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Abstract
Back in the eighties, Heath [7] showed that every 3-planar graph is subhamiltonian and asked
whether this result can be extended to a class of graphs of degree greater than three. In this
paper we affirmatively answer this question for the class of 4-planar graphs. Our contribution
consists of two algorithms: The first one is limited to triconnected graphs, but runs in linear time
and uses existing methods for computing hamiltonian cycles in planar graphs. The second one,
which solves the general case of the problem, is a quadratic-time algorithm based on the book
embedding viewpoint of the problem.
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1 Introduction

Book embeddings have a long history and arise in various application areas such as VLSI
design [5]. In a book embedding the placement of nodes is restricted to a line, the spine of
the book. The edges are assigned to different pages of the book. A page can be thought of
as a half-plane bounded by the spine where the edges are drawn as circular arcs between
their endpoints. We say that a graph admits a k-page book embedding if one can assign the
edges to k pages and there exists a linear ordering of the nodes on the spine such that no two
edges of the same page cross. The minimum number of pages required to construct such an
embedding is the book thickness or page number of a graph and has received much attention
in the past. Yannakakis [14] describes a linear-time algorithm to embed every planar graph
into a book of four pages. Bernhart et al. [2] show that a graph is two-page embeddable iff it
is subhamiltonian. A subhamiltonian graph is a subgraph of a planar hamiltonian graph. It
is NP-complete to determine whether a graph is subhamiltonian [13]. Often referred to as
augmented hamiltonian cycle, a subhamiltonian cycle is a cyclic sequence of nodes in a graph
that would form a hamiltonian cycle when adding the missing edges without destroying
planarity. The relation between subhamiltonian cycles and two-page book embeddings is
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quite intuitive. The order of the nodes on the spine is equivalent to the cyclic order of the
subhamiltonian cycle. The edges are partitioned by whether they lie in the interior of the
cycle or not.

An early result is due to Whitney [12], who proves that every maximal planar graph with
no separating triangles is hamiltonian. Tutte [11] shows that every 4-connected planar graph
has a hamiltonian cycle. Chiba et al. [4] provide a linear-time algorithm to find a hamiltonian
cycle in a 4-connected planar graph. Chen [3] gives a proof that every maximal planar graph
with at least five vertices and no separating triangles is 4-connected. Sanders [10] generalizes
a theorem of Thomassen and shows that any 4-connected planar graph has a hamiltonian
cycle that contains two arbitrarily chosen edges of the graph. Based on Whitney’s theorem,
Kainen et al. [9] show that every planar graph with no separating triangles is subhamiltonian.
Another result is by Chen [3] who shows that if a maximal planar graph contains only one
such triangle, then it is hamiltonian. Helden [8] improves this result further to two triangles.
The aforementioned results are all related to the problem of embedding planar graphs into
two pages. However, there is an extensive amount of literature on embedding various types
of graphs into books; see e.g. [6]. One result that is interesting in our context is that of
Heath [7], who describes a linear-time algorithm to embed any 3-planar graph into two pages.

We study the problem of embedding 4-planar graphs into books with two pages. We
tackle this problem from two sides. The first approach is restricted to triconnected graphs
(Section 2) but builds on existent results and is therefore of a simple nature compared to
the second approach. Extending it to biconnected graphs is not straightforward, though.
The algorithm of Section 3 –which is less efficient in terms of time complexity– exploits the
degree restriction to construct a two-page book embedding. Due to space constraints, some
of our proofs are only sketched, omitted details are given in [1].

2 Subhamiltonicity of Triconnected 4-Planar Graphs

In this section, we first investigate properties of separating triangles in 4-planar graphs and
then we use those to derive a solution for a single separating triangle. Unlike Chen [3] and
Helden [8], we are able to extend our approach to an unbounded number of triangles by
exploiting the degree restriction. We say a subhamiltonian cycle H crosses a face if there are
two consecutive vertices in H that are incident to the face but not adjacent to each other.

I Lemma 1. Every triconnected planar graph with no separating triangles has a subhamilto-
nian cycle that crosses every face at most once and it can be computed in linear time.

Proof. In the triconnected case, Kainen et al. [9] construct a maximal planar graph G′ =
(V ′, E′) by inserting a vertex into each non-triangular face of G and connect it to the vertices
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of that face. Clearly, this takes linear time and G′ is 4-connected. We can use the linear-time
algorithm of Chiba et al. [4] to obtain a hamiltonian cycle H ′ for G′. Deleting the vertices of
V ′ − V yields a subhamiltonian cycle H for G that crosses each face at most once. J

Given an embedded triconnected 4-planar graph G with a fixed outerface and a separating
triangle T with vertices V (T ) = {A,B,Γ}, we denote the subgraph of G contained in T by
Gin(T ) and the subgraph of G outside T by Gout(T ). We also denote Gin(T ) = G−Gout(T )
and Gout(T ) = G − Gin(T ). Since G is triconnected and 4-planar, every vertex of T has
degree four and is adjacent to exactly one vertex in Gin(T ) and Gout(T ), respectively. We
denote these with Ain, Bin,Γin and Aout, Bout,Γout, respectively (see Fig. 1).

I Lemma 2. Given a 4-planar triconnected graph G and a separating triangle T = {A,B,Γ},
then Ain, Bin,Γin(Aout, Bout,Γout) are pairwise distinct or all represent the same vertex.

Proof. In the other case, where w.l.o.g. Ain = Bin = v and Γin 6= v, there exists a
separation pair (v,Γ) contradicting the triconnectivity of G. A symmetric argument applies
to Aout, Bout,Γout. J

I Lemma 3. In a 4-planar triconnected graph, every pair of distinct separating triangles T
and T ′ is vertex disjoint, i.e. V (T ) ∩ V (T ′) = ∅.

Proof. Assume to the contrary that T and T ′ share an edge or a vertex. In the first case,
let w.l.o.g. e = (u, v) be the common edge. The degree of both u and v is at least five, since
three edges are required for T , T ′ and two additional edges to connect Gin(T ) and Gin(T ′)
to T and T ′, respectively. In the second case, let v denote the common vertex. Since v
is part of two edge disjoint cycles and connected to Gin(T ) and Gin(T ′), it follows that
deg(v) ≥ 6. J

Consider now a 4-planar triconnected graph with a single separating triangle T . Similar
to Chen [3], the idea is to compute two cycles Hin(T ) and Hout(T ) for Gin(T ) and Gout(T )
and link them via the separating triangle together. The crucial observation is that if two
cycles intersect as illustrated in Fig. 2, i.e., they contain two edges of the triangle but have
only one of them in common, then we can always merge them into one cycle.

I Lemma 4. Let G be a triconnected 4-planar graph, T a separating triangle, and Hin(T ) and
Hout(T ) two subhamiltonian cycles for Gin(T ) and Gout(T ), resp. If E(Hin(T )) ∩ E(T ) =
{ein, e} and E(Hout(T )) ∩ E(T ) = {eout, e} where {e, ein, eout} are the edges of T , then G
is subhamiltonian.

Proof. Let w.l.o.g. e = (A,B), ein = (B,Γ) and eout = (A,Γ) as illustrated in Fig. 2.
The result of removing the edges of T from both cycles are two paths Pout = B  Γ and
Pin = Γ A. Joining them at Γ and inserting e yields a subhamiltonian cycle. J

It remains to show that we can always find two cycles that satisfy the requirements of
Lemma 4. We neglect the degenerated case of Lemma 2, where Gout(T ) or Gin(T ) is a single
vertex, because finding a cycle in that case is trivial. Consider for example Gout(T ). To
obtain Hout(T ), we temporarily replace T in Gout(T ) with a single vertex vT as depicted in
Fig. 3a. The resulting graph G∗out(T ) remains 4-planar and triconnected, because deg(vT ) = 3
by construction and any path via T can use vT instead. One may argue that this operation
may introduce additional separating triangles. However, such a triangle must contain vT and,
therefore, deg(vT ) = 4, a contradiction. Now let us assume that H∗out(T ) is a subhamiltonian
cycle for G∗out(T ). The idea is to reinsert T and reroute H∗out(T ) through T such that the
resulting cycle Hout(T ) contains two edges e1, e2 ∈ E(T ).

STACS’14
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Figure 3 (a) Subhamiltonian cycle H∗out(T ) in G∗out(T ) containing vT . (b) Augmenting H∗out(T )
yields Hout(T ) containing edges e1 = (Γ, A) and e2 = (A, B). (c) Dummy vertex v′T as replacement
for T in G∗in(T ) and a cycle H∗in(T ). (d) Rerouting H∗in(T ) through T resulting in Hin(T ) with
edges e′1 = (Γ, B) and e2 = (A, B). (d) The result of merging Hin(T ) and Hout(T ) into a cycle H

for G.

I Lemma 5. Let G be a triconnected 4-planar graph, T a separating triangle. Furthermore,
let G∗out(T ) denote the graph resulting from replacing T by a vertex vT in Gout(T ). A
subhamiltonian cycle H∗out(T ) for G∗out(T ) can be augmented to a subhamiltonian cycle
Hout(T ) for Gout(T ) such that it contains two edges of T , i.e., E(Hout(T ))∩E(T ) = {e1, e2}.
If H∗out(T ) crosses every face of G∗out(T ) at most once, one may choose any pair e1, e2 ∈ E(T )
to lie on Hout(T ).

Proof. We only sketch the proof. It is sufficient to consider every combination of e1, e2 and
the location of the predecessor and successor of vT in H∗out(T ). It immediately becomes clear
that in almost every situation H∗out(T ) can be rerouted through T such that the resulting
cycle Hout(T ) contains two prescribed edges e1, e2 of T . Only in one case, where H∗out(T )
crosses an incident face twice to visit vT , a specific combination of edges is required. J

In the single-separating triangle scenario, both Gout(T ) and Gin(T ) are free of separating
triangles. Therefore, we may construct two graphs G∗out(T ), G∗in(T ) by replacing T with
dummy vertices. Applying Lemma 1 to them yields two subhamiltonian cycles H∗out(T )
and H∗in(T ), both crossing every face of G∗out(T ) and G∗in(T ) at most once. Hence, we may
augment them with the aid of Lemma 5 such that they contain each two edges of T . By
choosing the combination of edges such that Hout(T ) and Hin(T ) meet the requirements of
Lemma 4, we can merge them into a single subhamiltonian cycle H for G.

While the property that G∗out(T ) and G∗in(T ) are both free of separating triangles enables
us to conveniently choose two edges for each cycle Hout(T ), Hin(T ), this only works for a
single separating triangle. However, a closer look reveals that it is sufficient to have a choice
for either Hout(T ) or Hin(T ), not necessarily both of them. The idea is to first augment
the cycle for which we do not have a choice to see which edges of T are part of it, then we
choose the edges for the second cycle accordingly. We summarize the idea as the main result
of this section and describe it in a more formal manner in form of a proof.

I Theorem 6. Every triconnected 4-planar graph is subhamiltonian.

Proof. Let G denote a triconnected 4-planar graph and τ(G) the number of separating
triangles in G. We prove by induction and claim that for any τ(G) ≥ 0, we can compute a
subhamiltonian cycle H for G. Base case: Since τ(G) = 0, we can directly apply Lemma 1.
Inductive case: For τ(G) > 0, we pick a separating triangle T such that τ(Gin(T )) = 0. Let
G∗out(T ) be the result of replacing T by vT in Gout(T ). Notice that τ(G∗out(T )) = τ(G)− 1
holds. Hence, by induction hypothesis, G∗out(T ) has a subhamiltonian cycle H∗out(T ). We
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reinsert T and augment H∗out(T ) such that the result Hout(T ) contains two (arbitrary)
edges e1, e2 of T . In a similar way, we replace T in Gin(T ) by v′T to obtain G∗in(T ). Since
τ(Gin(T )) = τ(G∗in(T )) = 0 holds, we can apply Lemma 1 to G∗in(T ) and compute a cycle
H∗in(T ) that crosses each face at most once. With Lemma 5 we may obtain a cycle Hin(T )
for Gin(T ) with two edges e′1, e′2 ∈ E(T ) of our choice. Choosing e′1 = e1 and e′2 6= e2 yields
two cycles Hout(T ), Hin(T ) that meet the requirements of Lemma 4 and we can merge them
into one cycle H for G. J

The proof of Theorem 6 is constructive. Embedding G and identifying all separating
triangles in G can be done in linear time. Augmenting a cycle and merging two of them takes
constant time. Disjointness of separating triangles yields a linear number of subproblems
and every edge occurs in at most one such subproblem. Hence, the total time spent for the
subroutine of Lemma 1 is linear in the size of G.

I Corollary 7. A subhamiltonian cycle of a triconnected 4-planar graph can be found in
linear time.

3 Two-Page Book Embeddings of General 4-Planar Graphs

In this section, we prove that any planar graph of maximum degree 4 admits a two-page book
embedding. W.l.o.g. we assume that the input graph G is biconnected, since it is known
that the page number of a graph equals the maximum of the page number of its biconnected
components [2]. One can also neglect the exact geometry, as two edges that are drawn on the
same page cross iff their endpoints alternate along the spine. We say that an edge e nests a
vertex v iff one endpoint of e is to the left of v along the spine and the other endpoint of e
to its right. We also say that an edge e nests an edge e′ iff both e and e′ are drawn on the
same page and both endpoints of e′ are nested by e. Observe that nested edges do not cross.

Our approach is as follows: First remove from G cycle Cout delimiting the outerface of G
and contract each bridge-block of the remaining graph into a single vertex. Let F be the
implied graph, which is a forest, as G−Cout is not necessarily connected. Cout is embedded,
s.t.: (i) the order of the vertices of Cout along the spine is fixed (and follows the one in which
the vertices of Cout appear along Cout), and, (ii) all edges of Cout are on the same page,
except for the one that connects its outermost vertices. Then we describe how to embed
without crossings: (i) the chords of Cout, (ii) forest F , and, (iii) the edges between Cout and
F . To obtain a two-page book embedding of G, we replace each vertex of F with a cycle
(embedded similarly to Cout), whose length equals to the length of the cycle delimiting the
outerface of the bridge-block it corresponds to in G−Cout, and recursively embed its interior.

More formally, consider an arbitrary simple cycle C : v1 → v2 → . . . → vk → v1 of G.
The removal of C results in two planar subgraphs Gin(C) and Gout(C) of G that are the
components of G− C that lie in the interior and exterior of C in G, resp. Note that Gin(C)
and Gout(C) are not necessarily connected. Let Gin(C) (Gout(C), resp.) be the subgraph
of G induced by C and Gin(C) (Gout(C), resp.). For the recursive step, we assume the
following invariant properties:

IP-1: The order of the vertices of Gout(C) along the spine ` is fixed and the page in which
each edge of Gout(C) is drawn (i.e., top- or bottom-drawn) is determined s.t. the book
embedding of Gout(C) is planar. In other words, we assume that we have already
produced a two-page book embedding for Gout(C), in which no edge crosses the spine.

IP-2: The combinatorial embedding ofGout(C) is consistent with a given planar combinatorial
embedding of G.

STACS’14
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IP-3: The vertices of C occupy consecutive positions along `, s.t. v1 (vk, resp.) is the leftmost
(rightmost, resp.) along `. Moreover, all edges of C are on the same page, except
for the one that connects v1 and vk. Say w.l.o.g. that (v1, vk) is on the top-page (or
top-drawn), while the remaining edges of C, namely edges (vi, vi+1) for 1 ≤ i < k, are
on the bottom-page (or bottom-drawn).

IP-4: If C is not identified with the cycle delimiting the outerface of G, the degree of either
v1 or vk is at most 3 in Gin(C). Say w.l.o.g. that vk is of degree at most 3.

IP-5: If vertex v1 has degree 4 in Gin(C), then it is adjacent to zero or two chords of C.

We note that the combinatorial embedding specified in IP-2 is maintained throughout the
whole drawing process. This combined with the fact that every edge entirely lies on one page
is sufficient to ensure planarity. Note that we first present the recursive step of our algorithm
and then its base, as this approach shows better how the different ideas flow one after the
other. Let vi be a vertex of C, i = 1, . . . , k. Since G is of max-degree 4, vi is incident to at
most two undrawn edges. Assume that vi has at least one undrawn edge. We refer to the
edge incident to vi that follows (vi, v(i+1) mod k) in the counterclockwise order of the edges
around vi (as defined by the combinatorial embedding specified by IP-2), as the right edge of
vi. If vi is adjacent to two undrawn edges, then the one that is not identified with the right
edge of vi is its left edge; otherwise, the left and the right edge of vi are identified.

Initially, we draw the chords of C on the top-page. By IP-2 and IP-3, no two chords
intersect. We then draw Gin(C) and the edges between C and Gin(C). Note that Gin(C) is
not necessarily connected. Hence, its bridge-block trees form a forest. As already stated,
we contract each bridge-block of Gin(C) into a single vertex, which we call block-vertex;
see Figs. 4a-4b. We distinguish two types of block-vertices: those adjacent to vertices of C
(anchors) and those adjacent to other block-vertices only (ancillaries). From the contraction,
it follows that an edge between C and a certain anchor can be of multiplicity at most two.
Edges among block-vertices are always simple. We will first determine the positions of all
anchors along `. Consider an anchor c, then among the edges between c and C, we select and
mark exactly one, s.t.: (i) the marked edge will be drawn on the bottom-page and (ii) all
other edges incident to c (i.e., either edges between c and C that are not marked, or between
c and block-vertices) will be drawn on the top-page. Let vl,c be the leftmost vertex of C
adjacent to c along `. If (c, vl,c) is simple, we select and mark this edge. Otherwise, we mark
the right edge of vl,c. Hence, each anchor has exactly one marked edge and each vertex of C
is incident to at most two marked edges. Let v ∈ C be a vertex of C adjacent to at least one
anchor through a marked edge. We distinguish two cases:

Case 1 v is adjacent to exactly two anchors c and c′ through two marked edges e and e′,
resp.: Assume w.l.o.g. that e is the left edge of v and e′ its right edge. Then, both c and
c′ are placed directly to the right of v and c precedes c′ (see Fig. 4d). Note that v cannot
be the rightmost vertex of C due to IP-4.

Case 2 v is adjacent to one anchor c through a marked edge e: If deg(v) = 3 in Gin(C),
then we distinguish two sub-cases. If v is not the rightmost vertex of C, then c is placed
directly to the right of v (see Fig. 4e). Otherwise, directly to its left (see Fig. 4f). It now
remains to consider the case where deg(v) = 4 in Gin(C). In this case, by IP-4 it follows
that v is not the rightmost vertex of C. Again, we distinguish two sub-cases:

− If e is the right edge of v, then c is placed directly to the right of v (see Fig. 4g).
− If e is the left edge of v, then c is placed directly to the left of v (see Fig. 4h); v cannot

be the leftmost vertex of C, as the right edge of v would be a chord, violating IP-5.
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Figure 4 In all figures, the edges of C are drawn dotted, bridge-blocks are colored gray and edges
between C and anchors are drawn dashed; marked edges are highlighted in gray.

All marked edges are bottom-drawn. Edges between anchors and C that are not marked
are top-drawn; see Fig. 4c. Observe that we do not change the underlying combinatorial
embedding of G, preserving IP-2. Hence, the book embedding constructed so far is planar.

Now observe that ancillaries form a new forest (forest of ancillaries), which is a subgraph
of the initial forest containing all block-vertices. Let T be a tree of the forest of ancillaries
and let c1, . . . , ct be anchors that (i) are adjacent to at least one ancillary of T , and (ii) ci

is to the left of ci+1, i = 1, . . . , t− 1. We refer to c1, . . . , ct as the anchors of T , and to the
tree formed by T and its anchors as the anchored tree of T , denoted by T . We say that two
anchors of T are consecutive iff there is no anchor of T between them.

I Lemma 8. For anchored trees the following hold: (i) Two trees T and T ′ share at most a
common anchor; (ii) T contains at least two anchors; and (iii) every leaf of T is an anchor
of T , and vice versa.

Proof. The assumption that one of the two properties does not hold contradicts either the
connectivity or biconnectivity of G. J

Assume now that T is rooted at anchor c1 (rooted anchored tree). For an anchor or
ancillary c of T , denote by p(c) the parent of c in T and let p(c1) be any of the vertices of
C adjacent to c1. For an ancillary c of T (i.e., non-leaf in T ), we define an order for its
children: if c′ and c′′ are children of c, then c′ < c′′ iff c′ precedes c′′ in the counterclockwise
order of the edges around c (defined by the combinatorial embedding specified by IP-2),
when starting from (c, p(c)). By this order, we label the vertices of T as they appear in the
pre-order traversal of T (labeled anchored tree); see Fig.5a.

I Lemma 9. For each ancillary c of a labeled anchored tree T there is (i) at least an anchor
of T with label smaller than that of c and (ii) at least another with label greater than that of c

Proof. The leftmost anchor (i.e. root) of T is zero labeled, which proves (i). The greatest
labeled vertex of T is a leaf of T (due to pre-order traversal) and by Lemma 8(iii) an anchor
of T which proves (ii). J

We first define the order in which the trees of the forest of ancillaries will be drawn. Let
GT

aux be an auxiliary graph whose vertices correspond to trees and there is a directed edge
(vT ′ , vT ) in GT

aux iff T ′ has an anchor between two consecutive anchors of T . The desired
order is defined by a topological sorting of GT

aux, which exists due to the following lemma.

STACS’14
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c1 c2 c3 c4 c5 c6 c7 c8 c9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

(a) A labeled anchored tree T

c1c1 c2 c3 c4 c5 c6 c7 c8 c9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

(b) The placement of the ancillaries of T

Figure 5 In both figures, anchors are colored gray; the indices of the vertical grid-lines denote
the labeling of T .

I Lemma 10. Auxiliary graph GT
aux is a directed acyclic graph.

Proof. Assume to the contrary that there is a cycle vT1 → . . . vTs
→ vT1 in GT

aux. Let Ii be
the interval defined by the left/right-most anchors of Ti. Edge (vTi

, vTi+1) implies that there
is an anchor of Ti between consecutive anchors of Ti+1. However, in this case all anchors of
Ti should be between the same two anchors of Ti+1, as otherwise the embedding specified
by IP-2 is not planar. So, Ii ⊆ Ii+1. By Lemma 8(i), it follows that Ii 6= Ii+1. Hence,
I1 ⊂ . . . ⊂ Is ⊂ I1, a contradiction. J

Lemma 10 implies that drawing the trees in the order defined by a topological sorting of
GT

aux, assures that the tree T ′ will be drawn before T , if T ′ has an anchor that is between
two consecutive anchors of T along `. Now assume that we have drawn zero or more of
these trees s.t. (i) all edges are top-drawn, (ii) there are no edge crossings, and (iii) the
combinatorial embedding specified by IP-2 is preserved. Let T be the next tree to be drawn.
The following lemma presents an important property of our drawing approach.

I Lemma 11. Assume that all trees that precede T in a topological sorting of GT
aux have

been drawn on the top-page without edge crossings by preserving the combinatorial embedding
specified by IP-2. If e is a top-drawn edge that does not belong to T and nests at least one
anchor of T , then it nests all anchors of T .

Proof. The detailed proof is based on a case-analysis on the type of edge e: (i) top-drawn edge
of C; (ii) edge of an anchored tree T ′ drawn before T ; and (iii) not an edge of a previously
drawn anchored tree (i.e., each endpoint of e is either a vertex of C or an anchor). J

We now describe how to draw T on the top page s.t. (i) there are no edge crossings,
and, (ii) the combinatorial embedding specified by IP-2 is preserved. More precisely, we
place each ancillary c of T between a pair of consecutive anchors of T , s.t. the label of
c is larger (smaller) than the label of the anchor to its left (right)1; for ancillaries placed
between the same pair of anchors, the one with smaller label is to the left; all edges of T
are top-drawn (see Fig.5b). Note that we have not fully specified the exact positions of the
ancillaries of T along `, since between consecutive anchors of T there may exist anchors that
do not belong to T or vertices of C or anchors/ancillaries of trees that have already been
drawn. Details will be given shortly. Notice that all ancillaries of T are placed between its
left/right-most anchors, which by Lemma 11 implies that if a top-drawn edge (that does not
belong to T ) nests at least one anchor of T , then it nests the entire tree T . By exploiting the
correspondence between the left-to-right order of the vertices of T along ` and the labeling
of T , we can prove that the drawing of T is planar.

1 Note that the existence of this pair of consecutive anchors of T is implied by Lemma 9.
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I Lemma 12. The drawing of the anchored tree T is planar.

Proof. Assume to the contrary that e = (c1, c2) and e′ = (c′1, c′2) of T cross. Since e and e′
are top-drawn, their endpoints alternate along `. Let the order on ` be c1 → c′1 → c2 → c′2.
Hence, c1 is the parent of c2, as the label of c1 is smaller than that of c2 and they are adjacent
in T . Similarly, c′1 is the parent of c′2. Since between c1 and c2 are drawn subtrees of T rooted
at children of c1 other than c2, c′1 and c′2 belong to a subtree rooted at a child of c1, different
from c2, which implies that the label of c′2 is smaller than that of c2, a contradiction. J

Recall that we have not fully specified the exact positions of the ancillaries of T along `.
Consider the following scenario. There is a path P of top-drawn edges (e.g., non-marked
edges incident to C and/or edges of previously drawn trees) joining a pair of consecutive
anchors of T and our algorithm must place an ancillary c of T between them. Since c is
nested by an edge of P and all edges of T are top-drawn, an edge connecting c with an
ancillary of T placed between another pair of consecutive anchors of T will cross P . The
following lemma ensures that this scenario cannot occur, as such a path cannot exist.

I Lemma 13. Let u0, u1, . . . , ul+1, l ≥ 0, be vertices (anchors/ancillaries are treated as
vertices) drawn on ` from left to right, s.t. u0 and ul+1 are two consecutive anchors of T .
Assume that all trees anchored at u1, . . . , ul have been drawn on the top-page without edge
crossings by preserving the combinatorial embedding specified by IP-2, while T has not been
drawn. Then, there is an index i ∈ {0, 1, . . . , l}, such that no two adjacent vertices uk and
um exist with 0 ≤ k ≤ i, i+ 1 ≤ m ≤ l + 1 and (uk, um) is top-drawn.

Proof. Assume to the contrary that for all i ∈ {0, . . . , l}, there are two adjacent vertices uk

and um with 0 ≤ k ≤ i, i+ 1 ≤ m ≤ l + 1 and (uk, um) is on the top-page. One can prove
that there is a top-drawn path P (u0 → ul+1) : u0 → uj1 . . . ujp

→ ul+1 consisting of vertices
of {u0, . . . , ul+1}, whose edges are top-drawn and for each edge of P (u0 → ul+1) there is not
a top-drawn edge with endpoints in {u0, . . . , ul+1} that nests it. However, the existence of
P (u0 → ul+1) implies that G should contain a vertex of degree five, a contradiction. J

We are now ready to specify the exact positions of the ancillaries of T along `. Assume
that a particular number of ancillaries of T should be drawn between two consecutive anchors
ci and ci+1 of T , i = 1, . . . , t− 1. By Lemma 13, there is a pair of vertices that are between
ci and ci+1 along ` and there is not a top-drawn edge with endpoints between ci and ci+1
nesting both of these vertices. We place between this pair of vertices all ancillaries of T that
must reside between ci and ci+1, without changing their relative order, i.e., for ancillaries
placed between ci and ci+1, the one with smaller label is to the left. Lemma 12 ensures the
planarity of T . It remains to prove that the combinatorial embedding specified by IP-2 is
preserved.

I Lemma 14. Assume that all trees that precede T in a topological sorting of GT
aux have

been drawn on the top-page without edge crossings by preserving the combinatorial embedding
specified by IP-2. When T is drawn, the combinatorial embedding specified by IP-2 is also
preserved.

Proof. We only sketch the proof. Since the drawing of T preserves the order of the edges
around all ancillaries, the combinatorial embedding specified by IP-2 is preserved for all
ancillaries of T . Then, one can prove that this property is propagated to all vertices of T . J

The following lemma focuses on the case where C contains a vertex with degree 2 in
Gin(C) (other than its leftmost or rightmost vertex). We will utilize this lemma later.
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Figure 6 (a) The outerface of a block-vertex c. (b)–(c) different cases that occur when drawing
the outerface of c, in the case where c is anchor. (d) Ancillary c needs to be repositioned. (e) Its
placement is determined by Lemma 16.

I Lemma 15. Let v be a vertex of C with degree 2 in Gin(C) that is not the left/right-most
vertex of C. Let also vr (vl) be its next neighbor on C to its right (left resp.). Since edge
(v, vr) belongs to C, it is drawn on the bottom-page. However, it can also be drawn on
the top-page without edge-crossings, while the combinatorial embedding specified by IP-2 is
maintained.

Proof. We only sketch the proof. First observe that if no block-vertex is drawn between v
and vr, then obviously (v, vr) can be drawn on the top-page. Otherwise, one can move the
block-vertices in between to the left of v, so that v and vr are consecutive along `. J

Up to now, we have drawn Gin(C), s.t., every bridge-block of Gin(C) is contracted to a
block-vertex that lies on ` and each edge is drawn either on the bottom (if it is a marked
edge) or on the top-page (otherwise). Next, we describe how to recursively proceed. Let c
be a block-vertex of Gin(C) with outerface Fc. Initially, assume that Fc is a simple cycle.
If c is an anchor, denote by w0 the vertex of Fc incident to the marked edge of c. If c is
an ancillary, then c belongs to an anchored tree. In this case, w0 denotes the vertex of Fc

adjacent to the closest neighbor of c to its left, which is well-defined since c is always placed
between two consecutive anchors of the anchored tree it belongs to. Let w0, w1, . . . , wm be
the vertices of Fc, in the clockwise traversal of Fc from w0 (see Fig. 6a).

If c is an anchor (i.e., w0 is incident to a marked edge), then we place the vertices of Fc

on ` as follows: (i) w0 occupies the position of c and it is the rightmost vertex of Fc on `,
(ii) w1 is the leftmost vertex of Fc on `, (iii) wi is to the left of wi+1 for i = 1, . . . ,m − 1,
and, (iv) there are no vertices in between; see Fig. 6b. All edges of Fc are top-drawn, except
for (w1, w0). This placement is feasible, except for the case in which in the combinatorial
embedding specified by IP-2 there is an edge incident to w0 that is between (w0, w1) and
the marked edge incident to w0 in the counterclockwise order of the edges around w0 when
starting from (w0, w1); see Fig. 6c. In this case, we place w0 to the left of w1, . . . , wm, s.t.
w0 is the leftmost vertex of Fc. So, (w0, wm) is the bottom-drawn edge of Fc.

Suppose now that c is an ancillary. Let w be the closest neighbor of c to its left on `. w
is the parent of c in the tree in which c belongs to and (w0, w) is top-drawn. We place the
vertices of Fc as follows: (i) w0 occupies the position of c and it is the leftmost vertex of Fc

on `, (ii) wm is the rightmost vertex of Fc on `, (iii) wi is to the left of wi+1, i = 1, . . . ,m−1,
and, (iv) there are no vertices in between. All edges of Fc are top-drawn, except for (w0, wm).
This placement is infeasible only when in the combinatorial embedding specified by IP-2 there
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is an edge incident to w0, say (w0, w
′), and between (w0, wm) and (w0, w) in the clockwise

order of the edges around w0 when starting from (w0, wm); see Fig. 6d. Since c has only its
parent to its left among the block-vertices of the anchored tree it belongs to, it follows that,
w′ is to the right of c. So, (w0, w

′) cannot be drawn on the top-page, without deviating the
combinatorial embedding specified by IP-2. Since G is biconnected, c is adjacent to at least
another block-vertex, say w′′, s.t. w′′ /∈ {w,w′}. The following lemma takes care of this case.

I Lemma 16. Ancillary c can be repositioned on `, s.t.: (i) c is placed between two
consecutive anchors of T . (ii) The combinatorial embedding specified by IP-2 is preserved and
the edges (w0, w), (w0, w

′) and (c, w′′) are top-drawn and crossing-free. (iii) w0 is leftmost
vertex of Fc and wi is to the left of wi+1, i = 1, . . . ,m− 1; All edges of Fc are top-drawn,
except for (w0, wm).

Proof. w is the parent of c and w′, w′′ are children of c in T , with w′ being the first child of
c. For our proof, w′′ is its second child. So, (c, w), (c, w′) and (c, w′′) are consecutive around
c as in Fig. 6d. Let T (w′) and T (w′′) be subtrees of T rooted at w′ and w′′, resp. c is to
the left of all vertices of T (w′), all vertices of T (w′) are to the left of all vertices of T (w′′)
and there are no ancillaries of T in between. We place c between the rightmost (leftmost)
anchor of T (w′) (T (w′′)); see Fig. 6e. So, c is placed between two consecutive anchors of T .
If we place the vertices of Fc, with w0 being leftmost on Fc and wi to the left of wi+1, then
(w0, w), (w0, w

′) and (c, w′′) are drawn on the top-page and the embedding is preserved. J

If we process all ancillaries that have to be repositioned from right to left along `, then by
Lemma 16 we obtain a planar drawing in which the embedding specified by IP-2 is preserved

w0

root

Figure 7 Fc is not simple.

once the outerface of each block-vertex is drawn and all edges
that connect block-vertices are eventually drawn on the top-
page. Initially, we assumed that Fc is simple. If not so, Fc

consists of smaller simple subcycles, s.t. (i) any two subcycles
share at most one vertex of Fc and (ii) any vertex of Fc is
incident to at most two subcycles. Hence, the “tangency graph”
of these subcycles (which has a vertex for each subcycle and
an edge between every pair of subcycles that share a vertex)
is a tree. Define w0 as in the case of simple cycle and let the
tangency tree be rooted at the cycle containing w0. Due to degree restriction, w0 cannot be
incident to two subcycles. We draw the subcycles of Fc in the order implied by the Breadth
First Search (BFS) traversal of the tangency tree. The first one (incident to w0) is drawn as
in the case of simple cycle. Each next subcycle is plugged into the drawing, as in Fig. 7.

It remains to ensure that IP-1 up to IP-5 are satisfied when a simple cycle, say Cs, is
recursively drawn. IP-1 holds, since each edge is drawn either on the bottom (if it is a marked
edge) or on the top-page (otherwise) and no two edges intersect. Lemma 14 implies IP-2. If
Cs is the outerface of a block-vertex or a leaf in the tangency tree, then IP-3 trivially holds.
If Cs is a non-leaf in the tangency tree, it contains at least one edge on the bottom-page (see
Fig. 7). This violates IP-3. However, we can benefit from Lemma 15 since the edge which
is improperly bottom-drawn is incident to a vertex (of degree four) that is not adjacent to
any other vertex in the interior of Cs. For the sake of the recursion we assume that it is
drawn on the top-page and once Cs is completely drawn, we redraw it on the bottom-page
using Lemma 15. If Cs is the outerface of a block-vertex or root of the tangency tree of a
non-simple outerface Fc, then at least one vertex of Cs is adjacent to Gout(Cs). If Cs is an
internal node of the tangency tree of Fc, then its leftmost vertex has two edges in Gout(Cs).
Hence, IP-4 also holds. Note that IP-5 does not necessarily hold. However, we can identify a
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maximal separating path of chords of Cs adjacent to its leftmost vertex and use it to create
two subinstances, which can be recursively drawn; refer to [1] for details.

The recursion begins by specifying a drawing of G with a chordless outerface Cout : v1 →
. . . vk → v1. We place v1, . . . , vk in this order along ` and draw the edges of Cout as imposed
by IP-3. If there is a vertex of Cout with degree less than four, then it is chosen as vk and all
invariant properties are satisfied. Otherwise, we appropriately augment our graph, so that
IP-4 holds (the detailed proof is given in [1]). We are now ready to state our main theorem.

I Theorem 17. Any planar graph of maximum degree 4 on n vertices admits a two-page
book embedding, which can be constructed in O(n2) time.

Proof. At each step, our algorithm performs a series of computations; the computation of
the bridge-blocks, the topological sorting of GT

aux, BFS-traversals on the tangency trees. All
of these computations can be done in O(n) time, resulting in O(n2) total time. J

4 Conclusions and Open Problems

Two approaches were proposed to embed a 4-planar graph into two pages. One reasonable
question arising at this point is whether the result can be extended to 5-planar graphs.
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