
Computability of the entropy of one-tape Turing
machines
Emmanuel Jeandel

LORIA, UMR 7503 – Campus Scientifique, Vandoeuvre-lès-Nancy Cedex, France
emmanuel.jeandel@loria.fr

Abstract
We prove that the maximum speed and the entropy of a one-tape Turing machine are computable,
in the sense that we can approximate them to any given precision ε. This is counterintuitive, as
all dynamical properties are usually undecidable for Turing machines. The result is quite specific
to one-tape Turing machines, as it is not true anymore for two-tape Turing machines by the
results of Blondel et al., and uses the approach of crossing sequences introduced by Hennie.
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1 Introduction

The Turing machine is probably the most well known of all models of computation. This
particular model has many variations, that all lead to the same notion of computability.
The simplest model is the Turing machine with just one tape and one head, that we will
consider in this paper.

From the point of view of computability, this model is equivalent to all others. From the
point of view of complexity, however, the situation is very different. Indeed, it is well known
[6, 5, 19] that a language (of finite words) accepted by such a Turing machine in linear time
is always regular. More precisely, it can be proven that if such a Turing machine is in time
O(n) on all inputs, then there is a constant k so that, on any input, the machine passes at
most k times in any given position.

We will consider in this paper the Turing machine as a dynamical system: The execution
is starting from any given configuration c, i.e. any initial state, and any initial tape, and
we will observe the evolution. While the Turing machine is a model of computation, it
is however quite important in the study of dynamical systems. It was intensively studied
by Kurka [11], and Moore [14, 15] proved that they can be embedded in various “classical”
dynamical systems. As an example, the uncomputability of the entropy of a Turing machine,
by Blondel et al. [2] can be used to deduce the uncomputability of the entropy of piecewise-
affine maps, proven by Koiran [10] in a different way.

However, these undecidability results are usually obtained for Turing machines with two
tapes; The basic idea is to use one tape to simulate a given Turing machineM and to control
the other tape, that will only move its head without doing any computation or reading any
symbol. The computational complexity of the new Turing machine will come from the first
tape, but the dynamical complexity will come from the second tape.

There is a reason why these results use Turing machines with two tapes. We will prove
that some dynamical quantities for one-tape Turing machines are actually computable, in
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the sense that there is an algorithm that, given any ε > 0, produces an approximation of the
quantity up to ε. The two quantities we consider are the speed and the entropy of a Turing
machine. While the most theoretically important quantity is the entropy, we will focus our
discussion in the introduction to the speed, which is easier to conceive.

The speed of a Turing machine measures how fast the head goes to infinity. Informally,
the speed is greater than α if we can find a configuration c for which the Turing machine is
roughly in position αn after n units of time. Note that if α is nonzero, this means that it
takes a time n/α = O(n) to be in position n. Now, if we recall a previous result, one-tape
Turing machines with running time O(n) on all inputs recognize only regular languages.
We will prove, using the same techniques, that this also applies to the maximum speed:
If the maximum speed is nonzero, hence the running time on some infinite configuration
is (asymptotically) linear, then there is a regular (ultimately periodic) configuration that
achieves this maximum speed.

This paper is organized as follows. In the first section, we introduce the formal definitions
of the speed and entropy of a Turing machine. In the next section, we proceed to prove the
three main theorems: The speed and the entropy are computable, and the speed is actually
a rational number, achieved by a ultimately periodic configuration.

2 Definitions

We assume the reader is familiar with Turing machines. A (one-tape) Turing machine M
is a (total) map δM : Q × Σ 7→ Q × Σ × {−1, 0, 1} where Q is a finite set called the set of
states, and Σ a finite alphabet.

Now, the best way to see it as a dynamical system might seem unorthodox at first. The
idea is to consider the Turing Machine as having a moving tape rather than a moving head:
A configuration is then an element of C = Q×ΣZ, and the mapM on C is defined as follows:
M((q, c)) = (q′, c′) where δM (q, c(0)) = (q′, a, v), c′(−v) = a and c′(i) = c(i + v) for all
i 6= −v. This distinction is particularly important for the definition of the entropy to be
technically correct. However it is more convenient to consider the Turing machines as we
are used to, and we will say “the Turing machine is in position i” rather than “the tape has
moved i positions to the right”.

The speed
Given a configuration c ∈ C, the speed ofM on c is the average number of cells that are read
per unit of time. Formally, let sn(c) be the number of different cells read during the first
n steps of the evolution of the Turing Machine M on input c. Note that sn is subadditive:
sn+m(c) ≤ sn(c) + sm(Mn(c)).

I Definition 2.1.

s(c) = lim sup sn(c)
n

, s(c) = lim inf sn(c)
n

.

We give two examples.
Consider a Turing machine with two states q1, q2. On q1, the Turing machine goes to
q2 without changing the position of the head. On q2 the Turing machine goes right and
changes back to q1. Then s(c) = s(c) = 1/2 for all c.
Consider a Turing machine with two states {L,R} (for Left and Right) and two symbols
{a, b}. In state q, when the machine reads a symbol a, it goes in the direction q. When
the machine reads a symbol b, it writes a symbol a instead and changes direction. On
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Figure 1 Three different behaviors of the same Turing machine on three different inputs. In the
first one, the speed is 1. In the second one the speed is 0. In the third one, the speed is between
1/3 and 1/2. Time goes bottom-up.

input c = (R,w) where w contains only the symbol a, the Turing machine will only go
to the right, and s(c) = s(c) = 1. On input c = (R,w) where w contains only the symbol
b, the Turing machine will zigzag, and will reach the n-th symbol to the right in time
O(n2), hence will see only O(

√
(n)) symbols in time n, hence s(c) = s(c) = 0. On input

c = (R,w) where w contains b only at all positions (−2)i, the Turing machine will have
read (for n even) 2n + 2n−1 symbols at time 2n+1 + 2n − 2 and s(c) = 1/2, but only
2n−1 + 2n−2 at time 2n+1 + 2n−2 − 2, and s(c) = 1/3. This is illustrated on Figure 1.

Now we define the speed of a Turing machine as the maximum of its average speed on
all configurations:

I Definition 2.2.

S(M) = max
c∈C

s(c) = max
c∈C

s(c) = lim
n

sup
c

sn(c)
n

= inf
n

sup
c

sn(c)
n

.

The fact that all these definitions are equivalent, and that the maximum speed is indeed
a maximum (it is reached by some configuration), is a consequence of the subadditivity of
(sn)n∈N, see [4, Theorem 1.1] or [13] for a more combinatorial proof.

The entropy
The (topological) entropy of a Turing machine is a quantity that measures the complexity
of the trajectories. It represents roughly the average number of bits needed to represent the
trajectories.

For a configuration c, the trace of c is the word u ∈ (Σ×Q)N where ui contains the letter
in position 0 of the tape and the state at the i-th step during the execution of M on input
c. We note T (c) the trace of c and T (c)|n the first n letters of the trace. Finally, we denote
by Tn = {T (c)|n, c ∈ C}

Then the entropy can be defined by

I Definition 2.3.

H(M) = lim
n

1
n

log |Tn| = inf
n

1
n

log |Tn| .

The limit indeed exists and is equal to the infimum as (log |Tn|)n∈N is subadditive. This
definition is a specialized version for (moving tape) Turing machines of the general definition
of entropy, and was proven equivalent in [16].

STACS’14
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We now look again at the examples. In the first case, T (c)|n can take roughly |Σ|n/2

different values, and H(M) = 1/2 log |Σ|. In the second case, the first n letters of T (c) can
contain at most

√
n symbols (b, L) or (b, R) (the maximum is obtained for a configuration

with only b). As a consequence, Tn is of size at most
∑

i≤
√

n

(
n

i

)
≤
√
n

(
n√
n

)
so that

H(M) = 0.
It is possible to give a definition for the entropy that is very similar to the speed. For

this, we use Kolmogorov complexity. The (prefix-free) Kolmogorov complexity K(x) of a
finite word x is roughly speaking the length of the shortest program that outputs x.

A precise definition of Kolmogorov complexity can be found in [3]. Here we just recall a
couple of its properties:

For any alphabet Σ, there exists constants c and c′ so that for all words u over Σ,
K(u) ≤ |u| log |Σ|+ 2 log |u|+ c and for all words u, v, K(uv) ≤ K(u) +K(v) + c′.
For any computable function f , there exists a constant c so that K(f(w)) ≤ K(w) + c

whenever f(w) is defined.

For a trace t, define the lower and upper complexity of t by K(t) = lim inf K(t|n)
n and

K(t) = lim sup K(t|n)
n .

I Theorem 2.4 ([1, 18]). H(M) = max
c∈C

K(T (c)) = max
c∈C

K(T (c)).

From this definition, it will not be surprising that we can obtain results on both speed
and entropy using the same arguments.

3 Computability of the speed and the entropy

We will prove in this section that the speed and the entropy of a TM are computable. The
proof goes as follows. By the definition of the speed as an infimum, we can compute a
sequence sn so that S(M) = inf sn. So it is sufficient to find a (computable) sequence s′n so
that S(M) = sup s′n to be able to approximate the speed to any given precision ε.

To find such a sequence s′n, it is sufficient to find configurations cn of near maximal
speed. To do that, we need to better understand configurations of maximal speed.

First, we will establish (Propositions 3.1 and 3.2) that a configuration of maximal speed
(entropy) cannot do too many zigzags, and must be only finitely many times at any given
position. The idea is that revisiting cells that were already visited is a loss of time (and
complexity), so the machine should avoid doing it. In the same vein, we can prove that the
zigzags must not be too large (Proposition 3.3): the time of the first and last visit of a given
cell must be roughly equivalent (ln(c) ∼ fn(c) in the notation of this proposition).

All this work allows us to redefine the problem as a graph problem: given a weighted
(infinite) graph, find the path of minimum average weight (Proposition 3.5). Using the
graph approach, we will then prove (Theorem 3.6) that this average minimum weight can
be well approximated by considering only finite graphs. Finally, the speed and entropy for
finite graphs are easy to compute (Theorems 3.7 and 3.9), which ends the proof.

In each section, the proofs will always be done first for the speed, then for the entropy.
We deliberately choose to have similar proofs in both cases, to help to understand the proof
for the entropy, which is more complex. In particular, some statements about the speed are
probably a bit more elaborate than they need to be.
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3.1 Biinfinite tapes are no better
The first step in the proof is to simplify the model: we will prove that to achieve the
maximum speed (resp. maximum complexity), we only need to consider configurations that
never cross the origin, i.e., that stay always on the same side of the tape. This seems quite
natural, as changing from a position i > 0 to a position j < 0 costs at least i+ (−j) steps,
and might greatly reduce the average speed of the TM on this configuration.

I Proposition 3.1. Let c be a configuration for which S(M) = limn
sn(c)

n and suppose S(M) >
0. Then, during the computation on input c, the head of M is only finitely many times in
any given position i.

Proof. We prove only the result for i = 0, the result for all i follows by considering M t(c)
for some suitable t. We suppose by contradiction that the head of M is infinitely often in
position 0.

Let k be an integer. As S(M) > 0, there must exist a time t for which the head is in
position ±k. Let t be the first time when this happens. We may suppose w.l.o.g that at
time t the head is in position +k. Now let t′k be the next time the head was in position 0,
and finally let tk be the time at which the head was at its rightmost position in the first t′k
steps.

First, by definition stk
(c) = st′

k
(c). Furthermore, t′k ≥ tk +stk

(c)/2. Indeed by definition
of t, the leftmost position in the first tk steps is at most −(k − 1) so the TM went further
to the right than to the left in the first tk steps, so that the rightmost position is at least in
position stk

(c)/2. Remark also that tk ≥ k (by definition).
From this we obtain

st′
k

t′k
≤ stk

tk + stk
/2 ≤

stk

tk

1 + stk

2tk

.

By taking a limsup on both sides we obtain

S(M) ≤ S(M)
1 + S(M)

2

.

A contradiction. J

I Proposition 3.2. Let c be a configuration for which H(M) = limn
K(T (c)|n)

n and suppose
H(M) > 0. Then for any position i, the head of M is only finitely many times in position i.

Proof. It’s exactly the same proof. Note that K(T (c)t′
k
) ≤ K(T (c)tk

) +O(log t′k) (The first
t′k bits of T (c) can be recovered if we know only the first tk bits, and the number of bits
we want to recover), and t′k ≥ tk + K(T (c)tk

)/(2 log |Σ|) + O(log tk) (Indeed K(T (c)tk
) ≤

n log |Σ| + O(log tk) where n = stk
(c) is the number of bits read during times t ≤ tk, and

t′k ≥ tk + n/2), from which we get the same contradiction. J

These two propositions state that we only have to deal with configurations that never
reach the position i = 0 once they leave it at t = 0 (replace c by Mp(c) for a suitable p).

If we deal with the disjoint union of the Turing machine M and its mirror (exchange left
and right) M̃ , we may now assume, and we do in the rest of this section, that the maximum
speed and complexity is reached with a configuration that never goes to negative positions
i < 0 and, if S(M) > 0 (resp. H(M) > 0), that passes only finitely many times to any given
position.

STACS’14
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3.2 A reformulation
Recall that we suppose in the following sections that the maximum speed is obtained for a
configuration that never goes to negative positions.

Let us call fn(c) (f for first) the first time the TM reaches position n. Then the average
speed on a configuration c (for which the Turing machine never goes in negative positions)
can be defined equivalently as limn

n
fn(c) . We prove now a stronger statement.

Let us call ln(c) the last time the TM reaches position n. If the TM does not reach
position ±n, or if it reaches it infinitely often, let ln(c) =∞.

I Proposition 3.3.

S(M) = max
c

lim sup n

ln(c) = max
c

lim inf n

ln(c) ,

H(M) = max
c

lim sup
K(c|n)
ln(c) = max

c
lim inf

K(c|n)
ln(c) .

If the speed (resp. entropy) is nonzero, the maximum is reached for some configuration
c for which ln(c) is never infinite. In particular, for this configuration, ln(c) ∼ fn(c)

Proof. It is clear that S(M) and H(M) are upper bounds, as n ≤ sfn(c)(c) and K(c|n) ≤
K(T (c)|fn(c)) +O(logn). In particular the result is true if S(M) = 0 (resp. H(M) = 0).

We first deal with the speed. Let c be a configuration of maximum speed. By the
previous subsection, we may suppose that c never reaches negative positions.

Let tn = ln(c). Let p be the rightmost position the head reaches before tn and t′n the
first time this position is reached. Note that stn

(c) = st′
n
(c) = p (no negative position is

ever reached)
From this we get lim tn

t′
n

= lim tn

stn (c)
st′

n
(c)

t′
n

= 1.
Note also that t′n ≥ n and tn ≥ t′n + stn

− n. (The TM is at position st′
n

= stn
at time

t′n and at position n at time tn.)
Hence

n

tn
≥ t′n − tn

tn
+ stn

tn
.

From which the result follows.
For the entropy, the proof is almost the same. From K(T (c)tn) = K(T (c)t′

n
) +O(log tn),

we get again that limn
t′

n

tn
= 1.

Now K(T (c)tn
) ≤ K(cn) + (tn − t′n) log |Σ| + O(log tn) (the first tn bits of T (c) can be

recovered if we know tn and the first p bits of c, hence if we know the first n bits of c and
the p− n ≥ tn − t′n next bits), from which the result follows again. J

3.3 Crossing sequences
First denote by C+ the set of configurations c on which:

The Turing machine never reaches any positions i < 0.
The Turing machine never reaches the position 0 again once it leaves it at t = 0.
For any i > 0, the head of the Turing is only finitely many times in position i.

In the previous section we proved that we only have to deal with configurations in C+.
The core of the proof is based on crossing sequences, introduced by Hennie [6] to obtain

complexity lower bounds for one-tape TM.
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Let c be a configuration in C+. The crossing sequence at boundary i is the sequence of
states of the machine when its head crosses the boundary between the i-th cell and the i+1-
th cell. We denote by Ci(c) the crossing sequence at boundary i. Note that C0(c) consists
of a single state, which is the initial state of c (the machine never reaches the position 0
anymore) and Ci(c) is finite for i > 0.

Crossing sequences have the following property: Ci(c) represents all the exchange of
information between the positions j ≤ i and the positions j > i of the tape. In particular,
if Ci(c) = Cj(c′) for two configurations c, c′, and if we consider the configuration c̃ that is
equal to c up to i then equal to c′ (shifted by i− j so that the j+ 1-th cell of c′ becomes the
i + 1-th cell of c̃), then the Turing machine on c̃ will behave exactly like c on all positions
before i, and as c′ (shifted) on positions after i. Hence the crossing sequences capture exactly
the behavior of the Turing machine.

The main idea is now that the computation of a Turing machine can be seen as a path
on a graph of crossing sequences, where vertices represent crossing sequences and edges link
consecutive crossing sequences.

To do this, we now consider the following labeled graph (automaton) G: The vertices
of G are all finite words over the alphabet Q (all possible crossing sequences), and there
is an edge from w to w′ labeled by a ∈ Σ if w and w′ are compatible, in the sense that it
seems possible to find a configuration and a position i so that Ci(c) = w, Ci+1(c) = w′ and
a is the letter at position i + 1 in c (said otherwise, w and w′ are two consecutive crossing
sequences for some configuration c). The exact definition is as follows. We define recursively
two subsets L and R of Q∗ ×Q∗ × Σ as follows:

(ε, ε, a) ∈ L, (ε, ε, a) ∈ R
If δ(q1, a) = (q2, b,−1) then (q1q2w,w

′, a) ∈ L iff (w,w′, b) ∈ L
If δ(q1, a) = (q2, b,+1) then (q1w, q2w

′, a) ∈ L iff (w,w′, b) ∈ R
If δ(q1, a) = (q2, b,−1) then (q2w, q1w

′, a) ∈ R iff (w,w′, b) ∈ L
If δ(q1, a) = (q2, b,+1) then (w, q1q2w

′, a) ∈ R iff (w,w′, b) ∈ R
Then there is an edge from w to w′ labeled a if and only if (w,w′, a) ∈ L.

Note that this echoes a similar definition for two-way finite automata given in [7, 2.6]
where (w,w′, a) ∈ L is called “w left-matches w′” (The note in Example 2.15 is particularly
relevant). The exact definition above is also hinted at in [17].

Let us explain briefly these conditions. Suppose δ(q1, a) = (q2, b,+1), and suppose that
the Turing machine at some point arrives in some cell i from the left, in the state q1 and
sees a. Then by definition, the first symbol from Ci(c) must be q1. By definition of the
local rule δ, the Turing machine will enter state q2 and go right so that the first symbol in
Ci+1(c) will be q2. Now, the next time the Turing machine will come into the cell i, it must
be coming from the right, and when it does it will see the symbol b. This explains the rule
(q1w, q2w

′, a) ∈ L iff (w,w′, b) ∈ R, where w and w′ represent the crossing sequences after
the second time the Turing machine comes to the cell i.

Now it is clear that a configuration c defines a path in this graph G, and that we can
recover the speed of the configuration from the graph, as explained in the following.

A path in the graph G is a sequence p = {(wi, ui)}i<N where wi is a vertex of G and ui

a letter from Σ so that (wi, wi+1, ui) ∈ L for all i < N − 1. A valid path is an infinite path
(N =∞) so that w0 consists of one single letter (state). We denote by P(G) the set of valid
paths of a graph G.

The following facts are obvious:

I Fact 3.4. For any c ∈ C+, {(Ci(c), ci)}i≥0 is a valid path in G.

STACS’14
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Furthermore, for any valid path p = {(wi, ui)}i≥0, there exists a configuration c ∈ C+ so
that ui = ci and Ci(c) is a prefix of wi.
Note that it is indeed possible for wi to be strictly larger than Ci(c).

We are now able to redefine the speed and the complexity based on the graph G. If p is a
finite path (N is finite), the length of p is |p| = N , the weight of p is weight(p) =

∑
i<N |wi|,

and the complexity of p is K(p) = K(u0 . . . uN−1)
If p = (ui, wi)i≥0 is an infinite path, and p|n = (ui, wi)i≤n, the average speed of p is

s(p) = lim inf |p|n|
weight(p|n) and the average complexity of p is K(p) = lim inf K(p|n)

weight(p|n) . We
define similarly s(p) and K(p).

Now note that
∑

i<n |Ci(c)| is bounded from below by the first time the TM goes to the
position n, and from above by the last time the TM goes to position n. So by the previous
section
I Proposition 3.5.

S(M) = max
p∈P(G)

s(p) = max
p∈P(G)

s(p) ,

H(M) = max
p∈P(G)

K(p) = max
p∈P(G)

K(p) .

Now to obtain the main theorems, let Gk be the subgraph of G obtained by taking only
the vertices of size |wi| ≤ k.

I Theorem 3.6.

S(M) = sup
k

sup
p∈P(Gk)

s(p) ,

H(M) = sup
k

sup
p∈P(Gk)

K(p) .

This means we only have to consider finite graphs to compute the speed (resp. entropy).
We will prove in the next section that the speed and the entropy are computable for finite
graphs, which will give the result.

Before going to the proof, some intuition. Let p be a path of maximum speed S(M) > 0.
For the speed to be nonzero, vertices of large weight cannot be too frequent in p. Now the
idea is to bypass these vertices (by using other paths in the graph G) to obtain a new path
p′ with almost the same average speed. For the speed, it’s actually possible to obtain a path
p′ of the same speed (this will be done in the next section). However, for the entropy, it
is likely that these paths were actually of great complexity so that their removal gives us a
path of smaller (yet very near) average complexity.

Proof. First, the speed. One direction is obvious by definition. We suppose that S(M) > 0,
otherwise the result is trivial. Let p be a path of maximum speed.

Let k be any integer so that 1/k < S(M). For any vertex w and w′ of size less or equal
to k so that p goes through w and w′ in that order, choose some finite path P (w,w′) from
w to w′. Now let K be an upper bound on the weights of all those paths.

The idea is now simple: we will change p so that it will not go through any vertices w
of size |w| > K: Whenever there is a vertex w̃ of size greater than K, we will look at the
last vertex w before it of size less or equal to k, and to the first vertex w′ after it of size
less or equal to k, and we will replace the portion of this path by P (w,w′). Let’s call p′ this
new path. Note that there must exist such a vertex w′, otherwise all vertices will be of size
greater than k after some time, which means the speed on p is less than 1/k, a contradiction.
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Now we prove this construction works. First, p is of average speed S(M), hence there
exists an integer n so that for all m ≥ n

m

weight(p|m) ≥ S(M)/2 .

Now let m so that the vertex wm of p is of size less than k. We will look at how the m
first positions of p were changed into p′. Let m′ be the position of the vertex wm in p′ (wm

still appears in p′ as we only change vertices of size greater than k).
By the above inequality, it is clear that in the m first position of the path p, there is

at most 2m/(kS(M)) vertices of size greater than k. All other vertices still appear in p′,
so that m′ ≥ m − 2m/(kS(M)). Furthermore, at each time, we replace a finite path by a
path of smaller weight (each path was of weight at least K, and each new one is of weight
at most K).

As a consequence, for this new path p′ we have

m′

weight(p′|m′)
≥ m− 2m/(kS(M))

weight(p|m) .

Hence

s(p′) ≥ S(M)− 2/k .

We have proven that some path in GK is at least 2/k to the optimal speed, which proves
the result.
The proof for the entropy is, as always, very similar. We start from 1/k < H(M)/(log |Σ|)),
which guarantees that infinitely many vertices are of weight less than k. As before, we will
choose K greater than all weights, but now also greater than k|Q|k+1.

First, K(p|n) ≤ n log |Σ|+ O(logn), so K(p) ≤ s(p) log |Σ|, so we may choose n so that
for all m ≥ n

m

weight(p|m) ≥ H(M)/(2 log |Σ|) .

Let α = 2 log |Σ|/H(M). With this notation, this implies that for every m ≥ n, there
are at most mα/k (resp. mα/K) vertices of size at least k (resp K) in the first m positions
of p.

We now have to evaluate K(p′|m′). p|m can be recovered from p′|m′ by deleting some
letters and inserting new ones.

First remark that there are at most mα/K vertices of size at least K in pm, so we did at
most mα/K cuts. In each cut, we inserted at most |Q|k+1 letters (the maximal length of a
path P (w,w′)), so we deleted at most |Q|k+1mα/K ≤ mα/k letters from p′|m′ . In particular
m′ ≤ m(1 + α/k)

We only cut vertices of size at least k, and there are at most mα/k such vertices, so we
added at most mα/k letters to p′|m′ . In particular m′ ≥ m(1− α/k).

Now the letters we deleted from p′|m′ can be encoded into a word over {0, 1} (specifying
which letters we deleted) with at most mα/k symbols “1”. For each size l ≤ mα/k, there are

at most
(

m′

mα/k

)
words with l symbols “1”, so each such word has complexity at most

the logarithm of this number (up to a logarithmic factor to specify l), that is m′E(α/(k −
α)) + o(m) where E(p) = −p log p− (1− p) log(1− p).

We do the same for the letters we add to p′, but we also need to know which letters we
had, which can be described by a word of size mα/k and we obtain
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K(p′|m′) ≥ K(pm)− 2m′E(α/(k − α))− dmα/ke dlog |Σ|e+ o(m) .

Now weight(p′|m′) ≤ weight(p|m) and weight(p′|m′) ≥ m′ ≥ m(1− α/k):

K(p′|m′)
weight(p′|m′)

≥ K(pm)
weight(pm) − 2E(α/(k − α))− α

k − α
dlog |Σ|e+ o(1) .

Now take the limit (superior) as m tends to infinity:

K(p′) ≥ H(M)− 2E(α/(k − α))− α

k − α
dlog |Σ|e .

Now the quantity to the right tends to H(M) when k tends to infinity, which proves the
result. J

3.4 The main theorems
Now we can explain how to use the last result to prove the main theorems. As hinted above,
we only have to be able to compute the speed (and the entropy) from below.

I Theorem 3.7. There exists an algorithm that, given a Turing machine M and a precision
ε, computes S(M) to a precision ε.

Proof. We only have to explain how to compute the maximum speed for a finite graph G.
First, we may trim G so that all vertices are reachable from a vertex of size 1. It is then
obvious that the maximum speed is obtained by a path that goes to then follow a cycle
of minimum average weight, so the maximum speed is exactly the inverse of the minimum
average weight. This is easily computable, see [9] for an efficient algorithm. J

We can say a bit more

I Theorem 3.8. The maximum speed of a Turing machine S(M) is a rational number. It
is reached by a configuration which is ultimately periodic.

Proof. We suppose that S(M) > 0 otherwise the result is clear. We will prove that the
sequence supp∈Gk

s(p) is stationary. Let k = 1 + d1/S(M)e. Let K = k(k + 1)|Q|k+1.
Now we look at supp∈GK′ s(p) for some K ′ ≥ K. The maximum is reached for some path

that reach some cycle of minimum average weight.
Note that this cycle cannot be of length greater than (k + 1)|Q|k+1. Indeed, denote by

m the length of this cycle. As there are at most |Q|k+1 vertices in this cycle of length at
most k, the average speed on this cycle is less than

m

(k + 1)(m− |Q|k+1) ≤ 1/k < S(M) .

Now, there cannot be any vertices in this cycle of length at least k(k+1)|Q|k+1. otherwise
the average speed would be less than

(k + 1)|Q|k+1

k(k + 1)|Q|k+1 ≤ 1/k < S(M) .

Hence this cycle is already in GK .
Now if we look at the cycle of minimal average weight in GK that can be reached in G,

hence in GP from some P , then it is clear that S(M) is exactly the inverse of the average
weight of this cycle, and it is reached for some path p in GP that reaches then follows this
cycle. J
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Note that, while the maximum speed is a rational number, there is no algorithm that actually
computes this rational number (we are only able to approximate it up to any given precision).
This can be proven by an adaptation of the proof of the undecidability of the existence of a
periodic configuration in a Turing machine [8].

Now we do the same for the entropy:

I Theorem 3.9. There exists an algorithm that, given a Turing machine M and a precision
ε, computes H(M) to a precision ε.

Proof. We only have to explain how to compute the maximum complexity for a finite graph
G. However, we do not know how to do this in the whole generality. We will only prove how
to do it for the graphs Gk, that have an additional property, the diamond property: given
two vertices w,w′ and a word u, there is at most one path from w to w′ labeled by u.

First we trim Gk so that any vertex of Gk is reachable from a vertex of size 1.
For a given k, we consider a set Bk of infinite words over the alphabet (Q × Σ) ∪ Q

defined as follows: A word is in Bk if and only if it does not contain more than k − 1
consecutive letters in Q, more than 1 consecutive letters in Q × Σ, and all factors of the
form (a, q)w(b, q′)w′(c, q′) satisfy than there is a edge from qw to q′w′ labeled by b.

Now it it clear that if p = {(ui, qiwi)}i≥0 is an infinite path in Gk, then the word
(u0, q0)w0(u1, q1)w1 . . . is a word of Bk. Conversely, any word of Bk, up to the deletion of
at most k + 1 letters at its beginning, represents a path in Gk.

Moreover, K((u0, q0)w0 . . . (un, qn)wn) = K(u0 . . . un) +O(1) = K(p|n) +O(1). Indeed,
we can recover all the states knowing only w0 and wn, as the graph has no diamond.
Furthermore, the length of (u0, q0)w0 . . . (un, qn)wn is exactly weight(p|n).

This means that the maximum complexity on the graph Gk can be computed as:

sup
w∈Bk

lim sup K(w0 . . . wn)
n

.

And we know how to compute this. Indeed, Bk is what is called a subshift of finite type
(it is defined by a finite set of forbidden words), for which the above quantity is exactly the
entropy (!) of Bk [1, 18], which is easy to compute, see e.g., [12].

To better understand what we did in this theorem, the intuition is as follows: Computing
the entropy of the trace is difficult, but the trace can be approximated by taking into
account only configurations for which we cross at most k times the frontier between any two
consecutive cells. For this approximation Tk of the trace, we can reorder the letters inside
the trace so that transitions corresponding to the same position are consecutive, and this
does not change the entropy. However, it makes it easier to compute. J

Open Problems

From the point of view of dynamical systems, the entropy and the speed (called the maximal
Lyapunov exponent) are among the few well known invariants, and thus the result is quite
important in this context. However, from the point of view of computer science, it also makes
sense to look at the average speed, and we are currently trying to compute this number.

An important open problem is to strengthen the last theorem, and actually character-
ize the exact numbers that can arise as entropies of Turing machines. It cannot be all
nonnegative computable numbers, as an enumeration of Turing machines would give us an
enumeration of these numbers, which is impossible by an easy diagonalization argument.
We have examples showing that the supremum in the theorem is not always reached, which
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means it might be possible to obtain different numbers with Turing machines than with
finite graphs (which are well known), but the main question remain open.

Finally, the situation for Turing machines with two tapes is not clear. Of course, we
know that the speed (resp. entropy) is not computable [2] (there is no algorithm that given
a Turing machine and a precision ε computes the speed up to ε), but we know of no example
where the speed (resp. the entropy) is not a computable number.

Acknowledgements. The author thanks the anonymous referees for various comments that
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