must be careful when defining the halting conditions of .A. Indeed, there can
be a state where all simulated cells of C are in the "accept" or "reject" subset of states, but
the computation has not ended yet. Therefore, A also has to construct the exponential time
bound before which we are sure that the computation of C is over, then decide if the word is
accepted or rejected by checking the state of an arbitrary cell of its array (by construction,
all cells are in the same "accept" or "reject” subset of states at that moment).

Initial configuration ‘ # # up u1 U2 us3 Ug Us # # ‘
D UD > UL <P Uz > UB > Us > Us
After preprocessin
prep & # #<~)U5(——)U4(——>U3(——>U2(——>U1(——>UO(—># #

Figure 1 Simulating a ring-CA on a standard CA.

For the proof that L € TIME,;,,(POLY (n)) implies L € SPACETIME(n, POLY (n)), it
suffices to construct the polynomial time bound before which the computation of C is over
instead of the exponential one, and the construction still holds.

4 From the standard model to the cyclic model

In this section, we will prove that L € LINSPACE implies L is ring-recognizable.
Let A be a standard CA recognizing L C ¥*. We will design a ring-CA C that will mimic
the computation of A. If we denote as @ the work alphabet of A, our automaton C will use

STACS’14

116

Spatially periodic computation on Cellular Automata

a new set of states Q' = Q x ¥ X w, where w will handle all the specific constructions of C.
We also introduce a bijection val : ¥ U {F} — [0, |X]|] such that val(F) = 0. We want each
cell of C to retain its input letter, which means that the X part of Q" will never change. All
our computation will be done through two computational layers, namely @ x w.

4.1 Global vision

We will now present a mechanism that is able to find a minimal period of every periodic
configuration it is started on. Note that this minimal period is defined up to a shift. We
will combine this mechanism to a simulation of A over the word contained in this minimal
period.

The periodic configuration of C will be divided into intervals, in which we will simulate
the computation of A over the word contained in the interval. We design those intervals so
that two different adjacent intervals will merge over time.

For a better understanding of the algorithm, we can imagine that each interval can be
in three states, namely "merge-to-the-right", "merge-to-the-left" and "waiting". Those states
can evolve over time, according to the following rule:

» Rule 11. If an interval is in the merge-to-the-right state and its right neighbour is in the
merge-to-the-left state, then they must merge together, and it is the only way for intervals
to merge.

When an interval is created, we use the @ layer to simulate the computation that A
would have done over the word contained in the interval. When the computation is over,
and if the interval has not merged yet, a special success/failure state of @) is propagated over
all the cells of the interval.

At the beginning, each cell will define its own interval, and those intervals will start to
merge as the computation goes. We state that intervals will merge until every two adjacent
intervals are equal (see fig 2 for an intuition of the fusion process).

Once this configuration where every interval contains the same word is reached, the
simulation of A in this interval and the propagation of the success/failure state will properly
match our first recognition condition (i.e. all cells enter the same particular subset of states
and never leave it).

Beginning [1|1 |1fof1]1]1]o]1]1]1]o]

Intermediate 1 [1f1fo 1|1|1]o 1]1]1]0

End 1 1|1 0 1 1f1 0 1 1|1 o0

Figure 2 Outline of the merging process on a cyclic configuration.

4.2 Basic tools

Intervals: Let us identify a specific sub-layer of our work alphabet w, which is of the form
w = w' x {#, @}; We define the intervals of a configuration as the maximum sets of adjacent
cells beginning with a # and containing exactly one #. The size of an interval I is the
number of cells it contains, denoted by size(I) (see Fig 3).

We define the content of an interval as the word formed by the concatenation of the
canonical projection of the states of its cells over 3, preceded by the special symbol "-". We
say that two intervals are different if their contents are different words.

N. Bacquey

_d# + |#]

Figure 3 Intervals of size 2, 5 and 3.

We will construct a method ensuring the following property:

» Lemma 12. There exists an integer C such that, if two adjacent intervals have different
contents at time t, then at least one of them will merge before time t + C x n3, where n is
the size of the larger of both intervals.

Signals and pointers: Every interval will have a signal (as defined in, e.g. [8]) going back
and forth in it, starting from its left border, and will also keep a pointer over the letters of
its content (see Fig 4). Each time the signal will enter a cell containing the pointer from
its right, it will move the pointer one letter to the right (for this purpose, we suppose that
the first "F" is stored in the first cell of the interval). When the pointer is at the rightmost
letter of the content, its next move brings it back to "F" (in n time steps).

At the first time step, a # is written on each cell, so that every cell will form an interval
of size 1, a signal starts in each interval, and all the pointers are set to the first letter of the
two-letter content of each interval, namely "F". For an interval of size n, let a; denote the
symbol currently pointed, with ¢ € [0,n] and ag = "F".

Let k = |X| + 1. The signal will wait ¢t; = kn? 4+ 2n x val(a;) time steps on each border,
then move at speed +1 to the other border. These times (¢;) will encode the content of
the interval, thus allowing an interval to compare itself with its neighbours, and merging if
necessary. Note that by standard techniques (see [8]), the function n — kn?+2n x val(a;) is
easily time-constructible using properly defined signals carrying val(a;) in their state, thus
allowing use to wait such times on the borders.

We say that an interval is in the merge-to-the-left (resp. merge-to-the-right) state of our
global vision if its signal is on the left border (resp. right border), and in the waiting state
otherwise.

4.3 Merging process

Let us consider what happens when two adjacent intervals I; and I have their signals meet
on their common border. It ensues from our previous definitions that I is in the merge-
to-the-right state, and I5 is in the merge-to-the-left state. Therefore according to rule 11, a
merging of I; and I must occur. We do so by erasing the # symbol defining their common
border, and destroying the signals. Then new signals are sent to the beginning and the end
of the new interval. Those two signals will reset the pointer to the beginning of the new
word, and reset the simulation of the computation of A. Finally, the whole process starts
again (see fig).

Proof of lemma 12. Let I; and I be two adjacent intervals with different contents a and
b, and S7 and Sy be their respective signals. Let I; be the interval on the left and I be
the one on the right. Let size(l1) = m and size(ls) = n. It suffices to consider the case
where neither I; nor Is merge with other intervals during the time spans we consider. We
will prove our lemma by considering two different cases, whether I; and Iy have different
sizes or not.

117

STACS’14

118

Spatially periodic computation on Cellular Automata

az=1
val(1)=2 0 1
t1=3n24+2nx1
(shortened)
=0 ‘5
val%(;):l a >
. e
C\ﬁ «—— merging
t1
> 0:1
to=3n2+2nx0
(shortened)
apg=F
val(F)=0
to
ANLO L
— ! I 1]y
m n
Figure 4 Basic move of a signal in an interval (with
|3] = 2). The dashed square figures the pointer, which is Figure 5 The merging process —
set to "F" at the beginning and until further notice. different sizes

Merging intervals of different sizes

We suppose without loss of generality that m > n, and we will prove that the time interval
when S; is on the common border cannot be contained in the time interval when S, is away
from that border. The signal S; will wait at least T} = km? on each border, in particular
on the border between I; and I;. Now Sy will be away from a border during at most
Ty = kn? + 2(k — 1)n + 2n = kn? 4 2kn consecutive time steps (since the journey back and
forth from a border lasts 2n time steps, and val(a;) < k — 1).

Sincem >n+1, wehave Ty > kx (n+1)2 =kn’>+2kn+k=To +k >To. Ty > Ty
means that Sy cannot be away from the common border long enough not to meet S7, which
means that I; and I, will merge eventually.

Complexity analysis: It is easily seen that I; and Iy will merge together in time
O(maz(n,m)?), because the signal of the larger of both intervals cannot achieve a com-
plete trip back and forth without encountering the signal from the smaller one, and such a
trip takes a time O(max(n,m)?). A fortiori, there exists an integer ¢ such that I; and I
will merge before time t + ¢ x maz(n,m)3, which proves Lemma 12 for the case n # m.

N. Bacquey

Merging intervals of equal sizes and different contents

We now consider the case where two adjacent intervals have the same size n, but different
contents. We will show that they will merge when their pointer will be set on different
symbols. Let us start by defining some useful notions.

Asynchronicity: During the lifetime of I, we consider the case where its signal S7 does one
or more round trips between its borders (the contrary would mean that I; has merged before,
see Fig 6). Let ¢; be any time when S; reaches the left border. S; comes from the right
border, where it has waited during a certain time interval Ty. Note that by construction,
we must have Ty > 2n, because kn? > 2n.

I; has not merged during the time interval Ty. That means that S5 must have been away
from the left border of Iy during that time. There are two cases: either S; was on the right
border, or it was travelling through /5. Note that S5 can’t have been travelling more than
2n — 2 time steps, because that would mean it would have encountered the left border. As
To > 2n — 2, this means that there must be a time ¢ during Tp when Sz was on the right
border of I5. Let us now define t5 as the first time after ¢} when Sy will reach the left border
of I.

» Definition 13. As we have defined a specific time for each interval, we can now define the
asynchronicity between them, as § = t; — to.

We note that this asynchronicity can be defined each time S reaches the left border of
I;. Those times t; and t are special in our construction, as they are the times when the
intervals move their pointer one cell to the right (or move it back to the first symbol of their
content). Thus, we can associate a pair of symbols (a;,b;) € ¥ U {F} to each pair of times
(t1,t2) that define an asynchronicity (these symbols are the ones which are newly pointed
by I; and I, respectively). Now let us consider the boundaries of the asynchronicity ¢: If
a;—1 = bj_1, we must have —n < 0 < n. Indeed, the contrary would mean that S; and
Sa would have met before ¢1, and a merging would have occurred (see Fig 7 for the absurd
cases where a;_1 = bj_1 and 6 < —n (7a) or 0 > n (7b)).

Let us prove that the sequences (a;) and (b;) cannot be the same if a # b. Indeed, the
contrary would mean that (a;) and (b;) would coincide on every symbol, including the only
"=" a and b contains, and therefore any subsequent symbol until the next "+". This would
mean that a = b, hence a contradiction (let us recall that "H" marks the beginning of the
content).

We consider the first pair of times (¢1,%2) when the associated symbols (a;,b;) are dif-
ferent (it exists, since we have a # b). If we note § the associated asynchronicity, we have
|6] < n, because a;_; = bj_1. We state that I; and I will merge before their signals can go
back and forth. We will identify two cases, whether a; < b; or not (See Fig 8).

We will first see what happens if a; < b; (See Fig 8a). S7 will wait a time ¢, =
kn?+2nxval(a;) on each border, and Sy will wait to+A, with Ay = 2nx (val(bj) —val(a;)).
Since a; < bj, we must have val(b;) > val(a;), and therefore Ay > 2n. Now S; will arrive
on the right border of I; at time t; 4+ tg +n, and Sy will stay on this border from time ¢, + ¢
to time t; + 0 + to + Ay. Let us prove that tg +n € [, + to + 4], which means that the
two signals will meet on the common border.

Since tg > 0 and |§] < n, we have to +n > 6. Ay > 2n, so § + A; > n, and therefore
to+n <64ty + Ay

If a; > b; (See Fig 8b), the merging occurs later, but for similar arguments. t; is now
defined as the waiting time of Sy, and A, as 2n x (val(a;) — val(b;)). We will have to prove

119

STACS’14

120 Spatially periodic computation on Cellular Automata

G t
S
0
tl —><
-
\\
~
~
~
~
!
—
TO) 1
4
e
7’
4
4
7’
€ =
1 Il 1 IQ 1
n n

Figure 6 Definition of asynchronicity between I; and I> at time (¢1,t2).

31 *)O A

(—tg

A

S

t1 —><

1 Il U I2 1 1 Il U I2 1
n n n n

(@)if 6 < —n (b)if6>n

Figure 7 Boundaries of asynchronicity.

that 2tg + 2n + 6 € [to + At + n, 2tg + 2A; + n], using all former remarks plus the fact that
A; < 2n%. The complete proof is left to the reader (see Fig 8b for an intuition).

Complexity analysis: Once again, let (¢1,¢2) be the first pair of times when their associated
symbols (a;,b;) are different. We claim that there exists a ¢ such that I; and I, will merge

N. Bacquey
Ay N .
e -
n
N
to -
A= £
= 3 t
- 0
n
n
~
k - -
P s 1l
A~ £ -
n
Ay
to / £ -
0
to
to
t1 — \z-c\' s S e - =Y 1o
to {\'V ‘-C\J t1
1 I 1 I 1 1 I 1 I 1
n n n n
(a) a; < bj (b) a; > b]'

Figure 8 The merging process — intervals of equal sizes.

before time t; + ¢ x n? (or t3 + ¢ x n? equivalently, since [t; — ta| < n). Indeed, it is true

because both signals cannot complete a trip back and forth from ¢; (resp. t2). Now let us
see how much time happens before such a pair of times (¢1,¢2) is encountered. The pointers
over the contents of I; and I change with delay O(n?) by construction. Therefore, the
signals S; and Sy have a period of O(n?), which means that they must encounter in time
O(n?), thus proving the last remaining case of Lemma 12. |

Now let us recall that at the beginning, each period of our workspace is divided into n
intervals of size 1. Lemma 12 states that while there exists two adjacent different intervals
at least one of them must merge before time O(n?). Therefore, the number of intervals in a
single period of the workspace must decrease every O(n?) time steps until all intervals are
equal, which means there exists only one interval per period. At this point, which happens
after O(n*) time steps, it suffices to wait for the end of the simulation of A in each interval for
the ring-CA C to enter in a loop in which no merging can occur. The acceptance or rejection
of the input can be then decided by projection of the states of C over). This behaviour
matches our definition of weak recognition, therefore L is weakly ring-recognizable.

The proof remains the very same if L € SPACETIME(n, POLY (n)) and we want to
prove L € TIME,;ny(POLY (n)). Indeed, our construction only adds an O(n?*) time before
the simulation of A decides in polynomial time whether or not the input belongs to L.

121

STACS’14

122

Spatially periodic computation on Cellular Automata

4.4 Strengthening the construction to achieve strong recognition

We will now add a few enhancements to our construction, so that the ring-CA C will strongly
recognize a language if the underlying standard automaton A recognizes it. The first thing
we have to do is to add two states encoding the acceptance or rejection of a word to our
work alphabet @' (we need this to cope with our definition of strong recognition). Our
new work alphabet is now: Q' = (Q X ¥ X w) U {accept, reject} The naive way to achieve
strong recognition is to put the cells of an interval in the accept or reject state when a local
simulation of A is over. This leads to a crucial issue, which will be explained in the following
paragraphs.

False positives: The main issue that arises when we enforce the accept or reject states into
the cells instead of letting the signals work is the risk of false acceptance (or rejection): one
can imagine a case where an interval decides that its word is accepted, then overwrites itself
with the accept state, whereas there are other intervals in the configuration, whose contents
are different from itself and thus need to merge with it, leading to an error. Even if we
somehow manage to reconstruct the interval afterwards, its initial content (a word from X*)
is lost. The following mechanism solves this problem.

Saving private content: Regarding the previous paragraphs, an interval should not over-
write its content with accept or reject until we are sure that its initial input can be found
elsewhere, and then restored if necessary. We will design a mechanism that will ensure that
an interval overwrites itself only if the content of its left neighbour is the same as its proper
content. Our Lemma 12 ensures that if any pair of adjacent intervals I; and I do not merge
during a certain time ¢ x n3, then they have the same content. We want the intervals to
detect those cases that will eventually happen, and only to overwrite themselves when they
are assured that their left neighbour has the same content as themselves. As a consequence
of Lemma 12, there exists a constructible time ¢., such that if two adjacent intervals evolve
together during a time t.4, then their content is equal. We will exploit that property by
adding a "timer" layer to the intervals that will wait for time t., and check if the left border
of the interval is periodically visited by the signal of its left neighbour (this ensures that its
left neighbour has not merged yet; One can check this by leaving a "token" when a signal
reaches the right border of its interval). We redesign the overwriting process so that it can
only happen when the interval has waited for at least t., alongside its left neighbour. This
ensures that an interval only overwrites itself when it is sure that its content can be restored
later.

Restoring lost content: As the right neighbour of an interval may have overwritten itself,
we must ensure that each time the content of an interval changes (i.e. when it merges),
its former content is sent to its right to replace the accept or reject states. We can copy
the content of an interval by the method detailed on Fig 9. When an interval gets its old
content back by this method, it immediately creates a new signal, begins its computation
as a newly created interval, and checks if its right neighbour should also be restored.

5 Extensions

Towards function computing: We suppose that we are given a standard CA A that com-
putes a cyclic function f. A few minor tweaks to the mechanism that gave us strong
recognition are enough to obtain a ring-CA that computes the function f. Indeed, instead

N. Bacquey

0 11 0Ja/rla/ra/ra/r

n n

Figure 9 An intuition of the copying mechanism (a/r means accept/reject).

of adding the {accept, reject} set of states to the automaton, we will add T', the output al-
phabet of the function f. When an interval was supposed to overwrite itself with the accept
or reject state, it writes the output of f over its content instead (it has enough room to do
s0, as ||f(u)|| = |lul|). Ceteris paribus, our new automaton exactly computes f, therefore f
is ring-computable.

Density classification problem: We consider the density classification problem, as defined
in [6] and studied in [3], [4]. The goal of this problem is to design a CA that works on periodic
configurations on the alphabet {0,1} and converges towards the bi-infinite configuration
composed only of 1 (denoted as 1%) if there are more 1s than 0s in the initial configuration and
0% otherwise. This can be seen as the computation of a specific function, which happens to
be cyclic. Therefore, our construction provides a solution to the open problem of the density
classification in deterministic case, by using more states than the sole input alphabet.

6 Conclusion and open problems

We note that our method computes an optimal leader election on a spatially periodic config-
uration: the leaders are the cells where the # finally remain. We can shift those symbols in
such a way that they delimit the lexicographically minimal word, thus solving in polynomial
time the MINIMAL-PERIOD problem defined in the introduction.

Whereas spatially periodic CA have been studied in the framework of dynamic systems,
e.g. for proving that a given automaton is injective or surjective (see [5], [9]), very little work
has been done to our knowledge in the framework of language recognition or computability.
Several cyclic languages can be suggested from this article: the majority languages, which
consist of the languages where a specific symbol appears more than the other ones, or the
cyclic closure of regular languages. However, it is difficult to describe how comprehensive
and interesting cyclic languages can be. It is also natural to extend spatially periodic
computation problems to 2-dimensional cellular automata. As usual, it raises several issues,
including the very definition of a somehow "minimal pattern" of a bi-periodic infinite picture,
and its computability on a cellular automaton. Thus, in the 2-dimensional case the definition
of cyclic languages and cyclic functions fitting our framework is unclear, and is a fine food
for thought for future works.

123

STACS’'14

124

Spatially periodic computation on Cellular Automata

—— References

1

10

11

Marie-Pierre Béal, Olivier Carton, and Christophe Reutenauer. Cyclic languages and
strongly cyclic languages. In STACS, volume 1046 of LCNS, pages 49-59, Berlin, 1996.
Springer.

Olivier Carton. A hierarchy of cyclic languages. ITA, 31(4):355-369, 1997.

Nazim Fates. Stochastic cellular automata solve the density classification problem with an
arbitrary precision. In STACS, volume 9 of LIPIcs, pages 284-295, 2011.

Henryk Fiks. Solution of the density classification problem with two cellular automata
rules. Phys. Rev. E, 55:R2081-R2084, 1997.

Jarkko Kari. Basic concepts of cellular automata. In Rozenberg et al. [10], pages 3-24.
Mark WS Land and Richard K Belew. No two-state CA for density classification exists.
Physical Review Letters, 74(25):5148-5150, 1995.

Jacques Mazoyer. Computations on one-dimensional cellular automata. Annals of Math-
ematics and Artificial Intelligence, 16(1):285-309, 1996.

Jacques Mazoyer and Véronique Terrier. Signals in one-dimensional cellular automata.
TCS, 217(1):53-80, 1999.

John Myhill. The converse of Moore’s garden-of-eden theorem. In Proceedings of the
American Mathematical Society, volume 14, pages 658-686, 1963.

Grzegorz Rozenberg, Thomas Béck, and Joost N. Kok, editors. Handbook of Natural Com-
puting. Springer, 2012.

Véronique Terrier. Language recognition by cellular automata. In Rozenberg et al. [10],
pages 124-158.

	Introduction
	Definitions and context
	The computational model
	Recognition on ring-CA
	Computability of functions on ring-CA
	Complexity classes and results

	From the cyclic model to the standard model
	From the standard model to the cyclic model
	Global vision
	Basic tools
	Merging process
	Strengthening the construction to achieve strong recognition

	Extensions
	Conclusion and open problems

