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Abstract
The existence of Macbeath regions is a classical theorem in convex geometry (“A Theorem on non-
homogeneous lattices”, Annals of Math, 1952). We refer the reader to the survey of I. Barany for
several applications [3]. Recently there have been some striking applications of Macbeath regions
in discrete and computational geometry.

In this paper, we study Macbeath’s problem in a more general setting, and not only for the
Lebesgue measure as is the case in the classical theorem. We prove near-optimal generalizations
for several basic geometric set systems. The problems and techniques used are closely linked to
the study of ε-nets for geometric set systems.
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1 Introduction

The goal of this paper is to study small, uniform-sized decompositions of geometric range
spaces which approximate the range space. This can be seen as a discrete analogue and
extension of the classical result of Macbeath [12] in convex geometry, as well as having several
basic connections to well-studied problems in discrete geometry.

Classical Macbeath Regions. Given a convex bodyK in Rd of unit volume, and a parameter
ε > 0, the theorem of Macbeath states the existence of disjoint convex bodies of K, each of
volume Θ(ε), called Macbeath regions, such that any halfspace containing at least ε volume of
K completely contains one of these convex objects. Formally, the following theorem follows
from their work:

I Theorem 1 (Macbeath Regions). Given a convex body K ⊂ Rd of unit volume, and a
parameter 0 < ε < 1/(2d)2d, there exists a set of convex objectsM, |M| = O((1/ε)1−2/(d+1)),
such that for any halfspace h with vol(h∩K) ≥ ε, there exists Ki ∈M such that Ki ⊂ h∩K
and

vol(Ki) ≥
1

(6d)3d vol(h ∩K) .
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The existence of Macbeath regions was first proven in the paper of Macbeath [12], with
several later applications to geometric problems. Edwald, Larmen and Rogers [9] used it
for cap coverings, which was later further extended by Barany and Larman [4] (also see
Barany [3] for a survey of this and several other results). It was used for lower-bounds on
range-searching by Bronniman, Chazelle and Pach [5]. And very recently, Macbeath regions
were used in an elegant way by Arya, Fonseca and Mount [2] for computing near-optimal
Hausdorff approximations to polytopes.

A fundamental and powerful result in computational geometry is the existence of small-
sized ε-nets: given a set system (X,R), and a parameter ε, an ε-net is a subset X ′ ⊂ X

such that X ′ ∩ R 6= ∅ for all R ∈ R where |R| ≥ ε|X|. The famous theorem of Haussler-
Welzl [10] shows that ε-nets of size O(d/ε log d/ε) exist for set systems (X,R), where d is the
VC-dimension of the set system (X,R). This bound was later improved in [11] to an optimal
bound of (1 + o(1))(dε log(1/ε)). By now ε-nets are an indispensable tool in combinatorics
and algorithms [20, 6, 8, 15, 1, 19, 17, 16, 18, 2, 11, 13, 7].

Note that Macbeath’s original theorem immediately implies an ε-net kind of a result: for
any convex body C in Rd of volume V , it is possible to pick O( 1

ε ) points in C which stab all
halfspaces containing an ε-th fraction of the volume of C. However, the statement itself is
much stronger than that: instead of just points, it gives us O( 1

ε ) regions of volume Θ(εV ) so
that each halfspace containing an ε fraction of the volume of C contains one of the regions.
The same kind of result is not true in general in a discrete setting (with counting measure
instead of Lebesgue measure ) for halfspaces in Rd. However, it is true for halfspaces in R3.
Given n points in R3, one can find O( 1

ε ) groups containing Θ(εn) points each so that any
halfspace containing εn points contains one of the groups. This is much stronger than just
the existence of ε-nets of size O( 1

ε ).
This raises the intriguing question: of the large number of results known for ε-nets, which

can be optimally strengthened like above?

Combinatorial Macbeath Regions. Given the existence of decomposition of a convex set
K into roughly equal-volume subsets with respect to halfspaces, the natural question is to
prove the existence of a small-sized set of Macbeath regions for the counting measure (instead
of the Lebesgue measure).

So the problem is: given a set P of n points in Rd and a parameter ε > 0, one would like
to construct sets P = {P1, . . . , Pm}, Pi ⊂ P , such that each set Pi has size Ω(εn), and any
halfspace containing at least εn points contains a set in P.

It turns out that this is implied by a classical result in discrete geometry, called shallow
cuttings, which states the following [13, 7]. Given a set of n regions S in Rd and two
parameters r, l, a (1/r, l)-shallow cutting w.r.t. S is a partition of Rd into cells (of constant
descriptive complexity) such that i) each cell is intersected by the boundary of at most n/r
regions of S, and ii) the number of cells containing points of depth smaller than l is at most
O((rl/n + 1)d · n/l · φ(n/l)). A set of regions is said to have union complexity φ(·) if the
combinatorial complexity of the union of any r of the regions is at most rφ(r).

It can be observed that this statement implies a Macbeath-type statement for halfspaces,
and more generally, for the following problem for regions of small union complexity: given a
set of regions S of union complexity φ(·), the objective is to compute a family U of subsets
of S, each of size Ω(εn), such that any point contained in at least εn objects of S hits all
elements of some set in U .

To construct the Macbeath sets U for regions in S, fix l = 2εn, r = 2/ε, and construct
a (1/r, l)-shallow cutting for S. For a cell C in the shallow cutting, let r(C) be the set
of regions in S that completely contain C, i.e., si ∈ r(C) iff C ⊂ si. Now, for all cells C
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580 Near-Optimal Generalisations of a Theorem of Macbeath

that contain a point of depth at most 2εn (called shallow cells), add r(C) to U . By the
shallow-cutting theorem, the number of cells containing a point of depth εn is

O((rl/n+ 1)d · n/l · φ(n/l)) = O(4d · 1/ε · φ(2/ε))

and so |U| = O(1/ε · φ(2/ε)). To show that sets in U form the required Macbeath regions,
recall that the cutting partitions Rd into a set of cells such that each cell intersects the
boundary of at most n/r = εn/2 objects in S. For a point p hitting εn regions, let C be the
shallow cell containing p. By the property of shallow-cuttings, of the εn regions containing
p, at most εn/2 regions can intersect C. The remaining at least εn/2 regions must then
completely contain C, and so for the r(C) added to U that contains p, we have |r(C)| ≥ εn/2.

The above shows the existence of O(1/εφ(1/ε)) sets such that any point contained in
Θ(εn) sets of S must hit one of the constructed sets. To make it work for all sets of size at
least εn, we can iteratively construct sets for increasing values of ε, i.e., ε, 2ε, . . . , 2iε, and
take the union, still obtaining O(1/εφ(1/ε)) sets.

For our problem of halfspaces, simply dualize each point in P to a halfspace, and apply
the above construction. For halfspaces, rφ(r) = O(rbd/2c), and so we get the following
combinatorial version of Macbeath: given a set P of n points in Rd, there exists a set
P = {P1, . . . , Pm}, Pi ⊂ P , with m = 1

εbd/2c , such that i) all sets in P have size Ω(εn), and
ii) any halfspace containing εn points of P contains at least one set in P.

The existence of a number of other ‘Macbeath-type’ statements for several other range
spaces is also implied by the above proof. In particular, for regions with linear union
complexity, i.e., φ(r) = O(1), there exist linear-sized Macbeath regions. This points to the
possibility of the existence of such structural partitioning properties for a wide range of sets
derived from geometric objects. In this paper we initiate a systematic study of the analogues
of Macbeath regions for other commonly studied geometric set-systems.

Our results. Given a set system (X,R) and ε > 0, we say that a set system U over X is an
ε-Macbeath net (or ε-Mnet for short) of (X,R) if i) each set in U has size Ω(ε|X|), and ii)
for every set R ∈ R of size at least ε|X|, there exists a set U ∈ U such that U ⊆ R. The size
of an ε-Mnet U is |U|. Parameterizing the problem a little further, if each set in U has size
at least εn/k, we call it a 1

k -heavy ε-Mnet .
In the study of ε-nets for geometric set systems, there are two types of set-systems that

are frequently studied: each of these are defined by a set of points P , and a set of regions
S. In the so-called ‘primal’ set-systems, P is taken as the ground set, and the subsets are
induced by the regions in S, where a region R induces the subset R ∩ P . In the so-called
‘dual’ set-systems, S is taken as the ground set, and the subsets are induced by points in P ,
where a point p induces the subset consisting of the regions in S containing p. Often in the
dual setting P is not mentioned, and is assumed to be the entire Euclidean space.

Earlier we pointed out the existence of ε-Mnets for halfspaces of size O(1/εbd/2c). Un-
fortunately this bound cannot be improved substantially: in Section 3, we show that it is
not very far from optimal, that is for any d, there exist a set of n points in Rd where any P
satisfying conditions i) and ii) has size at least Ω( 1

εd(d−1)/3e ).
The earlier statement in fact proved the existence of Macbeath sets for the dual problem

for general regions in terms of their union complexity. Namely, it showed:

I Theorem 2 (ε-Mnets for dual set-systems). Let S be a set of n regions in Rd with union
complexity φ(r)1. Then there exists an ε-Mnet for the dual set-system defined by S and Rd
(i.e., subsets of S hit by a point in the plane for the set system), of size O( 1

εφ( 1
ε )).

1 And satisfying certain technical conditions of bounded algebraic complexity. See [8] for a broader
discussion on this.
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Interestingly, the dependence of φ(·) in general cannot be reduced to, for example, log φ(·),
as is the bound for ε-nets. A set-system which provides a counter-example follows from our
first main result, which considers ε-Mnets for the commonly-studied range-space induced by
axis-parallel rectangles in the plane. For these, we optimally tighten the result produced by
shallow-cuttings by improving the upper-bound, and then providing a matching lower-bound.
We prove the following in Section 2:

I Theorem 3 (ε-Mnet for rectangles in R2). Let R be a set of n rectangles, P a set of n
points in R2, ε > 0 a parameter, and k ≥ 2 an integer:
1. There exists a 1

2k -heavy ε-Mnet for the dual set-system defined by R and R2, of size
O(4k/ε1+1/k). Furthermore, this cannot be significantly improved: there exists a set R of
n axis-parallel rectangles such that any 1

k -heavy ε-Mnet for the dual set-system defined by
R and R2 has size Ω((1/ε)1+1/(k−1)).

2. There exists an ε-Mnet for the primal set-system defined by P and R, of size O((1/ε) log 1/ε).
Furthermore, this cannot be significantly improved: there exists a set P of n points in
R2 such that any 1

k -heavy ε-Mnet for the primal set-system defined by P and R has size
Ω( 1

ε logk 1
ε ).

Our second main result is to consider the primal case, i.e., where the input is a set of
points P , and the ranges are defined by geometric objects such as circles, k-sided polygons,
and in general, objects of some fixed descriptive complexity. We prove the following in
Section 3:

I Theorem 4. Let P be a set of n points in R2. Then one can construct ε-Mnets of size2:
O(1/ε) for sets induced by disks in the plane,
O(1/ε) for sets induced by rectangles all intersecting a fixed line l,
Õ(1/ε2) for sets induced by lines, cones, strips in the plane,
Õ(1/ε3) for sets induced by triangles, and in general k-sided polygons in the plane (the
constant in the asymptotic notation depends on k).

We further show in Section 3 that near-linear bounds (like those achieved for halfspaces in
2 and 3 dimensions, or for the dual set-systems of linear union-complexity) are not possible
for even simple primal set-systems: there exist a set P of n points in the plane such that any
ε-Mnet for lines must have size Ω(1/ε2). This implies that for strips or cones in the plane,
the same bound holds, ruling out near-linear bounds for even the simplest type of geometric
objects.

We conclude our study by observing that the above series of results, while their proofs use
different techniques, indicate an intriguing relation between the size of ε-nets and the size of
ε-Mnets . In all cases, they obey the following: if for a range-space (dual, or primal), the ε-nets
have size O(1/εf(1/ε)), then the size of ε-Mnets for the same range-space is O(1/εcf(1/ε)),
where c is constant. So for all spaces known to have linear-sized ε-nets (which is optimal),
our proofs prove the existence of linear-sized ε-Mnets (which is optimal). For the primal
set-systems of axis-parallel rectangles in the plane, the ε-nets have size O(1/ε log log 1/ε)
(shown to be optimal) [1, 17], and our result show ε-Mnets of size O(1/ε log 1/ε) (which we
show to be optimal). And for the remaining ranges which have ε-nets of size O(1/ε log 1/ε),
we show the existence of ε-Mnets of size O(1/εc). It would be interesting to see if there is
any connection with the (still) open problem of finding the right bound on the size of ε-nets
for lines in the plane.

2 Õ(·) ignores polylogarithmic factors.

STACS’14



582 Near-Optimal Generalisations of a Theorem of Macbeath

2 Proof of Theorem 3

In this section we prove Theorem 3, which completely resolves the case for rectangles. We
start by giving the lower-bounds for the primal and the dual problem, and then give the
matching upper-bounds for both.

2.1 Lower Bounds
The following Lemma gives the key insight to studying ε-Mnet for rectangles.

I Lemma 5. For any integers r, d ≥ 1, consider the grid G = [r]d in Rd. Then the set
system on G induced by incidences with axis-parallel lines can be realized by point-rectangle
incidences in R2.

Proof. Let r ≥ 1 be any integer and let [r] represent the set {0, · · · , r − 1}. Let G = [r]d
which can be thought of as a finite d-dimensional grid of side length r. For some fixed integers
a1, · · · , ai−1, ai+1, · · · ad ∈ [r], consider the set of points Si(a1, · · · , ai−1, ai+1, · · · ad) = {(a1,

· · · , ai−1, x, ai+1, · · · ad) : x ∈ [r]}. We call such a set a line in direction i. There are drd−1

lines, with rd−1 lines in each of the d directions.
We will show that there exists a mapping π : G 7→ R2 s.t. for each line l (in any direction

i), the smallest (inclusion minimal) axis parallel rectangle containing the image π(l) of the
points in l does not contain the image of any other points of G. Here is the mapping π that
we will use: π((a1, · · · , ad)) =

∑
j aj~vj , where ~vj = (rj , rd+1−j). For any point z ∈ G, we

will interpret p = π(z) both as a vector and as a point, as suitable. When treating it as a
vector we will denote it as ~p.

For any point p = (a1, · · · , ad) ∈ G, let ~V<i(p) denote the vector
∑
j<i aj ~vj and ~V>i(p)

denote the vector
∑
j>i aj ~vj . Thus we can write π(p) as ~V<i(p) + ai~vi + ~V>i(p).

Consider the line l = Si(a1, · · · , ai−1, ai+1, · · · ad). The minimal rectangle R containing
π(l) is defined by the two opposite corners π(u) and π(v), where u = (a1, · · · , ai−1, 0, ai+1, · · · ad)
and v = (a1, · · · , ai−1, r − 1, ai+1, · · · ad) are the extreme points in l. The width of R is
(r − 1)ri and its height is (r − 1)rd+1−i.

Consider any point z = (b1, · · · , bd) ∈ G \ l. Let p = π(z) and let q be the point∑
j 6=i aj~vj + bi~vi ∈ l. Now, ~p− ~q = (~V<i(p)− ~V<i(q)) + (~V>i(p)− ~V>i(q)). Since ~p 6= ~q, one of

the summands must be non-zero. Without loss of generality assume that the latter summand
is non-zero. The other case is symmetric.

Since the vector ~V>i(p) − ~V>i(q) is an integral combinations of the vectors vj , j > i,
its x-coordinate has magnitude at least ri+1. On the other hand the x-coordinate of
(~V<i(p) − ~V<i(q)) has magnitude at most

∑
1≤j<i(r − 1)rj = ri − ri−1. Therefore, the

horizontal distance between p and q is at least ri+1 − (ri − ri−1) which is greater than the
width of R. Hence, p /∈ R. When (~V<i(p) − ~V<i(q)) 6= 0, a similar argument holds for
the y-coordinates of p and q showing that their vertical distance is larger than the height
of R. J

Proof of Theorem 3 part 1) lower-bound. We now show that for any integer constant
d ≥ 2, there exists a set R of n axis-parallel rectangles such that any 1

k -heavy ε-Mnet for R
w.r.t. points has size Ω((1/ε)1+1/(k−1)).

Proof. Now apply Lemma 5 with d = k and r = ε−
1

d−1 . Let G be the grid [r]d as before.
We set P = {π(p) : p ∈ G} and we take R to be the set of rectangles with εn/d copies of
each of the set R′ of drd−1 rectangles corresponding to the drd−1 lines in G. Note that
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|R| = εn/d · drd−1 = n. Since each of the points in G is contained in d lines (one in each
direction), the points in P are contained in d rectangles of R′ and consequently εn rectangles
of R. Since there is at most one line through two points in G there is at most one rectangle
in R′, and hence at most εn/d rectangles of R that contain any pair of points p, q ∈ P . Since
for any 1

k -heavy ε-Mnet U , each U ∈ U has size more than εn/k, it must be that no set in U
can be contained in two sets R(p) and R(q) induced by two distinct points p and q in P .
Therefore |U| ≥ |P | = rd = ε−

k
k−1 . J

Proof of Theorem 3 part 2) lower-bound. We now show that for any integer constant
k ≥ 2, there exists a set P of n points in R2 such that any 1

k -heavy ε-Mnet of P , w.r.t.
axis-parallel rectangles, has size Ω( 1

ε logk 1
ε ).

Proof. Apply Lemma 5 with r = k, and d such that rd−1 = 1
ε . Let R be the set of

drd−1 = 1/ε logk 1/ε rectangles corresponding to the lines of G, and let P be the set of points
with εn/r copies of each π(p),∀p ∈ G. Each of the rectangles in R contains rεn/r = εn

points of P . Any two rectangles of R share at most εn/r = εn/k points of P . Thus no two
rectangles in R may share the same set U ∈ U of a 1

k -heavy ε-Mnet U . Since each of them
must contain some U ∈ U , we have |U| ≥ |R| and the result follows. J

2.2 Upper Bounds

We now give constructions which match the preceding lower-bounds to complete the proof of
Theorem 3 part 1. Our argument is based essentially on the technique of boot-strapping; at
the cost of worse constant factors, we give a simple exposition below.

Construct a hierarchical subdivision of the rectangles in R by vertical lines, with an
integer k = 1/ε1/d, as follows. Let ni = n/ki, and εi = ε(k/2)i. At the 0-th level (i = 0), let
l01, . . . , l

0
k by a set of k vertical lines such that the number of rectangles of R lying between

two consecutive lines (‘a slab’) is at most n/k. Let R0
j be the set of rectangles lying entire in

the j-th slab. For each line l0j , construct a εi/4-Mnet for all of the (at most) n rectangles
of R intersecting it. Furthermore, recursively construct a εi+1-Mnet for the rectangles in
R0
j for each j. The recursive construction continues for d steps, where at the i-level, there

are ki total subproblems, each subproblem has at most ni = n/ki rectangles, and with
εi = ε(k/2)i. Finally we use a direct O(1/ε2d)-sized construction for the εd-Mnet of the final
kd subproblems at level i = d: construct 10/εd vertical and horizontal lines so that each
vertical and horizontal slab contains at most εdn/10 rectangles, and for each grid cell c, add
to U any εdnd/2 rectangles containing c (if possible). Now notice that any point in εdnd
rectangles must have at most εdnd/5 rectangles intersecting the cell boundary in which it
lies, and so at least εdnd/2 of the remaining ones would form a set in U . The next two claims
show that all these Mnet together form a ε-Mnet U for R of the required size, and we’re
done.

I Claim 1. Each set in U has size Θ(εn/2d). The size of U is O(4d/ε1+1/d).

Proof. At the i-level there are ki subproblems, each of size at most ni = n/ki with εi =
ε(k/2)i. For each such subproblem, we partition its ni rectangles by k lines, and construct
a εi/4-Mnet for the rectangles intersecting of these k lines. Note that the set of rectangles
intersecting any line, and clipped to one side of the line have linear union complexity and by
our Theorem on the dual set-systems, there exists a εi/4-Mnet of size O(1/εi). Hence the
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584 Near-Optimal Generalisations of a Theorem of Macbeath

total size over all internal subproblems is:

d∑
i=0

ki · k ·O( 1
εi

) =
d∑
i=0

ki+1 ·O( 2i

εki
) =

d∑
i=0

O( 2i

ε1+1/d ) = O( 2d

ε1+1/d ) .

After d steps, we have kd subproblems, each with at most n/kd rectangles, and εd = ε(k/2)d.
Now just use a direct construction which constructs an ε-Mnet of size O(1/ε2), to get the
total size of Mnet at the last step to be O(k

d

ε2
d

) = O( 4d

ε2kd ) = O(4d/ε).
At any level i, we construct a εi-Mnet on a set of at most n/ki rectangles. So each set in

the Mnet has size εi · n/ki = O(εn/2i). J

I Claim 2. Each point in at least εn rectangles of R contains a set of U .

Proof. Take a point q lying in at least εn rectangles of R. At the 0-th level, say q lies in
the vertical slab defined by lines l0j and l0j+1. If q hits at least εn/4 rectangles intersected
by either l0j or l0j+1, say l0j , then it hits at least εn/4 rectangles out of a total of at most n
rectangles intersected by l0j . So the (εi/4 = ε/4)-Mnet for l0j will have a set contained by q.
Otherwise q hits at least ε0n0/2 = εn/2 = ε(k/2)(n/k) = ε1n1 rectangles of the set R0

j of
size n1 = n0/k, and we proceed to this subproblem.

In general, at the i-level, each subproblem has ni = n/ki rectangles, with εi = ε(k/2)i.
Then either q hits at least εi ·ni/4 rectangles intersecting one of the lines, and so will contain
a set from the εi/4-Mnet constructed for each of the k vertical lines. Or q contains at least
εini/2 rectangles out of a total of ni/k rectangles lying in one of the slabs defined by the k
vertical lines. But as

εini/2 = ε/2 · (k/2)i · n/ki = ε(k/2)i+1n/ki+1 = εi+1ni+1 ,

q will be covered inductively by the εi+1-Mnet constructed for the ni+1 = n/ki+1 rectangles
in one of the resulting subproblems at level i+ 1. J

Finally we present the tight upper-bound for the primal case of axis-parallel rectangles in
Theorem 3 part 2.

Assume P = {p1, . . . , pn} are sorted by their x-coordinates. Given P , construct the
balanced binary subdivision of P with vertical lines: divide P by a vertical line into two
equal-sized subsets P 0

0 , P
0
1 , and then recursively divide each of these sets for log 1/ε levels.

Let P ij be the j-th resulting subset of P at level i, i.e., P ij = {pjn/2i , . . . , p(j+1)n/2i−1}.
For each set P ij , and for each of its two bounding lines l0 and l1 in the binary subdivision

above, construct a 2i−1ε-Mnet for the following primal set-system: the base set is P ij , and
given the line l ∈ {l0, l1}, the sets are induced by rectangles intersecting the line l. Note
that all points of P ij lie on the same side of l. Let U be the union of all these Mnets . By
Theorem 4, a ε-Mnet for such a set-system has size O(1/ε).

We now prove that U is an ε-Mnet of P , w.r.t. axis-parallel rectangles, of sizeO(1/ε log 1/ε).

I Claim 3. Each set in U has size Θ(εn), and size of U is O(1/ε log 1/ε).

Proof. P ij has n/2i points, and so a (2i−1ε)-Mnet of P ij has sets of size O(2i−1ε · n/2i) =
O(εn). Each such 2i−1ε-Mnet has size O(1/2iε), there are 2i sets P ij at level i, and a total of
log 1/ε levels. Hence the size of U is O(1/2iε · 2i · log 1/ε) = O(1/ε log 1/ε). J

I Claim 4. Each axis-parallel rectangle containing εn points of P contains a set of U .
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Figure 1 The union of triangles aqt,bsp, cur and prt covers the triangle abc.

Proof. Let R be an axis-parallel rectangle containing εn points of P . Let i be the smallest
index such that R intersects exactly one vertical line separarting two sets P ij and P ij+1 at
level i. Say R intersects the line l separating P ij and P ij+1. Then R must contain at least
εn/2 points from either P ij or P ij+1, say P ij . Let R′ be the part of R on the side of l towards
P ij . All such R′ form a set of psuedo-disks, and so R′ must contain at least one set of the
2i−1ε-Mnet for P ij , as

|R ∩ P ij | = |R′ ∩ P ij | ≥ εn/2 = 2i−1ε · n/2i = 2i−1ε · |P ij | .

J

3 Proof of Theorem 4

In this section we give the proof of Theorem 4. Given a set P of n points, first we give the
proof for the most difficult case, that of the primal set-system induced by triangles, and in
general, k-sided polygons in the plane. At the end we sketch out the modifications required
for the rest of the cases of strips, cones and disks.

So we are given a set P of n points, and its subsets induced by the family of all k-sided
polygons. The objective, as before, is to compute a small-sized ε-Mnet . We will assume P
to be in general position.

Since a k-sided polygon can be triangulated with k triangles, any k-sided polygon
containing εn points of P also contains a triangle containing εn/k points. Hence an ε/k-Mnet
with respect to triangles is an ε-Mnet with respect to k-sided polygons. We can therefore
restrict ourselves to triangles.

Consider any triangle T in the plane that contains εn points of P . By moving the sides
of the triangle we can ensure that each side of T contains at least two points of P and this
can be done in such a way that no point outside T enters the interior of P . Some points
in the interior of T may have moved to its boundary and some point outside T may also
have moved to the boundary. Since at most 6 points may be on the boundary of T , due to
P being in general position, the interior of T still contains at least εn/2 points assuming
εn ≥ 12. For εn < 12, the set P itself is an ε-Mnet . Thus we can further restrict ourselves
to the interior of triangles each of whose sides contain at least two points. Figure 1 shows a
triangle with each side containing two points of P . The points q and r could be identical,
they could both be equal at the corner b of the triangle. Similarly s and t could be at c and
u and p could be at a. Observe that the triangles aqt, bsp, cur and prt cover the triangle T
and therefore one of them must contain at least εn/4 points of P . Each of these triangles are
of the following type: at least two of the corners are in P and all sides contain at least two
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586 Near-Optimal Generalisations of a Theorem of Macbeath

points of P . We call such triangles anchored triangles. Thus we can again restrict ourselves
to the problem of anchored triangles containing εn points.

Let O be the set of all anchored triangles. Let O′ = {o1, . . . , ot} be a maximal set of t
triangles from O such that oi ∩ P = εn and |oi ∩ oj ∩ P | ≤ εn/2.
I Claim 5. |O′| ≤ 2 · f( cε · log 1/ε, 2c log 1/ε), where f(n, l) is the maximum number of
≤ l-sized subsets induced by objects in O given any set of n points, and c is some fixed
constant.

Proof. The proof is via the probabilistic method. Pick each point of P independently at
random with probability p = c/(2εn) · log 1/ε to get a random sample S.
I Fact 1. With probability at least 1/2, the sets oi ∩ S, i = 1 . . . t, are distinct and
|S| ≤ c/ε · log 1/ε.

Proof. Consider the range space (P,R′), where R′ = {(oi \ oj) ∩ P | ∀1 ≤ i < j ≤ t}.
First note that from the definition of O′, we get that each set in R′ has size at least
εn− εn/2 = Θ(εn). Second, we use the fact that ranges induced by polygons with k sides
have VC-dimension at most 2k + 1 [14]; it is easy to see that R′ is a subset of the ranges
induced by polygons (or union of polygons) with at most 9 sides (overall), and so the
VC-dimension of R′ is at most 19. Then by the Haussler-Welzl theorem [10], for c > 19 · 4,
with probability at least 3/4, S is an ε-net for (P,R′). Now observe that if oi ∩ S = oj ∩ S,
then the set (oi \ oj) ∩ S is empty, a contradiction to the fact that S is an ε-net for R′.

Finally, from standard concentration estimates from Chernoff bounds, it follows that
|S| ≥ c/ε · log 1/ε with probability at most 1/4. J

For each oi ∈ O′, let Xi be the random variable which is 1 if |oi ∩ S| ≥ 2c log 1/ε, and 0
otherwise. Then
I Fact 2. With probability greater than 1/2,

∑
Xi ≤ t/2.

Proof. For a fixed i, by linearity of expectation:

E[|oi ∩ S|] = c/2 · log 1/ε

By Markov’s inequality applied to each Xi,

Pr[Xi = 1] = Pr[|oi ∩ S| ≥ 2c · log 1/ε] = Pr[|oi ∩ S| ≥ 4 · E[|oi ∩ S|]] ≤ 1/4

Hence the expected value of Y =
∑
Xi is:

E[
∑

Xi] =
∑

E[Xi] =
∑

Pr[Xi = 1] ≤ t/4

By Markov’s inequality applied to Y , we get that

Pr[
∑

Xi ≥ t/2] ≤ E[
∑

Xi]/(t/2) ≤ 1/2

So with probability greater than 1/2, at least half the sets of O′ contain at most 2c log 1/ε
points of S. J

Therefore, putting together Fact 1 and Fact 2, there exists a subset S of size (c/ε) log 1/ε
such that oi ∩ S are distinct for all objects in O′, and for at least |O′|/2 of the objects in O′,
we have |oi ∩ S| ≤ 2c log 1/ε.

Let f(n, l) be the number of distinct subsets of size at most l that can be achieved by
intersection with objects in O. These are called ≤ l-sets (the most extensively studied case
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is for halfspaces in Rd). So in our case above, each oi ∩ S formed by these |O′|/2 objects is a
≤ l-set of S, where l = 2c log 1/ε. By the bound on number of ≤ l-sets for k-sided polygons,
we get

|O′|/2 = f(|S|, l) = f((c/ε) log 1/ε, 2c log 1/ε)
This gives the required bound on |O′|. J

Take this set O′ of maximal objects, each containing εn points of P , and every pair of objects
in O′ intersecting in less than εn/2 points. For each object oi ∈ O, do the following: apply
the simplicial partition theorem to oi ∩ P with the parameter t, which is a large enough
constant, to get a partition of oi ∩ P into t sets of size Θ(|oi ∩ P |/t). Add each of these t
sets to the ε-Mnet U for P .
I Claim 6. U is an ε-Mnet for the primal set-system defined by P and O, of size O(|O′|).

Proof. First note that each set added to U had size Θ(|oi ∩ P |/t) = Θ(εn). And the number
of such sets is O(|O′| · t) = O(|O′|). It remains to show that any object containing εn points
of P contain one set of U .

Take any object o containing εn points of P . By the maximality of O′, there exists
oi ∈ O′ such that |o∩ oi| ≥ εn/2. Furthermore, of all the sets in the simplicial partition of oi,
each edge of ∂o can intersect only O(

√
t) sets; so in total the boundary of o can intersect at

most O(d
√
t) sets. Each of these sets has O(|oi ∩ P |/t) points. So these sets can contribute

at most O(d
√
t · |oi ∩P |/t) points of oi to the object o. Taking t = αd for some large enough

constant α, this is less than εn/2. Therefore o must contain a point in oi which lies in a
partition for oi not intersecting ∂o, i.e., the partition lies completely inside o. J

I Claim 7. f(n, l) ≤ ln3.

Proof. The proof is folklore, and follows by standard application of the Clarkson-Shor
method [14]. For completeness we sketch it here. An anchored triangle abc can be of two
types - either all corners are in P or exactly two corners, say a and b, are in P and there is
a point p ∈ P on ac and another point q ∈ P on bc. The number of anchored triangles of
the first type is clearly at most

(
n
3
)
. Thus we only need to bound the number of anchored

triangles of the second type with at most l points in the interior. We first consider the case
when l = 0, i.e., anchored triangles of the second type with no point of P in the interior.
For such triangles, observe that fixing the points a, b and p determines q. If there were two
points q and q′ then it can be easily shown that one of anchored triangles T1 determined by
a, b, p and q and T2 determined by a, b, p and q′ is non-empty - either T1 contains q′ or T2
contains q. Thus the number of such triangles is at most

(
n
3
)
.

Let N denote the number of anchored triangles of the second type with at most l points
in the interior. Let Q be a subset of P obtained by picking each point of P independently
with probability p = 1/l. The expected number of empty anchored triangles of the second
type determined by Q is at most the expected number of triples in Q which is p3(n

3
)
since

every triple in P appears as a triple in Q with probability p3. At the same time, each of
the N anchored triangles with at most l points in the interior becomes an empty anchored
triangles in Q with probability p4(1 − p)l. Thus the expected number of empty anchored
triangles in Q is at least Np4(1− p)l. Thus Np4(1− p)l ≤ p3(n

3
)
. Since p = 1/l, it follows

that N = O(ln3). J

Triangles and k-sided polygons. Finally, the proof for the size of ε-Mnet for triangles and
k-sided polygons follows from Claims 5, 6 and 7. We now sketch the proof of the other cases
along the above lines.
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Lines, strips, cones. For sets induced by lines, strips, cones in the plane, one can follow
the above proof. The function f(n, l) correspondingly denotes the number of subsets of size l
induced by the objects of the appropriate type (lines, strips, cones). For lines, f(n, l) = O(n2),
for strips it is O(n2l) and for cones it is O(n2l2). The proof then follows from the above
claims.

Rectangles intersecting a common line l. As each rectangle contains εn points and inter-
sects l, for each rectangle R, take the portion of the rectangle on the side of l that contains
at least εn/2 points. We can construct εn/2-Mnets for the two sides of l separately.

So consider the rectangles anchored on l lying on the same side containing εn/2 points of
P . Call this set O. As before, let O′ be the maximal subset of O such that i) every pair
of rectangles in O′ share at most εn/10 points, and ii) each rectangle contains εn/2 points.
These form pseudo-disks (i.e., no two rectangles pierce each other) and by the result of [18],
|O′| = O(1/ε). Now Claim 6 implies that one can construct ε/2-Mnet of size O(1/ε).

Disks. By standard Veronese map, points P and disks D can be lifted to halfspaces H in
R3 such that each point is lifted to a point in R3 and each disk is lifted to a halfspace in R3

in such a way that their incidences are preserved. Now the required bound follows from the
result for halfspaces in R3.

Lower-bounds

I Theorem 6. For every ε > 0 and k an integer, there exists a set P of n points in the
plane, and a set D of Ω( 1

εd+1 ) curves of degree at most d, such that i) each curve contains
εn points of P and, ii) no two curves share more than εn/k points of P .

Proof. For the lower-bound on the size of 1
k heavy ε-Mnet, consider the grid G = [dk]× [ 1

ε ]
in the plane for some d ≥ 1, where [r] denotes the set {0, · · · , dre − 1}. Now, consider
univariate functions of x of the form y =

∑d
i=0 aix

i where each ai is an integer in [ 1
ε(d+1)(dk)i ].

Clearly there are at least Ω(
∏d
i=0

1
ε(d+1)(dk)i ) = Ω( 1

εd+1 ) of these polynomials. Since for each
value of x ∈ [dk], the value of y is in [ 1

ε ], each of these curves contain dk points of G. Also,
since these are curves of degree at most d, no two intersect in more than d points. Let P
be the set of n points containing εn/dk copies of each of the points in G. We thus get a set
of Ω( 1

εd+1 ) curves of degree at most d, each of which contain εn points of P and no two of
which share more than εn/k points of P . J

I Corollary 7. This gives a lower bound of Ω( 1
εd+1 ) for 1

k -heavy ε-Mnets for range spaces
induced by curves of degree at most d in the plane.

Note that this immediately implies that for sets induced by lines in the plane, ε-Mnets
must have size Ω(1/ε2). Which in turn is a special case for strips and cones in the plane.

I Corollary 8. Any ε-Mnet for sets induced by lines, strips and cones in the plane must have
size Ω(1/ε2).

Finally, using standard linearization [14] (with Veronese maps), it is possible to lift a set
of polynomial curves of degree d and a set of points to R3d+2 so that each point in the plane
is lifted to a point in R3d+2 and each curve is lifted to a halfspace (i.e., the curve y = f(x)
becomes (y − f(x))2 ≤ 0, and each monomial of this expansion can be treated as a different
coordinate for the linearization). Thus we have the following:

I Corollary 9. Any ε-Mnet for sets induced by halfspaces in Rd must have size Ω( 1
εd(d−1)/3e ).
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