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Abstract
Toward the ultimate goal of separating L and P, Cook, McKenzie, Wehr, Braverman and
Santhanam introduced the tree evaluation problem (TEP). For fixed h, k > 0, FTh(k) is given
as a complete, rooted binary tree of height h, in which each internal node is associated with a
function from [k]2 to [k], and each leaf node with a number in [k]. The value of an internal node
v is defined naturally, i.e., if it has a function f and the values of its two child nodes are a and b,
then the value of v is f(a, b). Our task is to compute the value of the root node by sequentially
executing this function evaluation in a bottom-up fashion. The problem is obviously in P and
if we could prove that any branching program solving FTh(k) needs at least kr(h) states for any
unbounded function r, then this problem is not in L, thus achieving our goal. The above authors
introduced a restriction called thrifty against the structure of BP’s (i,e., against the algorithm
for solving the problem) and proved that any thrifty BP needs Ω(kh) states. This paper proves a
similar lower bound for read-once branching programs, which allows us to get rid of the restriction
on the order of nodes read by the BP that is the nature of the thrifty restriction.
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1 Introduction

Settling the P vs. NP question is obviously the biggest goal of theoretical computer science,
but the fact is that almost nothing is known for separation of other complexity classes, either.
For example, separation of L (= Log space) and P, which has been much less popular than P
vs. NP, should be equally important to make clear the whole view of complexity classes. To
this end, Cook, McKenzie, Wehr, Braverman and Santhanam introduced a simple but very
general problem called the tree evaluation problem (TEP) [3]. For fixed h, k > 0, FTh(k) is
given as a complete, rooted binary tree of height h in which each internal node is associated
with a function from [k]2 to [k], and each leaf node with a number in [k]. The value of an
internal node v is defined naturally, i.e., if it has a function f and the values of its two child
nodes are a and b, then the value of v is f(a, b). Our task is to compute the value of the
root node by sequentially executing this function evaluation in a bottom-up fashion. Note
that the original definition in [3] is based on a d-ary tree. In this paper, we only consider a
binary tree for our TEP.

Our computation model is branching programs (BP’s) that are sometimes more useful
to discuss complexity bounds rather than Turing machines (TM’s) especially for problems
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having relatively low complexities like TEP. It is known that the size of a branching program
(the number of its states) and the space of a TM are closely related, namely a lower bound
s(n) for BP’s size implies a lower bound Θ(log(s(n))) for TM’s space. It then turns out that
if we can prove that any BP solving FTh(k) needs at least kr(h) states for any unbounded
function r, then this problem is not in L. Since it is obviously in P, we would be able to
separate L and P. For details of these observations, see [3].

It is not hard to construct a branching program that computes FTh(k) of size O(kh)
(see Fig. 3 given later) and this construction strongly seems optimal. As mentioned above,
we only need a much more moderate bound, kr(h), and that is the natural reason why we
think this problem would fit our goal. In fact, [3] proves, by using the black pebbling game
[10][2], that if our BP’s satisfy a certain property, called the thrifty restriction, then we do
need Ω(kh) states. The thrifty restriction roughly means that when the BP reads an internal
node v (actually reads its associated function), it has already read all the values of the v’s
subtree. Thus this algorithmic restriction strongly restricts the order of tree nodes that are
read by the BP. (The thrifty restriction also applies to nondeterministic BP’s, in which case
its meaning is more subtle.) The authors claim that this restriction is “natural,” but we
can of course think of different kind of BP’s that guess (read) function values first and then
check the leaf values if they actually realize the function values. In fact our lower bound
proof gets messy in this case.

Recall that we have another popular restriction type of BP’s, namely the read-once
restriction, where a read-once BP reads each input value at most once in any computation
path. In fact the above O(kh) construction is not only thrifty but also read-once and [14]
proves that if our BP is both thrifty and read-once, then this explicit construction with
(k + 1)h − k states is absolutely optimum. Now the natural question is what if we impose
only the read-once restriction.

Our contribution. It is shown that if a read-once BP B solves FTh(k), then B needs Ω(kh)
states, thus proving a lower bound on the size of read-once BP’s similar to that of thrifty
BP’s. Actually B needs to be read-once only for states reading leaf values, i.e., the result
holds for even less restricted BP’s such that in every computation path, if the last leaf-reading
state s reads a leaf node v, any state appearing before s on the path does not read v. Note
that there is no restriction at all on states reading internal nodes (associated with functions).
Furthermore, since our main lemma bounds the number of only leaf-reading states, we do
not have to care about the number of these non-leaf-reading states.

Since there are no restrictions on the order of nodes visited by the BP any longer, there is
no obvious way of directly using the pebbling game for lower bound proof. Instead, we use a
similar notion from a slightly different angle, namely we use what we call a cut configuration,
a set of the values of h− 1 nodes that "cut" paths between leaf nodes and the root of the
given FTh(k). The key lemma (Lemma 5) is that if a last leaf-reading state accepts two
or more inputs having different cut configurations, then the function part in the inputs is
severely restricted, which means the number of different inputs whose paths go through this
state is very small. Thus there must be a lot of inputs whose function part does not have
this restriction, and we can imply that those inputs have only one cut configuration for any
of the last leaf-reading states. For such a fixed function part, the number of inputs having
that cut configuration for the last leaf-reading state is easily bounded from above. Thus
follows the lower bound for the number of such states. Of course there should still exist a
big gap between this class of BP’s and general ones, but at least we can get rid of the issue
of node orders visited by BP’s, which was quite annoying for the attempt of generalising our
lower bound proofs.
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Our proof depends on another important lemma (Lemma 3) that relates the number of
leaf-reading states and the number of states reading second-leaves (the leaves located at
height h − 1). This lemma holds for general BP’s and gives us a by-product. Namely, as
shown in Section 4, we can obtain a k3 lower bound for general BP’s for the height-3 TEP,
which is the same as [3] but with a simpler proof.

Related Work. Other than the lower bounds for thrifty BP’s, [3] includes several important
results, for instance, it gives a lower bound, k3, for unrestricted BP’s solving FT3(k), which is
tight up to the constant factor. This is still the best lower bound for general BP’s solving TEP.
[7] studies mainly nondeterministic BP’s for TEP. Its main result is that "bitwise-independent"
thrifty nondeterministic BP’s for TEP have at least 1

2k
h/2 states, which is tight against the

upper bounds shown in [3]. Their main technique is so-called the entropy method developed
in [6]. See [3] for several other attempts trying to separate relatively low complexity classes.
For instance [4] studies the complexity of BP’s solving GEN (known to be P-complete) that
asks a certain kind of reachability to a target element repeatedly using a binary operation.

Studies on branching programs have been quite popular since their introduction by Masek
[8], and there is a large literature if it is restricted to studies on their size lower bounds
(the following is only a small fraction): The best general deterministic lower bound is still
Ω(n2/(logn)2), which was proved almost half a century ago by Nečiporuk [9]. Note that
the above lower bound for FT3(k) is Ω(n3/2/(logn)5/2) in terms of the binary input length.
(For a general d-ary TEP, [3] obtains a stronger Ω(n2/(log(n))2) lower bound applying the
Nečiporuk method.) Against read-once branching programs, we have much better lower
bounds. In 1984, Žák [15] first obtained a super-polynomial lower bound, Ω(2

√
n−logn), for

the half-clique function, which was improved to more than 2n/3−o(n) by Wegener [13]. For
the triangle parity function, Ajtai [1] gave a 2cn lower bound and the value of c was later
improved by Simon(1993) [12]. Jukna [5] relaxed the read-once restriction to the k-read-once
restriction (i.e., all variables except k ones are read-once). He obtained a lower bound of
2Ω(( n

k )1/2) for k = O(n/ logn) and this is extended by Žak [11] into a hierarchy theorem
based on this value k.

2 Preliminaries

For the Tree Evaluation Problem (TEP), FTh(k), we are given a complete binary tree Th of
height h with nodes 1 through 2h−1 (see Fig. 1 for h = 3). Each internal node 1 ≤ i ≤ 2h−1−1
is associated with some explicit function fi : [k]2 7→ [k], where [k] = {1, 2, . . . , k}. Each leaf
node j (2h−1 ≤ j ≤ 2h − 1) is associated with a number in [k]. Our task is to compute the
value of the function f1 at the root node in the natural way: Suppose that we have inputs
f1, f2, f3, a4, a5, a6, a7 for the tree of Fig. 1. Then the value we want to obtain is

f1(f2(a4, a5), f3(a6, a7)).

Note that each fi is given as an explicit sequence of values, e.g., fi(1, 1), fi(1, 2), fi(1, 3),
fi(2, 1), fi(2, 2), fi(2, 3), fi(3, 1), fi(3, 2), fi(3, 3) for k = 3. In some cases, it is convenient
to use a k × k matrix instead of the above sequence. For instance Fig. 2 shows an example
of f1,f2,f3 for h = 3. Now if (a4, a5, a6, a7)=(3, 3, 1, 2), then the solution for this inputs is
f1(f2(3, 3), f3(1, 2))= f1(3, 2)= 1. In our lower bound proof, the nodes located at height
h− 1 (parents of leaves) play an important role. We call them second-leaves.

Our computation model is a (deterministic) branching program (BP) B, which is a directed,
rooted, acyclic graph. Its vertices are called states including a unique initial state and k sink

STACS’14
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Figure 1 F T3(3).
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Figure 2 Example of f1, f2, f3.

states. Each non-sink state (or simply a state if no confusion would arise) has k outgoing
edges labelled by 1 through k, while each sink state has no outgoing edges. Each state has a
label of the form (i1, i2, i3) or j, where 1 ≤ i1 ≤ 2h−1−1, 1 ≤ i2, i3 ≤ k and 2h−1 ≤ j ≤ 2h−1.
Each sink state has a label l where 1 ≤ l ≤ k. A BP B computes the solution of TEP
in the following way. Suppose that our input is I = (f1(1, 1), f1(1, 2), . . . , f2h−1−1(k, k),
a2h−1 , . . . , a2h−1). Then its computation path, P , for input I is defined as follows. P starts
from the initial state. If P is now at a state with label (i1, i2, i3), then P is extended by the
edge labelled by fii(i2, i3). If P is at a state with label j, then it is extended by the edge
labelled by aj . We often say that B "reads" the input attached to the node i1 (a non-leaf
node) or j (a leaf) and branches due to its value between 1 and k. P ends with some sink
state; if its label is l, then the outcome of the computation is l. If this outcome is equal to
the correct solution for all possible inputs I, then we say B solves FTh(k).

Fig. 3 shows an example of a BP that solves FT3(3). The computation path for the input
previously given (f1, f2, f3 in Fig. 2, and (a4, a5, a6, a7) =(3, 3, 1, 2) ) is given by a thick line.
A BP is called read-once if all paths from the root to sinks do not have two or more same
labels. The BP in Fig. 3 is read-once.

Our lower bound proof is based on the following simple idea: Suppose that A (|A| = m1)
is a carefully selected subset of all the possible inputs for FTh(k). Let B be any (read-once)
BP that solves FTh(k). Then our proof says that we can always select a set S of states such
that each computation path corresponding to each input in A goes through some state in S
and any state in S accepts computation paths of at most m2 inputs in A, concluding that
|S| is at least m1/m2. To introduce such an input set A, we consider the following constraint
for functions fi: Suppose that

X =


α11 α12 · · · α1k

α21
. . . · · · α2k

...
...

. . .
...

αk1 α12 · · · αkk


is the matrix representation of fi. Then it has to satisfy the following three constraints:
(i) α11 . . . α1k (= the first row) is a permutation of (1, . . . , k) (ii) α11 . . . αk1 (= the first
column) is a permutation of (1, . . . , k) (iii) For ∀j ≥ 2, αj1 . . . αjk is a permutation that can
be written as δl(α11 . . . α1k) for some 1 ≤ l ≤ k where δ is the cyclic permutation

δ =
(

1 2 · · · k − 1 k

2 3 · · · k 1

)
and δl is a composition of l δ’s. Thus each row is a permutation, and it is not hard to see
that each column is also a permutation. X is fixed by determining its first row and the
first column, and hence there are k!(k − 1)! different fi’s. Let F be the class of functions
satisfying these constraints. In this paper, we assume that our function fi is always selected
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Figure 3 An example of a read-once branching program solving F T3(3).

from F unless otherwise stated (but of course, our BP’s must give correct solutions for all
inputs). Now here are easy but important lemmas.

I Lemma 1. Suppose that two inputs I and I ′ (their function parts satisfy the constraint)
are exactly the same except only one leaf value at node j. Then the final value of FTh(k) is
different between I and I ′.

Proof. Suppose that the final value is the same and consider the path from the root to
j. Since the root value is the same and the leaf value is different, there must be a node i
on the path such that the value of i is the same but the value of i’s next node i′ on the
path is different, say, a in I and a′ in I ′. Let i′′ be the sibling of i′ (both i′ and i′′ have i
as their parent). Then the value of i′′ is the same, say b, in both I and I ′. Thus we have
fi(a, b) = fi(a′, b) for a 6= a′, which contradicts that fi ∈ F . J

I Lemma 2. Suppose that a BP B solves FTh(k). Then (1) for any internal node i of
FTh(k) and for any a, b ∈ [k], there must be a state whose label is (i, a, b) in B. (2) If P is
a legal computation path, then for any leaf node j, P includes a state that reads j.

Proof. For (2), suppose that P corresponds to input I and it does not read j. Then consider
another input I ′ which is different from I only in j. Then B obviously outputs the same
value for I and I ′, contradicting the previous lemma. (1) is proved similarly by considering
two inputs I and I ′ that differ only in fi(a, b) and such that both inputs actually use fi(a, b)
(meaning the values of i’s two children are a and b under I and I ′). Note that if I satisfies

STACS’14
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(i,a,b) i

(i,a’,b’)

Figure 4 Modification rules(i), (ii) and (iii).

the restriction, then I ′ does not. Now one can see, exactly as in the proof of the previous
lemma, that the final value is different between I and I ′, but B outputs the same value, a
contradiction. J

The next lemma (hinted by Th. 5.8 and Th. 5.9 of [3]) relates the number of states
reading leaf nodes and the number of state reading second-leaf nodes. By this lemma, we
can increase the degree of k by one in the lower bound given in the next section. Note that
this lemma holds for general BP’s (and see Sec. 4 for its by-product).

I Lemma 3. For h ≥ 1, if there is a BP Bh+1 solving FTh+1(k) such that the number of
states that read second-leaf nodes is n, then there is a BP Bh solving FTh(k) such that the
number of states that read leaf nodes is at most n/k2. Furthermore, if Bh+1 is read-once, so
is Bh, also.

Proof. we construct Bh from the given Bh+1 as follows. Let i be a second-leaf node of
FTh+1(k) and (a, b) is a pair of inputs to fi such that the number of states in Bh+1 that
read fi(a, b) is less than or equal to the number of states reading fi(a′, b′) for any (a′, b′).
Let m be the number of such state s reading fi(a, b). By Lemma 2, there is at least one state
that reads fi(a, b) for any (a, b) ∈ [k]× [k]. So, m is at most (1/k2)×(the number of states
that read fi). Now we make the following modification against Bh+1 (see Fig. 4). The basic
idea is that we fix the values of the two child (leaf) nodes of i to a and b. Then i looks like a
leaf node of FTh(k) and among the states in Bh+1 that read i, only 1/k2 ones survive by the
following construction. This holds for any i and hence the lemma holds. (i) Change the label
of the above m states from (i, a, b) to i. (Namely this state reads a leaf node of FTh(k).)
(ii) Suppose that j1 and j2 are the two leaf nodes whose parent is i. Then we remove all
the states q of Bh+1 that read j1 (j2, respectively) by connecting q’s incoming edges to the
state to which the edge from q labelled by a (b, respectively) goes. (iii) We remove all the
state q of Bh+1 that read fi(a′, b′), ((a′, b′) 6= (a, b)), by connecting q’s incoming edges to
the state to which the edge from q labelled by 1 goes (this “1” is not important or it may be
any number in [k]).

We repeat this change for all second-leaf nodes of FTh+1(k), obtaining Bh. We omit the
proof that this construction is correct, since it is almost obvious from the construction. J
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Figure 5 Involved nodes in CC(I, j).

3 Lower Bounds

In this section we obtain a lower bound for the number of states that read leaf nodes of
FTh(k). Then combining it with Lemma 3, we obtain a better lower bound for the number
of states that read second-leaf nodes of FTh(k). Recall that our input satisfies the constraint
(its functions belong to F ) and all BPs in this section are read-once. Let B be a BP that
solves FTh(k) and P be its arbitrary computation path. (To avoid confusion, we sometimes
say that P is a legal computation path to emphasise that P is based on an input whose
function part satisfies the constraint.) Then by Lemma 2, P reads all leaf values (for any
leaf j, there is a state in P that reads j). Let q be the last state on P that reads a leaf value,
i.e., there is no state after q on P that reads a leaf. Since B is read-once, q is also the last
leaf-reading state on any other legal computation path that includes q. Thus, as far as we
are looking at only legal computation paths, we can define a last leaf-reading state without
specifying a computation path.

Now we define our key tool in the proof in this section. Suppose that I = (f1, . . . , f2h−1−1,
a2h−1 , . . . , a2h−1) is currently associated with FTh(k) and let j be a leaf. Then the cut
configuration (CC ) for I with respect j, denoted as CC(I, j), is defined as follows.

CC(I, j) = (a1, a2, . . . , ah−1)

where, (i) a1 is the value of j’s sibling and (ii) if ai, 1 ≤ i ≤ h− 2, is the value of node x,
ai+1 is the value of the sibling of x’s parent (see Fig. 5). Suppose that we know functions f1
to f2h−1−1. Then if we further know these h− 1 values as well as the value of j, then we can
compute the solution (= the value of node 1). In fact, it is well-known that we can compute
the solution in such a way that we need at most (h− 1)dlog ke memory space at any stage of
its computation (by recursively obtaining the values of a1, a2, and so on, in this order first,
then the associated function values from bottom to top). What will be done in the rest of
this section is to count the number of legal inputs with a certain restriction on its CC that
go through a last leaf-reading node. Our first lemma is an upper bound on the number of
inputs having a single CC.

I Lemma 4. Fix functions f1, . . . , f2h−1−1, an arbitrary leaf node, j, and an arbitrary
(a1, . . . , ah−1), ai ∈ [k]. Then the number of leaf values whose CC with respect to j is
(a1, . . . , ah−1) is at most k2h−1−h+1

Proof. Let Tv be a subtree of FTh(k) whose root is a node v at height i of FTh(k). Let
v1, . . . , v2i−1 (we used a simplified numbering) be the leaf nodes of Tv, and g(v1, . . . , v2i−1)
be the value of v. We first calculate the number of different leaf values (b1, . . . , b2i−1) such

STACS’14
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that g(b1, . . . , b2i−1) = a for a fixed a ∈ [k]. For fixed b1, . . . , b2i−1−1, g(b1, . . . , b2i−1−1, x) is
a function from [k] to [k] (denoted by g′(x)). By lemma 1, g′(x1) 6= g′(x2) if x1 6= x2, in
other words, g′ is a bijection. Hence, for any a ∈ [k], value b ∈ [k] such that g′(b) = a is
fixed. Since this holds for any b1, . . . , b2i−1−1, the number of leaf values b1, . . . , b2i−1 such
that g(b1, . . . , b2i−1) = a is k2i−1−1.

Now we calculate the number N of leaf values such that their CC with respect to leaf j is
(a1, . . . , ah−1). Let the node taking value ai be vi. See Fig. 5 again. First, note that node j
can take any of the k values. Next, the value of node v1 is fixed to a1; it takes only one value.
Since node v2 is a top node of a subtree with height 2, its leaf nodes can take k22−1−1 = k

different values by the above fact. Similarly, v3’s leaf nodes can take k23−1−1 = k3 different
values and so on. Therefore,

N = k · 1 · k · k3 · · · · · k2h−2−1

= k · k21+22+···+2h−2−(h−2)

= k · k2h−1−2−(h−2) = k2h−1−(h−1)
J

Now we are ready to prove our main lemma. We divide an input (f1, . . . , f2h−1−1, a1,
. . . , a2h−1) into two parts, the function part (f-part) f = (f1, . . . , f2h−1−1) and the leaf value
part (l-part) l = (a1, . . . , a2h−1). Let B be any (read-once) BP solving FTh(k) and s be any
last leaf-reading state, reading a leaf j. Let c1 and c2 be two different CC’s with respect
to j whose inputs have the same f-part, and G(c1, c2, s) be the set of such f-parts ( i.e., if
f ∈ G(c1, c2, s), then there are two l-parts a1 and a2 such that (f ,a1) and (f ,a2) have CC’s
c1 and c2, respectively). Note that there are (k!(k − 1)!)2h−1−1 different f-parts in total and
we denote this number by N0.

I Lemma 5. Suppose that k is a prime number. Then for any c1, c2, s, |G(c1, c2, s)| ≤ N0
k
k!

Proof. Let c1 = (a1, . . . , ah−1), c2 = (b1, . . . , bh−1), and let v1, . . . , vh−1 be the nodes
providing these two CC values. Also let g1, . . . .gh−1 be the functions associated with
v1, . . . , vh−1 producing both c1 and c2 (for different leaf values). Recall that s is a last
leaf-reading state (reading node j) and our BP is read-once. Hence, the value of j is first
read at s, which means two computation paths realizing c1 and c2 are not affected by the
value of j until the state s. Furthermore, these paths must go to the same sink-node for each
fixed value a of the node j, because after the state s our BP reads only function values being
the same for c1 and c2.

g1(a1, g2(a2, . . . , gh−1(ah−1, a) . . . )) = g1(b1, g2(b2, . . . , gh−1(bh−1, a) . . . )) (1)

Note that for a fixed ah−1, gh−1(ah−1, a) is a bijection form [k] to [k] and can be
represented as a permutation

δh−1 =
(

1 2 · · · k

α1 α2 · · · αk

)
where α1 . . . αk are the (ah−1)th row of the matrix of gh−1. Using similar representations for
g1 to gh−2, (1) can be written as

δ1δ2 . . . δh−1 = δ′1δ
′
2 . . . δ

′
h−1 (2)
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where δi is the (ai)th row of (the matrix of) gi and δ′i is the (bi)th row of gi. Due to our
constraint for gi, we can write δ′i = δliδi for some 0 ≤ li ≤ k − 1 (recall that δ is the cyclic
permutation).

Now (2) can be rewritten as

δ1δ2 . . . δh−1 = δl1δ1δ
l2δ2 . . . δ

lh−1δh−1

Suppose that ai and bi are the first different values in the two CC’s (i,e., a1 = b1, . . . ai−1 =
bi−1). Then l1 = l2 = · · · = li−1 = 0 and hence

δ1δ2 . . . δh−2δh−1 = δl1δ1δ
l2δ2 . . . δh−2δ

lh−1δh−1

⇔ δiδi+1 . . . δh−2 = δliδiδ
li+1δi+1 . . . δ

lh−1

⇔ δi = δliδiδ
li+1δi+1 . . . δ

lh−1δ−1
h−2 . . . δ

−1
i+1

⇔ δ∗ = δ−1
i δcδi (3)

where δ∗ = (δli+1 . . . δ−1
i+1)−1 and δc = δli .

Now let

δi =
(
α1 α2 · · · αk
1 2 · · · k

)
and δ∗ =

(
1 2 · · · k

β1 β2 · · · βk

)
,

Then (3) can be written as(
1 2 · · · k

β1 β2 · · · βk

)
=
(

1 2 · · · k

α1 α2 · · · αk

)(
1 2 · · · k

1 + c 2 + c · · · k + c

)(
α1 α2 · · · αk
1 2 · · · k

)
=
(
α1 α2 · · · αk
α1+c α2+c · · · αk+c

)
where 1 + c, . . . , k + c are all MOD k. Note that δ∗ and δc are conjugate and therefore their
cycle structures are the same. Since δ is the cyclic permutation, δc has a single cycle and
therefore δ∗ also has a single cycle.

It then turns out that if we fix α1 to d ∈ [k], then by the left hand side, d should be
mapped to βd, meaning α1+c = βd. Then again by the left hand side, βd should be mapped
to ββd

, meaning α1+2c = ββd
, and so on. Namely once α1 is fixed, all the other αi’s are

sequentially fixed one after another or δi itself is fixed. Since k is prime, this sequence of
value transfer does not end in the middle. Thus we have at most k different possibilities
for δi (due to k different values for α1). Recall that δi can take k! different permutation in
general. (The whole matrix is determined by fixing the first row and the first column, but it
should be noted that it is also determined by fixing any row and then any column). But now
there are only k possibilities as shown above. So the number of different gi is at most N0

k
k!

for each combination of other h − 2 functions. Note that s may have another CC, say c3,
other than c1 and c2. Then we have another restriction for functions, which results in even a
smaller number of possible functions. Thus it is enough to consider only the case that the
state s has two different CC’s, for the upper bound of the lemma. J

Now we imply a contradiction if the number of leaf-reading states is less than kh−1,
through the following two lemmas.
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I Lemma 6. Suppose that s1, s2, . . . , skh−1−1 are kh−1 − 1 different last leaf-reading states
of the BP B. Then there is an f-part f0 such that for any si (1 ≤ i ≤ kh−1 − 1), if inputs
(f0,a1) and (f0,a2) go through si, their CC’s are the same.

Proof. We count the number of f-parts f that do not satisfy the condition of the lemma. By
Lemma 5, there are N0 · kk! such f for each combination of state si, CC c1 and CC c2. Note
that we have kh−1 − 1 si’s and there are at most kh−1 different CC’s in general. Therefore
the number of such f ’s is at most

N0 ·
k

k! · (k
h−1 − 1) · (kh−1)2 ≤ N0k

3h−2/k!,

which is strictly less than N0 for a large (prime) k. Thus an f0 of the lemma must exists. J

I Lemma 7. B needs at least kh−1 last leaf-reading states.

Proof. Suppose B has at most kh−1 − 1 last leaf-reading states. Then by Lemma 6, there is
an f-part f0 such that inputs having this f0 as their f-part show at most one CC for any of
these last leaf-reading states. However, Lemma 4 shows each state accepts at most k2h−1−h+1

l-parts, meaning these kh−1− 1 states accept at most k2h−1−h+1 · (kh−1− 1) < k2h−1 l-values
in total. Since each of the all k2h−1 l-values must be accepted by some last leaf-reading state,
this is a contradiction. J

I Theorem 8. Any read-once BP Bh solving FTh(k) needs at least kh states.

Proof. The contraposition of Lemma 4 claims that if the number of leaf-reading states of Bh
is at least m, then the number of second-leaf-reading states of Bh+1 is at least k2m. Now
the theorem is immediate from Lemma 7. J

4 General Branching Programs for Height-3 TEP

Recall that Lemma 3 holds for general BPs. Also it turns out that the TEP of height two is
somewhat special. Thus we can obtain the following general lower bound for BPs for the
height-3 TEP with a simpler proof than that of [3].

I Theorem 9. Any (general) BP solving FT3(k) needs at least k3 states.

Proof. Due to Lemma 3, it suffices to show that any BP solving FT2(k) needs at least k
leaf-reading states. In the following, we show it needs at least k+ 1 leaf-reading states, which
is optimal by a construction similar to that of Fig. 3. Recall that FT2(k) has three nodes,
1, 2 and 3, where node 1 is associated with a function f1 and nodes 2 and 3 are leaf nodes.
Suppose that we have a BP B that solves FT2(k) and that has at most k leaf-reading states.
We fix f1 to an arbitrary function in F and then B can be modified to the BP that reads
only leaf nodes; we also denote this BP by B.

We give a new label (in addition to the original label of B), a set of pairs (a,b), 1 ≤ a, b ≤ k,
to each state and each edge of B by the following rule: (i) The initial node of B has label
{(a, b) | 1 ≤ a, b ≤ k}, i.e., the set of all possible pairs. (ii) Suppose that a state s has a
label S and an edge e from s reads node 2 to get value i. Then the label to the edge e is
{(i, b) | 1 ≤ b ≤ k} ∩ S, namely the (possibly empty) set of pairs in S whose first element is i.
Similarly for the case that s reads node 3 (we do the same thing with the second element
of the pair). (iii) Suppose that all the edges entering state s already have labels. Then the
label of s is the union of the labels of those incoming edges. Now it is easy to see that such
labels “describe” an execution of B in the following sense: Suppose that the label of an edge



K. Iwama and A. Nagao 419

e includes a pair (a, b). Then the computation path of B goes through this edge e if and only
if the values of nodes 2 and 3 are a and b, respectively (and f1 is the current fixed function).

Now suppose for contradiction that B has at most k states other than k sink states and
we look at edges that go to these sink states. Note that the number of all edges is k2 since
each of the k states has k edges. Also note that B has to read both of the two leaf states in
its computation path, so at least one edge goes to non-sink states. Consequently the number
of the above (going to sink states) edges is at most k2 − 1. Since the total number of pairs is
k2, it is impossible to map all those pairs to the edges in a one-to-one fashion, or one of the
following two cases must happen:
1. Some pair (a, b) does not appear in any label of these edges. B obviously does not do a

correct computation when the values of nodes 2 and 3 are a and b, respectively.
2. Some edge has two (or more) pairs, say (a, b) and (a′, b′). Notice that if the state this

edge outgoes from reads node 2, then we have a = a′. Then the computation of B is not
correct again since the output would be the same if the values of node 2 is the same and
the values of node 3 are different (recall that our f1 is in F ). Similarly for the case that
the state reads node 3 (then b = b′).

Thus we can conclude that such B is not a correct BP. J

5 Concluding Remarks

The obvious future work is to remove the read-once restriction. Since our main lemma
(Lemma 5) heavily depends on the read-once restriction, we do not have any specific
approaches to this ultimate goal at this moment. There are a couple of more reasonable
sub-goals: One is to prove that if a BP B is thrifty, then B can be converted to a read-once
BP without increasing the number of leaf-reading states drastically, or equivalently, to prove
that reading a same leaf node twice or more do not help much in thrifty BP’s. Another
possibility is to attack the case for h = 4. This seems more tractable since we can restrict
ourselves to the number of leaf-reading states of BP’s for FT3(k) that have several specific
properties as shown in [3]. Also this lower bound will outperform the longstanding one by
Nečiporuk [9].
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