Approximation of smallest linear tree grammar®

Artur Jez'! and Markus Lohrey?

1 MPI Informatik, Saarbriicken, Germany / University of Wroctaw, Poland
2 University of Siegen, Germany

—— Abstract

A simple linear-time algorithm for constructing a linear context-free tree grammar of size
O(r%glogn) for a given input tree T of size n is presented, where g is the size of a minimal
linear context-free tree grammar for 7', and r is the maximal rank of symbols in T’ (which is a
constant in many applications). This is the first example of a grammar-based tree compression
algorithm with an approximation ratio polynomial in g. The analysis of the algorithm uses an ex-
tension of the recompression technique (used in the context of grammar-based string compression)
from strings to trees.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems
Keywords and phrases Grammar-based compression, Tree compression, Tree-grammars

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.445

1 Introduction

Grammar-based compression has emerged to an active field in string compression during
the last 10 years. The principle idea is to represent a given string s by a small context-
free grammar that generates only s; such a grammar is also called a straight-line program
(SLP). For instance, the word (ab)'92* can be represented by the SLP with the productions
Ay — aband A; — A;_1A;—q for 1 < i <10 (A9 is the start symbol). The size of this
grammar is much smaller than the size (length) of the string (ab)'°?*. In general, an SLP
of size n (the size of an SLP is usually defined as the total length of all right-hand sides
of productions) can produce a string of length 22(™). Hence, an SLP can be seen indeed
as a succinct representation of the generated word. The principle task of grammar-based
string compression is to construct from a given input string s a small SLP that produces s.
Unfortunately, finding a size-minimal SLP for a given input string is hard: Unless P = NP
there is no polynomial time grammar-based compressor, whose output SLP has size less
than 8569/8568 times the size of a minimal SLP for the input string [4], and so there is
no polynomial time grammar-based compressor G with an approximation ratio of less than
8569/8568. In general the approximation ratio for G is defined as the function ag with

size of the SLP produced by G with input x
ag(n) = max

)

size of a minimal SLP for =

where the max is taken over all strings of length n (over an arbitrary alphabet). The best
known polynomial time grammar-based compressors [4, 9, 17, 18] have an approximation
ratio of O(log(n/g)), where g is the size of a smallest SLP for the input string (each of them
works in linear time).

* The full version of this paper can be found at http://arxiv.org/abs/1309.4958.
T A. Jez was partially supported by Polish National Science Centre (NCN) grant 2011/01/D/ST6/07164,
2011-2014.

© Artur Jez Markus Lohrey; SYMPOSIUM
37 licensed under Creative Commons License CC-BY LV r ON THEORETICAL

31st Symposium on Theoretical Aspects of Computer Science (STACS’14). n }_ ASPECTS

Editors: Ernst W. Mayr and Natacha Portier; pp. 445-457 17 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.445
http://arxiv.org/abs/1309.4958
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

446

Approximation of smallest linear tree grammar

At this point, the reader might ask, what makes grammar-based compression so attractive.
There are actually several reasons: The output of a grammar-based compressor (an SLP) is
a clean and simple object, which may simplify the analysis of a compressor or the analysis
of algorithms that work on compressed data (see [13] for a survey). Moreover, there are
grammar-based compressors which achieve very good compression ratios. For example
REPAIR [12] performs very well in practice and was for instance used for the compression of
web graphs [5]. Finally, the idea of grammar-based string compression can be generalized to
other data types as long as suitable grammar formalisms are known for them. The last point
is the most important one for this work. In [3], grammar-based compression was generalized
from strings to trees (a tree in this paper is always a rooted ordered tree over a ranked
alphabet, i.e., every node is labelled with a symbol and the rank of this symbol is equal
to the number of children of the node). For this, context-free tree grammars were used.
Context free tree grammars that produce only a single tree are also known as straight-line
context-free tree grammars (SLCF tree grammars). Several papers deal with algorithmic
problems on trees that are succinctly represented by SLCF tree grammars, see [13] for a
survey. In [14], REPAIR was generalized from strings to trees, and the resulting algorithm
TREEREPAIR achieved excellent results on real XML data trees. Other grammar-based tree
compressors were developed in [15]. But none of these compressors has an approximation
ratio polynomial in g: For instance, in [14] a series of trees is constructed, where the n-th tree
t,, has size ©(n), there exists an SLCF tree grammar for ¢,, of size O(logn), but the grammar
produced by TREEREPAIR for ¢, has size Q(n) (similar examples can be constructed for the
compressors in [3, 15]).

In this paper, we give the first example of a grammar-based tree compressor, called
TTOG, with an approximation ratio of O(logn) assuming the maximal rank r of symbols
is bounded; otherwise the approximation ratio becomes O(r?logn). TTOG is based on the
work [9] of the first author, where grammar-based string compressor with an approximation
ratio of O(logn) is presented. The crucial fact about this compressor is that in contrast
to [4, 17, 18] it does not use the LZ77 factorization of a string (which makes the compressors
from [4, 17, 18] not suitable for a generalization to trees, since LZ77 ignores the tree structure
and no analogue of LZ77 for trees is known), but is based on the recompression technique.
This technique was introduced in [7] and successfully applied for a variety of algorithmic
problems for SLP-compressed strings [7, 8] and word equations [11, 10]. The basic idea is to
compress a string using two operations: (i) block compressions, which replaces every maximal
substring of the form a’ for a letter a by a new symbol ay, and (ii) pair compression, which for
a given partition 3, WY, of the alphabet replaces every substring ab € ¥,3,. by a new symbol
c. It can be shown that the composition of block compression followed by pair compression
(for a suitably chosen partition of the input letters) reduces the length of the string by a
constant factor. Hence, the iteration of block compression followed by pair compression
yields a string of length one after a logarithmic number of phases. By reversing the single
compression steps, one obtains an SLP for the initial string. The term “recompression” refers
to the fact, that for a given SLP G, block compression and pair compression can be simulated
on the SLP G. More precisely, one can compute from G a new grammar G’, which is not
much larger than G such that G’ produces the result of block compression (respectively, pair
compression) applied to the string produced by G. In [9], the recompression technique is
used to bound the approximation ratio of the above compression algorithm based on block
and pair compression.

In this work we generalize the recompression technique from strings to trees. The
operations of block compression and pair compression can be directly applied to chains of

A. Jez and M. Lohrey

unary nodes (nodes having only a single child) in a tree. But clearly, these two operations
alone cannot reduce the size of the initial tree by a constant factor. Hence we need a third
compression operation that we call leaf compression. It merges all children of node that are
leafs into the node; the new label of the node determines the old label, the sequence of labels
of the children that are leaves, and their positions in the sequence of all children of the node.
Then, one can show that a single phase, consisting of block compression (that we call chain
compression), followed by pair compression (that we call unary pair compression), followed
by leaf compression reduces the size of the initial tree by a constant factor. As for strings,
we obtain an SLCF tree grammar for the input tree by basically reversing the sequence of
compression operations. The recompression approach again yield an approximation ratio of
O(logn) for our compression algorithm, but the analysis is technically more subtle.

Related work on grammar-based tree compression. We already mentioned that grammar-
based tree compressors were developed in [3, 14, 15], but none of these compressors has a
good approximation ratio. Another grammar-based tree compressors was presented in [1].
It is based on the BISECTION algorithm for strings and has an approximation ratio of
O(n5/%). But this algorithm used a different form of grammars (elementary ordered tree
grammars) and it is not clear whether the results from [1] can be extended to SLCF tree
grammars, or whether the good algorithmic results for SLCF-compressed trees [13] can be
extended to elementary ordered tree grammars. Let us finally mention [2], where trees are
compressed by so called top trees. These are another hierarchical representation of trees.
Upper bounds on the size of top trees are derived and compared with the size of the minimal
dag (directed acyclic graph). More precisely, it is shown in [2] that the size of the top tree is
larger than the size of the minimal dag by a factor of O(logn). Since dags can be seen as a
special case of SLCF tree grammars, our main result is stronger.

Computational model. To achieve a linear running time we employ RADIXSORT, see [6,
Section 8.3], to obtain a linear-time grouping of symbols. To this end some assumption on
the computational model and form of the input are needed: we assume that numbers of
O(logn) bits (where n is the size of the input tree) can be manipulated in time O(1) and
that the labels of the input tree come from an interval [1,..,n°], where ¢ is some constant.

1.1 Trees and SLCF tree grammars

Let us fix for every 7 > 0 a countably infinite set I; of letters of rank i and let F = J,~,F;
be their disjoint union. Symbols in Fy are called constants, while symbols in Fy are called
unary letters. We also write rank(a) =4 if a € F;. A ranked alphabet F is a finite subset of
F. We also write F; for F NIF; and F>; for szl- F;. An F'-labelled tree is a rooted, ordered
tree whose nodes are labelled with elements from F, satisfying the condition that if a node v
is labelled with a then it has exactly rank(a) children, which are linearly ordered (by the
usual left-to-right order). We denote by T (F) the set of F-labelled trees. In the following
we shall simply speak about trees when the ranked alphabet is clear from the context or
unimportant. When useful, we identify an F-labelled tree with a term over F' in the usual
way. The size |t| of the tree ¢ is its number of nodes.

Fix a countable set Y with YNF = @ of (formal) parameters, which are denoted by
Y,Y1, Y2, - - .- For the purposes of building trees with parameters, we treat all parameters as
constants, and so F-labelled trees with parameters from Y CY (where Y is finite) are simply
(FUY)-labelled trees, where the rank of every y € Y is 0. However to stress the special role
of parameters we write 7 (F,Y") for the set of F-labelled trees with parameters from Y. We

447

STACS’14

448

Approximation of smallest linear tree grammar

identify T (F) with T (F,0). In the following we talk about trees with parameters (or even
trees) when the ranked alphabet and parameter set is clear from the context or unimportant.
The idea of parameters is best understood when we represent trees as terms: For instance
f(y1,a,y2,y1) with parameters y; and yo can be seen as a term with variables y;, y2 and we
can instantiate those variables later on. A pattern (or linear tree) is a tree t € T(F,Y), that
contains for every y € Y at most one y-labelled node. Clearly, a tree without parameters is
a pattern. All trees in this paper will be patterns, and we will not mention this assumption
explicitly in the following.

When we talk of a subtree u of a tree t, we always mean a full subtree in the sense that
for every node of w all descendents of that node in ¢t belong to u as well. In contrast, a
subpattern v of t is obtained from a subtree u of ¢ by replacing some of the subtrees of u by
pairwise different parameters. In this way we obtain a pattern p(y1,...,yn) and we say that
(i) the subpattern v is an occurrence of the pattern p(yi1,...,y,) in t and (ii) p(y1,...,Yn)
is the pattern corresponding to the subpattern v (this pattern is unique up to renaming of
parameters). This later terminology applies also to subtrees, since a subtree is a subpattern
as well. To make this notions clear, consider for instance the tree f(a(b(c)),a(b(d))) with
f €Ty, a,be Ty and ¢,d € Fy. It contains one occurrence of the pattern a(b(c)) and two
occurrences of the pattern a(b(y)).

A chain pattern is a pattern of the form aq(az(... (ax(y))...)) with a1,aq,...,a; € Fy.
We write ajas - - - ay, for this pattern and treat it as a string (even though this string still
needs an argument on its right to form a proper term). In particular, we write a’ for the
chain pattern consisting of £ many a-labelled nodes and we write vw (for chain patterns v
and w) for what should be v(w(y)). A chain in a tree t is an occurrence of a chain pattern
in t. A chain s in t is mazimal if there is no chain s’ in ¢ with s C s’. A 2-chain is a chain
consisting of only two nodes (which, most of the time, will be labelled with different letters).
For a € Fq, an a-maximal chain is a chain such that (i) all nodes are labelled with a and (ii)
there is no chain s’ in ¢ such that s C s’ and all nodes of s’ are labelled with a too. Note
that an a-maximal chain is not necessarily a maximal chain. Consider for instance the tree
baa(c). The unique occurrence of the chain pattern aa is an a-maximal chain, but is not
maximal. The only maximal chain is the unique occurrence of the chain pattern baa.

For the further consideration, fix a countable infinite set N; of symbols of rank ¢ with
N; NN; = 0 for i # j. Let N = [J,5,N;. Furthermore, assume that F NN = (). Hence,
every finite subset N C N is a ranked alphabet. A linear context-free tree grammar (there
exist also non-linear CF tree grammars, which we do not need for our purpose) or short
linear CF tree grammar is a tuple G = (N, F, P, S) such that N C N (resp., F' C F) is
a finite set of nonterminals (resp., terminals), S € N is the start nonterminal of rank 0,
and P (the set of productions) is a finite set of pairs (A,t) (for which we write A — t),
where A € N and t € T(FUN,{y1,... 7y,a,ﬂ((A)}) is a pattern, which contains exactly one
yi-labelled node for each 1 < i < rank(A). To stress the dependency of A on its parameters
we sometimes write A(y1, ..., Yrank(4)) — t instead of A — t. Without loss of generality
we assume that every nonterminal B € N \ {S} occurs in the right-hand side ¢ of some
production (A — t) € P, see [16, Theorem 5]. The derivation relation =¢ on 7 (F U N,Y)
is defined as follows: s =¢ s’ if and only if there is a production (A(yi,...,y¢) = t) € P
such that s’ is obtained from s by replacing some subtree A(t1,...,ts) of s by ¢ with each y;
replaced by ;. Intuitively, we replace an A-labelled node by the pattern ¢(yi ..., Yrank(a))
and thereby identify the j-th child of A with the unique y;-labelled node of the pattern.
Then L(G) = {t e T(F) | S =¢ t}.

A straight-line context-free tree grammar (or SLCF grammar for short) is a linear CF
tree grammar G = (N, F, P, S), where (i) for every A € N there is exactly one production

A. Jez and M. Lohrey

(A — t) € P with left-hand side A, (ii) if (A — ¢) € P and B occurs in ¢t then B < A, where
< is a linear order on N, and (iii) S is the maximal nonterminal with respect to <. By
(i) and (ii), every A € N derives exactly one tree from T (F, {y1,. .., Yrank(a)}); We denote
this tree by val(A) (like value). Moreover, we define val(G) = val(.S), which is a tree from
T(F). For an SLCF grammar G = (N, F, P,S) we can assume without loss of generality

that for every production (A — t) € P the parameters yi, ..., ¥rank(4) OCcur in ¢ in the order
Y1,Y2; - - - Yrank(A) from left to right. This can be ensured by a simple bottom-up rearranging
procedure.

There is a subtle point, when defining the size |G| of the SLCF grammar G: One possible
definition could be |G| = >>(4_,;)cp [t], i-e., the sum of all sizes of right-hand sides. However,
consider for instance the rule A(y1,...,y¢) = f(y1,.--¥i-1,0, i, - .., ye). It is in fact enough
to describe the right-hand side as (f, (4,a)), as we have a as the i-th child of f. On the

remaining positions we just list the parameters, whose order is known; see the above remark.

In general, each right-hand side can be specified by listing for each node its children that
are not parameters together with their positions in the list of all children. These positions
are numbers between 1 and r (it is easy to show that our algorithm TTOG creates only
nonterminals of rank at most r, see Lemma 1, and hence every node in a right-hand side has
at most r children) and therefore fit into O(1) machine words. For this reason we define the
size |G| as the total number of non-parameter nodes in all right-hand sides. If the size of a
grammar is defined as the total number of all nodes (including parameters) in all right-hand
sides, then the approximation ratio of TTOG is multiplied by an additional factor r.

Notational conventions. Our compression algorithm TTOG takes a tree T' and applies to
it local compression operations, which shrink the size of the tree. With T" we always denote
the current tree stored by TTOG, whereas n denotes the size of the initial input tree. The
algorithm TTOG adds fresh letters to the tree. With F' we always denote the set of letters
occurring in the current tree T. The ranks of the fresh letters do not exceed the maximal
rank of the original letters. To be more precise, if we add a letter a to Fj, then F>; was
non-empty before this addition. By r we denote the maximal rank of the letters occurring in
the input tree. By the above remark, TTOG never introduces letters of rank larger than r.

2 Compression operations

Our compression algorithm TTOG is based on three local replacement rules applied to trees:

(i) a-maximal chain compression: For a unary letter a replace every a-maximal chain
consisting of £ > 1 nodes with a fresh unary letter a, (for all ¢ > 1).

(ii) (a,b)-pair compression: For two unary letters a # b replace every occurrence of ab by a
single node labelled with a fresh unary letter ¢ (which identifies the pair (a,b)).

(iii) (f,d1,a1...,10p, ap)-leaf compression: For f € F>q, £ > 1, a1,...,a¢ € Fy and 0 <
i1 < iy < -+ < iy < rank(f) =: m replace every occurrence of f(t1,...,tm),
where t;; = a; for 1 < j < (and t; is a non-constant for i ¢ {iy,... i}, by

Fty o stiy—1stig+1y -« s tig—15 Ligt1s - - - tm), where f' is a fresh letter of rank rank(f)—
¢ (which identifies (f,41,a1 ...,%¢,a¢)).

Note that each of these operations shrinks the size of the current tree. Operations (i) and
(ii) apply only to unary letters and are direct translations of the operations used in the
recompression-based algorithm for constructing a grammar for a given string [9]. On the
other hand, (iii) is a new and designed specifically to deal with trees.

449

STACS’14

450

Approximation of smallest linear tree grammar

Every application of one of our compression operations can be seen as the ‘backtracking’ of
a production of the grammar that we construct: When we replace a’ by ay, we introduce the
new nonterminal a,(y) with the production as(y) — a(y). When we replace all occurrences
of the chain ab by ¢, the new production is ¢(y) — a(b(y)). Finally, for (f,41, a1 ..., 1, ar)-leaf
compression the production is f'(y1, ..., Yrank(f)—¢) = f(t1,- -+, trank(y)), Where t;; = a; for
1 <j < {andevery t; with ¢ & {i1,...,i¢} is a parameter (and the left-to-right order of
the parameters in the right-hand side is y1,. .., Yrank(r)—¢)- All these productions are for
nonterminals of rank at most r, which implies:

» Lemma 1. The rank of nonterminals defined by TTOG is at most r.

During the analysis of the approximation ratio of TTOG we also consider the nonterminals
of a smallest grammar generating the given input tree. To avoid confusion between these
nonterminals and the nonterminals of the grammar produced by TTOG, we insist on calling
the fresh symbols introduced by TTOG (ay, ¢, and f’ above) letters and add them to the
set I of current letters, so that F' always denotes the set of letters in the current tree 7. In
particular, whenever we talk about nonterminals, productions, etc. we mean the ones of the
smallest grammar we consider. Nevertheless, the above productions for the new letters form
the grammar returned by our algorithm TTOG and we need to estimate their size. In order not
to mix the notation, we shall call the size of the rule for a new letter a the representation cost
for a and say that a represents the subpattern it replaces in T'. For instance, the representation
cost of ap with ay(y) — a’(y) is £, the representation cost of ¢ with c(y) — a(b(y)) is 2,
and the representation cost of f* with f'(y1,..., Y%ank(s)—¢) = f(t1,- -, trank(y)) s £+ 1. A
crucial part of the analysis of TTOG is the reduction of the representation cost for letters
ae: Note that instead of representing a(y) directly by a¢(y) — a‘(y), we can introduce
new unary letters representing some shorter chains in a’ and build longer chains using
the smaller ones as building blocks. For instance, the rule ag(y) — a8(y) can be replaced
by the rules ag(y) — as(as(y)), as(y) — a2(a2(y)) and az(y) — a(a(y)). This yields a
total representation cost of 6 instead of 8. Our algorithm employs a particular strategy for
representing a-maximal chains, which yields the total cost stated in the following lemma:

» Lemma 2 (cf. [9, Lemma 2]). Given a list {1 < {3 < --- < L, we can represent the
letters ag,,ae,, ... ,as, that replace the chain patterns a,a’, ... a" with a total cost of
Ok + ¥ log(t; — £;_1)), where £y = 0.

The important property of the compression operations is that we can perform many of
them independently in an arbitrary order without influencing the outcome. Since different
a-maximal chains and b-maximal chains do not overlap (regardless of whether a = b or not)
we can perform a-maximal chain compression for all unary letters a occurring in 7" in an
arbitrary order (assuming that the new letters do not occur in 7). We call the resulting tree
CHAINCMP(T), and denote the corresponding procedure also chain compression.

A similar observation applies to leaf compressions: We can perform (f,i1,aq ..., i, ap)-leaf
compression for all f € Fs1, 0 < iy < iy < --- < iy < rank(f) =: m, and (a1, as,...,a;) € F§
in an arbitrary order (again assuming that the fresh letters do not occur in the 7'). We
denote the resulting tree with LEAFCMP(T') and call the corresponding procedure also leaf
compression.

The situation is more subtle for unary pair compression: observe that in a chain abc we
can compress ab or be but we cannot do both in parallel (and the outcome depends on the
order of the operations). However, as in the case of string compression [9], independent (or
parallel) (a, b)-pair compressions are possible when we take a and b from disjoint subalphabets

A. Jez and M. Lohrey

F/'® and F down " respectively. In this case for each unary letter we can tell whether it should
be the parent node or the child node in the compression step and the result does not depend
on the order of the considered 2-chains, as long as new letters are outside F}'* U Fylown,
Hence, we denote with UNARYCMP(F}'?, F3¥ T') the result of doing (a, b)-pair compression
for all @ € F{'® and b € F{°"" (in an arbitrary order). The corresponding procedure is also
called (Fy'?, Fov™)_compression.

3 The algorithm TTOG

In a single phase of the algorithm TTOG, chain compression, (F}'*, Fovn)_compression

and leaf compression are executed in this order (for an appropriate choice of the partition
FlllP Fldown).

The) intuition behind this ap- Algorithm 1 TTOG: Creating an SLCF tree grammar
proach is as follows: If the tree t for the input tree T

in question does not have any unary -
1: while |T| > 1 do

2 T < CHAINCMP(T)
3: compute a partition Fy = F}'P @ Fown >
Lemma 3

letters, then leaf compression on its
own reduces the size of ¢ by half,
as it effectively reduces all constant
nodes, i.e. leaves of the tree, and P down
more than half of nodes are leaves. & T < UNARYCOMP(F7®, F{o, T)
On the other end of the spectrum o T < LEAFCMP(T)

is the situation in which all nodes ~ 6: return constructed grammar

(except for the unique leaf) are labelled with unary letters. In this case our instance is in

fact a string. Chain compression and unary pair compression correspond to the operations
of block compression and pair compression, respectively, from the earlier work of the first
author on string compression [9], where it is shown that block compression followed by pair
compression reduces the size of the string by a constant factor 3/4 (for an appropriate choice
of the partition F}'P, F°"n of the letters occurring in the string). The in-between cases are a
mix of those two extreme scenarios and for each of them the size of the instance drops by a
constant factor in one phase as well, see Lemma 4. We need the following lemma, which is a
modification of [9, Lemma 4]. Recall that F' always denotes the set of letters occurring in 7'

» Lemma 3. Assume that (i) T does not contain an occurrence of a chain pattern aa for
some a € Fy and (i) the symbols in T form an interval of numbers. Then, in time O(|T|)
one can find a partition Fy = F{'" & FE°%" such that the number of occurrences of chain
patterns from F{'PF3°%" in T is at least (ny — 3¢+ 2)/4, where ny is the number of nodes in
T with a unary label and c is the number of maximal chains in T. In the same running time
we can provide for each ab € F{'PF3°¥" occurring in T a lists of pointers to all occurrences
of ab in T.

A single iteration of the main loop of TTOG is called a phase. A single phase can be
implemented in time linear to the size of the current 7. The main idea is that RADIXSORT
is used for effective grouping in linear time and finding a partition is a simple modification
of [9, Lemma 4]. The main property of a single phase is:

» Lemma 4. In each phase, |T| is reduced by a constant factor.

Since each phase needs linear time, the contributions of all phase give a geometric series and
we get:

» Theorem 5. TTOG runs in linear time.

451

STACS’14

452

Approximation of smallest linear tree grammar

4 Size of the grammar produced by TTOG: recompression

4.1 Normal form

We want to compare the size of the grammar produced by TTOG with the size of a smallest
SLCF grammar for the input tree T'. For this, we first transform the minimal grammar into
a so called handle grammar and show that this increases the grammar size by a factor of
O(r), where r is the maximal rank of symbols from F occurring in 7. Then, we compare the
size of a minimal handle grammar for 7" with the size of the output of TTOG.

A handle is a pattern t(y) = f(wi(71), w2(12),- - s wim1(Vi1)s Y, Wit 1 (Yit1), - - - we(ye))s
where rank(f) = ¢, every +; is either a constant symbol or a nonterminal of rank 0, every
wj is a chain pattern, and y is a parameter. Note that a(y) for a unary letter « is a handle.
Since handles have one parameter only, for handles hq, hs, ..., hy we write hihg - - - hy for the
tree hyi(ha(...(he(y)))) and treat it as a string, similarly to chains patterns. We say that an
SLCF grammar G is a handle grammar (or simply “G is handle”) if the following conditions
hold:

(H1) N CNoUN;

(H2) For A € N N N; the unique rule for A is of the form A(y) — u(B(v(C(w(y))))) or
A(y) — uw(B(v(y))) or A(y) — u(y), where u, v, and w are (perhaps empty) sequences
of handles and B,C € N;. We call B the first and C the second nonterminal in the
rule for A.

(H3) For A € N NNy the rule for A is of the (similar) form A — u(B(v(C))) or A —
u(B(v(c))) or A — u(C) or A — u(c), where v and v are (perhaps empty) sequences
of handles, ¢ is a constant, B € Ny, C' € Ny, and j,k < i. Again we speak of the first
and second nonterminal in the rule for A.

Note that the representation of the rules for nonterminals from Ny is not unique. Take

for instance the rule A — f(B,C), which can be written as A — a(C) for the handle

a(y) = f(B,y) or as A — b(B) for the handle b(y) = f(y,C). For nonterminals from Ny

this problem does not occur, since there is a unique occurrence of the parameter y in the

right-hand side. For a given SLCF grammar we can find an equivalent handle grammar of
similar size:

» Lemma 6. Let G be an SLCF grammar. Then there exists a handle grammar G’ such that
val(G') = val(G) and |G'| = O(r|G|), where r is the mazimal rank of the letters used in G.

For the proof one first applies the main result of [16] to make G monadic (i.e., N C No UNy).
The resulting grammar can be easily transformed into a handle grammar by considering
for each nonterminal A € N N N; the path from the root to the unique occurrence of the
parameter in the right-hand side of A.

4.2 Intuition and invariants

For a given input tree T' we start with a smallest handle grammar G generating 7'. In the
following, by g we always denote the size of this initial minimal handle grammar. With
each occurrence of a letter from F in G’s rules we associate 2 credits. During the run of
TToG we appropriately modify G, so that val(G) = T (where T always denotes the current
tree in TTOG). In other words, we perform the compression steps of TTOG also on G. We
always maintain the invariant that every occurrence of a letter from F in G’s rules has two
credits. To this end, we issue some new credits during the modifications, and we have to
do a precise bookkeeping on the amount of issued credit. On the other hand, if we do a

A. Jez and M. Lohrey

compression step in G, then we remove some occurrences of letters. The credit associated
with these occurrences is then released and can be used to pay for the representation cost
of the new letters introduced by the compression step. For unary pair compression and
leaf compression, the released credit indeed suffices to pay the representation cost for the
fresh letters, but for chain compression the released credit does not suffice. Here we need
some extra amount that will be estimated separately. At the end, we bound the size of the
grammar produced by TTOG as the sum of the initial credit assigned to G (at most 2g) plus
the total amount of issued credit plus the extra cost estimated in Section 4.6. We emphasize
that the modification of G is not performed by TTOG, but is only a mental experiment done
for the purpose of analyzing TTOG.

An important difference between our algorithm and the string compression algorithm
from the earlier paper of the first author [9] is that we add new nonterminals to G during
its modification. All such nonterminals will have rank 0 and we shall denote the set of
such currently used nonterminals by]%. To simplify notation, we denote with m always
the number of nonterminals of the current grammar G, and we denote its nonterminals by
Ay, ..., Ay We assume that ¢ < j if A; occurs in the right-hand side of A;, and that A,, is
the start nonterminal. With a; we always denote the current right-hand side of A;, i.e., the
productions of G are A; = oy for 1 < i < m.

Suppose a compression step, for simplicity say an (a,b)-pair compression, is applied to
T. We should also reflect it in G. The simplest solution would be to perform the same
compression on each of the rules of G, hoping that in this way all occurrences of ab in val(G)
will be replaced by c¢. However, this is not always the case. For instance, the 2-chain ab
may occur ‘between’ a nonterminal and a unary letter: consider a grammar A;(y) — a(y)
and A2 — A;(b(c)) and a 2-chain ab. Then it it occurs in val(Az) but this occurrence is
‘between’ A; and b in the rule for A,. This intuitions are made precise in Section 4.3. To
deal with this problem, we modify the grammar, so that such bad cases no longer occur.
Similar problems occur also when we want to replace an a-maximal chain or perform leaf
compression. Solutions to those problems are similar and are given in Section 4.4 and
Section 4.5, respectively.

To ensure that G is handle and to estimate the amount of issued credit, we show that
the grammar preserves the following invariants, where ng (resp. ni) is the initial number of
nonterminals from Ny (resp., N1) in G and g is the initial size of G.

(I1) G is handle.

(I2) G has nonterminals No U Ny U N, where Ny, Ny C N, |[No| < np and Ny C Ny,
‘N1| S ny.

(I3) The number of occurrences of nonterminals from Ny, Ny and NB in G are at most g,
no + 2n; and (ng + 2n1)(r — 1), respectively

(I4) The rules for A; €]% are of the form A4; — wA; or A; — wc, where w is a string of
unary symbols, A; € Nog U Ny and c is a constant.

It is easy to show that (I1)—(I4) hold for the initial handle grammar G when we set Ny = ().
The only non-trivial condition is that the number of occurrences of nonterminals from Ny
is at most ng + 2n;. However, in a rule for A; € Ny there is at most one occurrence of a
nonterminal from Nj, namely the first nonterminal in this rule (all other nonterminals are
parts of handles and so they are from Np). Similarly in a rule for A; € N; there are at most
two occurrences of nonterminals from Ny.

453

STACS’14

454

Approximation of smallest linear tree grammar

4.3 (F}®, Ffov")-compression

We begin with some definitions that help to classify which 2-chains are easy and which hard
to compress.

For a non-empty tree or pattern ¢ its first letter is the letter that labels the root of ¢. For
a pattern t(y) which is not a parameter its last letter is the label of the node above the one
labelled with y. A chain pattern ab has a crossing occurrence in a nonterminal A; if one of
the following holds:

(C1) a(A;) is a subpattern of a; and the first letter of val(A4;) is b
(C2) A,(b) is a subpattern of a; and the last letter of val(4;) is a
(C3) A,;(Ay) is a subpattern of «;, the last letter of val(A;) is a and the first letter of val(Ay)
is b.
A chain pattern ab is crossing if it has a crossing occurrence in any nonterminal and
non-crossing otherwise. Unless explicitly written, we use this notion only in case a # b.
When every chain pattern ab € F}'PFo"® is noncrossing, simulating (F}'?, Fown).
compression on G is easy: It is enough to apply (F}*, F°*")-compression to each right-hand
side of G. We denote the resulting grammar with UNARYCMP(G).
To distinguish between the nontermin-

Algorithm 2 Popr(F*, Fovr G)
1: fori<1..m—1do
2: if the first symbol of a; is b € Flow»

als, grammar, etc. before and after the ap-
plication of UNARYCMP (or, in general, any
procedure) we use ‘primed’ symbols, i.e.

AL, G', T’ for the nonterminals, grammar then

and tree, respectively, after the compression if a; = b then

step and ‘unprimed’ symbols (i.e. 4;, G, T) % replace each A; G rules by b

for the ones before. 5: else remove this leading b from «;
It is left to assure that indeed all oc- & replace each A; in G rules by bA;

currences of chain patterns from F'P Flown 7: do symmetric actions for the last symbol

are noncrossing. Consider for instance the grammar with the rules A;(y) — a(y) and
As — A1(b(c)). The pattern ab has a crossing occurrence. To deal with crossing occurrences
we change the grammar. In our example, we replace A; with a, leaving only As — ab(c),
which does not contain a crossing occurrence of ab.

In general, suppose that some ab € F}'P Fl°"1 is crossing because of (C1). Let a(A;) be a
subpattern of some right-hand side and let val(A;) = b(¢'). Then it is enough to modify the
rule for A; so that val(A;) = t’ and replace each occurrence of A; in a right-hand side by
b(A;). We call this action popping-up b from A;. The similar operation of popping down a
letter a from A, € N N Nj is symmetrically defined (note that both pop operations apply
only to unary letters). By Lemma 7 below, popping up and down removes all crossing
occurrences of ab. Note that the popping up and popping down can be performed for
many letters in parallel: The procedure Pop (Algorithm 2) ‘uncrosses’ all occurrences of
patterns from the set F}'P Fo"" assuming that F}' and F{°"" are disjoint subsets of F}.
Then, (F}'®, Fo"n)_compression can be simulated on G by first uncrossing all 2-chains from
F'PFdovn followed by (F, FoV")-compression.

» Lemma 7. Let G satisfy (I1)-(1}) and G’ = UNARYCMP(F,*?, Fdown Pop(F"?, Fiovn G)).
Then val(G') = UNARYCMP(F[, Fov" val(G)) and G’ satisfies (I1)-(14). O(g+ (no+n1)r)
credits are issued in the construction of G, where r is the mazimal rank of letters in G. The
issued credits and the credits released by UNARYCMP cover the representation cost of fresh
letters as well as their credits.

A. Jez and M. Lohrey

Since by Lemma 4 we apply O(logn) many (F}'*, F{°"")-compressions (for different sets
F'" and F{*"") to G, we obtain:

» Corollary 8. (F["?, F**“™)-compression issues in total O((g + (ng + n1)r)logn) credits
during all modifications of G.

4.4 Chain compression

Our notations and analysis for chain compression is similar to those for (F}®, Flown).
compression. In order to simulate chain compression on G we want to apply chain compression
to the right-hand sides of G. This works as long as there are no crossing chains: A unary
letter a has a crossing chain in a rule A; — «; if aa has a crossing occurrence in «;, otherwise
it has no crossing chain. As for (F}7, Fovn)_compression, when there are no crossing chains,
we apply chain compression to the right-hand sides of G. We denote with CHAINCMP(G)
the resulting grammar.

Crossing chains are eliminated by a procedure similar to POP: Suppose for instance that
a has a crossing chain because a(4;) is a subpattern in a right-hand side and val(A4;) begins
with a. Popping up a does not solve the problem, since after popping, val(A4;) might still
begin with a. Thus, we keep on popping up until the first letter of val(A4;) is not a. In order
to do this in one step we need some notation: We say that a’ is an a-prefiz of a tree (or
pattern) t if t = a’(¢') and the first letter of ¢’ is not a (here ¢’ might be the trivial pattern
y). Similarly, we say that a’ is an a-suffiz of a pattern t(y) if t = #/(a‘(y)) for a pattern t'(y)
and the last letter of ¢’ is not a (again, ¢ might be the trivial pattern y). In this terminology,
we have to pop-up (resp. pop-down) the whole a-prefix (resp., a-suffix) of val(4;) from of A;
in one step. This is achieved by a procedure REMCRCHS, which is similar to POP. So chain
compression is done by first running REMCRCHS and then CHAINCMP on the right-hand
sides of G. We obtain:

» Lemma 9. Let G satisfy (I1)-(14) and G’ = CHAINCMP(REMCRCHS(G)). Then val(G') =
CHAINCMP (val(G)) and G satisfies (11)—(14). O(g + (no + n1)r) credits are issued in the
construction of G' and these credits are used to pay the credits for the fresh letters introduced
by CHAINCMP (but not their representation cost).

Since by Lemma 4 we apply O(logn) many chain compressions to G, we get:

» Corollary 10. Chain compression issues in total O((g + (no + ny1)r)logn) credits during
all modifications of G.

The representation cost for the new letters a, introduced by chain compression is addressed
in Section 4.6.

4.5 Leaf compression

In order to simulate leaf compression on G we perform similar operations as for (F}'P, Fown)-
compression: Ideally we would like to apply leaf compression to each right-hand side of G.
However, in some cases this does not return the appropriate result. We say that the pair
(f,a) is a crossing parent-leaf pair in G, if f € F>1, a € Fy, and one of the following holds:

(L1) f(t1,-..,te) is a subtree of some right-hand side of G, where for some j we have t; = A,
and val(A4x) = a.

(L2) For some A; € Ny, A;(a) is a subtree of some right-hand side of G and the last letter
of val(4;) is f.

(L3) For some A; € Ny and A € Ny U]70, A;(Ayg) is a subtree of some right-hand side of
G, the last letter of val(4;) is f, and val(Ay) = a.

455

STACS’14

456

Approximation of smallest linear tree grammar

When there is no crossing parent-leaf pair, we can apply leaf compression to each right-hand
side of a rule; denote the resulting grammar with LEAFCMP(G). If there is a crossing
parent-leaf pair, we uncross them all by a generalisation of Pop, called GENPOP, which pops
up letters from F{ and pops down letters from F;. The latter requires some generalisation:
If we want to pop down a letter of rank > 1, we need to pop a whole handle. This adds
new nonterminals to G as well as a large number of new letters and hence a large amount of
credit, so we need to be careful. There are two crucial details:
When we pop down a whole handle h = f(t1,...,tk, Y, tkt1,-- -, te), we add to the set No
fresh nonterminals for all trees ¢; that are non-constants, replace these ¢; in h by their
corresponding nonterminals and then pop down the resulting handle. In this way the
issued credit is reduced and no new occurrence of nonterminals from Ny U V7 is created.
We do not pop down a handle from every nonterminal, but do it only when it is needed,
i.e., if for A; € Ny one of the cases (L2) or (L3) holds. This allows preserving (I5). Note
that when the last symbol in the rule for A; is not a handle but another nonterminal,
this might cause a need for recursive popping. So we perform the whole popping down in
a depth-first-search style.
So, for leaf compression we can proceed as in the case of (F}'*, F{l°")-compression and chain
compression: We first uncross all parent-leaf pairs and then compress each right-hand side
independently.

» Lemma 11. Let G satisfy (11)-(14) and G’ = LEAFCMP(GENPOP(G)). Then val(G') =
LEAFCMP(val(G)) and G’ satisfies (11)-(14). O(g+ (no+mn1)r) credits are issued in the con-
struction of G'. The issued credit and the credit released by LEAFCMP cover the representation
cost of fresh letters as well as their credit.

Since by Lemma 4 we apply O(logn) many leaf compressions to G, we obtain:

» Corollary 12. Leaf compression issues in total O(((no + n1)r + g)logn) credits during all
modifications of G.

4.6 Calculating the total cost of representing letters

The issued credit of (which is O(((no+n1)r+g) logn) by Corollaries 8, 10, and 12) is enough
to pay the 2 credits for every letter introduced during popping, whereas the released credit
covers the representation cost for the new letters introduced by (F}', F{°"")-compression
and leaf compression. However, the released credit does not cover the representation cost
for letters created during chain compression. The appropriate analysis is similar to [9]. The
idea is as follows: Firstly, we define a scheme of representing letters introduced by chain
compression based on the grammar G and the way G is changed by chain compression (the
G-based representation). Then, we show that for this scheme the representation cost is
bounded by O((g + (ng + n1)r)logn). Lastly, it is proved that the actual representation
cost of letters introduced by chain compression during the run of TTOG (the TTOG-based
representation, whose cost is given by Lemma 2) is smaller than the G-based one. Hence, it
is bounded by O((g + (no + n1)r)logn), too. Adding this to the issued credit, we obtain the
main result of the paper:

» Corollary 13. The total representation cost of the letters introduced by TTOG (and hence
the size of the grammar produced by TTOG) is O((g + (np +n1)r)logn) < O(g-r-logn),
where g is the size of a minimal handle grammar for the input tree T and r the mazimal
rank of symbols in T.

A. Jez and M. Lohrey

Together with Lemma 6 we get:

» Corollary 14. The size of the grammar produced by TTOG is O(gr?logn), where g is the
size of a minimal SLCF grammar for the input tree T' and r is the maximal rank of symbols

inT.

Acknowledgements. The first author would like to thank P. Gawrychowski for introducing
him to the topic of compressed data and discussions, as well as S. Maneth and S. Bottcher
for the question of applicability of the recompression-based approach to the tree case.

—— References

1

10

11

12

13

14

15

16

17

18

T. Akutsu. A bisection algorithm for grammar-based compression of ordered trees. Inf.
Process. Lett., 110(18-19):815-820, 2010.

P. Bille, I. Gortz, G. Landau, and O. Weimann. Tree compression with top trees. In
Proc. ICALP 2013 (1), LNCS 7965, pp.160-171. Springer, 2013.

G.Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document
trees. Information Systems, 33(4-5):456-474, 2008.

M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554-2576, 2005.

F. Claude and G. Navarro. Fast and compact web graph representations. ACM Trans. Web,
4(4), 2010.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms (3. ed.). MIT
Press, 2009.

A. Jez. Compressed membership for NFA (DFA) with compressed labels is in NP (P). In
Proc. STACS 2012, vol. 14 of LIPIcs, pp.136—147, Leibniz-Zentrum fiir Informatik, 2012.
A. Jez. Faster fully compressed pattern matching by recompression. In Proc. ICALP 2012
(1), LNCS 7391, pp.533-544. Springer, 2012.

A, Jez. Approximation of grammar-based compression via recompression. In
Proc. CPM 2013, LNCS 7922, pp.165-176. Springer, 2013. full version at
http://arxiv.org/abs/1301.5842.

A. Jez. One-variable word equations in linear time. In Proc. ICALP 2013 (2), LNCS 7966,
pp-324-335. Springer, 2013.

A. Jez. Recompression: a simple and powerful technique for word equations. In
Proc. STACS 20183, volume 20 of LIPIcs, pp.233—244, Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik, 2013.

N. Jesper Larsson and A. Moffat. Offline dictionary-based compression. In Proc. DCC
1999, pp.296-305. IEEE Computer Society Press, 1999.

M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complezity Crypto-
logy, 4(2):241-299, 2012.

M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.
Inf. Syst., 38(8):1150-1167, 2013.

M. Lohrey, S. Maneth, and E. N6th. XML compression via DAGs. In Proc. ICDT 2013,
pp-69-80, ACM, 2013.

M. Lohrey, S. Maneth, and M. Schmidt-Schauf}. Parameter reduction and automata eval-
uation for grammar-compressed trees. J. Comput. Syst. Sci., 78(5):1651-1669, 2012.

W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1-3):211-222, 2003.

H. Sakamoto. A fully linear-time approximation algorithm for grammar-based compression.
J. Discrete Algorithms, 3(2-4):416-430, 2005.

457

STACS’14

	Introduction
	Trees and SLCF tree grammars

	Compression operations
	The algorithm TtoG
	Size of the grammar produced by TtoG: recompression
	Normal form
	Intuition and invariants
	(F1up,F1down)-compression
	Chain compression
	Leaf compression
	Calculating the total cost of representing letters

