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Abstract
Classical analysis of two-player quantitative games involves an adversary (modeling the environ-
ment of the system) which is purely antagonistic and asks for strict guarantees while Markov
decision processes model systems facing a purely randomized environment: the aim is then to op-
timize the expected payoff, with no guarantee on individual outcomes. We introduce the beyond
worst-case synthesis problem, which is to construct strategies that guarantee some quantitative
requirement in the worst-case while providing an higher expected value against a particular
stochastic model of the environment given as input. We consider both the mean-payoff value
problem and the shortest path problem. In both cases, we show how to decide the existence
of finite-memory strategies satisfying the problem and how to synthesize one if one exists. We
establish algorithms and we study complexity bounds and memory requirements.
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1 Introduction

Two-player zero-sum quantitative games [14, 28, 3] and Markov decision processes (MDPs) [24,
5] are two popular formalisms for modeling decision making in adversarial and uncertain
environments respectively. In the former, two players compete with opposite goals (zero-sum),
and we want strategies for player 1 (the system) that ensure a given minimal performance
against all possible strategies of player 2 (its environment). In the latter, the system
plays against a stochastic model of its environment, and we want strategies that ensure a
good expected overall performance. Those two models are well studied and simple optimal
memoryless strategies exist for classical objectives such as mean-payoff [22, 14, 15] or shortest
path [1, 12]. But both models have clear weaknesses: strategies that are good for the
worst-case may exhibit suboptimal behaviors in probable situations while strategies that are
good for the expectation may be terrible in some unlikely but possible situations.

In practice, we want strategies that both ensure (a) some worst-case threshold no matter
how the adversary behaves (i.e., against any arbitrary strategy) and (b) a good expectation
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against the expected behavior of the adversary (given as a stochastic model). We study how
to construct such finite-memory strategies. We consider finite memory for player 1 as it can
be implemented in practice (as opposed to infinite memory). Player 2 is not restricted in his
choice of strategies, but we show that simple strategies suffice. Our problem, the beyond
worst-case synthesis problem, makes sense for any quantitative measure. We focus on
two classical ones: the mean-payoff, and the shortest path.
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Figure 1 Player 1 wants to minimize its
expected time to reach “work”, but while en-
suring it is less than an hour in all cases.

Example. Consider the weighted game in
Fig. 1 to illustrate the shortest path context.
Circle states belong to player 1, square states to
player 2, integer labels are durations in minutes,
and fractions are probabilities that model the
expected behavior of player 2. Player 1 wants a
strategy to go from “home” to “work” such that
“work” is guaranteed to be reached within 60
minutes (to avoid missing an important meet-
ing), and player 1 would also like to minimize
the expected time to reach “work”. The strat-
egy that minimizes the expectation is to take
the car (expectation is 33 minutes) but it is
excluded as there is a possibility to arrive after
60 minutes (in case of heavy traffic). Bicycle is
safe but the expectation of this solution is 45
minutes. We can do better with the following
strategy: try to take the train, if the train is delayed three time consecutively, then go back
home and take the bicycle. This strategy is safe as it always reaches “work” within 59 minutes
and its expectation is ≈ 37, 56 minutes (so better than taking directly the bicycle). Our
algorithms are able to decide the existence of (and synthesize) such finite-memory strategies.

Contributions. For the mean-payoff, we provide an NP ∩ coNP algorithm (Thm. 7), which
would be in P if mean-payoff games were proved to be in P, a long-standing open problem [3, 7].
For the shortest path, we give a pseudo-polynomial time algorithm (Thm. 9), and show that
the problem is NP-hard (Thm. 11). For both, synthesized strategies may require up to pseudo-
polynomial memory (Thm. 8 and Thm. 10), but accept natural, elegant representations,
based on states of the game and simple integer counters. An extended version of this work,
including full proofs, can be found in [4].

Related work. Our problems generalize the corresponding problems for two-player zero-sum
games and MDPs. In mean-payoff games, optimal memoryless worst-case strategies exist and
the best known algorithm is in NP ∩ coNP [14, 28, 3]. For shortest path games, where we
consider game graphs with strictly positive weights and try to minimize the cost to target, it
can be shown that memoryless strategies also suffice, and the problem is in P. In MDPs,
optimal expectation strategies are studied in [24, 15] for both measures: memoryless strategies
suffice and they can be computed in P. Our strategies are strongly risk averse: they avoid at
all cost outcomes below a given threshold (no matter their probability), and inside the set of
those safe strategies, we maximize expectation. To the best of our knowledge, we are the first
to consider such strategies. Other notions of risk have been studied for MDPs: e.g., in [27],
the authors want to find policies minimizing the probability (risk) that the total discounted
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rewards do not exceed a specified value; in [16], the authors want to achieve a specified value
of the long-run limiting average reward at a given probability level (percentile). While those
strategies limit risk, they only ensure low probability for bad behaviors but not their absence,
furthermore, they do not ensure good expectation either. Another body of related work is
the study of strategies in MDPs that achieve a trade-off between the expectation and the
variance over the outcomes (e.g., [2] for the mean-payoff, [23] for the cumulative reward),
giving a statistical measure of the stability of the performance. In our setting, we strengthen
this requirement by asking for strict guarantees on individual outcomes, while maintaining
an appropriate expected payoff.

Future work. Study of other value functions, extension to more general settings (decidable
classes of imperfect information games [13], multi-dimension [6, 9], etc), and application to
practical cases.

Acknowledgments. We thank G. Latouche and G. Louchard for fruitful discussions about
Chernoff bounds in Markov models, and an anonymous reviewer for pointing out interesting
related works.

2 Beyond Worst-Case Synthesis

Weighted directed graphs. A weighted directed graph is a tuple G = (S,E,w) where (i)
S is the set of vertices, called states; (ii) E ⊆ S × S is the set of directed edges; and (iii)
w : E → Z is the weight function. Given s ∈ S, let Succ(s) = {s′ ∈ S | (s, s′) ∈ E} be its set
of successors. We assume that for all s ∈ S, Succ(s) 6= ∅ (no deadlock). We denote by W
the largest absolute weight.

A play in G from an initial state sinit ∈ S is an infinite sequence of states π = s0s1s2 . . .

such that s0 = sinit and (si, si+1) ∈ E for all i ≥ 0. The prefix up to the n-th state of π
is the finite sequence π(n) = s0s1 . . . sn. We denote its last state by Last(π(n)) = sn. The
set of plays of G is denoted by Plays(G) and the corresponding set of prefixes is denoted
by Prefs(G). Given a play π ∈ Plays(G), we denote by Inf(π) ⊆ S the set of states that are
visited infinitely often along the play.

Given a function f : Plays(G) → R ∪ {−∞, ∞}, the value of a play π is f(π). The
mean-payoff of a prefix ρ = s0s1 . . . sn is MP(ρ) = 1

n

∑i=n−1
i=0 w((si, si+1)). For plays,

MP(π) = lim infn→∞MP(π(n)). Given a graph with strictly positive weights (w : E → N0)
and a target set T ⊆ S, the truncated sum up to T is TST : Plays(G)→ N ∪ {∞}, TST (π =
s0s1s2 . . . ) =

∑n−1
i=0 w((si, si+1)), with n the first index such that sn ∈ T , and TST (π) =∞

if π never reaches any state in T .

Probability distributions. Given a finite set A, a (rational) probability distribution on A
is a function p : A→ [0, 1] ∩Q such that

∑
a∈A p(a) = 1. We denote the set of probability

distributions on A by D(A). The support of the probability distribution p on A is Supp(p) =
{a ∈ A | p(a) > 0}.

Two-player games. We consider two-player turn-based games and denote the two players
by P1 and P2. A finite two-player game is a tuple G = (G, S1, S2) composed of (i) a finite
weighted graph G = (S,E,w); and (ii) a partition of its states S into S1 and S2 that resp.
denote the sets of states belonging to P1 and P2. A prefix π(n) of a play π belongs to Pi,
i ∈ {1, 2}, if Last(π(n)) ∈ Si. The set of prefixes that belong to Pi is denoted by Prefsi(G).

STACS’14



202 Beyond Worst-Case Synthesis in Quantitative Games

We sometimes denote by |G| the size of a game, defined as a polynomial function of |S|, |E|
and V = dlog2W e.

Strategies. A strategy for Pi, i ∈ {1, 2}, is a function λi : Prefsi(G) → D(S) such that
for all ρ ∈ Prefsi(G), we have Supp(λi(ρ)) ⊆ Succ(Last(ρ)). A strategy is pure if its
support is a singleton for all prefixes. A strategy λi for Pi has finite memory if it can be
encoded by a stochastic finite state machine with outputs, called stochastic Moore machine,
M(λi) = (Mem,m0, αu, αn), where (i) Mem is a finite set of memory elements, (ii) m0 ∈ Mem
is the initial memory element, (iii) αu : Mem × S → Mem is the update function, and (iv)
αn : Mem× Si → D(S) is the next-action function. If the game is in s ∈ Si and m ∈ Mem is
the current memory, then the strategy chooses s′, the next state of the game, according to
the distribution αn(m, s). When the game leaves a state s ∈ S, the memory is updated to
αu(m, s). Pure strategies have deterministic next-action functions. A strategy is memoryless
if |Mem| = 1, i.e., it only depends on the current state of the game.

We resp. denote by Λi(G) and ΛFi (G) the sets of general (i.e., possibly randomized and
infinite-memory) and finite-memory strategies for player Pi on the game G. We do not write
G in this notation when the context is clear. A play π is said to be consistent with a strategy
λi ∈ Λi if for all n ≥ 0 such that Last(π(n)) ∈ Si, we have Last(π(n+ 1)) ∈ Supp(λi(π(n)).

Markov decisions processes. A finite Markov decision process (MDP) is a tuple P = (G, S1,

S∆,∆) where (i) G = (S,E,w) is a finite weighted graph, (ii) S1 and S∆ define a partition
of the set of states S into states of P1 and stochastic states, and (iii) ∆: S∆ → D(S) is the
transition function that, given a stochastic state s ∈ S∆, defines the probability distribution
∆(s) over the possible successors of s, such that for all states s ∈ S∆, Supp(∆(s)) ⊆ Succ(s).
In contrast to some other classical definitions of MDPs in the literature, we explicitly
allow that, for some states s ∈ S∆, Supp(∆(s)) ( Succ(s): some edges of the graph G
are assigned probability zero by the transition function. We define the subset of edges
E∆ = {(s1, s2) ∈ E | s1 ∈ S∆ Rightarrows2 ∈ Supp(∆(s1))}, representing all edges that
either start in a state of P1, or are chosen with non-zero probability by the transition function
∆. The notions of prefixes belonging to P1 and of strategies for P1 are naturally extended to
MDPs.

End-components. We define end-components (ECs) of an MDP as subgraphs in which P1
can ensure to stay despite stochastic states [11]. Let P = (G, S1, S∆,∆) be an MDP, with
G = (S,E,w) its underlying graph. An EC in P is a set U ⊆ S such that (i) the subgraph
(U,E∆∩ (U ×U)) is strongly connected, with E∆ defined as before, i.e., stochastic edges with
probability zero are treated as non-existent; and (ii) for all s ∈ U ∩S∆, Supp(∆(s)) ⊆ U , i.e.,
in stochastic states, all outgoing edges either stay in U or belong to E \ E∆ (the probability
of leaving U from a state s ∈ S∆ is zero).

Markov chains. A finite Markov chain (MC) is a tuple M = (G, δ) where (i) G = (S,E,w)
is a finite weighted graph; and (ii) δ : S → D(S) is the transition function that, given s ∈ S,
defines the distribution δ(s), such that for all s ∈ S, Supp(δ(s)) ⊆ Succ(s). In an MC,
an event is a measurable set of plays A ⊆ Plays(G). Every event has a uniquely defined
probability [26] (Carathéodory’s extension theorem induces a unique probability measure
on the Borel σ-algebra over Plays(G)). We denote by PMsinit

(A) the probability that a play
belongs to A when the MC M starts in sinit ∈ S and is executed for an infinite number of
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steps. Given a measurable function f : Plays(G)→ R∪{−∞, ∞}, we denote by expectMsinit
(f)

the expected value or expectation of f over a play starting in sinit.

Outcomes. Let M = (G, δ) be a Markov chain, with G = (S,E,w) its underlying graph.
Given an initial state sinit ∈ S, we define the set of its possible outcomes as

OutsM (sinit) = {π = s0s1s2 . . . ∈ Plays(G) | s0 = sinit ∧ ∀n ∈ N, sn+1 ∈ Supp(δ(sn))} .

Let G = (G, S1, S2) be a two-player game, with G = (S,E,w) its graph. Given two
strategies, λ1 ∈ Λ1 and λ2 ∈ Λ2, and an initial state sinit ∈ S, we extend the notion of
outcomes as follows:

OutsG(sinit, λ1, λ2) = {π = s0s1s2 . . . ∈ Plays(G) | s0 = sinit ∧ π is consistent with λ1 and λ2} .

When fixing the strategies, we obtain an MC denoted by G[λ1, λ2]. This MC is finite if both
λ1 and λ2 are finite-memory strategies. The outcomes of G and G[λ1, λ2] are not sensu
stricto of the same nature as the graph of the MC is obtained through the product of the
memory elements of the strategies given as Moore machines and the states of the game. Still,
there exists a bijection between outcomes of the MC and their traces in the initial game,
thanks to the projection operator on S. For the sake of readability, we equivalently refer to
outcomes and their traces.

Let P = (G, S1, S∆,∆) be an MDP, with G = (S,E,w) its graph. Again, we can fix
the strategy λ1 of P1 and obtain the MC P [λ1]. Its set of outcomes starting in sinit ∈ S is
denoted OutsP (sinit, λ1). Finally, back to the two-player game G, if we fix the strategy λi of
only one player Pi, i ∈ {1, 2}, we obtain not an MC, but an MDP for the remaining player
P3−i. This MDP is denoted by G[λi].

Subgraphs and subgames. Given a graph G = (S,E,w) and a subset A ⊆ S, we define the
induced subgraph G � A = (A,E ∩ (A×A), w) naturally. Subgames are defined similarly by
considering their induced subgraphs: they are only properly defined if the induced subgraphs
contain no deadlock.

Worst-case synthesis. Given a game G = (G, S1, S2), with G = (S,E,w), an initial state
sinit ∈ S, a function f : Plays(G) → R ∪ {−∞, ∞}, and a threshold µ ∈ Q, the worst-case
threshold problem asks to decide if P1 has a strategy λ1 ∈ Λ1 such that ∀λ2 ∈ Λ2, ∀π ∈
OutsG(sinit, λ1, λ2), f(π) ≥ µ. For the mean-payoff, pure memoryless optimal1 strategies
exist for both players [22, 14]. Hence, deciding the winner is in NP ∩ coNP, and it was
furthermore shown to be in UP ∩ coUP [28, 21, 18]. Whether the problem is in P is a
long-standing open problem [3, 7]. For the shortest path (truncated sum value function), it
can be shown that the decision problem takes polynomial time, as a winning strategy of P1
should avoid all cycles (because they yield strictly positive costs), hence usage of attractors
and comparison of the worst possible sum of costs with the threshold suffices.

1 A strategy for Pi, i ∈ {1, 2}, is said to be optimal if it ensures a threshold higher or equal to the
threshold ensured by any other strategy of the same player. The threshold ensured by an optimal
strategy is called the optimal value.

STACS’14



204 Beyond Worst-Case Synthesis in Quantitative Games

Expected value synthesis. Given an MDP P = (G, S1, S∆,∆), with G = (S,E,w), an
initial state sinit ∈ S, a measurable function f : Plays(G)→ R ∪ {−∞, ∞}, and a threshold
ν ∈ Q, the expected value threshold problem asks to decide if P1 has a strategy λ1 ∈ Λ1 such
that EP [λ1]

sinit (f) ≥ ν. Optimal expected mean-payoff in MDPs can be achieved by memoryless
strategies, and the corresponding decision problem can be solved in polynomial time through
linear programming [15]. The truncated sum value function has been studied in the literature
under the name of shortest path problem: again, memoryless strategies suffice to be optimal
and the problem is solvable in polynomial time [1, 12].

Beyond worst-case synthesis. We study the synthesis of finite-memory strategies that
ensure, simultaneously, a value greater than a threshold µ in the worst-case (i.e., against
any strategy of the adversary), and an expected value greater than a threshold ν against a
given finite-memory stochastic model of the adversary (e.g., representing commonly observed
behavior of the environment).

I Definition 1. Given a game G = (G, S1, S2), with G = (S,E,w), an initial state sinit ∈ S,
a finite-memory stochastic model λstoch

2 ∈ ΛF2 of the adversary, represented by a stochastic
Moore machine, a measurable value function f : Plays(G)→ R∪{−∞, ∞}, and two thresholds
µ, ν ∈ Q, the beyond worst-case (BWC) problem asks to decide if P1 has a finite-memory
strategy λ1 ∈ ΛF1 such that{

∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ1, λ2), f(π) > µ (1)

EG[λ1,λ
stoch
2 ]

sinit (f) > ν (2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

We take the convention to ask for values strictly greater than the thresholds to ease the
formulation of our results in the following. Indeed, for some thresholds, it is possible to
synthesize strategies that ensure ε-close values, for any ε > 0, while it is not feasible to
achieve the exact threshold. Notice that we can assume ν > µ, otherwise the problem reduces
to the classical worst-case analysis.

3 Mean-Payoff Value Function

We present algorithm BWC_MP (Alg. 1) for the BWC synthesis problem and we highlight
its cornerstones. Results on memory requirements follow. A sample game is presented in
Fig. 2.

Inputs and outputs. The algorithm takes as input: a game Gi, a finite-memory stochastic
model of the adversary λi2, a worst-case threshold µi, an expected value threshold νi, and an
initial state siinit. Its output is Yes if and only if there exists a finite-memory strategy of P1
satisfying the BWC problem. We present how to synthesize such a satisfying strategy in the
following.

Preprocessing. The first part of the algorithm (lines 1-7) is the preprocessing of the game Gi
and the stochatic model λi2 given as inputs in order to apply the second part of the algorithm
(lines 8–11) on a modified game G and stochastic model λstoch

2 , simpler to manipulate. We
ensure that the answer to the BWC problem on the modified game is Yes if and only if it is
also Yes on the input game, and that winning strategies of P1 in G can be transferred to
winning strategies in Gi.
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Algorithm 1 BWC_MP(Gi, λi
2, µ

i, νi, si
init)

Require: Gi =
(
Gi, Si

1, S
i
2
)
a game, Gi =

(
Si, Ei, wi

)
its underlying graph, λi

2 ∈ ΛF
2 (Gi) a finite-

memory stochastic model of the adversary, M(λi
2) = (Mem,m0, αu, αn) its Moore machine,

µi = a
b
, νi ∈ Q, µi < νi, resp. the worst-case and the expected value thresholds, and si

init ∈ Si

the initial state
Ensure: The answer is Yes if and only if P1 has a finite-memory strategy λ1 ∈ ΛF

1 (Gi) satisfying
the BWC problem from si

init, for the thresholds pair (µi, νi) and the mean-payoff value function
{Preprocessing}

1: if µi 6= 0 then define ∀ e ∈ Ei, wi
new(e) := b ·wi(e)−a, and consider thresholds (0, ν := b ·νi−a)

2: Compute SWC :=
{
s ∈ Si | ∃λ1 ∈ Λ1(Gi), ∀λ2 ∈ Λ2(Gi), ∀π ∈ OutsGi (s, λ1, λ2), MP(π) > 0

}
3: if si

init 6∈ SWC then return No else
4: Let Gw := Gi � SWC be the subgame induced by worst-case winning states
5: Build G := Gw ⊗M(λi

2) = (G, S1, S2), G = (S,E,w), S ⊆ (SWC ×Mem), the game obtained
by product with the Moore machine, and sinit := (si

init,m0) the corresponding initial state
6: Let λstoch

2 ∈ ΛM
2 (G) be the memoryless transcription of λi

2 on G
7: Let P := G[λstoch

2 ] = (G, S1, S∆ = S2,∆ = λstoch
2 ) be the MDP obtained from G and λstoch

2

{Main algorithm}
8: Compute Uw the set of maximal winning end-components of P
9: Build P ′ = (G′, S1, S∆,∆), where G′ = (S,E,w′) and w′ is defined s.t. ∀ e = (s1, s2) ∈ E,

w′(e) := w(e) if ∃ U ∈ Uw s.t. {s1, s2} ⊆ U , or w′(e) := 0 otherwise
10: Compute the maximal expected value ν∗ from sinit in P ′
11: if ν∗ > ν then return Yes else return No

First, we modify the weights of Gi in order to consider the equivalent BWC problem
with thresholds (0, ν). This classical trick is used to get rid of explicitely considering the
worst-case threshold in the following, as it is equal to zero. Second, observe that any strategy
that is winning for the BWC problem must also be winning for the classical worst-case
problem. Such a strategy cannot allow visits of any state from which P1 cannot ensure
winning against an antagonistic adversary: entering such a state would be losing no matter
the prefix. Indeed, mean-payoff is prefix-independent: for all ρ ∈ Prefs(G), π ∈ Plays(G) we
have that MP(ρ · π) = MP(π). Hence, we reduce our study to Gw, the subgame induced
by worst-case winning states in Gi (lines 2 and 4). Obviously, if from the initial state siinit,
P1 cannot win the worst-case problem, then the answer to the BWC problem is No (lines
3). Third, we build the game G which states are defined by the product of the states of
Gw and the memory elements of M(λi2) (line 5). Intuitively, we expand the initial game by
integrating the memory of the stochastic model of P2 in the graph. This does not modify
the power of the adversary. Fourth, the finite-memory stochastic model λi2 on Gi clearly
translates to a memoryless stochastic model λstoch

2 on G (line 6). This helps us obtain elegant
proofs for the second part of the algorithm.

Analysis of end-components. The second part of the algorithm (lines 8-11) operates on a
game G such that from all states, P1 has a strategy to achieve a strictly positive mean-payoff
(recall µ = 0). We consider the MDP P = G[λstoch

2 ] and notice that the underlying graphs of
G and P are the same thanks to λstoch

2 being memoryless. The next steps rely on the analysis
of end-components in the MDP, i.e., strongly connected subgraphs in which P1 can ensure to
stay when playing against the stochastic adversary. The motivation to this analysis arises
from the following well-known result.
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Figure 2 End component U2 is losing. The set of maximal winning ECs is Uw = {U1, U3}. The
set of winning ECs is W = Uw ∪ {{s5, s6}, {s6, s7}}.

I Lemma 2 ([10, 11]). Let P = (G, S1, S∆,∆) be an MDP, G = (S,E,w) its underlying
graph, E ⊆ 2S the set of its ECs, sinit ∈ S the initial state, and λ1 ∈ Λ1(P ) an arbitrary
strategy of P1. Then,

PP [λ1]
sinit

(
{π ∈ OutsP [λ1](sinit) | Inf(π) ∈ E}

)
= 1.

Recall that the mean-payoff is prefix-independent, therefore the value of any outcome only
depends on the states that are seen infinitely often. Hence, the expected mean-payoff in
P [λ1] depends uniquely on the value obtained in the ECs. Inside an EC, we can compute
the maximal expected value that can be achieved by P1, and this value is the same in all
states of the EC [15].

To satisfy the expected value requirement (eq. (2)), an acceptable strategy has to favor
reaching ECs with a sufficient expectation, but under the constraint that it also ensures the
worst-case requirement (eq. (1)): some ECs with high expected values may still need to be
avoided because they do not permit to guarantee this constraint. This is the cornerstone of
the classification of ECs that follows.

Classification of end-components. Let E ⊆ 2S be the set of all ECs in P . By definition,
only edges in E∆, as defined in Sect. 2, are involved to determine which sets of states form
an EC in P . For any EC U ∈ E , there may exist edges from E \E∆ starting in U , such that
P2 can force leaving U when using an arbitrary strategy. Still these edges will never be used
by the stochastic model λstoch

2 . This remark is important to the definition of strategies of P1
that guarantee the worst-case requirement, as P1 needs to be able to react to the hypothetic
use of such an edge. It is also the case inside an EC.

Now, we want to consider the ECs in which P1 can ensure that the worst-case requirement
will be fulfilled (without having to leave the EC): we call them winning. The others need to
be eventually avoided, hence have zero impact on the expectation of a finite-memory strategy
satisfying the BWC problem. So we call the latter losing. Formally, let U ∈ E be an EC. It
is winning if, in the subgame G � U , from all states, P1 has a strategy to ensure a strictly
positive mean-payoff against any strategy of P2 that only chooses edges which are assigned
non-zero probability by λstoch

2 , or equivalently, edges in E∆. We denote W ⊆ E the set of such
ECs. Non-winning ECs are losing: in those, whatever the strategy of P1 played against the
stochastic model λstoch

2 (or any strategy with the same support), there exists at least one
outcome for which the mean-payoff is not strictly positive (even if its probability is zero, its
mere existence is not acceptable for the worst-case requirement).

Maximal winning end-components. Based on these definitions, observe that line 8 of
algorithm BWC_MP does not actually compute the set W containing all winning ECs, but
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the set Uw ⊆ W, defined as Uw = {U ∈ W | ∀U ′ ∈ W, U ⊆ U ′ ⇒ U = U ′}, i.e., the set of
maximal winning ECs.

The intuition on why we can restrict to this subset is as follows. If an EC U1 ∈ W
is included in another EC U2 ∈ W, then the maximal expected value achievable in U2 is
at least equal to the one achievable in U1. Indeed, P1 can reach U1 with probability one
(by virtue of U2 being an EC and U1 ⊆ U2) and stay in it with probability one (by virtue
of U1 being an EC): the expectation is equal to what can be obtained in U1 thanks to
the prefix-independence. Hence it is sufficient to consider maximal winning ECs in our
computations.

As for why we do it, the complexity gain is critical. The number of winning ECs can
be exponential in the size of the input, as |W| ≤ |E | ≤ 2|S|. Yet, the number of maximal
ones is bounded by |Uw| ≤ |S| as they are disjoint by definition: for any two winning ECs
with a non-empty intersection, their union is also an EC, and is still winning because P1 can
essentially stick to the EC of his choice.

I Lemma 3. The set Uw of maximal winning ECs can be computed in NP ∩ coNP.

Roughly sketched, our recursive subalgorithm computes the maximal EC decomposition of
an MDP (in polynomial time [8]), then checks for each EC U in the decomposition (their
number is polynomial) if U is winning or not, which requires a call to an NP ∩ coNP oracle
solving the worst-case threshold problem on the corresponding subgame. If U is losing, it
may still be the case that a sub-EC U ′ ( U is winning. We recurse on the MDP reduced
to U , where states from which P2 can win in U have been removed: the stack of calls is at
most polynomial.

Ensure reaching winning end-components. We now refine Lemma 2 for finite-memory
strategies that satisfy the BWC problem.

I Lemma 4. Let G = (G, S1, S2) be a two-player game, λstoch
2 ∈ ΛM2 a memoryless stochastic

model of P2, P = G[λstoch
2 ] the resulting MDP and sinit ∈ S the initial state. Let λf1 ∈ ΛF1 be

a finite-memory strategy of P1 that satisfies the BWC problem for thresholds (0, ν) ∈ Q2.
Then, we have that

PP [λf
1 ]

sinit

({
π ∈ OutsP [λf

1 ](sinit) | Inf(π) ∈W
})

= 1.

Equivalently, the probability that Inf(π) = U for some U ∈ E \W is zero. The equality is
crucial. It may be the case, with non-zero probability, that Inf(π) = U ′ ( U for some U ′ ∈W
and U ∈ E \W (hence the recursive algorithm to compute Uw). It is clear that P1 should
not visit all the states of a losing EC forever, as then he would not be able to guarantee the
worst-case threshold.

Our goal is to build an MDP P ′, sharing the same graph and ECs as P , such that an
optimal strategy for the expectation problem on P ′ will naturally avoid losing ECs and
prescribe which winning ECs are the most interesting to reach for a BWC strategy on the
initial game G and MDP P . The expected value obtained in P by any BWC satisfying
strategy of P1 only depends on the weights of edges involved in winning ECs, or equivalently,
in maximal winning ECs (as the set of outcomes that are not trapped in them has measure
zero). We build P ′ by modifying the weights of P (line 9): we keep them unchanged in edges
that belong to some U ∈ Uw, and we put them to zero everywhere else, which is lower than
the expectation granted by winning ECs (strictly positive by definition).
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Reach the highest valued winning end-components. We compute the maximal expected
value ν∗ that can be achieved by P1 in the MDP P ′, from the initial state (line 10). It
takes polynomial time and memoryless strategies suffice to achieve the maximal value [15].
Basically, we build a strategy that favors reaching ECs with high associated expectations
in P ′. We argue that the ECs reached with probability one by this strategy are necessarily
winning ECs. Clearly, if a winning EC is reachable instead of a losing one, it will be favored
because of the weights definition in P ′ (expectation is strictly higher in winning ECs). It
remains to check if winning ECs are reachable with probability one from any state in S. They
are, due to the preprocessing. Indeed, all states are winning for the worst-case requirement.
Clearly, from any state in A = S \

⋃
U∈ ecsSet U , P1 cannot ensure to stay in A (otherwise it

would form an EC) and must be able to win the worst-case from reached ECs. Now for any
state in B =

⋃
U∈E U \

⋃
U∈Uw

U , i.e., states in losing ECs and not in any sub-EC winning,
P1 cannot win the worst-case by staying in B, by definition of losing EC. Since P1 can ensure
the worst-case by hypothesis, he must be able to reach C =

⋃
U∈Uw

U from any state in B,
as claimed.

Inside winning end-components. Based on that, winning ECs are reached with probability
one. Consider what we can say about such ECs assuming that E∆ = E, i.e., if all possible
edges are mapped to non-zero probabilities. We establish a finite-memory combined strategy
of P1 that ensures (i) worst-case satisfaction while yielding (ii) an expected value ε-close to
the maximal expectation inside the component. For two well-chosen parameters K,L ∈ N,
it is informally defined as follows: in phase (a), play a memoryless expected value optimal
strategy for K steps and memorize Sum ∈ Z, the sum of weights along these steps; in phase
(b), if Sum > 0, go to (a), otherwise play a memoryless worst-case optimal strategy for L
steps, then go to (a). In phases (a), P1 tries to increase its expectation and approach its
optimal one, while in phase (b), he compensates, if needed, losses that occured in phase (a).
The two memoryless strategies exist on the subgame induced by the EC: by definition of
ECs, based on E∆, the stochastic model of P2 will never be able to force leaving the EC
against the combined strategy. A key result of our paper is the existence of values for K
and L such that (i) and (ii) are verified, as stated in the next theorem.

I Theorem 5. Inside a WEC with ν∗ ∈ Q the maximal expectation achievable by P1, for
all ε > 0, there exists a finite-memory strategy of P1 that satisfies the BWC problem for
thresholds (0, ν∗ − ε).

We see plays as sequences of periods, each starting with phase (a). First, for any K, we can
define L(K) such that any period composed of phases (a) + (b) ensures a mean-payoff at
least 1/(K + L) > 0. Periods containing only phase (a) trivially induce a mean-payoff at
least 1/K. Both rely on the weights being integers. As the length of any period is bounded,
the inequality remains strict for the mean-payoff of any play, granting (i). Now, consider
parameter K. Clearly, when K →∞, the expectation over a phase (a) tends to the optimal
one. Nevertheless, phases (b) also contribute to the overall expectation of the combined
strategy, and (in general) lower it so that it is strictly less than the optimal for any K,L ∈ N.
Hence to prove (ii), we not only need that the probability of playing phase (b) decreases
when K increases, but also that it decreases faster than the increase of L, needed to ensure
(i), so that overall, the contribution of phases (b) tends to zero when K →∞. This is indeed
the case and can be proved using results bounding the probability of observing a mean-payoff
significantly (more than some ε) different than the optimal expectation along a phase (a) of
length K ∈ N: this probability decreases exponentially when K increases [25, 19] (related to
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the notions of Chernoff bounds and Hoeffding’s inequality in MCs), while L only needs to be
polynomial in K.

Now, consider what happens if E∆ ( E. If P2 uses an arbitrary strategy, he can take
edges of probability zero, i.e., in E \ E∆, either staying in the EC, or leaving it. In both
cases, this must be taken into account in order to satisfy eq. (1) as it may involve dangerous
weights (recall that zero-probability edges are not considered when an EC is classified as
winning or not). Fortunately, if this were to occur, P1 could switch to a worst-case winning
memoryless strategy, which exists in all states thanks to the preprocessing (line 4). This has
no impact on the expectation as it occurs with probability zero against λstoch

2 . The strategy
to follow in winning ECs adds this reaction procedure to the combined strategy: we call it
the witness-and-secure strategy.

Global strategy synthesis. In summary, losing ECs should be avoided and will be by a
strategy that optimizes the expectation on the MDP P ′; in winning ECs, P1 can obtain the
expectation of the EC (at some arbitrarily small ε close) and ensure the worst-case threshold.
We finally compare the value ν∗ with the threshold ν (line 11): (i) if ν∗ > ν, there exists
a finite-memory strategy satisfying the BWC problem, and (ii) if not, there does not exist
such a strategy.

I Lemma 6. Algorithm BWC_MP is correct and complete.

To prove (i), we establish a finite-memory strategy in G, called global strategy, of P1 that
ensures a strictly positive mean-payoff against any antagonistic adversary, and ensures an
expected mean-payoff ε-close to ν∗ (hence, strictly greater than ν) against the stochastic
adversary modeled by λstoch

2 (i.e., in P ). The intuition is as follows. We play the memoryless
optimal strategy of the MDP P ′ for a sufficiently long time, defined by a parameter N ∈ N,
in order to be with probability close to one in a winning EC (the convergence is exponential
by results on absorption times in MCs [20]). Then, if inside a winning EC, we switch to the
witness-and-secure strategy which ensures both thresholds. If not yet in a winning EC, we
switch to a worst-case winning strategy in G, existing by hypothesis. Thus the mean-payoff
of plays that do not reach winning ECs is strictly positive. Since in winning ECs we are
ε-close to the maximal expected value of the EC, we conclude that it is possible to play the
optimal expectation strategy of MDP P ′ for sufficiently long to obtain an overall expected
value which is arbitrarily close to ν∗, and still guarantee the worst-case threshold in all
outcomes. To prove (ii), it suffices to understand that only ECs have an impact on the
expectation, and that losing ECs cannot be used forever without endangering the worst-case
requirement. Given a winning strategy on G, we can build a corresponding winning strategy
on Gi by reintegrating the memory elements of the Moore machine in the memory of the
strategy of P1.

Complexity bounds. The input size depends on the sizes of the game and the Moore machine
for the stochastic model, and the encodings of weights and thresholds. All computations
require (deterministic) polynomial time except for external calls solving the worst-case
threshold problem, which is in NP ∩ coNP [28, 21] and not known to be in P. Hence, the
overall complexity is in NP ∩ coNP and may collapse to P if the worst-case problem were
to be proved in P: the BWC framework for mean-payoff surprisingly provides additional
modeling power without negative impact on the complexity class. We establish that the
BWC problem is at least as difficult as the worst-case problem thanks to a polynomial time
reduction from the latter to the former. Thus, membership to NP ∩ coNP can be seen as
optimal regarding our current knowledge of the worst-case problem.
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I Theorem 7. The beyond worst-case problem for the mean-payoff value function is in
NP ∩ coNP and at least as hard as mean-payoff games.

Memory requirements. The global strategy suffices if satisfaction of the BWC problem is
possible. All the involved strategies (global, witness-and-secure, combined) are alternations
between pure memoryless strategies, based on parameters N , K and L ∈ N, which only
need to be polynomial in the size of the game and the stochastic model, and in the values,
granting the upper bound of Thm. 8. This bound is tight as polynomial memory in the
value of weights is needed in general. Consider a family of games, (G(X))X∈N0 , based on the
subgame G � U3 in Fig. 2, but with weights −X and X + 5 instead of −1 and 9 respectively.
When choosing µ = 0 and ν ∈ ]1, 5/4[, the BWC problem is satisfiable and it cannot be
achieved by the memoryless strategy that always chooses edge (s6, s5). It is thus mandatory
to choose (s6, s7) infinitely often in order to win. Moreover, after some point, everytime this
edge is chosen, a satisfying strategy must eventually counteract the potential negative weight
−X by taking edge (s1, s2) for bX/2c+ 1 times. Hence polynomial memory in W is needed.

I Theorem 8. Memory of pseudo-polynomial size may be necessary and is always sufficient
to satisfy the BWC problem for the mean-payoff: polynomial in the size of the game and the
stochastic model, and polynomial in the weight and threshold values.

4 Truncated Sum Value Function - Shortest Path Problem

Let us consider a game graph such that w : E → N0 assigns strictly positive integer weights
to all edges, and a target set T ⊆ S that P1 wants to reach with a path of bounded value.
In other words, we study the BWC problem for the shortest path [1, 12]. More precisely,
given an initial state sinit ∈ S, the goal of P1 is to ensure to reach T with a path of truncated
sum strictly lower than µ ∈ N against all possible behaviors of P2 while guaranteeing, at
the same time, an expected cost to target strictly lower than ν ∈ Q against the stochastic
model of the adversary specified by the stochastic Moore machine M(λstoch

2 ). Regarding Def.
1, the inequalities are reversed. Hence we assume ν < µ.

A pseudo-polynomial time algorithm. First, we construct, from the original game G and
the worst-case threshold µ, a new game Gµ such that there is a bijection between the
strategies of P1 in Gµ and the strategies of P1 in the original game G that are winning for
the worst-case requirement: we unfold the original graph G, tracking the current value of
the truncated sum up to the worst-case threshold µ, and integrating this value in the states
of an expanded graph G′. In the corresponding game G′, we compute the set of states R
from which P1 can reach the target set with cost lower than µ and we define the subgame
Gµ = G′ � R such that any path in the graph of Gµ satisfies the worst-case requirement.
Second, from Gµ and the stochastic Moore machine M(λstoch

2 ), we construct an MDP in
which we search for a playerOne strategy that ensures reachability of T with an expected
cost strictly lower than ν. If it exists, it is guaranteed that it will also satisfy the worst-case
requirement against any strategy of P2 thanks to the bijection evoked earlier.

I Theorem 9. The beyond worst-case problem for the shortest path can be solved in pseudo-
polynomial time: polynomial in the size of the underlying game graph, the Moore machine
for the stochastic model of the adversary and the encoding of the expected value threshold,
and polynomial in the value of the worst-case threshold.
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Memory requirements. The construction of Thm. 9 yields an upper bound that is polyno-
mial in the size of the game and the stochastic model, and in the value of the worst-case
threshold. Indeed, the synthesized strategy is memoryless in the MDP P that is obtained by
taking the product of the expanded game Gµ, such that |Gµ| ≤ |G| · (µ+ 1), with the Moore
machine M(λstoch

2 ).

s1 s2

s3

1
2

1
2

1

1
⌊
µ

2

⌋

1

1

Figure 3 Family of games requir-
ing linear memory in µ.

We exhibit a family of games (Fig. 3) for which
winning requires memory linear in µ, proving that the
pseudo-polynomial bound is tight. Let µ ∈ {13 + k · 4 |
k ∈ N}. From s1, P1 can ensure reaching the target set
T = {s3} at a guaranteed cost of

⌊
µ
2
⌋
. Yet, in order to

minimize the expected cost of reaching T , P1 should try to
reach it via state s2, as the cost will be diminished. Hence,
P1 should play edge (s1, s2) repeatedly, up to the point
where playing (s1, s3) becomes mandatory to preserve the
worst-case requirement (i.e., when the running sum of
weights becomes equal to

⌊
µ
2
⌋
as the total cost for the

worst outcome will be 2 ·
⌊
µ
2
⌋
< µ). To implement this

strategy, P1 has to play (s1, s2) exactly
⌊
µ
4
⌋
times and

then switch to (s1, s3). This requires memory linear in
the value µ. The expected value threshold ν can be chosen sufficiently low so that P1 is
compelled to use this optimal strategy to satisfy the BWC problem.

I Theorem 10. Memory of pseudo-polynomial size may be necessary and is always sufficient
to satisfy the BWC problem for the shortest path: polynomial in the size of the game and the
stochastic model, and polynomial in the worst-case threshold value.

NP-hardness of the decision problem. We establish that it is very unlikely that a truly-
polynomial (i.e., also polynomial in the size of the encoding of the worst-case threshold) time
algorithm exists, as the decision problem is NP-hard. Actually, it is likely that the problem
is not in NP at all, since we prove a reduction from the Kth largest subset problem which is
known to be NP-hard and commonly thought to be outside NP as natural certificates for
the problem are larger than polynomial [17].

The Kth largest subset problem is as follows. Given a finite set A, a size function
h : A → N0 assigning strictly positive integer values to elements of A, and two naturals
K,L ∈ N, decide if there exist K distinct subsets Ci ⊆ A, 1 ≤ i ≤ K, such that h(Ci) =∑
a∈Ci

h(a) ≤ L for all K subsets. The reduction is as follows. We build a game composed of
two gadgets. The random subset selection gadget stochastically generates paths representing
subsets of A, with the property that all subsets are equiprobable. The choice gadget follows.
In it, P1 decides either to go to a state se, which leads to lower expectations but may be
dangerous for the worst-case requirement, or to go to a state swc, always safe with regard to
the worst-case but inducing an higher expected cost. The crux of the proof is to define values
of the thresholds and the weights such that an optimal (i.e., minimizing the expectation
while guaranteeing a given worst-case threshold) strategy for P1 consists in choosing se only
when the generated subset C ⊆ A satisfies h(C) ≤ L, as asked by the Kth largest subset
problem; and such that this strategy satisfies the BWC problem if and only if there exist K
distinct subsets that verify this bound, i.e., if and only if the answer to the Kth largest subset
problem is Yes.

I Theorem 11. The beyond worst-case problem for the shortest path is NP-hard.
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