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Abstract
Given two graphs H and G, the Subgraph Isomorphism problem asks if H is isomorphic to
a subgraph of G. While NP-hard in general, algorithms exist for various parameterized versions
of the problem. However, the literature contains very little guidance on which combinations of
parameters can or cannot be exploited algorithmically. Our goal is to systematically investigate
the possible parameterized algorithms that can exist for Subgraph Isomorphism.

We develop a framework involving 10 relevant parameters for each of H and G (such as
treewidth, pathwidth, genus, maximum degree, number of vertices, number of components, etc.),
and ask if an algorithm with running time f1(p1, p2, . . . , p`) · nf2(p`+1,...,pk) exists, where each of
p1, . . . , pk is one of the 10 parameters depending only on H or G. We show that all the questions
arising in this framework are answered by a set of 11 maximal positive results (algorithms) and
a set of 17 maximal negative results (hardness proofs); some of these results already appear in
the literature, while others are new in this paper.

On the algorithmic side, our study reveals for example that an unexpected combination of
bounded degree, genus, and feedback vertex set number of G gives rise to a highly nontrivial
algorithm for Subgraph Isomorphism. On the hardness side, we present W[1]-hardness proofs
under extremely restricted conditions, such as when H is a bounded-degree tree of constant
pathwidth and G is a planar graph of bounded pathwidth.
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1 Introduction

Subgraph Isomorphism is one of the most fundamental graph-theoretic problems: given two
graphs H and G, the question is whether H is isomorphic to a subgraph of G. It can be easily
seen that finding a k-clique, a k-path, a Hamiltonian cycle, a perfect matching, or a partition
of the vertices into triangles are all special cases of Subgraph Isomorphism. Therefore, the
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problem is clearly NP-complete in general. There are well-known polynomial-time solvable
special cases of the problem, for example, the special case of trees:

I Theorem 1 ([27]). Subgraph Isomorphism is P-time solvable if G and H are trees.

Theorem 1 suggests that one should look at cases of Subgraph Isomorphism involving
“tree like” graphs. The notion of treewidth measures, in some sense, how close a graph is to
being a tree [3]. Treewidth has very important combinatorial and algorithmic applications; in
particular, many algorithmic problems become easier on bounded-treewidth graphs. However,
Subgraph Isomorphism is NP-hard even if both H and G have treewidth at most 2 [26].

Parameterized algorithms try to cope with NP-hardness by allowing exponential depen-
dence of the running time on certain well-defined parameters of the input, but otherwise
the running time depends only polynomially on the input size. We say that a problem is
fixed-parameter tractable with a parameter k if it can be solved in time f(k) · nO(1) for some
computable function f depending only on k [13]. The definition can be easily extended to
multiple parameters k1, . . . , k`. The NP-hardness of Subgraph Isomorphism on graphs of
treewidth at most 2 shows that the problem is not fixed-parameter tractable parameterized
by treewidth (under standard complexity assumptions). However, there are tractability
results that involve other parameters besides treewidth. For example, the following theorem,
which follows easily from e.g. Courcelle’s Theorem [6], shows the fixed-parameter tractability
of Subgraph Isomorphism, jointly parameterized by the size of H and the treewidth of G:

I Theorem 2 (cf. [13]). Subgraph Isomorphism can be solved in time f(|V (H)|, tw(G)) ·n
for some computable function f .

Some of the results in the literature can be stated as algorithms where certain parameters
do appear in the exponent of the running time, but others influence only the multiplicative
factor. The classical color-coding algorithm of Alon, Yuster, and Zwick [1] is one such result:

I Theorem 3 ([1]). Subgraph Isomorphism can be solved in time 2O(|V (H)|) · nO(tw(H)).

One can interpret Theorem 3 as saying that if the treewidth of H is bounded by any fixed
constant, then the problem becomes fixed-parameter tractable when parameterized by |V (H)|.
Notice that treewidth appears in very different ways in Theorems 2 and 3: in the first result,
the treewidth of G appears in the multiplicative factor, while in the second result, it is the
treewidth of H that is relevant and it appears in the exponent. Yet another algorithm for
Subgraph Isomorphism on bounded-treewidth graphs is due to Matoušek and Thomas [26]:

I Theorem 4 ([26]). For connected H, Subgraph Isomorphism can be solved in time
f(∆(H)) · nO(tw(G)) for some computable function f .

Again, the dependence on treewidth takes a different form here: now it is the treewidth of G

that appears in the exponent. Note that the connectivity condition cannot be omitted: there
is an easy reduction from the NP-hard problem Bin Packing with unary sizes to the case
of Subgraph Isomorphism where H and G both consist of a set of disjoint paths, i.e., have
maximum degree 2 and treewidth 1. Therefore, as Theorem 4 shows, the complexity of the
problem depends nontrivially on the number of connected components of the graphs as well.

As the examples above show, even the apparently simple question of how treewidth
influences the complexity of Subgraph Isomorphism does not have a clear-cut answer: the
treewidth of H and G influences the complexity in different ways, they can appear in the
running time either as an exponent or as a multiplier, and the influence of treewidth can be
interpreted only in combination with other parameters (such as the number of vertices or

STACS’14



544 Parameterized complexity of Subgraph Isomorphism

maximum degree of H). The situation becomes even more complex if we consider further
parameters of the graphs as well. Cliquewidth, introduced by Courcelle and Olariu [8], is
a graph measure that can be always bounded by a function of treewidth, but treewidth
can be arbitrary large even for graphs of bounded cliquewidth (e.g., for cliques). Therefore,
algorithms for graphs of bounded cliquewidth are strictly more general than those for
graphs of bounded treewidth. By the results of Courcelle et al. [7], Theorem 2 can be
generalized by replacing treewidth with cliquewidth. However, no such generalization is
possible for Theorem 3: cliques have cliquewidth 2, thus replacing treewidth with cliquewidth
in Theorem 3 would imply that Clique (parameterized by the size of the clique to be found)
is fixed-parameter tractable, contrary to widely accepted complexity assumptions. In the case
of Theorem 4, it is not at all clear if treewidth can be replaced by cliquewidth: we are not
aware of any result in the literature on whether Subgraph Isomorphism is fixed-parameter
tractable parameterized by the maximum degree of H if G is a connected graph whose
cliquewidth is bounded by a fixed constant.

Theorem 2 can be generalized into a different direction using the concept of bounded local
treewidth. Model checking with a fixed first-order formula is known to be linear-time solvable
on graphs of bounded local treewidth [15], which implies that Subgraph Isomorphism can be
solved in time f(|V (H)|)·n if G is planar, or more generally, in time f(|V (H)|, genus(G))·n for
arbitrary G. Having an algorithm for bounded-genus graphs, one can try to further generalize
the results to graphs excluding a fixed minor or to graphs not containing the subdivision
of a fixed graph (that is, to graphs not containing a fixed graph as a topological minor).
Such a generalization is possible: a result of Dvořak et al. [10] states that model checking
with a fixed first-order formula is linear-time solvable on graphs of bounded expansion, and
it follows that Subgraph Isomorphism can be solved in time f(|V (H)|, hadw(G)) · n or
f(|V (H)|, hadwT(G)) · n, where hadw(G) (resp., hadwT(G)) is the maximum size of a
clique that is a minor (resp., topological minor) of G. These generalizations of Theorem 2
show that planarity, and more generally, topological restrictions on G can be helpful in
solving Subgraph Isomorphism, and therefore the study of parameterizations of Subgraph
Isomorphism should include these parameters as well.

Our goal is to perform a systematic study of the influence of the parameters: for all
possible combination of parameters in the exponent and in the multiplicative factor, we
would like to determine if there is an algorithm whose running time is of this form. The main
thesis of the paper is the following: (1) as the influence of the parameters on the complexity
is highly nontrivial and subtle, even small changes in the choice of parameters can have
substantial and counterintuitive consequences, and (2) the current literature gives very little
guidance on whether an algorithm with a particular combination of parameters exist.

2 Our framework

We present a framework in which the questions raised above can be systematically treated
and completely answer every question arising in the framework. Our setting is the following.
First, we define the following 10 graph parameters (we give a brief justification for each
parameter why it is relevant for the study of Subgraph Isomorphism):

Number of vertices |V (·)|. As Theorems 2 and 3 show, |V (H)| is a highly relevant
parameter for the problem. Note, however, that the problem becomes trivial if |V (G)|
can appear in the multiplier or in the exponent, or if |V (H)| can appear in the exponent.
Number of connected components cc(·). As Theorem 4 and the reduction from Bin
Packing show, it makes a difference if we restrict the problem to connected graphs (or,
more generally, if we allow the running time to depend on the number of components).
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Maximum degree ∆(·). The maximum degree of H plays an important role in Theorem 4,
thus exploring the effect of this parameter is clearly motivated. In general, many
parameterized problems become easier on bounded-degree graphs, mainly because then
the distance-d neighborhood of each vertex has bounded size for bounded d.
Treewidth tw(·). Theorems 2–4 give classical algorithms where treewidth appears in
different ways; understanding how exactly treewidth can influence complexity is one of
the most important concrete goals of the paper.
Pathwidth pw(·). As pathwidth is always at least treewidth, but can be strictly larger,
algorithms parameterized by pathwidth can exist even if no algorithms parameterized by
treewidth are possible. Given the importance of treewidth, it is natural to explore the
possibility of algorithms in the more restricted setting of bounded-pathwidth graphs.
Feedback vertex set number fvs(·). A feedback vertex set is a set of vertices whose deletion
makes the graph a forest; the feedback vertex set number is the size of the smallest such
set. Similarly to graphs of bounded pathwidth, graphs of bounded feedback vertex set
number form a subclass of bounded-treewidth graphs, hence it is natural to explore what
algorithms we can obtain with this parameterization. Note that Graph Isomorphism
(not subgraph!) is fixed-parameter tractable parameterized by feedback vertex set number
[19], while only nO(tw(G)) time algorithms are known parameterized by treewidth [2, 29].
This shows that fvs(·) can be a useful parameter for problems involving isomorphisms.
Cliquewidth cw(·). As cliquewidth is bounded by a function of treewidth, parameterization
by cliquewidth leads to more general algorithms than parameterization by treewidth.
However, treewidth can be replaced by cliquewidth in Theorem 2, but not in Theorem 3.
Therefore, understanding the role of cliquewidth is a nontrivial and interesting challenge.
Genus genus(·). Understanding the complexity of Subgraph Isomorphism on planar
graphs (and more generally, on bounded-genus graphs) is a natural goal, especially in
light of the positive results that arise from the generalizations of Theorem 2.
Hadwiger number hadw(·). That is, the size of the largest clique that is the minor of the
graph. A graph containing a Kk-minor needs to have genus Ω(k2); therefore, algorithms
for graphs excluding a fixed clique as a minor generalize algorithms for bounded-genus
graphs. In many cases, such a generalization is possible, thanks to structure theorems
and algorithmic advances for H-minor free graphs [9, 17, 30].
Topological Hadwiger number hadwT(·). That is, the size of the largest clique whose
subdivision is a subgraph of the graph. A graph containing the subdivision of a Kk

contains Kk as a minor. Therefore, algorithms for graphs excluding a fixed topological
clique minor generalize algorithms for graphs excluding a fixed clique minor. Recent work
show that some algorithmic results for graphs excluding a fixed minor can be generalized
to excluded topological minors [14, 16, 18]. In particular, the structure theorem of Grohe
and Marx [18] states, in a precise technical sense, that graphs excluding a fixed topological
minor are composed from parts that are either “almost bounded-degree” or exclude a
fixed minor. Therefore, it is interesting to investigate in our setting how this parameter
interacts with the parameters smallest excluded clique minor and maximum degree.

Given this list of 10 parameters, we would like to understand if an algorithm with running
time of the form f1(p1, p2, . . . , p`) · nf2(p`+1,...,pk) exists, where each pi is one of these 10
parameters applied on either H and G, and f1, f2 are arbitrary computable functions of
these parameters. We call such a sequence of parameters a description, and we say that an
algorithm is compatible with the description if its running time is of this form. Observe that
Theorems 2 and 3 can be stated as the existence of algorithms compatible with particular
descriptions. However, Theorem 4 has the extra condition that H is connected (or in other
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words, the number of connected components of H is 1) and therefore it does not seem to fit
into this framework. In order to include such statements into our investigations, we extend
the definition of descriptions with some number of constraints that restrict the value of certain
parameters to particular constants. Specifically, we consider the following 5 constraints on
H and G, each of which corresponds to a particularly motivated special case of the problem:

Genus is 0. That is, the graph is planar. Any positive result on planar graphs is
clearly of interest, even if it does not generalize to arbitrary fixed genus. Conversely,
whenever possible, we would like to state hardness results for planar graphs, rather than
for bounded-genus with an unspecified bound on the genus.
Number of components is 1. Any positive result under this restriction is quite motivated,
and as the examples above show, the problem can become simpler on connected graphs.
Treewidth is at most 1. That is, the graph is a forest. Trees can behave very differently
than bounded-treewidth graphs (compare Theorem 1 with the fact the the problem is
NP-hard on graphs of treewidth 2), thus investigating the special case of forests might
turn up additional algorithmic results.
Maximum degree is at most 2. That is, the graph consists of disjoint paths and cycles.
Clearly, this class is very restricted, but as the NP-hardness of Hamiltonian Cycle
shows, this property of H does not guarantee tractability without further assumptions.
Maximum degree is at most 3. To provide contrast with the case of maximum degree at
most 2, we would like to state negative results for graphs of maximum degree at most 3.

We restrict our attention to these 5 specific constraints. For example, we do not specifically
investigate possible algorithms that work on, say, graphs of feedback vertex set size 1 or of
pathwidth 2: we can argue that such algorithms are interesting only if they can be generalized
to every fixed bound on the feedback vertex set size or on pathwidth (whereas an algorithm
for planar graphs is interesting even if it does not generalize to higher genera).

3 Results

Our formulation of the general framework includes an enormous number of concrete research
questions. Even without considering the 5 specific constraints, we have 19 parameters (10 for
H and 9 for G) and each parameter can be either in the exponent of the running time, in the
multiplier of the running time, or does not appear at all in the running time. Therefore, there
are at least 319 ≈ 109 descriptions and corresponding complexity questions in this framework.
The present paper answers all these questions (under standard complexity assumptions).

In order to reduce the number of questions we observe that there are some clear implica-
tions between them. Clearly, the f1(|V (H)|) ·nf2(tw(H)) time algorithm of Theorem 3 implies
the existence of, say, an f1(|V (H)|, genus(G)) · nf2(pw(H),∆(G)) time algorithm: pw(H) is
always at least tw(H) and the fact that the latter running time can depend on genus(G)
and ∆(G) can be ignored. The main claim of the paper is that every question arising in the
framework can be answered by a set of 11 positive and 17 negative results:

The positive and negative results presented in Table 1 imply a positive or negative
answer to every question arising in this framework. (*)

That is, either there is a positive result for a more restrictive description, or a negative result
for a less restrictive restriction. The following two examples show how one can deduce the
answer to specific questions from Table 1.
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I Example 5. Is there an algorithm for Subgraph Isomorphism with running time
nf(fvs(G)) when G is a planar graph of maximum degree 3 and H is connected? Looking at
Table 1, the line of Theorem P.10 shows the existence of an algorithm with running time
f1(fvs(G), ∆(G)) · nf2(genus(G),cc(H)). When restricted to the case when G is a planar graph
(i.e., genus(G) = 0) with ∆(G) ≤ 3 and H is connected (i.e., cc(H) = 1), then running
time of this algorithm can be expressed as f(fvs(G)) · nO(1). This is in fact better than the
running time nf(fvs(G)) we asked for, hence the answer is positive.

I Example 6. Is there an algorithm for Subgraph Isomorphism with running time
f(tw(G)) ·ng(∆(G)) when G is a connected planar graph? Looking at Table 1, the line of The-
orem N.7 gives a negative result for algorithms with running time f1(cc(H), pw(G), fvs(G)) ·
nf2(pw(H)) when restricted to instances where H is a forest and G is a connected planar
graph of maximum degree 3. Note that tw(G) ≤ pw(G), so an f(tw(G)) · ng(∆(G)) time
algorithm for connected planar graphs would give an f(pw(G)) · nO(1) time algorithm for
connected planar graphs of maximum degree 3, which is a better running time then the one
ruled out by Theorem N.7. Therefore, the answer is negative.

To make claim (*) formal and verifiable, we define an ordering relation between descriptions
in a way that guarantees that if description D1 is stronger than D2, then an algorithm
compatible with D1 implies the existence of an algorithm compatible with D2. Roughly
speaking, the definition of this ordering takes into account three immediate implications:

Removing a parameter makes the description stronger.
Moving a parameter from the exponent to the multiplier makes the description stronger.
We consider a list of combinatorial relations between the parameters and their implications
on the descriptions: for example, tw(H) ≤ pw(H) implies that replacing pw(H) with
tw(H) makes the description stronger. Our list of relations include some more complicated
and less obvious connections, such as tw(H) can be bounded by a function of cw(H)
and ∆(H), thus replacing cw(H) and ∆(H) with tw(H) makes the description stronger.

The precise definition of the ordering of the descriptions appears in the full version of the
paper. Given the ordering, we need to show the positive results only for the maximally strong
descriptions and the negative results for the minimally strong descriptions. Our main result
is that every question arising in the framework can be explained by a set of 11 maximally
strong positive results and a set of 17 minimally strong negative results listed in Table 1.

I Theorem 7. For every description D, either (a) Table 1 contains a positive result for a
description D′ such that D′ is stronger than D, or (b) Table 1 contains a negative result for
a description D′ such that D is stronger than D′.

At this point, the reader might wonder how it is possible to prove Theorem 7, that
is to verify that the positive and negative results on Table 1 indeed cover every possible
description. Interestingly, formulating the task of checking whether a set of positive and
negative results on an unbounded set of parameters explains every possible description leads
to an NP-hard problem (we omit the details). Therefore, we have implemented a simple
backtracking algorithm that checks if every description is explained by the set of positive
and negative results given in the input. We did not make a particular effort to optimize the
program, as it was sufficiently fast for our purposes on contemporary desktop computers.
The program indeed verifies that our set of positive and negative results is complete. We
have used this program extensively during our research to find descriptions that are not yet
explained by our current set of results. By focusing on one concrete unexplained description,
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we could always either find a corresponding algorithm or prove a hardness result, which we
could add to our set of results. By iterating this process, we have eventually arrived at a
set of results that is complete. The program and the data files are available as electronic
supplementary material of the arxiv version of the present paper [25].

As the systematic study of our framework involves proving dozens of results that require
combination of many different tools, in this extended abstract we only survey our framework
and state the results, giving a short glimpse into the most important findings and techniques
used for proving them. For a full discussion of the results, including all the proofs, we refer
to the full version of the paper that can be found on arxiv [25].

4 Algorithms

Let us highlight some of the new algorithmic results discovered by the exhaustive analysis
of our framework. While the negative results suggest that the treewidth of G appearing in
the multiplicative factor of the running time helps very little if the size of H can be large,
we show that the more relaxed parameter feedback vertex set is useful on bounded-degree
planar graphs. Specifically, we prove the following result:

I Theorem 8. Subgraph Isomorphism can be solved in time f(∆(G), fvs(G)) · nO(1) if
H is connected and G is planar.

The proof of Theorem 8 turns the Subgraph Isomorphism problem into a Constraint
Satisfaction Problem (CSP) whose primal graph is planar. We observe that this CSP
instance has a special variable v that we call a projection sink: roughly speaking, it has
the property that v can be reached from every other variable via a sequence of constraints
that are projections. We prove the somewhat unexpected result that a planar CSP instance
having a projection sink is polynomial-time solvable, which allows us to solve the Subgraph
Isomorphism instance within the claimed time bound. This new property of having a
projection sink and the corresponding polynomial-time algorithm for CSPs with this property
can be interesting on its own and possibly useful in other contexts.

We generalize the result from planar graphs to bounded-genus graphs and to graphs
excluding a fixed minor in the following way:

I Theorem 9. Subgraph Isomorphism can be solved in time
1. f1(∆(G), fvs(G)) · nf2(genus(G),cc(H)), and
2. f1(∆(G), fvs(G)) · nf2(hadw(G),∆(H),cc(H)).

For (1), we need only well-known diameter-treewidth relations for bounded-genus graphs
[12], but (2) needs a nontrivial application of structure theorems for graphs excluding a fixed
minor and handling vortices in almost-embeddable graphs. Note that these two results are
incomparable: in (2), the exponent contains ∆(H) as well, thus it does not generalize (1).
Intuitively, the reason for this is that when lifting the algorithm from the bounded-genus
case to the minor-free case, high-degree apices turn out to be problematic. On the other
hand, Theorem N.8 shows that incorporating other parameters is (probably) unavoidable
when moving to the more general minor-free setting. We find it interesting that our study
revealed that the bounded-genus case and the minor-free case are provably different when
the parameterized complexity of Subgraph Isomorphism is concerned.

The reader might find it unmotivated to present algorithms that depend on so many
parameters in strange ways, but let us emphasize that these results are maximally strong
results in our framework. That is, no weakening of the description can lead to an algorithm
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(under standard complexity assumptions): for example, genus(H) or cc(H) cannot be moved
from the exponent to the multiplier, or ∆(H) cannot be omitted from the exponent in (2).
Therefore, these result show, in a well-defined sense, the limits of what can be achieved.
Finding such maximal results is precisely the goal of developing and analyzing our framework:
it seems unlikely that one would come up with results of the form of Theorem 9 without an
exhaustive investigation of all the possible combinations of parameters.

On the other hand, we generalize Theorem 1 from trees to forests, parameterized by the
number of connected components of H. This seemingly easy task turns out to be surprisingly
challenging. The dynamic programming algorithm of Theorem 1 relies on a step that involves
computing maximum matching in a bipartite graph. The complications arising from the
existence of multiple components of H makes this matching step more constrained and
significantly harder. In fact, the only way we were able to solve these matching problems
is by the randomized algebraic matching algorithm of Mulmuley et al. [28]. Therefore, our
result is a randomized algorithm for this problem:

I Theorem 10. Subgraph Isomorphism can be solved in randomized time f(cc(H)) ·nO(1)

with false negatives, if H and G are forests.

Again, we find it a success of our framework that it directed attention to this particularly
interesting special case of the problem. Obtaining a deterministic algorithm for this variant
is an interesting open problem.

5 Hardness proofs

Two different technologies are needed for proving negative results about algorithms satisfying
certain descriptions: NP-hardness and W[1]-hardness. Recall that a W[1]-hard problem is
unlikely to be fixed-parameter tractable and one can show that a problem is W[1]-hard by
presenting a parameterized reduction from a known W[1]-hard problem (such as Clique) to
it. The most important property of a parameterized reduction is that the parameter value
of the constructed instance can be bounded by a function of the parameter of the source
instance; see [13] for more details.

To give evidence that no nf(p1,...,pk) time algorithm for Subgraph Isomorphism exists,
one would like to show that Subgraph Isomorphism remains NP-hard on instances
where the value of the parameters p1, . . . , pk are bounded by some universal constant.
To give evidence that no f1(p1, p2, . . . , p`) · nf2(p`+1,...,pk) time algorithm for Subgraph
Isomorphism exists, one would like to show that Subgraph Isomorphism is W[1]-hard
parameterized by p1, . . . , p` on instances where the values of p`+1, . . . , pk are bounded
by some universal constant. That is, what is needed is a parameterized reduction from a
known W[1]-hard problem to Subgraph Isomorphism in such a way that parameters
p1, . . . , p` of the constructed instance are bounded by a function of the parameters of the
source instance, while the values of p`+1, . . . , pk are bounded by some universal constant.

Additionally, the reductions need to take into account the extra constraints (planarity,
treewidth 1, etc.) appearing in the description. The nontrivial results of this paper are
of the second type: we prove the W[1]-hardness of Subgraph Isomorphism with certain
parameters, under the assumption that certain other parameters are bounded by a universal
constant. Intuitively, a substantial difference between NP-hardness proofs and W[1]-hardness
proofs is that in a typical NP-hardness proof from, say, 3-SAT, one replaces each variable
and clause with a small gadget having a constant number of states, whereas in a typical
W[1]-hardness proof from, say, Clique, one creates a bounded number of large gadgets
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having an unbounded number of states, e.g., the states correspond to the vertices of the
original graph. Therefore, usually the first goal in W[1]-hardness proofs is to construct
gadgets that are able to express a large number of states.

Most of our W[1]-hardness results are for planar graphs or for graphs close to planar. As
many parameterized problems become fixed-parameter tractable on planar graphs, there is
only a handful of planar W[1]-hardness proofs in the literature [4, 5, 11, 24]. These hardness
proofs need to construct gadgets that are both planar and able to express a large number
of states, which can be a challenging task. A canonical problem that can serve as a useful
starting point for W[1]-hardness proofs on planar graphs is Grid Tiling [23, 24]. Most of
our W[1]-hardness proofs indeed use Grid Tiling as the source problem. In some cases we
use a new problem, Exact Planar Arc Supply, which we prove to be W[1]-hard and
which is inspired by the problem Planar Arc Supply introduced by Bodlaender et al. [4].

Besides planarity (or near-planarity), our hardness proofs need to overcome other chal-
lenges as well: we bound combinations of maximum degree (of H or G), pathwidth,
cliquewidth etc. The following theorem demonstrates the type of restricted results we
are able to get. Note that the more parameters appear in the running time and the more
restrictions H and G have, the stronger the hardness result is.

I Theorem 11. Assuming FPT 6= W [1], there is no algorithm for Subgraph Isomorphism
with running time

f1(pw(G)) · nf2(pw(H)), even if both H and G are connected planar graphs of maximum
degree 3 and H is a tree, or
f1(∆(G), pw(G), fvs(G), genus(G))·nf2(pw(H),cw(G)), even if both H and G are connected
and H is a tree of maximum degree 3.

6 Conclusions

In this paper we have developed a framework for studying different parameterizations of
Subgraph Isomorphism and completely answered every question arising in this framework.
Systematic studies of parameterizations have been performed before for various problems
[20, 21, 22, 31], but never on such a massive scale as in the present paper. We have
demonstrated that even if the number of questions is on the order of billions, finding the
maximal set of positive results and the maximal set of negative results that explain every
specific question of the framework is a doable project and might involve only a few dozen
concrete results. At such a large scale, even verifying that a set of results explains every
possible question is a daunting task. We have resorted to the help of a computer program
that checks this efficiently; the program can be helpful for similar investigations in the future.

While developing the framework and showing that it can be completely explained by
a small set of results is the conceptually most novel part of the paper, we would like to
emphasize that some of the concrete positive and negative results are highly nontrivial and
technically novel. On the algorithmic side, we have discovered a simple, but unexpectedly
challenging case: packing a forest H into a forest G, parameterized by the number of
connected components of H. We presented a nontrivial randomized dynamic programming
algorithm for this problem using algebraic matching algorithms. Our investigations turned
up an unexpected combination of parameters that results in tractable cases: maximum
degree, feedback vertex set number, and genus of G. In a somewhat surprising manner,
tractability relies on the fact that a certain property, the existence of a projection sink, allows
us to dramatically reduce treewidth in bounded-genus CSP instances. This new result on
CSPs can be of independent interest. We have generalized the result to graphs excluding
a fixed minor (with a slightly different parameterization). The generalization is not just a
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straightforward application of known structure theorems: we had to use a fairly complicated
dynamic programming scheme on tree decompositions to exploit the existence of a projection
sink and we had to handle almost embeddable graphs including all the gory details of vortices.

On the hardness side, many of our W[1]-hardness proofs involve planar (or bounded-genus)
graphs. W[1]-hardness proofs are typically involved, as they require complicated gadget
constructions. Reducing from the Grid Tiling problem helps streamlining the reductions,
but the actual gadgets have to be constructed in a problem-specific way. In our case the
construction of gadgets is particularly challenging since we have to satisfy extreme restrictions.

It might not be apparent from the paper, but the authors did exercise some restraint when
defining the framework. Only those graph parameters were included in the framework that
already had some interesting nontrivial connection to the Subgraph Isomorphism problem.
One could extend the framework with further parameters, such as chromatic number, girth,
or (edge) connectivity, but it is not clear whether these parameters would influence the
complexity of the problem in an interesting way and whether these parameters would add
anything to the message of the results besides further complications. Moreover, recall that
for similar reasons we have constrained ourselves to 5 particularly interesting constraints
corresponding to small fixed values of certain parameters.

The reader might wonder: do the authors advocate this kind of massive investigation
for each and every problem? It seems that the Subgraph Isomorphism problem is
particularly suited for such treatment. First, previous results suggest that a wide range
of parameters influence the complexity of the problem in nontrivial ways. Second, the
Subgraph Isomorphism problem involves two graphs H and G and the same parameter for
H or G can play very different role. This effectively doubles the number of parameters that
need to be considered. Therefore, the problem has a very complicated ecology of parameters
that can be understood only with a large-scale formal investigation. For other problems,
say, Vertex Coloring, the complexity landscape is expected to be much simpler, and
probably fewer new results (if any) need to be invented to explain every combination of
parameters. Therefore, we suggest exploring problems using a detailed framework similar to
ours only if there is evidence for complex interaction of parameters. Variants of Subgraph
Isomorphism might be natural candidates for such investigations: for example, (i) the
homomorphism problem for graphs, (ii) colored versions of Subgraph Isomorphism, (iii)
extension versions of Subgraph Isomorphism (where we have to extend a partial subgraph
isomorphism given in the input), or (iv) the counting version of Subgraph Isomorphism
(this problem was suggested by Petteri Kaski).
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