Synchronizing Relations on Words

Diego Figueira and Leonid Libkin
University of Edinburgh, UK

——— Abstract

While the theory of languages of words is very mature, our understanding of relations on words
is still lagging behind. And yet such relations appear in many new applications such as veri-
fication of parameterized systems, querying graph-structured data, and information extraction,
for instance. Classes of well-behaved relations typically used in such applications are obtained
by adapting some of the equivalent definitions of regularity of words for relations, leading to

non-equivalent notions of recognizable, regular, and rational relations.

The goal of this paper is to propose a systematic way of defining classes of relations on
words, of which these three classes are just natural examples, and to demonstrate its advantages
compared to some of the standard techniques for studying word relations. The key idea is that
of a synchronization of a pair of words, which is a word over an extended alphabet. Using it,
we define classes of relations via classes of regular languages over a fixed alphabet, just {1,2}
for binary relations. We characterize some of the standard classes of relations on words via
finiteness of parameters of synchronization languages, called shift, lag, and shiftlag. We describe
these conditions in terms of the structure of cycles of graphs underlying automata, thereby
showing their decidability. We show that for these classes there exist canonical synchronization
languages, and every class of relations can be effectively re-synchronized using those canonical
representatives. We also give sufficient conditions on synchronization languages, defined in terms
of injectivity and surjectivity of their Parikh images, that guarantee closure under intersection
and complement of the classes of relations they define.

1998 ACM Subject Classification F.4.3 Formal Languages
Keywords and phrases Word Relations, Regular, Rational, Recognizable

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.518

1 Introduction

Foundations of formal language theory have been largely developed in the 1960s and 1970s,
and used heavily in practically all areas of computer science. The field itself stayed somewhat
dormant for a while, but that changed over the past 10-15 years due to new application
areas requiring techniques that could not have been foreseen 30 or 40 years earlier. Among
consumers of results in formal language theory are verification (for instance, automata-based
approaches to model-checking are now part of standard industrial verification tools [7, 22])
and data management (standards for describing and querying XML documents, for instance,
are rooted in both word and tree automata [24, 28], and emerging graph data models are
borrowing many formal language concepts [3]).

Of interest to us in this paper are relations on words. That is, for a given finite alphabet
A, we deal with binary relations R C A* x A*. Their study goes back to Elgot, Mezei, Nivat
in the 1960s [15, 25] with much subsequent work done later (see, e.g., surveys [8, 13]). The
standard notions of regularity that generate the same class of languages —recognizability by
finite monoids, definability by automata, or by regular expressions— give rise to different
classes of relations, called recognizable, reqular, and rational relations. Their properties may
differ significantly from properties of regular languages: for instance, rational relations are
1@.) Diego Figueira and Leonid Libkin; 1t SYMPOSIUM

Bv icensed under Creative Commons License CC-BY V r ON THEORETICAL

31st Symposium on Theoretical Aspects of Computer Science (STACS’14). m l_ ASPECTS
Editors: Ernst W. Mayr and Natacha Portier; pp. 518-529 » 7 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.518
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Figueira and L. Libkin

not closed under intersection and it is even undecidable whether the intersection of two
such languages is non-empty. Recognizable relations are just unions of products of regular
languages; examples of regular relations are prefix, equality, or equal length of words; and
examples of rational relations are suffix, subword (for instance, bb is a subword of aabbaa),
and subsequence (bb is a subsequence of abaaba: letters need not be consecutive).

There has been renewed interest in relations on words as of late. One motivation comes
from verification of safety and liveness properties of parameterized systems, where such
relations describe transitions [1, 10, 20, 29]. Another comes from graph databases, which
are actively studied as a suitable model for RDF data, social networks data, and others
[3]. Paths in graph databases are described by their labels, and need to be compared, for
instance, for their degree of similarity, e.g., their edit distance [4, 6, 23]. Yet another example
is the study of formal models underlying IBM’s tools for information extraction [16].

Many of the basic questions that arise in these new applications, however, are not the kind
of questions that had been addressed previously. Just to give an example, it is well known
that checking nonemptiness of the intersection of a rational relation and a regular relation
is an undecidable problem. But what about really used rational relations such as subword,
suffix, subsequence (as opposed to artificial codings of the halting problem) — can we test if
their intersection with regular relations is nonempty? However natural these questions are,
they were answered only recently [5].

An even more basic question relates to the very choice and structure of the main classes
of relations: recognizable, regular, and rational. They appeared in a somewhat ad hoc way,
just as analogs of different ways of defining regularity of languages, but is there another way
to explain these, and perhaps other classes as well? This is the main point of our paper: we
argue that there is a natural way to study relations on words, and we do it by explaining
how positions in words are synchronized.

As an example of synchronization, consider words w; = ababb and we = baaaba. We can
represent this pair as a single word over {a,b}, by shuffling w; and ws, i.e., interspersing
letters of w; among letters of ws. For each position in the shuffle, we remember which word
it came from — this is indicated by the symbols 1 or 2 above the letters in the figure.

wi ababb 12112212
v, HIEEEEE ababaababba

When we read the letters marked 4, for i = 1,2 we get the word w;. The word over {1, 2}
provides a synchronization of the pair (w;,ws) — in our example, 12212112212. We show
that the commonly occurring classes of relations over words follow the same principle:

1. to decide whether (wq,ws) is in the relation, one runs an automaton over the shuffle;
2. classes of relations are then determined by the classes of allowed synchronizations.

For instance, recognizable relations are given by synchronizations from 1*2*, length-
preserving regular relations by synchronizations from (12)*, arbitrary regular relations by
synchronizations from (12)*(1*|2*), and rational relations by synchronizations from (1]2)*.

For relations, we have proper inclusions recognizable C regular C rational [8], making them
very different from languages. This immediately raises the question: since every recognizable
language is regular, and yet 1*2* is not contained in (12)*(1*|2*), there must be multiple
ways of synchronizing relations to obtain even known classes. What are these ways, and how
can they be characterized? And will those characterizations lead to new naturally appearing
classes?

519

STACS’14

520

Synchronizing Relations on Words

These are the questions we answer. We define three parameters of regular languages
in (1|2)*: the shift says how often we switch between 1s and 2s, the lag says how big the
difference between the numbers of 1 and 2 is allowed to get, and shiftlag combines the two in
a certain way. Then finite shift characterizes recognizability, while finite shiftlag characterizes
regularity of relations. Finite lag, which appears to be a natural measure then, captures
another known class of relations.

We provide automata characterizations of classes of synchronization languages in terms
of the structure of cycles in the graph representations of automata. All these turn out
to be decidable. This shows one advantage of dealing with relations in terms of their
synchronizations. For instance, it is known that checking whether a given rational relation is
regular, is an undecidable problem (assuming the input is a transducer, i.e., an automaton
with output [8]). However, if the input to the problem is a synchronization language, then it
is decidable whether the relations it describes are all regular.

Another advantage of describing relations by their synchronizations is the ability to find
classes closed under intersection or complementation (rational relations, for instance, are not).
We do it by imposing decidable conditions on Parikh images of synchronization languages to
guarantee closure properties of classes of relations they give rise to.

We also look at re-synchronization of relations. For each class of relations, there may
be many different regular synchronizing languages over {1,2}. We show that in the stand-
ard cases, there exist canonical synchronizing languages, and relations can be effectively
resynchronized using those canonical languages.

2 Recognizable, regular, and rational relations

We start with some basic notations. Throughout the paper, A stands for a finite alphabet,
N ={1,2,...} for the set of positive natural numbers, and Ny for NU {0}. The set of all
words over A is denoted by A*, and the length of w in A* is denoted by |w|. If w =ay ... an,
then w4, j] stands for the subword a; ... a;; in particular, w(i] is the letter a;.

Recall that there are three standard ways of defining regular languages:

Recognizability by finite monoids: the set A*, equipped with the concatenation operation
(denoted by ‘-’, whose unit is the empty word ‘c’) is a monoid. A set L C A* is recognizable
if there is a finite monoid M and a homomorphism (A*,-,&) — M so that L = f~1(My)
for some My C M.

Definability by finite automata, say NFAs.

Definability by regular (sometimes called rational) expressions, i.e., those built from the
empty word and alphabet letters using union, concatenation, and the Kleene star.

Classical formal language theory tells us that these definitions generate the same class of
languages, known as regular languages. We now adapt them to binary relations on words.

Recognizable relations Since (A*, -, ¢) is a monoid, A* x A* has the structure of a monoid
too. We can thus define recognizable relations as sets R C A* x A* for which there is a
finite monoid M and a morphism f : A* x A* — M such that R = f~1(M,) for some
My C M. This class will be denoted by REC.

Regular relations Let L ¢ A be a new alphabet letter. A pair (wq,ws) of words from A*
can be encoded by a single word of length max(|wy|, |wz|) over the alphabet (AU {L}) x
(AU{L}): its ith letter is the pair containing the ith letter of w; and the ith letter of ws,
with | used when 7 is greater than the length of w; or wy. For example, the encoding for
the words of the figure of page 519 is (a,b)(b,a)(a, a)(b,a)(b,b)(L,a). A regular relation

D. Figueira and L. Libkin

R is given by an automaton over this alphabet: it contains pairs (w;, ws) whose encodings
are accepted by the automaton. The class of regular relations is denoted by REG.

Rational relations There are two equivalent ways of defining them. One uses regular expres-
sions, which are now built from pairs in (AU {e}) x (AU {e}) using the same operations
of union, concatenation, and Kleene star. Alternatively, rational relations can be defined
by means of 2-tape automata, that have 2 heads for the tapes and one additional control;
at every step, based on the state and the letters it is reading, the automaton can enter a
new state and move some (not necessarily all) tape heads. The class of rational relations
is denoted by RAT.

Relations in REC are exactly the finite unions of products of regular languages over A
[8, 15]. Examples of relations in REG \ REC are prefix, equality, or equal length. Examples
of relations in RAT \ REG are suffix, given by (UaeA(s,a))* : (UaeA(a,a))*; subword:
(Uaenle, a))* . (UaeA(a,a))* : (UaeA(s,a))*, and subsequence: ({J,eq(e,a) U (a, a))*.

Note that unlike in the case of languages, where the three notions coincide, we have
REC C REG C RAT. The classes REC and REG are closed under intersection; however the
class of rational relations is not. In fact, one can find R € REG and S € RAT so that
RN S ¢ RAT. However, if R € REC and S € RAT, then RN S € RAT.

Relations in REC and REG inherit all the closure/decidability properties of regular
languages. If R € RAT, then each of its projections is a regular language, and can be
effectively constructed. Hence, the nonemptiness problem is decidable for RAT. However,
testing nonemptiness of the intersection of two rational relations is undecidable. We refer to
[8, 12, 27] for basic information on these relations and their decision problems.

3 Synchronizations of relations

We now formalize the idea of synchronizations informally described in the introduction. We
write k for the set {1,...,k}. A synchronization of a pair (wy,ws) of words in A* is a word
over 2 X A so that the projection on A of positions labeled i is exactly w;, for ¢ = 1,2 (see the
figure on page 519). Every word w in (2 x A)* is a synchronization of a uniquely determined
pair (wy,ws), where w; is the sequence of A-letters corresponding to the symbol 4 in the first
position of 2 x A. We denote such (wq,ws) by [w] and extend it to languages S C (2 x A)*
by [S] = {[w] | w € S}.

For two words u = a1 ---a, € A* and v = by ---b, € B*, we write u®v for the word
(a1,b1) -+ (@, by) € (A x B)*. The main idea of our approach to relations on words comes
from two different ways of viewing words in (2 x A)*.

Every word w € (2 x A)* is a synchronization of a pair [w] = (w1, wa).
Every word w € (2 x A)* is of the form u® v with u € 2* and v € A*.

This makes it possible to define relations consisting of pairs [w] with restricted synchron-
izations, i.e., w = u®v and u belongs to a given language L C 2*.

Formally, if L C 2*, we say that u® v is L-controlled if w € L; a language is L-controlled
if all its words are. We now look at relations given by L-controlled synchronizations, i.e., for
a regular language L C 2%, let

REL(L) = {[S] | S is a regular L-controlled language} (1)

If C is a class of relations over A*, then L C 2* is a synchronization for C if REL(L) C C,
that is, all relations given by L-controlled synchronizations belong to C. We remark that a

521

STACS’14

522

Synchronizing Relations on Words

similar approach to defining relations was used in [18], although the questions considered
were completely different.

8£ocedurally, each relation in REL(L) is obtained as follows:
1. oose an dutomaton over 2 X A;

2. consider words u ® v it accepts so that u € L,
3. view v as a synchronization of (w,wy) and add the pair to the relation.

This view suggests natural candidates for capturing classes REC, REG, and RAT. For
REC, relations are unions of products of regular languages, so synchronizations are of the
form 1*2*: one starts by going over the first word, and then over the second. For REG, they
are from (12)*(1*|2*): we first go over two words letter-by-letter, and then write out the rest
of the longer word. For RAT, there are no restrictions. Indeed, we can show the following.

» Proposition 1.

(1) REL(1*2*) = REC.

(1) REL((12)* - (1*|2*)) = REG.
(111) REL((1]2)*) = RAT.

Tt is easy to see that REL(L) is closed under union, alphabetic morphisms, and inverse
alphabetic morphisms, and that L; C Ly implies REL(L;) C REL(Ls).

» Remark. One may ask why we need to take both S and L regular in the definition (1)
of REL(L). The reason why S needs to be regular is that even with regular L (e.g., 1*),
REL(L) would otherwise contain non-rational relations (e.g., {(a"b",¢) | n € N}). If, on the
other hand, L is not regular, strange things may happen. For instance, it could be that all
relations in REL(L) are finite, although L is infinite. Indeed, take L as the set of all words
17 for prime p. Note that there is no infinite regular L-controlled language, since it would
imply that an infinite number of distinct primes is semi-linear. Thus, all regular L-controlled
languages are finite, and REL(L) is the set of all finite relations on A* x {e} so that the first
component is of prime length.

4 Synchronizations for recognizable, regular, and rational relations

We have seen examples of languages characterizing the classes of recognizable, regular, and
rational relations, but those are not unique. There are trivial examples such as REL(1%2*) =
REL(2*1*) = REC, and REL((12)*(1*|2*)) = REL((21)*(1*|2*)) = REG, but others as well,
e.g., REL(1*2*1*2*) equals REC, and REL(((12)*1(12)*2)*(1*|2*)) = REG.

What kind of parameters guarantee that L C 2* synchronizes relations in a class C, for
the classes we study here? That is, what parameters guarantee that with the synchronization
language L, we are guaranteed that the resulting relations are in C?

We now answer this question, but first we need some definitions. Given a word w over
some finite alphabet, and a letter a in the alphabet, we define #,(w) as the number of
occurrences of a in w. Given a word w € 2%, a position i < |w|, and ¢ € N, we say i is

§-lagged if |#1(w[1,1]) — #2(w[1,4])| = 6;

>0-lagged if |#1(w[l,1]) — #2(w[l,1])| = &;

<6-lagged if |41 (w[l,1]) — #2(w[l,)| < 6.

That is, these parameters show by how much the numbers of 1s and 2s in w € 2* differ.

A shift of w is a position ¢ € {1, ..., |w| — 1} so that w[i] # w[i + 1]. Two shifts i < j are
consecutive if there is no shift [so that i <[< j.

Let shift(w) be the number of shifts of w, let lag(w) be the maximum lag of a position
in w, and let shiftlag(w) be the maximum n € N so that w contains n consecutive shifts

D. Figueira and L. Libkin

which are >n-lagged. We lift these notions to languages by taking maxima, e.g., shift(L) =
maxy,cr, shift(w), and likewise for lag(L) and shiftlag(L). If words of arbitrarily large lag
(shift, or shiftlag) occur in L, we write shift(L) = oo (and likewise for the other parameters).

Observe that finite shift and finite lag imply that shiftlag is finite, but the converse is not
true: for L = (12)*1* we have shiftlag(L) < oo and yet lag(L) = shift(L) = oco.

It turns out that finiteness of the shiftlag parameter corresponds to synchronizing regular
languages, and finiteness of shift corresponds to synchronizing recognizable languages. An
arbitrary regular L C 2* is guaranteed to synchronize rational languages.

As for the finite lag, it corresponds to a class of languages that is known as well. The
class REG"™ of bounded length discrepancy relations [17, 27] is defined as follows. Recall the
definition of rational relations using two-tape automata. For a rational relation to be in
REG®! it is required that there be § > 0 so that in accepting runs of such automata, the heads
for the two tapes are never more than ¢ positions apart. It also follows from [17, 27] that
REG" is the class Uren, REL(Lg), for Ly, = (12)*(1¥|2%). Note that REL(Lo) is the class of
length preserving relations. A closely related class R< = {(w1,w2) € A* x A* | |wq] < |wa|}
[21] can be equally defined by REL((12]2)*).

Now we can state the characterization result.

» Theorem 1. Let L C 2* be a regular language. Then:
(1) L synchronizes reqular relations iff shiftlag(L) < oo,
(1) L synchronizes recognizable relations iff shift(L) < oo,
(111) L synchronizes relations in REG"™ iff lag(L) < oo,
(IV) L synchronizes rational relations.

Proof idea. For the ‘if’ direction of (1), one can easily show that for any regular language L
with shiftlag(L) < n there is some ¢ so that L C L' for L’ = L<s.1ag - (1*]2*)™, where L<s.1ag
is the (regular) language of all words with <d-lagged positions. On the other hand, it is
easy to show that REL(L") = REG. Since L C L', by applying monotonicity, we then have
REL(L) C REG.

For the ‘only if’ direction of (1), suppose that shiftlag(L) = oco. Note that this means
that for every s,0 € N there is some w € L that has s consecutive shifts >d-lagged. Let
S C (2 x {a,b})* consist of all words u®v € (2 x {a,b})* so that u € L, and for every
i€{1,...,|v|}, we have v[i] = a if i is a shift of u, and v[i] = b otherwise. One can show
that S is an L-controlled relation so that [S] € RAT \ REG. <

We conclude the section with a couple of examples of applications of the main result. First,
we show that REL((112)*) € REG. Indeed, note that for every s, 4, the word w = (112)°+ is
in (112)* and the last s shifts of w are >d-lagged. Hence, there must be some L-controlled
regular language S C (2 x A)* so that [S] is not a regular relation.

As another example, we get more ways of synchronizing regular relations: given L; =

(1F-2F)* Ly = (1*-2*)k for some fixed k, we have REL(L;) C REG (in fact, REL(Ly) C REC).

Finally, we consider the (r/s)-synchronized relations [27, p.660] studied in [11]. This class
can be defined as REL(L,), where

L= @2y (Jar2y | Jaz). (2)

It is easy to see that shiftlag(L, s) = oo whenever r # s, and hence that (r/s)-synchronized
relations (with r # s) are not in REG.

523

STACS’14

524

Synchronizing Relations on Words

4.1 Automata theoretic characterizations

We characterized classes of relations via conditions imposed on their synchronization languages:
finite shift, lag, or shiftlag. Now we show that these conditions themselves can be characterized
using automata, or more precisely, the underlying labeled graphs of automata. It turns out
that the structure of the cycles provides the desired characterizations.

Since in this section we deal with synchronization languages, we consider automata over
the alphabet {1,2}. For a given NFA A, we consider the transition graph G4 of A as the
usual representation of the transition relation, where G 4 is a directed graph where states
are vertices and edges are labeled by transitions. Given a cycle C of G 4, we define #,(C)
as the number of edges in C labeled with transitions reading letter a. In a heterogeneous
cycle C we have #1(C) > 0 and #3(C) > 0; otherwise a cycle is homogeneous. A cycle C' is
balanced if #1(C) = #2(C), otherwise it is unbalanced (these definitions are closely related
to the notions of balanced/unbalanced oriented cycles in digraphs, cf. [19]). Note that all
balanced cycles are also heterogeneous.

Recall that the trim automaton is the result of removing all states which are not reachable
from the initial state, and all states from which no final state is reachable.

» Theorem 2. For any trim NFA A over the alphabet 2, and its transition graph G4,
(1) shiftlag(L(A)) = oo iff
G 4 contains a heterogeneous unbalanced cycle, or
G 4 contains a path from a homogeneous to a heterogeneous cycle,
(1) shift(L(A)) = oo iff Ga has a heterogeneous cycle,
(1) lag(L(A)) = oo iff G4 has an unbalanced cycle.

Proof idea. The ‘if’ directions of all items are straightforward. For the ‘only if’ direction
of item (1), it can be shown that for n = 2|Q| + 1 (where |Q] is the number of states of
A), any accepting run of A on w € L(A) so that shiftlag(w) > n must induce a path on
the transition graph G4 of A containing either a heterogeneous unbalanced cycle, or a
homogeneous cycle followed by a heterogeneous cycle. Once this is verified, the statement
follows. Note that since shiftlag(w) > n, w must contain n consecutive >n-lagged shifts
1<a; <ag < -+ <ap, < |wlinw. Since a; is >n-lagged, there must be an unbalanced
cycle Cy contained in the path induced by the run p restricted to w[1, a1]. Since there is a
sufficiently large number of shifts, there must be some heterogeneous cycle Cy contained in
the path induced by the run p restricted to wlay,|w|]. Of course, we have that there is a
path from Cy to Cy in G4, showing (1). <

» Corollary 3. Checking whether REL(L(A)) C REG, REL(L(A)) C REC or REL(L(A)) C

REGgld can be done in polynomial time in the size of A.

Note that Corollary 3 does not mean that it is decidable whether a relation R € RAT is
in REG (in fact, this problem is undecidable [8, Theorem 8.4-(vi)]). What one can check is
whether it has a “safe” control, in the sense that it synchronizes regular relations. Hence,
for any relation R controlled by L(A), if REL(L(A)) C REG then R € REG, but the opposite
does not necessarily hold. For example, if we take L' = (1]2)*, we have that REL(L') Z REG
but the universal relation A* x A* is obviously in REG.

5 Resynchronizing relations

We saw that different languages in 2* can generate the same class relations, and yet for the
commonly used classes, we have synchronization languages that somehow look canonical:

D. Figueira and L. Libkin

for instance, (12)*(1*|2*) for REG. Thus, we now address the question whether we can
resynchronize relations using those canonical synchronization languages, and if so, can we do
it effectively?

To pose this formally, suppose two different languages S, 5" C (2 x A)* controlled by
L, L' C 2* respectively represent the same relation, i.e., [S] = [S’]. Then we say that S
is an L-resynchronization of S’. Given a class C of regular languages over 2, we say that
Ly € C is a canonical representative of C if for every L € C and every L-controlled language S
there exists an Lg-resynchronization of S. In other words, for every L € C and R € REL(L),
there is an Lo-controlled S’ € (2 x A)* so that [S’] = R. If, in addition, there is a recursive
procedure that constructs such an Lg-resynchronization of S, then we say that Ly is an
effective canonical representative of C.

Let RL,;; be the class of all regular languages over 2, and let RLg:mm stand for class
of regular languages L C 2* with finite parameter param, where param is lag, or shift, or
shiftlag. We also let RLjq4<s denote the class of all regular languages L C 2* with lag(L) < 6.

» Example 4. Tuke, for example, Ly = (1122)*1*2* and Lo = (12)*(1*|2*), and a L;-
controlled relation S1. Since shiftlag(L1) < oo, [S1] € REG by Theorem 1. Further, since
by Proposition 1-(2) REL(Ly) = REG, there must be some Lo-controlled relation S so that
[S2] = [S1]. In other words Sy is the La-resynchronization of Si. Since REL(Ls) = REG in
fact Lo is a canonical representative of RL?,Z.ﬁlag.

» Theorem 5 (Resynchronization theorem).
(1) (12)*(1*|2*) is an effective canonical representative of RLf,Z.ftlag;
(1) 1*2* is an effective canonical representative of RLJj}Zﬂ;
(1) there is no canonical representative of RL{ZZ;
(IV) (12)*(1=°|2%%) is an effective canonical representative of RLjag<s;
(V) 2* is an effective canonical representative of RL ;.

If the relations are given as NFA, the synchronization procedures are in exponential time.

Proof idea. We only give the proof sketch for (1), the other items being easier.

The strongly connected components (henceforth SCC) of G 4 are its maximal strongly
connected subgraphs. An SCC is heterogeneous if it contains a heterogeneous cycle; an SCC
is homogeneous if it contains a cycle and all the cycles it contains are homogeneous; otherwise,
an SCC without cycles (that is, a single vertex) is an edgeless SCC. The condensation of G 4
(written con(G4)) is the labeled directed acyclic graph (henceforth labeled DAG) induced
by the SCC’s of G 4. This is the labeled DAG whose nodes are the SCC’s of G 4, and there
is an edge labeled (g, (i,a),q") from vertex v to vertex v’ iff v # v’ ¢ belongs to the SCC v
in G4, ¢’ belongs to the SCC v’ in G 4, and there is an edge labeled (g, (i,a),q") from ¢ to ¢
in G4 (in other words, (g, (i,a),q’) is a transition of A).

Let S C (2 x A)* be an L-controlled regular language with shiftlag(L) < oo. Let A be an
NFA recognizing S with statespace @, initial state gy and set of final states Q.

Note that since the projection of S onto 2 is inside L, we can apply Theorem 2-(1) to
A, obtaining that there are no paths from homogeneous SCC’s to heterogeneous SCC’s in
G 4 (and there are no heterogeneous cycles C with #1(C) # #2(C)). Let Qpom be the set
of all vertices of G 4 that are reachable from a vertex of a homogeneous SCC. Note that

Qnrom includes all vertices in homogeneous SCC’s, plus some vertices from edgeless SCC’s.

Also, note that the subgraph of G4 induced by Qpom has no heterogeneous cycles. Let
Qret = Q\ Qprom- Hence, Qper includes all vertices in heterogeneous SCC’s and some vertices
in edgeless SCC’s. Also, by the property before, the subgraph of G4 induced by Qpe; is

525

STACS’14

526

Synchronizing Relations on Words

-7~ N N
LT e lhom 19\,

_——————

het ~-.

Figure 1 Example of G 4 with the subgraphs induced by Qpnom and Qne:. For simplicity we assume
that A = {a} and we hence omit the letter a when depicting edges labeled by (i, a).

connected. Figure 1 contains an example. Further, any path P in G4 is of the form (1)
P-(q,7,q) P, (2) P,or (3) P/, where

P is a (possibly empty) path of the subgraph of G 4 induced by Qpet,

P’ is a (possibly empty) path of the subgraph of G4 induced by Qpom,

q € Qnet, ¢ € Qrom, and T is a transition of A.

Let A" be A restricted to Qpet, and let A"™ be A restricted to Quom. For every pair

of states qnet € Qret and Ghom € Qhom, let Lg, ., g, be the union of all

L(A" g0, aner)) - {(i-0)} - LA™ ghom. as])

for every qr € Qp and (i,a) € 2 x A so that (gnet, (4,a), ghom) is a transition of A. Let
Lhom = Uqfer L(A"™[qo, q¢]) and Lper = Uqfer L(A"[go, qy]). Tt follows that

S = Lhom U Lpet U U Laper.anom -
Qhet € Qhets Thom EQhom

We show that we can build, in exponential time, a (12)*(1*|2*)-controlled automaton for
each of these languages. Since the case of L
will only prove this case.

Qhetsghom 15 OTE general than Lyom and Lyes, we

Note that by definition of A"t and AM™ and since G4 has no unbalanced heterogeneous
cycles, for EVETY (Qhet S Qhetaqhom S Q}Lo’nuqf S QF we have that lag(L(Ahet[qmqhet])) <
oo and shift(L(A"™[qhom, qr])) < oo. This implies that lag(L(A"qo, qnet])) < n, and
shift(L(A™™qhom, qr])) < n, for n = |A].

By the already shown item (2), there exists a (1*2*)-controlled automaton Ale™ ; so that
[L(A™™(q0, ghom])] = [L(AR™]. By item (4), there exists a (12)*(1="|25")-controlled

q0,9hom

automaton Al so that [L(A"[qo, qret])] = [L(AL,)]. These automata can be built

in exponential time.

Indeed, a (12)*(1%]2*)-controlled automaton for L, q,.,, can be built from A%¢t and
all the Ag}fx,q ; 's for all gy € QF in polynomial time, and thus the statement follows. This is
shown by a variant of (2), showing that from any (1*2*)-controlled automaton one can build,
in polynomial time, an equivalent automaton (in the sense of the relation it represents) that

is (12)*(1*|2*)-controlled. <

6 Closure via Parikh images

It is well known that the class REG is effectively closed under Boolean operations. Although
RAT is a natural generalization of REG, it is not a Boolean algebra (let alone an effective one),
not being closed under intersection or complement [8]. Even testing whether a rational relation
is regular, or whether it has an empty intersection with a regular relation is undecidable [8].

D. Figueira and L. Libkin

Since regular relations are characterized via finite shiftlag, it is natural to ask whether infinite
shiftlag somehow describes “dangerous” classes of relations. That is, does this mean for
example that for any L C 2* with shiftlag(L) = oo the intersection problem is undecidable
for REL(L)? The answer to this question is negative: take for instance L = (122)* with
shiftlag(L) = oco. However, it is not hard to see that REL(L) is effectively closed under
intersection.

This raises the question of whether there are classes C C RAT that are natural, expressive,
and well-behaved, that is, so that

REC C C,

C is effectively closed under union, intersection and complementation (i.e., is an effective

Boolean algebra); and

C corresponds to a natural condition on the language.

Note that REG is one such example. Here we address the question from our perspective
in terms of control languages. The idea is to show sufficient conditions of synchronization
languages L so that REL(L) is effectively closed under intersection, or an effective boolean
algebra. We state those in terms of Parikh images of languages.

Recall that the Parikh image of a word w € k*, written II(w), is the vector of N whose
ith component contains #;(w), the number of occurrences of ¢ in w. The Parikh image of a
language L is II(L) = {II(w) | w € L}. It is well known that for regular and context-free
languages L, sets II(L) are exactly the semi-linear sets in NE, see [26].

A language L C k* is

Parikh-injective if the function IT : L — N is injective, and

Parikh-surjective if the function I : L — NE is surjective.

» Example 6.
(12)*(1*|2*) and 1*2* are Parikh-injective, while (1|2)* is not.
It can easily be shown that L = wi - ws---w; C k* is Parikh-injective if £ < k and
{Il(wy),...,H(we)} generate a linear subspace of (No)* of dimension €. For ezample,
(122)*(112)* is Parikh-injective.
(12)*(1*]2*), 1*2*, and (1|2)* are Parikh-surjective, but (122)*(112)* is not Parikh-
surjective.
It is easy to see that L, ;s as defined in (2) is Parikh-injective and Parikh-surjective for
any choice of r,5. For example, if r =2, s = 1, we have L, ;, = (122)*(22*[1*2|1*), which
is Parikh-injective and Parikh-surjective, since every element of (Ng)? is covered, and
there is only one way to reach any element of (Ng)?2.

We now analyze the (effective) closure of classes REL(L) under Boolean operations. It
turns out that closure under union is free, but for closure under intersection and complement,
the newly introduced criteria serve as sufficient conditions.

» Theorem 7. Let L C 2* be a reqular language. Then
(1) REL(L) is effectively closed under union, alphabetic morphisms, and inverse alphabetic
morphisms;
(1) If L is Parikh-injective, then REL(L) is effectively closed under intersection;
(111) 4f L is both Parikh-injective and Parikh-surjective, then REL(L) is effectively closed
under complement.

Proof idea. We prove only item (3). Let S C (2 x A)* be an L-controlled relation. We show
that [S]° = [S° N (L ® A*)], where S¢, [S]° denote the complement of S, [S] respectively,
and L ® A* denotes the set of all words u® v where |u| = |v|, u € L and v € A*.

527

STACS’14

528

Synchronizing Relations on Words

[C] Suppose (u,v) € [S]. We show that there must be some w € S°N (L ® A*) so that
(u,v) = [w]. By Parikh surjectivity and injectivity, there is exactly one word w’ € L so
that II(w') = (|ul,|v]). Let w = v’ ®v" € (2 x A)* be the only word so that ' = w’ and
[w] = (u,v). Note that w ¢ S and that its projection onto the first component (i.e., w') is
in L. Therefore, w € S¢N (L ®A*).

[D] Assume w € S°N (L®A*) and suppose that Jw] € [S]. Then, there is some
w' € S so that [w'] = [w]. It cannot be that w' = w, as it would be in contradiction
with w € SN (L®A*). Since L is Parikh-injective, and w,w’ are L-controlled, w = w’,
as otherwise [w'] # [w]. This contradicts w € S°N (L®A*). Thus, [w] ¢ [S] and
[ST¢ 2 [S¢ N (L& A*)]. <

» Corollary 8. If L. C 2* is Parikh-injective and Parikh-surjective, then REL(L) is an effective
boolean algebra, closed under alphabetic morphisms and inverse alphabetic morphisms.

Observe that in this context, REG and REC are simply two examples of the (infinitely)
many such well-behaved classes.

» Example 9.
REC and REG are effective boolean algebras because they correspond to REL(1*2*) and
REL((12)*(1*|2*)), where 1*2*, (12)*(1*|2*) are Parikh-injective and Parikh-surjective.
REL((122)*(112)*) is effectively closed under intersection.
It was shown in [11] that the class of (r/s)-synchronized relations is an effective Boolean
algebra. Our results provide an alternative proof, since L, ;s is Parikh-injective and
Parikh-surjective.

Observation. Note that Theorem 7 cannot be generalized to finite unions of Parikh-injective
languages, since for example REL(L) for L = ((12)*1*)](1*(12)*) is not closed under intersec-
tion. In fact, its intersection problem is undecidable. This follows from the fact that REL(L)
contains the suffix relation and all regular relations (where the first component is longer than
the second). By [5, Theorem V.1], this problem is undecidable.

7 Future work

We presented a new way of looking at relations on words, and this new perspective opens
up several directions. An obvious one is to extend results to k-ary relations, for k > 2. We
know that exact analogs of Proposition 1, Theorem 1, and Theorem 2 continue to hold.

Another natural extension is to look for other classes of relations, say analogs of context-
free languages. In particular, one can look at a generalization of rational relations, the
pushdown relations of [14], which are those recognized by multi-tape automata with a stack or,
equivalently, by a context-free grammar. We have some preliminary results in this direction
but more work is needed.

We also would like to use the structural approach to look for better behaved classes of
relational word transducers for verification purposes, and for classes of relations that can be
effectively used in querying graph data. Finally, we would like to use it to identify classes of
well behaved relations over data words [9] and study logics over them, extending the approach
of [5, 6] with data.

Acknowledgment. Work partially supported by EPSRC grants G049165 and J015377.

D. Figueira and L. Libkin

—— References

1

[=)]

O o~

10

11

12

13

14

15

16

17

18

19
20

21
22
23

24
25
26
27
28
29

P.A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model checking.
In CONCUR’03, pages 35—48.

R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC’0/, pages 202-211.
R. Angles and C. Gutiérrez. Survey of graph database models. ACM Comput. Surv., 40(1),
2008.

K. Anyanwu and A.P. Sheth. p-queries: enabling querying for semantic associations on the
semantic web. In WWW’03, pages 690-699.

P. Barceld, D. Figueira, and L. Libkin. Graph logics with rational relations. LMCS, 9(3:1),
2013.

P. Barceld, L. Libkin, A. W. Lin, and P. Wood. Expressive languages for path queries over
graph-structured data. ACM Trans. Database Syst., 37(4):31, 2012.

M. Ben-Ari. Principles of the Spin model checker. Springer, 2008.

J. Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.

M. Bojaniczyk. Automata for data words and data trees. In RTA’10, pages 1-4.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In CAV’00,
pages 403-418.

O. Carton. The growth ratio of synchronous rational relations is unique. 7'C'S, 376(1-2):52—
59, 2007.

O. Carton, C. Choffrut, and S. Grigorieff. Decision problems among the main subfamilies
of rational relations. RATRO Theor. Inf. and Appl., 40(2):255-275, 2006.

C. Choffrut. Relations over words and logic: A chronology. Bull. of the EATCS, 89:159-163,
2006.

C. Choffrut and K. Culik II. Properties of finite and pushdown transducers. SIAM J.
Comput., 12(2):300-315, 1983.

C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata. IBM J.
Res. Dev., 9(1):47—-68, January 1965.

R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. A formal framework for information
extraction. In PODS’13, pages 37—48.

C. Frougny and J. Sakarovitch. Synchronized rational relations of finite and infinite words.
TCS, 108(1):45-82, 1993.

T. Harju, A. Mateescu, A. Salomaa. shuffle on trajectories: the Schiitzenberger product
and related operations. MF(CS’98, pages 503-511.

P. Hell and J. NeSettil. Graphs and Homomorphisms. Oxford University Press, 2004.

B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying infinite-state
systems. In TACAS’00, pages 220-234.

J. Leguy. Transductions rationnelles décroissantes. ITA, 15(2):141-148, 1981.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

R. Milo, S. Shen-Orr, S. Ttzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:
simple building blocks of complex networks. Science, 298(5594):824-827, 2002.

F. Neven. Automata, Logic, and XML. In CSL’02, pages 2-26.

M. Nivat. Transduction des langages de Chomsky. Ann. Inst. Fourier, 18:339-455, 1968.
R. Parikh. On context-free languages. Journal of the ACM, 13(4):570-581, 1966.

J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

T. Schwentick. Automata for XML — a survey. JCSS, 73(3):289-315, 2007.

A. W. To and L. Libkin. Algorithmic metatheorems for decidable LTL model checking over
infinite systems. In FOSSACS’10, pages 221-236.

529

STACS’14

	Introduction
	Recognizable, regular, and rational relations
	Synchronizations of relations
	Synchronizations for recognizable, regular, and rational relations
	Automata theoretic characterizations

	Resynchronizing relations
	Closure via Parikh images
	Future work

