
Balls into bins via local search: cover time and
maximum load∗

Karl Bringmann1, Thomas Sauerwald2, Alexandre Stauffer3, and
He Sun1

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 University of Cambridge, UK
3 University of Bath, UK

Abstract
We study a natural process for allocating m balls into n bins that are organized as the vertices of
an undirected graph G. Balls arrive one at a time. When a ball arrives, it first chooses a vertex
u in G uniformly at random. Then the ball performs a local search in G starting from u until
it reaches a vertex with local minimum load, where the ball is finally placed on. Then the next
ball arrives and this procedure is repeated. For the case m = n, we give an upper bound for the
maximum load on graphs with bounded degrees. We also propose the study of the cover time of
this process, which is defined as the smallest m so that every bin has at least one ball allocated
to it. We establish an upper bound for the cover time on graphs with bounded degrees. Our
bounds for the maximum load and the cover time are tight when the graph is vertex transitive
or sufficiently homogeneous. We also give upper bounds for the maximum load when m > n.

1998 ACM Subject Classification G.3 Mathematics of Computing: Probability and Statistics

Keywords and phrases Balls and Bins, Stochastic Process, Randomized Algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.187

1 Introduction

A very simple procedure for allocating m balls into n bins is to place each ball into a bin
chosen independently and uniformly at random. We refer to this process as 1-choice process.
It is well known that, when m = n, the maximum load for the 1-choice process (i.e., the
maximum number of balls allocated to any single bin) is Θ

(
logn

log logn

)
[10]. Alternatively, in

the d-choice process, balls arrive sequentially one after the other, and when a ball arrives,
it chooses d bins independently and uniformly at random, and places itself in the bin that
currently has the smallest load among the d bins (ties are broken uniformly at random). It
was shown by Azar et al. [2] and Karp et al. [7] that the maximum load for the d-choice
process with m = n and d > 2 is Θ

(
log logn

log d

)
. The constants omitted in the Θ are known

and, as shown by Vöcking [11], they can be reduced with a slight modification of the d-choice
process. Berenbrink et al. [3] extended these results to the case m� n.

In some applications, it is important to allow each ball to choose bins in a correlated
way. For example, such correlations occur naturally in distributed systems, where the bins

∗ Karl Bringmann is a recipient of the Google Europe Fellowship in Randomized Algorithms, and this
research is supported in part by this Google Fellowship. The research of Alexandre Stauffer is supported
in part by a Marie Curie Career Integration Grant PCIG13-GA-2013-618588 DSRELIS. The research of
He Sun has partially been funded by the Cluster of Excellence “Multimodal Computing and Interaction”
within the Excellence Initiative of the German Federal Government.

© Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 187–198

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.187
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


188 Balls into bins via local search: cover time and maximum load

1 2 3 4 5 6
(a)

1 2 3 4 5 6
(b)

ball i

1 2 3 4 5 6
(c)

ball i+ 1

1 2 3 4 5 6
(d)

ball i+ 2

Figure 1 Illustration of the local search allocation. Black circles represent the vertices 1–6
arranged as a path, and yellow circles represent the balls of the process (the most recently allocated
ball is marked red). Figure (a) shows the configuration after placing i − 1 balls. In Figure (b), ball i

born at vertex 4 has two choices in the first step of the local search (vertices 3 or 5) and is finally
allocated to vertex 2. Figures (c) and (d) show the placement of balls i + 1 and i + 2.

represent processors that are interconnected as a graph and the balls represent tasks that
need to be assigned to processors. From a practical point of view, letting each task choose d
independent random bins may be undesirable, since the cost of accessing two bins which are
far away in the graph may be higher than accessing two bins which are nearby. Furthermore,
in some contexts, tasks are actually created by the processors, which are then able to forward
tasks to other processors to achieve a more balanced load distribution. In such settings,
allocating balls close to the processor that created them is certainly very desirable as it
reduces the costs of probing the load of a processor and allocating the task.

With this motivation in mind, Bogdan et al. [4] introduced a natural allocation process
called local search allocation. Consider that the bins are organized as the vertices of a graph
G = (V,E) with n = |V |. At each time step a ball is “born” at a vertex chosen independently
and uniformly at random from V , which we call the birthplace of the ball. Then, starting
from its birthplace, the ball performs a local search in G, where the ball repeatedly moves to
the adjacent vertex with the smallest load, provided that this load is strictly smaller than the
load of its current vertex. We assume that ties are broken independently and uniformly at
random. The local search ends when the ball visits the first vertex that is a local minimum,
which is a vertex for which no neighbor has a smaller load. After that, the next ball is born
and the procedure above is repeated. See Figure 1 for an illustration.

The main result in [4] establishes that when G is an expander graph with bounded
maximum degree, the maximum load after n balls have been allocated is Θ(log logn). Hence,
local search allocation on bounded-degree expanders achieves the same maximum load (up
to constants) as in the d-choice process, but has the extra benefit of requiring only local
information during the allocation. In [4], it was also established that the maximum load is

Θ
((

logn
log logn

) 1
d+1
)

on d-dimensional grids, and Θ(1) on regular graphs of degrees Ω(logn).

1.1 Results

In this paper, we derive new upper and lower bounds for the maximum load and propose
the study of another natural quantity, which we refer to as the cover time. In order to state
our results, we need to introduce the following two quantities that are related to the local
neighborhood growth of G:

R1 = R1(G) = min{r ∈ N : r|Bru| log r > logn for all u ∈ V }



K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 189

and
R2 = R2(G) = min{r ∈ N : r|Bru| > logn for all u ∈ V },

where Bru denotes the set of vertices within distance r from vertex u. Note that R1 6 R2
for all G. For the sake of clarity, we state our results here for vertex-transitive graphs only.
In later sections we state our results in full generality, which will require a more refined
definition of R1 and R2. We also highlight that for all the results below (and throughout this
paper) we assume that ties are broken independently and uniformly at random; the impact
of tie-breaking procedures in local search allocation was investigated in [4, Theorem 1.5].

Maximum load
We derive an upper bound for the maximum load after n balls have been allocated. Our
bound holds for all bounded-degree graphs, and is tight for vertex-transitive graphs (and,
more generally, for graphs where the neighborhood growth is sufficiently homogeneous across
different vertices).

I Theorem 1.1 (Maximum load when m = n). Let G be any vertex-transitive graph with
bounded degrees. Then, with probability at least 1 − n−1, the maximum load after n balls
have been allocated is Θ(R1).

Theorem 1.1 is a special case of Theorem 3.1, which gives a more precise version of the result
above and generalizes it to non-transitive graphs; in particular, we obtain that for any graph
with bounded degrees the maximum load is O(R1) with high probability. We state and prove
Theorem 3.1 in Section 3.

Note that for bounded-degree expanders we have R1 = Θ(log logn), and for d-dimensional

grids we have R1 = Θ
((

logn
log logn

) 1
d+1
)
. Hence the results for bounded-degree graphs in [4]

are special cases of Theorems 1.1 and 3.1. Furthermore, the proof of Theorems 1.1 and 3.1
uses different techniques (it follows by a subtle coupling with the 1-choice process) and is
substantially shorter than the proofs in [4].

Our second result establishes an upper bound for the maximum load when m > n. We
point out that all other results known so far were limited to the case m = n. We establish
that, when m = Ω(R2n), the maximum load is of order Θ(m/n) (i.e., the same order as the
average load). We note that the difference between the maximum load and the average load
for the local search allocation is always bounded above by the diameter of the graph. This is
in some sense similar to the d-choice process, where the difference between the maximum
load and the average load does not depend on m [3].

I Theorem 1.2 (Maximum load when m > n). Let G be any graph with bounded degrees.
Then for any m > n, with probability at least 1− n−1, the maximum load after m balls have
been allocated is O(mn +R2).

Cover time
We propose to study the following natural quantity related to any process based on allocating
balls into bins. Define the cover time as the first time at which all bins have at least one ball
allocated to them. This is in analogy with cover time of random walks on graphs, which is
the first time at which the random walk has visited all vertices of the graph. Note that for
the 1-choice process, the cover time corresponds to the time of a coupon collector problem,
which is known to be n logn+Θ(n) [9, Section 2.4.1]. For the d-choice process with d = Θ(1),
we obtain that the cover time is also of order n logn.

STACS’14



190 Balls into bins via local search: cover time and maximum load

We show that for the local search allocation the cover time can be much smaller than
n logn: Our next theorem establishes that the cover time for vertex-transitive bounded-
degree graphs is Θ(R2n) with high probability. Since R2 = O(

√
logn) for all connected

graphs, it follows that the cover time for any connected, bounded-degree graph is at most
O(n
√

logn), which is significantly smaller than the cover time of the d-choice process for
any d = Θ(1). In particular, we have R2 = Θ(log logn) for bounded-degree expanders, and
R2 = Θ

(
(logn)

1
d+1

)
for d-dimensional grids.

I Theorem 1.3 (Cover time for bounded-degree graphs). Let G be any vertex-transitive graph
with bounded degrees. Then, with probability at least 1− n−1, the cover time of local search
allocation on G is Θ(R2n).

The theorem above is a special case of Theorem 4.2, which we state and prove in Section 4.
Our final result provides a general upper bound on the cover time for dense graphs.

Theorem 1.4 below is a special case of Theorem 4.3, which gives an upper bound on the
cover time for all regular graphs. We state and prove Theorem 4.3 in Section 4.

I Theorem 1.4 (Cover time for dense graphs). Let G be any d-regular graph with d =
Ω(logn log logn). Then, with probability at least 1− n−1, the cover time is Θ(n).

Due to space limitations, we skip some proofs. The full version can be found in [5].

2 Key technical argument

Aside from Theorem 1.4, we assume throughout this paper that G has bounded degrees; i.e.,
the maximum degree ∆ is bounded above by a constant independent of n. We also assume
that, in the local search allocation, ties are broken independently and uniformly at random.

For each m > 0 and vertex v ∈ V , let X(m)
v denote the load of v (i.e., the number of balls

allocated to v) after m balls have been allocated. Initially we have X(0)
v = 0 for all v ∈ V

and, for any m > 0, we have
∑
v∈V X

(m)
v = m. Denote by X(m)

max the maximum load after m
balls have been allocated; i.e., X(m)

max = maxv∈V X(m)
v . Also, denote by Tcov = Tcov(G) the

cover time of G, which we define as the first time at which all vertices have load at least 1.
More formally, Tcov = min{m > 0: X(m)

v > 1 for all v ∈ V }.
Let Ui ∈ V denote the birthplace of ball i and, for each m > 0 and v ∈ V , let X(m)

v

denote the load of v after m balls have been allocated according to the 1-choice process. Let
X

(m)
max denote the maximum load for the 1-choice process. More formally,

X
(m)
v =

m∑
i=1

1 (Ui = v) and X
(m)
max = max

v∈V
X

(m)
v (2.1)

We now prove a key technical result (Lemma 2.2 below) that will play a central role in
our proofs later. Let µ : V → Z be any integer function on the vertices of G that satisfies the
following property:

for any two neighbors u, v ∈ V , we have |µ(u)− µ(v)| 6 1. (2.2)

We see µ as an initial attribution of weights to the vertices of G. Then, for any m > 1, after
m balls are allocated, we define the weight of vertex v by

W (m)
v = X(m)

v + µ(v). (2.3)



K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 191

Note that for any m > 1 and v ∈ V , we have that Wv can increase by at most one after each
step; i.e., W (m)

v ∈ {W (m−1)
v ,W

(m−1)
v + 1}. The lemma below establishes that a ball cannot

be allocated to a vertex with larger weight than the vertex where the ball is born.

I Lemma 2.1. Let m > 1 and denote by v the vertex where ball m is born (i.e., v = Um).
Let v′ be the vertex where ball m is allocated. Then, W (m−1)

v′ 6W
(m−1)
v .

Proof. Assume that v 6= v′, thus the local search of ball m visits at least two vertices. Let w
be the second vertex visited during the local search. Since v and w are neighbors in G, we
have

W (m−1)
w = X(m−1)

w + µ(w) = X(m−1)
v − 1 + µ(w) 6 X(m−1)

v + µ(v) = W (m−1)
v .

Proceeding inductively for each step of the local search, we obtain W (m−1)
v′ 6W

(m−1)
v . J

For vectors A = (a1, a2, . . . , an) and A′ = (a′1, a′2, . . . , a′n) such that
∑n
i=1 ai =

∑n
i=1 a

′
i,

we say that A majorizes A′ if, for each κ = 1, 2, . . . , n, the sum of the κ largest entries of A
is at least the sum of the κ largest entries of A′. More formally, if j1, j2, . . . , jn are distinct
numbers such that aj1 > aj2 > · · · > ajn and j′1, j′2, . . . , j′n are distinct numbers such that
a′j′1

> a′j′2
> · · · > a′j′n , then A majorizes A′ if

κ∑
i=1

aji >
κ∑
i=1

a′j′
i

for all κ = 1, 2, . . . , n. (2.4)

Let W (m)
v be the weight of vertex v after m balls are allocated according to the 1-choice

process; i.e., W (m)
v = X

(m)
v + µ(v) for all v ∈ V . The lemma below establishes that W (m)

majorizes W (m) for any m.

I Lemma 2.2. For any fixed m > 0, we can coupleW (m) andW (m) so that, with probability 1,
W

(m) majorizes W (m).

For the proof of this lemma, we need the following result from [2].

I Lemma 2.3 ([2, Lemma 3.4]). Let v = (v1, v2, . . . , vn), u = (u1, u2, . . . , un) be two vectors
such that v1 > v2 > · · · > vn and u1 > u2 > · · · > un. If v majorizes u, then also v + ei
majorizes u+ ei, where ei is the ith unit vector.

Proof of Lemma 2.2. The proof is by induction on m. Clearly, for m = 0, we have W (0)
v =

W
(0)
v = µ(v) for all v ∈ V . Now, assume that we can couple W (m−1) with W (m−1) so that

W
(m−1) majorizes W (m−1). Let i1, i2, . . . , in be distinct elements of V so that

W
(m−1)
i1

>W
(m−1)
i2

> · · · >W
(m−1)
in

.

Similarly, let j1, j2, . . . , jn be distinct elements of V so that

W
(m−1)
j1 >W

(m−1)
j2 > · · · >W

(m−1)
jn .

Let ` be a uniformly random integer from 1 to n. Then, for the process (W (m)
v )v∈V , let the

birthplace of ball m be vertex i` and for the process (W (m)
v )v∈V , let the birthplace of ball m

be j`. For the process (W (m)
v )v∈V , ball m may not necessarily be allocated at vertex i`, so

let us define ι as the integer so that iι is the vertex to which ball m is allocated.

STACS’14



192 Balls into bins via local search: cover time and maximum load

In order to prove that W (m) majorizes W (m), let us define by W̃ (m) the vector which is
obtained from W (m−1) by allocating ball m to vertex i` (the birthplace of ball m). Applying
Lemma 2.3 gives that W (m) majorizes W̃ (m), since by the induction hypothesis W (m−1)

majorizes W (m−1). Next observe that

W (m) = W̃ (m) − ei` + eiι ,

so we obtain the vector W (m) from W̃ (m) by removing one ball from vertex i` and adding
one ball to vertex iι. By Lemma 2.1, we have W (m−1)

iι
6 W

(m−1)
i`

. This implies W̃ (m)
i`

=
W

(m−1)
i`

+ 1 > W
(m−1)
iι

+ 1 and in turn that W̃ (m) majorizes W (m). Combining this with
the insight that W (m) majorizes W̃ (m) implies that W (m) majorizes W (m). This completes
the induction and the proof. J

Now we illustrate the usefulness of the above result by relating the probability of a vertex
to have a certain load to the probability that balls are born in a neighborhood around a
vertex. For any two vertices u, v ∈ V , we denote by dG(u, v) their distance on G.

I Lemma 2.4. For any v ∈ V , and any `,m > 1, we have

Pr
[
X(m)
v > `

]
> Pr

[⋂
w∈B`−1

v

{
X

(m)
w > `− dG(v, w)

}]
and

Pr
[
X(m)
v > `

]
6 Pr

[⋃
w∈V

{
X

(m)
w > `+ dG(v, w)

}]
.

Proof. For the first inequality, set µ(w) = dG(v, w) for all w ∈ V . Let A(m) be the
event that all vertices have weight at least ` after m balls are allocated, and let A(m) be
the same event for the 1-choice process. In symbols A(m) = {minu∈V W (m)

u > `} and
A(m) = {minu∈V W

(m)
u > `}. By Lemma 2.2, we have that Pr

[
A(m) ] > Pr

[
A(m) ].

Clearly, we have that A(m) implies {X(m)
v > `}, but the two events are in fact equal since,

by the smoothness of the load vector ([4, Lemma 2.2]), {X(m)
v > `} implies A(m). The proof

is then complete since A(m) =
⋂
w∈B`v

{
X

(m)
w > `− dG(v, w)

}
.

For the second inequality, set µ(w) = −dG(v, w) for all w ∈ V . Then define B(m)

to be the event that there exists at least one vertex with weight at least ` after m balls
are allocated, and let B(m) be the corresponding event for the 1-choice process. Thus,
B(m) = {maxu∈V W (m)

u > `} and B(m) = {maxu∈V W
(m)
u > `}. Similarly as for the event

A(m), we have that the events {X(m)
v > `} and B(m) are identical. Applying Lemma 2.2 we

obtain that Pr
[
B(m) ] 6 Pr

[
B(m) ] = Pr

[⋃
w∈V

{
X

(m)
w > `+ dG(v, w)

}]
. J

I Remark. The lemma above states that one can couple {X(m)
v }v∈V and {X(m)

v }v∈V so that
if X(m)

w > ` − dG(v, w) for all w ∈ B`−1
v , then X(m)

v > `. However, this is not necessarily
achieved with the “trivial” coupling where each ball is born at the same vertex for both
processes {X(m)

v }v∈V and {X(m)
v }v∈V . In other words, knowing that the number of balls

born at vertex w is at least `− dG(v, w) for all w ∈ B`v does not imply that X(m)
v > `.

Now we extend the proof of Lemma 2.4 to derive an upper bound on the load of a subset
of vertices. The proof of this proposition can be found in the full version [5].



K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 193

I Proposition 2.5. Let S ⊂ V be fixed and ∆ be the maximum degree inG. Then, for allm > n

and ` > 300∆m
n we have Pr

[∑
v∈S X

(m)
v > `|S|

]
6 4 exp

(
− |S|`14 log

(
`n
m

))
+ exp

(
−m4

)
.

Moreover, for any given u ∈ V , it holds that Pr
[
X

(m)
u > 2`

]
6 4 exp

(
− |B

`
u|`

14 log
(
`n
m

))
+

exp
(
−m4

)
.

In many of our proofs we analyze a continuous-time variant where the number of balls
is not fixed, but is given by a Poisson random variable with mean m. Equivalently, in this
variant balls are born at each vertex according to a Poisson process of rate 1/n. We refer
to this as the Poissonized version. We will use the Poissonized versions of both the local
search allocation and the 1-choice process in our proofs. Since the probability that a mean-m
Poisson random variable takes the value m is of order Θ(m−1/2) we obtain the following
relation.

I Lemma 2.6. Let A be an event that holds for the Poissonized version of the local search
allocation (respectively, 1-choice process) with probability 1− ε for some ε ∈ (0, 1). Then,
the probability that A holds for the non-Poissonized version of the local search allocation
(respectively, 1-choice process) is at least 1−O(ε

√
m).

3 Maximum Load

We start stating a stronger version of Theorem 1.1 which also holds for non-transitive graphs.
For γ ∈ (0, 1/2], let

R
(γ)
1 = R

(γ)
1 (G) = max

{
r ∈ N : there exists S ⊆ V with |S| > n

1
2 +γ

such that r|Bru| log r < logn for all u ∈ S
}
.

Note that R(γ)
1 is non-increasing with γ. Also, when G is vertex transitive, we have R1 =

R
(γ)
1 + 1 for all γ ∈ (0, 1/2], because in this case, for any given r, the size of Bru is the same

for all u ∈ V . The theorem below establishes that, for any bounded-degree graph, if there
exists a γ ∈ (0, 1/2] for which R(γ)

1 = Θ(R1), then the maximum load when m = n is Θ(R1).
In the following, ω(1) stands for a term that goes to ∞ as n→∞.

I Theorem 3.1 (General version of Theorem 1.1). Let G be any graph with bounded degrees.
For any γ ∈ (0, 1/2] and α > 1, we have

Pr
[
X(n)

max <
γR

(γ)
1

4

]
6 n−ω(1) and Pr

[
X(n)

max > 56αR1

]
6 5n−α.

Proof. We start establishing a lower bound for X(n)
max. Let A be a Poisson random variable

with mean 1. We first consider the Poissonized versions of the local search allocation and
the 1-choice process (recall the definition of these variants from the paragraph preceding
Lemma 2.6). For any v ∈ V and any ` > 0, Lemma 2.4 gives that

Pr
[
X(n)
v > `

]
>

`−1∏
r=0

(Pr [A > `− r ])|N
r
v | >

`−1∏
r=0

(
e−1(`− r)−`+r

)|Nrv | ,
where Nr

v is the set of vertices at distance r from v so that B`v =
⋃`
r=0N

r
v . Hence,

Pr
[
X(n)
v > `

]
> exp

(
−|B`v| − `|B`v| log(`)

)
> exp

(
−2`|B`v| log(`)

)
,

STACS’14



194 Balls into bins via local search: cover time and maximum load

where the last step follows for all ` > 2. Given γ > 0, set ` = γR
(γ)
1

4 . Since |Brv | log r is
increasing with r, there exists a set S with |S| = dn 1

2 +γe such that

Pr
[
X(n)
v >

γR
(γ)
1

4

]
> exp

−γR(γ)
1 |B

R
(γ)
1

v | log(R(γ)
1 )

2

 > n−γ/2 for all v ∈ S. (3.1)

Let Y = Y (γ) be the random variable defined as the number of vertices v satisfying X(n)
v >

γR
(γ)
1

4 . Let K be the total number of balls allocated in the Poissonized version of the local
search allocation. Note that E [K ] = n and by standard tail bounds, Pr [K > 2en ] 6 21−2ne.
Regard Y as a function of the K independently chosen birthplaces U1, U2, . . . , UK . Then,
for any given K, Y is 1-Lipschitz by [4, Lemma 2.5], and (3.1) implies that

E [Y | K 6 2en ] > n
1
2 +γ ·

(
n−γ/2 −Pr [K > 2en ]

Pr [K 6 2en ]

)
>
n

1
2 + γ

2

2 .

With this, we apply the method of bounded differences [8, Lemma 1.2] to obtain

Pr
[
X(n)

max <
γR

(γ)
1

4

]

6 Pr
[
|Y −E [Y | K 6 2en ] | > 1

2E [Y | K 6 2en ] | K 6 2en
]

+ Pr [K > 2en ]

6 n−ω(1) + 21−2ne = n−ω(1).

This result can then be translated to the non-Poissonized model via Lemma 2.6.
Now we establish the upper bound, where we consider the non-Poissonized process. For

any fixed u ∈ V , we have from the second part of Proposition 2.5 (with m = n) that

Pr
[
X(n)
u > 56αR1

]
6 4 exp

(
−28αR1|B28αR1

u |
14 log(28αR1)

)
+ exp

(
−n4

)
6 4 exp

(
−2αR1|BR1

u | logR1
)

+ exp
(
−n4

)
6 5n−2α.

Taking the union bound over u we obtain that Pr
[
X

(n)
max > 56αR1

]
6 5n−2α+1 6 5n−α. J

Proof of Theorem 1.2. Applying Proposition 2.5 with ` =
(
m
n +R2

)
c for any constant

c > 300∆, we obtain

Pr
[∑

u∈BR2
u

X(m)
u >

(m
n

+R2

)
c · |BR2

u |
]

6 4 exp
(
−
(m
n

+R2

) c|BR2
u |

14 log c
)

+ exp
(
−m4

)
6 4 exp

(
−cR2|BR2

u |
14 log c

)
+ exp

(
−m4

)
,

where BR2
u denotes the set of vertices within distance R2 from u. By setting c > 0 sufficiently

large, the right-hand side above can be made smaller than n−2. If u has load k, then the
number of balls allocated to vertices in BR2

u is at least
R2∑
i=0

(k − i)|N i
u| > (k −R2)|BR2

u |.

Therefore, on the event
∑
u∈BR2

u
X

(m)
u 6

(
m
n +R2

)
c|BR2

u |, we have X(m)
u 6 c

(
m
n +R2

)
+

R2 6 2c
(
m
n +R2

)
. Taking a union bound over all u ∈ V completes the proof. J



K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 195

4 Cover time

The proposition below gives an upper bound for the cover time.

I Proposition 4.1. Let G be a graph with bounded degrees. Then for any α > 1 there exists
a C = C(α) > 0 such that for all m > CR2n we have Pr

[
X

(m)
min <

m
224n log ∆

]
6 n−α, where

X
(m)
min = minv∈V X(m)

v .

Proof. Fix an arbitrary vertex u ∈ V . We will use the concept of weights defined in Section 2.
Define µ(v) = dG(u, v) and W (m)

v = X
(m)
v + µ(v). Similarly, for the 1-choice process, define

W
(m)
v = X

(m)
v + µ(v). Let Y := minv∈V W

(m)
v be the minimum weight of all vertices in V in

the 1-choice process. Let ` = m
28n log ∆ and recall that Bru is the set of vertices within distance

r from u. We have

Pr [Y < ` ] = Pr
[⋃

v∈B`−1
u

{
W

(m)
v < `

}]
6 |B`u|Pr

[
X

(m)
u < `

]
6 |B`u|Pr

[ ∣∣∣X(m)
u −E

[
X

(m)
u

] ∣∣∣ > m

n

(
1− 1

28 log ∆

)]
.

Using a variant of Hoeffding’s inequality, we obtain

Pr [Y < ` ] 6 |B`u| exp

− m2

n2

(
1− 1

28 log ∆

)2

7m
3n


6 |B`u| exp

(
− 3m

28n

)
6 exp

(
m

28n −
3m
28n

)
6

1
2 ,

where the last inequality holds since m/n > CR2 = ω(1) for bounded degree graphs. Now
define Z as the sum of the |BR2

u | smallest values of
{
W

(m)
v : v ∈ V

}
and Z as the sum

of the |BR2
u | smallest values of

{
W

(m)
v : v ∈ V

}
. By Lemma 2.2, we can couple W (m)

and W
(m) so that, with probability 1, Z > Z. Further, E

[
Z
]
> `|BR2

u |
2 . We now apply

Azuma’s inequality [6, Theorem 6.1] in order to show that Z is likely to be at least `|B
R2
u |
4 . Let

A1, A2, . . . , Am be the martingale adapted to the filtration Fi generated by U1, U2, . . . , Ui; i.e.,
Ai = E

[
Z | Fi

]
. Since changing the birthplace of ball i (and keeping all other birthplaces the

same) can change Z by at most one [4, Lemma 2.5], we have that E [Ai −Ai−1 | Fi−1 ] 6 1.
Now fix i. Let ζu be the value of Ai when Ui = u and let ζ = 1

n

∑
u∈V ζu. Then we have

EUi

[
(Ai −Ai−1)2

∣∣∣∣⋂i−1

j=1
{Uj = uj}

]
= 1
n

∑
u∈V

(ζu − ζ)2,

where the expectation above is taken with respect to Ui. Since |ζu− ζu′ | 6 1 for all u, u′ ∈ V ,
we can write

1
n

∑
u∈V

(ζu − ζ)2 6
1
n

∑
u∈V
|ζu − ζ| =

1
n

∑
u∈V

∣∣∣∣ ∑
u′∈V

1
n

(ζu − ζu′)
∣∣∣∣ 6 1

n2

∑
u∈V

∑
u′∈V

|ζu − ζu′ | .

Note that, for any realization of U1, U2, . . . , Ui−1, Ui+1, . . . , Um, ζu and ζu′ only differ if
exactly one of u or u′ is among the |BR2

u | smallest loads. Hence,
∑
u∈V

∑
u′∈V |ζu − ζu′ | 6

2|BR2
u |n. Consequently, EUi

[
(Ai −Ai−1)2

∣∣∣⋂i−1
j=1{Uj = uj}

]
6 2|BR2

u |
n . Now, Azuma’s

STACS’14



196 Balls into bins via local search: cover time and maximum load

inequality [6, Theorem 6.1] gives

Pr
[
Z <

`|BR2
u |

4

]
6 Pr

[
|Z −E

[
Z
]
| > 1

2E
[
Z
] ]

6 exp

− ( 1
2E
[
Z
])2

4 · |B
R2
u |
n ·m+ 1

6E
[
Z
]
 .

Clearly, E
[
Z
]
6 m|BR2

u |
n , which gives that

Pr
[
Z <

`|BR2
u |

4

]
6 exp

− E
[
Z
]2

16 · |B
R2
u |
n ·m+ 2m|BR2

u |
3n

 6 exp
(
−`

2|BR2
u |/4

17m/n

)
.

Using the value of ` and m, we have

Pr
[
Z <

`|BR2
u |

4

]
6 exp

(
−

m
n |B

R2
u |

68(28 log ∆)2

)
6 exp

(
− CR2|BR2

u |
68(28 log ∆)2

)
6 n

− C
68(28 log ∆)2 .

Due to our coupling which gives Z > Z we conclude that with probability at least 1 −
n
− C

68(28 log ∆)2 there exists a vertex v ∈ BR2
u with W (m)

v > `
4 and thus X(m)

v > `
4 −R2. Then,

by smoothness of the load vector [4, Lemma 2.2], we have that with probability at least
1− n−

C
68(28 log ∆)2 , every vertex in BR2

u has load at least `
4 − 3R2 > m

224n log ∆ , where the last
step follows for all C > 672 log ∆. The result follows by taking the union bound over all
u ∈ V , which yields that, with probability at least 1− n−

C
68(28 log ∆)2

+1, all vertices have load
at least m

224n log ∆ . The proof is completed by setting C large enough with respect to α so
that C

68(28 log ∆)2 − 1 > α. J

We prove a stronger version of Theorem 1.3, which holds also for non-transitive graphs.
For γ ∈ (0, 1/2], let

R
(γ)
2 = R

(γ)
2 (G) = max

{
r ∈ N : there exists S ⊆ V with |S| > n

1
2 +γ

such that r|Bru| < logn for all u ∈ S
}
.

Note that R(γ)
2 is non-increasing with γ. Also, when G is vertex transitive, we have R2 =

R
(γ)
2 + 1 for all γ > 0, because in this case, for any given r, the size of Bru is the same for all

u ∈ V . The theorem below establishes that, for any bounded-degree graph, if there exists a
γ ∈ (0, 1/2] for which R(γ)

2 = Θ(R2), then the cover time is Θ(R2).

I Theorem 4.2 (General version of Theorem 1.3). Let G be any graph with bounded degrees.
For any γ ∈ (0, 1/2] and α > 1, there exists C = C(α,∆) such that

Pr
[
Tcov <

γR
(γ)
2 n

8∆

]
6 n−ω(1) and Pr [Tcov > CR2n ] 6 n−α.

Proof. The second inequality is established by Proposition 4.1. For the first inequality, let
S be a set of n 1

2 +γ vertices u for which R(γ)
2 ·BR

(γ)
2

u < logn. Let m = γR
(γ)
2 n

8∆ . We consider
the Poissonized version of the local search allocation and the 1-choice process. We abuse
notation slightly and let X(m)

v and X(m)
v denote the load of v for the Poissonized version of

the local search allocation and 1-choice process, respectively, when the expected number of



K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 197

balls allocated in total is m. For any u ∈ S, we will bound the probability that X(m)
u = 0.

By the second part of Lemma 2.4, we have that

Pr
[
X(m)
u = 0

]
> Pr

[⋂
w∈V

{
X

(m)
w 6 dG(u,w)

}]
.

Recall that Nr
u is the set of vertices at distance r from u and B`u =

⋃`
r=0N

r
u. By independence

of the Poissonized model, we can write

Pr
[
X(m)
u = 0

]
> Pr

[⋂
w∈B

R
(γ)
2

u

{
X

(m)
w = 0

}]
Pr
[⋂

i>R
(γ)
2

⋂
w∈Niu

{
X

(m)
w 6 i

}]

> exp

−m|BR(γ)
2

u |
n

(1−
∑

i>R
(γ)
2

∑
w∈Niu

Pr
[
X

(m)
w > i

])

> exp

−m|BR(γ)
2

u |
n

(1− 2
∑

i>R
(γ)
2

∑
w∈Niu

(me
ni

)i)
,

where the last inequality follows by a Chernoff bound [1, Theorem A.1.15]. Using the simple
bound |N i

u| 6 ∆i and the fact that me∆
ni 6 1

2 for all i > R
(γ)
2 (as ∆/R(γ)

2 = o(1) since
∆ = O(1)), we have

Pr
[
X(m)
u = 0

]
> exp

−m|BR(γ)
2

u |
n

1− 4
(
me∆
nR

(γ)
2

)R(γ)
2
 > n−γ/8 · 1

2 .

Now let Y be the random variable defined as the number of vertices v satisfying X(m)
v = 0.

Let K be the random variable for the total number of balls allocated and regard Y as a
function of the K independently chosen birthplaces U1, U2, . . . , UK . Then, Y is 1-Lipschitz
by [4, Lemma 2.5] for any given K. The calculations above give that

E [Y | K 6 2em ] > E [Y ] > n
1
2 + 7γ

8

2 .

Note thatm = O(n logn) for anyG. With this, we apply the method of bounded differences [8,
Lemma 1.2] and a standard tail bound to obtain

Pr
[
X

(n)
min = 0

]
6 Pr

[
|Y −E [Y | K 6 2em ] | > 1

2E [Y | K 6 2em ]
∣∣∣∣K 6 2em

]
+ Pr [K > 2em ]

6 2 exp
(
−n

1+14γ/8

8(2em)

)
+ 21−2me = n−ω(1).

This result can then be translated to the non-Poissonized process using Lemma 2.6 and the
fact that m = γR

(γ)
2 n

4 = O(n logn). J

We now state a stronger version of Theorem 1.4. The proof is in the full version [5].

I Theorem 4.3 (General version of Theorem 1.4). Let G be any d-regular graph. Then, for
any α > 1 there exists C = C(α) > 0 such that

Pr
[
Tcov > C ·

(
n
(

1 + logn · log d
d

))]
6 n−α.

STACS’14



198 Balls into bins via local search: cover time and maximum load

5 Remarks and open questions

Blanket time
In analogy with the cover time for random walks, for each δ > 1, we can define the blanket
time as the first time at which the load of each vertex is in the interval ( 1

δ ·
m
n , δ ·

m
n ). It

follows from Theorem 1.2 and Proposition 4.1 that, for bounded-degree vertex-transitive
graphs, the blanket time is Θ(nR2) for all large enough δ.

Extreme graphs

Note that for any connected graph G, we have R1(G) 6
√

logn
log logn and R2(G) 6

√
logn.

Thus, the cycle is the graph with the largest possible maximum load (when m = n) and
largest possible cover time among all bounded-degree graphs up to constant factors. Also,
for any graph G with bounded degrees, we have R1(G) and R2(G) are of order Ω(log logn).
Thus, bounded-degree expanders are the graphs with the smallest maximum load (when
m = n) and smallest cover time among all bounded-degree graphs up to constant factors.

Open questions
1. For any vertex-transitive graph (not necessarily of bounded degrees), does it hold that

X
(n)
max = Θ(R1) and Tcov = Θ(R2n) with high probability?

2. For any vertex-transitive graph (not necessarily of bounded degrees) and any m = ω(nR2),
does it hold that X(m)

max = m
n + Θ(R2) with high probability?

3. For any vertex-transitive graph, is the blanket time of order nR2 for all δ > 1? Also, is
the blanket time of the same order as the cover time for all vertex-transitive graphs?

4. Let G = (V,E) and G′ = (V,E′) be two graphs such that E ⊂ E′. Is the maximum load
on G stochastically dominated by the maximum load on G′ for any m?

References
1 N. Alon and J.H. Spencer. The probabilistic method. John Wiley & Sons, 3rd edition, 2008.
2 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM

J. Comput., 29(1):180–200, 1999.
3 Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced alloc-

ations: The heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006.
4 P. Bogdan, T. Sauerwald, A. Stauffer, and H. Sun. Balls into bins via local search. In Proc.

of the 24th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 16–34, 2013.
5 K. Bringmann, T. Sauerwald, H. Sun, and A. Stauffer. Balls into bins via local search:

cover time and maximum load, 2013. Preprint at arXiv:1310.0801.
6 F. Chung and L. Lu. Concentration inequalities and Martingale inequalities: a survey.

Internet Mathematics, 3:79–127, 2006.
7 Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. Efficient PRAM

simulation on a distributed memory machine. Algorithmica, 16(4/5):517–542, 1996.
8 C. McDiarmid. On the method of bounded differences. Surveys in Combinatorics, 141:148–

188, 1989.
9 M. Mitzenmacher and E. Upfal. Probability and Computing: randomized algorithms and

probabilistic analysis. Cambridge University Press, 2005.
10 Martin Raab and Angelika Steger. Balls into bins – a simple and tight analysis. In 2nd

Int’l Workshop on Randomization and Computation (RANDOM’98), pages 159–170, 1998.
11 Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4), 2003.


	Introduction
	Results

	Key technical argument
	Maximum Load
	Cover time
	Remarks and open questions

