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—— Abstract

We design two deterministic polynomial time algorithms for variants of a problem introduced
by Edmonds in 1967: determine the rank of a matrix M whose entries are homogeneous linear

polynomials over the integers. Given a linear subspace B of the n X n matrices over some field F,
we consider the following problems: symbolic matriz rank (SMR) is the problem to determine the
maximum rank among matrices in B, while symbolic determinant identity testing (SDIT) is the
question to decide whether there exists a nonsingular matrix in 3. The constructive versions of
these problems are asking to find a matrix of maximum rank, respectively a nonsingular matrix,
if there exists one.

Our first algorithm solves the constructive SMR when B is spanned by unknown rank one
matrices, answering an open question of Gurvits. Our second algorithm solves the constructive
SDIT when B is spanned by triangularizable matrices, but the triangularization is not given
explicitly. Both algorithms work over finite fields of size at least n 4+ 1 and over the rational
numbers, and the first algorithm actually solves (the non-constructive) SMR independent of the
field size. Our main tool to obtain these results is to generalize Wong sequences, a classical
method to deal with pairs of matrices, to the case of pairs of matrix spaces.
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1 Introduction

In [8] Edmonds introduced the following problem: Given a matrix M whose entries are
homogeneous linear polynomials over the integers, determine the rank of M. The problem is
the same as determining the maximum rank of a matrix in a linear space of matrices over
the rationals. In this paper we consider the same question and certain of its variants over
more general fields.
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Let us denote by M (n,F) the linear space of n x n matrices over a field F. We call a
linear subspace B < M (n,F) a matriz space. We define the symbolic matriz rank problem
(SMR) over F as follows: given {Bi,..., By} C M(n,F), determine the maximum rank
among matrices in B = (By, ..., B,,), the matrix space spanned by B;’s. The constructive
version of SMR is to find a matrix of maximum rank in B (this is called the maximum rank
matrix completion problem in [12] and in [19]). We refer to the weakening of SMR, when
the question is to decide whether there exists a nonsingular matrix in B, as the symbolic
determinant identity testing problem (SDIT), the name used by [20] (in [15] this variant is
called Edmonds’ problem). The constructive version in that case is to find a nonsingular
matrix, if there is one in B. We will occasionally refer to any of the above problems as
Edmonds’ problem.

The complexity of the SDIT depends crucially on the size of the underlying field F. When
|F| is a constant then it is NP-hard [5], on the other hand if the field size is large enough
(say > 2n) then by the Schwartz-Zippel lemma [25, 30] it admits an efficient randomized
algorithm [21]. Obtaining a deterministic polynomial-time algorithm for the SDIT would
be of fundamental importance, since Kabanets and Impagliazzo [20] showed that such an
algorithm would imply strong circuit lower bounds which seem beyond current techniques.

Previous works on Edmonds’ problems mostly dealt with the case when the given matrices
By, ..., By, satisfy certain property. For example, Lovasz [22] considered several cases of
SMR, including when the B;’s are of rank 1, and when they are skew symmetric matrices of
rank 2. These classes were then shown to have deterministic polynomial-time algorithms
[12, 23, 16, 13, 11, 19], see Section 1.1 for more details.

Another direction also studied is when instead of the given matrices, the generated matriz
space B = (By,..., B,,) satisfies certain property. Since such a property is just a subset of all
matrix spaces, we also call it a class of matrix spaces. Gurvits [15] has presented an efficient
deterministic algorithm for the SDIT over QQ, when the matrix space satisfies the so called
Edmonds-Rado property, whose definition we shall review in Section 1.1. For now we only
note that this class includes Ry, the class of rank-1 spanned matrix spaces, where a matrix
space B is in Ry if and only if B has a basis consisting of rank-1 matrices. This fact was first
shown by Lovész [22] via a theorem of Rado and Edmonds [24, 9, 28]. Gurvits stated as an
open question the complexity of the SMR for Ry over finite fields [15, page 456].

The difference between properties of matrices and properties of matrix spaces is critical
for Edmonds’ problems. For example, given matrices By, ..., B,,, it is presumably hard® to
determine whether B = (By, ..., By,) is in Ry, and to find generating rank-1 matrices for B.
Thus the existence of algorithms for SMR when the B;’s are rank-1 does not immediately
imply algorithms for matrix spaces in Ry.

Our results are in line with Gurvits’ work, namely we present algorithms for two classes
of matrix spaces. To be specific, we consider Ry, the class of rank-1 spanned matrix spaces,
and the class of (upper-)triangularizable matrix spaces, where a matrix space B < M (n,F) is
triangularizable if there exist nonsingular C, D € M (n,F’), where F’ is some extension field
of F, such that for all B € B, the matrix DBC~! is upper-triangular.

To ease the description of our results, we make a few definitions and notations. We denote
by rank(B) the rank of a matrix B, and we set corank(B) = n —rank(B). For a matrix space
B we set rank(B) = max{rank(B) | B € B} and corank(B) = n — rank(B). We say that B is
singular if rank(B) < n, that is if B does not contain a nonsingular element, and nonsingular

L At present, we are not aware of the deterministic complexity of computing a rank-1 basis for matrix
spaces in R1. Gurvits made a similar comment in [14].
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otherwise. For a subspace U < F", we set B(U) = (B(u) | B € B,u € U). Let ¢ be a
nonnegative integer. We say that U is a c-singularity witness of B, if dim(U) —dim(B(U)) > ¢,
and U is a singularity witness of B if for some ¢ > 0, it is a c-singularity witness.

Note that if there exists a singularity witness of B then B can only be singular. Let us
define the discrepancy of B as disc(B) = max{c € N | 3 ¢-singularity witness of B}. Then it
is also clear that corank(B) > disc(B). We now state our main theorems.

» Theorem 1. Let [F be either Q or a finite field. There is a deterministic polynomial-time
algorithm which solves the SMR if B is spanned by rank-1 matrices. If the size of the
field F is at least n + 1, the algorithm solves the constructive SMR, and it also outputs a
corank(B)-singularity witness.

» Theorem 2. Let T be either Q or a finite field of size at least n + 1. There is a determin-
istic polynomial-time algorithm which solves the constructive SDIT if B is triangularizable.
Furthermore, over finite fields, when B is singular it also outputs a singularity witness.

We remark that Theorem 1 remains true if we weaken the assumptions by only requiring
that B is rank-1 spanned over some extension field of F rather than over F. Also, instead of
assuming that the whole space B is rank-1 spanned it is sufficient to suppose that a subspace
of B of co-dimension one is spanned by rank-1 matrices. While the first extension can be
achieved easily, the second extension requires some more work (though mostly technical).

1.1 Comparison with previous works

The idea of singularity witnesses was already present in Lovdsz’s work [22]. Among other
things, Lovédsz showed that for the rank-1 spanned case, the equality corank(B) = disc(B)
holds, by reducing it to Edmonds’ Matroid Intersection theorem [9], which in turn can be
deduced from Rado’s matroidal generalization of Hall’s theorem [24] (see also [28]). Inspired
by this fact, Gurvits defined the Edmonds-Rado property as the class of matrix spaces
which are either nonsingular, or have a singularity witness. He listed several subclasses
of the Edmonds-Rado class, including R; (by the aforementioned result of Lovasz) and
triangularizable matrices. A well-known example of a matrix space without the Edmonds-
Rado property is the linear space of skew symmetric matrices of size 3 [22].

As we stated already, Gurvits has presented a polynomial-time deterministic algorithm
for the SDIT over Q for matrix spaces with the Edmonds-Rado property. Therefore over Q,
his algorithm covers the SDIT for Ry and for triangularizable matrices. Our algorithms are
valid not only over QQ but also over finite fields. In the triangularizable case we also deal with
the SDIT, but for R; we solve the more general SMR. In fact, it is not hard to reduce SMR
for the general to SMR for the triangularizable case (see Lemma 26 in [18]), so solving SMR
for the triangularizable case is as hard as the general case. In both cases the algorithms
solve the constructive version of the problems, and they also construct singularity witnesses,
except for the SDIT over the rationals. Finally, they work in polynomial time when the field
size is at least n + 1. Moreover, for R; the algorithm solves the non constructive SMR in
polynomial time regardless of the field size, settling the open problem of Gurvits.

Over fields of constant size, the SMR has certain practical implications [16, 17], but is
shown to be NP-hard [5] in general. Some special cases have been studied, mostly in the
form of the mized matrices, that is linear matrices where each entry is either a variable or
a field element. Then by restricting the way variables appear in the matrices some cases
turn out to have efficient deterministic algorithms, including when every variable appears
at most once ([16], building on [12, 23]), and when the mixed matrix is skew-symmetric
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and every variable appears at most twice ([13, 11]). Finally in [19], Ivanyos, Karpinski and
Saxena present a deterministic polynomial-time algorithm for the case when among the input
matrices By, ..., By, all but By are of rank 1.

As a computational model of polynomials, determinants with affine polynomial entries
turn out to be equivalent to algebraic branching programs (ABPs) [27, 4] up to a polynomial
overhead. Thus the identity test for ABPs is the same as SDIT. For restricted classes of
ABPs, (quasi)polynomial-time deterministic identity test algorithms have been devised (cf.
[10] and the references therein). Note that identity test results for SDIT and ABPs are in
general incomparable. For an application of SDIT to quantum information processing see [6].

Let us comment briefly on the main technical tool we use in our algorithms. We generalize
the first and second Wong sequences for matrix pencils (essentially two-dimensional matrix
spaces) which have turned out to be useful among others in the area of linear differential-
algebraic equations (see the recent survey [26]). These were originally defined in [29] for a
pair of matrices (A, B), and were recently used to compute the Kronecker normal form in a
numerical stable way [2, 3]. We generalize Wong sequences to the case (A, B) where A and
B are matrix spaces, and show that they have analogous basic properties to the original ones.
We relate the generalized Wong sequences to Edmonds’ problems via singularity witnesses.
Essentially this connection allows us to design the algorithm for R; using the second Wong
sequence, and the algorithm for triangularizable matrix spaces using the first Wong sequence.
We remark that techniques similar to the second Wong sequence were already used in [19].

Organization. In Section 2 we define Wong sequences of a pair of matrix spaces, and present
their basic properties. In Section 3 the connection between the second Wong sequence and
singularity witnesses is shown. Based on this connection we introduce the power overflow
problem, and reduce the SMR to it. We also prove here Theorem 1 under the hypothesis
that there is a polynomial time algorithm for the power overflow problem. In Section 4 we
show an algorithm for the power overflow problem that works in polynomial time for rank-1
spanned matrix spaces. In Section 5 the algorithm for Theorem 2 is outlined, which works
for triangularizable matrix spaces. The readers are referred to the full version [18] for certain
missing details, and some discussion on the Edmonds-Rado class and some subclasses.

2 Wong sequences for pairs of matrix spaces

For n € N, we set [n] = {1,...,n}. We use 0 to denote the zero vector space. In this
section we generalize the classical Wong sequences of matrix pencils to the situation of
pairs of matrix subspaces. This is the main technical tool in this work. Let V and V' be
finite dimensional vector spaces over a field F, and let Lin(V,V’) be the vector space of
linear maps from V to V’'. We set n = dim(V) and n’ = dim(V”). For A € Lin(V,V’), and
linear subspaces A < Lin(V, V'), U <V and W < V', we define A(U) = {A(u) | u € U},
AU) = {A(u) | A€ AueU}), A\ (W) ={veV]|Alw) e W},and A L(W) ={v e V|
VA € A, A(v) € W}. Observe that A(U), A(U) are linear subspaces of V', whereas A= (W)
and A~1(W) are subspaces of V. Also note that A(U) = (UacaA(U)) and A~ ( ) =
NacaA~H(W). Moreover, if A is spanned by {Ai,..., Ay}, then A(U) = (UjepmAi(U)),
and A1 (W) = ﬁie[m]Ai_l(W). Some easy and useful facts are the following.

» Fact 3. For A,B < Lin(V,V’),and U,S <V, W,T < V', we have:

1. fU C Sand W C T, then A(U) C A(S) and A=Y (W) C A~YT);

2. If B(U) C A(U) and B(S) C A(S), then B(U US)) C AU U S));

3. B Y(W) DA Y(W)and B~YT) D A~ Y(T), then B-X(WNT)D A L(WNT),
4. A1 (AU)) DU, and A(A-LHW)) CW.
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We now define the two Wong sequences for a pair of matrix subspaces.

» Definition 4. Let A, B < Lin(V, V’). The sequence of subspaces (U;);en of V is called the
first Wong sequence of (A, B), where Uy = V, and U;; = B~!(A(U;)). The sequence of
subspaces (W;);en of V' is called the second Wong sequences of (A, B), where Wy = 0, and
Wiv1 = B(A7Y(W;)).

When A = (A) and B = (B) are one dimensional matrix spaces, the Wong sequences for
(A, B) coincide with the classical Wong sequences for the matrix pencil Az — B [29, 2]. The
following properties are straightforward generalizations of those for classical Wong sequences.
We start by considering the first Wong sequence.

» Proposition 5. Let (U;);en be the first Wong sequence of (A, B). Then for all i € N, we
have U; 11 C U;. Furthermore, U;1 = U; if and only if B(U;) C A(U;).

Proof. Firstly we show that U; ;1 C U, for every i € N. For ¢ = 0, this holds trivially. For
i >0, by Fact 3 (1) we get U; 11 = B~Y(A(U;)) € B~Y(A(U;-1)) = U;, since U; C U;_;.
Suppose now that B(U;) € A(U;), for some i. Then U; C B~Y(B(U;)) € B~ A(U,))
respectively by Fact 3 (4) and (1), which gives U;y; = U;. If B(U;) € A(U;) then there
exist B € B and v € U; such that B(v) € A(U;). Thus v & B~Y(A(U;)) = U;41, which gives
U,’+1 c U;. L |

Given Proposition 5, we see that the first Wong sequence stabilizes after at most n
steps at some subspace. That is, for any (A, B), there exists ¢ € {0,...,n}, such that
UyDUs D DUy =Ups1 =.... In this case we call the subspace Uy the limit of (U;);en,
and we denote it by U*.

» Proposition 6. U* is the largest subspace T' < V such that B(T) C A(T).

Proof. By Proposition 5 we know that U* satisfies B(U*) C A(U*). Consider an arbitrary
T <V such that B(T) C A(T), we show by induction that 7' C U;, for all . When ¢ = 0 this
trivially holds. Suppose that T' C U;, for some i. Then by repeated applications of Fact 3 we
have T C B~ (B(T)) € B~ (A(T)) C B 1 (A(U;)) = Uj41. <

Analogous properties hold for the second Wong sequence (W;);en. In particular the
sequence stabilizes after at most n’ steps, and there exists a limit subspace W* of (W;);en.
We summarize them in the following proposition.

» Proposition 7. Let (W;);en be the second Wong sequence of (A, B). Then
1. Wi 2 W, for all i € N. Furthermore, W; 1 = W; if and only if B=Y(W;) 2 A~L(W;).
2. The limit subspace W* is the smallest subspace T' < V' s.t. B=1(T) D A=Y(T).

It is worth noting that the second Wong sequence can be viewed as the dual of the first
one in the following sense. Assume that V' and V' are equipped with nonsingular symmetric
bilinear forms, both denoted by (,). For a linear map 4 : V. — V' let AT : V/ — V
stand for the transpose of A with respect to (,). This is the unique map with the property
(AT (u),v) = (u, A(v)), for all w € V' and v € V. For a matrix space A, let AT be the space
{AT|A € A}. For U <V, the orthogonal subspace of U is defined as U+ = {v € V | {(v,u) =0
for all u € U}. Similarly we define W+ for W < V’. Then we have ((AT)~1(U)))*+ = A(U1),
and (AT(V))+ = A=Y(V1). It can be verified that if (W;);ey is the second Wong sequence
of (A,B) and (U;);ey the first Wong sequence of (AT, BT), then W; = U;*. We note that
the duality of Wong sequences was, already derived in [2] for pairs of matrices.

For a matrix space A and a subspace U < V' given in terms of a basis we can compute
A(U) by applying the basis elements for A to those of U and then selecting a maximal set of
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linearly independent vectors. A possible way of computing A~1(U) for U < V' is to compute
first UL, then AT(UL) and finally A=Y (U) = (AT(U+))*+. Therefore we have

» Proposition 8. Wong sequences can be computed using (n + n’)o(l) arithmetic operations.

Unfortunately, we are unable to prove that over the rationals the bit length of the entries
of the bases describing the Wong sequences remain polynomially bounded in the length
of the data for A and B. However, in Section 3.1 we show that if A = (A4), then the first
few members of the second Wong sequence which happen to be contained in im(A) can be
computed in polynomial time using an iteration of multiplying vectors by matrices from a
basis for B and by a pseudo-inverse of A.

We also observe that if we consider the bases for A and B as matrices over an extension
field F” of F then the members of the Wong sequences over F’ are just the F'-linear spaces
spanned by the corresponding members of the Wong sequences over F. In particular, the
limit of the first Wong sequence over F is nontrivial if and only if the limit of the first Wong
sequence over I’ is nontrivial.

3 The second Wong sequence and singularity witnesses

3.1 The connection

As in Section 2, let V and V' be finite dimensional vector spaces over a field F, of respective
dimensions n and n/. For A € Lin(V,V’) we set corank(A) = dim(ker(A)). For B <
Lin(V, V"), the concepts of c-singularity witnesses, disc(B) and corank(B), defined for the
case when n = n’, can be generalized naturally to 5. We also have that corank(B) > disc(B),
and that a corank(B)-singularity witness of B does not exist necessarily. Let A € B, and
consider (W;);en, the second Wong sequence of (A, B). The next lemma states that the limit
W* is basically such a witness under the condition that it is contained in the image of A.
Moreover, in this specific case the limit can be computed efficiently.

» Lemma 9. Let A € B < Lin(V,V’), and let W* be the limit of the second Wong sequence
of (A,B). There exists a corank(A)-singularity witness of B if and only if W* C im(A). If
this is the case, then A is of mazimum rank and A=*(W*) is a corank(B)-singularity witness.

Proof. We prove the equivalence. Firstly suppose that W* C im(A). Then dim(A~Y(W*)) =
dim(W*) + dim(ker(A)). Since W* = B(A~Y(W*)) and dim(ker(A)) = corank(A), it follows
that A=1(W*) is a corank(A)-singularity witness of B.

Let us now suppose that some U < V is a corank(A)-singularity witness, that is
dim(U) — dim(B(U)) > corank(A4). Then dim(U) — dim(A(U)) > corank(A) because
A € B. Since the reverse inequality always holds without any condition on U, we have
dim(U) — dim(A(U)) = corank(A). Similarly we have dim(U) — dim(B(U)) = corank(A)
which implies that dim(A(U)) = dim(B(U)), and therefore A(U) = B(U). For a subspace
S < V the equality dim(S) — dim(A(S)) = corank(S) is equivalent to ker(A) C S, thus
we have ker(A) C U from which it follows that U = A=Y(A(U)). But then B~}(A(U)) =
B~ Y(BU)) 2 U = A Y(A(U)). Since W* is the smallest subspace T < V' satisfying
B~Y(T) 2 A=Y(T), we can conclude that W* C A(U).

The existence of a corank(A)-singularity witness obviously implies that A is of maximum
rank, and when W* C im(A) we have already seen that A~!(W*) is a corank(A)-singularity
witness of B. Since corank(A) = corank(B), it is also a corank(5)-singularity witness. <«

We would like to find an efficient way of testing whether W* C im(A) for a given
A € B. In the computation of the limit W* of the second Wong sequence of (4, B) the
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computationally hard step is applying iteratively A~'. We overcome this difficulty by
introducing a pseudo-inverse of A in the computation. We describe now this method.

Let n = dim (V) and n’ = dim(V”). First of all we assume without loss of generality that
n =n'. Indeed, if n < n’ we can add as a direct complement a suitable space to V on which
B acts as zero, and if n > n/, we can embed V' into a larger space. In terms of matrices, this

means augmenting the elements of B by zero columns or zero rows to obtain square matrices.

This procedure affects neither the ranks of the matrices in B nor the singularity witnesses.

We say that a nonsingular linear map A’ : V' — V is a pseudo-inverse of A if the
restriction of A’ to im(A) is the inverse of the restriction of A to a direct complement of
ker(A). Such a map can be efficiently constructed as follows. Choose a direct complement
U of ker(4) in V as well as a direct complement U’ of im(A) in V’. Then take the map
A - im(A) — U such that AA] is the identity of im(A) and take an arbitrary nonsingular
linear map A} : U’ — ker(A). Finally let A’ be the direct sum of Aj and Af.

» Lemma 10. Let A € B < Lin(V,V’) and let A’ be a pseudo-inverse of A. There exists a
corank(A)-singularity witness of B if and only if (BA")!(ker(AA")) C im(A), for all i € [n].
This can be tested in polynomial time, and if the condition holds then A is of mazximum rank
and A'(W*) is a corank(B)-singularity witness which also can be computed deterministically
in polynomial time.

Proof. It follows from Lemma 9 that a corank(A)-singularity witness exists if and only if
W; C im(A), for i = 1,...,n. Observing that (BA’)!(ker(AA’)) C W; fori =1,...,n, to
prove the equivalence it is sufficient to show that if (BA")!(ker(AA’)) C im(A) fori=1,...,n
then W; = (BA’)!(ker(AA’)) for i = 1,...,n. The proof is by induction. For i = 1 the
claim Wy = BA’(ker(AA’)) holds since ker(AA’) = A'~1(ker(A)). For i > 1, by definition
W; = BA71(W;_1). Since every subspace W < im(A) satisfies A='W = A'W + ker(A),
where + denotes the direct sum, we get W; C BA'(W;_1) + B(ker(A)). Observe that
B(ker(A)) = W;. We will show that W7 C BA'(W;_1) and then we conclude by the inductive
hypothesis. We know that W; C W;_; from the properties of the Wong sequence, therefore
it is sufficient to show that W;_; C BA'(W;_1). But W;_1 = AA’'(W;_1) since W; C im(A)
and A’ is the inverse of A on im(A).

Based on this equivalence, testing the existence of a corank(A)-singularity witness can be
accomplished by a simple algorithm, [18, Lemma 10] for details.

If we find that the condition holds then A’'(W*) by Lemma 9 is a corank(B)-singularity
witness, and it can be easily computed from W*. |

3.2 The power overflow problem

For A € B <Lin(V,V"), we would like to know whether A is of maximum rank in B. With
the help of the limit W* of the second Wong sequence of (A, B) we have established a
sufficient condition: we know that if W* C im(A) then A is indeed of maximum rank. Our
results until now do not give a necessary condition for the maximum rank. Now we show that
the second Wong sequence actually allows to translate this question to the power overflow
problem (PO) which we define below. As a consequence an efficient solution of the PO
guarantees an efficient solution for the SMR. The reduction is mainly based on a theorem of
Atkinson and Stephens [1] which essentially says that over big enough fields, in 2-dimensional
matrix spaces B, the equality corank(5) = disc(B) holds.

» Proposition 11 ([1]). Assume that |[F| > n, and let A, B € Lin(V,V’). If A is a maximum
rank element of (A, B) then there exists a corank(A)-singularity witness of (4, B).
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Combining Lemma 10 and Proposition 11 we get also an equivalent condition for A being
of maximum rank.

» Lemma 12. Assume that |F| > n. Let A € B < Lin(V, V"), and let A’ be a pseudo-inverse
of A. Then A is of mazimum rank in B if and only if for every B € B and for all i € [n], we
have

(BA"Yi (ker(AA")) C im(A).

Proof. First observe that A is of maximum rank in B if and only if for every B € B, it is of
maximum rank in (A, B). For a fixed B, by Proposition 11 and Lemma 10, A is of maximum
rank in (A, B) exactly when ((B, A)A’)i(ker(AA’)) C im(A), for all i € [n]. From that we
can conclude since A’ is the inverse of A on im(A). <

This lemma leads us to reduce the problems of deciding if A is of the maximum rank, and
finding a matrix of rank larger than A when this is not the case, to the following question.

» Problem 13 (The power overflow problem). Given D < M(n,F), U < F" and U’ < F",
output D € D and /£ € [n] s.t. DY(U) € U’, if there exists such (D, ). Otherwise say no.

The power overflow problem admits an efficient randomized algorithm when |F| = Q(n).
For the rank-1 spanned case we show a deterministic solution regardless of the field size.

» Theorem 14. Let D < M(n,F) be spanned by rank-1 matrices. Then there exists D € D
and ¢ € [n] such that D*(U) € U’ if and only if there exists { € [n] such that D*(U) € U’.
The power overflow problem for D can be solved deterministically in polynomial time.

Using this result whose proof is given in Section 4 we are now ready to prove Theorem 1.
Proof of Theorem 1. First we suppose that |F| > n+ 1. Let A be an arbitrary matrix in
B. The algorithm iterates the following process until A becomes of maximum rank.

We run the algorithm of Lemma 10 to test whether (BA’)!(ker(AA’)) C im(A) for i € [n].
If this condition holds then A is of maximum rank, and the algorithm also gives a corank(B)-
singularity witness. Otherwise we know by Theorem 14 that there exists B € B and i € [n]
such that (BA’)i(ker(AA’)) € im(A). We apply the algorithm of Theorem 14 with input
BA', ker(AA’) and im(A), which finds such a couple (B,i). Lemma 12 applied to (A, B)
implies that A is not of maximum rank in (A, B). If A has rank » < n — 1 which is not
maximal in (A, B), then the determinant of an appropriate (r + 1) X (r + 1) minor is a
nonzero polynomial of degree at most » + 1 which has at most r + 1 < n roots. We then pick
n + 1 arbitrary field elements Aq,..., A,+1, and we know that for some 1 < j <n+1 we
have rank(A + X\;B) > rank(A). We replace A by A + \; B and restart the process.

At the end of each iteration, by a reduction procedure described in [7] we can achieve
that the matrix A, written as a linear combination of By,..., B,, has coefficients from a
fixed subset K C F of size n + 1. In fact, if A = a1 B1 + asBs ... + a,,B,, has rank r then
for at least one k1 € K the matrix k1 B1 + asBs ... + o, By, has rank at least r. This way
all the coeflicients o; can be replaced with an appropriate element from K.

As in each iteration we either stop (and conclude with A being of maxiaml rank), or
increase the rank of A by at least 1, the number of iterations is at most n. Also, each
iteration takes polynomial many steps since the processes of Lemma 10 and Theorem 14 are
polynomial. Therefore the overall running time is also polynomial. |

We can compute the maximum rank over a field of size less than n 4+ 1 by running the
above procedure over a sufficiently large extension field. The maximum rank will not grow if
we go over an extension. This follows from the fact that the equality corank(B) = disc(B)
holds over any field if B is spanned by an arbitrary matrix and by rank one matrices, see [19].
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4 The power overflow problem for rank-1 spanned matrix spaces

In this section we prove Theorem 14. Given subspaces U,U’ of F" as well as a basis
{D1,..., Dy} for a matrix space D < M (n,F), we will show is that in polynomial time we
can decide if DY(U) € U’ for some ¢, and if this holds then find D € D s.t. DY(U) ¢ U".

Formally let £ = ¢(D) be the smallest integer j s.t. D/(U) € U’ if such an integer exists,
and n otherwise. We start by computing ¢ and for 1 < j < ¢, bases T; for DJ. Set T =
{D1,...,Dy}. ¥ DI(U) € U’ then we set £ = j and stop constructing further bases. If j = n
and D"(U) C U’ then we stop the algorithm and output no. Otherwise we compute 7,1 by
selecting a maximal linearly independent set form the products of elements in 7; and 7;.

We are now looking for D such that D*(U) ¢ U’. For i € [¢], we define subspaces H; of
D, which play a crucial role in the algorithm:

H,={XeD|DIXDI"YU)CU, j=1,...,i—1,i+1,...,¢}.

That is, X € H,; if and only if whenever X appears in a place other than the ith in a product
P of ¢ elements from D then P(U) C U’. The subspaces H; can be computed as follows.
Let z1,...,x,, be formal variables, an element in D can be written as X = Zke[m] xDy.
The condition D7 XDI~1(U) C U’ is equivalent to the set of the following homogeneous
linear equations in the variables zy: (Z(}_ ¢ 1 Dr)Z'u,v) = 0, where Z is from T,—;, 2
is from 7;_1, w is from a basis for U and v is from a basis for U’ L Thus ‘H; can be computed
by solving a system of polynomially many homogeneous linear equations. Note that the
coefficients of the equations are scalar products of vectors from a basis for U’* by vectors
obtained as applying products of ¢ matrices from {Dq,..., D,,} to basis elements for U. The
definition of H; implies the following.

» Lemma 15. For a matriz X = X1 + ...+ X, with X; € H;, we have X*(U) C U’ if and
only if Xp--- XoX(U) CU'.

Proof. We have X" =3 X, -+ X,(1), where the summation is over the maps o : [¢] — [(].

When o is not the identity map then there exists an index j such that o(j) # j. Then
Xowy - Xo(l)(U) C U’ by the definition of Hg(j). |

In general, H; can be 0. In our setting, due to the existence of rank one generators,

fortunately this is far from the case. Recall that ¢ is the smallest integer such that D*(U) € U’.

» Lemma 16. We have H;---H1(U) L U'.

Proof. Assume that D is spanned by the rank one matrices C,...,C,,. Then there exist
indices ki,...,k¢ such C,---Cy,(U) € U’. We show that C, € H;, for i € [{], this
implies immediately Hy--- H1(U) € U’. Assume by contradiction that Cy, & H,, for some
i € [{]. Then D*ICy, DI~ (U) ¢ U’, for some j # i. On the other hand Cy, satisfies
D0, DY (U) € U'. Since Cy, is of rank 1 we have Cy, D=1 (U) = C, D~} (U), which
yields that neither D*~¢Cy, D’ ~1(U) nor D*~ICy, D*~1(U) is contained in U’. However one
of these products is shorter than ¢, contradicting the minimality of £. <

To finish the algorithm, we compute bases for products H; - -- Hy, for i € [n], in a way
similar to computing bases for D?. Then we search the basis of H, for an element Z such
that ZHy—1---H1(U) € U'. We put X; = Z and continue searching the basis of H,_; for
an element Z such that X, ZH,_o---H1(U) € U’. Continuing the iteration, Lemma 16
ensures that eventually we find X; € H;, for ¢ € [¢], such that X,--- X;(U) € U'. We set
D = X; +...+ Xy, then by Lemma 15 we have D*(U) € U’. We return D and /. o
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5 The first Wong sequence and triangularizable matrix spaces

Here we only give a proof outline of Theorem 2, and the reader is referred to the full version
[18, Section 5] for details. Our task is to determine whether there exists a nonsingular
matrix in a triangularizable matrix space, and finding such a matrix if exists. Let F' be an
extension field of F, and recall that B < M (n,F) is triangularizable if there exist nonsingular
C,D € M(n,F"), st. VB € B, DBC~! is upper triangular. Our starting point is the
following lemma, which connects first Wong sequences with singularity witnesses.

» Lemma 17. Let A € B < M(n,F), and let U* be the limit of the first Wong sequence
of (A,B). Set d =dim(U*). Then either U* is a singularity witness of B, or there exist

nonsingular matrices P,Q € M (n,F), such that VB € B, QBP~! is of the form { )O( ; } ,

where X is of size d x d, and B is nonsingular in the X-block.

Lemma 17 suggests a recursive algorithm: take an arbitrary A € B and compute U*,
the limit of the first Wong sequence of (A, B). If we get a singularity witness, we are done.
Otherwise, if U* # 0, as the X-block is already nonsingular, we only need to focus on the
nonsingularity of Z-block which is of smaller size. To make this idea work, we have to satisfy
essentially two conditions. We must find some A such that U* # 0, and to allow for recursion
the specific property of the matrix space B we are concerned with has to be inherited by the
subspace corresponding to the Z-block. It turns out that in the triangularizable case these
two problems can be taken care of by the following Lemma.

» Lemma 18. Let B < F be given by a basis {Bi,..., By}, and suppose that there exist

nonsingular matrices C, D € M (n,F") such that B; = DB/C~! and B} € M (n,F’) is upper

triangular for every i € [m]. Then we have the following.

1. Either Nicpm ker(B;) # 0, or there exists j € [m] and 0 #U <F" s.t. B;(U) = B(U).

2. Suppose there exist j € [m] and 0 # U < F" s.t. B;(U) = B(U), and dim(U) =
dim(B;(U)). Let Bf : F*/U — F"*/B(U) be the linear map induced by B;, for i € [m].
Then B* = (B5,...,B) is triangularizable over F'.

Proof. 1. Let {e; | i € [n]} be the standard basis of F'", and ¢; = C(e;) and d; = D(e;) for
i€ [n]. If B{(1,1) =0 for all i € [m] then ¢; is in the kernel of every B;’s. If there exists j
such that Bj(1,1) # 0, we set U’ = (c1) < F™. Then it is clear that (di) = B;(U") = B(U").
It follows that the first Wong sequence of (B;, B) over F’ has nonzero limit, and therefore
the same holds over F. We can choose for U this limit.

2. First we recall that for a vector space V of dimension n, a complete flag of V is
a nested sequence of subspaces 0 =V, Cc V; C --- C V,, = V. For A < Lin(V,V’) with
dim (V) = dim(V’) = n, the matrix space A is triangularizable if and only if 3 complete flags
0=VwcWcCc---CcVy,=Vando=VjCcV/C---CV) =V'st. AV;) CV/ fori € [n].

For U < F™, let F'U be the linear span of U in F'". We think of B;’s and B}’s as linear
maps over [/ in a natural way. Let £ = dim(F'" /F'U). For 0 < i < nset S; = {c1,...,¢;) and
T, = (d1,...,d;). Obviously B(S;) CT; for0 < i <n. Let S} = S;/F'U and T = T; /B(F'U),
and consider S§ C --- C S and 7§ C --- C T;*. We claim that Vi € [n],dim(S}) > dim(T7}).
This is because as T; N B(F'U) 2 B,;(S; NF'U), by dim(F'U) = dim(B;(F'U)), dim(B;(S; N
F'U)) > dim(S; NF'U). Thus dim(S; NF'U) < dim(T; N B(F'UV)), and dim(S}) > dim(7T}).
As B*(S}) C€ Ty, dim(S;. ;) — dim(S;) < 1, and dim(7}, ;) — dim(7}") < 1, there exist
two nested sequences S5 C S; C --- C S;, = S) and Iy C T, C --- C Ty, = T,
s.t. dim(S;,) = dim(Tk,) = h. Furthermore, by dim(S}) > dim(7}), jn < kp, thus
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B*(S3 ) € B*(Sg,) € Ty, Yh € [{]. That is, the two nested sequences are complete flags,
and B* is triangularizable over F'. |

Given the above preparation, we can now outline the algorithm for Theorem 2.

Proof of Theorem 2. First we consider finite fields. The algorithm recurses on the size
of the matrices, with the base case being the size one. It checks at the beginning whether
Nie[m) ker(B;) = 0. If this is the case then it returns Mgy, ker(B;) which is a singularity
witness. Otherwise, for all ¢ € [m], it computes the limit U} of the first Wong sequence for
(Bi, B). By Lemma 18 (1) there exists j € [m] such that U; # 0 and B;(U;) = B(U;). The
algorithm then recurses on the induced actions B}’s of B;’s, which are also triangularizable
by Lemma 18 (2). When B is nonsingular the algorithm should return a nonsingular matrix.
This nonsingular matrix is built step by step by the recursive calls, at each step we have to
construct a nonsingular linear combination of B; and the matrix returned by the call. For
this we need n + 1 field elements.

The case of the rational numbers can be reduced to the case of finite fields. Let b be a
bound on the absolute values of entries in B;’s. It can be shown that there exists a prime
number p of value polynomially bounded by logb and n s.t. the following holds: let Bj
be the matrix B; modulo p. When B is triangularizable and nonsingular then the matrix
space spanned by B] is triangularizable over an extension field of F, and nonsingular. If
B is singular, modulo any prime the matrix space is singular. So we enumerate all prime
numbers up to the given polynomial bound, and for each prime use the algorithm over finite
fields. |
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