
A glimpse on constant delay enumeration
Luc Segoufin

INRIA and ENS Cachan

Abstract
We survey some of the recent results about enumerating the answers to queries over a database.
We focus on the case where the enumeration is performed with a constant delay between any two
consecutive solutions, after a linear time preprocessing.

This cannot be always achieved. It requires restricting either the class of queries or the class
of databases. We describe here several scenarios when this is possible.

1998 ACM Subject Classification F.4 Mathematical logic and formal languages

Keywords and phrases Enumeration, constant delay, logic

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.13

Category Invited Talk

1 Introduction

The evaluation of queries is a central problem in database management systems. Given a
query q and a database D the evaluation of q over D consists in computing the set q(D) of all
answers to q on D. The complexity of this problem has been widely studied. However most
of the complexity bounds are extrapolated from the boolean case (aka the model checking
problem, where the answer to the query is either a “yes” and a “no”) and expressed as a
function of the sizes of q and D. In this case we know that the model checking problem for
first-order queries is PSpace-complete, for conjunctive queries it is NP-complete and that
for acyclic conjunctive queries it can be done in polynomial time. For non boolean queries
it may be not satisfactory enough to express complexity results just in terms of the sizes
of D and q. A simple observation shows that the set q(D) may be huge, even larger than
the database itself, as it can have a number of elements of the form ||D||l, where ||D|| is the
size of the database and l the arity of the query. The fact that the solution set q(D) may
be of size exponential in the query is intuitively not sufficient to make the problem hard,
and alternative complexity measures had to be found for query answering. For instance one
could consider output-sensitive complexity measures expressed as a function of the sizes of q,
D but also q(D). In this direction, one way to define tractability is to assume that tuples of
the query result can be generated one by one with some regularity, for example by ensuring
a fixed delay between two consecutive outputs once a necessary precomputation has been
done to construct a suitable index structure.

This approach, that considers query answering as an enumeration problem, has deserved
some attention over the last few years. In this vein, the best that one can hope for is constant
delay, i.e., the delay depends only on the size of q (but not on the size of D). A number
of query evaluation problems have been shown to admit constant delay algorithms, usually
preceded by a preprocessing phase that is linear in the size of the database. We survey some
of these results in this paper.

This imposes drastic constraints. In particular, the first answer is output after a time
linear in the size of the database and once the enumeration starts a new answer is being

© Luc Segoufin;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 13–27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14 A glimpse on constant delay enumeration

output regularly at a speed independent from the size of the database. Altogether, the set
q(D) is entirely computed in time f(q)(||D||+ |q(D)|) for some function f depending only on
q and not on D. In particular, for boolean queries, the model checking problem can be solved
in time linear in the size of the database. However, as shown in [4], the fact that evaluation
of boolean queries is easy does not guarantee the existence of such efficient enumeration
algorithms in general: under some reasonable complexity assumption, there is no constant
delay algorithm with linear preprocessing enumerating the answers of acyclic conjunctive
queries, although it is well-known that the model-checking of boolean acyclic queries can be
done in linear time [45].

We stress that our study is theoretical. If most of the algorithms we will mention here are
linear in the size of the database, the multiplicative factors are often very big, making any
practical implementation difficult. However, we believe that the index structures designed
for making these algorithms work are interesting and, with extra assumptions, could possibly
be turned into something practical.

The first part of the paper, Section 3, is devoted to conjunctive queries. We will see how
acyclicity plays here a crucial role.

We will then move on to first-order queries in Section 4. In this case we need to restrict
the class of databases. We will see that constant delay algorithms can be obtained over
classes of databases with bounded degree, bounded treewidth, bounded expansion and low
degree.

In Section 5 we will see that, in the bounded treewidth case, one can even enumerate
monadic second-order queries with constant delay.

There are many related problems. Typically one could imagine computing the top-` most
relevant answers relative to some ranking function or to provide a sampling of q(D) relative
to some distribution. One could also imagine computing only the number of solutions |q(D)|
or providing an efficient test for whether a given tuple belongs to q(D) or not. It is not clear
a priori how these problems are related to constant delay enumeration. However, it turns out
that in the scenarios where constant delay enumeration can be achieved, one can often also
count the number of solutions in time linear in the size of the database and, after linear time
preprocessing on the database, one can test in constant time whether a given tuple is part
of the answers set. We will not survey those results here, the interested reader is referred
to [41].

This survey is by no means exhaustive. It is only intended to survey the major theoretical
results concerning database querying and enumeration. Hopefully it will convince the reader
that this is an important subject for research that still contains many interesting and
challenging open problems.

2 Preliminaries

2.1 Database as finite relational structures, queries
In this paper a database is a finite relational structure. All interesting examples can be found
over graphs or colored graphs. Hence the reader can safely replace relational structure with
graph while reading this paper.

A relational signature is a tuple σ = (R1, . . . , Rl), each Ri being a relational symbol of
arity ri. A relational structure over σ is a tuple D =

(
D,RD1 , . . . , R

D
l

)
, where D is the domain

of D and RDi is a subset of Dri . We define the size of D as ||D|| = |σ|+ |D|+
∑
Ri
|RDi |ri.

It corresponds to the size of a reasonable encoding of D. The number of elements in the
domain of D is denoted by |D|.

L. Segoufin 15

A query is a computable function associating to a database D a relation over the domain
of D. In this paper, a query takes as input a database of a given signature σ and returns a
relation of a fixed arity, the arity of the query. A query is a sentence if its arity is 0. The
query is then either true or false on D and defines a property of D. A query is unary if its
arity is 1. If q is a query and ā is in the image of q on D, then we write D |= q(ā). Finally
we set q(D) = {ā | D |= q(ā)}. Note that the size of q(D) may be exponential in the arity of
q. A query language is a class of queries. Typically it is defined as a logical formalism such
as CQ (for conjunctive queries), FO (for first-order queries), MSO (for monadic second-order
queries) and so on. As usual, |q| denotes the size of q.

Given a query language L, the model checking problem for L is the computational problem
of given a sentence q ∈ L and a database D, to test whether D |= q or not. The database D
is often restricted to a class C of finite structures. In this case we speak of the model checking
problem for L over C.

2.2 Model of computation
We use Random Access Machines (RAM) with addition and uniform cost measure as a model
of computation, cf. [1]. Our algorithms will take as input a query q of size k and a database
D of size n. We then say that an algorithm runs in linear time (respectively, quasi-linear or
constant time) if it outputs the solution within f(k)n steps (respectively, f(k)n logn steps
or f(k) steps), for some function f

Given an n× n matrix, and two numbers i, j ≤ n the RAM model returns the content to
the entry (i, j) of the matrix in constant time. Therefore when given the adjacency matrix
of a graph it can test in constant time where two given nodes are adjacent or not. However
our databases are encoded by the list of their tuples and we therefore do not have access to
the adjacency matrix. Testing whether a tuple belongs to a relation may therefore require
more than a constant time.

In the sequel we assume that the input structure comes with a linear order on the domain.
If not, we use the one induced by the encoding of the structure as an input to the RAM.
Whenever we iterate through all nodes of the domain, the iteration is with respect to the
initial linear order.

An important observation is that the RAM model can sort m elements of size O(logm)
in time O(m logm) [28]. In particular, we can sort lexicographically the tuples of a relation
in linear time. As a consequence, a simple merge-sort algorithm we can compute the relation
{x̄ȳ | R(x̄ȳ) ∧ S(x̄)} in time linear in the sizes of R and S.

2.3 Parametrized complexity
The database D and the query q play different roles as input of our problems. It is often
assumed that |D| is large while |q| is small. Hence it is useful to distinguish them in the
input of the query answering problem. Parametrized complexity is a suitable framework
for analyzing such situations. We only provide here the basics of parametrized complexity
needed for understanding this paper. The interested reader is referred to the monograph [24].

In parametrized complexity, a problem is an input together with a parameter, as a number
computable from the input, and a question. A typical example is the parametrized model
checking problem for L where the input is a database D and a sentence q ∈ L, the parameter
is |q| and the problem asks whether D |= q.

A parametrized problem is Fixed Parameter Tractable, i.e. can be solved in FPT, if, on
input of size n and parameter k, it can be solved in time f(k)nc for some suitable computable

STACS’14

16 A glimpse on constant delay enumeration

function f and constant c. The idea behind this definition is that for many scenarios, like
query answering in databases, it is preferable to have an algorithm working in 2kn2 rather
than nk.

In parametrized complexity there is also a suitable notion of reduction, called FPT-
reduction. FPT is closed under FPT-reductions and there are some hard classes of para-
metrized problems, closed under FPT-reductions, containing problems with no known FPT
algorithms and that are believed to be different from FPT. In parametrized complexity,
completeness relative to a complexity class is always understood to be under FPT-reductions.

An important hard class is denoted W[1]. W[1] plays in parametrized complexity the
role of NP in classical complexity. A typical problem which is complete for W[1] is the
parametrized model checking problem for CQ [39]. Another important hard class is denoted
AW[∗]. It plays in parametrized complexity the role of PSpace in classical complexity. A
typical problem which is complete for AW[∗] is the parametrized model checking problem for
FO [39].

2.4 The enumeration class CD◦Lin
Let L be a query language and C be a class of databases. We say that the enumeration
problem for L over C can be solved with constant delay after linear preprocessing (is in
CD◦Lin), if it can be solved by a RAM algorithm which, on input q ∈ L and D ∈ C, can be
decomposed into two phases:

a preprocessing phase that is performed in linear time, and
an enumeration phase that outputs q(D) with no repetition and a delay depending only
on q between any two consecutive outputs. The enumeration phase has full access to the
output of the preprocessing phase and can use extra memory whose size depends only
on q.1

The definition of CD◦Lin requires a preprocessing time linear in ||D || and a delay not
depending on D. There are hidden multiplicative factors that are function on the size of the
query. These factors may be huge. We will refer to them in the sequel as the multiplicative
factors.

Before we proceed with the technical presentation of the results, it is worth spending
some time with examples.

I Example 1. Consider a database schema containing a binary relational symbol R and the
query q(x, y) := ¬R(x, y). On input D, the following simple algorithm enumerates q(D):
Go through all pairs (a, b); test if it is a fact of RD; if so skip this pair;
otherwise output it.
However, a simple complexity analysis shows that the delay between any two outputs is
not constant. There are two reasons for this. First, arbitrarily long sequences of pairs can
be skipped. Second, it is not obvious how to test whether (a, b) ∈ RD in constant time
(i.e. without going through the whole relation RD). In order to enumerate this query with
constant delay it is necessary to perform a preprocessing. We first decide on an arbitrary

1 In the literature one can sometimes find a more liberal definition only requiring constant time delay with
no constraints on the memory. Of course this implies that between two consecutive outputs the memory
used is constant, but the global memory affected could be linear in the total number of outputs. In our
more constrained setting the enumeration algorithm is essentially a finite state automaton running over
the index structure produced during the precomputation phase. It turns out that most of the existing
enumeration algorithms do satisfy the extra constraint on memory.

L. Segoufin 17

linear order on the domain of D. We then order all RD according to the lexicographical
order. Recall that with the RAM model this can be done in linear time. We then compute
for each tuple ū of RD the tuples v̄ = f(ū) and v̄′ = g(ū) such that v̄ is the smallest (relative
to the lexicographical order) element w̄ 6∈ RD such that all tuples between ū and w̄ are in
RD and v̄′ is the smallest (relative to the lexicographical order) element w̄ ∈ RD bigger
than v̄. These functions can be computed in linear time by a simple pass on the ordered list
of RD from its last element to the first one. This concludes the preprocessing phase. The
enumeration phase is now simple. We maintain two pairs of elements of D: one is initialized
with the smallest pair according to the lexicographical order, the other one with the smallest
pair in RD. The second pair will always be pointing to an element of RD. Assuming the
current pairs are 〈ū, v̄〉, we then do the following until ū is maximal. If ū = v̄ then we move
to 〈f(v̄), g(v̄)〉. Note that f(v̄) 6= g(v̄). If ū 6= v̄ we output ū and replace it by its successor
in the lexicographical order without changing v̄. This algorithm is clearly constant delay as
an output is performed at least every other step. All output tuples are clearly not in RD
and the reader can check that all skipped tuples are in RD.

I Example 2. Same schema but the query is now computing the pairs of nodes at distance 2:
q(x, y) := ∃zR(x, z)∧R(z, y). We will see in Section 3 that it is likely that this query cannot
be enumerated with constant delay. However, if we assume that R has degree bounded by d,
then for any node a of the graph, at most d2 nodes v are at distance 2 from u. Moreover,
it is easy to see that we can compute in linear time the function f(u) associating to u the
list of its nodes at distance 1. An extra linear pass based on the function f computes the
function g(u) associating to u the list of its nodes at distance 2. From there the enumeration
algorithm with constant delay is trivial.

I Remark. Notice that if the enumeration problem for L over C is in CD◦Lin, then all
answers can be output in time O(||D||+ |q(D)|) and the first output is computed in time linear
in ||D||. In particular the model checking problem for L over C is in FPT. Hence if the model
checking problem for L over C is known to be W[1]-hard, then the enumeration problem for
L over C cannot be in CD◦Lin, unless W[1] =FPT.

Notice that if the arity of q is less or equal to 1, then |q(D)| ≤ |D| ≤ ||D||. It is then
plausible that the whole set of answers can be computed in time linear in ||D||. If this is the
case then we have a simple constant delay algorithm that precomputes all answers during the
precomputation phase and then scans the set of answers and outputs them one by one during
the enumeration phase. Hence enumeration becomes relevant when the arity of q is at least 2.
In this case q(D) can be quadratic in ||D|| and hence can certainly not be computed within
the linear time constraint of the precomputation phase. The index structure built during the
preprocessing phase is then a non trivial object. One can also view this index structure as a
compact (of linear size) representation of the set q(D) (that can be of polynomial size) and
the enumeration algorithm as an output streaming decompression algorithm.
I Remark. One difficulty for obtaining constant delay enumeration algorithms is that the
class CD◦Lin is not known to be closed under boolean operations. Closure under disjunction
is difficult because of the requirement that each solution must be output only once. There are
two particular cases when closure under disjunction can be obtained. The first one is trivial:
It assumes that we have CD◦Lin algorithms for q and q′ over a class C of databases and
that, on input D ∈ C, both algorithms output the answers relative to the same linear order
on all tuples (for instance the lexicographical order). In this case a simple argument that
resembles the problem of merging two sorted lists gives a CD◦Lin algorithm for q ∨ q′ over C.
The second case is more subtle. Instead of assuming a linear order on the output tuples, it

STACS’14

18 A glimpse on constant delay enumeration

assumes that after preprocessing in time linear in ||D||, given a tuple ā, one can test whether
D |= q(ā) in constant time. Then there is a CD◦Lin algorithm for q ∨ q′ over C [42].

3 Restricting the queries

In this section we consider the evaluation of simple queries over the class of all databases.

3.1 Conjunctive queries
A conjunctive query (CQ) is a query of the form

q(x̄) := ∃y1 · · · yl
∧
i

Ri(z̄i)

where Ri(z̄i) is an atom of q, Ri being a relational symbol and z̄i containing variables from
x̄ or ȳ. A typical example is the distance 2 query of Example 2 in in CQ. Another example
is the query returning all triangles in a graph. The model checking problem for CQ is
W[1]-complete and we therefore restrict our attention to acyclic conjunctive queries (ACQ)
that can be evaluated in time |q| · ||D|| · |q(D)| [45]. We will see that it is very unlikely that
constant delay enumeration can be achieved for ACQ. It is only achieved for a subset of
ACQ called free-connex. We start with the necessary definitions.

A join tree of q ∈ CQ is a tree T whose nodes are atoms of q and such that

(i) each atom of q is the label of exactly one node of T ,
(ii) for each variable x of q, the set of nodes of T in which x occurs is connected.

A conjunctive query q is said to be acyclic if it has a join tree. In graph theoretical terms
this is equivalent to saying that the hypergraph formed by the atoms of q is α-acyclic.

An acyclic conjunctive query q(x̄) is said to be free-connex if the query q(x̄)∧R(x̄) where
R is a new symbol of appropriate arity, is acyclic.2 Note that all boolean acyclic query are
free-connex.

For example the acyclic conjunctive query q(x, y) = ∃u, v S(x, y, u) ∧ T (x, y, v) is free-
connex because the following join tree shows acyclicity of the extended query:

R(x, y)

S(x, y, u) T (x, y, v)

However the distance 2 query q(x, y) = ∃z S(x, z) ∧ S(z, y) is not free-connex as the
query ∃z S(x, z) ∧ S(z, y) ∧R(x, y) is clearly cyclic.

I Theorem 1. [4] The enumeration for free-connex ACQ over the class of all databases is in
CD◦Lin.

We note that the multiplicative factors involved in Theorem [4] are polynomial in the
query size.

The result of Theorem 1 also holds if the queries contain inequalities (ACQ 6=). In this
case atoms with inequalities are not involved when building the (generalized) join trees. In
the presence of inequalities, the multiplicative factors are now exponential in the query size.

It turns out that free-connexity characterizes exactly those acyclic queries that can be
enumerated in constant delay, assuming boolean matrix multiplication cannot be done in

2 This is not the initial definition of free-connex as given in [4]. This presentation is from Brault-Baron [9].

L. Segoufin 19

quadratic time. Boolean matrix multiplication is the problem of given two n× n matrices
with boolean entries M,N to compute their product MN . The best known algorithms so
far (based on the Coppersmith–Winograd algorithm [12]) require more than n2.37 steps.
I Theorem 2. [4] If boolean matrix multiplication cannot be done in quadratic time then
the following are equivalent for q ∈ ACQ:
1. q is free-connex
2. q can be enumerated in CD◦Lin
3. q can be evaluated in time O(||D||+ |q(D)|).
In particular the distance 2 query cannot be enumerated with constant delay after linear
time preprocessing unless boolean matrix multiplication can be done in quadratic time.
I Remark. Theorem 2 is based on the complexity assumption that boolean matrix multiplic-
ation cannot be done in quadratic time. Another hypothesis yielding the same result was
provided by [9]. This hypothesis requires that it is not possible to test the existence of a
triangle in a graph of n vertices in time O(n2) and that for any k testing the presence of a
k-dimensional tetrahedron cannot be tested in linear time (see [9] for precise definitions).

3.2 Signed conjunctive queries
We are now interested in evaluating signed conjunctive queries (SCQ). Those extends the
syntax of conjunctive queries by allowing negated atoms. In other words they are of the form

q(x̄) := ∃ȳ q+(x̄ȳ) ∧ q−(x̄ȳ)

where q+ is a conjunction of positive atoms whiles q− is a conjunction of negated atoms.
When q− is empty we have seen in the previous section that q can be enumerated with

constant delay after a linear preprocessing as soon as q+ is α-acyclic. When q+ is empty it
has been shown in [8, 9] that constant delay enumeration can be achieved if q− is β-acyclic.
β-acyclicity is the hereditary extension of α-acyclicity. It requires that the hypergraph and
all its subhypergraphs are α-acyclic. When neither q+ nor q− are empty then a notion
of signed-acyclicity was introduced in [9]. It yields α-acyclicity and β-acyclicity in the
corresponding limits case. It also allows for tractable enumeration algorithms.
I Theorem 3. [9] The enumeration for signed-acyclic SCQ over the class of all databases can
be done with constant delay after a preprocessing time of the form ||D||(log ||D||)|q|.

The enumeration for signed-acyclic SCQ over the class of all databases can be done with
logarithmic delay after a quasi-linear time preprocessing.

The multiplicative factors are exponential in the size of the query for the constant delay
result but polynomial in the logarithmic delay result. As in the ACQ case, modulo complexity
hypothesis, typically that testing the existence of a triangle cannot be done in O(n2 logn)
time on a graph of size n, the signed-acyclicity hypothesis cannot be avoided [9].

3.3 Guarded First-Order Queries
Guarded first-order formulas (GFO) are defined using the following grammar.

φ ::= R(x̄) | x = y | φ ∧ φ | ¬φ(x) | ∃x̄α(x̄ȳ) ∧ φ(x̄ȳ) | ∀x̄α(x̄ȳ)→ φ(x̄ȳ)

where R is an arbitrary relation symbol from the schema and α(x̄ȳ) is an atom containing
all variables in x̄ȳ. See [27] for more details about guarded logics. It has been shown in [5]
that the model checking for sentences from GFO could be done in linear time. This can be

STACS’14

20 A glimpse on constant delay enumeration

extended to a constant delay algorithm assuming acyclicity of the quantifier-free part of the
query.

Indeed consider a subformula γ of the form ∃x̄α(x̄ȳ) ∧ φ(x̄ȳ) where φ is quantifier free.
It defines a relation Rγ(ȳ) whose size is linear in the size of the relation occurring in α. A
simple argument as the one for R(x̄ȳ)∧S(x̄) explained in Section 2.2 shows that this relation
can be computed in linear time.

Therefore, after a linear preprocessing, any GFO query can be transformed into a
quantifier free one. Turned into DNF the resulting query is a union of SCQ. By a simple
exclusion-inclusion argument the union can be assumed to give disjoint results. Hence it
remains to enumerate each disjunct separately. From Theorem 3 this can be done efficiently
if each disjunct is signed-acyclic.

This suggest the following definition. Given a GFO query q, it’s quantifier-free part is
the quantifier free query constructed from q by pushing negation down to the atoms and
then replacing its maximal subformula γ(ȳ) of the form ∃x̄α(x̄ȳ) ∧ φ(x̄ȳ) by Rγ(ȳ). It’s
normalized quantifier-free part further transforms the quantifier-free part by putting it into
DNF and applying the exclusion-inclusion principle to get disjoint conjunctive formulas.

Let’s denote by signed-acyclic GFO those queries of GFO whose normalized quantifier-
free part are such that each conjunct is signed-acyclic. From the previous argument and
Theorem 3 the following result follows:
I Theorem 4. The enumeration for signed-acyclic GFO over the class of all databases can be
done with logarithmic delay after a quasi-linear preprocessing time.
I Remark. The same result can probably be obtained with a more natural syntactic fragment
of GFO.

4 Restricting the class of structures

In this section we consider first-order queries (FO) and restrict the classes of databases to
sparse structures. All these classes are defined over graphs and are generalized to arbitrary
relational structures via their Gaifman graphs: Given a class C of graphs, the associated
class C’ of databases contains exactly all the databases whose Gaifman graphs are in C.

The Gaifman graph of a relational structure D is defined as follows: the set of vertices is
the domain D of D and there is an edge (a, b) iff there exists a relation Ri and a tuple t ∈ Ri
such that both a and b occur in t. For a graph G we denote by |G| its number of vertices
and by ||G|| its number of edges.

4.1 Bounded degree
A class of graphs has bounded degree if there exists a d such that all nodes of all graphs in
the class have at most d neighbors. It is known that the model checking problem for FO
over structures with bounded degree can be solved in linear time [40].
I Theorem 5. [18, 33] The enumeration for FO over a class of structures with bounded
degree is in CD◦Lin.

The initial proof of [18] is using the fact that structures in a class of graphs of bounded
degree can be encoded using finitely bijective unary functions. Moreover, over such structures,
there exists a quantifier elimination method for FO formulas [18]. Once the query is quantifier
free, it is not too difficult to design for it a constant delay enumeration algorithm.

Another idea is to use the Gaifman Locality Theorem showing that for FO queries only
the r-neighborhoods (i.e. substructures of all nodes at distance at most r) occurring in the

L. Segoufin 21

structures are relevant, for a suitable value of r depending only on the query. In a class
of graphs with bounded degree, there are only finitely many such r-neighborhoods and it
is possible to compute them in linear time, hence during the preprocessing phase. The
enumeration algorithm follows [33].

The multiplicative factors are a tower of exponential whose height depends on |q| in the
case of [18] and are triply exponential in |q| in the case of [33]. This latter multiplicative
factor cannot be significantly improved: it follows from [26] that a multiplicative factor only
doubly exponential in the size of the formula is not possible unless AW[∗] =FPT.

4.2 Bounded expansion
The bounded degree case can be generalized to a larger class of structures known as bounded
expansion and defined in [37]. In [37] a number of equivalent characterizations were given for
bounded expansion giving evidence that this class is robust. Many known families of graphs
have bounded expansion. We list below some notable examples.

Class of graphs with bounded degree.
Class of graphs with bounded treewidth.
Class of planar graphs.
Class of graphs excluding at least one minor.

The model checking problem for FO over classes of structures with bounded expansion
can be solved in linear time [21, 30].

I Theorem 6. [34] The enumeration for FO over the class of structures with bounded
expansion is in CD◦Lin.

This result generalizes the bounded degree case. If structures in a class of bounded degree
could be represented using finitely many unary bijections, structures in a class of bounded
expansion can be represented using finitely many unary functions of a special kind. A
quantifier elimination method is then given over such structures. However solving the
quantifier-free case is not immediate.

The multiplicative factors are a tower of exponentials whose height is the quantifier
alternation depth of the first-order query. This non-elementary multiplicative factor is
unavoidable already on the class of unranked trees, assuming FPT 6= AW[∗] [26]. In
comparison, recall that this factor is triply exponential in the size of the query over bounded
degree structures.

4.3 Nowhere dense
It turns out that the notion of bounded expansion can be further generalized. A class C
of graphs is nowhere dense if for all r there exists a graph Hr that is not a r-minor of all
graphs of C (a r-minor is a minor where the collapsed balls have radius at most r).

This class was introduced in [38] with a number of equivalent characterizations giving
evidence that it is a robust class. It contains all class of graphs of bounded expansion but
also any class of graphs that locally excludes a minor or that has local bounded treewidth.
We refer to [17, 25] for precise definitions of these notions.

It has recently been claimed that the model checking problem for FO over nowhere dense
graphs can be done in quasi-linear time [31].

I Open problem 1. Can enumeration for FO over the class of nowhere dense graphs be done
with constant delay after a quasi-linear time preprocessing?

STACS’14

22 A glimpse on constant delay enumeration

If the class of graphs is closed under subgraphs, nowhere dense is the limit for the existence
of FPT algorithms.
I Theorem 7. [22] If C is a somewhere dense class of graphs closed under subgraphs, then
the model checking problem for FO over this class is W[1]-hard (actually existential formula
suffices).

An even stronger result was obtained in [36] assuming that C is somewhere dense in an
“effective way”. In this case it is shown that the model-checking for FO is even AW[∗]-complete.

4.4 Low Degree
For classes of graphs not closed under subgraphs, we can still obtain positive results over a
somewhere dense class of graphs.

A class of graphs has low degree if for all δ, all but finitely many graphs in the class
have degree at most nδ, where n is the size of the graph. Typical examples are structures of
bounded degree or of degree bounded by logn.

It has been proved in [29] that over a class of structures of low degree, first-order boolean
queries can be checked in pseudo-linear time, i.e. in time bounded by O(n1+ε), for all ε > 0.
This can be extended to an efficient enumeration algorithm assuming that sufficient memory
is available. The result below assumes that the computation starts with an initial memory
of O(n3) on input of size n. It will use only a small fragment of this memory, as it runs in
pseudo-linear time, but for reasons detailed in [19], it requires initially more.
I Theorem 8. [19] The enumeration for FO over a class of structures of low degree can be
done with constant delay after a pseudo-linear preprocessing time.

5 Structures with bounded treewidth

We have seen in Section 4.2 that structures of bounded treewidth are a special case of
structures of bounded expansion. Therefore, over such classes, FO queries can be enumerated
with constant delay after a linear time preprocessing. Over structures of bounded treewidth,
the enumeration result can be extended to a larger class of queries: MSO queries. It is well
known that the associated model checking problem can be solved in linear time by Courcelle’s
theorem [13].

Recall that MSO extends FO with the possibility to quantify existentially and universally
over monadic second order variables. Those variables range over sets of elements of the input
domain. By MSO query we mean here a query of the form q(x̄) where q is in MSO and x̄
are first-order free variables. The case where x̄ can also contain free monadic variables has
also been considered in [14, 2] but those cannot be enumerated in CD◦Lin mainly because
outputting one solution may require linear time. See Section 6.

However, when restricted to first-order free variables, constant delay enumeration can be
achieved. Two different index structures were proposed in the literature. Actually a third one
was also proposed in [14], but it requires a precomputation phase of O(n logn) to build it.
I Theorem 9. [2, 35] The enumeration for MSO queries over the class of structures with
bounded treewidth is in CD◦Lin.

The difficulty of Theorem 9 lies entirely in the tree case. We present the key ingredients
of the proof of [35] below as the intermediate results are of independent interest.

Let L be a regular word language over an alphabet A. A typical binary MSO query over
trees is the query qL(x, y) returning the pairs of nodes (u, v) within a tree such that u is an
ancestor of v and the labels of the nodes in the path from u to v forms a word in L.

L. Segoufin 23

Given a tree t, there exists an index structure computable in time linear in ||t|| such that,
given two nodes u and v of t one can test in constant time whether (u, v) ∈ qL(t) or not.
This is a nontrivial and powerful result of Colcombet based on deep algebraic constructions.

I Proposition 10. [11] For any regular language L over an alphabet A and any A-labeled
tree t one can

construct in time O(||t||) an index structure such that,
for all nodes u, v of t, testing whether (u, v) ∈ qL(t) can be done in constant time.

The multiplicative factors resulting from the construction of the index and during the
constant time tests depend on the presentation of L. They are non elementary if L is given
as an MSO sentence. They are exponential if L is given as an automaton, even in the
deterministic case (see also [6]). However, there exist cases where these multiplicative factors
are polynomial (see for instance [7]).

The index structure built for proving Proposition 10 has the following interesting normal
form for MSO queries over trees as a consequence.

I Proposition 11. [implicit in [11], see also [10]] Over trees, every binary MSO query q(x, y)
is equivalent to a disjunction of queries of the form ∃ȳ∀z̄ θ, where θ is a disjunction of
conjunctions of atomic predicates, ancestor relationships, or unary MSO queries.

The index constructed in [35] for enumerating MSO queries over trees builds on Pro-
position 11. The so called “composition method”, or a simple Ehrenfeucht-Fraïssé game,
shows that any MSO query is equivalent to a boolean combination of binary queries. For
binary queries, Proposition 11 applies. The unary MSO subformulas can be precomputed in
linear time by Courcelle’s theorem and can therefore be considered as new colors. Hence
it is enough to consider ∃ȳ∀z̄ first-order queries using the ancestor relationship. Those
queries being rather simple, an induction on the number of free variables solves the problem,
see [35]. The multiplicative factors of Theorem 9 deviates from those of Proposition 10 only
by a polynomial factor. Hence their size depends on the presentation of the MSO query as
explained above.

6 Discussion

6.1 The impact of order

With the current definition of CD◦Lin, there is no constraint on the order in which the
answers are output. One could require a specific order, relevant to the context in which the
query is evaluated. For instance, if there is a linear order on the domain of the database,
one could require that the tuples of the result are output in lexicographical order. Another
typical example is when there is a relevance measure associated to each tuple and one would
like the answers to the query to be output in the order of their relevance.

Requiring a specific order when outputting the answers to a query may have a dramatic
impact on the existence of constant delay algorithms. This is not surprising as the index
built during the preprocessing phase is designed for a particular order.

In the presence of a linear order on the database, the enumeration algorithms of The-
orem 5 (bounded degree) and Theorem 6 (bounded expansion) can output the solutions in
lexicographical order. However, it is not clear how to achieve lexicographical output in the
case of MSO over bounded treewidth (Theorem 9).

STACS’14

24 A glimpse on constant delay enumeration

6.2 Longer delay
Delay linear in the size of the database

We could consider enumeration algorithms allowing for non constant delay. We have already
seen logarithmic delays in Theorem 3 and Theorem 4. Another interesting case is linear
delay. In this setting, the preprocessing phase remains linear in the size of the database
but the delay between any two consecutive outputs is now linear in the size of the database.
Notice that linear delay still implies that the associated model checking problem is in FPT,
hence CQ cannot be enumerated with linear delay unless W[1] =FPT.

One can then consider restricting the class of structures. A class of structures, called
X-structures, has been exhibited such that CQ can be enumerated over it with linear delay.
We will not define X-structures in this note. Typical examples are grids and trees with all
XPath axis.

I Theorem 12. [3]. The enumeration for CQ over X-structures can be done with linear delay.

For acyclic conjunctive queries linear delay enumeration can be obtained with no restriction
on the structures.

I Theorem 13. [4]. The enumeration for ACQ over all structures can be done with linear
delay.

Delay linear in the size of the output

A trivial case when constant delay enumeration cannot be achieved is when the size of one
output is too big. This is for instance the case when considering MSO formulas with monadic
second-order free variables. Then each answer is a tuple of sets of elements of the domain
and can have a size linear in the size of the database. In constant time such an answer can
not even be written in the output tape. For such queries it is convenient to allow a delay
linear in the size of the output, but still independent from the size of the database3. We
then speak of an output-linear delay.

The result of Theorem 9 can be generalized to this setting (the preprocessing phase of [14]
is quasi-linear while it is linear in the case of [2]).

I Theorem 14. [14][2] The enumeration for MSO (allowing monadic second-order free
predicates) over the class of structures with bounded treewidth can be done with output-
linear delay.

Polynomial delay

One could also allow polynomial precomputation and polynomial delay. This notion is maybe
less relevant in the database context. Indeed, the degree of the polynomial could depend
on the size of the query and in this case the preprocessing phase can often precompute all
solutions. This notion is however relevant when considering first-order queries with free
second-order variables. In this case, for Σ1-queries, polynomial delay enumeration can be
achieved [20].

3 There is actually another approach which consists in having an output tape and only modify the output
tape in order to transform the previous solution into the next one. In special cases the delta between
two consecutive solutions only affect a constant part of the output and the enumeration can be done
with constant delay, see for instance [20].

L. Segoufin 25

6.3 Other enumeration problems
In this abstract we focused on the problem of enumerating the output of a query on a database.
There exist also interesting enumeration algorithms for enumerating all the solutions of a
SAT instance. For 2SAT, this is in CD◦Lin [23], for 3SAT dichotomy results exists [16, 15].
There exists also enumeration algorithms for various kinds of other problems like enumerating
monomials of a polynomial [43], enumerating perfect matchings in bipartite graphs [44],
independent sets [32] and so on. The interested reader is refereed to the thesis [42, 9] for
learning more about enumerations outside of the database context.

7 Conclusions

We mentioned several results about constant delay enumeration. We hope that we succeeded
to convince the reader that this is a very interesting topic.

The main open problem is probably the evaluation of first-order queries over nowhere
dense structures mentioned in Open Problem 1.

One could also consider relaxing the “no duplicate” constraint and enumerate conjunctive
queries with the “bag semantics”, i.e. each answer occurs as many times as there are
valuations witnessing it.

We would like to conclude with lower bounds. Of course one can construct artificial
problems, based on the fact that there exist quadratic but not linear problems, that do
not admit constant delay enumeration algorithms. For the concrete problems mentioned
in this note, the lower bounds have been proved using complexity assumptions, either in
parametrized complexity, or for the Boolean Matrix Multiplication problem. But it is also
plausible (i.e. there are no known consequences in complexity theory nor in algorithmic)
that the non existence of constant delay enumeration algorithms could be proved with no
assumptions. We believe this is an interesting and challenging question.

Acknowledgment. We thanks Johann Brault-Baron and Thomas Colcombet for useful
comments on earlier versions of this paper.

References
1 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
2 G. Bagan. MSO Queries on Tree Decomposable Structures Are Computable with Linear

Delay. In Conf. on Computer Science Logic (CSL), pages 167–181, 2006.
3 G. Bagan, A. Durand, E. Filiot, and O. Gauwin. Efficient Enumeration for Conjunctive

Queries over X-underbar Structures. In Conf. on Computer Science Logic (CSL), pages
80–94, 2010.

4 G. Bagan, A. Durand, and E. Grandjean. On Acyclic Conjunctive Queries and Constant
Delay Enumeration. In Conf. on Computer Science Logic (CSL), pages 208–222, 2007.

5 D. Berwanger and E. Grädel. Games and model checking for guarded logics. In Intl. Conf.
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), pages 70–84,
2001.

6 M. Bojańczyk. Factorization forests. In Developments in Language Theory (DLT), 2009.
7 M. Bojańczyk and P. Parys. XPath evaluation in linear time. J. of the ACM, 58(4), 2011.
8 J. Brault-Baron. A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic.

In Conf. on Computer Science Logic (CSL), pages 137–151, 2012.

STACS’14

26 A glimpse on constant delay enumeration

9 J. Brault-Baron. De la pertinence de l’énumération : complexité en logiques propositionnelle
et du premier ordre. PhD thesis, Université de Caen, 2013.

10 T. Colcombet. The factorisation forest theorem. To appear in the handbook “Automata:
from Mathematics to Applications”.

11 T. Colcombet. A Combinatorial Theorem for Trees. In Intl. Coll. on Automata, Languages
and Programming (ICALP), pages 901–912, 2007.

12 D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. J.
on Symbolic Computation, 9(3):251–280, 1990.

13 B. Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics (B), pages 193–242.
1990.

14 B. Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied
Mathematics, 157(12):2675–2700, 2009.

15 N. Creignou and J.-J. Hébrard. On Generating All Solutions of Generalized Satisfiability
Problems. Informatique Théorique et Applications (ITA), 31(6):499–511, 1997.

16 N. Creignou, F. Olive, and J. Schmidt. Enumerating All Solutions of a Boolean CSP by
Non-decreasing Weight. In Theory and Applications of Satisfiability Testing (SAT), pages
120–133, 2011.

17 A. Dawar, M. Grohe, and S. Kreutzer. Locally Excluding a Minor. In Symp. on Logic in
Computer Science (LICS), pages 270–279, 2007.

18 A. Durand and E. Grandjean. First-order queries on structures of bounded degree are
computable with constant delay. ACM Trans. on Computational Logic (ToCL), 8(4), 2007.

19 A. Durand, N. Schweikardt, and L. Segoufin. Enumerating first-order queries over databases
of low degree. submitted.

20 A. Durand and Y. Strozecki. Enumeration Complexity of Logical Query Problems with
Second-order Variables. In Conf. on Computer Science Logic (CSL), pages 189–202, 2011.

21 Z. Dvořák, D. Král, and R. Thomas. Deciding First-Order Properties for Sparse Graphs.
In Symp. on Foundations of Computer Science (FOCS), pages 133–142, 2010.

22 Z. Dvořák, D. Král, and R. Thomas. Testing first-order properties for subclasses of sparse
graphs. CoRR, abs/1109.5036, 2011.

23 T. Feder. Network flow and 2-satisfiability. Algorithmica, 11:291–319, 1994.
24 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
25 M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable struc-

tures. J. of the ACM, 48(6):1184–1206, 2001.
26 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic

revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.
27 E. Grädel. On the restraining power of guards. J. on Symbolic Logic, 64(4):1719–1742,

1999.
28 E. Grandjean. Sorting, Linear Time and the Satisfiability Problem. Annals of Mathematics

and Artificial Intelligence, 16:183–236, 1996.
29 M. Grohe. Generalized model-checking problems for first-order logic. In Symp. on Theor-

etical Aspects in Computer Science (STACS), 2001.
30 M. Grohe and S. Kreutzer. Model Theoretic Methods in Finite Combinatorics, chapter

Methods for Algorithmic Meta Theorems. American Mathematical Society, 2011.
31 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense

graphs. personal communication.
32 D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On generating all maximal

independent sets. Inf. Process. Lett., 27(3):119–123, 1988.
33 W. Kazana and L. Segoufin. First-order query evaluation on structures of bounded degree.

Logical Methods in Computer Science (LMCS), 7(2), 2011.

L. Segoufin 27

34 W. Kazana and L. Segoufin. Enumeration of first-order queries on classes of structures
with bounded expansion. Symp. on Principles of Database Systems (PODS), 2013.

35 W. Kazana and L. Segoufin. Enumeration of monadic second-order queries on trees. ACM
Trans. on Computational Logic (ToCL), 14(4), 2013.

36 S. Kreutzer and A. Dawar. Parameterized complexity of first-order logic. Electronic Col-
loquium on Computational Complexity (ECCC), 16:131, 2009.

37 J. Nešetřil and P. O. de Mendez. Grad and classes with bounded expansion I. Decomposi-
tions. Eur. J. Comb., 29(3):760–776, 2008.

38 J. Nešetřil and P. O. de Mendez. On nowhere dense graphs. European J. of Combinatorics,
32(4):600–617, 2011.

39 C. H. Papadimitriou and M. Yannakakis. On the Complexity of Database Queries. J. on
Computer and System Sciences (JCSS), 58(3):407–427, 1999.

40 D. Seese. Linear Time Computable Problems and First-Order Descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

41 L. Segoufin. Enumerating with constant delay the answers to a query. In Intl. Conf. on
Database Theory, pages 10–20, 2013.

42 Y. Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Université
de Paris 7, 2010.

43 Y. Strozecki. Enumeration of the Monomials of a Polynomial and Related Complexity
Classes. In Intl. Symp. on Mathematical Foundations of Computer Science (MFCS), pages
629–640, 2010.

44 T. Uno. Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in
Bipartite Graphs. In Intl. Symp. on Algorithms and Computation, pages 92–101, 1997.

45 M. Yannakakis. Algorithms for Acyclic Database Schemes. In Intl. Conf. on Very Large
Databases (VLDB), pages 82–94, 1981.

STACS’14

	Introduction
	Preliminaries
	Database as finite relational structures, queries
	Model of computation
	Parametrized complexity
	The enumeration class

	Restricting the queries
	Conjunctive queries
	Signed conjunctive queries
	Guarded First-Order Queries

	Restricting the class of structures
	Bounded degree
	Bounded expansion
	Nowhere dense
	Low Degree

	Structures with bounded treewidth
	Discussion
	The impact of order
	Longer delay
	Other enumeration problems

	Conclusions

