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Abstract
In a stochastic probing problem we are given a universe E, where each element e ∈ E is active
independently with probability pe ∈ [0, 1], and only a probe of e can tell us whether it is active or
not. On this universe we execute a process that one by one probes elements — if a probed element
is active, then we have to include it in the solution, which we gradually construct. Throughout
the process we need to obey inner constraints on the set of elements taken into the solution,
and outer constraints on the set of all probed elements. This abstract model was presented by
Gupta and Nagarajan [18], and provides a unified view of a number of problems. Thus far all
the results in this general framework pertain only to the case in which we are maximizing a
linear objective function of the successfully probed elements. In this paper we generalize the
stochastic probing problem by considering a monotone submodular objective function. We give
a (1− 1/e)/(kin + kout + 1)-approximation algorithm for the case in which we are given kin ≥ 0
matroids as inner constraints and kout ≥ 1 matroids as outer constraints. There are two main
ingredients behind this result. First is a previously unpublished stronger bound on the continuous
greedy algorithm due to Vondrak [22]. Second is a rounding procedure that also allows us to
obtain an improved 1/(kin + kout)-approximation for linear objective functions.
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1 Introduction

Uncertainty in input data is a common feature of most practical problems, and research
in finding good solutions (both experimental and theoretical) for such problems has a long
history dating back to 1950 [6, 11]. We consider adaptive stochastic optimization problems in
the framework of Dean et al. [13]. Here the solution is in fact a process, and the optimal one
might even require larger than polynomial space to describe. Since the work of Dean et al. a
number of such problems were introduced [10, 14, 15, 16, 4, 17, 12]. Gupta and Nagarajan [18]
present an abstract framework for a subclass of adaptive stochastic problems giving a unified
view for Stochastic Matching [10] and Sequential Posted Pricing [9].

We describe the framework following [18]. We are given a universe E, where each element
e ∈ E is active with probability pe ∈ [0, 1] independently. The only way to find out if an
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element is active, is to probe it. We call a probe successful if an element turns out to be
active. On universe E we execute an algorithm that probes the elements one-by-one. If
an element is active, the algorithm must add it to the current solution. In this way, the
algorithm gradually constructs a solution consisting of active elements.

Here, we consider the case in which we are given constraints on both the elements
probed and the elements included in the solution. Formally, suppose that we are given two
independence systems of downward-closed sets: an outer independence system (E, Iout)
restricting the set of elements probed by the algorithm, and an inner independence system(
E, Iin

)
, restricting the set of elements taken by the algorithm. We denote by Qt the set

of elements probed in the first t steps of the algorithm, and by St the subset of active
elements from Qt. Then, St is the partial solution constructed by the first t steps of the
algorithm. We require that, at each time t, Qt ∈ Iout and St ∈ Iin. Thus, at each time
t, the element e that we probe must satisfy both Qt−1 ∪ {e} ∈ Iout and St−1 ∪ {e} ∈ Iin.
Gupta and Nagarajan [18] considered many types of systems Iin and Iout, but we focus
only on matroid intersections, i.e. on the special case in which Iin is an intersection of kin
matroidsMin

1 , . . . ,Min
kin , and I

out is an intersection of kout matroidsMout
1 , . . . ,Mout

kout . We
always assume that kout ≥ 1 and kin ≥ 0. We assume familiarity with matroid algorithmics
(see [20], for example) and, above all, with principles of approximation algorithms (see [21],
for example).

Considering submodular objective functions is a common practice in combinatorial
optimization as it extends the range of applicability of many methods. So far, the framework
of stochastic probing has been used to maximize the expected weight of the solution found
by the process. We were given weights we ≥ 0 for e ∈ E and, if S denotes the solution at the
end of a process, the goal was to maximize ES

[∑
e∈S we

]
. We generalize the framework as

we consider a monotone submodular function f : 2E 7→ R≥0, and objective of maximizing
ES [f (S)].

1.1 Our results
Our result is a new algorithm for stochastic probing problem based on iterative random-
ized rounding of linear programs and the continuous greedy process introduced by Calin-
escu et al. [8].

I Theorem 1. An algorithm based on the continuous greedy process and iterative random-
ized rounding is a (1−e−1)

kin+kout+1 -approximation for stochastic probing problem with monotone
submodular objective function.

Additionally, we improve the bound of 1
4(kin+kout) given by Gupta and Nagarajan [18] in the

case of a linear objective.

I Theorem 2. The iterative randomized rounding algorithm is a 1
kin+kout -approximation for

the stochastic probing problem with a linear objective function.

1.2 Applications
On-line dating and kidney exchange [10]

Consider an online dating service. For each pair of users, machine learning algorithms
estimate the probability that they will form a happy couple. However, only after a pair
meets do we know for sure if they were successfully matched (and together leave the dating
service). Users have individual patience numbers that bound how many unsuccessful dates
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they are willing to go on until they will leave the dating service forever. The objective of the
service is to maximize the number of successfully matched couples.

To model this as a stochastic probing problem, users are represented as vertices V of a
graph G = (V,E), where edges represent matched couples. Set E of edges is our universe
on which we make probes, with pe being the probability that a couple e = (u1, u2) forms a
happy couple after a date. The inner constraints are matching constraints — a user can be
in at most one couple —, and outer constraints are b–matching — we can probe at most
t (u) edges adjacent to user u, where t (u) denotes the patience of u. Both inner and outer
constraints are intersections of two matroids for bipartite graphs. In similar way we can
model kidney exchanges.

In weighted bipartite case Theorem 2 gives a 1/4-approximation. Even though b–matchings
in general graphs are not intersections of two matroids, we are able to exploit the matching
structure to give the same factor-1/4 approximation. Since the technique is very similar to
the case of intersection of two matroids, we omit the proof. This matches the current-best
bound for general graphs of Bansal et al. [5], who also give a 1/3-approximation in the
bipartite case.

Bayesian mechanism design [18]

Consider the following mechanism design problem. There are n agents and a single seller
providing a certain service. Agent’s i value for receiving service is vi, drawn independently
from a distribution Di over set {0, 1, . . . , B}. The valuation vi is private, but the distribution
Di is known. The seller can provide service only for a subset of agents that belongs to system
I ∈ 2[n], which specifies feasibility constraints. A mechanism accepts bids of agents, decides
on subset of agents to serve, and sets individual prices for the service. A mechanism is called
truthful if agents bid their true valuations. Myerson’s theory of virtual valuations yields
truthful mechanisms that maximize the expected revenue of a seller, although they sometimes
might be impractical. On the other hand, practical mechanisms are often non-truthful. The
Sequential Posted Pricing Mechanism (SPM) introduced by Chawla et al. [9] gives a nice
trade-off — it is truthful, simple to implement, and gives near-optimal revenue. An SPM
offers each agent a “take-it-or-leave-it” price for the service. Since after a refusal a service
won’t be provided, it is easy to see that an SPM is a truthful mechanism.

To see an SPM as a stochastic probing problem, we consider a universe E = [n] ×
{0, 1, . . . , B}, where element (i, c) represents an offer of price c to agent i. The probability
that i accepts the offer is P [vi ≥ c], and seller earns c then. Obviously, we can make only
one offer to an agent, so outer constraints are given by a partition matroid; making at
most one probe per agent also overcomes the problem that probes of (i, 1) , ..., (i, B) are not
independent. The inner constraints on universe [n] × {0, 1, . . . , B} are simply induced by
constraints I on [n].

Gupta and Nagarajan [18] give an LP relaxation for any single-seller Bayesian mechanism
design problem. Provided that we can optimize over P (I), the LP can be used to construct
an efficient SPM. Moreover, the approximation guarantee of the constructed SPM is with
respect to the optimal mechanism, which need not be an SPM.

In the case constraints I are an intersection of k matroids the resulting SPM is a 1
4(k+1) -

approximation [18]. Here, we give an improved approximation algorithm with a factor- 1
k+1

guarantee. In particular, when k = 1 we match [9, 19] with 1/2-approximation.

STACS’14
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1.3 Related work
The stochastic matching problem with applications to online dating and kidney exchange
was introduced by Chen et al. [10], where authors proved a 1/4-approximation of a greedy
strategy for unweighted case. The authors also show that the simple greedy approach gives
no constant approximation in the weighted case. Their bound was later improved to 1/2
by Adamczyk [1]. As noted in our discussion of applications, Bansal et al. [5] gave 1/3
and 1/4-approximations for weighted stochastic matching in bipartite and general graphs,
respectively.

Sequential Posted Pricing mechanisms were investigated first by Chawla et al. [9], followed
by Yan [24], and Kleinberg and Weinberg [19]. Gupta and Nagarajan [18] were first to propose
looking at SPM from the point of view of stochastic adaptive problems.

Asadpour et al. [4] were first to consider a stochastic adaptive problem with submodular
objective function. In our terms, they considered only a single outer matroid constraint.

Work of Calinescu et al. [8] provides the tools for submodular functions we use in this
paper. The method of [24] was based on “correlation gap” [3], something we address implicitly
in Subsection 2.2.2.

2 Preliminaries

For set S ⊆ E and element e ∈ E we use S + e to denote S ∪ {e}, and S − e to denote
S \ {e}. For set S ⊆ E we shall denote by 1S a characteristic vector of set S, and for a
single element e we shall write 1e instead of 1{e}. For random event A we shall denote by
χ [A] a 0-1 random variable that indicates whether A occurred. The optimal strategy will
be denoted by OPT , and we shall denote the expected objective value of its outcome as
E [OPT ].

2.1 Matroids and polytopes
LetM = (E, I) be a matroid, where E is the universe of elements and I ⊆ 2E is a family of
independent sets. For element e ∈ E, we shall denote the matroidM with e contracted by
M/e, i.e.M/e = (E − e, {S ⊆ E − e |S + e ∈ I }).

The following lemma is a slightly modified1 basis exchange lemma, which can be found
in [20].

I Lemma 3. Let A,B ∈ I and |A| = |B|. There exists a bijection φ : A 7→ B such that: 1)
φ (e) = e for every e ∈ A ∩B, 2) B − φ (e) + e ∈ I.

We shall use the following corollary, where we consider independent sets of possibly
different sizes.

I Corollary 4. Let A,B ∈ I. We can find assignment φA,B : A 7→ B ∪ {⊥} such that:
1. φA,B (e) = e for every e ∈ A ∩B,
2. for each f ∈ B there exists at most one e ∈ A for which φA,B (e) = f ,
3. for e ∈ A \B, if φA,B (e) = ⊥ then B + e ∈ I, otherwise B − φA,B (e) + e ∈ I.

We consider optimization over matroid polytopes which have the general form P (M) ={
x ∈ RE≥0

∣∣∀A∈I∑e∈A xe ≤ rM (A)
}
, where rM is the rank function ofM. We know [20]

1 The difference is that we do not assume that A, B are bases, but independent sets of the same size.
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that the matroid polytope P (M) is equivalent to the convex hull of {1A |A ∈ I }, i.e.
characteristic vectors of all independent sets ofM. Thus, we can represent any x ∈ P (M)
as x =

∑m
i=1 βi · 1Bi , where B1, . . . , Bm ∈ I and β1, . . . , βm are non-negative weights such

that
∑m
i=1 βi = 1 . We shall call sets B1, . . . , Bm a support of x in P (M).

2.2 Submodular functions

2.2.1 Multilinear extension
A set function f : 2E 7→ R≥0 is submodular, if for any two subsets S, T ⊆ E we have
f (S ∪ T ) + f (S ∩ T ) ≤ f (S) + f (T ). We call function f monotone, if for any two subsets
S ⊆ T ⊆ E : f (S) ≤ f (T ). For a set S ⊆ E, we let fS(A) = f(A ∪ S) − f(S) denote the
marginal increase in f when the set A is added to S. Note that if f is monotone submodular,
then so is fS for all S ⊆ E. Moreover, we have fS(∅) = 0 for all S ⊆ E, so fS is normalized.
Without loss of generality, we assume also that f (∅) = 0.

We consider the multilinear extension F : [0, 1]E 7→ R≥0 of f , whose value at a point
y ∈ [0, 1]E is given by

F (y) =
∑
A⊆E

f(A)
∏
e∈A

ye
∏
e 6∈A

(1− ye).

Note that F (1A) = f (A) for any set A ⊆ E, so F is an extension of f from discrete domain
2E into a real domain [0, 1]E . The value F (y) can be interpreted as the expected value of f
on a random subset A ⊆ E that is constructed by taking each element e ∈ E with probability
ye. Following this interpretation, Calinescu et al. [8] show that F (y) can be estimated to any
desired accuracy in polynomial time, using a sampling procedure.

Additionally, they show that F has the following properties, which we shall make use of
in our analysis:

I Lemma 5. The multilinear extension F is linear along the coordinates, i.e. for any point
x ∈ [0, 1]E, any element e ∈ E, and any ξ ∈ [−1, 1] such that x+ ξ ·1e ∈ [0, 1]E, it holds that
F (x+ ξ · 1e)− F (x) = ξ · ∂F∂ye (x), where ∂F

∂ye
(x) is the partial derivative of F in direction

ye at point x.

I Lemma 6. If F : [0, 1]E 7→ R is a multilinear extension of monotone submodular function
f : 2E 7→ R, then 1) function F has second partial derivatives everywhere; 2) for each e ∈ E,
∂F
∂ye
≥ 0 everywhere; 3) for any e1, e2 ∈ E (possibly equal), ∂2F

∂ye1∂ye2
≤ 0, which means that

∂F
∂ye2

is non-increasing with respect to ye1 .

2.2.2 Continuous greedy algorithm
In [8] the authors utilized the multilinear extension in order to maximize a submodular
monotone function over a matroid constraint. They showed that a continuous greedy algorithm
finds a (1− 1/e)-approximate maximum of the above extension F over any downward closed
polytope. In the special case of the matroid polytope, they show how to employ the pipage
rounding [2] technique to the fractional solution to obtain an integral solution.

Another extension of f studied in [7] is given by:

f+(y) = max

∑
A⊆E

αAf(A)

∣∣∣∣∣∣
∑
A⊆E

αA ≤ 1, ∀A ⊆ E : αA ≥ 0, ∀j ∈ E :
∑
A:j∈A

αA ≤ yj

 .

STACS’14
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Intuitively, the solution (αA)A⊆E above represents the distribution over 2E that maximizes
the value E [f(A)] subject to the constraint that its marginal values satisfy P [i ∈ A] ≤ yi.
The value f+(y) is then the expected value of E [f(A)] under this distribution, while the
value of F (y) is the value of E [f(A)] under the particular distribution that places each
element i in A independently. However, the following allows us to relate the value of F on
the solution of the continuous greedy algorithm to the optimal value of the relaxation f+.

I Lemma 7. Let f be a submodular function with multilinear extension F , and let P be
any downward closed polytope. Then, the solution x ∈ P produced by the continuous greedy
algorithm satisfies F (x) ≥ (1− 1/e) maxy∈P f+(y).

This follows from a simple modification of the continuous greedy analysis, given by
Vondrák [22].

2.3 Overview of the iterative randomized rounding approach
We now give a description of the general rounding approach that we employ in both the linear
and submodular case. In each case, we formulate a mathematical programming relaxation of
the following general form

max
x∈[0,1]E

{
g(x)

∣∣∀j ∈ [kin] : p · x ∈ P
(
Min

j

)
; ∀j ∈

[
kout

]
: x ∈ P

(
Mout

j

)}
(1)

with p ∈ [0, 1]E being the vector of probabilities. Here g : [0, 1]E 7→ R≥0 is an objective
function chosen so that the optimal value of (1) can be used to bound the expected value of
an optimal policy for the given instance using the following lemma. Note that our program
will always have constraints as given in (1), only the objective function g changes between
the linear and monotone submodular cases.

I Lemma 8. Let OPT be the optimal feasible strategy for some stochastic probing problem
in our general setting, and define xe = P [OPT probes e]. Then, x = (xe)e∈E is a feasible
solution to the related relaxation of the form (1).

Proof. Since OPT is a feasible strategy, the set of elements Q probed by any execution of
OPT is always an independent set of each outer matroidM =

(
E, Ioutj

)
, i.e. ∀j∈[kout]Q ∈ Ioutj .

Thus, for any j ∈ [kout], the vector E [1Q] = x may be represented as a convex combination
of vectors from

{
1A
∣∣A ∈ Ioutj

}
, and hence x ∈ P

(
Mout

j

)
. Analogously, the set of elements

S that were successfully probed by OPT satisfy ∀j∈[kin]S ∈ Iinj for every possible execution
of OPT . Hence, for any j ∈

[
kin
]
the vector E [1S ] = p · x may be represented as a convex

combination of vectors from
{

1A
∣∣A ∈ Iinj }, and hence x ∈ P

(
Min

j

)
. J

Suppose that f is the objective function for a given instance of stochastic probing over
a universe E of elements. Our algorithm first obtains a solution x0 to a relaxation of the
form (1) using either linear programming or the continuous greedy algorithm. Our algorithm
proceeds iteratively, maintaining a current set of constraints, a current fractional solution x,
and a current set S of elements that have been successfully probed. Initially, the constraints
are as given in (1), x = x0, and S = ∅. At each step, the algorithm selects single element ē
to probe, then permanently sets xē to 0. It then updates the outer constraints, replacing
Mout

j withMout
j /ē for each j ∈ [kout]. If the probe succeeds, the algorithm adds ē to S and

then updates the inner constraints, replacingMin
j withMin

j /ē for each j ∈ [kin]. Finally,
we modify our fractional solution x so that it is feasible for the updated constraints. The
algorithm terminates when the current solution x = 0E .
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In order to analyze the approximation performance of our algorithm, we keep track of a
current potential value z, related to the value of the remaining fractional solution x. Let xt,
zt, and St be the current value of x, z, and S at the beginning of step t+ 1. We show that
initially we have z0 = g

(
x0) ≥ β · E [OPT ] for some constant β ∈ [0, 1], and then analyze

the expected decrease zt − zt+1 at an arbitrary step t+ 1. We show that for each step we
have α · E

[
zt − zt+1] ≤ E

[
f(St+1)− f(St)

]
, for some α < 1. That is, the expected increase

in the value of the current solution is at least α times the expected decrease in z. Then,
we employ the following Lemma to conclude that the algorithm is an αβ-approximation in
expectation. The proof is based on Doob’s optional stopping theorem for martingales. Hence,
we need to deploy language from martingale theory, such as stopping time and filtration.
See [23] for extended background on martingale theory.

I Lemma 9. Suppose the algorithm runs for τ steps and that z0 = g
(
x0) ≥ β · E [OPT ],

zτ = 0. Let (Ft)t≥0 be the filtration associated with our iterative algorithm, where Fi
represents all information available after the ith iteration. Finally, suppose that in each step
in our iterative rounding procedure, E

[
f(St+1)− f(St)

∣∣Ft] ≥ α · E
[
zt − zt+1

∣∣Ft]. Then,
the final solution Sτ produced by the algorithm satisfies E [f(Sτ )] ≥ αβ · E [OPT ].

Proof. Let Gt+1 be the gain f(St+1) − f(St) in f at step t + 1, and let Lt+1 be the
corresponding loss zt − zt+1 in z at time t + 1. We set G0 = L0 = 0. Define variable
Dt = Gt − α · Lt. The sequence of random variables (D0 +D1 + ...+Dt)t≥0 forms a
sub-martingale, i.e.

E

[
t+1∑
i=0

Di

∣∣∣∣∣Ft
]

=
t∑
i=0

Di + E [Gt+1 − α · Lt+1| Ft] ≥
t∑
i=0

Di.

Let τ be the step in which the algorithm terminates, i.e. τ = min
{
t
∣∣xt = 0E

}
. Then, the

event τ = t depends only on F0, . . . ,Ft, so τ is a stopping time. Also, by the definition
of the algorithm xτ = 0E . It is easy to verify that all the assumptions of Doob’s optional
stopping theorem are satisfied, and from this theorem we get that E [

∑τ
i=0Di] ≥ E [D0].

Since D0 = 0, we have

0 ≤ E

[
τ∑
i=0

Di

]
= E

[
τ∑
i=0

Gi − α ·
τ∑
i=0

Li

]
= E

[
τ∑
i=0

Gi

]
− α · E

[
τ∑
i=0

Li

]
.

It remains to note that
∑τ
i=0Gi = f (Sτ ) is the total gain of the algorithm, so E [

∑τ
i=0Gi] =

E [f(Sτ )]. On the other hand,
∑τ
i=0 Li = g(x0)− g(xτ ) = g(x0) ≥ β · E [OPT ]. J

Henceforth, we will implicitly condition on all information Ft available to the algorithm just
before it makes step t+ 1. That is, when discussing step t+ 1 of the algorithm, we write
shortly E [·] instead of E [ ·| Ft].

3 Linear stochastic probing

In this setting, we are given a weight we and a probability pe for each element e ∈ E and f(S) is
simply

∑
e∈S we. We consider the relaxation (1) in which g(x) = f(x). Then, Lemma 8 shows

that the optimal policy OPT must correspond to some feasible solution x∗ of (1). Moreover,
because f is linear, E [OPT ] =

∑
e∈S P [OPT probes e] pewe =

∑
e∈S xepewe = f(x∗).

At each step, our algorithm randomly selects an element ē to probe. Let Σ =
∑
e∈E xe

Then, our algorithm chooses element e with probability xe/Σ. As discussed in the previous

STACS’14
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overview, it then sets xē = 0 and carries out the probe, updating the matroid constraints to
reflect both the choice of ē and the probe. Finally, it updates x to obtain a new fractional
solution that is feasible in the updated constraints. Note that because xe is set to 0 after
probing e, we will never probe an element e twice.

Let us now describe how to update the current solution x to ensure feasibility in each of
the updated matroid constraints. Let ē be the element that we probed and letMout

j be some
outer matroid. Currently we have x ∈ P(Mout

j ) and we must obtain a solution x′ so that
x′ ∈ P(Mout

j /ē). We represent the vector x as a convex combination of independent sets
x =

∑m
i=1 β

out
i 1Bout

i
, where Bout1 , . . . , Boutm is the support of x with respect to matroidMout

j .
We obtain x′ ∈ P(Mout

j /ē) by replacing each independent set Boutb for which Boutb + ē 6∈ Mout
j

with some other set Boutc such that Boutc + ē ∈ Mout
j . We pick one set Bouta with ē ∈ Bouta

to guide the update process. We pick the set Bouta 3 ē at random with probability βouta /xē
(note that for any element e,

∑
a:e∈Bouta

βouta = xe). For any set Boutb : ē /∈ Boutb , let φa,b be
the mapping from Bouta into Boutb from Corollary 4. If φa,b (ē) =⊥, or φa,b(ē) = ē, then in
fact Boutb + ē ∈Mout

j , and we can just include Boutb in the support ofMout
j /ē. Otherwise,

we substitute Boutb with Boutb − φa,b (ē) in the support of (xe)e∈E in P
(
Mout

j /ē
)
, since we

know that Boutb − φa,b (ē) + ē ∈Mout
j .

Similarly, if ē is successfully probed we must perform a support update for each inner
matroid. Here, we proceed as in the case of the outer matroids, except we have p · x ∈Min

j

and must obtain x′ such that p · x′ ∈Min
j /e. We write p · x as a combination independent

sets p ·x =
∑m
i=1 β

in
i 1Bin

i
, and now choose a random set Bina 3 ē to guide the support update

with probability βina /pēxē. (note that for any element e, we have
∑
a:e∈Bina

βina = pexe).
As in the previous case, we replace Binb with Binb − φa,b(ē) for each base Binb such that
Binb + ē 6∈ Min

j .
We now turn to the analysis of the probing algorithm. Suppose that the algorithm

runs for τ steps and consider the quantity zt = f(xt). Then, z0 = f(x0) ≥ E [OPT ] and
zτ = f(0E) = 0, so the conditions of Lemma 9 are satisfied with β = 1. It remains to bound
the expected loss E

[
zt − zt+1] in step t + 1. In order to do this, we consider the value

δi = pi(xti − xt+1
i ) for each i ∈ E. We consider arbitrary step t + 1, but we are going to

denote xt by x and xt+1 by x′. The decrease δi may be caused both by the probing step, in
which we set x′ē to 0, or by the matroid update step, in which we decrease several coordinates
of x. Let us first consider the losses due to each matroid update.

I Lemma 10. Let x and x′ be the current fractional solution before and after one update
for a given outer matroidMout

j . Then, for each i ∈ E, we have E [δouti ] , E [pi(xi − x′i)] ≤
1
Σ (1− xi) pixi.

Proof. The expectation E [δouti ] is over the random choice of an element ē to probe and the
random choice of an independent set to guide the update. Let Eouta denote the event that
some set Bouta is chosen to guide a support update forMout

j .
In a given step the probability that the set Bouta is chosen to guide the support update is

equal to

P
[
Eouta

]
=

∑
e∈Bouta

xe
Σ
βouta

xe
=

∑
e∈Bouta

βouta

Σ =
∣∣Bouta

∣∣ βouta

Σ . (2)

Moreover, conditioned on the fact Bouta was chosen, the probability that an element e ∈ Bouta

was probed is uniform over the elements of Bouta :

P
[
e probed | Eouta

]
= P

[
e probed ∧ Eouta

] /
P
[
Eouta

]
= xe

Σ
βouta

xe

/∣∣Bouta

∣∣ βouta

Σ = 1
|Bouta |

. (3)



M. Adamczyk, M. Sviridenko, and J. Ward 37

We can write the expected decrease as E [δouti ] =
∑m
a=1 P [Eouta ]·E [δouti |Bouta ]. Note that for all

i ∈ Bouta , we have φa,b(i) = i for every set Boutb 3 i. Thus, the support update will not change
xi for any i ∈ Bouta , and so

∑m
a=1 P [Eouta ] · E [δouti | Eouta ] =

∑
a:i/∈Bouta

P [Eouta ] · E [δouti | Eouta ] .
Now let us condition on taking Bouta to guide the support update. Consider a set Boutb 3 e.

If we remove i from Boutb , and hence decrease pixi by piβoutb , it must be the case that we
have chosen to probe the single element φ−1

a,b(i) ∈ Bouta . The probability that we probe this
element is 1

|Bouta | . Hence∑
a:i/∈Bouta

P
[
Eouta

]
· E
[
δouti

∣∣Bouta

]

=
∑

a:i/∈Bouta

P
[
Eouta

]
·

 ∑
b:i∈Bout

b

piβ
out
b · P

[
φ−1
a,b(i) is probed

∣∣Eouta

]
≤

∑
a:i/∈Bouta

P
[
Eouta

]
·

 ∑
b:i∈Bout

b

piβ
out
b · 1

|Bouta |


=

∑
a:i/∈Bouta

P
[
Eouta

]
· pixi
|Bouta |

=
∑

a:i/∈Bouta

∣∣Bouta

∣∣ 1
Σβ

out
a · pixi

|Bouta |
= 1

Σ
∑

a:i/∈Bouta

βouta pixi = 1
Σ (1− xi) pixi. J

I Lemma 11. Let x be the current fractional solution before and after one update for
a given inner matroid Min

j . Then, for each i ∈ E, we have E
[
δini
]
, E [pi(xi − x′i)] ≤

1
Σ (1− pixi) pixi.

Proof. Because we only perform a support update when the probe of a chosen element is
successful, the expectation E

[
δini
]
is over the random result of the probe, as well as the

random choice of element ē to probe and the random choice of a base to guide the update.
We proceed as in the case of Lemma 10, now letting E ina denote the event that the probe was
successful and Bina is chosen to guide the support update. We have:

P
[
E ina
]

=
∑
e∈Bina

pe
xe
Σ

βina
pexe

=
∑
e∈Bina

βina
Σ =

∣∣Bina ∣∣ βinaΣ ,

P
[
e probed | E ina

]
= P

[
e probed ∧ E ina

] /
P
[
E ina
]

= pe
xe
Σ

βina
pexe

/∣∣Bina ∣∣ βinaΣ = 1
|Bina |

.

By a similar argument as in Lemma 10 we then have that E
[
δini
]
is at most:

∑
a:i/∈Bina

P
[
E ina
]
·

 ∑
b:i∈Bin

b

βinb ·
1
|Bina |

 =
∑

a:i/∈Bina

P
[
E ina
]
· pixi
|Bina |

=
∑

a:i/∈Bouta

∣∣Bina ∣∣ 1
Σβ

in
a ·

pixi
|Bina |

= 1
Σ

∑
a:i/∈Bina

βina pixi = 1
Σ(1− pixi)pixi.

J

We perform the matroid updates sequentially for each of the kin and kout matroids. Note
that once we decrease a coordinate xi to 0, it cannot be altered in any further updates,
so no coordinate is ever decreased below 0. Now, we consider the expected decrease

STACS’14
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E [δi] = E [pi(xi − x′i)] due to both the initial probing step, in which we decrease the probed
element’s coordinate to 0, and the following matroid updates. We have:

E [δi] ≤ P [i probed] pixi + koutE
[
δouti

]
+ kinE

[
δini
]

= 1
Σpix

2
i + kout

1
Σ(1− xi)pixi + kin

1
Σ(1− pixi)pixi

= 1
Σk

outpixi −
1
Σ(kout − 1)pix2

i + 1
Σk

inpixi −
1
Σk

inp2
ix

2
i

≤ kout + kin

Σ pixi. (4)

Because zt is a linear function of xt, the expected total decrease of z in this step is then

E
[
zt − zt+1] =

∑
i

E [δi]wi ≤
kout + kin

Σ
∑
i

pixiwi.

On the other hand, the expected gain in f(S) is
∑
e∈E P [e probed] pewe = 1

Σ
∑
e∈E wepexe.

Thus, by Lemma 9 the final solution Sτ produced by the algorithm satisfies E [f(Sτ )] ≥
1

kout+kinE [OPT ].

4 Submodular stochastic probing

We now consider the case in which we are given a set of elements E each becoming active
with probability pe, and we seek to maximize a given submodular function f : 2E 7→ R≥0. In
this case, we consider the relaxation (1) in which g(x) = f+(p · x). Then, Lemma 8 shows
that the optimal policy OPT must correspond to some feasible solution x∗ of (1), where
x∗e = P [OPT probes e], and hence P [OPT takes e] = pex

∗
e. The function f+(p · x∗) gives

the maximum value of ES∼D [f(S)] over all distributions D satisfying PS∼D [e ∈ S] = x∗epe.
Thus, f+(p · x∗) ≥ E [OPT ].

In general, we cannot obtain an optimal solution to this relaxation. Instead, we apply
the continuous greedy algorithm to a variant of (1) in which g(x) is given by F (p · x) to
obtain an initial solution x0. From Lemma 7 we then have F (p · x0) ≥ (1− 1/e)f+(p · x∗) ≥
(1− 1/e)E [f(OPT )].

Given x0, our algorithm is exactly the same as in the linear case. However, we must be
more careful in our analysis. We define the quantity

zt = F (1St + p · xt)− F (1St)

where St and xt are, respectively, the set of successfully probed elements and the current
fractional solution at time t. Note that because after probing an element we set its variable to
zero, for all elements i ∈ S we have xi = 0, and so indeed 1St + p · xt ∈ [0, 1]E . Suppose that
the algorithm runs for τ iterations, and note that z0 = F (p · x0) ≥ (1− 1/e)E [f(OPT )] and
zτ = F (1Sτ+p·0E )−F (Sτ ) = 0, so the conditions of Lemma 9 are satisfied with β = (1−1/e).

We now analyze the expected decrease zt − zt+1 due to step t + 1 of the algorithm.
Suppose that the algorithm selects element i to probe. Then, we have St+1 = St + i with
probability pi and St+1 = St otherwise. Thus, we have

E
[
zt − zt+1] = E

[
F (1St + xt · p)− F (1St)

]
− E

[
F (1St+1 + xt+1 · p)− F (1St+1)

]
= E [F (1St+1)− F (1St)] + E

[
F (1St + xt · p)− F (1St+1 + xt+1 · p)

]
≤ E [F (1St+1)− F (1St)] + E

[
F (1St + xt · p)− F (1St + xt+1 · p)

]
(5)
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where in the last line, we have used the fact that St+1 ≥ St and F is increasing in all
directions (Lemma 6). We shall first bound the second expectation in (5). We consider the
vector δ of decreases in x, given by δ = (xt − xt+1) · p. For each i ∈ E, let wi = ∂F

∂xi
(1St) =

F (1St+i)− F (1St). Let y = 1St + xt · p, and suppose that we decrease the coordinates of y
one at a time to obtain y − δ = 1St + xt+1 · p, letting yi be the value of y after the first i− 1
coordinates have been decreased.2 We then have:

F (y)− F (y − δ) =
∑
i

F (yi)− F (yi+1) =
∑
i

F (yi)− F (yi − δi1i)

=
∑
i

δi
∂F

∂xi
(yi − δi1i) ≤

∑
i

δi
∂F

∂xi
(1St) =

∑
i

δiwi,

where the third equality follows from the fact that F is linear when one coordinate is changed
(Lemma 5), while the inequality follows from the fact that the partial derivatives of F are
coordinate-wise non-increasing (Lemma 6) and yi − δi1i ≥ 1St for all i. Thus, we have:

E [F (y)− F (y − δ)] ≤ E

[∑
i

δiwi

]
=
∑
i

E [δi] · wi. ≤
1
Σ(kout + kin)

∑
i

pix
t
iwi,

where the last inequality follows, as in the linear case, from inequality (4).
Returning to the first expectation in (5), we note that:

E [F (1St+1)− F (1St)] =
∑
i

P [i probed] pi(F (St + i)− F (St)) = 1
Σ
∑
i

pix
t
iwi.

Thus, the total expected decrease E
[
zt − zt+1] from one step of our rounding procedure is

at most:

1
Σ
∑
i

pix
t
iwi + 1

Σ
∑
i

(kout + kin)pixtiwi = (kout + kin + 1) 1
Σ
∑
i

pix
t
iwi.

On the other hand, the expected increase of f(St+1)− f (St) in this step is:

1
Σ
∑
e∈E

pex
t
e(f(St + e)− f(St)) = 1

Σ
∑
e∈E

pex
t
e(F (1St+e)− F (1St)) = 1

Σ
∑
e∈E

pex
t
ewe.

Thus, by Lemma 9, the final solution Sτ produced by the algorithm satisfies

E [f(Sτ )] ≥
(

1− 1
e

)(
1

kout + kin + 1

)
E [OPT ] .
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