
31st International Symposium on
Theoretical Aspects of Computer
Science

STACS’14, March 5th to March 8th, 2014, Lyon, France

Edited by

Ernst W. Mayr
Natacha Portier

LIPIcs – Vo l . 25 – STACS’14 www.dagstuh l .de/ l ip i c s

Editors
Ernst W. Mayr Natacha Portier
Fakultät für Informatik LIP
Technische Universität München École Normale Supérieure de Lyon
mayr@in.tum.de natacha.portier@ens-lyon.fr

ACM Classification 1998
F.1.1 Models of Computation, F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Mathematical Logic,
F.4.3 Formal Languages, G.2.1 Combinatorics, G.2.2 Graph Theory

ISBN 978-3-939897-65-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-65-1.

Publication date
March, 2014

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license:
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.STACS.2014.i

ISBN 978-3-939897-65-1 ISSN 1868-8969 www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-65-1
http://www.dagstuhl.de/dagpub/978-3-939897-65-1
http://dnb.d-nb.de
http://creativecommons.org/licenses/by/3.0/legalcode
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.i
http://www.dagstuhl.de/dagpub/978-3-939897-65-1
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (RWTH Aachen)
Pascal Weil (Chair, CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University and Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

STACS’14

http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

Foreword

The Symposium on Theoretical Aspects of Computer Science (STACS) conference series
is an international forum for original research on theoretical aspects of computer science.
Typical areas are (cited from the call for papers for this year’s conference): algorithms and
data structures, including: parallel, distributed, approximation, and randomized algorithms,
computational geometry, cryptography, algorithmic learning theory, analysis of algorithms;
automata and formal languages, games; computational complexity, parameterized complexity,
randomness in computation; logic in computer science, including: semantics, specification
and verification, rewriting and deduction; current challenges, for example: natural computing,
quantum computing, mobile and net computing.

STACS is held alternately in France and in Germany. This year’s conference (taking
place March 5–8 in Lyon) is the 31st in the series. Previous meetings took place in Paris
(1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989),
Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg (1993), Caen (1994), München
(1995), Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden
(2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006),
Aachen (2007), Bordeaux (2008), Freiburg (2009), Nancy (2010), Dortmund (2011), Paris
(2012), and Kiel (2013).

The interest in STACS has remained at a high level over the past years. The STACS
2014 call for papers led to 210 submissions with authors from 35 countries. Each paper
was assigned to three program committee members who, at their discretion, asked external
reviewers for reports. The committee selected 54 papers during a three-week electronic
meeting held in November/December. As co-chairs of the program committee, we would like
to sincerely thank all its members and the many external referees for their valuable work. In
particular, there were intense and interesting discussions. The overall very high quality of
the submissions made the selection a difficult task.

This year, the conference included a tutorial. We would like to express our thanks to the
speaker Neeraj Kayal for this tutorial, as well as to the invited speakers, Javier Esparza, Peter
Bro Miltersen, and Luc Segoufin. Special thanks go to Andrei Voronkov for his EasyChair
software (http://www.easychair.org). Moreover, we would like to warmly thank Marie
Bozo and Chiraz Benamor for continuous help throughout the conference organization.

We would also like to warmly thank Nathalie Aubrun for preparing these conference
proceedings, and Marc Herbstritt from the Dagstuhl/LIPIcs team for assisting us in the
publication process and the final production of the proceedings. These proceedings contain
extended abstracts of the accepted contributions and abstracts of the invited talks and the
tutorial. The authors retain their rights and make their work available under a Creative
Commons license. The proceedings are published electronically by Schloss Dagstuhl – Leibniz-
Center for Informatics within their LIPIcs series.

STACS 2014 has received funds and help from the Labex MILYON, the École Normale
Supérieure de Lyon, inria, the CNRS and the lab LIP at the École Normale Supérieure de
Lyon. We thank them for their support!

Munich and Lyon, February 2014 Ernst W. Mayr and Natacha Portier

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr, Natacha Portier

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.easychair.org
http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Program Committee

Edith Cohen Microsoft Research (Silicon Valley)
Samir Datta Chennai Mathematical Institute
Laurent Doyen CNRS, LSV, École Normale Supérieure de Cachan
Yuval Emek Technion
Kousha Etessami University of Edinburgh
Martin Hofmann Ludwig-Maximilians-Universität München
Stefan Kratsch Technische Universität Berlin
Jerzy Marcinkowski Uniwersytet Wrocławski
Wim Martens Universität Bayreuth
Ernst W. Mayr TUM – Technische Universität München (co-chair)
Gonzalo Navarro Universidad de Chile
Eldar Fischer Technion
Joachim Niehren INRIA Lille
Simon Perdrix CNRS, Université de Grenoble
Natacha Portier École Normale Supérieure de Lyon (co-chair)
Alex Rabinovich Tel Aviv University
Venkatesh Raman The Institute of Mathematical Sciences, Chennai
Heiko Röglin Universität Bonn
Nitin Saxena Indian Institute of Technology Kanpur
Sven Schewe University of Liverpool
Henning Schnoor Christian-Albrechts-Universität zu Kiel
Micha Sharir Tel Aviv University
Wojciech Szpankowski Purdue University
Ioan Todinca Université d’Orléans
Stéphane Vialette Université de Marne-la-Vallée
Marius Zimand Towson University

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr, Natacha Portier

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

viii Conference Organization

Local Organization Committee

Pablo Arrighi
Nathalie Aubrun
Chiraz Benamor
Marie Bozo
Pascal Koiran
Aurélie Lagoutte
William Lochet
Joachim Niehren
Timothée Pécatte
Irena Penev
Aniela Popescu
Natacha Portier
Michael Rao
Matthieu Rosenfeld
Mathieu Sablik
Maxime Senot
Sébastien Tavenas
Eric Thierry
Stéphan Thomassé
Nicolas Trotignon
Théophile Trunck
Petru Valicov

External Reviewers

Pankaj K. Agarwal
Michael H. Albert
Eric Allender
Noga Alon
Kazuyuki Amano
Andris Ambainis
Hyung-Chan An
Daniel Apon
Diego Arroyuelo
Christian Artigues
Eugene Asarin
Noa Avigdor-Elgrabli
Yossi Azar
Ashwinkumar Badanidiyuru
Guillaume Bagan
Sebastian Bala
Nikhil Balaji
Grey Ballard
Evripidis Bampis
Nikhil Bansal
Pablo Barceló
Stephan Barth
Surender Baswana
Bruno Bauwens
Cristina Bazgan
Paul Beame
Florent Becker
Djamal Belazzougui
Amir M. Ben-Amram
Itay Berman
Dietmar Berwanger
Daniela Besozzi
Olaf Beyersdorff
Abhishek Bhrushundi
Laurent Bienvenu
Somenath Biswas
Alexandre Blondin Massé
Andrej Bogdanov
Adrien Boiret
Marthe Bonamy
Vasco Brattka
Nicolas Broutin
Nathan Brunelle
Laurent Bulteau
Leizhen Cai

Gruia Calinescu
Cezar Câmpeanu
David Cattanéo
Keren Censor-Hillel
Sourav Chakraborty
Parinya Chalermsook
Timothy M. Chan
Mathieu Chapelle
Krishnendu Chatterjee
Wei Chen
Siu-Wing Cheng
Alexey Chernov
Rajesh Hemant Chitnis
Eden Chlamtac
Yongwook Choi
Manolis Christodoulakis
Jacek Cichon
Christophe Clavier
Ilan Reuven Cohen
Alfredo Costa
Christophe Crespelle
Vladimír Cunát
Radu Curticapean
Marek Cygan
Ugo Dal Lago
Anindya De
Ronald de Wolf
Daniel Delling
Xiaotie Deng
Luc Devroye
Giuseppe Di Battista
Michael Dinitz
Riccardo Dondi
Swan Dubois
Johannes Ebbing
Alon Efrat
Michael Elberfeld
Matthias Englert
David Eppstein
Leah Epstein
Isabelle Fagnot
Arash Farzan
Michal Feldman
Stefan Felsner
Stephen A. Fenner

Diodato Ferraioli
Esteban Feuerstein
Nathanaël Fijalkow
Emmanuel Filiot
Bernd Finkbeiner
Johannes Fischer
Vojtech Forejt
Fabrizio Frati
Bin Fu
Hu Fu
Martin Fürer
Travis Gagie
Martin Gairing
Anahí Gajardo
Anna Gál
Robert Ganian
Pawel Gawrychowski
Mina Ghashami
Emanuele Giaquinta
Matt Gibson
Christian Glaßer
Xavier Goaoc
Tomasz Gogacz
Yonatan Goldhirsh
Daniel Gonçalves
Laurent Gourvès
Bruno Grenet
Elena Grigorescu
Alexander Grigoriev
Martin Grohe
Roberto Grossi
Benoît Groz
Sudipto Guha
Sylvain Guillemot
Jiong Guo
Anshul Gupta
Leonid Gurvits
Serge Haddad
Emmanuel Hainry
Yijie Han
Sariel Har-Peled
Meng He
Lauri Hella
Danny Hermelin
John M. Hitchcock

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr, Natacha Portier

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

x External Reviewers

Martin Hoefer
Thomas Holenstein
Stephan Holzer
Rupert Hölzl
Mathieu Hoyrup
Peter Høyer
Tomohiro I
Kazuo Iwama
Ragesh Jaiswal
Bart Jansen
Emmanuel Jeandel
Stacey Jeffery
Mark Jerrum
Artur Jez
Minghui Jiang
Jan Johannsen
Steffen Jost
Lukasz Kaiser
Iyad A. Kanj
Mamadou Moustapha Kanté
Haim Kaplan
Telikepalli Kavitha
Wojciech Kazana
Thomas Kesselheim
Stefan Kiefer
Christian Knauer
Bojana Kodric
Sudeshna Kolay
Giorgos Kollias
Christian Komusiewicz
Roberto Konow
Christian Konrad
Tsvi Kopelowitz
Amos Korman
Robin Kothari
Ioannis Koutis
Nagarajan Krishnamurthy
Ravishankar Krishnaswamy
Danny Krizanc
Gregory Kucherov
Sebastian Kuhnert
Raghav Kulkarni
Petr Kurka
Piyush P. Kurur
Samuel Kutin
Antti Kuusisto
Timo Kötzing
Oded Lachish

Aurélie Lagoutte
Martin Lange
Stefan Langerman
Elmar Langetepe
Markus Latte
Troy Lee
Virginie Lerays
Moshe Lewenstein
Mathieu Liedloff
Nutan Limaye
Vincent Limouzy
Kamal Lodaya
Daniel Lokshtanov
Katja Losemann
Zvi Lotker
Pinyan Lu
Giorgio Lucarelli
Michel Ludwig
Christof Löding
Guillaume Madelaine
Abram Magner
Kalpana Mahalingam
Sebastian Maneth
Bodo Manthey
Nicolas Markey
Barnaby Martin
Luke Mathieson
Ross M. McConnell
Andrew McGregor
Pierre McKenzie
Arne Meier
Reshef Meir
Robert Mercas
Ulrich Meyer
Ludovic Mignot
Joseph S. Miller
Peter Bro Miltersen
Mia Minnes
Neeldhara Misra
Johannes Mittmann
Matthias Mnich
Shahin Mohammadi
Ankur Moitra
Morteza Monemizadeh
Benjamin Monmege
Pedro Montealegre-Barba
Benjamin Moseley
Amer E. Mouawad

Moritz Mueller
Partha Mukhopadhyay
Viswanath Nagarajan
Satyadev Nandkumar
Joseph Naor
Guyslain Naves
Jesper Nederlof
Yakov Nekrich
Ilan Newman
Patrick K. Nicholson
André Nies
Matthias Niewerth
Prajakta Nimbhorkar
Nicolas Nisse
Joseph O’Rourke
Krzysztof Onak
Jan Otop
Giuseppe Ottaviano
Joël Ouaknine
Shannon Overbay
Zbigniew Palmowski
Katarzyna E. Paluch
Vinayaka Pandit
Fahad Panolan
David Parker
Vangelis Th. Paschos
Vinayak Pathak
Christophe Paul
Daniël Paulusma
Aduri Pavan
Anthony Perez
Clément Pernet
Geevarghese Philip
Chris Pinkau
Nir Piterman
Alexandru Popa
Lionel Pournin
Sebastian Preugschat
Simon J. Puglisi
Vuong Anh Quyen
Harald Räcke
Ashutosh Rai
M. S. Ramanujan
R. Ramanujam
Ramyaa Ramyaa
B. V. Raghavendra Rao
Michaël Rao
Ivan Rapaport

External Reviewers xi

Jan Reimann
Lev Reyzin
Romeo Rizzi
Liam Roditty
Martin Rötteler
Andrei E. Romashchenko
Vincenzo Roselli
Günter Rote
Irena Rusu
Ignaz Rutter
Kunihiko Sadakane
Ocan Sankur
Jayalal M. N. Sarma
S. Srinivasa Rao
Ignasi Sau
Thomas Sauerwald
Saket Saurabh
Daniel M. Savel
Manfred Schmidt-Schauß
Thomas Schneider
Oded Schwartz
Ulrich Schöpp
Danny Segev
Maxime Senot
Frédéric Servais
Chintan Shah
Adam Sheffer
Alexander Shen
Mahsa Shirmohammadi

Somnath Sikdar
Florian Sikora
Narges Simjour
Alexander Skopalik
Shay Solomon
Srikanth Srinivasan
Damian Straszak
Ileana Streinu
Yann Strozecki
Karol Suchan
Xiaoming Sun
Chaitanya Swamy
Marek Szykula
Kunal Talwar
Seiichiro Tani
Sébastien Tavenas
Aris Tentes
Sharma V. Thankachan
Johan Thapper
Sophie Tison
Tomas Toft
Stefan Toman
Leen Torenvliet
Szymon Torunczyk
Jerzy Tyszkiewicz
Hanjo Täubig
Gregory Valiant
Rossano Venturini
Oleg Verbitsky

Nikolay K. Vereshchagin
Cristian Versari
José Verschae
Aravindan Vijayaraghavan
N. V. Vinodchandran
Nisheeth K. Vishnoi
Heribert Vollmer
Tjark Vredeveld
Magnus Wahlström
Justin Ward
Mark Daniel Ward
Jeremias Weihmann
Pascal Weil
Oren Weimann
Marcelo J. Weinberger
Piotr Wieczorek
Oliver Woizekowski
David Xiao
Liang Yu
Chenyi Zhang
Qin Zhang
Gelin Zhou
Sandra Zilles
Martin Zimmermann
Stanislav Zivny
Uri Zwick
Damien Woods

STACS’14

Contents

Invited talks

Keeping a Crowd Safe: On the Complexity of Parameterized Verification
Javier Esparza . 1

Semi-algebraic geometry in computational game theory – a consumer’s perspective
Peter Bro Miltersen . 11

A glimpse on constant delay enumeration
Luc Segoufin . 13

Tutorial

Arithmetic Circuit Complexity
Neeraj Kayal . 28

Regular contributions

Submodular Stochastic Probing on Matroids
Marek Adamczyk, Maxim Sviridenko, and Justin Ward . 29

On Symmetric Circuits and Fixed-Point Logics
Matthew Anderson and Anuj Dawar . 41

Throughput Maximization in the Speed-Scaling Setting
Eric Angel, Evripidis Bampis, and Vincent Chau . 53

Efficient Computation of Optimal Energy and Fractional Weighted Flow Trade-off
Schedules

Antonios Antoniadis, Neal Barcelo, Mario Consuegra, Peter Kling, Michael Nugent,
Kirk Pruhs, and Michele Scquizzato . 63

Weighted Coloring in Trees
Julio Araujo, Nicolas Nisse, and Stéphane Pérennes . 75

Generalized Reordering Buffer Management
Yossi Aza, Matthias Englert, Iftah Gamzu, and Eytan Kidron . 87

Shapley meets Shapley
Haris Aziz and Bart de Keijzer . 99

Complexity classes on spatially periodic Cellular Automata
Nicolas Bacquey . 112

Asymmetry of the Kolmogorov complexity of online predicting odd and even bits
Bruno Bauwens . 125

Two-Page Book Embeddings of 4-Planar Graphs
Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou 137

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr, Natacha Portier

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xiv Contents

Palindrome Recognition In The Streaming Model
Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer 149

New Bounds and Extended Relations Between Prefix Arrays, Border Arrays, Undirected
Graphs, and Indeterminate Strings

Francine Blanchet-Sadri, Michelle Bodnar, and Benjamin De Winkle 162

Online Bin Packing with Advice
Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz 174

Balls into bins via local search: cover time and maximum load
Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 187

Meet Your Expectations With Guarantees: Beyond Worst-Case Synthesis in Quantitative
Games

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin 199

Chordal Editing is Fixed-Parameter Tractable
Yixin Cao and Dániel Marx . 214

Online Dynamic Power Management with Hard Real-Time Guarantees
Jian-Jia Chen, Mong-Jen Kao, D.T. Lee, Ignaz Rutter, and Dorothea Wagner . . . 226

Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach
Suryajith Chillara and Partha Mukhopadhyay . 239

Constant Factor Approximation for Capacitated k-Center with Outliers
Marek Cygan and Tomasz Kociumaka . 251

Bounds on the Cover Time of Parallel Rotor Walks
Dariusz Dereniowski, Adrian Kosowski, Dominik Pająk, and Przemysław Uznański 263

Packing a Knapsack of Unknown Capacity
Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller 276

Exploring Subexponential Parameterized Complexity of Completion Problems
Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger 288

From Small Space to Small Width in Resolution
Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals 300

Explicit Linear Kernels via Dynamic Programming
Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos 312

Partition Expanders
Dmitry Gavinsky and Pavel Pudlák . 325

Testing Generalised Freeness of Words
Paweł Gawrychowski, Florin Manea, and Dirk Nowotka . 337

Counting Homomorphisms to Cactus Graphs Modulo 2
Andreas Göbel, Leslie Ann Goldberg, and David Richerby . 350

Irreversible computable functions
Mathieu Hoyrup . 362

Ehrenfeucht-Fraïssé Games on Omega-Terms
Martin Huschenbett and Manfred Kufleitner . 374

Contents xv

Faster Sparse Suffix Sorting
Tomohiro I, Juha Kärkkäinen, and Dominik Kempa . 386

Generalized Wong sequences and their applications to Edmonds’ problems
Gábor Ivanyos, Marek Karpinski, Youming Qiao, and Miklos Santha 397

Read-Once Branching Programs for Tree Evaluation Problems
Kazuo Iwama and Atsuki Nagao . 409

Computability of the entropy of one-tape Turing machines
Emmanuel Jeandel . 421

Computing Optimal Tolls with Arc Restrictions and Heterogeneous Players
Tomas Jelinek, Marcus Klaas, and Guido Schäfer . 433

Approximation of smallest linear tree grammar
Artur Jeż and Markus Lohrey . 445

Coloring 3-colorable graphs with o(n1/5) colors
Ken-ichi Kawarabayashi . 458

Randomized Online Algorithms with High Probability Guarantees
Dennis Komm, Rastislav Královič, Richard Královič, and Tobias Mömke 470

An optimal quantum algorithm for the oracle identification problem
Robin Kothari . 482

A Solution to Wiehagen’s Thesis
Timo Kötzing . 494

Space-Efficient String Indexing for Wildcard Pattern Matching
Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter . 506

Synchronizing Relations on Words
Diego Figueira and Leonid Libkin . 518

On Boolean closed full trios and rational Kripke frames
Markus Lohrey and Georg Zetzsche . 530

Everything you always wanted to know about the parameterized complexity of
Subgraph Isomorphism (but were afraid to ask)

Dániel Marx and Michał Pilipczuk . 542

Data-Oblivious Data Structures
John C. Mitchell and Joe Zimmerman . 554

Higher randomness and forcing with closed sets
Benoit Monin . 566

Near-Optimal Generalisations of a Theorem of Macbeath
Nabil H. Mustafa and Saurabh Ray . 578

Non-autoreducible Sets for NEXP
Dung T. Nguyen and Alan L. Selman . 590

Differentiability of polynomial time computable functions
André Nies . 602

STACS’14

xvi Contents

2-Stack Sorting is polynomial
Adeline Pierrot and Dominique Rossin . 614

Communication Lower Bounds for Distributed-Memory Computations
Michele Scquizzato and Francesco Silvestri . 627

Stochastic Scheduling on Unrelated Machines
Martin Skutella, Maxim Sviridenko, and Marc Uetz . 639

Computational Complexity of the Extended Minimum Cost Homomorphism Problem on
Three-Element Domains

Hannes Uppman . 651

The Complexity of Deciding Statistical Properties of Samplable Distributions
Thomas Watson . 663

Faster Compact On-Line Lempel-Ziv Factorization
Jun’ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and
Masayuki Takeda . 675

Keeping a Crowd Safe: On the Complexity of
Parameterized Verification
Javier Esparza

Faculty of Computer Science, Technical University of Munich, Germany
esparza@in.tum.de

Abstract
We survey some results on the automatic verification of parameterized programs without iden-
tities. These are systems composed of arbitrarily many components, all of them running exactly
the same finite-state program. We discuss the complexity of deciding that no component reaches
an unsafe state. The note is addressed at theoretical computer scientists in general.

1998 ACM Subject Classification F.1.1 Models of Computation, D.2.4 Software/Program Veri-
fication

Keywords and phrases Parameterized verification, automata theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.1

Category Invited Talk

1 Introduction

Parameterized programs (where “program” is used here in a wide sense) consist of arbitrarily
many instantiations of the same piece of code. We call each of these instantiations a process,
and the set of processes a crowd. Examples include many classical distributed algorithms
(for mutual exclusion, leader election, distributed termination, and other problems), families
of hardware circuits (for instance, a family of carry-look-ahead adders, one for each bitsize),
cache-coherence protocols, telecommunication protocols, replicated multithreaded programs,
algorithms for ad-hoc and vehicular networks, crowdsourcing systems, swarm intelligence
systems, and biological systems at molecular level.

If automatic verification is not your field of expertise, then you may find awkward to
study the complexity of verification problems for parameterized programs. Since Rice’s
theorem shows that any non-trivial question on the behavior of one single while-program is
undecidable, is there any more to say? Actually, yes. Rice’s theorem refers to while-programs
acting on variables over an infinite domain (typically the integers). Since the primary task of
distributed algorithms or cache-coherence protocols is not to compute a function, but solve a
coordination problem, they typically use only boolean variables as semaphores, or variables
ranging between 0 and the number of processes. So for each number N , the set of reachable
configurations of the crowd with N processes is finite, and most verification questions can be
decided by means of an exhaustive search of the configuration space.

However, this brute force technique can only show correctness for a finite number of values
of N . This is not what we usually understand under “proving a parameterized program
correct” , we mean proving that the property holds for all values of N . In other words, the
task consists of proving that each member of an infinite family of systems, each of them
having a finite state space, satisfies a given property. Are questions of this kind always
undecidable?

© Javier Esparza;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 1–10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

In the way we have formulated the problem, the answer is still negative: yes, all non-trivial
problems are still undecidable. Let us sketch a proof for a simple reachability problem. Given
a Turing machine M and an input x, we can easily construct a little finite-state program
that simulates a tape cell. The program has a boolean variable indicating whether the head
is on the cell or not, a variable storing the current tape symbol, and a third variable storing
the current control state when the head is on the cell (if the head is not on the cell the
value of this variable is irrelevant). A process running the program communicates with its
left and right neighbors by message passing. If M accepts x, then it does so using a finite
number N of tape cells. Therefore, the crowd containing N processes eventually reaches a
configuration in which the value of the control-state variable of a process is a final state of
M . On the contrary, if M does not accept x, then no crowd, however large, ever reaches
such a configuration. So the reachability problem for parameterized programs is undecidable.

But this proof sketch contains the sentence “the program communicates with its left and
right neighbors”. How is this achieved? A communication structure where processes are
organized in an array (like in our simulation of M), in a ring, a tree, or some other shape
is achieved by giving processes an identity, typically a number in the range [1..N]. This
identifier appears as a parameter i in the code, and so it is not the case that all processes
execute exactly the same code, but the code where the parameter is instantiated with the
process identity. For instance, the instruction “if you’re not the last process in the array,
then send the content of variable x to your right neighbor” is encoded as “if i < N , then
send the content of variable x to process i + 1”. (Observe that, since N also appears on the
code, the processes also know how many they are.)

There are applications where processes have no identities and do not know—or do not care
about—how many they are: for instance, in natural computing processes may be molecules
swimming in a solution. In others applications identities are not needed. A typical example
are cache-coherence protocols, whose purpose is to guarantee the consistency of all cache
lines containing copies of a memory cell. The protocol should guarantee that if a process
updates of a variable in its cache, the other processors mark their cached values as no longer
valid. Since the situation is completely symmetric, and processors are connected by a bus
implementing a broadcast communication primitive, identities are not needed. The same
holds for many multithreaded programs where one only cares about, say, the number of
threads that are still active. Finally, there is an increasing number of applications where
identities are considered harmful. For instance, in vehicular networks cars may communicate
with each other to interchange information about traffic jams. Since cars must necessarily
communicate their positions, identities might allow one to track individual cars. Applications
involving secret voting are another example.

These considerations lead us to our problem, which can be informally, but suggestively,
formulated as follows:

What is the complexity of checking that a (finite, but arbitrarily large)
anonymous crowd will stay safe?

Formally, the input to the problem is a finite automaton A, the template, representing
the finite-state code to be executed by each process, and a state qu of A, the unsafe state,
modelling some kind of error or undesirable situation. The transitions of A correspond
either to internal moves or to communications with the rest of the system. The question to
be answered is whether there exists a number N such that some execution of the system
composed by N identical copies of A reaches a configuration in which at least one of the
processes is in the unsafe state qu. We say that such configurations cover qu, and so the
problem is called the coverability problem.

J. Esparza 3

The complexity of the coverability problem crucially depends on the power of the
communication mechanism between processes. So first we must analyze these mechanisms in
some detail. This is done in Section 2. Section 3 presents the complexity results. Finally,
Section 4 briefly describes some additional work in which the template A is allowed to have
more computational power than that of a finite automaton.

2 How Crowds Communicate

The two main communication paradigms are message-passing (typical of communication
protocols and distributed systems where processes reside in different machines) and commu-
nication through global variables (typical of multithreaded programs). Within each paradigm
there is a number of mechanisms. We informally describe the syntax and operational se-
mantics of the template A for the four mechanisms most commonly found in the literature. In
particular, we give the syntax of the transition labels of A, and describe how a communication
takes place. We assume a finite set V of values which can be communicated.
Broadcast communication. Transition labels: v!!, v??.
We assume that for every state q and every value v the template A has at one transition
q

v??−−−→ q′ for some state q′ (which may be equal to q). In a communication step of the
system all processes make a move. Exactly one of the processes takes a transition labelled
by v!!, with the intended meaning that this process broadcasts the value v to all others;
simultaneously, all other processes take v??-transitions, depending on their current states.
Rendez-vous communication. Transition labels: v!, v?.
In a communication step of the system, exactly two processes make a move: a process takes
a transition labelled by v!, and, simultaneously, another process takes a transition labeled by
v?. The intended meaning is that the first process sends the value v to the second process.
Communication by global store. Transition labels: w(v), r(v).
In this paradigm we assume that all processes in the crowd communicate with a global store.
At every time point the store contains an element of V . In a communication step, exactly
one process makes a move. The process either takes a transition labeled by w(v), which
writes v into the store, or, if the current value of the store is v, it takes a transition labeled
by r(v), meaning that it reads the value v from the store.
Communication by global store with locking. Transition labels: lock, unlock, w(v), r(v).
A process must first obtain a lock on the store before being able to write or read. The
processes keeps the lock until it releases it by means of a transition labeled by unlock. While
in possession of the lock, the process is the only one that can perform reads and writes.

We shall see that the complexity of the coverability problem depends on two parameters
of the communication mechanism:

(1) Who listens when a process speaks ? When a process sends a message, different
mechanisms provide different guarantees on who will receive it, and we can classify them
accordingly:
– Everyone listens. This is the case of broadcast communication.
– At least someone listens. This is obviously the case of rendez-vous, but also of global

store with locking. Indeed, we can easily use a global store with locking to simulate
rendez-vous communication. The store initially contains a special value, say f , standing
for “store is free”. A process wishing to communicate a value v acquires the lock, reads
the content of the store, and, if its value is f , changes it to v and releases the lock. If the

STACS’14

4 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

value is not f , it just releases the lock. A process wishing to receive a value acquires the
lock and reads the store: if its value is f , the process just releases the lock; otherwise, it
copies the value into its local state and releases the lock. This guarantees that the value
will be preserved until someone reads it, and, under a suitable fairness assumption, that
it will eventually read.
However, neither rendez-vous communication nor global store with locking can implement
broadcast. Intuitively, in these paradigms there is no way to detect that a process does
not react to any message.

– No guarantee. This is the case of a global store without locking. A value written by a
process can be overwritten by another process before anyone reads it. Notice that we can
no longer implement rendez-vous using the trick above. Since the store cannot be locked,
two processes P1 and P2 wishing to write values v1, v2 may both read the value f and
proceed to write. If P1 writes immediately before P2, then the value v1 is not read by
anyone.

(2) Can the crowd produce a leader? Loosely speaking, this is the question whether a
perfectly symmetric crowd in which initially all processes are in the same state can be
forced to split into a distinguished process which stays within a special subset of states
of the template, and an arbitrarily large crowd that stays within another subset. More
precisely (but still a bit informally) the question is the following. Is there a template A

with two distinguished states q1, q2 and all processes initially in q1, such that some reachable
configuration has one process in q2, and no reachable configuration has more than one process
on q2?

Broadcast communication and communication through global store with locking can
both easily produce a leader. In the case of broadcast communication, the template with
transitions q1

a!!−−→ q2 and q1
a??−−−→ q3 already does the trick. The process broadcasting the

message moves to q2 and, since all other processes must listen, they all move to q3. In the
case of global store, we choose a template in which all processes initially compete for the
lock; the process that acquires it changes the value of the store to “we have a leader” and
moves to q2.

Rendez-vous communication and communication through a global store without a lock
cannot produce a leader. Intuitively, the reason is that when process makes a move, arbitrarily
many processes follow suit, making exactly the same move immediately after. We will come
back to this point later.

3 The Power of Crowds

We can sort the four communication mechanism of the previous section in order of decreasing
power according to our two criteria:

broadcast communication (everybody must listen, leader can be produced)
global store with locking (somebody must listen, leader can be produced)
rendez-vous communication (somebody must listen, no leader can be produced)
global store without locking (nobody must listen, no leader can be produced)

In this section we show that this informal classification is confirmed by the mathematical
results: the complexity of the coverability problem decreases as we move down through the
list.

Before describing the results, it is important to observe that the complexity of the
coverability problem is related to the crowd’s computational power seen as a nondeterministic

J. Esparza 5

machine. If coverability is hard for a complexity class C, then any problem in C can be
reduced to coverability. Therefore, given an instance of the problem, we can construct a
template A such that a large enough crowd will solve it: a process will reach the state qu,
which now instead of an unsafe state becomes the state at which the process can post the
answer “yes”. So—informally but suggestively—studying the complexity of the coverability
problem amounts to studying the following question:

What is the computational power of a (finite but arbitrarily large) an-
onymous crowd?

In particular, a result proving high complexity of the coverability problem means bad
news for crowd verifiers, but good news for crowd designers, and vice versa.

We are now ready to analyze the complexity of the four communication mechanisms
above.

3.1 Communication by broadcast
Despite the power of broadcast communication, it was proved in [8] by Finkel, Mayr, and
the author that the coverability problem is decidable. So we have:

Anonymous crowds are not Turing powerful, or, conversely, identities are
necessary in order to achieve full Turing power.

The proof is a straightforward application of a more general result of [1] on well-structured
systems (see also [2, 10]). Let us sketch it. The configuration of a crowd with template
A is completely determined by the number of processes at each state of A. So, given a
numbering {q1, . . . , qn} of the states of A, a configuration can be formalized as a vector of Nn.
Assume without loss of generality that qu = q1. We wish to know whether, for some number
N , a crowd of N individuals can reach a configuration (k1, . . . , kn) such that k1 ≥ 1, or,
equivalently, a configuration (k1, . . . , kn) ≥ (1, 0, . . . , 0), where ≥ is defined componentwise.
The set of configurations (k1, . . . , kn) ≥ (1, 0, . . . , 0) is upward closed (with respect to ≤),
i.e., if a configuration c belongs to the set, then so does any other configuration of the form
c + c′, where c′ ∈ Nn and + is defined componentwise.

Given an upward-closed set C of configurations, it is easy to show that its set of immediate
predecessors (i.e., the set of configurations from which some configuration of C can be reached
in one step) is also upward-closed. Indeed, assume we can reach a configuration c ∈ C from
some configuration d by means of the broadcast of a value v. Now, consider a configuration
d + d′. If we perform the same broadcast, then the processes of d move to the same states as
before, yielding again the configuration c, and the processes of d′ move somewhere, yielding
a configuration c′. The result is a configuration c + c′, where addition of configurations
is defined componentwise. Since c ∈ C and C is upward-closed, we have c + c′ ∈ C, and
we are done. So letting C0 be the set of configurations (k1, . . . , kn) ≥ (1, 0, . . . , 0), the
sequence C0, C1, C2, . . ., where Ci+1 is the set of immediate predecessors of Ci, is a sequence
of upward-closed sets.

We now exploit the well-known fact that the order ≥ is a well-quasi-order: every infinite
sequence v1, v2, . . . of elements of Nn contains an infinite ordered subsequence vi1 ≤ vi2 ≤
A first easy consequence of the theory of well-quasi-orders is that any upward-closed set
of configurations has finitely many minimal elements with respect to ≤. So, since an
upward-closed set is completely determined by its minimal elements, we can use the minimal
elements as a finite representation of the set. This allows to explicitly construct the sequence

STACS’14

6 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

C0, C1, C2 A second easy consequence is that this sequence contains two indices i < j

such that Ci ⊇ Cj . So we can stop the construction at Cj , because subsequent steps will
not discover any new configuration. The set

⋃j
k=0 Ck contains all configurations from which

a configuration of C0 can be reached. We can then inspect this set, and check whether is
contains one of the possible initial configurations of a crowd.

So crowds communicating by broadcasts are not Turing powerful. But, how powerful are
they? The answer, due to Schmitz and Schnoebelen [21], is very surprising:

The complexity time of the coverability problem for anonymous crowds
communicating by broadcast grows faster than any primitive recursive
function.

More precisely, the result is that coverability of broadcast protocols is Fω-hard, where Fω

is a class of problems of “Ackermannian complexity” (i.e., whose complexity is bounded by
an Ackermann-like function). In particular, Fω is closed under primitive recursive reductions.
We refer to [21] for a more precise description. In any case, this is one of the most natural
problem with provably non-primitive recursive complexity.

As a summary, we have that crowds communicating by broadcast may not be Turing
powerful, but keeping them under control may quickly exceed any reasonable amount of
computational resources.

3.2 Communication by global store with locking.
Global variables with locking is the natural communication mechanism for multithreaded
programs. The coverability problem for this kind of communication reduces to the coverability
problem of Petri nets, and vice versa, a fact that was already essentially observed by German
and Sistla [13].

The coverability problem for Petri nets was proved to be EXPSPACE-complete already
in the 70s, which yields the following result:

The coverability problem for a crowd communicating by global variables
with locking is EXPSPACE-complete.

EXPSPACE-hardness was proved by Lipton [16] (see also [7]) who showed that a counter
able to count up to 22n can be simulated by a Petri net (or an automaton) of size n2.
Membership in EXPSPACE was proved by Rackoff [19]. He shows that, if the state qu is
coverable, then it is coverable by a sequence of moves of double exponential length in the
size of the template. This yields immediately a NEXPSPACE algorithm, after which we use
NEXPSPACE=EXPSPACE.

Rackoff’s nondeterministic algorithm is not useful in practice. A more practical algorithm
was suggested (some years before Rackoff’s paper) by Karp and Miller [15]. The algorithm
uses the notion of generalized configuration, which for a template with n states is a vector of
dimension n whose elements are either natural numbers of the symbol ω, which intuitively
stands for “arbitrarily many processes”, or “as many process as necessary”. The algorithm
starts at a generalized configuration describing the initial situation: for example, we may have
exactly one process in state q1, and arbitrarily many in state q2, modelled by (1, ω, 0, . . . , 0).
Given a generalized configuration, we construct its successors (that is, the algorithm explores
new configurations in the forward direction, contrary to the algorithm for broadcasts, which
explores backwards). If the template, say, has transitions q1

v!−−→ q3 and q2
v?−−→ q4, then

J. Esparza 7

a rendez-vous can take place, and we can move from (1, ω, 0, . . . , 0) to (0, ω, 1, 1, 0, . . . , 0).
The important point is that this construction can be “accelerated”. For example, if the
template has transitions q1

v!−−→ q1 and q2
v?−−→ q4, then we can move from (1, ω, 0, . . . , 0)

to (1, ω, 0, 1, 0, . . . , 0) (state q2 loses a process, but we apply ω − 1 = ω + 1 = ω) and,
since (1, ω, 0, 1, 0, . . . , 0) ≥ (1, ω, 0, . . . , 0), the rendez-vous can take place again, leading to
(1, ω, 0, 2, 0, . . . , 0), (1, ω, 0, 3, 0, . . . , 0), etc. The algorithm “jumps to the limit”, and moves
directly from (1, ω, 0, . . . , 0) to (1, ω, 0, ω, 0, . . . , 0). Termination of the algorithm follows once
more from a very simple application of the theory of well-quasi-orders.

Karp and Miller’s algorithm has been recently improved in a number of ways: efficient
data structures, construction of a minimal set of generalized configurations, etc. (see e.g.
[18, 22, 12, 20]). However, these improvements do not change its worst-case complexity,
which is surprisingly worse than that of Rackoff’s algorithm: Karp and Miller’s algorithm
can take non-primitive recursive time and space. Recently, this puzzling mismatch has lead
to two beautiful results. First, Bozzelli and Ganty have shown that the backwards algorithm
described above for broadcast systems no longer has non-primitive recursive complexity when
applied to the rendez-vous case. Instead, it runs in double exponential time, much closer
to the lower bound [3]. Geeraerts, Raskin, and Van Begin have proposed another simple
algorithm based on forward exploration [11]. It applies a so-called “Enlarge, Expand, and
Check” algorithmic principle, which constructs a sequence of under- and overapproximations
of the set of reachable generalized configurations.Very recently, Majumdar and Wang have
shown that this algorithm also runs in double exponential time [17].

Early work by Delzanno, Raskin and Van Begin [5] and more recent work by Kaiser,
Kröning and Wahl [14] (see also [6]) has applied these coverability algorithms and other
techniques for the construction of over- and underapproximations, to verify safety of a large
number of multithreaded programs.

3.3 Communication by rendez-vous
Rendez-vous communication is a natural communication model for systems whose processes
“move” in some medium where they occasionally meet and interact. Natural computing
systems in which computing entities are molecules moving in a “soup” are an example.

When studying the complexity of this problem there is a subtle point. As we have seen in
Section 2, a crowd communicating by rendez-vous communication cannot produce a leader.
However, one can set up the system so that the initial configuration already contains one.
For instance, we can choose an initial configuration with exactly one process in state q1, and
arbitrarily many processes in state q2. So we have to examine two cases.

Crowds with an initial leader. In this case we can easily use rendez-vous to simulate global
store with locking. Intuitively, the template is designed so that the leader simulates the
store, and the rest of the crowd only communicates with the leader. Conversely, as we saw
in Section 2, rendez-vous communication can be simulated by a global store with locking,
and so we obtain:

The coverability problem for crowds communicating by rendez-vous and
having an initial leader is EXPSPACE-complete.

Leaderless crowds. This is the case in which all processes are initially in the same state.
In other words, if we assume that this state is q1, then the initial generalized configuration
of the system is (ω, 0, . . . , 0). We can again solve the coverability problem by means of the

STACS’14

8 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

Karp-Miller algorithm. However, it is easy to see that in this special case the algorithm can
only generate new configurations whose components are either ω or 0. Even more, a successor
(k′

1, . . . , k′
n) of a generalized configuration (k1, . . . , kn) necessarily satisfies ki = ω ⇒ k′

i = ω

for every 1 ≤ i ≤ n. Therefore, a sequence of pairwise distinct generalized configurations has
length at most n. We can then easily prove that the coverability problem is NP-complete,
and so much simpler than the case of a leader.

3.4 Communication by global store without locking
Locking mechanisms are easy to implement in a multithreading environment where all
threads are executed on a processor, or on a number of processors physically closed to each
other. They become more problematic for crowdsourcing systems, ad-hoc networks, vehicular
networks or, more generally, any sort of decentralized system where processes may enter or
leave the system at any time. The danger of this setting is obvious: a process may acquire the
lock, and leave the system without returning it, blocking the complete crowd. Additionally,
the locking mechanism is not as easy to implement as in a multithreading environment.

The case of communication by global variables without locking has been recently investig-
ated in [9]. The main finding is that the absence of locking drastically simplifies the task of
controlling the crowd (good news for verifiers), or, equivalently, decreases the computational
power (bad news for designers):

The coverability problem for a crowd communicating by global variables
without locking is NP-complete.

Moreover, in this case the result does not depend on the initial existence of a leader.
Intuitively, in the rendez-vous case the template can be designed so that a process communic-
ates a value to, say, exactly three other processes, which allows the crowd to perform some
arithmetic. In particular, the crowd can store an integer n by putting exactly n processes in
a given state of the template. This is not possible in a global store without a lock, because
the process has no control on how many processes may read a value.

The NP-completeness result is proved with the help of two lemmas. The first lemma
shows that the crowd can be simulated by a system composed of a finite number of simulators,
one for each value of V . The simulator for the value v is an automaton Av that can be easily
constructed from the template A and the value v. So we can construct a finite crowd that
simulates the behavior of any crowd with template A, of any size. This result already shows
that the coverability problem is in PSPACE, but not yet that it belongs to NP. Membership
in NP is proved with the help of a second lemma. Loosely speaking, the lemma states that,
if the unsafe state is reachable, then it can be reached by means of computations of the
simulators that can be guessed in polynomial time.

4 Some Results on Crowds of Infinite-State Processes

So far we have assumed that processes are finite state (i.e., the template is a finite automaton).
If we totally relax this condition (for instance, if we allow processes to be Turing machines),
then the coverability problem becomes of course undecidable: a crowd of one suffices to
achieve Turing power! But we can consider milder extensions of the computational power of
a process.

For broadcast communication and global variables with locking, even very modest ex-
tensions already make the crowd Turing powerful. In particular, this is already the case if

J. Esparza 9

processes can count, i.e., if the template is a finite automaton whose transitions may act on
a counter, increasing or decreasing it by one, or testing it for zero. Two processes suffices to
simulate a two-counter machine, which are known to be Turing powerful. A crowd can select
a leader, who can then select a second leader, and these two leaders can then communicate
with each other, ignoring the messages from the rest of the crowd. The same applies to
rendez-vous if the crowd initially contains a leader.

For global variables without locking, the situation is more interesting. In [9] two extensions
are considered. First, the paper studies the case in which processes are pushdown automata
(since stack can be used as a counter, this includes the counter case). The coverability
problems remains NP-complete for “leaderless crowds” and becomes PSPACE-complete for
crowds with one leader.

The second extension considers the case in which processes are Turing machines that
can only run for polynomial time. This models the situation in which each process has no
restrictions in computational power, but can only contribute a polynomial amount of work
to the crowd. Since the crowd is arbitrarily large, the total amount of work is not bounded,
and so we could hope to be able to show problems far beyond NP. However, the coverability
problem remains NP-complete. Interpreting the result, we conclude that without a locking
mechanism the crowd cannot distribute an arbitrary exponential computation among its
members in such a way that each individual only does a polynomial amount of work.

Acknowledgements. Very special thanks to Pierre Ganty, Jan Křetínský, Michael Lutten-
berger, and Rupak Majumdar for numerous comments on former versions of this note. In
particular, Rupak suggested the final structure.

References
1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidab-

ility theorems for infinite-state systems. In LICS, pages 313–321. IEEE Computer Society,
1996.

2 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic
analysis of programs with well quasi-ordered domains. Inf. Comput., 160(1–2):109–127,
2000.

3 Laura Bozzelli and Pierre Ganty. Complexity analysis of the backward coverability al-
gorithm for vass. In Giorgio Delzanno and Igor Potapov, editors, RP, volume 6945 of
Lecture Notes in Computer Science, pages 96–109. Springer, 2011.

4 Pedro R. D’Argenio and Hernán C. Melgratti, editors. CONCUR 2013 – Concurrency
Theory – 24th International Conference, CONCUR 2013, Buenos Aires, Argentina, August
27-30, 2013. Proceedings, volume 8052 of Lecture Notes in Computer Science. Springer,
2013.

5 Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. Towards the automated
verification of multithreaded java programs. In Joost-Pieter Katoen and Perdita Stevens, ed-
itors, TACAS, volume 2280 of Lecture Notes in Computer Science, pages 173–187. Springer,
2002.

6 Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, Michael Tautschnig, and
Thomas Wahl. Counterexample-guided abstraction refinement for symmetric concurrent
programs. Formal Methods in System Design, 41(1):25–44, 2012.

7 Javier Esparza. Decidability and complexity of petri net problems - an introduction. In
Wolfgang Reisig and Grzegorz Rozenberg, editors, Petri Nets, volume 1491 of Lecture Notes
in Computer Science, pages 374–428. Springer, 1996.

STACS’14

10 Keeping a Crowd Safe: On the Complexity of Parameterized Verification

8 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In Logic in Computer Science, 1999. Proceedings. 14th Symposium on, pages 352–359. IEEE,
1999.

9 Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In Natasha Sharygina and Helmut Veith, editors, CAV,
volume 8044 of Lecture Notes in Computer Science, pages 124–140. Springer, 2013.

10 Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001.

11 Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Expand, enlarge, and
check: New algorithms for the coverability problem of wsts. In Kamal Lodaya and Meena
Mahajan, editors, FSTTCS, volume 3328 of Lecture Notes in Computer Science, pages
287–298. Springer, 2004.

12 Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. On the efficient computa-
tion of the minimal coverability set of petri nets. Int. J. Found. Comput. Sci., 21(2):135–165,
2010.

13 Steven M German and A Prasad Sistla. Reasoning about systems with many processes.
Journal of the ACM (JACM), 39(3):675–735, 1992.

14 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Dynamic cutoff detection in para-
meterized concurrent programs. In Tayssir Touili, Byron Cook, and Paul Jackson, editors,
CAV, volume 6174 of Lecture Notes in Computer Science, pages 645–659. Springer, 2010.

15 Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput. Syst.
Sci., 3(2):147–195, 1969.

16 R.J. Lipton. The reachability problem requires exponential space. Technical Report 62,
Yale University, 1976. Available online at http://www.cs.yale.edu/publications/
techreports/tr63.pdf.

17 Rupak Majumdar and Zilong Wang. Expand, enlarge, and check for branching vector
addition systems. In D’Argenio and Melgratti [4], pages 152–166.

18 Artturi Piipponen and Antti Valmari. Constructing minimal coverability sets. In
Parosh Aziz Abdulla and Igor Potapov, editors, RP, volume 8169 of Lecture Notes in
Computer Science, pages 183–195. Springer, 2013.

19 Charles Rackoff. The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci., 6:223–231, 1978.

20 Pierre-Alain Reynier and Frédéric Servais. Minimal coverability set for petri nets: Karp
and miller algorithm with pruning. In Lars Michael Kristensen and Laure Petrucci, editors,
Petri Nets, volume 6709 of Lecture Notes in Computer Science, pages 69–88. Springer, 2011.

21 Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In
D’Argenio and Melgratti [4], pages 5–24.

22 Antti Valmari and Henri Hansen. Old and new algorithms for minimal coverability sets.
In Serge Haddad and Lucia Pomello, editors, Petri Nets, volume 7347 of Lecture Notes in
Computer Science, pages 208–227. Springer, 2012.

http://www.cs.yale.edu/publications/techreports/tr63.pdf
http://www.cs.yale.edu/publications/techreports/tr63.pdf

Semi-algebraic geometry in computational game
theory – a consumer’s perspective∗

Peter Bro Miltersen

Aarhus University, Aarhus, Denmark
pbmiltersen@cs.au.dk

Abstract
We survey recent applications of real algebraic and semi-algebraic geometry in (computational)
game theory.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases Real Algebraic Geometry, Computational Game Theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.11

Category Invited Talk

1 Introduction to the talk

Real algebraic geometry and semi-algebraic geometry are well-established tools in game
theory (e.g., [2, 11, 9]). In this talk, we survey recent work applying these tools to (mostly)
computational settings of game theory. Examples include:

A bound on the discount factor for which the value of a discounted stochastic game is
guaranteed to well-approximate the value of the corresponding undiscounted stochastic
game [6, 7, 5, 10]. The bound is in terms of the combinatorial parameters of the game
and is relatively tight. This refines work of Milman [9].
An analysis of a recursive bisection algorithm for solving stochastic games [6, 7].
A tight upper bound on the worst case complexity of the strategy iteration algorithm for
concurrent reachability games [6, 7, 5].
An existence proof of “monomial” near-optimal strategies for concurrent reachability
games [4].
Approximating the value of a concurrent reachability game can be done in the polynomial
time hierachy [8, 3].
Computational (polynomial-time) equivalence between approximating a Nash equilibrium
and approximating a trembling hand equilibrium of a game in strategic form (joint work
with Etessami, Hansen, and Sørensen, in preparation).

The applications rely on generic tools and off-the-shelf theorems of real algebraic and semi-
algebric geometry [1]. The talk is therefore given from the perspective of a consumer of
real and semi-algebraic geometry and should be accessible to an audience with little or no
knowledge of this topic (which is a level of knowledge similar to that of the speaker). We do
briefly discuss what kind of improvements of the results might hopefully be obtained in the
future by looking under the hood into the beautiful machinery of semi-algebraic geometry.

∗ The author acknowledges support from The Danish National Research Foundation and The National
Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory
of Interactive Computation and from the Center for research in the Foundations of Electronic Markets
(CFEM), supported by the Danish Strategic Research Council.

© Peter Bro Miltersen;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 11–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12 Semi-algebraic geometry in computational game theory

References
1 S. Basu, R. Pollack, and M.F. Roy. Algorithms in Real Algebraic Geometry. Algorithms

and Computation in Mathematics. Springer, 2006.
2 Truman Bewley and Elon Kohlberg. The asymptotic theory of stochastic games. Mathem-

atics of Operations Research, 1(3):197–208, 1976.
3 Søren Kristoffer Stiil Frederiksen and Peter Bro Miltersen. Approximating the value of a

concurrent reachability game in the polynomial time hierarchy. In Leizhen Cai, Siu-Wing
Cheng, and Tak Wah Lam, editors, Algorithms and Computation – 24th International
Symposium, ISAAC 2013, Hong Kong, China, December 16–18, 2013, Proceedings, volume
8283 of Lecture Notes in Computer Science, pages 457–467. Springer, 2013.

4 Søren Kristoffer Stiil Frederiksen and Peter Bro Miltersen. Monomial strategies for con-
current reachability games and other stochastic games. In Parosh Aziz Abdulla and Igor
Potapov, editors, Reachability Problems – 7th International Workshop, RP 2013, Uppsala,
Sweden, September 24–26, 2013 Proceedings, volume 8169 of Lecture Notes in Computer
Science, pages 122–134. Springer, 2013.

5 Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. The complexity
of solving reachability games using value and strategy iteration. In Alexander S. Kulikov
and Nikolay K. Vereshchagin, editors, Computer Science – Theory and Applications – 6th
International Computer Science Symposium in Russia, CSR 2011, St. Petersburg, Russia,
June 14–18, 2011. Proceedings, volume 6651 of Lecture Notes in Computer Science, pages
77–90. Springer, 2011.

6 Kristoffer Arnsfelt Hansen, Michal Koucký, Niels Lauritzen, Peter Bro Miltersen, and
Elias P. Tsigaridas. Exact algorithms for solving stochastic games: extended abstract.
In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8 June 2011, pages 205–214.
ACM, 2011.

7 Kristoffer Arnsfelt Hansen, Michal Koucký, Niels Lauritzen, Peter Bro Miltersen, and
Elias P. Tsigaridas. Exact algorithms for solving stochastic games. CoRR, abs/1202.3898,
2012.

8 Kristoffer Arnsfelt Hansen, Michal Koucky, and Peter Bro Miltersen. Winning concurrent
reachability games requires doubly exponential patience. In 24th Annual IEEE Symposium
on Logic in Computer Science (LICS’09), pages 332–341. IEEE, 2009.

9 Emanuel Milman. The semi-algebraic theory of stochastic games. Mathematics of Opera-
tions Research, 27(2):401–418, 2002.

10 Peter Bro Miltersen. Discounted stochastic games poorly approximate undiscouted ones.
Available at http://www.daimi.au.dk/~bromille/Papers/note2.pdf, 2011.

11 Abraham Neyman. Real algebraic tools in stochastic games. In Abraham Neyman and
Sylvain Sorin, editors, Stochastic Games and Applications, volume 570 of NATO Science
Series C. Springer, 2003.

http://www.daimi.au.dk/~bromille/Papers/note2.pdf

A glimpse on constant delay enumeration
Luc Segoufin

INRIA and ENS Cachan

Abstract
We survey some of the recent results about enumerating the answers to queries over a database.
We focus on the case where the enumeration is performed with a constant delay between any two
consecutive solutions, after a linear time preprocessing.

This cannot be always achieved. It requires restricting either the class of queries or the class
of databases. We describe here several scenarios when this is possible.

1998 ACM Subject Classification F.4 Mathematical logic and formal languages

Keywords and phrases Enumeration, constant delay, logic

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.13

Category Invited Talk

1 Introduction

The evaluation of queries is a central problem in database management systems. Given a
query q and a database D the evaluation of q over D consists in computing the set q(D) of all
answers to q on D. The complexity of this problem has been widely studied. However most
of the complexity bounds are extrapolated from the boolean case (aka the model checking
problem, where the answer to the query is either a “yes” and a “no”) and expressed as a
function of the sizes of q and D. In this case we know that the model checking problem for
first-order queries is PSpace-complete, for conjunctive queries it is NP-complete and that
for acyclic conjunctive queries it can be done in polynomial time. For non boolean queries
it may be not satisfactory enough to express complexity results just in terms of the sizes
of D and q. A simple observation shows that the set q(D) may be huge, even larger than
the database itself, as it can have a number of elements of the form ||D||l, where ||D|| is the
size of the database and l the arity of the query. The fact that the solution set q(D) may
be of size exponential in the query is intuitively not sufficient to make the problem hard,
and alternative complexity measures had to be found for query answering. For instance one
could consider output-sensitive complexity measures expressed as a function of the sizes of q,
D but also q(D). In this direction, one way to define tractability is to assume that tuples of
the query result can be generated one by one with some regularity, for example by ensuring
a fixed delay between two consecutive outputs once a necessary precomputation has been
done to construct a suitable index structure.

This approach, that considers query answering as an enumeration problem, has deserved
some attention over the last few years. In this vein, the best that one can hope for is constant
delay, i.e., the delay depends only on the size of q (but not on the size of D). A number
of query evaluation problems have been shown to admit constant delay algorithms, usually
preceded by a preprocessing phase that is linear in the size of the database. We survey some
of these results in this paper.

This imposes drastic constraints. In particular, the first answer is output after a time
linear in the size of the database and once the enumeration starts a new answer is being

© Luc Segoufin;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 13–27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14 A glimpse on constant delay enumeration

output regularly at a speed independent from the size of the database. Altogether, the set
q(D) is entirely computed in time f(q)(||D||+ |q(D)|) for some function f depending only on
q and not on D. In particular, for boolean queries, the model checking problem can be solved
in time linear in the size of the database. However, as shown in [4], the fact that evaluation
of boolean queries is easy does not guarantee the existence of such efficient enumeration
algorithms in general: under some reasonable complexity assumption, there is no constant
delay algorithm with linear preprocessing enumerating the answers of acyclic conjunctive
queries, although it is well-known that the model-checking of boolean acyclic queries can be
done in linear time [45].

We stress that our study is theoretical. If most of the algorithms we will mention here are
linear in the size of the database, the multiplicative factors are often very big, making any
practical implementation difficult. However, we believe that the index structures designed
for making these algorithms work are interesting and, with extra assumptions, could possibly
be turned into something practical.

The first part of the paper, Section 3, is devoted to conjunctive queries. We will see how
acyclicity plays here a crucial role.

We will then move on to first-order queries in Section 4. In this case we need to restrict
the class of databases. We will see that constant delay algorithms can be obtained over
classes of databases with bounded degree, bounded treewidth, bounded expansion and low
degree.

In Section 5 we will see that, in the bounded treewidth case, one can even enumerate
monadic second-order queries with constant delay.

There are many related problems. Typically one could imagine computing the top-` most
relevant answers relative to some ranking function or to provide a sampling of q(D) relative
to some distribution. One could also imagine computing only the number of solutions |q(D)|
or providing an efficient test for whether a given tuple belongs to q(D) or not. It is not clear
a priori how these problems are related to constant delay enumeration. However, it turns out
that in the scenarios where constant delay enumeration can be achieved, one can often also
count the number of solutions in time linear in the size of the database and, after linear time
preprocessing on the database, one can test in constant time whether a given tuple is part
of the answers set. We will not survey those results here, the interested reader is referred
to [41].

This survey is by no means exhaustive. It is only intended to survey the major theoretical
results concerning database querying and enumeration. Hopefully it will convince the reader
that this is an important subject for research that still contains many interesting and
challenging open problems.

2 Preliminaries

2.1 Database as finite relational structures, queries
In this paper a database is a finite relational structure. All interesting examples can be found
over graphs or colored graphs. Hence the reader can safely replace relational structure with
graph while reading this paper.

A relational signature is a tuple σ = (R1, . . . , Rl), each Ri being a relational symbol of
arity ri. A relational structure over σ is a tuple D =

(
D,RD1 , . . . , R

D
l

)
, where D is the domain

of D and RDi is a subset of Dri . We define the size of D as ||D|| = |σ|+ |D|+
∑
Ri
|RDi |ri.

It corresponds to the size of a reasonable encoding of D. The number of elements in the
domain of D is denoted by |D|.

L. Segoufin 15

A query is a computable function associating to a database D a relation over the domain
of D. In this paper, a query takes as input a database of a given signature σ and returns a
relation of a fixed arity, the arity of the query. A query is a sentence if its arity is 0. The
query is then either true or false on D and defines a property of D. A query is unary if its
arity is 1. If q is a query and ā is in the image of q on D, then we write D |= q(ā). Finally
we set q(D) = {ā | D |= q(ā)}. Note that the size of q(D) may be exponential in the arity of
q. A query language is a class of queries. Typically it is defined as a logical formalism such
as CQ (for conjunctive queries), FO (for first-order queries), MSO (for monadic second-order
queries) and so on. As usual, |q| denotes the size of q.

Given a query language L, the model checking problem for L is the computational problem
of given a sentence q ∈ L and a database D, to test whether D |= q or not. The database D
is often restricted to a class C of finite structures. In this case we speak of the model checking
problem for L over C.

2.2 Model of computation
We use Random Access Machines (RAM) with addition and uniform cost measure as a model
of computation, cf. [1]. Our algorithms will take as input a query q of size k and a database
D of size n. We then say that an algorithm runs in linear time (respectively, quasi-linear or
constant time) if it outputs the solution within f(k)n steps (respectively, f(k)n logn steps
or f(k) steps), for some function f

Given an n× n matrix, and two numbers i, j ≤ n the RAM model returns the content to
the entry (i, j) of the matrix in constant time. Therefore when given the adjacency matrix
of a graph it can test in constant time where two given nodes are adjacent or not. However
our databases are encoded by the list of their tuples and we therefore do not have access to
the adjacency matrix. Testing whether a tuple belongs to a relation may therefore require
more than a constant time.

In the sequel we assume that the input structure comes with a linear order on the domain.
If not, we use the one induced by the encoding of the structure as an input to the RAM.
Whenever we iterate through all nodes of the domain, the iteration is with respect to the
initial linear order.

An important observation is that the RAM model can sort m elements of size O(logm)
in time O(m logm) [28]. In particular, we can sort lexicographically the tuples of a relation
in linear time. As a consequence, a simple merge-sort algorithm we can compute the relation
{x̄ȳ | R(x̄ȳ) ∧ S(x̄)} in time linear in the sizes of R and S.

2.3 Parametrized complexity
The database D and the query q play different roles as input of our problems. It is often
assumed that |D| is large while |q| is small. Hence it is useful to distinguish them in the
input of the query answering problem. Parametrized complexity is a suitable framework
for analyzing such situations. We only provide here the basics of parametrized complexity
needed for understanding this paper. The interested reader is referred to the monograph [24].

In parametrized complexity, a problem is an input together with a parameter, as a number
computable from the input, and a question. A typical example is the parametrized model
checking problem for L where the input is a database D and a sentence q ∈ L, the parameter
is |q| and the problem asks whether D |= q.

A parametrized problem is Fixed Parameter Tractable, i.e. can be solved in FPT, if, on
input of size n and parameter k, it can be solved in time f(k)nc for some suitable computable

STACS’14

16 A glimpse on constant delay enumeration

function f and constant c. The idea behind this definition is that for many scenarios, like
query answering in databases, it is preferable to have an algorithm working in 2kn2 rather
than nk.

In parametrized complexity there is also a suitable notion of reduction, called FPT-
reduction. FPT is closed under FPT-reductions and there are some hard classes of para-
metrized problems, closed under FPT-reductions, containing problems with no known FPT
algorithms and that are believed to be different from FPT. In parametrized complexity,
completeness relative to a complexity class is always understood to be under FPT-reductions.

An important hard class is denoted W[1]. W[1] plays in parametrized complexity the
role of NP in classical complexity. A typical problem which is complete for W[1] is the
parametrized model checking problem for CQ [39]. Another important hard class is denoted
AW[∗]. It plays in parametrized complexity the role of PSpace in classical complexity. A
typical problem which is complete for AW[∗] is the parametrized model checking problem for
FO [39].

2.4 The enumeration class CD◦Lin
Let L be a query language and C be a class of databases. We say that the enumeration
problem for L over C can be solved with constant delay after linear preprocessing (is in
CD◦Lin), if it can be solved by a RAM algorithm which, on input q ∈ L and D ∈ C, can be
decomposed into two phases:

a preprocessing phase that is performed in linear time, and
an enumeration phase that outputs q(D) with no repetition and a delay depending only
on q between any two consecutive outputs. The enumeration phase has full access to the
output of the preprocessing phase and can use extra memory whose size depends only
on q.1

The definition of CD◦Lin requires a preprocessing time linear in ||D || and a delay not
depending on D. There are hidden multiplicative factors that are function on the size of the
query. These factors may be huge. We will refer to them in the sequel as the multiplicative
factors.

Before we proceed with the technical presentation of the results, it is worth spending
some time with examples.

I Example 1. Consider a database schema containing a binary relational symbol R and the
query q(x, y) := ¬R(x, y). On input D, the following simple algorithm enumerates q(D):
Go through all pairs (a, b); test if it is a fact of RD; if so skip this pair;
otherwise output it.
However, a simple complexity analysis shows that the delay between any two outputs is
not constant. There are two reasons for this. First, arbitrarily long sequences of pairs can
be skipped. Second, it is not obvious how to test whether (a, b) ∈ RD in constant time
(i.e. without going through the whole relation RD). In order to enumerate this query with
constant delay it is necessary to perform a preprocessing. We first decide on an arbitrary

1 In the literature one can sometimes find a more liberal definition only requiring constant time delay with
no constraints on the memory. Of course this implies that between two consecutive outputs the memory
used is constant, but the global memory affected could be linear in the total number of outputs. In our
more constrained setting the enumeration algorithm is essentially a finite state automaton running over
the index structure produced during the precomputation phase. It turns out that most of the existing
enumeration algorithms do satisfy the extra constraint on memory.

L. Segoufin 17

linear order on the domain of D. We then order all RD according to the lexicographical
order. Recall that with the RAM model this can be done in linear time. We then compute
for each tuple ū of RD the tuples v̄ = f(ū) and v̄′ = g(ū) such that v̄ is the smallest (relative
to the lexicographical order) element w̄ 6∈ RD such that all tuples between ū and w̄ are in
RD and v̄′ is the smallest (relative to the lexicographical order) element w̄ ∈ RD bigger
than v̄. These functions can be computed in linear time by a simple pass on the ordered list
of RD from its last element to the first one. This concludes the preprocessing phase. The
enumeration phase is now simple. We maintain two pairs of elements of D: one is initialized
with the smallest pair according to the lexicographical order, the other one with the smallest
pair in RD. The second pair will always be pointing to an element of RD. Assuming the
current pairs are 〈ū, v̄〉, we then do the following until ū is maximal. If ū = v̄ then we move
to 〈f(v̄), g(v̄)〉. Note that f(v̄) 6= g(v̄). If ū 6= v̄ we output ū and replace it by its successor
in the lexicographical order without changing v̄. This algorithm is clearly constant delay as
an output is performed at least every other step. All output tuples are clearly not in RD
and the reader can check that all skipped tuples are in RD.

I Example 2. Same schema but the query is now computing the pairs of nodes at distance 2:
q(x, y) := ∃zR(x, z)∧R(z, y). We will see in Section 3 that it is likely that this query cannot
be enumerated with constant delay. However, if we assume that R has degree bounded by d,
then for any node a of the graph, at most d2 nodes v are at distance 2 from u. Moreover,
it is easy to see that we can compute in linear time the function f(u) associating to u the
list of its nodes at distance 1. An extra linear pass based on the function f computes the
function g(u) associating to u the list of its nodes at distance 2. From there the enumeration
algorithm with constant delay is trivial.

I Remark. Notice that if the enumeration problem for L over C is in CD◦Lin, then all
answers can be output in time O(||D||+ |q(D)|) and the first output is computed in time linear
in ||D||. In particular the model checking problem for L over C is in FPT. Hence if the model
checking problem for L over C is known to be W[1]-hard, then the enumeration problem for
L over C cannot be in CD◦Lin, unless W[1] =FPT.

Notice that if the arity of q is less or equal to 1, then |q(D)| ≤ |D| ≤ ||D||. It is then
plausible that the whole set of answers can be computed in time linear in ||D||. If this is the
case then we have a simple constant delay algorithm that precomputes all answers during the
precomputation phase and then scans the set of answers and outputs them one by one during
the enumeration phase. Hence enumeration becomes relevant when the arity of q is at least 2.
In this case q(D) can be quadratic in ||D|| and hence can certainly not be computed within
the linear time constraint of the precomputation phase. The index structure built during the
preprocessing phase is then a non trivial object. One can also view this index structure as a
compact (of linear size) representation of the set q(D) (that can be of polynomial size) and
the enumeration algorithm as an output streaming decompression algorithm.
I Remark. One difficulty for obtaining constant delay enumeration algorithms is that the
class CD◦Lin is not known to be closed under boolean operations. Closure under disjunction
is difficult because of the requirement that each solution must be output only once. There are
two particular cases when closure under disjunction can be obtained. The first one is trivial:
It assumes that we have CD◦Lin algorithms for q and q′ over a class C of databases and
that, on input D ∈ C, both algorithms output the answers relative to the same linear order
on all tuples (for instance the lexicographical order). In this case a simple argument that
resembles the problem of merging two sorted lists gives a CD◦Lin algorithm for q ∨ q′ over C.
The second case is more subtle. Instead of assuming a linear order on the output tuples, it

STACS’14

18 A glimpse on constant delay enumeration

assumes that after preprocessing in time linear in ||D||, given a tuple ā, one can test whether
D |= q(ā) in constant time. Then there is a CD◦Lin algorithm for q ∨ q′ over C [42].

3 Restricting the queries

In this section we consider the evaluation of simple queries over the class of all databases.

3.1 Conjunctive queries
A conjunctive query (CQ) is a query of the form

q(x̄) := ∃y1 · · · yl
∧
i

Ri(z̄i)

where Ri(z̄i) is an atom of q, Ri being a relational symbol and z̄i containing variables from
x̄ or ȳ. A typical example is the distance 2 query of Example 2 in in CQ. Another example
is the query returning all triangles in a graph. The model checking problem for CQ is
W[1]-complete and we therefore restrict our attention to acyclic conjunctive queries (ACQ)
that can be evaluated in time |q| · ||D|| · |q(D)| [45]. We will see that it is very unlikely that
constant delay enumeration can be achieved for ACQ. It is only achieved for a subset of
ACQ called free-connex. We start with the necessary definitions.

A join tree of q ∈ CQ is a tree T whose nodes are atoms of q and such that

(i) each atom of q is the label of exactly one node of T ,
(ii) for each variable x of q, the set of nodes of T in which x occurs is connected.

A conjunctive query q is said to be acyclic if it has a join tree. In graph theoretical terms
this is equivalent to saying that the hypergraph formed by the atoms of q is α-acyclic.

An acyclic conjunctive query q(x̄) is said to be free-connex if the query q(x̄)∧R(x̄) where
R is a new symbol of appropriate arity, is acyclic.2 Note that all boolean acyclic query are
free-connex.

For example the acyclic conjunctive query q(x, y) = ∃u, v S(x, y, u) ∧ T (x, y, v) is free-
connex because the following join tree shows acyclicity of the extended query:

R(x, y)

S(x, y, u) T (x, y, v)

However the distance 2 query q(x, y) = ∃z S(x, z) ∧ S(z, y) is not free-connex as the
query ∃z S(x, z) ∧ S(z, y) ∧R(x, y) is clearly cyclic.

I Theorem 1. [4] The enumeration for free-connex ACQ over the class of all databases is in
CD◦Lin.

We note that the multiplicative factors involved in Theorem [4] are polynomial in the
query size.

The result of Theorem 1 also holds if the queries contain inequalities (ACQ 6=). In this
case atoms with inequalities are not involved when building the (generalized) join trees. In
the presence of inequalities, the multiplicative factors are now exponential in the query size.

It turns out that free-connexity characterizes exactly those acyclic queries that can be
enumerated in constant delay, assuming boolean matrix multiplication cannot be done in

2 This is not the initial definition of free-connex as given in [4]. This presentation is from Brault-Baron [9].

L. Segoufin 19

quadratic time. Boolean matrix multiplication is the problem of given two n× n matrices
with boolean entries M,N to compute their product MN . The best known algorithms so
far (based on the Coppersmith–Winograd algorithm [12]) require more than n2.37 steps.
I Theorem 2. [4] If boolean matrix multiplication cannot be done in quadratic time then
the following are equivalent for q ∈ ACQ:
1. q is free-connex
2. q can be enumerated in CD◦Lin
3. q can be evaluated in time O(||D||+ |q(D)|).
In particular the distance 2 query cannot be enumerated with constant delay after linear
time preprocessing unless boolean matrix multiplication can be done in quadratic time.
I Remark. Theorem 2 is based on the complexity assumption that boolean matrix multiplic-
ation cannot be done in quadratic time. Another hypothesis yielding the same result was
provided by [9]. This hypothesis requires that it is not possible to test the existence of a
triangle in a graph of n vertices in time O(n2) and that for any k testing the presence of a
k-dimensional tetrahedron cannot be tested in linear time (see [9] for precise definitions).

3.2 Signed conjunctive queries
We are now interested in evaluating signed conjunctive queries (SCQ). Those extends the
syntax of conjunctive queries by allowing negated atoms. In other words they are of the form

q(x̄) := ∃ȳ q+(x̄ȳ) ∧ q−(x̄ȳ)

where q+ is a conjunction of positive atoms whiles q− is a conjunction of negated atoms.
When q− is empty we have seen in the previous section that q can be enumerated with

constant delay after a linear preprocessing as soon as q+ is α-acyclic. When q+ is empty it
has been shown in [8, 9] that constant delay enumeration can be achieved if q− is β-acyclic.
β-acyclicity is the hereditary extension of α-acyclicity. It requires that the hypergraph and
all its subhypergraphs are α-acyclic. When neither q+ nor q− are empty then a notion
of signed-acyclicity was introduced in [9]. It yields α-acyclicity and β-acyclicity in the
corresponding limits case. It also allows for tractable enumeration algorithms.
I Theorem 3. [9] The enumeration for signed-acyclic SCQ over the class of all databases can
be done with constant delay after a preprocessing time of the form ||D||(log ||D||)|q|.

The enumeration for signed-acyclic SCQ over the class of all databases can be done with
logarithmic delay after a quasi-linear time preprocessing.

The multiplicative factors are exponential in the size of the query for the constant delay
result but polynomial in the logarithmic delay result. As in the ACQ case, modulo complexity
hypothesis, typically that testing the existence of a triangle cannot be done in O(n2 logn)
time on a graph of size n, the signed-acyclicity hypothesis cannot be avoided [9].

3.3 Guarded First-Order Queries
Guarded first-order formulas (GFO) are defined using the following grammar.

φ ::= R(x̄) | x = y | φ ∧ φ | ¬φ(x) | ∃x̄α(x̄ȳ) ∧ φ(x̄ȳ) | ∀x̄α(x̄ȳ)→ φ(x̄ȳ)

where R is an arbitrary relation symbol from the schema and α(x̄ȳ) is an atom containing
all variables in x̄ȳ. See [27] for more details about guarded logics. It has been shown in [5]
that the model checking for sentences from GFO could be done in linear time. This can be

STACS’14

20 A glimpse on constant delay enumeration

extended to a constant delay algorithm assuming acyclicity of the quantifier-free part of the
query.

Indeed consider a subformula γ of the form ∃x̄α(x̄ȳ) ∧ φ(x̄ȳ) where φ is quantifier free.
It defines a relation Rγ(ȳ) whose size is linear in the size of the relation occurring in α. A
simple argument as the one for R(x̄ȳ)∧S(x̄) explained in Section 2.2 shows that this relation
can be computed in linear time.

Therefore, after a linear preprocessing, any GFO query can be transformed into a
quantifier free one. Turned into DNF the resulting query is a union of SCQ. By a simple
exclusion-inclusion argument the union can be assumed to give disjoint results. Hence it
remains to enumerate each disjunct separately. From Theorem 3 this can be done efficiently
if each disjunct is signed-acyclic.

This suggest the following definition. Given a GFO query q, it’s quantifier-free part is
the quantifier free query constructed from q by pushing negation down to the atoms and
then replacing its maximal subformula γ(ȳ) of the form ∃x̄α(x̄ȳ) ∧ φ(x̄ȳ) by Rγ(ȳ). It’s
normalized quantifier-free part further transforms the quantifier-free part by putting it into
DNF and applying the exclusion-inclusion principle to get disjoint conjunctive formulas.

Let’s denote by signed-acyclic GFO those queries of GFO whose normalized quantifier-
free part are such that each conjunct is signed-acyclic. From the previous argument and
Theorem 3 the following result follows:
I Theorem 4. The enumeration for signed-acyclic GFO over the class of all databases can be
done with logarithmic delay after a quasi-linear preprocessing time.
I Remark. The same result can probably be obtained with a more natural syntactic fragment
of GFO.

4 Restricting the class of structures

In this section we consider first-order queries (FO) and restrict the classes of databases to
sparse structures. All these classes are defined over graphs and are generalized to arbitrary
relational structures via their Gaifman graphs: Given a class C of graphs, the associated
class C’ of databases contains exactly all the databases whose Gaifman graphs are in C.

The Gaifman graph of a relational structure D is defined as follows: the set of vertices is
the domain D of D and there is an edge (a, b) iff there exists a relation Ri and a tuple t ∈ Ri
such that both a and b occur in t. For a graph G we denote by |G| its number of vertices
and by ||G|| its number of edges.

4.1 Bounded degree
A class of graphs has bounded degree if there exists a d such that all nodes of all graphs in
the class have at most d neighbors. It is known that the model checking problem for FO
over structures with bounded degree can be solved in linear time [40].
I Theorem 5. [18, 33] The enumeration for FO over a class of structures with bounded
degree is in CD◦Lin.

The initial proof of [18] is using the fact that structures in a class of graphs of bounded
degree can be encoded using finitely bijective unary functions. Moreover, over such structures,
there exists a quantifier elimination method for FO formulas [18]. Once the query is quantifier
free, it is not too difficult to design for it a constant delay enumeration algorithm.

Another idea is to use the Gaifman Locality Theorem showing that for FO queries only
the r-neighborhoods (i.e. substructures of all nodes at distance at most r) occurring in the

L. Segoufin 21

structures are relevant, for a suitable value of r depending only on the query. In a class
of graphs with bounded degree, there are only finitely many such r-neighborhoods and it
is possible to compute them in linear time, hence during the preprocessing phase. The
enumeration algorithm follows [33].

The multiplicative factors are a tower of exponential whose height depends on |q| in the
case of [18] and are triply exponential in |q| in the case of [33]. This latter multiplicative
factor cannot be significantly improved: it follows from [26] that a multiplicative factor only
doubly exponential in the size of the formula is not possible unless AW[∗] =FPT.

4.2 Bounded expansion
The bounded degree case can be generalized to a larger class of structures known as bounded
expansion and defined in [37]. In [37] a number of equivalent characterizations were given for
bounded expansion giving evidence that this class is robust. Many known families of graphs
have bounded expansion. We list below some notable examples.

Class of graphs with bounded degree.
Class of graphs with bounded treewidth.
Class of planar graphs.
Class of graphs excluding at least one minor.

The model checking problem for FO over classes of structures with bounded expansion
can be solved in linear time [21, 30].

I Theorem 6. [34] The enumeration for FO over the class of structures with bounded
expansion is in CD◦Lin.

This result generalizes the bounded degree case. If structures in a class of bounded degree
could be represented using finitely many unary bijections, structures in a class of bounded
expansion can be represented using finitely many unary functions of a special kind. A
quantifier elimination method is then given over such structures. However solving the
quantifier-free case is not immediate.

The multiplicative factors are a tower of exponentials whose height is the quantifier
alternation depth of the first-order query. This non-elementary multiplicative factor is
unavoidable already on the class of unranked trees, assuming FPT 6= AW[∗] [26]. In
comparison, recall that this factor is triply exponential in the size of the query over bounded
degree structures.

4.3 Nowhere dense
It turns out that the notion of bounded expansion can be further generalized. A class C
of graphs is nowhere dense if for all r there exists a graph Hr that is not a r-minor of all
graphs of C (a r-minor is a minor where the collapsed balls have radius at most r).

This class was introduced in [38] with a number of equivalent characterizations giving
evidence that it is a robust class. It contains all class of graphs of bounded expansion but
also any class of graphs that locally excludes a minor or that has local bounded treewidth.
We refer to [17, 25] for precise definitions of these notions.

It has recently been claimed that the model checking problem for FO over nowhere dense
graphs can be done in quasi-linear time [31].

I Open problem 1. Can enumeration for FO over the class of nowhere dense graphs be done
with constant delay after a quasi-linear time preprocessing?

STACS’14

22 A glimpse on constant delay enumeration

If the class of graphs is closed under subgraphs, nowhere dense is the limit for the existence
of FPT algorithms.
I Theorem 7. [22] If C is a somewhere dense class of graphs closed under subgraphs, then
the model checking problem for FO over this class is W[1]-hard (actually existential formula
suffices).

An even stronger result was obtained in [36] assuming that C is somewhere dense in an
“effective way”. In this case it is shown that the model-checking for FO is even AW[∗]-complete.

4.4 Low Degree
For classes of graphs not closed under subgraphs, we can still obtain positive results over a
somewhere dense class of graphs.

A class of graphs has low degree if for all δ, all but finitely many graphs in the class
have degree at most nδ, where n is the size of the graph. Typical examples are structures of
bounded degree or of degree bounded by logn.

It has been proved in [29] that over a class of structures of low degree, first-order boolean
queries can be checked in pseudo-linear time, i.e. in time bounded by O(n1+ε), for all ε > 0.
This can be extended to an efficient enumeration algorithm assuming that sufficient memory
is available. The result below assumes that the computation starts with an initial memory
of O(n3) on input of size n. It will use only a small fragment of this memory, as it runs in
pseudo-linear time, but for reasons detailed in [19], it requires initially more.
I Theorem 8. [19] The enumeration for FO over a class of structures of low degree can be
done with constant delay after a pseudo-linear preprocessing time.

5 Structures with bounded treewidth

We have seen in Section 4.2 that structures of bounded treewidth are a special case of
structures of bounded expansion. Therefore, over such classes, FO queries can be enumerated
with constant delay after a linear time preprocessing. Over structures of bounded treewidth,
the enumeration result can be extended to a larger class of queries: MSO queries. It is well
known that the associated model checking problem can be solved in linear time by Courcelle’s
theorem [13].

Recall that MSO extends FO with the possibility to quantify existentially and universally
over monadic second order variables. Those variables range over sets of elements of the input
domain. By MSO query we mean here a query of the form q(x̄) where q is in MSO and x̄
are first-order free variables. The case where x̄ can also contain free monadic variables has
also been considered in [14, 2] but those cannot be enumerated in CD◦Lin mainly because
outputting one solution may require linear time. See Section 6.

However, when restricted to first-order free variables, constant delay enumeration can be
achieved. Two different index structures were proposed in the literature. Actually a third one
was also proposed in [14], but it requires a precomputation phase of O(n logn) to build it.
I Theorem 9. [2, 35] The enumeration for MSO queries over the class of structures with
bounded treewidth is in CD◦Lin.

The difficulty of Theorem 9 lies entirely in the tree case. We present the key ingredients
of the proof of [35] below as the intermediate results are of independent interest.

Let L be a regular word language over an alphabet A. A typical binary MSO query over
trees is the query qL(x, y) returning the pairs of nodes (u, v) within a tree such that u is an
ancestor of v and the labels of the nodes in the path from u to v forms a word in L.

L. Segoufin 23

Given a tree t, there exists an index structure computable in time linear in ||t|| such that,
given two nodes u and v of t one can test in constant time whether (u, v) ∈ qL(t) or not.
This is a nontrivial and powerful result of Colcombet based on deep algebraic constructions.

I Proposition 10. [11] For any regular language L over an alphabet A and any A-labeled
tree t one can

construct in time O(||t||) an index structure such that,
for all nodes u, v of t, testing whether (u, v) ∈ qL(t) can be done in constant time.

The multiplicative factors resulting from the construction of the index and during the
constant time tests depend on the presentation of L. They are non elementary if L is given
as an MSO sentence. They are exponential if L is given as an automaton, even in the
deterministic case (see also [6]). However, there exist cases where these multiplicative factors
are polynomial (see for instance [7]).

The index structure built for proving Proposition 10 has the following interesting normal
form for MSO queries over trees as a consequence.

I Proposition 11. [implicit in [11], see also [10]] Over trees, every binary MSO query q(x, y)
is equivalent to a disjunction of queries of the form ∃ȳ∀z̄ θ, where θ is a disjunction of
conjunctions of atomic predicates, ancestor relationships, or unary MSO queries.

The index constructed in [35] for enumerating MSO queries over trees builds on Pro-
position 11. The so called “composition method”, or a simple Ehrenfeucht-Fraïssé game,
shows that any MSO query is equivalent to a boolean combination of binary queries. For
binary queries, Proposition 11 applies. The unary MSO subformulas can be precomputed in
linear time by Courcelle’s theorem and can therefore be considered as new colors. Hence
it is enough to consider ∃ȳ∀z̄ first-order queries using the ancestor relationship. Those
queries being rather simple, an induction on the number of free variables solves the problem,
see [35]. The multiplicative factors of Theorem 9 deviates from those of Proposition 10 only
by a polynomial factor. Hence their size depends on the presentation of the MSO query as
explained above.

6 Discussion

6.1 The impact of order

With the current definition of CD◦Lin, there is no constraint on the order in which the
answers are output. One could require a specific order, relevant to the context in which the
query is evaluated. For instance, if there is a linear order on the domain of the database,
one could require that the tuples of the result are output in lexicographical order. Another
typical example is when there is a relevance measure associated to each tuple and one would
like the answers to the query to be output in the order of their relevance.

Requiring a specific order when outputting the answers to a query may have a dramatic
impact on the existence of constant delay algorithms. This is not surprising as the index
built during the preprocessing phase is designed for a particular order.

In the presence of a linear order on the database, the enumeration algorithms of The-
orem 5 (bounded degree) and Theorem 6 (bounded expansion) can output the solutions in
lexicographical order. However, it is not clear how to achieve lexicographical output in the
case of MSO over bounded treewidth (Theorem 9).

STACS’14

24 A glimpse on constant delay enumeration

6.2 Longer delay
Delay linear in the size of the database

We could consider enumeration algorithms allowing for non constant delay. We have already
seen logarithmic delays in Theorem 3 and Theorem 4. Another interesting case is linear
delay. In this setting, the preprocessing phase remains linear in the size of the database
but the delay between any two consecutive outputs is now linear in the size of the database.
Notice that linear delay still implies that the associated model checking problem is in FPT,
hence CQ cannot be enumerated with linear delay unless W[1] =FPT.

One can then consider restricting the class of structures. A class of structures, called
X-structures, has been exhibited such that CQ can be enumerated over it with linear delay.
We will not define X-structures in this note. Typical examples are grids and trees with all
XPath axis.

I Theorem 12. [3]. The enumeration for CQ over X-structures can be done with linear delay.

For acyclic conjunctive queries linear delay enumeration can be obtained with no restriction
on the structures.

I Theorem 13. [4]. The enumeration for ACQ over all structures can be done with linear
delay.

Delay linear in the size of the output

A trivial case when constant delay enumeration cannot be achieved is when the size of one
output is too big. This is for instance the case when considering MSO formulas with monadic
second-order free variables. Then each answer is a tuple of sets of elements of the domain
and can have a size linear in the size of the database. In constant time such an answer can
not even be written in the output tape. For such queries it is convenient to allow a delay
linear in the size of the output, but still independent from the size of the database3. We
then speak of an output-linear delay.

The result of Theorem 9 can be generalized to this setting (the preprocessing phase of [14]
is quasi-linear while it is linear in the case of [2]).

I Theorem 14. [14][2] The enumeration for MSO (allowing monadic second-order free
predicates) over the class of structures with bounded treewidth can be done with output-
linear delay.

Polynomial delay

One could also allow polynomial precomputation and polynomial delay. This notion is maybe
less relevant in the database context. Indeed, the degree of the polynomial could depend
on the size of the query and in this case the preprocessing phase can often precompute all
solutions. This notion is however relevant when considering first-order queries with free
second-order variables. In this case, for Σ1-queries, polynomial delay enumeration can be
achieved [20].

3 There is actually another approach which consists in having an output tape and only modify the output
tape in order to transform the previous solution into the next one. In special cases the delta between
two consecutive solutions only affect a constant part of the output and the enumeration can be done
with constant delay, see for instance [20].

L. Segoufin 25

6.3 Other enumeration problems
In this abstract we focused on the problem of enumerating the output of a query on a database.
There exist also interesting enumeration algorithms for enumerating all the solutions of a
SAT instance. For 2SAT, this is in CD◦Lin [23], for 3SAT dichotomy results exists [16, 15].
There exists also enumeration algorithms for various kinds of other problems like enumerating
monomials of a polynomial [43], enumerating perfect matchings in bipartite graphs [44],
independent sets [32] and so on. The interested reader is refereed to the thesis [42, 9] for
learning more about enumerations outside of the database context.

7 Conclusions

We mentioned several results about constant delay enumeration. We hope that we succeeded
to convince the reader that this is a very interesting topic.

The main open problem is probably the evaluation of first-order queries over nowhere
dense structures mentioned in Open Problem 1.

One could also consider relaxing the “no duplicate” constraint and enumerate conjunctive
queries with the “bag semantics”, i.e. each answer occurs as many times as there are
valuations witnessing it.

We would like to conclude with lower bounds. Of course one can construct artificial
problems, based on the fact that there exist quadratic but not linear problems, that do
not admit constant delay enumeration algorithms. For the concrete problems mentioned
in this note, the lower bounds have been proved using complexity assumptions, either in
parametrized complexity, or for the Boolean Matrix Multiplication problem. But it is also
plausible (i.e. there are no known consequences in complexity theory nor in algorithmic)
that the non existence of constant delay enumeration algorithms could be proved with no
assumptions. We believe this is an interesting and challenging question.

Acknowledgment. We thanks Johann Brault-Baron and Thomas Colcombet for useful
comments on earlier versions of this paper.

References
1 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
2 G. Bagan. MSO Queries on Tree Decomposable Structures Are Computable with Linear

Delay. In Conf. on Computer Science Logic (CSL), pages 167–181, 2006.
3 G. Bagan, A. Durand, E. Filiot, and O. Gauwin. Efficient Enumeration for Conjunctive

Queries over X-underbar Structures. In Conf. on Computer Science Logic (CSL), pages
80–94, 2010.

4 G. Bagan, A. Durand, and E. Grandjean. On Acyclic Conjunctive Queries and Constant
Delay Enumeration. In Conf. on Computer Science Logic (CSL), pages 208–222, 2007.

5 D. Berwanger and E. Grädel. Games and model checking for guarded logics. In Intl. Conf.
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), pages 70–84,
2001.

6 M. Bojańczyk. Factorization forests. In Developments in Language Theory (DLT), 2009.
7 M. Bojańczyk and P. Parys. XPath evaluation in linear time. J. of the ACM, 58(4), 2011.
8 J. Brault-Baron. A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic.

In Conf. on Computer Science Logic (CSL), pages 137–151, 2012.

STACS’14

26 A glimpse on constant delay enumeration

9 J. Brault-Baron. De la pertinence de l’énumération : complexité en logiques propositionnelle
et du premier ordre. PhD thesis, Université de Caen, 2013.

10 T. Colcombet. The factorisation forest theorem. To appear in the handbook “Automata:
from Mathematics to Applications”.

11 T. Colcombet. A Combinatorial Theorem for Trees. In Intl. Coll. on Automata, Languages
and Programming (ICALP), pages 901–912, 2007.

12 D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. J.
on Symbolic Computation, 9(3):251–280, 1990.

13 B. Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics (B), pages 193–242.
1990.

14 B. Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied
Mathematics, 157(12):2675–2700, 2009.

15 N. Creignou and J.-J. Hébrard. On Generating All Solutions of Generalized Satisfiability
Problems. Informatique Théorique et Applications (ITA), 31(6):499–511, 1997.

16 N. Creignou, F. Olive, and J. Schmidt. Enumerating All Solutions of a Boolean CSP by
Non-decreasing Weight. In Theory and Applications of Satisfiability Testing (SAT), pages
120–133, 2011.

17 A. Dawar, M. Grohe, and S. Kreutzer. Locally Excluding a Minor. In Symp. on Logic in
Computer Science (LICS), pages 270–279, 2007.

18 A. Durand and E. Grandjean. First-order queries on structures of bounded degree are
computable with constant delay. ACM Trans. on Computational Logic (ToCL), 8(4), 2007.

19 A. Durand, N. Schweikardt, and L. Segoufin. Enumerating first-order queries over databases
of low degree. submitted.

20 A. Durand and Y. Strozecki. Enumeration Complexity of Logical Query Problems with
Second-order Variables. In Conf. on Computer Science Logic (CSL), pages 189–202, 2011.

21 Z. Dvořák, D. Král, and R. Thomas. Deciding First-Order Properties for Sparse Graphs.
In Symp. on Foundations of Computer Science (FOCS), pages 133–142, 2010.

22 Z. Dvořák, D. Král, and R. Thomas. Testing first-order properties for subclasses of sparse
graphs. CoRR, abs/1109.5036, 2011.

23 T. Feder. Network flow and 2-satisfiability. Algorithmica, 11:291–319, 1994.
24 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
25 M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable struc-

tures. J. of the ACM, 48(6):1184–1206, 2001.
26 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic

revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.
27 E. Grädel. On the restraining power of guards. J. on Symbolic Logic, 64(4):1719–1742,

1999.
28 E. Grandjean. Sorting, Linear Time and the Satisfiability Problem. Annals of Mathematics

and Artificial Intelligence, 16:183–236, 1996.
29 M. Grohe. Generalized model-checking problems for first-order logic. In Symp. on Theor-

etical Aspects in Computer Science (STACS), 2001.
30 M. Grohe and S. Kreutzer. Model Theoretic Methods in Finite Combinatorics, chapter

Methods for Algorithmic Meta Theorems. American Mathematical Society, 2011.
31 M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense

graphs. personal communication.
32 D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On generating all maximal

independent sets. Inf. Process. Lett., 27(3):119–123, 1988.
33 W. Kazana and L. Segoufin. First-order query evaluation on structures of bounded degree.

Logical Methods in Computer Science (LMCS), 7(2), 2011.

L. Segoufin 27

34 W. Kazana and L. Segoufin. Enumeration of first-order queries on classes of structures
with bounded expansion. Symp. on Principles of Database Systems (PODS), 2013.

35 W. Kazana and L. Segoufin. Enumeration of monadic second-order queries on trees. ACM
Trans. on Computational Logic (ToCL), 14(4), 2013.

36 S. Kreutzer and A. Dawar. Parameterized complexity of first-order logic. Electronic Col-
loquium on Computational Complexity (ECCC), 16:131, 2009.

37 J. Nešetřil and P. O. de Mendez. Grad and classes with bounded expansion I. Decomposi-
tions. Eur. J. Comb., 29(3):760–776, 2008.

38 J. Nešetřil and P. O. de Mendez. On nowhere dense graphs. European J. of Combinatorics,
32(4):600–617, 2011.

39 C. H. Papadimitriou and M. Yannakakis. On the Complexity of Database Queries. J. on
Computer and System Sciences (JCSS), 58(3):407–427, 1999.

40 D. Seese. Linear Time Computable Problems and First-Order Descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

41 L. Segoufin. Enumerating with constant delay the answers to a query. In Intl. Conf. on
Database Theory, pages 10–20, 2013.

42 Y. Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Université
de Paris 7, 2010.

43 Y. Strozecki. Enumeration of the Monomials of a Polynomial and Related Complexity
Classes. In Intl. Symp. on Mathematical Foundations of Computer Science (MFCS), pages
629–640, 2010.

44 T. Uno. Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in
Bipartite Graphs. In Intl. Symp. on Algorithms and Computation, pages 92–101, 1997.

45 M. Yannakakis. Algorithms for Acyclic Database Schemes. In Intl. Conf. on Very Large
Databases (VLDB), pages 82–94, 1981.

STACS’14

Arithmetic Circuit Complexity
Neeraj Kayal

Microsoft Research India
neeraka@microsoft.com

Abstract
Arithmetic Circuits compute polynomial functions over their inputs via a sequence of arithmetic
operations (additions, subtractions, multiplications, divisions, etc.). This tutorial will give an
overview of arithmetic circuit complexity, focusing on the problem of proving lower bounds for
arithmetic circuits.

In the first part, we begin with a few nontrivial upper bounds – matrix multiplication and
the computation of symmetric polynomials. We then motivate some open problems we deal with
in arithmetic circuit complexity. We will look at the problem of polynomial identity testing -
motivating it by its application to bipartite matching, the problem of learning arithmetic circuits
or circuit reconstruction and the problem of proving lower bounds for arithmetic circuits (motiv-
ating it via the problem of computing the permanent and the Hamiltonian polynomials). We will
also see depth reduction for circuits – the tradeoffs involved (with respect to size) in squashing
a circuit into one with smaller depth.

In the second part, we will see some classical lower bounds. In particular, we will see lower
bounds for monotone arithmetic circuits and multilinear formulas. We then give a very quick over-
view of approaches being investigated (including geometric complexity theory and tau-conjecture)
aiming to prove lower bounds.

In the third part, we begin with a warm-up by proving lower bounds for homogeneous depth
three circuits. We will then see recent lower bounds for homogeneous depth four circuits and its
consequences.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Circuit complexity, arithmetic circuits, lower bounds, polynomial identity
testing

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.28

Category Tutorial

© Neeraj Kayal;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 28–28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Submodular Stochastic Probing on Matroids
Marek Adamczyk∗1, Maxim Sviridenko2, and Justin Ward3

1 Department of Computer, Control, and Management Engineering, Sapienza
University of Rome, Italy, adamczyk@dis.uniroma1.it

2 Department of Computer Science, University of Warwick, United Kingdom,
M.I.Sviridenko@warwick.ac.uk

3 Department of Computer Science, University of Warwick, United Kingdom,
J.D.Ward@warwick.ac.uk

Abstract
In a stochastic probing problem we are given a universe E, where each element e ∈ E is active
independently with probability pe ∈ [0, 1], and only a probe of e can tell us whether it is active or
not. On this universe we execute a process that one by one probes elements — if a probed element
is active, then we have to include it in the solution, which we gradually construct. Throughout
the process we need to obey inner constraints on the set of elements taken into the solution,
and outer constraints on the set of all probed elements. This abstract model was presented by
Gupta and Nagarajan [18], and provides a unified view of a number of problems. Thus far all
the results in this general framework pertain only to the case in which we are maximizing a
linear objective function of the successfully probed elements. In this paper we generalize the
stochastic probing problem by considering a monotone submodular objective function. We give
a (1− 1/e)/(kin + kout + 1)-approximation algorithm for the case in which we are given kin ≥ 0
matroids as inner constraints and kout ≥ 1 matroids as outer constraints. There are two main
ingredients behind this result. First is a previously unpublished stronger bound on the continuous
greedy algorithm due to Vondrak [22]. Second is a rounding procedure that also allows us to
obtain an improved 1/(kin + kout)-approximation for linear objective functions.

1998 ACM Subject Classification F. Theory of Computation

Keywords and phrases approximation algorithms, stochastic optimization, submodular optim-
ization, matroids, iterative rounding

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.29

1 Introduction

Uncertainty in input data is a common feature of most practical problems, and research
in finding good solutions (both experimental and theoretical) for such problems has a long
history dating back to 1950 [6, 11]. We consider adaptive stochastic optimization problems in
the framework of Dean et al. [13]. Here the solution is in fact a process, and the optimal one
might even require larger than polynomial space to describe. Since the work of Dean et al. a
number of such problems were introduced [10, 14, 15, 16, 4, 17, 12]. Gupta and Nagarajan [18]
present an abstract framework for a subclass of adaptive stochastic problems giving a unified
view for Stochastic Matching [10] and Sequential Posted Pricing [9].

We describe the framework following [18]. We are given a universe E, where each element
e ∈ E is active with probability pe ∈ [0, 1] independently. The only way to find out if an

∗ Supported by the ERC StG project PAAl no. 259515, and by NCN grant N N206 567940.

© Marek Adamczyk, Maxim Sviridenko, and Justin Ward;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 29–40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30 Submodular Stochastic Probing on Matroids

element is active, is to probe it. We call a probe successful if an element turns out to be
active. On universe E we execute an algorithm that probes the elements one-by-one. If
an element is active, the algorithm must add it to the current solution. In this way, the
algorithm gradually constructs a solution consisting of active elements.

Here, we consider the case in which we are given constraints on both the elements
probed and the elements included in the solution. Formally, suppose that we are given two
independence systems of downward-closed sets: an outer independence system (E, Iout)
restricting the set of elements probed by the algorithm, and an inner independence system(
E, Iin

)
, restricting the set of elements taken by the algorithm. We denote by Qt the set

of elements probed in the first t steps of the algorithm, and by St the subset of active
elements from Qt. Then, St is the partial solution constructed by the first t steps of the
algorithm. We require that, at each time t, Qt ∈ Iout and St ∈ Iin. Thus, at each time
t, the element e that we probe must satisfy both Qt−1 ∪ {e} ∈ Iout and St−1 ∪ {e} ∈ Iin.
Gupta and Nagarajan [18] considered many types of systems Iin and Iout, but we focus
only on matroid intersections, i.e. on the special case in which Iin is an intersection of kin
matroidsMin

1 , . . . ,Min
kin , and I

out is an intersection of kout matroidsMout
1 , . . . ,Mout

kout . We
always assume that kout ≥ 1 and kin ≥ 0. We assume familiarity with matroid algorithmics
(see [20], for example) and, above all, with principles of approximation algorithms (see [21],
for example).

Considering submodular objective functions is a common practice in combinatorial
optimization as it extends the range of applicability of many methods. So far, the framework
of stochastic probing has been used to maximize the expected weight of the solution found
by the process. We were given weights we ≥ 0 for e ∈ E and, if S denotes the solution at the
end of a process, the goal was to maximize ES

[∑
e∈S we

]
. We generalize the framework as

we consider a monotone submodular function f : 2E 7→ R≥0, and objective of maximizing
ES [f (S)].

1.1 Our results
Our result is a new algorithm for stochastic probing problem based on iterative random-
ized rounding of linear programs and the continuous greedy process introduced by Calin-
escu et al. [8].

I Theorem 1. An algorithm based on the continuous greedy process and iterative random-
ized rounding is a (1−e−1)

kin+kout+1 -approximation for stochastic probing problem with monotone
submodular objective function.

Additionally, we improve the bound of 1
4(kin+kout) given by Gupta and Nagarajan [18] in the

case of a linear objective.

I Theorem 2. The iterative randomized rounding algorithm is a 1
kin+kout -approximation for

the stochastic probing problem with a linear objective function.

1.2 Applications
On-line dating and kidney exchange [10]

Consider an online dating service. For each pair of users, machine learning algorithms
estimate the probability that they will form a happy couple. However, only after a pair
meets do we know for sure if they were successfully matched (and together leave the dating
service). Users have individual patience numbers that bound how many unsuccessful dates

M. Adamczyk, M. Sviridenko, and J. Ward 31

they are willing to go on until they will leave the dating service forever. The objective of the
service is to maximize the number of successfully matched couples.

To model this as a stochastic probing problem, users are represented as vertices V of a
graph G = (V,E), where edges represent matched couples. Set E of edges is our universe
on which we make probes, with pe being the probability that a couple e = (u1, u2) forms a
happy couple after a date. The inner constraints are matching constraints — a user can be
in at most one couple —, and outer constraints are b–matching — we can probe at most
t (u) edges adjacent to user u, where t (u) denotes the patience of u. Both inner and outer
constraints are intersections of two matroids for bipartite graphs. In similar way we can
model kidney exchanges.

In weighted bipartite case Theorem 2 gives a 1/4-approximation. Even though b–matchings
in general graphs are not intersections of two matroids, we are able to exploit the matching
structure to give the same factor-1/4 approximation. Since the technique is very similar to
the case of intersection of two matroids, we omit the proof. This matches the current-best
bound for general graphs of Bansal et al. [5], who also give a 1/3-approximation in the
bipartite case.

Bayesian mechanism design [18]

Consider the following mechanism design problem. There are n agents and a single seller
providing a certain service. Agent’s i value for receiving service is vi, drawn independently
from a distribution Di over set {0, 1, . . . , B}. The valuation vi is private, but the distribution
Di is known. The seller can provide service only for a subset of agents that belongs to system
I ∈ 2[n], which specifies feasibility constraints. A mechanism accepts bids of agents, decides
on subset of agents to serve, and sets individual prices for the service. A mechanism is called
truthful if agents bid their true valuations. Myerson’s theory of virtual valuations yields
truthful mechanisms that maximize the expected revenue of a seller, although they sometimes
might be impractical. On the other hand, practical mechanisms are often non-truthful. The
Sequential Posted Pricing Mechanism (SPM) introduced by Chawla et al. [9] gives a nice
trade-off — it is truthful, simple to implement, and gives near-optimal revenue. An SPM
offers each agent a “take-it-or-leave-it” price for the service. Since after a refusal a service
won’t be provided, it is easy to see that an SPM is a truthful mechanism.

To see an SPM as a stochastic probing problem, we consider a universe E = [n] ×
{0, 1, . . . , B}, where element (i, c) represents an offer of price c to agent i. The probability
that i accepts the offer is P [vi ≥ c], and seller earns c then. Obviously, we can make only
one offer to an agent, so outer constraints are given by a partition matroid; making at
most one probe per agent also overcomes the problem that probes of (i, 1) , ..., (i, B) are not
independent. The inner constraints on universe [n] × {0, 1, . . . , B} are simply induced by
constraints I on [n].

Gupta and Nagarajan [18] give an LP relaxation for any single-seller Bayesian mechanism
design problem. Provided that we can optimize over P (I), the LP can be used to construct
an efficient SPM. Moreover, the approximation guarantee of the constructed SPM is with
respect to the optimal mechanism, which need not be an SPM.

In the case constraints I are an intersection of k matroids the resulting SPM is a 1
4(k+1) -

approximation [18]. Here, we give an improved approximation algorithm with a factor- 1
k+1

guarantee. In particular, when k = 1 we match [9, 19] with 1/2-approximation.

STACS’14

32 Submodular Stochastic Probing on Matroids

1.3 Related work
The stochastic matching problem with applications to online dating and kidney exchange
was introduced by Chen et al. [10], where authors proved a 1/4-approximation of a greedy
strategy for unweighted case. The authors also show that the simple greedy approach gives
no constant approximation in the weighted case. Their bound was later improved to 1/2
by Adamczyk [1]. As noted in our discussion of applications, Bansal et al. [5] gave 1/3
and 1/4-approximations for weighted stochastic matching in bipartite and general graphs,
respectively.

Sequential Posted Pricing mechanisms were investigated first by Chawla et al. [9], followed
by Yan [24], and Kleinberg and Weinberg [19]. Gupta and Nagarajan [18] were first to propose
looking at SPM from the point of view of stochastic adaptive problems.

Asadpour et al. [4] were first to consider a stochastic adaptive problem with submodular
objective function. In our terms, they considered only a single outer matroid constraint.

Work of Calinescu et al. [8] provides the tools for submodular functions we use in this
paper. The method of [24] was based on “correlation gap” [3], something we address implicitly
in Subsection 2.2.2.

2 Preliminaries

For set S ⊆ E and element e ∈ E we use S + e to denote S ∪ {e}, and S − e to denote
S \ {e}. For set S ⊆ E we shall denote by 1S a characteristic vector of set S, and for a
single element e we shall write 1e instead of 1{e}. For random event A we shall denote by
χ [A] a 0-1 random variable that indicates whether A occurred. The optimal strategy will
be denoted by OPT , and we shall denote the expected objective value of its outcome as
E [OPT].

2.1 Matroids and polytopes
LetM = (E, I) be a matroid, where E is the universe of elements and I ⊆ 2E is a family of
independent sets. For element e ∈ E, we shall denote the matroidM with e contracted by
M/e, i.e.M/e = (E − e, {S ⊆ E − e |S + e ∈ I }).

The following lemma is a slightly modified1 basis exchange lemma, which can be found
in [20].

I Lemma 3. Let A,B ∈ I and |A| = |B|. There exists a bijection φ : A 7→ B such that: 1)
φ (e) = e for every e ∈ A ∩B, 2) B − φ (e) + e ∈ I.

We shall use the following corollary, where we consider independent sets of possibly
different sizes.

I Corollary 4. Let A,B ∈ I. We can find assignment φA,B : A 7→ B ∪ {⊥} such that:
1. φA,B (e) = e for every e ∈ A ∩B,
2. for each f ∈ B there exists at most one e ∈ A for which φA,B (e) = f ,
3. for e ∈ A \B, if φA,B (e) = ⊥ then B + e ∈ I, otherwise B − φA,B (e) + e ∈ I.

We consider optimization over matroid polytopes which have the general form P (M) ={
x ∈ RE≥0

∣∣∀A∈I∑e∈A xe ≤ rM (A)
}
, where rM is the rank function ofM. We know [20]

1 The difference is that we do not assume that A, B are bases, but independent sets of the same size.

M. Adamczyk, M. Sviridenko, and J. Ward 33

that the matroid polytope P (M) is equivalent to the convex hull of {1A |A ∈ I }, i.e.
characteristic vectors of all independent sets ofM. Thus, we can represent any x ∈ P (M)
as x =

∑m
i=1 βi · 1Bi , where B1, . . . , Bm ∈ I and β1, . . . , βm are non-negative weights such

that
∑m
i=1 βi = 1 . We shall call sets B1, . . . , Bm a support of x in P (M).

2.2 Submodular functions

2.2.1 Multilinear extension
A set function f : 2E 7→ R≥0 is submodular, if for any two subsets S, T ⊆ E we have
f (S ∪ T) + f (S ∩ T) ≤ f (S) + f (T). We call function f monotone, if for any two subsets
S ⊆ T ⊆ E : f (S) ≤ f (T). For a set S ⊆ E, we let fS(A) = f(A ∪ S) − f(S) denote the
marginal increase in f when the set A is added to S. Note that if f is monotone submodular,
then so is fS for all S ⊆ E. Moreover, we have fS(∅) = 0 for all S ⊆ E, so fS is normalized.
Without loss of generality, we assume also that f (∅) = 0.

We consider the multilinear extension F : [0, 1]E 7→ R≥0 of f , whose value at a point
y ∈ [0, 1]E is given by

F (y) =
∑
A⊆E

f(A)
∏
e∈A

ye
∏
e 6∈A

(1− ye).

Note that F (1A) = f (A) for any set A ⊆ E, so F is an extension of f from discrete domain
2E into a real domain [0, 1]E . The value F (y) can be interpreted as the expected value of f
on a random subset A ⊆ E that is constructed by taking each element e ∈ E with probability
ye. Following this interpretation, Calinescu et al. [8] show that F (y) can be estimated to any
desired accuracy in polynomial time, using a sampling procedure.

Additionally, they show that F has the following properties, which we shall make use of
in our analysis:

I Lemma 5. The multilinear extension F is linear along the coordinates, i.e. for any point
x ∈ [0, 1]E, any element e ∈ E, and any ξ ∈ [−1, 1] such that x+ ξ ·1e ∈ [0, 1]E, it holds that
F (x+ ξ · 1e)− F (x) = ξ · ∂F∂ye (x), where ∂F

∂ye
(x) is the partial derivative of F in direction

ye at point x.

I Lemma 6. If F : [0, 1]E 7→ R is a multilinear extension of monotone submodular function
f : 2E 7→ R, then 1) function F has second partial derivatives everywhere; 2) for each e ∈ E,
∂F
∂ye
≥ 0 everywhere; 3) for any e1, e2 ∈ E (possibly equal), ∂2F

∂ye1∂ye2
≤ 0, which means that

∂F
∂ye2

is non-increasing with respect to ye1 .

2.2.2 Continuous greedy algorithm
In [8] the authors utilized the multilinear extension in order to maximize a submodular
monotone function over a matroid constraint. They showed that a continuous greedy algorithm
finds a (1− 1/e)-approximate maximum of the above extension F over any downward closed
polytope. In the special case of the matroid polytope, they show how to employ the pipage
rounding [2] technique to the fractional solution to obtain an integral solution.

Another extension of f studied in [7] is given by:

f+(y) = max

∑
A⊆E

αAf(A)

∣∣∣∣∣∣
∑
A⊆E

αA ≤ 1, ∀A ⊆ E : αA ≥ 0, ∀j ∈ E :
∑
A:j∈A

αA ≤ yj

 .

STACS’14

34 Submodular Stochastic Probing on Matroids

Intuitively, the solution (αA)A⊆E above represents the distribution over 2E that maximizes
the value E [f(A)] subject to the constraint that its marginal values satisfy P [i ∈ A] ≤ yi.
The value f+(y) is then the expected value of E [f(A)] under this distribution, while the
value of F (y) is the value of E [f(A)] under the particular distribution that places each
element i in A independently. However, the following allows us to relate the value of F on
the solution of the continuous greedy algorithm to the optimal value of the relaxation f+.

I Lemma 7. Let f be a submodular function with multilinear extension F , and let P be
any downward closed polytope. Then, the solution x ∈ P produced by the continuous greedy
algorithm satisfies F (x) ≥ (1− 1/e) maxy∈P f+(y).

This follows from a simple modification of the continuous greedy analysis, given by
Vondrák [22].

2.3 Overview of the iterative randomized rounding approach
We now give a description of the general rounding approach that we employ in both the linear
and submodular case. In each case, we formulate a mathematical programming relaxation of
the following general form

max
x∈[0,1]E

{
g(x)

∣∣∀j ∈ [kin] : p · x ∈ P
(
Min

j

)
; ∀j ∈

[
kout

]
: x ∈ P

(
Mout

j

)}
(1)

with p ∈ [0, 1]E being the vector of probabilities. Here g : [0, 1]E 7→ R≥0 is an objective
function chosen so that the optimal value of (1) can be used to bound the expected value of
an optimal policy for the given instance using the following lemma. Note that our program
will always have constraints as given in (1), only the objective function g changes between
the linear and monotone submodular cases.

I Lemma 8. Let OPT be the optimal feasible strategy for some stochastic probing problem
in our general setting, and define xe = P [OPT probes e]. Then, x = (xe)e∈E is a feasible
solution to the related relaxation of the form (1).

Proof. Since OPT is a feasible strategy, the set of elements Q probed by any execution of
OPT is always an independent set of each outer matroidM =

(
E, Ioutj

)
, i.e. ∀j∈[kout]Q ∈ Ioutj .

Thus, for any j ∈ [kout], the vector E [1Q] = x may be represented as a convex combination
of vectors from

{
1A
∣∣A ∈ Ioutj

}
, and hence x ∈ P

(
Mout

j

)
. Analogously, the set of elements

S that were successfully probed by OPT satisfy ∀j∈[kin]S ∈ Iinj for every possible execution
of OPT . Hence, for any j ∈

[
kin
]
the vector E [1S] = p · x may be represented as a convex

combination of vectors from
{

1A
∣∣A ∈ Iinj }, and hence x ∈ P

(
Min

j

)
. J

Suppose that f is the objective function for a given instance of stochastic probing over
a universe E of elements. Our algorithm first obtains a solution x0 to a relaxation of the
form (1) using either linear programming or the continuous greedy algorithm. Our algorithm
proceeds iteratively, maintaining a current set of constraints, a current fractional solution x,
and a current set S of elements that have been successfully probed. Initially, the constraints
are as given in (1), x = x0, and S = ∅. At each step, the algorithm selects single element ē
to probe, then permanently sets xē to 0. It then updates the outer constraints, replacing
Mout

j withMout
j /ē for each j ∈ [kout]. If the probe succeeds, the algorithm adds ē to S and

then updates the inner constraints, replacingMin
j withMin

j /ē for each j ∈ [kin]. Finally,
we modify our fractional solution x so that it is feasible for the updated constraints. The
algorithm terminates when the current solution x = 0E .

M. Adamczyk, M. Sviridenko, and J. Ward 35

In order to analyze the approximation performance of our algorithm, we keep track of a
current potential value z, related to the value of the remaining fractional solution x. Let xt,
zt, and St be the current value of x, z, and S at the beginning of step t+ 1. We show that
initially we have z0 = g

(
x0) ≥ β · E [OPT] for some constant β ∈ [0, 1], and then analyze

the expected decrease zt − zt+1 at an arbitrary step t+ 1. We show that for each step we
have α · E

[
zt − zt+1] ≤ E

[
f(St+1)− f(St)

]
, for some α < 1. That is, the expected increase

in the value of the current solution is at least α times the expected decrease in z. Then,
we employ the following Lemma to conclude that the algorithm is an αβ-approximation in
expectation. The proof is based on Doob’s optional stopping theorem for martingales. Hence,
we need to deploy language from martingale theory, such as stopping time and filtration.
See [23] for extended background on martingale theory.

I Lemma 9. Suppose the algorithm runs for τ steps and that z0 = g
(
x0) ≥ β · E [OPT],

zτ = 0. Let (Ft)t≥0 be the filtration associated with our iterative algorithm, where Fi
represents all information available after the ith iteration. Finally, suppose that in each step
in our iterative rounding procedure, E

[
f(St+1)− f(St)

∣∣Ft] ≥ α · E
[
zt − zt+1

∣∣Ft]. Then,
the final solution Sτ produced by the algorithm satisfies E [f(Sτ)] ≥ αβ · E [OPT].

Proof. Let Gt+1 be the gain f(St+1) − f(St) in f at step t + 1, and let Lt+1 be the
corresponding loss zt − zt+1 in z at time t + 1. We set G0 = L0 = 0. Define variable
Dt = Gt − α · Lt. The sequence of random variables (D0 +D1 + ...+Dt)t≥0 forms a
sub-martingale, i.e.

E

[
t+1∑
i=0

Di

∣∣∣∣∣Ft
]

=
t∑
i=0

Di + E [Gt+1 − α · Lt+1| Ft] ≥
t∑
i=0

Di.

Let τ be the step in which the algorithm terminates, i.e. τ = min
{
t
∣∣xt = 0E

}
. Then, the

event τ = t depends only on F0, . . . ,Ft, so τ is a stopping time. Also, by the definition
of the algorithm xτ = 0E . It is easy to verify that all the assumptions of Doob’s optional
stopping theorem are satisfied, and from this theorem we get that E [

∑τ
i=0Di] ≥ E [D0].

Since D0 = 0, we have

0 ≤ E

[
τ∑
i=0

Di

]
= E

[
τ∑
i=0

Gi − α ·
τ∑
i=0

Li

]
= E

[
τ∑
i=0

Gi

]
− α · E

[
τ∑
i=0

Li

]
.

It remains to note that
∑τ
i=0Gi = f (Sτ) is the total gain of the algorithm, so E [

∑τ
i=0Gi] =

E [f(Sτ)]. On the other hand,
∑τ
i=0 Li = g(x0)− g(xτ) = g(x0) ≥ β · E [OPT]. J

Henceforth, we will implicitly condition on all information Ft available to the algorithm just
before it makes step t+ 1. That is, when discussing step t+ 1 of the algorithm, we write
shortly E [·] instead of E [·| Ft].

3 Linear stochastic probing

In this setting, we are given a weight we and a probability pe for each element e ∈ E and f(S) is
simply

∑
e∈S we. We consider the relaxation (1) in which g(x) = f(x). Then, Lemma 8 shows

that the optimal policy OPT must correspond to some feasible solution x∗ of (1). Moreover,
because f is linear, E [OPT] =

∑
e∈S P [OPT probes e] pewe =

∑
e∈S xepewe = f(x∗).

At each step, our algorithm randomly selects an element ē to probe. Let Σ =
∑
e∈E xe

Then, our algorithm chooses element e with probability xe/Σ. As discussed in the previous

STACS’14

36 Submodular Stochastic Probing on Matroids

overview, it then sets xē = 0 and carries out the probe, updating the matroid constraints to
reflect both the choice of ē and the probe. Finally, it updates x to obtain a new fractional
solution that is feasible in the updated constraints. Note that because xe is set to 0 after
probing e, we will never probe an element e twice.

Let us now describe how to update the current solution x to ensure feasibility in each of
the updated matroid constraints. Let ē be the element that we probed and letMout

j be some
outer matroid. Currently we have x ∈ P(Mout

j) and we must obtain a solution x′ so that
x′ ∈ P(Mout

j /ē). We represent the vector x as a convex combination of independent sets
x =

∑m
i=1 β

out
i 1Bout

i
, where Bout1 , . . . , Boutm is the support of x with respect to matroidMout

j .
We obtain x′ ∈ P(Mout

j /ē) by replacing each independent set Boutb for which Boutb + ē 6∈ Mout
j

with some other set Boutc such that Boutc + ē ∈ Mout
j . We pick one set Bouta with ē ∈ Bouta

to guide the update process. We pick the set Bouta 3 ē at random with probability βouta /xē
(note that for any element e,

∑
a:e∈Bouta

βouta = xe). For any set Boutb : ē /∈ Boutb , let φa,b be
the mapping from Bouta into Boutb from Corollary 4. If φa,b (ē) =⊥, or φa,b(ē) = ē, then in
fact Boutb + ē ∈Mout

j , and we can just include Boutb in the support ofMout
j /ē. Otherwise,

we substitute Boutb with Boutb − φa,b (ē) in the support of (xe)e∈E in P
(
Mout

j /ē
)
, since we

know that Boutb − φa,b (ē) + ē ∈Mout
j .

Similarly, if ē is successfully probed we must perform a support update for each inner
matroid. Here, we proceed as in the case of the outer matroids, except we have p · x ∈Min

j

and must obtain x′ such that p · x′ ∈Min
j /e. We write p · x as a combination independent

sets p ·x =
∑m
i=1 β

in
i 1Bin

i
, and now choose a random set Bina 3 ē to guide the support update

with probability βina /pēxē. (note that for any element e, we have
∑
a:e∈Bina

βina = pexe).
As in the previous case, we replace Binb with Binb − φa,b(ē) for each base Binb such that
Binb + ē 6∈ Min

j .
We now turn to the analysis of the probing algorithm. Suppose that the algorithm

runs for τ steps and consider the quantity zt = f(xt). Then, z0 = f(x0) ≥ E [OPT] and
zτ = f(0E) = 0, so the conditions of Lemma 9 are satisfied with β = 1. It remains to bound
the expected loss E

[
zt − zt+1] in step t + 1. In order to do this, we consider the value

δi = pi(xti − xt+1
i) for each i ∈ E. We consider arbitrary step t + 1, but we are going to

denote xt by x and xt+1 by x′. The decrease δi may be caused both by the probing step, in
which we set x′ē to 0, or by the matroid update step, in which we decrease several coordinates
of x. Let us first consider the losses due to each matroid update.

I Lemma 10. Let x and x′ be the current fractional solution before and after one update
for a given outer matroidMout

j . Then, for each i ∈ E, we have E [δouti] , E [pi(xi − x′i)] ≤
1
Σ (1− xi) pixi.

Proof. The expectation E [δouti] is over the random choice of an element ē to probe and the
random choice of an independent set to guide the update. Let Eouta denote the event that
some set Bouta is chosen to guide a support update forMout

j .
In a given step the probability that the set Bouta is chosen to guide the support update is

equal to

P
[
Eouta

]
=

∑
e∈Bouta

xe
Σ
βouta

xe
=

∑
e∈Bouta

βouta

Σ =
∣∣Bouta

∣∣ βouta

Σ . (2)

Moreover, conditioned on the fact Bouta was chosen, the probability that an element e ∈ Bouta

was probed is uniform over the elements of Bouta :

P
[
e probed | Eouta

]
= P

[
e probed ∧ Eouta

] /
P
[
Eouta

]
= xe

Σ
βouta

xe

/∣∣Bouta

∣∣ βouta

Σ = 1
|Bouta |

. (3)

M. Adamczyk, M. Sviridenko, and J. Ward 37

We can write the expected decrease as E [δouti] =
∑m
a=1 P [Eouta]·E [δouti |Bouta]. Note that for all

i ∈ Bouta , we have φa,b(i) = i for every set Boutb 3 i. Thus, the support update will not change
xi for any i ∈ Bouta , and so

∑m
a=1 P [Eouta] · E [δouti | Eouta] =

∑
a:i/∈Bouta

P [Eouta] · E [δouti | Eouta] .
Now let us condition on taking Bouta to guide the support update. Consider a set Boutb 3 e.

If we remove i from Boutb , and hence decrease pixi by piβoutb , it must be the case that we
have chosen to probe the single element φ−1

a,b(i) ∈ Bouta . The probability that we probe this
element is 1

|Bouta | . Hence∑
a:i/∈Bouta

P
[
Eouta

]
· E
[
δouti

∣∣Bouta

]

=
∑

a:i/∈Bouta

P
[
Eouta

]
·

 ∑
b:i∈Bout

b

piβ
out
b · P

[
φ−1
a,b(i) is probed

∣∣Eouta

]
≤

∑
a:i/∈Bouta

P
[
Eouta

]
·

 ∑
b:i∈Bout

b

piβ
out
b · 1

|Bouta |

=

∑
a:i/∈Bouta

P
[
Eouta

]
· pixi
|Bouta |

=
∑

a:i/∈Bouta

∣∣Bouta

∣∣ 1
Σβ

out
a · pixi

|Bouta |
= 1

Σ
∑

a:i/∈Bouta

βouta pixi = 1
Σ (1− xi) pixi. J

I Lemma 11. Let x be the current fractional solution before and after one update for
a given inner matroid Min

j . Then, for each i ∈ E, we have E
[
δini
]
, E [pi(xi − x′i)] ≤

1
Σ (1− pixi) pixi.

Proof. Because we only perform a support update when the probe of a chosen element is
successful, the expectation E

[
δini
]
is over the random result of the probe, as well as the

random choice of element ē to probe and the random choice of a base to guide the update.
We proceed as in the case of Lemma 10, now letting E ina denote the event that the probe was
successful and Bina is chosen to guide the support update. We have:

P
[
E ina
]

=
∑
e∈Bina

pe
xe
Σ

βina
pexe

=
∑
e∈Bina

βina
Σ =

∣∣Bina ∣∣ βinaΣ ,

P
[
e probed | E ina

]
= P

[
e probed ∧ E ina

] /
P
[
E ina
]

= pe
xe
Σ

βina
pexe

/∣∣Bina ∣∣ βinaΣ = 1
|Bina |

.

By a similar argument as in Lemma 10 we then have that E
[
δini
]
is at most:

∑
a:i/∈Bina

P
[
E ina
]
·

 ∑
b:i∈Bin

b

βinb ·
1
|Bina |

 =
∑

a:i/∈Bina

P
[
E ina
]
· pixi
|Bina |

=
∑

a:i/∈Bouta

∣∣Bina ∣∣ 1
Σβ

in
a ·

pixi
|Bina |

= 1
Σ

∑
a:i/∈Bina

βina pixi = 1
Σ(1− pixi)pixi.

J

We perform the matroid updates sequentially for each of the kin and kout matroids. Note
that once we decrease a coordinate xi to 0, it cannot be altered in any further updates,
so no coordinate is ever decreased below 0. Now, we consider the expected decrease

STACS’14

38 Submodular Stochastic Probing on Matroids

E [δi] = E [pi(xi − x′i)] due to both the initial probing step, in which we decrease the probed
element’s coordinate to 0, and the following matroid updates. We have:

E [δi] ≤ P [i probed] pixi + koutE
[
δouti

]
+ kinE

[
δini
]

= 1
Σpix

2
i + kout

1
Σ(1− xi)pixi + kin

1
Σ(1− pixi)pixi

= 1
Σk

outpixi −
1
Σ(kout − 1)pix2

i + 1
Σk

inpixi −
1
Σk

inp2
ix

2
i

≤ kout + kin

Σ pixi. (4)

Because zt is a linear function of xt, the expected total decrease of z in this step is then

E
[
zt − zt+1] =

∑
i

E [δi]wi ≤
kout + kin

Σ
∑
i

pixiwi.

On the other hand, the expected gain in f(S) is
∑
e∈E P [e probed] pewe = 1

Σ
∑
e∈E wepexe.

Thus, by Lemma 9 the final solution Sτ produced by the algorithm satisfies E [f(Sτ)] ≥
1

kout+kinE [OPT].

4 Submodular stochastic probing

We now consider the case in which we are given a set of elements E each becoming active
with probability pe, and we seek to maximize a given submodular function f : 2E 7→ R≥0. In
this case, we consider the relaxation (1) in which g(x) = f+(p · x). Then, Lemma 8 shows
that the optimal policy OPT must correspond to some feasible solution x∗ of (1), where
x∗e = P [OPT probes e], and hence P [OPT takes e] = pex

∗
e. The function f+(p · x∗) gives

the maximum value of ES∼D [f(S)] over all distributions D satisfying PS∼D [e ∈ S] = x∗epe.
Thus, f+(p · x∗) ≥ E [OPT].

In general, we cannot obtain an optimal solution to this relaxation. Instead, we apply
the continuous greedy algorithm to a variant of (1) in which g(x) is given by F (p · x) to
obtain an initial solution x0. From Lemma 7 we then have F (p · x0) ≥ (1− 1/e)f+(p · x∗) ≥
(1− 1/e)E [f(OPT)].

Given x0, our algorithm is exactly the same as in the linear case. However, we must be
more careful in our analysis. We define the quantity

zt = F (1St + p · xt)− F (1St)

where St and xt are, respectively, the set of successfully probed elements and the current
fractional solution at time t. Note that because after probing an element we set its variable to
zero, for all elements i ∈ S we have xi = 0, and so indeed 1St + p · xt ∈ [0, 1]E . Suppose that
the algorithm runs for τ iterations, and note that z0 = F (p · x0) ≥ (1− 1/e)E [f(OPT)] and
zτ = F (1Sτ+p·0E)−F (Sτ) = 0, so the conditions of Lemma 9 are satisfied with β = (1−1/e).

We now analyze the expected decrease zt − zt+1 due to step t + 1 of the algorithm.
Suppose that the algorithm selects element i to probe. Then, we have St+1 = St + i with
probability pi and St+1 = St otherwise. Thus, we have

E
[
zt − zt+1] = E

[
F (1St + xt · p)− F (1St)

]
− E

[
F (1St+1 + xt+1 · p)− F (1St+1)

]
= E [F (1St+1)− F (1St)] + E

[
F (1St + xt · p)− F (1St+1 + xt+1 · p)

]
≤ E [F (1St+1)− F (1St)] + E

[
F (1St + xt · p)− F (1St + xt+1 · p)

]
(5)

M. Adamczyk, M. Sviridenko, and J. Ward 39

where in the last line, we have used the fact that St+1 ≥ St and F is increasing in all
directions (Lemma 6). We shall first bound the second expectation in (5). We consider the
vector δ of decreases in x, given by δ = (xt − xt+1) · p. For each i ∈ E, let wi = ∂F

∂xi
(1St) =

F (1St+i)− F (1St). Let y = 1St + xt · p, and suppose that we decrease the coordinates of y
one at a time to obtain y − δ = 1St + xt+1 · p, letting yi be the value of y after the first i− 1
coordinates have been decreased.2 We then have:

F (y)− F (y − δ) =
∑
i

F (yi)− F (yi+1) =
∑
i

F (yi)− F (yi − δi1i)

=
∑
i

δi
∂F

∂xi
(yi − δi1i) ≤

∑
i

δi
∂F

∂xi
(1St) =

∑
i

δiwi,

where the third equality follows from the fact that F is linear when one coordinate is changed
(Lemma 5), while the inequality follows from the fact that the partial derivatives of F are
coordinate-wise non-increasing (Lemma 6) and yi − δi1i ≥ 1St for all i. Thus, we have:

E [F (y)− F (y − δ)] ≤ E

[∑
i

δiwi

]
=
∑
i

E [δi] · wi. ≤
1
Σ(kout + kin)

∑
i

pix
t
iwi,

where the last inequality follows, as in the linear case, from inequality (4).
Returning to the first expectation in (5), we note that:

E [F (1St+1)− F (1St)] =
∑
i

P [i probed] pi(F (St + i)− F (St)) = 1
Σ
∑
i

pix
t
iwi.

Thus, the total expected decrease E
[
zt − zt+1] from one step of our rounding procedure is

at most:

1
Σ
∑
i

pix
t
iwi + 1

Σ
∑
i

(kout + kin)pixtiwi = (kout + kin + 1) 1
Σ
∑
i

pix
t
iwi.

On the other hand, the expected increase of f(St+1)− f (St) in this step is:

1
Σ
∑
e∈E

pex
t
e(f(St + e)− f(St)) = 1

Σ
∑
e∈E

pex
t
e(F (1St+e)− F (1St)) = 1

Σ
∑
e∈E

pex
t
ewe.

Thus, by Lemma 9, the final solution Sτ produced by the algorithm satisfies

E [f(Sτ)] ≥
(

1− 1
e

)(
1

kout + kin + 1

)
E [OPT] .

References
1 Marek Adamczyk. Improved analysis of the greedy algorithm for stochastic matching. Inf.

Process. Lett., 111:731–737, August 2011.
2 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of con-

structing algorithms with proven performance guarantee. J. Comb. Optim., 8(3):307–328,
2004.

2 With slight abuse of notation, we write xi for the value of the ith decreased coordinate of x and 1i for
the characteristic vector of this coordinate. That is, we identify an element with its index

STACS’14

40 Submodular Stochastic Probing on Matroids

3 Shipra Agrawal, Yichuan Ding, Amin Saberi, and Yinyu Ye. Correlation robust stochastic
optimization. In SODA, pages 1087–1096, 2010.

4 Arash Asadpour, Hamid Nazerzadeh, and Amin Saberi. Stochastic submodular maximiza-
tion. In WINE, pages 477–489, 2008.

5 Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri
Rudra. When LP is the cure for your matching woes: Improved bounds for stochastic
matchings. Algorithmica, 63(4):733–762, 2012.

6 E. M. L. Beale. Linear programming under uncertainty. Journal of the Royal Statistical
Society. Series B, 17:173–184, 1955.

7 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submod-
ular set function subject to a matroid constraint (extended abstract). In IPCO, pages
182–196, 2007.

8 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Sub-
modular Set Function Subject to a Matroid Constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

9 Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pricing. In STOC, pages 311–320, 2010.

10 Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra.
Approximating matches made in heaven. In ICALP, pages 266–278, 2009.

11 G.B. Dantzig. Linear programming under uncertainty. Management Science, 1:197–206,
1955.

12 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Adaptivity and approximation for
stochastic packing problems. In SODA, pages 395–404, 2005.

13 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic
knapsack problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008.

14 Michel X. Goemans and Jan Vondrák. Stochastic covering and adaptivity. In LATIN, pages
532–543, 2006.

15 Sudipto Guha and Kamesh Munagala. Approximation algorithms for budgeted learning
problems. In STOC, pages 104–113, 2007.

16 Sudipto Guha and Kamesh Munagala. Model-driven optimization using adaptive probes.
In SODA, pages 308–317, 2007.

17 Anupam Gupta, Ravishankar Krishnaswamy, Marco Molinaro, and R. Ravi. Approximation
algorithms for correlated knapsacks and non-martingale bandits. In FOCS, pages 827–836,
2011.

18 Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applications.
In IPCO, pages 205–216, 2013.

19 Robert Kleinberg and S. Matthew Weinberg. Matroid prophet inequalities. In STOC, pages
123–136, 2012.

20 A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
21 Vijay V. Vazirani. Approximation algorithms. Springer, 2001.
22 Jan Vondrák. Personal correspondence.
23 David Williams. Probability with Martingales. Cambridge mathematical textbooks. Cam-

bridge University Press, 1991.
24 Qiqi Yan. Mechanism design via correlation gap. In SODA, pages 710–719, 2011.

On Symmetric Circuits and Fixed-Point Logics
Matthew Anderson and Anuj Dawar

University of Cambridge Computer Laboratory, Cambridge, UK
firstname.lastname@cl.cam.ac.uk

Abstract
We study properties of relational structures such as graphs that are decided by families of Boolean
circuits. Circuits that decide such properties are necessarily invariant to permutations of the
elements of the input structures. We focus on families of circuits that are symmetric, i.e., circuits
whose invariance is witnessed by automorphisms of the circuit induced by the permutation of the
input structure. We show that the expressive power of such families is closely tied to definability
in logic. In particular, we show that the queries defined on structures by uniform families of
symmetric Boolean circuits with majority gates are exactly those definable in fixed-point logic
with counting. This shows that inexpressibility results in the latter logic lead to lower bounds
against polynomial-size families of symmetric circuits.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, F.4.1 Mathematical Logic

Keywords and phrases symmetric circuit, fixed-point logic, majority, counting, uniformity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.41

1 Introduction

A property of graphs on n vertices can be seen as a Boolean function which takes as inputs the(
n
2
)
potential edges (each of which can be 0 or 1) and outputs either 0 or 1. For the function

to determine a property of the graph, rather than of a particular presentation of the graph,
it must be invariant under re-ordering the vertices of the graph. That is, permuting the(
n
2
)
inputs according to some permutation of [n] leaves the value of the function unchanged.

We call such Boolean functions invariant. Note that this does not require the function to
be invariant under all permutations of its inputs, which would mean that it was entirely
determined by the number of inputs that are set to 1.

It is a long-standing open problem in descriptive complexity to give a characterisation
of the polynomial-time properties of finite relational structures (or, indeed, just graphs) as
the classes of structures definable in some suitable logic (see, for instance, [7, Chapter 11]).
It is known that fixed-point logic FP and its extension with counting FPC are strictly less
expressive than deterministic polynomial time P [3]. It is easy to see that every polynomial-
time property of graphs is decided by a P-uniform family of circuits that are invariant in the
sense above. On the other hand, when a property of graphs is expressed in a formal logic,
it gives rise to a family of circuits that are explicitly invariant or symmetric. By this we
mean that their invariance is witnessed by the automorphisms of the circuits themselves. For
instance, any sentence of FP translates into a polynomial-size family of symmetric Boolean
circuits, while any sentence of FPC translates into a polynomial-size family of symmetric
Boolean circuits with majority gates.

Concretely, a circuit Cn consists of a directed acyclic graph whose internal gates are marked
by operations from a basis (e.g., the standard Boolean basis Bstd := {AND, OR, NOT} or
the majority basis Bmaj = Bstd ∪ {MAJ}) and input gates which are marked with pairs of

© Matthew Anderson and Anuj Dawar;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 41–52

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.41
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42 On Symmetric Circuits and Fixed-Point Logics

vertices representing potential edges of an n-vertex input graph. Such a circuit is symmetric
if Cn has an automorphism π induced by each permutation σ of the n vertices, i.e., π moves
the input gates of Cn according to σ and preserves operations and wiring of the internal
gates of Cn. Clearly, any symmetric circuit is invariant.

Are symmetric circuits a weaker model of computation than invariant circuits? We
aim at characterising the properties that can be decided by uniform families of symmetric
circuits. Our main result shows that, indeed, any property that is decided by a uniform
polynomial-size family of symmetric majority circuits can be expressed in FPC.

I Theorem 1. A graph property is decided by a P-uniform family of symmetric majority
circuits if, and only if, it is defined by a fixed-point with counting sentence.

A consequence of this result is that inexpressibility results that have been proved for FPC
can be translated into lower bound results for symmetric circuits. For instance, it follows
(using [4]) that there is no polynomial-size family of symmetric majority circuits deciding
3-colourability or Hamiltonicity of graphs.

We also achieve a characterisation similar to Theorem 1 of symmetric Boolean circuits.

I Theorem 2. A graph property is decided by a P-uniform family of symmetric Boolean
circuits if, and only if, it is defined by a fixed-point sentence interpreted in G ⊕ 〈[n],≤〉, i.e.,
the structure that is the disjoint union of an n-vertex graph G with a linear order of length n.

Note that symmetric majority circuits can be transformed into symmetric Boolean circuits.
But, since FP, even interpreted over G ⊕ 〈[n],≤〉, is strictly less expressive than FPC, our
results imply that any such translation must involve a super-polynomial blow-up in size.
Similarly, our results imply with [3] that invariant Boolean circuits cannot be transformed
into symmetric circuits (even with majority gates) without a super-polynomial blow-up in
size. On the other hand, it is clear that symmetric majority circuits can still be translated
into invariant Boolean circuits with only a polynomial blow-up.

Support. The main technical tool in establishing the translation from uniform families of
symmetric circuits to sentences in fixed-point logics is a support theorem (stated informally
below) that establishes properties of the stabiliser groups of gates in symmetric circuits.

We say that a set X ⊆ [n] supports a gate g in a symmetric circuit C on an n-element
input structure if every automorphism of C that is generated by a permutation of [n] fixing
X also fixes g. It is not difficult to see that for a family of symmetric circuits obtained from
a given first-order formula φ there is a constant k such that all gates in all circuits of the
family have a support of size at most k. To be precise, the gates in such a circuit correspond
to subformulas ψ of φ along with an assignment of values from [n] to the free variables of ψ.
The set of elements of [n] appearing in such an assignment forms a support of the gate and
its size is bounded by the number of free variables ψ. Using the fact that any formula of FP
is equivalent, on structures of size n, to a first-order formula with a constant bound k on the
number of variables and similarly any formula of FPC is equivalent to a first-order formula
with majority quantifiers (see [9]) and a constant bound on the number of variables, we see
that the resulting circuits have supports of constant-bounded size. Our main technical result
is that the existence of supports of bounded size holds, in fact, for all polynomial-size families
of symmetric circuits. In its general form, we show the following theorem in Section 3 via an
involved combinatorial argument.

I Theorem 3 (Informal Support Thm). Let C be a symmetric circuit with s gates over a
graph of size n. If n is sufficiently large and s is sub-exponential in n, then every gate in C
has a support of size O

(
log s
logn

)
.

M. Anderson and A. Dawar 43

In the typical instantiation of the Theorem 3 the circuit C contains a polynomial number
of gates s = poly(n) and hence the theorem implies that every gate has a support that is
bounded in size by a constant. The proof of the Theorem 3 mainly relies on the structural
properties of symmetric circuits and is largely independent of the semantics of such circuits;
this means it may be of independent interest for other circuit bases and in other settings.

Symmetric Circuits and FP. In Section 4 we show that each polynomial-size family C of
symmetric circuits can be translated into a formula of fixed-point logic. If the family C is
P-uniform, by the Immerman-Vardi Theorem [12, 8] there is an FP-definable interpretation
of the circuit Cn in the ordered structure 〈[n],≤〉. We show that the support of a gate
is computable in polynomial time, and hence we can also interpret the support of each
gate in 〈[n],≤〉. The circuit Cn can be evaluated on an input graph G by fixing a bijection
between [n] and the universe U of G. We associate with each gate of g of Cn the set of those
bijections that cause g to evaluate to 1 on G. This set of bijections admits a compact (i.e.,
polynomial-size) representation as the set of injective maps from the support of g to U . We
show that these compact representations can be inductively defined by formulas of FP, or
FPC if the circuit also admits majority gates.

Thus, we obtain that P-uniform families of symmetric Boolean circuits can be translated
into formulas of FP interpreted in G combined with a disjoint linear order 〈[|G|],≤〉, while
families containing majority gates can be simulated by sentences of FPC. The reverse
containment follows using classical techniques. As a consequence we obtain the equivalences
of Theorems 1 & 2, and a number of more general results as this sequence of arguments
naturally extends to: (i) inputs given as an arbitrary relational structure, (ii) outputs
defining arbitrary relational queries, and (iii) non-uniform circuits, provided the logic is
allowed additional advice on the disjoint linear order.

Related Work. The term “symmetric circuit” is used by Denenberg et al. in [6] to mean what
we call invariant circuits. They give a characterisation of first-order definability in terms of a
restricted invariance condition, namely circuits that are invariant and whose relativisation to
subsets of the universe remains invariant. Our definition of symmetric circuits follows that
in [10] where Otto describes it as the “natural and straightforward combinatorial condition
to guarantee generic or isomorphism-invariant performance.” He combines it with a size
restriction on the orbits of gates along with a strong uniformity condition, which he calls
“coherence”, to give an exact characterisation of definability in infinitary logic. A key element
is the proof that if the orbits of gates in such a circuit are polynomially bounded in size
then they have supports of bounded size. We remove the assumption of coherence from
this argument and show that constant-size supports exist in any polynomial-size symmetric
circuit. This requires a generalisation of what Otto calls a “base” to supporting partitions.
See Section 5 for more discussion of connections with prior work.

Due to space limitations, full proofs are omitted and may be found in [1].

2 Preliminaries

Let [n] denote the set of positive integers {1, . . . , n}. Let SymS denote the group of all
permutations of the set S. When S = [n], we write Symn for Sym[n].

2.1 Vocabularies, Structures, and Logics
A relational vocabulary (always denoted by τ) is a finite sequence of relation symbols
(Rr1

1 , . . . , R
rk
k) where for each i ∈ [k] the relation symbol Ri has an associated arity ri ∈ N.

STACS’14

44 On Symmetric Circuits and Fixed-Point Logics

A τ -structure A is a tuple 〈A,RA1 , . . . , RAk 〉 consisting of (i) a non-empty set A called the
universe of A, and (ii) relations RAi ⊆ Ari for i ∈ [k]. Members of the universe A are called
elements of A. A multi-sorted structure is one whose universe is given as a disjoint union of
several distinct sorts. Define the size of a structure |A| to be the cardinality of its universe.
All structures considered in this paper are finite, i.e., their universes have finite cardinality.
Let fin[τ] denote the set of all finite τ -structures.

First-Order and Fixed-Point Logics. Let FO(τ) denote first-order logic with respect to the
vocabulary τ . The logic FO(τ) is the set of formulas whose atoms are formed using the
relation symbols in τ , an equality symbol =, an infinite sequence of variables (x, y, z . . .), and
that are closed under the Boolean connectives (∧ and ∨), negation (¬), and universal and
existential quantification (∀ and ∃). Let fixed-point logic FP(τ) denote the extension of FO(τ)
to include an inflationary fixed-point operator ifp. Assume standard syntax and semantics
for FO and FP (see the textbook [7] for more background). For a formula φ write φ(x) to
indicate that x is the tuple of the free variables of φ. For a logic L, a formula φ(x) ∈ L(τ)
with k free variables, A ∈ fin[τ], and tuple a ∈ Ak write A |=L φ[a] to express that the tuple
a makes the formula φ true in the structure A with respect to the logic L. We usually drop
the subscript L and write A |= φ[a] when no confusion would arise.

Logics with Disjoint Advice. Let τarb be a relational vocabulary without a binary relation
symbol ≤. Let Υ : N→ fin[τarb] {≤2}] be an advice function, where for n ∈ N, Υ(n) has
universe [n] naturally ordered by ≤. Let (FP + Υ)(τ) denote the set of formulas of FP(τ ′)
where τ ′ := τ] τarb] {≤2} and τ is a vocabulary disjoint from τarb] {≤2}. For a structure
A ∈ fin[τ] define the semantics of φ ∈ (FP + Υ)(τ) to be A |=(FP+Υ) φ iff AΥ |=FP φ,

where AΥ := A ⊕ Υ(|A|) is the multi-sorted τ ′-structure formed by taking the disjoint
union of A with a structure coding a linear order of corresponding cardinality endowed with
interpretations of the relations in τarb. The universe of the multi-sorted structure AΥ is
written as A] [|A|]; refer to A as the point sort of AΥ and to [|A|] as the number sort of AΥ.

We are primarily interested in the special case when τarb is empty and hence Υ(|A|) =
〈[|A|],≤〉 is simply a linear order. Denote formulas of this logic by (FP +≤)(τ) and extended
structures by A≤ to emphasise the disjoint linear order. Let FPC(τ) denote the extension
of (FP +≤)(τ) with a counting operator #x where x is a point or number variable. For a
structure A ∈ fin[τ] and a formula φ(x) ∈ FPC(τ), #xφ(x) is a term denoting the element
in the number sort corresponding to |{a ∈ A | A |= φ[a]}|. See [7, Section 8.4.2] for more
details. Finally, we consider the extension of fixed-point logic with both advice functions
and counting quantifiers (FPC + Υ)(τ).

2.2 Symmetric and Uniform Circuits

A Boolean basis (always denoted by B) is a finite set of Boolean functions from {0, 1}∗ to
{0, 1}. We consider only bases containing symmetric functions, i.e., for all f ∈ B, f(x) = f(y)
for all n ∈ N and x, y ∈ {0, 1}n with the same number of ones. The standard Boolean basis
Bstd consists of unbounded fan-in AND, OR, and unary NOT operators. The majority basis
Bmaj extends the standard basis with an operator MAJ which is one iff the number of ones
in the input is at least the number of zeroes.

I Definition 4 (Circuits on Structures). A Boolean (B, τ)-circuit C with universe U computing
a q-ary query Q is a structure 〈G,W,Ω,Σ,Λ〉.

G is a set called the gates of C. The size of C is |C| := |G|.

M. Anderson and A. Dawar 45

W ⊆ G×G is a binary relation called the wires of the circuit. We require that (G,W)
forms a directed acyclic graph. Call the gates with no incoming wires input gates, and all
other gates internal gates. Gates h with (h, g) ∈W are called the children of g.
Ω is an injective function from Uq to G. The gates in the image of Ω are called the output
gates. When q = 0, Ω is a constant function mapping to a single output gate.
Σ is a function from G to B] τ] {0, 1} which maps input gates into τ] {0, 1} with
|Σ−1(0)|, |Σ−1(1)| ≤ 1 and internal gates into B. Call the input gates marked with a
relation from τ relational gates and the input gates marked with 0 or 1 constant gates.
Λ is a sequence of injective functions (ΛR)R∈τ where for each R ∈ τ , ΛR maps each
relational gate g with R = Σ(g) to ΛR(g) ∈ Ur where r is the arity of R. Where no
ambiguity arises, we write Λ(g) for ΛR(g).

Let C be a Boolean (B, τ)-circuit with universe U , A ∈ fin[τ] with |A| = |U |, and
γ : A→ U be a bijection. Let γA denote the τ -structure over the universe U obtained by
relabelling the universe of A according to γ. Recursively evaluate C on γA by determining a
value C[γA](g) for each gate g: (i) a constant gate evaluates to the bit given by Σ(g), (ii) a
relational gate evaluates to 1 iff γA |= Σ(g)(ΛΣ(g)(g)), and (iii) an internal gate evaluates to
the result of applying the Boolean operation Σ(g) to the values for g’s children. C defines
the q-ary query Q ⊆ Aq where a ∈ Q iff C[γA](Ω(γa)) = 1.

I Definition 5 (Invariant Circuit). Let C be a (B, τ)-circuit with universe U computing a
q-ary query. The circuit C is invariant if for every A ∈ fin[τ] with |A| = |U |, a ∈ Aq, and
bijections γ1, γ2 from A to U , C[γ1A](Ω(γ1a)) = C[γ2A](Ω(γ2a)).

Invariance indicates that C computes a property of τ -structures which is invariant to
presentations of the structure. Moreover, for an invariant circuit C only the size of U matters
and we often write C = Cn, for emphasis, when the universe is size n. A family C = (Cn)n∈N
of invariant (B, τ)-circuits naturally computes a q-ary query on τ -structures. When q = 0
the family computes a Boolean property of structures. We now discuss an algebraic property
of circuits called symmetry that implies invariance.

Symmetric Circuits. Permuting a circuit’s universe may induce automorphisms of the circuit.

I Definition 6 (Induced Automorphism). Let C = 〈G,W,Ω,Σ,Λ〉 be a (B, τ)-circuit with
universe U computing a q-ary query. Let σ ∈ SymU . If there is a bijection π from G to G
such that

for all gates g, h ∈ G, W (g, h) iff W (π(g), π(h)),
for all output tuples x ∈ Uq, πΩ(x) = Ω(σ(x)),
for all gates g ∈ G, Σ(g) = Σ(π(g)), and
for each relational gate g ∈ G, σΛ(g) = Λ(π(g)),

we say σ induces the automorphism π of C.

The principle goal of this paper is to understand the computational power of circuit
classes with the following type of algebraic symmetry.

I Definition 7 (Symmetric). A circuit C with universe U is called symmetric if for every
permutation σ ∈ SymU , σ induces an automorphism of C.

It is not difficult to see that, for a symmetric circuit C, there is a homomorphism h :
SymU → Aut(C) (where Aut(C) denotes the automorphism group of C) such that h(σ) is
an automorphism induced by σ.

To avoid certain trivialities we restrict ourselves to circuits which are rigid.

STACS’14

46 On Symmetric Circuits and Fixed-Point Logics

I Definition 8 (Rigid). Let C = 〈G,W,Ω,Σ,Λ〉 be a (B, τ)-circuit with universe U . Call
C rigid if there do not exist distinct gates g, g′ ∈ G with Σ(g) = Σ(g′), Λ(g) = Λ(g′),
Ω−1(g) = Ω−1(g′), and for every g′′ ∈ G, W (g′′, g) iff W (g′′, g′).

For a rigid symmetric circuit C it is easy to show that the group of automorphisms
of C is exactly SymU acting faithfully. We shall therefore abuse notation and use these
interchangeably. In particular, we shall write σg to denote the image of a gate g in C under
the action of the automorphism induced by a permutation σ in SymU .

An examination of the definitions suffices to show that symmetry implies invariance. In
symmetric circuits it is useful to consider those permutations which induce automorphisms
that fix gates. Let P be a partition of a set U . Let the pointwise stabiliser of P be StabU (P) :=
{σ ∈ SymU | ∀P ∈ P, σP = P}, and similarly define the setwise stabiliser StabU{P} :=
{σ ∈ SymU | ∀P ∈ P, σP ∈ P}. For a gate g in a rigid symmetric circuit C with universe
U , let the stabiliser of g be StabU (g) := {σ ∈ SymU | σg = g}, and let the orbit of g under
the automorphism group Aut(C) of C be Orb(g) := {σg | σ ∈ SymU}. In each case, when
U = [n], we write Stabn instead of Stab[n].

Uniform Circuits. One natural class of circuits are those with polynomial-size descriptions
that can be generated by a deterministic polynomial-time machine.

I Definition 9 (P and P/poly-Uniform). A (B, τ)-circuit family C = (Cn)n∈N computing a
q-ary query is P/poly-uniform if there exists an integer t ≥ q and function Υ : N→ {0, 1}∗
which takes an integer n to a binary string Υ(n) such that |Υ(n)| = poly(n), and Υ(n)
describes1 the circuit Cn whose gates are indexed by t-tuples of [n], inputs are labelled
by t-tuples of [n], and outputs are labelled by q-tuples of [n]. Moreover, if there exists a
deterministic Turing machine M that for each integer n computes Υ(n) from 1n in time
poly(n) call C P-uniform.

Note that such uniform families implicitly have polynomial size.
Over ordered structures neither P-uniform nor P/poly-uniform circuits need compute

invariant queries as their computation may implicitly depend on the order associated with
[n]. To obtain invariance for such circuits we assert symmetry. The next section proves a
natural property of symmetric circuits that ultimately implies that symmetric P-uniform
circuits coincide with FP definitions on the standard and majority bases.

3 Symmetry and Support

In this section we analyse the algebraic properties of symmetric circuits.

I Definition 10 (Support). Let C be a rigid symmetric circuit with universe U and let g be
a gate in C. A set X ⊆ U supports g if StabU (X) ⊆ StabU (g).

We now show how to associate supports of constant size in a canonical way to all gates
in any rigid symmetric circuit of polynomial size. Indeed, our result is more general as it
associates moderately growing supports to gates in circuits of sub-exponential size. We first
introducing the more general notion of a supporting partition for a permutation group, which
can be canonically associated with any permutation group G, and obtain bounds on the size
of such a partition based on the index of G in the symmetric group. These results are then

1 Formally one must define a particular way of encoding circuits via binary strings. However, since the
details of the representation are largely irrelevant for our purposes we omit them.

M. Anderson and A. Dawar 47

used to bound the size of supports of stabiliser groups of gates in rigid symmetric circuits as
a function of circuit size. This proves our main technical result—the Support Theorem.

A supporting partition generalises the notion of a support of a gate by replacing the set
with a partition and the stabiliser group of the gate with an arbitrary permutation group.

I Definition 11 (Supporting Partition). Let G ⊆ SymU be a group and P a partition of U .
We say that P is a supporting partition of G if StabU (P) ⊆ G.

For intuition consider two extremes. When G has supporting partition P = {U}, it
indicates G = SymU . Saying that G has supporting partition P = {{u1}, {u2}, . . . , {u|U |}}
indicates only that G contains the identity permutation, which is always true.

A natural partial order on partitions is the coarseness relation, i.e., P ′ is as coarse as P,
denoted P ′ ⊇ P, if every part in P is contained in some part of P ′. A proof is similar to
that of (*) on page 379 of [10] implies the following lemma.

I Lemma 12. Each permutation group G ⊆ SymU has a unique coarsest supporting partition.

We write SP(G) for the unique coarsest partition supporting G. By analysing how
supporting partitions are affected by the conjugacy action of SymU it is easy to show that
any group G is sandwiched between the pointwise and setwise stabilisers of SP(G).

I Lemma 13. For any group G ⊆ SymU , we have StabU (SP(G)) ⊆ G ⊆ StabU{SP(G)}.

Note that these bounds need not be tight. For example, if G is the alternating group on U (or,
indeed, any transitive, primitive subgroup of SymU), then SP(G) is the partition of U into
singletons. In this case, StabU (SP(G)) is the trivial group while StabU{SP(G)} = SymU .

We now use the bounds given by Lemma 13, in conjunction with bounds on G to obtain
size bounds on SP(G). Recall that the index of G in SymU , denoted [SymU : G] is the
number of cosets of G in SymU or, equivalently, |SymU |

|G| . The next lemma, proved via a
involved combinatorial argument, says that if P is a partition of [n] where the index of
Stabn{P} in Symn is sufficiently small then (i) the number of parts in P is either very small
or very big, and (ii) if the number of parts in P is small, then it must have a large part.

I Lemma 14. Let ε and n be such that 0 ≤ ε < 1 and logn ≥ 8
ε2 . Let P be a partition of

[n], s := [Symn : Stabn{P}] and n ≤ s ≤ 2n1−ε .
1. Let k := |P|, then min{k, n− k} ≤ 8

ε
log s
logn .

2. If |P| ≤ n
2 , then P contains a part with at least n− 33

ε ·
log s
logn elements.

We leverage the above combinatorial lemmas to show that in symmetric circuits of
polynomial size, each gate has a small supporting partition, and hence has a small support.
Let g be a gate in a rigid symmetric circuit C over universe U , we abuse notation and write
SP(g) for SP(StabU (g)). Note that, if P is any part in SP(g), then U \ P is a support of g
in the sense of Definition 10. We write ‖SP(g)‖ to denote the smallest value of |U \ P | over
all parts P in SP(g). Also, let SP(C) denote the maximum of ‖SP(g)‖ over all gates g in C.

By the orbit-stabiliser theorem, |Orb(g)| = [SymU : StabU (g)]. By Lemma 13, we have
that StabU (g) ⊆ StabU{SP(g)} and thus, if s is an upper bound on |Orb(g)|, s ≥ [SymU :
StabU (g)] ≥ [SymU : StabU{SP(g)}]. Then, by Part 2 of Lemma 14, g has a support of small
size provided that (i) s is sub-exponential, and (ii) SP(g) has fewer than n/2 parts. Thus,
to prove our main technical theorem, which formalises Theorem 3 from the introduction, it
suffices to show that if s is sufficiently sub-exponential, (ii) holds.

STACS’14

48 On Symmetric Circuits and Fixed-Point Logics

I Theorem 15 (Support Theorem). For any ε and n with 2
3 ≤ ε ≤ 1 and n > 2

56
ε2 , if C is

a rigid symmetric circuit over universe U with |U | = n and s := maxg∈C |Orb(g)| ≤ 2n1−ε ,
then, SP(C) ≤ 33

ε
log s
logn .

Proof. Suppose 1 ≤ s < n. C cannot have relational inputs, because each relational gate
must have an orbit of size at least n, so each gate of C computes a constant Boolean function.
The support of every gate g in C must be {U}, and hence 0 = ‖SP(g)‖ = SP(C). Therefore
assume s ≥ n.

To conclude the theorem from Part 2 of Lemma 14 it suffices to argue that for all
gates g, |SP(g)| ≤ n

2 . Suppose g is a constant gate, then, because g is the only gate with
its label, it is fixed under all permutations and hence |SP(g)| = |{U}| = 1 < n

2 . If g is
a relational gate, then it is fixed by any permutation that fixes all elements appearing
in Λ(g) and moved by all others. Thus, SP(g) must contain singleton parts for each
element of U in Λ(g) and a part containing everything else. Thus, if |SP(g)| > n

2 , SP(g)
contains at least n

2 singleton parts, there is a contradiction using the bounds on s, n, and ε,
s ≥ |Orb(g)| ≥ ‖SP(g)‖! ·

(
n

‖SP(g)‖
)
≥
⌊
n
2
⌋
! ≥ 2bn4 c > 2n1−ε

.

It remains to consider internal gates. For the sake of contradiction let g be a topologically
first internal gate such that SP(g) has more than n

2 parts. Part 1 of Lemma 14 implies, along
with the assumptions on s, n, and ε, that n− |SP(g)| ≤ k′ :=

⌈
8
ε

log s
logn

⌉
≤ 1

4n
1−ε < n

2 .

Let H denote the children of g. Because g is a topologically first gate with |SP(g)| > n
2 ,

for all h ∈ H, SP(h) has at most n
2 parts. As before, we argue a contradiction with the

upper bound on s. This is done by demonstrating that there is a set of gate-automorphism
pairs S = {(h, σ) | h ∈ H,σ ∈ SymU} that are: (i) useful – the automorphism moves the
gate out of the set of g’s children, i.e., σh 6∈ H, and (ii) independent – each child and its
image under the automorphism are fixed points of the other automorphisms in the set, i.e.,
for all (h, σ), (h′, σ′) ∈ S, σ′h = h and σ′σh = σh. Note that sets which are useful and
independent contain tuples whose gate and automorphism parts are all distinct. The set S
describes elements in the orbit of H with respect to SymU .

I Claim 16. Let S be useful and independent, then |Orb(H)| ≥ 2|S|.

Proof. Let R be any subset of S. Derive an automorphism from R: σR :=
∏

(h,σ)∈R σ (since
automorphisms need not commute, fix an arbitrary ordering of S).

Let R and Q be distinct subsets of S where without loss of generality |R| ≥ |Q|. Pick any
(h, σ) ∈ R\Q 6= ∅. Because S is independent σRh = σh and σQσh = σh. Since S is useful,
σh 6∈ H. Thus σh ∈ σRH, but σh 6∈ σQH. Hence σRH 6= σQH. Therefore each subset of S
can be identified with a distinct element in Orb(H) and hence |Orb(H)| ≥ 2|S|. J

Thus to reach a contradiction it suffices to construct a sufficiently large set S of gate-
automorphism pairs. To this end, divide U into b |U |k′+2c disjoint sets Si of size k

′ + 2 and
ignore the elements left over. Observe that for each i there is a permutation σi which fixes
U\Si but σi moves g, because otherwise the supporting partition of g could be smaller
(n− (k′ + 2) + 1). Since g is moved by each σi and C is rigid, there must be an associated
child hi ∈ H with σihi 6∈ H. Thus let (hi, σi) be the gate-automorphism pair for Si, these
pairs are useful. Let Qi be the union of all but the largest part of SP(hi). Observe that for
any σ which fixes Qi pointwise σ also fixes both hi and σihi, by the definition of support.

Define a directed graph K on the sets Si as follows. Include an edge from Si to Sj , with
i 6= j, if Qi∩Sj 6= ∅. An edge in K indicates a potential lack of independence between (hi, σi)
and (hj , σj), and on the other hand if there are no edges between Si and Sj , the associated
pairs are independent. Thus it remains to argue that K has a large independent set. This is

M. Anderson and A. Dawar 49

possible because the out-degree of Si in K is bounded by |Qi| = ‖SP(hi)‖ ≤ 33
ε

log s
logn as the

sets Si are disjoint and Part 2 of Lemma 14 can be applied to hi. Thus the average total
degree (in-degree + out-degree) of K is at most 9k′. Greedily select a maximal independent
set in K by repeatedly selecting the Si with the lowest total degree and eliminating it and
its neighbours. This action does not effect the bound on the average total degree of K and
hence determines an independent set I in K of size at least

b |U |k′+2c
9k′ + 1 ≥

n− (k′ + 2)
(9k′ + 1)(k′ + 2) ≥

n
2 − 1

9k′2 + 10k′ + 2 ≥
7
16n

9k′2 + 10k′ + 2 ≥
n

(7k′)2

where the first inequality follows by expanding the floored expression, the second follows
because k′ < n

2 , the third follows from the lower bound on n, and the last follows because
k′ ≥ 1 as it is the ceiling of a positive non-zero quantity by definition.

Take S := {(hi, σi) | Si ∈ I}. By the argument above S is useful and independent. By
Claim 16, conclude that s ≥ |Orb(g)| ≥ |Orb(H)| ≥ 2|S| ≥ 2

n
(7k′)2 . For ε ≥ 2

3 , s ≤ 2n1−ε , and
ε

56 logn > 1 the following is a contradiction log s ≥ n · (56
ε

log s
logn)−2 > n · (n1−ε)−2 = n2ε−1 ≥

n1−ε. Thus |SP(g)| ≤ n
2 for all g ∈ C and the proof is complete by Part 2 of Lemma 14. J

Observe that when s is polynomial in n the support of a rigid symmetric circuit family is
asymptotically constant. This is the case for polynomial-size families.

I Corollary 17. Let C be a polynomial-size rigid symmetric circuit family, then SP(C) = O(1).

4 Translating Symmetric Circuits to Formulas

In this section, we deploy the Support Theorem to show that P-uniform families of symmetric
circuits can be translated into formulas of fixed-point logic. We can show that there is a
polynomial-time algorithm that takes a symmetric circuit and outputs an equivalent rigid
symmetric circuit together with the supporting partitions of each gate.

I Lemma 18. Let C be a symmetric (B, τ)-circuit with universe U . There is a deterministic
algorithm which runs in time poly(|C|) and outputs a rigid symmetric (B, τ)-circuit C ′
computing the same query as C along with coarsest supporting partitions for every gate of C ′.

Let C = (Cn)n∈N be a family of P-uniform symmetric (B, τ)-circuits computing a q-ary
query. Let A ∈ fin[τ] be an input structure with universe U of size n. By Lemma 18 and the
Immerman-Vardi theorem, we have an FP interpretation defining a rigid symmetric circuit
equivalent to Cn over the number sort of A≤, i.e., a tuple of formulas of FP(≤) that define
the circuit when interpreted in 〈[n],≤〉. Moreover, the interpretation provides the coarsest
supporting partitions of the gates in Cn. Note that Cn is defined over the universe [n].

By Theorem 15, there is a constant bound k so that for each gate g in Cn the union of
all but the largest part of the coarsest partition supporting g, SP(g), has at most k elements.
Moreover, this union is a support of g in the sense of Definition 10. We call it the canonical
support of g and denote it by sp(g). To describe the evaluation of the circuit Cn with a
formula of fixed-point logic, we show that the evaluation of a gate g in Cn with respect to
the structure A depends only on how its universe U is mapped to the canonical support of g.

For any set X ⊆ [n], let UX denote the set of injective functions from X to U . For
X,Y ⊆ [n] and α ∈ UX , β ∈ UY , we say α and β are consistent, denoted α ∼ β, if for all
z ∈ X ∩ Y, α(z) = β(z), and for all x ∈ X\Y and y ∈ Y \X, α(x) 6= β(y). Recall that any
bijection γ : U → [n] determines an evaluation of the circuit Cn on the input structure
A which assigns to each gate g the Boolean value Cn[γA](g). Let g be a gate and let

STACS’14

50 On Symmetric Circuits and Fixed-Point Logics

Γ(g) := {γ | Cn[γA](g) = 1}. The following claim establishes that the membership of γ in
Γ(g) (moreover, the number of 1s input to g) depends only on what γ maps to sp(g).

I Claim 19. Let g be a gate in Cn with children H. Let α ∈ U sp(g), then for all γ1, γ2 : U →
[n] with γ−1

1 ∼ α and γ−1
2 ∼ α,

1. γ1 ∈ Γ(g) iff γ2 ∈ Γ(g).
2. |{h ∈ H | γ1 ∈ Γ(h)}| =

∑
h∈H

|Ah∩EVh|
|Ah| , where for h ∈ H, Ah := {β ∈ U sp(h) | α ∼ β}.

We associate with each gate g a set of injective functions EVg ⊆ U sp(g) defined by
EVg := {α ∈ U sp(g) | ∃γ ∈ Γ(g) ∧ α ∼ γ−1} and note that, by Claim 19, this completely
determines Γ(g). Since [n] is linearly ordered, X ⊆ [n] inherits this order and we write ~X for
the ordered |X|-tuple consisting of the elements of X in the inherited order. For α ∈ UX
write ~α ∈ U ~X for the tuple α(~X). This allows us to encode injective functions as tuples over
U e.g., ~EVg := {~α | α ∈ EVg}. Using Claim 19 we can construct ~EVg inductively over Cn.

Let g be a constant input gate, then sp(g) is empty. If Σ(g) = 0, then Γ(g) = ∅ and
~EVg = ∅. Otherwise Σ(g) = 1, then Γ(g) is all bijections and ~EVg = {〈〉}, i.e., the set
containing the empty tuple.
Let g be a relational gate with Σ(g) = R ∈ τ , then sp(g) is the set of elements in the
tuple ΛR(g). By definition we have ~EVg = {~α ∈ U ~sp(g) | α(ΛR(g)) ∈ RA}.
Let Σ(g) = AND and consider ~α ∈ U ~sp(g). By Claim 19, ~α ∈ ~EVg iff ~Ah = ~EVh for every
child h of g, i.e., for every child h and every β ∈ U sp(h) with α ∼ β, we have ~β ∈ ~EVh.
Let Σ(g) = OR and consider ~α ∈ U ~sp(g). By Claim 19, ~α ∈ ~EVg iff there is a child h of
g where ~Ah ∩ ~EVh is non-empty, i.e., for some child h of g and some β ∈ U sp(h) with
α ∼ β, we have ~β ∈ ~EVh.
Let Σ(g) = NOT and consider ~α ∈ U ~sp(g). g has exactly one child h. Claim 19 implies
that ~α ∈ ~EVg iff ~Ah 6= ~EVh, i.e., for some β ∈ U sp(h) with α ∼ β, we have ~β 6∈ ~EVh.
Let Σ(g) = MAJ and consider ~α ∈ U ~sp(g). Let H be the set of children of g and let
Ah := {β ∈ U sp(h) | β ∼ α}. Then Claim 19 implies that ~α ∈ ~EVg if, and only if,

∑
h∈H

| ~Ah ∩ ~EVh|
| ~Ah|

≥ |H|2 . (1)

From ~EV we can recover the query Q computed by Cn on the input structure A because
the support of an output gate g is exactly the set of elements in the marking of g by ΛΩ. In
particular: Q = {a ∈ Uq | ∃g ∈ G, ~α ∈ ~EVg such that ΛΩ(α−1(a)) = g}.

It is then straightforward (if laborious) to turn the inductive construction of ~EVg given
above to a fixed-point formula defining the relation V ⊆ [n]t × Uk by V (g, a) if, and only if,
ã ∈ ~EVg in the structure A≤, where ã is the restriction of the tuple a to |sp(g)| elements.
Here t is the arity of the FP-interpretation of the circuit Cn in the structure A≤. From this
we get a formula defining the query Q given by the circuit family C.

The only use of counting operators in the construction of the formula is in translating the
inductive step corresponding to majority gates. Thus, the formula we obtain is one of FP +≤
if B is the standard basis and of FPC if B is the majority basis. Moreover, if the family
C = (Cn)n∈N is not P-uniform, but given by an advice function Υ, we get an equivalent
formula of FP + Υ (for the standard basis) or FPC + Υ (for the majority basis).

On the other hand, formulas of FP + ≤ can be translated into P-uniform families of
symmetric Boolean circuits by standard methods and similar translations hold for FPC and
FP + Υ. Putting this all together gives us our main theorem.

M. Anderson and A. Dawar 51

I Theorem 20 (Main). The following pairs of classes define the same queries on struc-
tures:
1. Symmetric P-uniform Boolean circuits and FP +≤.
2. Symmetric P-uniform majority circuits and FPC.
3. Symmetric P/poly-uniform Boolean circuits and FP + Υ.
4. Symmetric P/poly-uniform majority circuits and FPC + Υ.

One consequence is that properties of graphs which we know not to be definable in
FPC are also not decidable by P-uniform families of symmetric circuits. The results of
Cai-Fürer-Immerman [3] give graph properties that are polynomial-time decidable, but not
definable in FPC. Furthermore, there are a number of natural NP-complete graph problems
known not to be definable in FPC, including Hamiltonicity and 3-colourability (see [4]).
Indeed, all these proofs actually show that these properties are not even definable in the
infinitary logic with a bounded number of variables and counting (Cω∞ω—see [9]). Since it
is not difficult to show that formulas of FPC + Υ can be translated into Cω∞ω, we have the
following.

I Corollary 21. Hamiltonicity and 3-colourability of graphs are not decidable by families of
P/poly-uniform symmetric majority circuits.

5 Coherent and Locally Polynomial Circuits

Otto [10] studies families of rigid symmetric Boolean circuits deciding properties of structures
where the families satisfy two uniformity properties. Informally, a circuit family C := (Cn)n∈N
is coherent if Cn appears as a subcircuit consisting of exactly the gates fixed by Sym[m]\[n]
of all but finitely many of the circuits Cm at input length m > n. Second, C is locally
polynomial of degree k if the size of the orbit of every wire in Cn is at most nk. The main
result [10, Theorem 6] is that coherent locally-polynomial of degree k families of symmetric
(Bstd, τ)-circuits computing Boolean properties of fin[τ] correspond to infinitary FO with k
variables. In Otto’s definition, individual circuits in the family may themselves be infinite, as
the only size restriction is on the orbits of wires. The theorem also shows that if the circuit
families are constant depth they correspond to the fragment of FO with k variables.

In all notions of uniformity we consider the circuits are of polynomial size. The Support
Theorem can be used to establish a direct connection between polynomial-size symmetric
circuit families and the locally-polynomial coherent symmetric families.

I Proposition 22 (Informal). Let C := (Cn)n∈N be a family of rigid symmetric Boolean
circuits.
1. If C is locally-polynomial and coherent, then C is polynomial size.
2. If C is polynomial size, then C is locally polynomial.

Since there are properties definable in an infinitary logic with finitely many variables that
are not decidable by polynomial-size circuits, it follows from the above proposition that the
use of infinite circuits is essential in Otto’s result.

Proposition 22 implies that all uniform circuit families we consider are locally polynomial.
However, they are not necessarily coherent. Indeed there are Boolean circuit families uniformly
definable in FO + ≤ that are not coherent. To see this observe that such circuit families
may include gates that are completely indexed by the number sort and hence are fixed
under all automorphisms induced by permutations of the point sort. Moreover the number
of such gates may increase as a function of input length. However, under the definition of
coherence, the number of gates in each circuit of a coherent family that are not moved by
any automorphism must be identical. Thus there are uniform circuits that are not coherent.

STACS’14

52 On Symmetric Circuits and Fixed-Point Logics

6 Future Directions

One of the original motivations for studying symmetric majority circuits was the hope
that they had the power of choiceless polynomial time with counting (CPTC) [2], and
that, perhaps, techniques from circuit complexity could improve our understanding of the
relationship between CPTC and the invariant queries definable in polynomial time. However,
because FPC (CPTC [5], our results indicate that symmetry is too much of a restriction
on P-uniform circuit families to recover CPTC.

A natural way to weaken the concept of symmetry is to require that induced automorph-
isms exist only for a certain subgroup of the symmetric group. This interpolates between
our notion of symmetric circuits and circuits on linearly-ordered structures, with the latter
case occurring when the subgroup is the identity.

The Support Theorem is a fairly general statement about the structure of symmetric
circuits and is largely agnostic to the particular semantics of the basis. To that end the
Support Theorem may find application to circuits over bases not consider here. The Support
Theorem can be applied to arithmetic circuits computing invariant properties of matrices
over a field; e.g., the Permanent polynomial is invariant and one standard way to compute
it is as a symmetric arithmetic circuit, i.e., Ryser’s formula [11]. Finally, the form of the
Support Theorem can, perhaps, be improved as the particular upper bound required on the
orbit size does not appear to be fundamental to the conclusion it reaches.

Acknowledgments. The authors thank Dieter van Melkebeek for looking at an early draft
of this paper. This research was supported by EPSRC grant EP/H026835.

References
1 M. Anderson and A. Dawar. On symmetric circuits and fixed-point logics. arXiv 1401.1125,

2014.
2 A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure and

Applied Logic, 100:141–187, 1999.
3 J-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables

for graph identification. Combinatorica, 12(4):389–410, 1992.
4 A. Dawar. A restricted second order logic for finite structures. Information and Computa-

tion, 143:154–174, 1998.
5 A. Dawar, D. Richerby, and B. Rossman. Choiceless polynomial time, counting and the

Cai–Fürer–Immerman graphs. Annals of Pure and Applied Logic, 152(1):31–50, 2008.
6 L. Denenberg, Y. Gurevich, and S. Shelah. Definability by constant-depth polynomial-size

circuits. Information and Control, 70(2):216–240, 1986.
7 H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2006.
8 N. Immerman. Relational queries computable in polynomial time. Information and Control,

68(1-3):86–104, 1986.
9 M. Otto. Bounded Variable Logics and Counting: A Study in Finite Models, volume 9 of

Lecture Notes in Logic. Springer-Verlag, 1997.
10 M. Otto. The logic of explicitly presentation-invariant circuits. In Dirk van Dalen and

Marc Bezem, editors, Computer Science Logic, volume 1258 of Lecture Notes in Computer
Science, pages 369–384. Springer Berlin Heidelberg, 1997.

11 H.J. Ryser. Combinatorial Mathematics. Mathematical Association of America, 1963.
12 M. Vardi. The complexity of relational query languages. In Proceedings of the Fourteenth

Annual ACM Symposium on Theory of Computing, pages 137–146. ACM, 1982.

Throughput Maximization in the Speed-Scaling
Setting∗

Eric Angel1, Evripidis Bampis2, and Vincent Chau1

1 IBISC, Université d’Evry Val d’Essonne, Evry, France
{Eric.Angel,Vincent.Chau}@ibisc.univ-evry.fr

2 Sorbonne Universités, UPMC Univ Paris 06, LIP6, Paris, France
Evripidis.Bampis@lip6.fr

Abstract
We are given a set of n jobs and a single processor that can vary its speed dynamically. Each job
Jj is characterized by its processing requirement (work) pj , its release date rj and its deadline dj .
We are also given a budget of energy E and we study the scheduling problem of maximizing the
throughput (i.e. the number of jobs that are completed on time). While the preemptive energy
minimization problem has been solved in polynomial time [Yao et al., FOCS’95], the complexity
of the problem of maximizing the throughput remained open until now. We answer partially
this question by providing a dynamic programming algorithm that solves the problem in pseudo-
polynomial time. While our result shows that the problem is not strongly NP-hard, the question
of whether the problem can be solved in polynomial time remains a challenging open question.
Our algorithm can also be adapted for solving the weighted version of the problem where every
job is associated with a weight wj and the objective is the maximization of the sum of the weights
of the jobs that are completed on time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problem

Keywords and phrases energy efficiency, dynamic speed scaling, offline algorithm, throughput,
dynamic programming

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.53

1 Introduction

The problem of scheduling n jobs with release dates and deadlines on a single processor that
can vary its speed dynamically with the objective of minimizing the energy consumption
has been first studied in the seminal paper by Yao et al. [12]. In this paper, we consider
the problem of maximizing the throughput for a given budget of energy. Throughput is
one of the most popular objectives in scheduling literature [5, 10]. Its maximization in the
context of energy-related scheduling is very natural since mobile devices, such as mobile
phones or computers, have a limited energy capacity depending on the quality of their
battery. The maximization of the number of jobs or of the total weight of the jobs executed
on time for a given budget of energy is of great importance. Different variants of the
throughput maximization problem in the online setting have been studied in the literature,
but surprisingly the status of the offline problem remained open.

Formally, we are given a set of n jobs J = {J1, J2, . . . , Jn}, where each job Jj is char-
acterized by its processing requirement (work) pj , its release date rj and its deadline dj .

∗ Supported by the French Agency for Research under the DEFIS program TODO (ANR-09-EMER-010)
and by the project PHC CAI YUANPEI (27927VE)

© Eric Angel, Evripidis Bampis, and Vincent Chau;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 53–62

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

54 Throughput Maximization in the Speed-Scaling Setting

We consider integer release dates, deadlines and processing requirements. (For simplicity,
we suppose that the earliest released job is released at t = 0.) We assume that the jobs
have to be executed by a single speed-scalable processor, i.e. a processor which can vary
its speed over time (at a given time, the processor’s speed can be any non-negative value).
The processor can execute at most one job at each time. We measure the processor’s speed
in units of executed work per unit of time. If s(t) denotes the speed of the processor at
time t, then the total amount of work executed by the processor during an interval of time
[t, t′) is equal to

∫ t′
t
s(u)du. Moreover, we assume that the processor’s power consumption

is a convex function of its speed. Specifically, at any time t, the power consumption of the
processor is P (t) = s(t)α, where α > 1 is a constant. Since the power is defined as the rate
of change of the energy consumption, the total energy consumption of the processor during
an interval [t, t′) is

∫ t′
t
s(u)αdu. Note that if the processor runs at a constant speed s during

an interval of time [t, t′), then it executes (t′− t) · s units of work and it consumes (t′− t) · sα
units of energy.

Each job Jj can start being executed after or at its release date rj . Moreover, the
execution of a job may be suspended and continued later from the point of suspension. Given
a budget of energy E, our objective is to find a schedule of maximum throughput whose
energy does not exceed the budget E, where the throughput of a schedule is defined as the
number of jobs which are completed on time, i.e. before their deadline. Observe that a job is
completed on time if it is entirely executed during the interval [rj , dj). By extending the
well-known 3-field notation, this problem can be denoted as 1|pmtn, rj , E|

∑
Uj . We also

consider the weighted version of the problem where every job Jj is also associated with a
weight wj and the objective is no more the maximization of the cardinality of the jobs that
are completed on time, but the maximization of the sum of their weights. We denote this
problem as 1|pmtn, rj , E|

∑
wjUj . In what follows, we consider the problem in the case

where all jobs have arbitrary integer release dates, deadlines and processing requirement.

1.1 Related Works and our Contribution
A series of papers appeared for some online variants of throughput maximization: the first
work that considered throughput maximization and speed scaling in the online setting has
been presented by Chan et al. [6]. They considered the single processor case with release
dates and deadlines and they assumed that there is an upper bound on the processor’s speed.
They are interested in maximizing the throughput, and minimizing the energy among all the
schedules of maximum throughput. They presented an algorithm which is O(1)-competitive
with respect to both objectives. Li [11] has also considered the maximum throughput when
there is an upper bound in the processor’s speed and he proposed a 3-approximation greedy
algorithm for the throughput and a constant approximation ratio for the energy consumption.
In [3], Bansal et al. improved the results of [6], while in [9], Lam et al. studied the 2-processors
environment. In [8], Chan et al. defined the energy efficiency of a schedule to be the total
amount of work completed in time divided by the total energy usage. Given an efficiency
threshold, they considered the problem of finding a schedule of maximum throughput. They
showed that no deterministic algorithm can have competitive ratio less than ∆, the ratio
of the maximum to the minimum jobs’ processing requirement. However, by decreasing
the energy efficiency of the online algorithm the competitive ratio of the problem becomes
constant. Finally, in [7], Chan et al. studied the problem of minimizing the energy plus a
rejection penalty. The rejection penalty is a cost incurred for each job which is not completed
on time and each job is associated with a value which is its importance. The authors proposed
an O(1)-competitive algorithm for the case where the speed is unbounded and they showed

E. Angel, E. Bampis, and V. Chau 55

that no O(1)-competitive algorithm exists for the case where the speed is bounded. In what
follows, we focus on the complexity status of the offline case for general instances. Angel
et al. [1] were the first to consider the throughput maximization problem in the energy
setting for the offline case. They studied the problem for a particular family of instances
where the jobs have agreeable deadlines, i.e. for every pair of jobs Ji and Jj , ri ≤ rj if
and only if di ≤ dj . They provided a polynomial time algorithm to solve the problem for
agreeable instances. However, to the best of our knowledge, the complexity of the unweighted
preemptive problem for arbitrary instances remained unknown until now. In this paper, we
prove that there is a pseudo-polynomial time algorithm for solving the problem optimally.
For the weighted version, the problem is NP-hard even for instances in which all the jobs
have common release dates and deadlines. Angel et al. [1] showed that the problem admits a
pseudo-polynomial time algorithm for agreeable instances. Our algorithm for the unweighted
case can be adapted for the weighted throughput problem with arbitrary release dates and
deadlines solving the problem in pseudo-polynomial time. More recently, Antoniadis et al.
[2] considered a generalization of the classical knapsack problem where the objective is to
maximize the total profit of the chosen items minus the cost incurred by their total weight.
The case where the cost functions are convex can be translated in terms of a weighted
throughput problem where the objective is to select the most profitable set of jobs taking into
account the energy costs. Antoniadis et al. presented a FPTAS and a fast 2-approximation
algorithm for the non-preemptive problem where the jobs have no release dates or deadlines.

We present in this paper an optimal algorithm for throughput maximization when the
preemption of jobs is allowed.

2 Preliminaries

Among the schedules of maximum throughput, we try to find the one of minimum energy
consumption. Therefore, if we knew by an oracle the set of jobs J∗, J∗ ⊆ J , which are
completed on time in an optimal solution, we would simply have to apply an optimal
algorithm for 1|pmtn, rj , dj |E for the jobs in J∗ in order to determine a minimum energy
schedule of maximum throughput for our problem. Such an algorithm has been proposed in
[12]. Based on this observation, we can use in our analysis some properties of an optimal
schedule for 1|pmtn, rj , dj |E.

Let t1, t2, . . . , tK be the time points which correspond to release dates and deadlines of
the jobs so that for each release date and deadline there is a ti value that corresponds to it.
We number the ti values in increasing order, i.e. t1 < t2 < . . . < tK . The following theorem
is a consequence of the algorithm of Yao et al. [12] and was proved in [4].

I Theorem 1. A feasible schedule for 1|pmtn, rj , dj |E is optimal if and only if all the
following hold:
1. Each job Jj is executed at a constant speed sj.
2. The processor is not idle at any time t such that t ∈ (rj , dj], for all Jj ∈ J .
3. The processor runs at a constant speed during any interval (ti, ti+1], for 1 ≤ i ≤ K − 1.
4. If others jobs are scheduled in the span [rj , dj] of Jj , then their speed is necessarily greater

or equal to the speed of Jj.

Theorem 1 is also satisfied by the optimal schedule of 1|pmtn, rj , E|
∑
Uj for the jobs in

J∗. In the following, we suppose that the jobs are sorted in non-decreasing order of their
deadlines (edf order), i.e. d1 ≤ d2 ≤ . . . ≤ dn. Moreover, we suppose that the release dates,
the deadlines and the processing requirements are integer.

STACS’14

56 Throughput Maximization in the Speed-Scaling Setting

I Definition 2. Let J(k, s, t) = {Jj | j ≤ k and s ≤ rj < t} be the set of jobs, among the k
first ones w.r.t. the edf order, whose release dates are within s and t.

I Lemma 3. The total period in which the processor runs at a same speed in an optimal
solution for 1|pmtn, rj , dj |E has an integer length.

Proof. The total period is defined by a set of intervals (ti, ti+1] for 1 ≤ i ≤ K − 1 thanks to
the property 3) in Theorem 1. Since each ti corresponds to some release date or some deadline,
then ti ∈ N, 1 ≤ i ≤ K. Thus every such period has necessarily an integer length. J

I Definition 4. Let L = dmax − rmin be the span of the whole schedule. To simplify the
notation, we assume that rmin = 0.

I Definition 5. Let P =
∑
j pj be the total processing requirement of all the jobs.

I Definition 6. We call an edf schedule, a schedule in which at any time, the processor
schedules the job that has the smallest deadline among the set of available jobs at this time.

In the sequel, all the considered schedules are edf schedules.

3 The Dynamic Program and its Correctness

In this part, we propose an optimal algorithm which is based on dynamic programming
depending on the span length L and the total processing requirement P . As mentioned
previously, among the schedules of maximum throughput, our algorithm constructs a schedule
with the minimum energy consumption.

For a subset of jobs S ⊆ J , a schedule which involves only the jobs in S will be called a
S-schedule.

I Definition 7. Let Gk(s, t, u) be the minimum energy consumption of a S-schedule with
S ⊆ J(k, s, t) such that |S| = u and such that the jobs in S are entirely scheduled in [s, t].

Given a budget of energy E that we cannot exceed, the objective function is
max{u | Gn(0, dmax, u) ≤ E; 0 ≤ u ≤ n}.

I Definition 8. Let Fk−1(x, y, u, `, i, a, h) be the minimum energy consumption of a S-
schedule with S ⊆ J(k − 1, x, y) such that |S| = u and such that the jobs in S are entirely
scheduled in [x, y] during at most a + h × `

i unit times. Moreover, we assume that each
maximal block of consecutive jobs of S starts at a release date and has a length equal to
a′ + h′ × `

i with a′, h′ ∈ N.

Next, we define the set of all important dates of an optimal schedule in which every job
can start and end, and we show that the size of this set is pseudo-polynomial.

I Definition 9. Let Ω = {rj | j = 1, . . . , n} ∪ {dj | j = 1, . . . , n}.

I Definition 10. Let Φ = {s + h × `
i ≤ L | i = 1, . . . , P ; h = 0, . . . , i; s = 0, . . . , L; ` =

1, . . . , L}

I Proposition 11. There exists an optimal schedule O in which for each job, its starting
times and finish times belong to the set Φ, and such that each job is entirely executed with a
speed i

` for some i = 1, . . . , P and ` = 1, . . . , L.

E. Angel, E. Bampis, and V. Chau 57

x y

a1 + h1 × `
i aq + hq × `

iaz + hz × `
i

release date
release date

release date

Figure 1 Illustration of Fk−1(x, y, u, `, i, a, h) in Definition 8 with respect to
∑q

z=1 az + hz × `
i

=
a + h × `

i
.

Proof. W.l.o.g. we can consider that each job has a unit processing requirement. If it is not
the case, we can split a job Jj into pj jobs, each one with a unit processing requirement.

We briefly explain the algorithm proposed in [12] which gives an optimal schedule. At
each step, it selects the (critical) interval I = [s, t] with s and t > s in Ω = {rj | j =
1, . . . , n} ∪ {dj | j = 1, . . . , n}, such that sI = |{Jj | s≤rj≤dj≤t}|

t−s is maximum. All the jobs
inside this interval are executed at the speed sI , which is of the form i

` for some i = 1, . . . , P
and ` = 1, . . . , L, and according to the edf order. This interval cannot be used any more,
and we recompute a new critical interval without considering the jobs and the previous
critical intervals, until all the jobs have been scheduled.

We can remark that the length of each critical interval (at each step) I = [s, t] is an
integer. This follows from the fact that s = rz ∈ N for some job Jz, and t = dj ∈ N for
some job Jj , moreover we remove integer lengths at each step (the length of previous critical
intervals which intersect the current one), so the new considered critical interval has always
an integer length.

Then we can define every potential starting time or completion time of each job in this
interval. We first prove that the completion time of a job in a continuous critical interval, i.e.
a critical interval which has an empty intersection with all other critical intervals, belongs
to Φ. Let Jk be any job in a continuous critical interval and let x and y be respectively its
starting and completion times. Then there is no idle time between s = rf (for some Jf) and
y since it is a critical interval. Let v = i

` be the processor speed in this interval and p = `
i

be the processing time of a job (Recall that each job has the same processing requirement).
The jobs that are executed (even partially) between x and y are not executed neither before
x nor after y since we consider an edf schedule. Thus y − x is a multiple of p. Two cases
may occur:

Either Jk causes a preemption and hence x = rk,
or Jk does not cause any preemption and hence the jobs that are executed between s and
x, are fully scheduled in this interval. Consequently, x− s is a multiple of p.

In both cases, there is a release date rg (either rk or rf) such that between rg and y, the
processor is never idle and such that y is equal to rg modulo p. On top of that, the distance
between rg and t is not greater than n× p. Hence, y ∈ Φ. Now consider the starting time of
any job. This time point is either the release date of the job or is equal to the completion
time of the "previous" one. Thus, starting times also belong to Φ.

Now we consider the starting and the completion times of a job in a critical interval
I in which there is at least another critical interval (with greater speeds) included in I or

STACS’14

58 Throughput Maximization in the Speed-Scaling Setting

intersecting I. Let A be the union of those critical intervals. Since the jobs of I cannot be
scheduled during the intervals A, the starting time and completion time of these jobs have
to be (right)-shifted by an integer value (since each previously critical interval has an integer
length). Thus the starting time and completion time of all the jobs still belong to Φ. J

I Proposition 12. One has

Gk(s, t, u) = min

Gk−1(s, t, u)

min
x∈Φ

0≤u1≤u
0≤u2≤u

0≤u1+u2≤u−1
0≤a≤L; 1≤`≤L
1≤i≤P ; 0≤h≤P
y−x=a+(pk+h) `

i
rk≤x≤y≤dk

 Gk−1(s, x, u1) + Fk−1(x, y, u2, `, i, a, h)

+
(i
`

)α−1
pk +Gk−1(y, t, u− u1 − u2 − 1)

G0(s, t, 0) = 0 ∀s, t ∈ Φ
G0(s, t, u) = +∞ ∀s, t ∈ Φ and u > 0

s x ty

Fk−1(x, y, u2, ℓ, i, a, h) Gk−1(y, t, u− u1 − u2 − 1)Gk−1(s, x, u1)

Jk

Figure 2 Illustration of Proposition 12 where x is the first starting time of Jk and y is the last
completion time of Jk.

Proof. Let G′ be the right hand side of the formula, G′1 be the first line of G′ and G′2 be
the second line of G′.
We first prove that Gk(s, t, u) ≤ G′.

Since J(k − 1, s, t) ⊆ J(k, s, t), then Gk(s, t, u) ≤ Gk−1(s, t, u) = G′1.
Now consider a schedule S1 that realizes Gk−1(s, x, u1), a schedule S2 that realizes

Fk−1(x, y, u2, `, i, a, h) such that y − x = a + (pk + h) × `
i and a schedule S3 that realizes

Gk−1(y, t, u− u1 − u2 − 1). We build a schedule with S1 from s to x, with S2 from x to y
and with S3 from y to t.

Since Fk−1(x, y, u2, `, i, a, h) is a schedule where the processor executes the jobs during
at most a+ h× l

i unit times and we have y − x = a+ (pk + h)× `
i , then there is at least

pk × `
i units time for Jk. Thus Jk can be scheduled with speed i

` during [x, y].
Obviously, the subsets J(k − 1, s, x), J(k − 1, x, y) and J(k − 1, y, t) do not intersect, so

this is a feasible schedule, and its cost is G′2. Hence Gk(s, t, u) ≤ G′2.

We now prove that G′ ≤ Gk(s, t, u).

If Jk /∈ O such that O realizes Gk(s, t, u), then G′1 = Gk(s, t, u).
Now, let us consider the case Jk ∈ O.

E. Angel, E. Bampis, and V. Chau 59

We denote by X the schedule that realizes Gk(s, t, u) in which the first starting time x of
Jk is maximal, and in which y is the last completion time of Jk is also maximal. According
to Proposition 11, we assume that x, y ∈ Φ. We split X (which is an edf schedule) into
three sub-schedules S1 ⊆ J(k − 1, s, x), S2 ⊆ J(k − 1, x, y) ∪ {Jk} and S3 ⊆ J(k − 1, y, t).

We claim that we have the following properties:

P1) all the jobs of S1 are released in [s, x] and are completed before x,
P2) all the jobs of S2 are released in [x, y] and are completed before y,
P3) all the jobs of S3 are released in [y, t] and are completed before t.

We prove P1

Suppose that there is a job Jj ∈ S1 which is not completed before x. Then we can swap
some part of Jj of length ε which is scheduled after x with some part of Jk of length ε at
time x. This can be done since we have dj ≤ dk. Thus we have a contradiction with the fact
that x was maximal.

We prove P2

Similarly, suppose that there is a job Jj ∈ S2 which is not completed before y. Then we can
swap some part of Jj of length ` which is scheduled after y with some part of Jk of length `
in [x, y]. This can be done since we have dj ≤ dk. Thus we have a contradiction with the
fact that y was maximal.

We prove P3

If there exists a job in S3 which is not entirely executed at time t, then the removal of this
job would lead to a lower energy consumption schedule for S3 with the same throughput
value. This contradicts the definition of Gk−1(y, t, |S3|).

Let us now consider the schedule S ′2 = S2 \ Jk in [x, y]. Since [x, y] ⊆ [rk, dk], thanks
to property 4) of Theorem 1, the speeds of jobs in S ′2 are necessarily greater than or equal
to the speed of Jk. Let us consider any maximal block b of consecutive jobs in S ′2. This
block can be partitioned into two sub-blocks b1 and b2 such that b1 (resp. b2) contains all
the jobs of b which are scheduled with a speed equal to (resp. strictly greater than) the
speed of Jk. All the jobs scheduled in block b are also totally completed in b (this comes
from the edf property and because Jk has the biggest deadline). Notice that the speed
of Jk is equal to i

` for some value i = 1, . . . , P and ` = 1, . . . , L thanks to Proposition 11.
Thus the total processing time of b1 is necessarily h′ × `

i . Moreover since from property 3 of
Theorem 1, all the speed changes occur at time ti ∈ N, the block b2 has an integer length.
Therefore, every block b has a length equal to a′ + h′ × `

i and the total processing time of S ′2
is a+ h× `

i . Furthermore, every block b in S ′2 starts at a release date (this comes from the
edf property). On top of that, we have y − x = a+ (h+ pk)× `

i with a = 0, 1, . . . , L and
h = 0, . . . , i. Moreover, every block b in S ′2 starts at a release date (this comes from the edf
property). Hence the cost of the schedule S ′2 is greater than Fk−1(x, y, |S ′2|, `, i, a, h). The
energy consumption of Jk is exactly pk × (i`)

α−1.
Similarly, the cost of the schedule S1 is greater than Gk−1(s, x, |S1|) and the cost of S3 is

greater than Gk−1(y, t, |S3|).
Therefore, Gk(s, t, u) ≥ Gk−1(s, x, |S1|) + Fk−1(x, y, |S2|, `, i, a, h) + Gk−1(y, t, |S3|) +

pk

(i
`

)α−1
= G′2 and Gk(s, t, u) ≥ G′. J

STACS’14

60 Throughput Maximization in the Speed-Scaling Setting

I Proposition 13. One has

Fk−1(x, y, u, `, i, a, h) = min
0≤a′≤a; 0≤h′≤h
x≤x′=rj≤y; j≤k

1≤β≤u
y′=x′+a′+h′× `

i≤y

{Gk−1(x′, y′, β)+Fk−1(y′, y, u−β, `, i, a−a′, h−h′)}

Fk−1(x, y, 0, `, i, a, h) = 0
Fk−1(x, y, u, `, i, 0, 0) = +∞

x yx′ y′

Gk−1(x
′, y′, β)

Fk−1(y
′, y, u− β, `, i, a− a′, h− h′)

a′ + h′ × `
i

β jobs

Figure 3 Illustration of Proposition 13.

Proof. Let F ′ be the right hand side of the equation.
We first prove that Fk−1(x, y, u, `, i, a, h) ≤ F ′.

Let us consider a schedule S1 that realizes Gk−1(x′, y′, β) and a schedule S2 that realizes
Fk−1(y′, y, u− β, `, i, a′, h′). We suppose that the processor is idle during [x, x′]. We build a
schedule with an empty set from x to x′, with S1 from x′ to y′ and with S2 from y′ to y.

Obviously, the subsets J(k−1, x, z) and J(k−1, z, y) do not intersect, so this is a feasible
schedule, and its cost is F ′, thus Fk−1(x, y, u, f, `, i) ≤ F ′.

We now prove that F ′ ≤ Fk−1(x, y, u, `, i, a, h).

Let O be an optimal schedule that realizes Fk−1(x, y, u, `, i, a, h) such that x′ is the first
starting time of the schedule and y′ is the completion time of the first block of jobs in O.
We split it into two sub-schedules S1 ⊆ J(k − 1, x′, y′) and S2 ⊆ J(k − 1, y′, y) such that the
value of x′ is maximal and the value of y′ is also maximal.

Then y′−x′ = a′+h′× `
i for some value a′ = 0, . . . , a and h′ = 0, . . . , h by definition. Thus

we can assume that the jobs in S2 have to be scheduled during at most (a− a′) + (h−h′)× `
i

units of time in [y′, y]. We claim that x′ is a release date by definition.
Moreover, we claim that all the jobs of S2 are released in [y′, y] and are completed before

y. If there exists a job in S2 which is not completed at time t, then the removal of this job
would lead to a lower energy consumption schedule for S2 which contradicts the definition of
Fk−1(y′, y, |S2|, `, i, a− a′, h− h′).

Then the restriction S1 of O in [x′, y′] is a schedule that meets all constraints related to
Gk−1(x′, y′, |S1|). Hence its cost is greater than Gk−1(x′, y′, |S1|). Similarly, the restriction
S2 of O to [y′, y] is a schedule that meets all constraints related to Fk−1(y′, y, |S2|, `, i, a−
a′, h− h′).

Thus F ′ ≤ Fk−1(x, y, u, `, i, a, h). J

E. Angel, E. Bampis, and V. Chau 61

I Theorem 14. The preemptive throughput maximization problem can be solved in O(n6L9P 9)
time and in O(nL6P 6) space.

Proof. The values of Gk(s, t, u) are stored in a multi-dimensional array of size O(|Φ|2n2).
Each value need O(|Φ|n2L2P 2r(F)) time to be computed where r(F) is the running time
for computing Fk−1(x, y, u, `, i, a, h). Since we fix every value of x, y, u, `, i, a, h in the
minimization step, the table F does not need to be pre-computed. Then the running
time is O(n2LP) for each value of F . Therefore, the total running time of the dynamic
programming is O(n6L9P 9). Moreover, the values of Fk−1(x, y, u, `, i, a, h) are stored in a
multi-dimensional array (since we don’t need to remember the Fi values for i < k − 1) of
size O(n|Φ|2L2P 2) = O(nL6P 6). J

The dynamic program can be adapted for the weighted version of the problem and has a
running time of O(n2W 4L9P 9) where W is the sum of the weight of all jobs. This can be
done by considering the total weight of completed jobs of a schedule instead of considering
the number of completed jobs. More formally, this can be done by modifying the definitions
of Gk and Fk−1 in the following way:

Gk(s, t, w) is the minimum energy consumption of a S-schedule with S ⊆ J(k, s, t) such
that

∑
Jj∈S wj ≥ w and such that the jobs in S are entirely scheduled in [s, t], and

Fk−1(x, y, w, `, i, a, h) is the minimum energy consumption of a S-schedule with S ⊆
J(k− 1, x, y) such that

∑
Jj∈S wj ≥ w and such that the jobs in S are entirely scheduled

in [x, y] during at most a+ h× `
i unit times. As for the cardinality case, we assume that

each maximal block of consecutive jobs of S starts at a release date and has a length
equal to a′ + h′ × `

i with a′, h′ ∈ N.

4 Conclusion

In this paper, we proved that there is a pseudo-polynomial time algorithm for solving the
problem optimally. This result is a first (partial) answer to the complexity status of the
throughput maximization problem in the offline setting. Our result shows that the problem
is not strongly NP-hard, but the question of whether there is a polynomial time algorithm
for it remains a challenging open question.

References
1 Eric Angel, Evripidis Bampis, Vincent Chau, and Dimitrios Letsios. Throughput maximiz-

ation for speed-scaling with agreeable deadlines. In T.-H. Hubert Chan, Lap Chi Lau, and
Luca Trevisan, editors, TAMC, volume 7876 of Lecture Notes in Computer Science, pages
10–19. Springer, 2013.

2 Antonios Antoniadis, Chien-Chung Huang, Sebastian Ott, and José Verschae. How to pack
your items when you have to buy your knapsack. In Krishnendu Chatterjee and Jiri Sgall,
editors, MFCS, volume 8087 of Lecture Notes in Computer Science, pages 62–73. Springer,
2013.

3 Nikhil Bansal, Ho-Leung Chan, Tak Wah Lam, and Lap-Kei Lee. Scheduling for speed
bounded processors. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (1), volume 5125
of Lecture Notes in Computer Science, pages 409–420. Springer, 2008.

4 Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and
temperature. J. ACM, 54(1), 2007.

STACS’14

62 Throughput Maximization in the Speed-Scaling Setting

5 Peter Brucker. Scheduling Algorithms. Springer Publishing Company, Incorporated, 5th
edition, 2010.

6 Ho-Leung Chan, Wun-Tat Chan, Tak Wah Lam, Lap-Kei Lee, Kin-Sum Mak, and Prudence
W. H. Wong. Energy efficient online deadline scheduling. In Nikhil Bansal, Kirk Pruhs,
and Clifford Stein, editors, SODA, pages 795–804. SIAM, 2007.

7 Ho-Leung Chan, Tak Wah Lam, and Rongbin Li. Tradeoff between energy and throughput
for online deadline scheduling. In Klaus Jansen and Roberto Solis-Oba, editors, WAOA,
volume 6534 of Lecture Notes in Computer Science, pages 59–70. Springer, 2010.

8 Joseph Wun-Tat Chan, Tak Wah Lam, Kin-Sum Mak, and Prudence W. H. Wong. Online
deadline scheduling with bounded energy efficiency. In Jin yi Cai, S. Barry Cooper, and
Hong Zhu, editors, TAMC, volume 4484 of Lecture Notes in Computer Science, pages 416–
427. Springer, 2007.

9 Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong. Energy
efficient deadline scheduling in two processor systems. In Takeshi Tokuyama, editor, ISAAC,
volume 4835 of Lecture Notes in Computer Science, pages 476–487. Springer, 2007.

10 E. L. Lawler. A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Annals of Operations Research, 26:125–133,
1990.

11 Minming Li. Approximation algorithms for variable voltage processors: Min energy, max
throughput and online heuristics. Theor. Comput. Sci., 412(32):4074–4080, 2011.

12 F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced CPU
energy. In FOCS, pages 374–382. IEEE Computer Society, 1995.

Efficient Computation of Optimal Energy and
Fractional Weighted Flow Trade-off Schedules
Antonios Antoniadis∗1, Neal Barcelo†2, Mario Consuegra‡3,
Peter Kling§4, Michael Nugent5, Kirk Pruhs¶6, and
Michele Scquizzato‖7

1,2,5,6,7 University of Pittsburgh, Pittsburgh, USA
3 Florida International University, Miami, USA
4 University of Paderborn, Paderborn, Germany

Abstract
We give a polynomial time algorithm to compute an optimal energy and fractional weighted flow
trade-off schedule for a speed-scalable processor with discrete speeds. Our algorithm uses a geo-
metric approach that is based on structural properties obtained from a primal-dual formulation
of the problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases scheduling, flow time, energy efficiency, speed scaling, primal-dual

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.63

1 Introduction

It seems to be a universal law of technology in general, and information technology in
particular, that higher performance comes at the cost of energy efficiency. Thus a common
theme of green computing research is how to manage information technologies so as to obtain
the proper balance between these conflicting goals of performance and energy efficiency. Here
the technology we consider is a speed-scalable processor, as manufactured by the likes of
Intel and AMD, that can operate in different modes, where each mode has a different speed
and power consumption, and the higher speed modes are less energy-efficient in that they
consume more energy per unit of computation. The management problem that we consider
is how to schedule jobs on such a speed-scalable processor in order to obtain an optimal
trade-off between a natural performance measure (fractional weighted flow) and the energy
used. Our main result is a polynomial time algorithm to compute such an optimal trade-off
schedule.

We want to informally elaborate on the statement of our main result. Fully formal
definitions can be found in Section 3. We need to explain how we model the processors, the
jobs, a schedule, our performance measure, and the energy-performance trade-off:

∗ Supported by a fellowship within the Postdoc-Programme of the German Academic Exchange Service
(DAAD).
† This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-1247842.
‡ Supported by NSF Graduate Research Fellowship DGE-1038321.
§ Supported by the German Research Foundation (DFG) within the Collaborative Research Center
“On-The-Fly Computing” (SFB 901) and by the Graduate School on Applied Network Science (GSANS).
¶ Supported in part by NSF grants CCF-1115575, CNS-1253218 and an IBM Faculty Award.
‖ Supported in part by a fellowship of “Fondazione Ing. Aldo Gini”, University of Padova, Italy.

© Antonios Antoniadis, Neal Barcelo, Mario Consuegra, Peter Kling,
Michael Nugent, Kirk Pruhs, and Michele Scquizzato;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 63–74

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

The Speed-Scalable Processor: We assume that the processor can operate in any of a
discrete set of modes, each with a specified speed and power consumption.

The Jobs: Each job has a release time when the job arrives in the system, a volume of work
(think of a unit of work as being an infinitesimally small instruction to be executed), and
a total importance or weight. The ratio of the weight to the volume of work specifies the
density of the job, which is the importance per unit of work of that job.

A Schedule: A schedule specifies, for each real time, the job that is being processed and the
mode of the processor.

Our Performance Measure of Fractional Weighted Flow: The fractional weighted flow of
a schedule is the total over all units of work (instructions) of how much time that work
had to wait from its release time until that work was executed on the processor, times
the weight (aggregate importance) of that unit of work. So work with higher weight is
considered to be more important. Presumably the weights are specified by higher-level
applications that have knowledge of the relative importance of various jobs.

Optimal Trade-off Schedule: An optimal trade-off schedule minimizes the fractional weight-
ed flow plus the energy used by the processor (energy is just power integrated over
time). To gain intuition, assume that at time zero a volume p of work of weight w is
released. Intuitively/Heuristically one might think that the processor should operate
in the mode i that minimizes w p

2si
+ Pi

p
si
, where si and Pi are the speed and power of

mode i respectively, until all the work is completed; In this schedule the time to finish
all the work is p

si
, the fractional weighted flow is w p

2si
, and the total energy usage is

Pi
p
si
. So the larger the weight w, the faster the mode that the processor will operate in.

Thus intuitively the application-provided weights inform the system scheduler as to which
mode to operate in so as to obtain the best trade-off between energy and performance.
(The true optimal trade-off schedule for the above instance is more complicated as the
speed will decrease as the work is completed.)
In Section 2 we explain the relationship of our result to related results in the literature.

Unfortunately both the design and analysis of our algorithm are complicated, so in Section 4
we give an overview of the main conceptual ideas before launching into details in the
subsequent sections. In Section 5 we present the obvious linear programming formulation
of the problem, and discuss our interpretation of information that can be gained about
optimal schedules from both the primal and dual linear programs. In Section 6 we use this
information to develop our algorithm. Finally in Section 7 we analyze the running time of
our algorithm. Due to space limitations, many of the details are left for the full version of
the paper.

2 Related Results

To the best of our knowledge there are three papers in the algorithmic literature that study
computing optimal energy trade-off schedules. All of these papers assume that the processor
can run at any non-negative real speed, and that the power used by the processor is some
nice function of the speed, most commonly the power is equal to the speed raised to some
constant α. Essentially both [2, 13] give polynomial time algorithms for the special case
of our problem where the densities of all units of work are the same. The algorithm in
[13] is a homotopic optimization algorithm that intuitively traces out all schedules that
are Pareto-optimal with respect to energy and fractional flow, one of which must obviously
be the optimal energy trade-off schedule. The algorithm in [2] is a dynamic programming
algorithm. [2] also deserves credit for introducing the notion of trade-off schedules. [7] gave

A. Antoniadis et al. 65

a polynomial-time algorithm for recognizing an optimal schedule. [7] also showed that the
optimal schedule evolves continuously as a function of the importance of energy, implying
that a continuous homotopic algorithm is, at least in principle, possible. However, [7] was
not able to provide any bound, even exponential, on the time of this algorithm, nor was [7]
able to provide any way to discretize this algorithm.

To reemphasize, the prior literature [2, 13, 7] on our problem assumes that the set of
allowable speeds is continuous. Our setting of discrete speeds both more closely models the
current technology, and seems to be algorithmically more challenging. In [7] the recognition
of an optimal trade-off schedule in the continuous setting is essentially a direct consequence of
the KKT conditions of the natural convex program, as it is observed that there is essentially
only one degree of freedom for each job in any plausibly optimal schedule, and this degree
of freedom can be recovered from the candidate schedule by looking at the speed that the
job is run at any time that the job is run. In the discrete setting, we shall see that there
is again essentially only one degree of freedom for each job, but unfortunately one cannot
easily recover the value of this degree of freedom by examining the candidate schedule. Thus
we do not know of any simple way to even recognize an optimal trade-off schedule in the
discrete setting.

One might also reasonably consider the performance measure of the aggregate weighted
flow over jobs (instead of work), where the flow of a job is the amount of time between when
the job is released and when the last bit of work of that job is finished. In the context that
the jobs are flight queries to a travel site, aggregating over the delay of jobs is probably
more appropriate in the case of Orbitz, as Orbitz does not present the querier with any
information until all the possible flights are available, while aggregating over the delay of
work may be more appropriate in the case of Kayak, as Kayak presents the querier with
flight options as they are found. Also, often the aggregate flow of work is used as a surrogate
measure for the aggregate flow of jobs as it tends to be more mathematically tractable. In
particular, for the trade-off problem that we consider here, the problem is NP-hard if we
were to consider the performance measure of the aggregate weighted flow of jobs, instead of
the aggregate weighted flow of work. The hardness follows immediately from the well known
fact that minimizing the weighted flow time of jobs on a unit speed processor is NP-hard [10],
or from the fact that minimizing total weighted flow, without release times, subject to an
energy budget is NP-hard [12].

There is a fair number of papers that study approximately computing optimal trade-off
schedules, both offline and online. [12] also gives PTAS’s for minimizing total flow without
release times subject to an energy budget in both the continuous and discrete speed settings.
[2, 6, 11, 4, 3, 5, 8, 9] consider online algorithms for optimal total flow and energy, [4, 5]
consider online algorithms for fractional flow and energy. For a survey on energy-efficient
algorithms, see [1].

3 Model & Preliminaries

We consider the problem of scheduling a set J := { 1, 2, . . . , n } of n jobs on a single processor
featuring k different speeds 0 < s1 < s2 < . . . < sk. The power consumption of the processor
while running at speed si is Pi ≥ 0. We use S := { s1, . . . , sk } to denote the set of speeds
and P := {P1, . . . , Pk } to denote the set of powers. While running at speed si, the processor
performs si units of work per time unit and consumes energy at a rate of Pi.

Each job j ∈ J has a release time rj , a processing volume (or work) pj , and a weight wj .
Moreover, we denote the value dj := wj

pj
as the density of job j. All densities are distinct;

STACS’14

66 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

details about this assumption are left for the full version. For each time t, a schedule S must
decide which job to process at what speed. We allow preemption, that is, a job may be
suspended at any point in time and resumed later on. We model a schedule S by a speed
function V : R≥0 → S and a scheduling policy J : R≥0 → J . Here, V (t) denotes the speed
at time t, and J(t) the job that is scheduled at time t. Jobs can be processed only after they
have been released. For job j let Ij = J−1(j) ∩ [rj ,∞) be the set of times during which it
is processed. A feasible schedule must finish the work of all jobs. That is, the inequality∫
Ij
S(t) dt ≥ pj must hold for all jobs j.
We measure the quality of a given schedule S by means of its energy consumption and

its fractional flow. The speed function V induces a power function P : R≥0 → P, such
that P (t) is the power consumed at time t. The energy consumption of schedule S is
E(S) :=

∫∞
0 P (t) dt. The flow time (also called response time) of a job j is the difference

between its completion time and release time. If Fj denotes the flow time of job j, the
weighted flow of schedule S is

∑
j∈J wjFj . However, we are interested in the fractional flow,

which takes into account that different parts of a job j finish at different times. More formally,
if pj(t) denotes the work of job j that is processed at time t (i.e., pj(t) = V (t) if J(t) = j,
and pj(t) = 0 otherwise), the fractional flow time of job j is F̃ j :=

∫∞
rj

(t− rj)pj(t)
pj

dt. The
fractional weighted flow of schedule S is F̃ (S) :=

∑
j∈J wjF̃ j . The objective function is

E(S) + F̃ (S). Our goal is to find a feasible schedule that minimizes this objective.
We define s0 := 0, P0 := 0, sk+1 := sk, and Pk+1 :=∞ to simplify notation. Note that,

without loss of generality, we can assume Pi−Pi−1
si−si−1

< Pi+1−Pi

si+1−si
; Otherwise, any schedule using

si could be improved by linearly interpolating the speeds si−1 and si+1.

4 Overview

In this section we give an overview of our algorithm design and analysis. We start by
considering a natural linear programming formulation of the problem. We then consider
the dual linear program. Using complementary slackness we find necessary and sufficient
conditions for a candidate schedule to be optimal. Reminiscent of the approach used in the
case of continuous speeds in [7], we then interpret these conditions in the following geometric
manner. Each job j is associated with a linear function Dαj

j (t), which we call dual line. This
dual line has a slope of −dj and passes through point (rj , αj), for some αj > 0. Here t is
time, αj is the dual variable associated with the primal constraint that all the work from job
j must be completed, rj is the release time of job j, and dj is the density of job j. Given
such an αj for each job j, one can obtain an associated schedule as follows: At every time
t, the job j being processed is the one whose dual line is the highest at that time, and the
speed of the processor depends solely on the height of this dual line at that time.

The left picture in Figure 1 shows the dual lines for four different jobs on a processor
with three modes. The horizontal axis is time. The two horizontal dashed lines labeled by
C2 and C3 represent the heights where the speed will transition between the lowest speed
mode and the middle speed mode, and the middle speed mode and the highest speed mode,
respectively (these lines only depend on the speeds and powers of the modes and not on the
jobs). The right picture in Figure 1 shows the associated schedule.

By complementary slackness, a schedule corresponding to a collection of αj ’s is optimal
if and only if it processes exactly pj units of work for each job j. Thus we can reduce finding
an optimal schedule to finding values for these dual variables with this property.

Our algorithm is a primal-dual algorithm that raises the dual αj variables in an organized
way. We iteratively consider the jobs by decreasing density. In iteration i, we construct the

A. Antoniadis et al. 67

C1

C2

C3 s3

s2

s1

Figure 1 The dual lines for a 4-job instance, and the associated schedule.

optimal schedule Si for the i most dense jobs from the optimal schedule Si−1 for the i− 1
most dense jobs. We raise the new dual variable αi from 0 until the associated schedule
processes pi units of work from job i. At some point raising the dual variable αi may cause
the dual line for i to “affect” the dual line for a previous job j in the sense that αj must
be raised as αi is raised in order to maintain the invariant that the right amount of work is
processed on job j. Intuitively one might think of “affection” as meaning that the dual lines
intersect (this is not strictly correct, but might be a useful initial geometric interpretation
to gain intuition). More generally this affection relation can be transitive in the sense that
raising the dual variable αj may in turn affect another job, etc.

The algorithm maintains an affection tree rooted at i that describes the affection relation-
ship between jobs, and maintains for each edge in the tree a variable describing the relative
rates that the two incident jobs must be raised in order to maintain the invariant that the
proper amount of work is processed for each job. Thus this tree describes the rates that the
dual variables of old jobs must be raised as the new dual variable αi is raised at a unit rate.

In order to discretize the raising of the dual lines, we define four types of events that
cause a modification to the affection tree:

a pair of jobs either begin or cease to affect each other,
a job either starts using a new mode or stops using some mode,
the rightmost point on a dual line crosses the release time of another job, or
enough work is processed on the new job i.

During an iteration, the algorithm repeatedly computes when the next such event will occur,
raises the dual lines until this event, and then computes the new affection tree. Iteration i
completes when job i has processed enough work. Its correctness follows from the facts that
(i) the affection graph is a tree, (ii) this affection tree is correctly computed, (iii) the four
aforementioned events are exactly the ones that change the affection tree, and (iv) the next
such event is correctly computed by the algorithm. We bound the running time by bounding
the number of events that can occur, the time required to calculate the next event of each
type, and the time required to recompute the affection tree after each event.

5 Structural Properties via Primal-Dual Formulation

In the following, we give an integer linear programming (ILP) description of our problem.
To this end, let us assume that time is divided into discrete time slots such that, in each
time slot, the processor runs at constant speed and processes at most one job. Note that
these time slots may be arbitrarily small, yielding an ILP with many variables and, thus,
rendering a direct solution approach less attractive. However, we are actually not interested
in solving this ILP directly. Instead, we merely strive to use it and its dual in order to obtain
some simple structural properties of an optimal schedule.

STACS’14

68 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

min
∑
j∈J

T∑
t=rj

k∑
i=1

xjti
(
Pi + sidj(t− rj + 1/2)

)
s.t.

T∑
t=rj

k∑
i=1

xjti · si ≥ pj ∀j

∑
j∈J

k∑
i=1

xjti ≤ 1 ∀t

xjti ∈ { 0, 1 } ∀j, t, i

(a) ILP formulation of our scheduling problem.

max
∑
j∈J

pjαj −
T∑
t=1

βt

s.t. βt ≥ αjsi − Pi
−sidj(t− rj + 1/2)
∀j, t, i : t ≥ rj

αj ≥ 0 ∀j
βt ≥ 0 ∀t

(b) Dual program of the ILP’s relaxation.

Figure 2

ILP & Dual Program. Let the indicator variable xjti denote whether job j is processed in
slot t at speed si. Moreover, let T be some upper bound on the total number of time slots.
This allows us to model our scheduling problem via the ILP given in Figure 2a. The first set
of constraints ensures that all jobs are completed, while the second set of constraints ensures
that the processor runs at constant speed and processes at most one job in each time slot.

In order to use properties of duality, we consider the relaxation of the above ILP. It
can easily be shown that any optimal schedule will always use highest density first as its
scheduling policy, and therefore there is no advantage to scheduling partial jobs in any time
slot. It follows that by considering small enough time slots, the value of an optimal solution
to the LP will be no less than the value of the optimal solution to the ILP. After considering
this relaxation and taking the dual, we get the dual program shown in Figure 2b.

The complementary slackness conditions of our primal-dual program are

αj > 0 ⇒
T∑

t=rj

k∑
i=1

xjti · si = pj , (1)

βt > 0 ⇒
∑
j∈J

k∑
i=1

xjti = 1, (2)

xjti > 0 ⇒ βt = αjsi − Pi − sidj(t− rj + 1/2) . (3)

By complementary slackness, any pair of feasible primal-dual solutions that fulfills these
conditions is optimal. We will use this in the following to find a simple way to characterize
optimal schedules.

A simple but important observation is that we can write the last complementary slackness
condition as βt = si

(
αj −dj(t− rj + 1

2)
)
−Pi. Using the complementary slackness conditions,

the function t 7→ αj − dj(t− rj) can be used to characterize optimal schedules. The following
definitions capture a parametrized version of these job-dependent functions and state how
they imply a corresponding (not necessarily feasible) schedule.

I Definition 1 (Dual Lines and Upper Envelope). For a value a ≥ 0 and a job j we denote
the linear function Da

j : [rj ,∞)→ R, t 7→ a− dj(t− rj) as the dual line of j with offset a.
Given a job set H ⊆ J and corresponding dual lines Daj

j , we define the upper envelope
of H by the upper envelope of its dual lines. That is, the upper envelope of H is a function

A. Antoniadis et al. 69

UEH : R≥0 → R≥0, t 7→ maxj∈H
(
D
aj

j (t), 0
)
. We omit the job set from the index if it is clear

from the context.

For technical reasons, we will have to consider the discontinuities in the upper envelope
separately.

I Definition 2 (Left Upper Envelope and Discontinuity). Given a job set H ⊆ J and
upper envelope of H, UEH , we define the left upper envelope at a point t as the limit of
UEH as we approach t from the left. That is, the left upper envelope of H is a function
LUEH : R≥0 → R≥0, t 7→ limt′→t− UEH(t′). Note that an equivalent definition of the left
upper envelope is LUEH(t) = maxj∈H:rj<t

(
D
aj

j (t), 0
)
.

We say that a point t is a discontinuity if UE has a discontinuity at t. Note that this
implies that UE(t) 6= LUE(t).

For the following definition, let us denote Ci := Pi−Pi−1
si−si−1

for i ∈ [k + 1] as the i-th speed
threshold. We use it to define the speeds at which jobs are to be scheduled. It will also be
useful to define Ĉ(x) = mini∈[k+1] {Ci | Ci > x } and Č(x) = maxi∈[k+1] {Ci | Ci ≤ x }.

I Definition 3 (Line Schedule). Consider dual lines Daj

j for all jobs. The corresponding line
schedule schedules job j in all intervals I ⊆ [rj ,∞) of maximal length in which j’s dual line
is on the upper envelope of all jobs (i.e., ∀t ∈ I : Daj

j (t) = UE(t)). The speed of a job j

scheduled at time t is si, with i such that Ci = Č(Daj

j (t)).

See Figure 1 for an example of a line schedule. Together with the complementary slackness
conditions, we can now easily characterize optimal line schedules.

I Lemma 4. Consider dual lines Daj

j for all jobs. The corresponding line schedule is optimal
with respect to fractional weighted flow plus energy if it schedules exactly pj units of work for
each job j.

Proof. Consider the solution x to the ILP induced by the line schedule. We use the offsets
aj of the dual lines to define the dual variables αj := aj + 1

2dj . For t ∈ N, set βt := 0 if
no job is scheduled in the t-th slot and βt := siD

αj

j (t) − Pi if job j is scheduled at speed
si during slot t. It is easy to check that x, α, and β are feasible and that they satisfy the
complementary slackness conditions. Thus, the line schedule must be optimal. J

6 Computing an Optimal Schedule

In this section, we describe and analyze the algorithm for computing an optimal schedule.
We introduce the necessary notation and provide a formal definition of the algorithm in
Subsection 6.1. Then, in Subsection 6.2, we prove the correctness of the algorithm.

6.1 Preliminaries and Formal Algorithm Description
Before formally defining the algorithm, we have to introduce some more notation.

I Definition 5 (Interval Notation). Let r̂1, . . . , r̂n denote the n release times in non-decreasing
order. We define Ψj as a set of indices with q ∈ Ψj if and only if job j is run between
r̂q and r̂q+1 (or after r̂n for q = n). Further, let x`,q,j denote the time that the interval
corresponding to q begins and xr,q,j denote the time that the interval ends. Let s`,q,j denote
the speed at which j is running at the left endpoint corresponding to q and sr,q,j denote
the speed j is running at the right endpoint. Let q`,j be the smallest and qr,j be the largest
indices of Ψj , i.e., the indices of the first and last execution intervals of j.

STACS’14

70 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

Let the indicator variable yr,j(q) denote whether xr,q,j occurs at a release point. Similarly,
y`,j(q) = 1 if x`,q,j occurs at rj , and 0 otherwise. Lastly, χj(q) is 1 if q is not the last interval
in which j is run, and 0 otherwise.

We define ρj(q) to be the last interval of the uninterrupted block of intervals starting at
q, i.e., for all q′ ∈ { q + 1, . . . , ρj(q) }, we have that q′ ∈ Ψj and xr,q′−1,j = x`,q′,j , and either
ρj(q) + 1 6∈ Ψj or xr,ρj(q),j 6= x`,ρj(q)+1,j .

Within iteration i of the algorithm, τ will represent how much we have raised αi. We can
think of τ as the time parameter for this iteration of the algorithm (not time as described in
the original problem description, but time with respect to raising dual-lines). To simplify
notation, we do not index variables by the current iteration of the algorithm. In fact, note
that every variable in our description of the algorithm may be different at each iteration of
the algorithm, e.g., for some job j, αj(τ) may be different at the i-th iteration than at the
(i+ 1)-st iteration. To further simplify notation, we use Dτ

j to denote the dual line of job j
with offset αj(τ). Similarly, we use UEτ to denote the upper envelope of all dual lines Dτ

j for
j ∈ [i] and Sτi to denote the corresponding line schedule. As the line schedule changes with
τ , so does the set of intervals corresponding to it, therefore we consider variables relating to
intervals to be functions of τ as well (e.g., Ψj(τ), x`,q,j(τ), etc.). Prime notation generally
refers to the rate of change of a variable with respect to τ , e.g., α′j(τ0) is the rate of change
of αj with respect to τ at τ0. To lighten notation, we drop τ from variables when its value is
clear from the context.

We start by formally defining a relation capturing the idea of jobs affecting each other
while being raised.

I Definition 6 (Affection). Consider two different jobs j and j′. We say job j affects job j′
at time τ if raising (only) the dual line Dτ

j would decrease the processing time of j′ in the
corresponding line schedule.

We write j → j′ to indicate that j affects j′ (and refer to the parameter τ separately, if not
clear from the context). Similarly, we write j 6→ j′ to state that j does not affect j′.

The affection relation naturally defines a graph on the jobs, which we define below. The
following definition assumes that we are in iteration i of the algorithm.

I Definition 7 (Affection Tree). Let Gi(τ) be the directed graph induced by the affection
relation on jobs 1, . . . , i. Then the affection tree is an undirected graph Ai(τ) = (Vi(τ), Ei(τ))
where j ∈ Vi(τ) if and and only if j is reachable from i in Gi(τ), and for j1, j2 ∈ Vi(τ) we
have (j1, j2) ∈ Ei(τ) if and only if j1 → j2 or j2 → j1.

Lemma 9 states that the affection tree is indeed a tree. We will assume that Ai(τ) is
rooted at i and use the notation (j, j′) ∈ Ai(τ) to indicate that j′ is a child of j.

Given this notation, we now define four different types of events which intuitively represent
the situations in which we must change the rate at which we are raising the dual line. We
assume that from τ until an event we raise each dual line at a constant rate. More formally,
we fix τ and for j ∈ [i] and u ≥ τ let αj(u) = αj(τ) + (u− τ)α′j(τ).

I Definition 8 (Event). For τ0 > τ , we say that an event occurs at τ0 if there exists ε > 0
such that at least one of the following holds for all u ∈ (τ, τ0) and v ∈ (τ0, τ0 + ε):

The affection tree changes, i.e., Ai(u) 6= Ai(v). This is called an affection change event.
The speed at the border of some interval of some job changes. That is, there exists j ∈ [i]
and q ∈ Ψj(τ) such that either s`,q,j(u) 6= s`,q,j(v) or sr,q,j(u) 6= sr,q,j(v). This is called
a speed change event.

A. Antoniadis et al. 71

The last interval in which job i is run changes from ending before the release time of
some other job to ending at the release time of that job. That is, there exists a j ∈ [i− 1]
and a q ∈ Ψi(τ) such that xr,q,i(u) < rj and xr,q,i(v) = rj . This is called a simple rate
change event.
Job i completes enough work, i.e., pi(u) < pi < pi(v). This is called a job completion
event.

A formal description of the algorithm can be found in Algorithm 1.

1 for each job i from 1 to n:
2 while pi(τ) < pi: {job i not yet fully processed in current schedule}
3 for each job j ∈ Ai(τ):
4 calculate δj,i(τ) {see Equation (5)}
5 let ∆τ be the smallest ∆τ returned by any of the subroutines below:
6 (a) JobCompletion(S(τ), i, [α′

1, α
′
2, . . . , α

′
i]) {time to next job completion}

7 (b) AffectionChange(S(τ), Ai(τ), [α′
1, α

′
2, . . . , α

′
i]) {time to next affection change}

8 (c) SpeedChange(S(τ), [α′
1, α

′
2, . . . , α

′
i]) {time to next speed change}

9 (d) RateChange(S(τ), i, [α′
1, α

′
2, . . . , α

′
i]) {time to next rate change}

10 for each job j ∈ Ai(τ):
11 raise αj by ∆τ · δj,i

12 set τ = τ + ∆τ
13 update Ai(τ) if needed {only if Case (b) returns the smallest ∆τ}

Algorithm 1 The algorithm for computing an optimal schedule.

6.2 Correctness of the Algorithm
In this subsection we focus on proving the correctness of the algorithm. Throughout this
subsection, we assume that the iteration and value of τ are fixed. The following lemma states
that Ai is indeed a tree. This structure will allow us to easily compute how fast to raise the
different dual lines of jobs in Ai (as long as the connected component does not change).

I Lemma 9. Let Ai be the (affection) graph of Definition 7. Then Ai is a tree, and if we
root Ai at i, then for any parent and child pair (ιj , j) ∈ G there holds that dιj < dj.

Recall that we have to raise the dual lines such that the total work done for any job
j ∈ [i− 1] is preserved. To calculate the work processed for j in an interval, we must take
into account the different speeds at which j is run in that interval. Note that the intersection
of j’s dual line with the i-th speed threshold Ci occurs at t = αj−Ci

dj
+ rj . Therefore, the

work done by a job j ∈ [i] is given by

pj =
∑
q∈Ψj

s`,q,j

(
αj − Č(Dτ

j (x`,q,j))
dj

+ rj − x`,q,j

)

+
∑

k:s`,q,j>sk>sr,q,j

sk

(
αj − Ck
dj

+ rj −
(
αj − Ck+1

dj
+ rj

))

+ sr,q,j

(
xr,q,j −

(
αj − Ĉ(Dτ

j (xr,q,j))
dj

+ rj

))
.

It follows that the change in the work of job j with respect to τ is

p′j =
∑
q∈Ψj

[
s`,q,j

(
α′j
dj
− x′`,q,j

)
+ sr,q,j

(
x′r,q,j −

α′j
dj

)]
. (4)

STACS’14

72 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

For some child j′ of j in Ai, let qj,j′ be the index of the interval of Ψj that begins with
the completion of j′. Recall that Dτ

i is raised at a rate of 1 with respect to τ , and for a
parent and child (ιj , j) in the affection tree, the rate of change for αj with respect to αιj
used by the algorithm is:

δj,ιj :=
(

1 + y`,j(q`,j)
dj − dιj
dj

s`,q`,j ,j − sr,ρj(q`,j),j

sr,qr,j ,j

+
∑

(j,j′)∈Ai

(
(1− δj′,j)

dj − dιj
dj′ − dj

s`,qj,j′ ,j

sr,qr,j ,j
+
dj − dιj
dj

s`,qj,j′ ,j − sr,ρ(qj,j′),j

sr,qr,j ,j

))−1

. (5)

Lemma 12 states that these rates are work-preserving for all jobs j ∈ [i− 1]. Note that the
algorithm actually uses δj,i which we can compute by taking the product of the δk,k′ over all
edges (k, k′) on the path from j to i. Similarly we can compute δj,j′ for all j, j′ ∈ Ai.

I Observation 10. Since, by Lemma 9, parents in the affection tree are always of lower-
density than their children, and since dual lines are monotonically decreasing, we have that
διj ,j ≤ 1. Therefore, intersection points on the upper envelope can never move towards the
right as τ gets increased.

The following lemma states how fast the borders of the various intervals change with respect
to the change in τ .

I Lemma 11. Consider any job j ∈ Ai whose dual line gets raised at a rate of δj,i.
(a) For an interval q ∈ Ψj, if y`,j(q) = 1, then x′`,q,j = 0.
(b) For an interval q ∈ Ψj, if χj(q) = 1, then x′r,q,j = 0.
(c) Let (j, j′) be an edge in the affection tree and let qj and qj′ denote the corresponding

intervals for j and j′. Then, x′`,qj ,j
= x′r,qj′ ,j

′ = −
α′j−α

′
j′

dj′−dj
. Note that this captures the

case q ∈ Ψj′ with χj′(q) = 0 and j′ 6= i.
(d) For an interval q ∈ Ψi, if χi(q) = 0, then x′r,q,i = 0 or x′r,q,i = 1/di.

Equation (4) defines a system of differential equations. In the following, we first show
how to compute a work-preserving solution for this system (in which p′j = 0 for all j ∈ [i− 1])
if α′i = 1, and then show that there is only a polynomial number of events and that the
corresponding τ values can be easily computed.

I Lemma 12. For a parent and child (ιj , j) ∈ Ai, set α′j = δj,ιjα
′
ιj , and for j′ 6∈ Ai set

αj′ = 0. Then p′j = 0 for j ∈ [i− 1].

Although it is simple to identify the next occurrence of job completion, speed change, or
simple rate change events, it is more involved to identify the next affection change event.
Therefore, we provide the following lemma to account for this case.

I Lemma 13. An affection change event occurs at time τ0 if and only if at least one of the
following occurs.
(a) An intersection point t between a parent and child (j, j′) ∈ Ai becomes equal to rj . That

is, at τ0 > τ such that Dτ0
j (rj) = Dτ0

j′ (rj) = UEτ0(rj).
(b) Two intersection points t1 and t2 on the upper envelope become equal. That is, for

(j1, j2) ∈ Ai and (j2, j3) ∈ Ai, at τ0 > τ such that there is a t with Dτ0
j1

(t) = Dτ0
j2

(t) =
Dτ0
j3

(t) = UEτ0(t).
(c) An intersection point between j and j′ meets the (left) upper envelope at the right

endpoint of an interval in which j′ was being run. Furthermore, there exists ε > 0 so
that for all τ ∈ (τ0 − ε, τ0), j′ was not in the affection tree.

A. Antoniadis et al. 73

6.2.1 The Subroutines

Recall that there are four types of events that cause the algorithm to recalculate the rates at
which it is raising the dual lines. In Lemma 13 we gave necessary and sufficient conditions
for affection change events to occur. The conditions for the remaining event types to occur
follow easily from Lemma 11 and Observation 10. Given the rates at which the algorithm is
raising the dual lines, we can then easily calculate the time until each of these events will
occur next. The subroutines describing these calculations are left for the full version.

6.2.2 Completing the Correctness Proof

We are now ready to prove the correctness of the algorithm. Note that we handle termination
in Theorem 15, where we prove a polynomial running time for our algorithm.

I Theorem 14. Assuming that Algorithm 1 terminates, it computes an optimal schedule.

Proof. The algorithm outputs a line schedule S, so by Lemma 4, S is optimal if for all jobs
j the schedule does exactly pj work on j. We now show that this is indeed the case.

For a fixed iteration i, we argue that a change in the rate at which work is increasing for
j (i.e., a change in p′j) may occur only when an event occurs. This follows from Equation (4),
since the rate only changes when there is a change in the rate at which the endpoints of
intervals move, when there is a change in the speed levels employed in each interval, or when
there is an affection change (and hence a change in the intervals of a job or a change in α′j).
These are exactly the events we have defined. It can be shown that the algorithm recalculates
the rates at any event (proofs deferred to the full version), and by Lemma 12 it calculates
the correct rates such that p′j(τ) = 0 for j ∈ [i− 1] and for every τ until some τ0 such that
pi(τ0) = pi, which the algorithm calculates correctly (proof also deferred to the full version).
Thus we get the invariant that after iteration i we have a line schedule for the first i jobs
that does pj work for every job j ∈ [i]. The theorem follows. J

7 The Running Time

The purpose of this section is to prove the following theorem.

I Theorem 15. Algorithm 1 takes O
(
n4k

)
time.

We do this by upper bounding the number of events that can occur. This is relatively
straightforward for job completion, simple rate change, and speed change events, which
can occur O(n), O

(
n2), and O(n2k

)
times, respectively. However, bounding the number of

times an affection change event can occur is more involved: One can show that whenever an
edge is removed from the affection tree, there exists an edge which will never again be in
the affection tree. This implies that the total number of affection change events is upper
bounded by O

(
n2) as well. It can be shown that the next event can always be calculated in

O
(
n2) time, and that the affection tree can be updated in O(n) time after each affection

change event. By combining these results it follows that our algorithm has a running time of
O
(
n4k

)
.

Due to space constraints, the missing proofs in the statements above are left for the full
version.

STACS’14

74 Optimal Energy and Fractional Weighted Flow Trade-off Schedules

References
1 Susanne Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96,

2010.
2 Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time minimiza-

tion. ACM Transactions on Algorithms, 3(4), 2007.
3 Lachlan L. H. Andrew, Adam Wierman, and Ao Tang. Optimal speed scaling under arbi-

trary power functions. SIGMETRICS Performance Evaluation Review, 37(2):39–41, 2009.
4 Nikhil Bansal, Ho-Leung Chan, Tak Wah Lam, and Lap-Kei Lee. Scheduling for speed

bounded processors. In Proceedings of the 35th International Conference on Automata,
Languages, and Programming (ICALP), pages 409–420, 2008.

5 Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power
function. ACM Transactions on Algorithms, 9(2), 2013.

6 Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed scaling for weighted flow time. SIAM
Journal on Computing, 39(4):1294–1308, 2009.

7 Neal Barcelo, Daniel Cole, Dimitrios Letsios, Michael Nugent, and Kirk Pruhs. Optimal
energy trade-off schedules. Sustainable Computing: Informatics and Systems, 3:207–217,
2013.

8 Sze-Hang Chan, Tak Wah Lam, and Lap-Kei Lee. Non-clairvoyant speed scaling for
weighted flow time. In Proceedings of the 18th annual European Symposium on Algorithms
(ESA), Part I, pages 23–35, 2010.

9 Nikhil R. Devanur and Zhiyi Huang. Primal dual gives almost optimal energy efficient
online algorithms. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1123–1140, 2014.

10 Jacques Labetoulle, Eugene L. Lawler, Jan Karel Lenstra, and A. H. G. Rinnooy Kan.
Preemptive scheduling of uniform machines subject to release dates. In Pulleyblank H. R.,
editor, Progress in combinatorial optimization, pages 245–261. Academic Press, 1984.

11 Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong. Speed
scaling functions for flow time scheduling based on active job count. In Proceedings of the
16th annual European Symposium on Algorithms (ESA), pages 647–659, 2008.

12 Nicole Megow and José Verschae. Dual techniques for scheduling on a machine with varying
speed. In Proceedings of the 40th International Conference on Automata, Languages, and
Programming (ICALP) - Volume Part I, pages 745–756, 2013.

13 Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard J. Woeginger. Getting the best re-
sponse for your erg. ACM Transactions on Algorithms, 4(3), 2008.

Weighted Coloring in Trees∗

Julio Araujo1,2,3, Nicolas Nisse2,3, and Stéphane Pérennes3

1 ParGO, Universidade Federal do Ceará, Fortaleza, Brazil
2 Inria, France
3 Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

Abstract
A proper coloring of a graph is a partition of its vertex set into stable sets, where each part
corresponds to a color. For a vertex-weighted graph, the weight of a color is the maximum
weight of its vertices. The weight of a coloring is the sum of the weights of its colors. Guan and
Zhu defined the weighted chromatic number of a vertex-weighted graph G as the smallest weight of
a proper coloring of G (1997). If vertices of a graph have weight 1, its weighted chromatic number
coincides with its chromatic number. Thus, the problem of computing the weighted chromatic
number, a.k.a. Max Coloring Problem, is NP-hard in general graphs. It remains NP-hard in
some graph classes as bipartite graphs. Approximation algorithms have been designed in several
graph classes, in particular, there exists a PTAS for trees. Surprisingly, the time-complexity of
computing this parameter in trees is still open.

The Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in sub-exponen-
tial time. We show that, assuming ETH, the best algorithm to compute the weighted chromatic
number of n-node trees has time-complexity nΘ(logn). Our result mainly relies on proving that,
when computing an optimal proper weighted coloring of a graph G, it is hard to combine colorings
of its connected components.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Weighted Coloring, Max Coloring, Exponential Time Hypothesis, 3-SAT

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.75

1 Introduction

Given a loop-less graph G = (V,E), a (proper) k-coloring of G is a surjective function
c : V → {1, . . . , k} that assigns to each vertex v ∈ V a color c(v) ∈ {1, . . . , k}, such that, for
any {u, v} ∈ E, c(u) 6= c(v). Equivalently, a k-coloring of G is a partition c = (S1, . . . , Sk)
of V such that, for any 1 ≤ i ≤ k, Si is a non-empty independent set of vertices that have
the same color i. One of the most studied problems in Graph Theory consists in minimizing
the number of colors of a proper coloring of a graph. Namely, Graph Coloring aims at
computing the chromatic number of a graph G, denoted by χ(G), which is the minimum k

for which G has a k-coloring. This is one of the Karp’s NP-hard problems [8].
In [6], Guan and Zhu generalized Graph Coloring to vertex-weighted graphs. A

(vertex) weighted graph (G,w) consists of a loop-less graph G = (V,E) and a weight function
w : V → R+ over the vertices of G. Given a k-coloring c = (S1, . . . , Sk) of a weighted graph
(G,w), the weight of color i (1 ≤ i ≤ k) is defined by w(i) = maxv∈Si w(v). The weight
of coloring c is w(c) =

∑k
i=1 w(i). The weighted chromatic number of (G,w), denoted by

∗ This work was partly funded by the ANR projects AGAPE and GRATEL, and promoted by the
Inria/FUNCAP project ALERTE and the Inria associate-team AlDyNet and CNPq–Brazil (contract
PDE 202049/2012-4).

© Julio Araujo, Nicolas Nisse, and Stéphane Pérennes;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 75–86

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.75
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

76 Weighted Coloring in Trees

χw(G), is the minimum weight of a proper coloring of (G,w). The Weighted Coloring
Problem (also known as Max-coloring [15, 12, 13, 14, 11]) takes a weighted graph (G,w) as
input and asks whether χw(G) is bounded [6].

Observe that if the weight of each of the vertices of a graph (G,w) is equal to one, then
the weight of a coloring is the number of its colors and thus, χw(G) = χ(G). Therefore,
Weighted Coloring generalizes Graph Coloring to weighted graphs, and, as a con-
sequence, this problem is NP-hard in general graphs. Moreover, Weighted Coloring has
been shown NP-hard in bipartite graphs [3], where Graph Coloring is trivial. In the last
years, the Weighted Coloring Problem has been addressed several times, however the
complexity of this problem is surprisingly still unknown in the class of trees.

Here, we show that, if 3-SAT cannot be solved in sub-exponential time (Exponential
Time Hypothesis), then Weighted Coloring in trees is not in P.

Related work. Weighted Coloring has been shown to be NP-hard in the classes of
split graphs, interval graphs, triangle-free planar graphs with bounded degree, and bipartite
graphs [3, 14, 2, 5, 15]. On the other hand, the weighted chromatic number of cographs and
of some subclasses of bipartite graphs can be found in polynomial-time [3, 2]. Constant-factor
approximation algorithms have been designed for various graph classes such as interval graphs,
perfect graphs, etc. [14, 11, 12, 13, 4]. In particular, it is known that Weighted Coloring
can be approximated by a factor 8

7 in bipartite graphs and cannot be approximated by a
factor 8

7 − ε for any ε > 0 in this graph class unless P = NP [13].
Guan and Zhu showed that, given a fixed parameter r ∈ N, the minimum weight of

a coloring using at most r colors can be computed in polynomial-time1 in the class of
bounded treewidth graphs (a.k.a. partial k-trees) [6]. They left open the question of
the time-complexity of the Weighted Coloring Problem in this class (partial k-trees)
and, in particular, in trees. In [13], a sub-exponential algorithm and a polynomial-time
approximation scheme to compute the weighted chromatic number of trees are presented.
Later on, Escoffier et al. proposed a polynomial-time approximation scheme to compute the
weighted chromatic number of bounded treewidth graphs [5]. Kavitha and Mestre recently
presented polynomial-time algorithms for subclasses of trees [9]. They show that computing
the weighted chromatic number can be done in linear time in the class of trees where nodes
with degree at least three induce a stable set [9].

In the last years, many studies have been done on the Weighted Coloring Problem,
however the complexity of this problem was still unknown on trees. Indeed, Weighted
Coloring in trees has some intriguing properties: on the one hand, a reduction to another
NP-hard problem was unlikely to exist due to the existence of a sub-exponential algorithm [13]
(see also Section 2); on the other hand, all the classical methods to derive polynomial-time
algorithms on trees failed [5, 9]. We provide here some explanation for these facts.

Our results. We show that, under the Exponential Time Hypothesis (ETH) (see Section 2),
the best algorithm to compute the weighted chromatic number of trees has time-complexity
nΘ(logn), where n is the number of vertices of the input tree. The existence of an algorithm
that solves the Weighted Coloring Problem in time nΘ(logn) in bounded treewidth graphs
follows easily from previous results. The difficulty is to prove that it is optimal under ETH.
For this, we show that computing the weighted chromatic number of an n-node tree is as
hard as deciding whether a 3-SAT formula with size log2n can be satisfied, where the size of

1 We emphasize that this algorithm is exponential in r

J. Araujo, N. Nisse, and S. Pérennes 77

Figure 1 The unique optimal weighted coloring of P4 uses strictly more than χ(P4) colors.

a formula is η if it has η variables and its number of clauses is a polynomial in η. So, our
reduction is rather technical, but we hope that it contains ideas that may be used in other
contexts. Along the line of our reduction, one will discover another surprising aspect: the
difficulty of the problem not only comes from the graph structure, but rather relies on the
way weights are structured. This implies that choosing the right color for a node is hard. We
indeed use non-binary constraint satisfaction formulae (i.e., constraint satisfaction formulae
over positive integers) as main tool. Lastly, our reduction also proves that computing an
optimal weighted coloring of a disconnected graph may be hard even if optimal colorings of
each of its components can be done in polynomial-time.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2,
we formally state the main results of the paper: in Section 2.1, an nO(logn)-time algorithm
is derived from previous works, and in Section 2.2 we prove our main result assuming a
technical reduction (Proposition 2). The remaining part of the paper is devoted to the proof
of Proposition 2. In Section 3, we give the main ideas of its proof. Finally, in Section 4, we
prove a technical result (Proposition 3) which allows us to prove Proposition 2.

2 Preliminaries

2.1 Sub-exponential algorithm
In this section, we show that there exists a sub-exponential algorithm to solve the Weighted
Coloring Problem in the class of bounded treewidth graphs (including trees). This is an
almost trivial consequence of previous works that mainly relies on the number of colors used
by weighted colorings in these graphs.

There exist weighted graphs G for which any optimal weighted coloring uses strictly
more than χ(G) colors: let us consider the 4-node path P4 with V (P4) = {a, b, c, d}, w(a) =
w(d) = 4 and w(b) = w(c) = 1 (see Figure 1). Any coloring of P4 with 2 = χ(P4) colors has
weight 8, and the optimal coloring {{a, d}, {b}, {c}} of P4 has weight χw(P4) = 6 but uses 3
colors.

Luckily, the number of colors used by optimal weighted colorings can be bounded by
O(logn) in the class of bounded treewidth graphs with n nodes. Indeed, Guan and Zhu
studied the number of colors used by an optimal weighted coloring [6]. More precisely, they
proved that the maximum number of colors of an optimal weighted coloring of a weighted
graph (G,w) is its first-fit chromatic number χFF (G) (a.k.a., Grundy number) [6]. This is
tight since, for any graph G, there exists a weight function w such that an optimal weighted
coloring of (G,w) uses χFF (G) colors. On the other hand, for any n-node graph G with
tree-width at most k, χFF (G) = O(k logn) [10]. In particular, this implies that, for any
n-node tree, there is an optimal weighted coloring using O(logn) colors. Finally, in the
class of bounded treewidth graphs and when the number r ∈ N of colors is fixed, there is
an algorithm (using dynamic programming on the tree-decomposition) that computes the
minimum weight of a coloring using at most r colors in time polynomial in O(nr) where n is
the number of vertices of the input graph [6].

STACS’14

78 Weighted Coloring in Trees

By combining these results, the following proposition is straightforward:
I Proposition 1. There exists an algorithm that solves the Weighted Coloring Problem
in time nO(logn) in the class of bounded treewidth graphs (including trees), where n is the
number of vertices of the input graph.

2.2 Main Result
We now formalize our main result. Recall that an instance of the 3-SAT Problem is any
Boolean formula Φ(v1, . . . , vη) over the variables v1, . . . , vη in the conjunctive normal form
(CNF) where each clause involves three variables. The size of Φ is η if it depends on η

variables and its number of clauses is polynomial in η. The 3-SAT Problem asks whether
there exists a truth assignment to the variables such that Φ(v1, . . . , vη) is true. It is well
known that the 3-SAT Problem is NP-complete [1]. A fundamental question is to know
whether it can be solved in sub-exponential time. Note that, otherwise, P 6= NP .
I Conjecture 1. Exponential Time Hypothesis (ETH) [7].
3-SAT cannot be solved in time 2o(η) where η is the size of the instance.

The main part of this paper is devoted to proving the following result.
I Proposition 2. For any Boolean formula Φ of size η, there exist a weighted tree (T,w)
with n = 2O(√η) vertices and M ∈ R such that Φ is satisfiable if and only if χw(T) ≤ M .
Moreover, (T,w) and M are computable in time polynomial in n.

Proposition 2 allows us to prove that there is no polynomial-time algorithm to solve the
Weighted Coloring Problem in trees, unless ETH fails.

I Theorem 1. If ETH is true, then the best algorithm to compute the weighted chromatic
number of an n-node tree T has time-complexity nΘ(logn).

Proof. The existence of such an algorithm directly follows from Proposition 1. For purpose
of contradiction, let us assume that there exists an algorithm A that solves the Weighted
Coloring Problem in time no(logn) in the class of trees, where n is the number of vertices
of the input tree. Let Φ be any Boolean formula of size η. By Proposition 2, there exists a
weighted tree (T,w) with n = 2O(√η) = 2o(η) vertices and M ∈ R such that Φ is satisfiable
if and only if χw(T) ≤ M . Consider the following algorithm to solve 3-SAT. For any
Boolean formula Φ of size η, first compute (T,w) and M in time 2o(η), then use Algorithm
A to compute χw(T) in time no(logn) = 2o(η). By definition, Φ is satisfiable if and only if
χw(T) ≤M . Therefore, the above algorithm solves the 3-SAT Problem in time 2o(η) where
η is the size of the instance, contradicting ETH. J

The remaining part of the paper is devoted to the proof of Proposition 2.

3 From boolean variables to integral variables

Proposition 2 establishes a link between the Weighted Coloring Problem and 3-SAT.
Informally, to evaluate the time-complexity of the Weighted Coloring Problem, the
ideal way would be to reduce any 3-SAT formula Φ to a weighted tree (T,w) such that (1)
there is a correspondence between truth assignments of the variables of Φ and the optimal
colorings of T , and (2) Φ is satisfiable if and only if χw(T) is at most some pre-defined value
M (depending on Φ). To do such a reduction, we would like to proceed as follows: given
a boolean formula Φ of size η, we build a weighted tree T such that any truth assignment
of Φ for which Φ is satisfied, we have a coloring of T of bounded weight, where the weight

J. Araujo, N. Nisse, and S. Pérennes 79

of a color reflects the truth assignment of a variable. Hence, the desired weighted tree T
must be such that any optimal coloring of T uses η colors. However, proceeding that way,
since the number of colors in an optimal weighted coloring of an n-node tree is at most
O(logn), T must have at least n = 2η nodes. Hence, a polynomial-time algorithm to solve
the Weighted Coloring Problem in T would only lead to an exponential-time algorithm
for deciding whether Φ is satisfiable.

3.1 From 3-SAT to INT-SAT
To bypass the above problem, we will use an auxiliary formula. Intuitively, given a 3-SAT
formula with η boolean variables, we will translate it into another logical formula with √η
integral variables. Using this new formula, we build a tree with 2

√
η nodes, where the weights

of the colors in coloring of bounded weight will correspond to the integral values of the
variables. Note that our method is close to the Split and List method of [16]. More formally,

I Definition 2. Given a set of n×m boolean variables (yij)i<n,j<m, an integral assignment
of these variables is a truth assignment such that, for any 0 ≤ i < n, at most one variable yij ,
0 ≤ j < m, receives value 1.

A boolean formula Φ with n×m boolean variables (yij)i<n,j<m is integrally satisfiable
w.r.t. (yij)i<n,j<m if there is an integral assignment of its variables that satisfies Φ.

The INT-SAT Problem takes a formula Φ with variables (yij)i<n,j<m as input and asks
whether Φ is integrally satisfiable w.r.t. (yij)i<n,j<m.

In what follows, we widely use the fact that there is a one-to-one mapping between any
integral assignment of a set of n×m boolean variables (yij)i<n,j<m and the set of n-tuples
(x1, . . . , xn) of integers in {0, . . . ,m}. Indeed, for any i < n, xi = j if and only if yij = 1, and
xi = 0 if yij = 0 for all j < m.

We now show that 3-SAT can be sub-exponentially reduced to INT-SAT. This is an
important ingredient of the proof of Proposition 2. We also think this result has its own
interest and could be used in other contexts.

I Theorem 3. For any instance Φ of 3-SAT with size η, there is a Boolean formula Φint

of size n = 2O(√η), with variables (yij)i<√η,j<2
√
η , s.t. Φ is satisfiable if and only if Φint

is integrally satisfiable w.r.t. (yij)i,j. Φint can be computed in time O(n) and it is a CNF
formula where all variables appear positively.

Proof. Let Φ(u1, . . . , uη) be an instance of 3-SAT of size η = N2 (if η 6= N2, we can add
dummy variables). For any two integers a < N and b < 2N , let bit(a, b) correspond to the
a-th bit of the binary representation of b.

Let Φint be the formula obtained from Φ by replacing each literal uiN+j , 0 ≤ i < N and
0 ≤ j < N , by

∨
{`|bit(j,`)=1, 0≤`<2N} v

i
`. Then, each literal ūiN+j , 0 ≤ i < N and 0 ≤ j < N

is replaced by
∨
{`|bit(j,`)=0, 0≤`<2N} v

i
`. Hence, Φint has N · 2N variables

(v1
0 , . . . , v

1
2N−1, v

2
0 , . . . , v

2
2N−1, . . . , v

N
0 , . . . , v

N
2N−1)

and poly(N) clauses of size O(2N). Because Φ is in CNF, it is also the case for Φint. Moreover,
all variables appear positively in Φint.

It remains to show that Φint is integrally satisfiable if and only if Φ is satisfiable.
First, let us assume that Φ is satisfiable. Let u1, . . . , uη be a valid assignment of its

variables and, for any 0 < i < N , let xi be the integer with (uN(i−1)+1, . . . , uN(i−1)+N) as
binary representation. Finally, for any i < N and j < 2N , let us define vij = 1 if xi = j and

STACS’14

80 Weighted Coloring in Trees

vij = 0 otherwise. By definition of Φint, (vij)0≤i<N, 0≤j<2N is a valid assignment and Φint is
therefore integrally satisfiable.

Conversely, let us assume that Φint is integrally satisfiable and let (x1, . . . , xN) be N
integers representing a valid assignment for it. Let u1, . . . , uη be defined such that, for any
0 ≤ i < N , (uN(i−1)+1, . . . , uN(i−1)+N) is the binary representation of xi. Then, u1, . . . , uη
is a satisfying assignment for Φ which is satisfiable. J

3.2 Proof of Proposition 2
Theorem 3 allows us to reduce any 3-SAT instance Φ of size η into an INT-SAT instance
Φint with size 2O(√η). The key point is that this reduction allows us to turn the choice of η
boolean variables into the choice of √η integers in {0, . . . , 2

√
η}. Then, in further sections,

we build a tree T with 2O(√η) vertices from the formula Φint, such that there is a one to
one mapping between any optimal weighted coloring of T and the √η-tuples of integers in
{0, . . . , 2

√
η}. Finally, our reduction ensures that the value of χw(T) depends on the integral

satisfiability of Φint and therefore, on the satisfiability of Φ. More formally, the next section
is devoted to proving the following result:
I Proposition 3. For any CNF Boolean formula Φint of size n where all variables (yij)i,j
appear positively, there exist a weighted tree (T (Φint), w) with size polynomial in n and
M ∈ R s.t. Φint is integrally satisfiable w.r.t. (yij)i,j if and only if χw(T (Φint)) ≤M . The
pair (T (Φint), w) and M are computable in time polynomial in n.
The proof of Proposition 2 is straightforward from Theorem 3 and Proposition 3.

4 Proof of Proposition 3

This section is devoted to the proof of Proposition 3.
Let us introduce some notations. Let n ∈ N and let m = 2n. Let Φint be a Boolean

formula with n × m variables {yji | 0 ≤ i < n, 0 ≤ j < m} and L clauses, where L is
polynomial in n. We assume that Φint is in the Conjunctive Normal Form and that each
variable appears positively. Moreover, we may assume that each variable appears at least
once. That is, Φint =

∧
`≤LQ` and, for any ` ≤ L, Q` is the disjunction of p` ≥ 1 positive

variables.
Let ε > 0 such that nmε = o(1

24n) and let

M =
4n+2∑
i=0

1
2i + n(m− 1)ε < 2.

Let wji = 1/2i + jε, for any 0 ≤ i ≤ 4n + 3 and 0 ≤ j ≤ m. Let W = {wji | 0 ≤ i ≤
4n+ 3, 0 ≤ j ≤ m} denote a set of weights. Note that the length of the encoding of these
weights is polynomially bounded. For any 0 ≤ k ≤ 3, let Wk = w0

4n+k = 1/24n+k. Finally,
for any rooted tree T , let r(T) denote its root. A rooted tree S is a (proper) subtree of a
rooted tree T if there is an edge e of T such that S is the connected component of T \ {e}
that does not contain r(T). We now define various subtrees required to build (T (Φint), w).

4.1 Binomial trees
We first define a particular family of binomial trees Bi, 0 ≤ i ≤ 4n+ 2. They will be used
in the construction of T (Φint). Their role is to force the color of most of the nodes in any
coloring c of T (Φint) with w(c) ≤M .

J. Araujo, N. Nisse, and S. Pérennes 81

I Definition 4. For any 0 ≤ i ≤ 4n+2, let Bi be the weighted rooted tree defined recursively
as follows (see Figure 2).

if i = 0, then B0 has a unique node with weight w0
0;

otherwise, Bi has a root of weight w0
i , with the roots of copies of B0, B1, . . . , Bi−1 as

children.

Note that Bi has 2i nodes and that it just contains nodes of weight w0
j , for 0 ≤ j ≤ i ≤

4n+ 2. We will use these binomial trees with two main goals in our reduction:
enforce the number of used colors and the weights of these colors (up to an additive
constant cε) in any optimal weighted coloring of the tree we build from the 3-SAT formula;
forbid the color i to appear in any vertex that is adjacent to a root of a binomial tree Bi.

We get these properties according to the following lemmas:

B1

w0
i−1w0

kw0
2w0

1

Bi

BkB2

B1B0

B0

w0
0 w0

1 w0
i

Bi−1

B0

w0
0

Figure 2 The construction of the binomial tree Bi.

I Lemma 5. Let 0 ≤ i ≤ 4n+ 2. Let (T,w) be a weighted tree having Bi as subtree. If there
exists a coloring c of (T,w) with w(c) ≤M , then, for any 0 ≤ k ≤ i:
1. all vertices of Bi with weight in w0

k receive the same color Sk of c; and
2. there exists a unique color class Sk in c of weight in {wjk | 0 ≤ j ≤ m}.

Proof. The proof is by induction on the index i. In case i = 0, we prove both statements of
the lemma at once by observing that any two vertices of (T,w) of weight in {wj

′

0 | 0 ≤ j′ ≤ m}
must belong to the same color class S0, otherwise we would conclude that w(c) ≥ 2, that
would be a contradiction to the fact that w(c) ≤M < 2.

Now, let 0 ≤ k ≤ i, observe that the set of nodes of Bi with weight in w0
k is an independent

set that dominates the nodes of Bi with smaller weights (i.e., in {w0
k′ | k < k′ ≤ i}).

By induction hypothesis, for any 0 ≤ k < i, the set of nodes of Bi with weight in w0
k receive

the same color Sk of c and this color class is the unique with weight in {wjk | 0 ≤ j ≤ m}.
Then, for any 0 ≤ k < i, the root of Bi cannot be colored Sk, since it has a neighbor with
weight w0

k. Let Si be the color of the root of Bi in c. We proved that the color Si cannot
contain nodes with weight greater than wm−1

i and that c cannot have another color S′i 6= Si
with weight in {wji | 0 ≤ j ≤ m}, because, otherwise the weight of c would be at least
1
2i +

∑i
k=0

1
2k = 2 > M in both cases. J

I Corollary 6. Let (T,w) be a weighted tree having B4n+2 as subtree. Let c be any coloring
of (T,w) s.t. w(c) ≤M . Then, c = (S0, . . . , Sk) with k ≥ 4n+ 2 and, for any 0 ≤ i ≤ 4n+ 2,
Si is the unique color with weight in {wji | 0 ≤ j ≤ m}.

STACS’14

82 Weighted Coloring in Trees

The trees we consider below will always satisfy the requirements of Corollary 6. Therefore,
we are able to identify a color by its weight. In other words, in what follows, for any coloring
c = (S0, . . . , Sk) of weight at most M and for any i ≤ 4n + 2, Si will be the unique color
such that w(Si) ∈ {wji | 0 ≤ j ≤ m}.

Recall that we defined, for any 0 ≤ k ≤ 3, Wk = w0
4n+k = 1/24n+k. By a slight abuse of

notation, for any 0 ≤ k ≤ 3, we denote Wk = S4n+k as the unique color with weight Wk.

4.2 Auxiliary trees and Variable-trees
This section is mainly devoted to the construction of subtrees that will represent the boolean
variables. First, the family of auxiliary trees Aji , 0 ≤ i < 4n, 0 ≤ j ≤ m, will be used to
introduce some choice when coloring T (Φint).

I Definition 7. For any 0 ≤ i < 4n, 0 ≤ j ≤ m, let Aji be the weighted rooted tree defined
as follows (see Figure 3). Note that Aji consists of 24n nodes.
1. Let u be its root with weight w(u) = W0, and connect it to a node v (its subroot) with

weight w(v) = wji ;
2. v is made adjacent to the root of a copy of B`, for any 0 ≤ ` < i− 1;
3. u is made adjacent to the root of a copy of B`, for any 0 ≤ ` < 4n, ` 6= i− 1.

Figure 3 Auxiliary tree Aj
i . Figure 4 The variable tree T (yj

i).

I Lemma 8. Let 0 ≤ i < 4n and 0 ≤ j ≤ m. Let (T,w) be any weighted tree having B4n+2
and Aji as subtrees. Let u and v be the root and the sub-root of Aji , respectively. For any
coloring c of (T,w) with weight w(c) ≤M , then it holds:

either v is colored Si−1 and u must be colored with the color W0;
or v is colored Si (therefore, w(Si) ≥ wji) and u can be colored with Si−1.

Proof. Recall that, by Corollary 6, we can identify the colors of c and their weights. By
Lemma 5, the root of each subtree Bk, 0 ≤ k < 4n, must be colored with Sk and then the
sub-root v can be colored only with color Si−1 or Si. Note that, if v is colored with color Sp
for some p > i, then w(Sp) ≥ wji , contradicting Corollary 6. In the first case, u is adjacent
to a node with color Sk, for any k < 4n. Therefore, u must be colored with color S4n = W0.
Otherwise, u may be colored with color Si−1. J

Intuitively, the previous lemma states that, either we “pay" jε in the weight of color Si,
or u must be colored with the color W0. We now define the variable-trees T (yji) using the
auxiliary trees.

J. Araujo, N. Nisse, and S. Pérennes 83

I Definition 9. For any 0 ≤ i < n, 0 ≤ j < m, let T (yji) be the weighted rooted tree,
representing the variable yji , defined as follows (see Figure 4):

let u be its root with weight w(u) = W1 and connected to the root of a copy of B`, for
any 0 ≤ ` < 4n;
take one copy of Aj4i+1, A

j+1
4i+1, A

m−j
4i+3 and Am−1−j

4i+3 and:
connect r(Aj4i+1) to r(Am−j4i+3), and r(Aj+1

4i+1) to r(Am−1−j
4i+3);

connect u with r(Aj4i+1) and r(Am−j−1
4i+3).

Note that T (yji) consists of O(24n) nodes (i.e. polynomial in nm).

I Lemma 10. Let (T,w) be any weighted tree having B4n+2 as subtree and containing T (yji)
as subtree, for all 0 ≤ i < n and 0 ≤ j < m. Let c be a coloring of T with weight w(c) ≤M .

Then, there are (j0, . . . , jn−1) ∈ {0, . . . ,m}n such that each root u of each subtree T (yji),
for any 0 ≤ i < n and 0 ≤ j < m, satisfies:

if j 6= ji, then the color of u in c must be W1;
otherwise, neither of the two neighbors of u can be colored W1 and neither of these two
nodes need to be colored W0.

Proof. Since T contains B4n+2, by Corollary 6, a coloring c = (S0, . . . , Sk) of weight
w(c) ≤M is such that k ≥ 4n+ 2, and, for any 0 ≤ i ≤ 4n+ 2, Si is the unique color such
that w(Si) ∈ {wjk | 0 ≤ j ≤ m}. In particular, w(c) ≥

∑4n+2
i=0 1/2i = M − n(m− 1)ε.

For any 0 ≤ i < n, let ji ≤ m be such that w(S4i+1) = wji4i+1.
First, let us assume that ji < m. In particular, this means that every sub-root of a

subtree Ar4i+1, for each ji < r ≤ m, is colored S4i (recall that its color is either S4i or S4i+1,
by Lemma 8). Consequently, any root of a subtree Ar4i+1, for each ji < r ≤ m, must be
colored W0. Therefore, by the construction of the variable-trees, any root of a subtree Am−r4i+3 ,
for each ji < r ≤ m, cannot be colored W0 because it is adjacent to a root of a subtree
Ar4i+1. Thus, by Lemma 8, it must be colored S4i+2 and the color of each sub-root of Am−r4i+3

must be S4i+3. Consequently, w(S4i+3) ≥ w
m−(ji+1)
4i+3 . Hence, for any 0 ≤ i < n, if ji < m,

we conclude that w(S4i+3) +w(S4i+1) ≥ wji4i+1 +w
m−(ji+1)
4i+3 = (m− 1)ε+ 1/24i+1 + 1/24i+3.

On the other hand, if ji = m, it follows directly that w(S4i+3)+w(S4i+1) ≥ mε+1/24i+1 +
1/24i+3.

Since w(c) ≤M , it implies that, for any 0 ≤ i < n, ji < m and w(S4i+3) = wm−ji−1
4i+3 and,

for any 0 ≤ 2k < 4n, w(S2k) = w0
2k. Consequently, by a similar argument, the roots of all

subtrees Am−j4i+3, for each 0 ≤ j ≤ ji, must be colored W0 and, then, the roots of all subtrees
Ar4i+1, for each 0 ≤ j ≤ ji, must be colored S4i.

Let 0 ≤ i < n and 0 ≤ j < m. Consider a subtree T (yji) of T . If j 6= ji, then (exactly)
one of the roots of Aj4i+1 and Am−1−j

4i+3 must be colored W0. In that case, the color of the
root u of T (yji) must be W1. Indeed, u is adjacent to the root of Bk, 0 ≤ k < 4n, and
therefore it cannot be colored Sk. Moreover, if u is colored W2, then we have a contradiction
as w(c) > M , because w(u) = W1. On the other hand, if j = ji, none of the roots of Aj4i+1
and Am−1−j

4i+3 need to be colored W0. Finally, none of the roots of Aj4i+1 and Am−1−j
4i+3 can be

colored W1 because their weight is W0 (it would imply w(c) > M). J

4.3 Clause-trees and definition of T (Φint)
We define the subtrees representing the clauses and combine them to get T (Φint).

I Definition 11. Let Q` = ∨1≤k≤p`uk be any clause of Φint (recall that, for any 1 ≤ k ≤ p`,
uk ∈ {yji | 0 ≤ i < n, 0 ≤ j < m} and that ` ≤ L). For any 1 ≤ k ≤ p`, let T (Qk`) be the
rooted weighted tree defined recursively as follows:

STACS’14

84 Weighted Coloring in Trees

1. T (Q1
`) = T (u1);

2. for any k > 1, start with one copy of T (Qk−1
`) with root a and one copy of T (uk) with

root b. Let c, d be two nodes with weight W1 and e, f be two nodes with weight W2. For
each node v ∈ {c, d, e, f}, and for any 0 ≤ i < 4n, add one copy of Bi and make its root
adjacent to v. Add one copy of B4n+1 and make its root adjacent to e. Finally, we add
the edges {{a, f}, {b, c}, {c, f}, {d, e}, {e, f}} and d is chosen as the root.

Let us note T (Q`) = T (Qp``) the clause-tree corresponding to Q` and that consists of O(p`24n)
nodes (i.e. polynomial in nm). T (Qk`) is depicted in Figure 5.

Figure 5 The clause tree T (Qk
`). Figure 6 The final tree T (Φint).

I Lemma 12. Let (T,w) be any weighted tree having B4n+2 as subtree and containing T (Qk`)
as a subtree (` ≤ L, k ≤ p`). Let c be any coloring of T with weight w(c) ≤M . If a and b
are colored W1, then the color of the root d of T (Qk`) must be W1;

Proof. We prove it by induction on the number of variables k of Qk` . Observe that in case
k = 1, then T (Qk`) is a variable-tree and the lemma trivially holds as the vertex b does not
exist, thus the first statement is trivially satisfied, and, by Lemma 10, the color of its root
must be either W0 or W1.

Now, consider that a and b are roots of a variable-tree and of a clause-tree on k − 1
variables T (Qk−1

`), respectively. By Lemma 10 and by the inductive hypothesis, the colors
of a and b are either W0 or W1.

In case c(a) = c(b) = W1, by the hypothesis w(c) ≤M , by Lemma 5 and Corollary 6, we
conclude that c is colored W0, f is colored W2, e is colored W0 and d is forced to be colored
W1. This proves the first statement of the lemma. Finally, by the construction of T (Qk`), by
Lemma 5 and Corollary 6, the root d may be colored either W0 or W1, since w(c) ≤M . J

I Definition 13. Let T (Φint) be the weighted rooted tree obtained as follows (see Figure 6).
Let r be the root with weight W3. For any 1 ≤ ` ≤ L, the root of one copy of T (Q`) is made
adjacent to r. For any 0 ≤ i ≤ 4n+ 2, i 6= 4n+ 1, r is made adjacent to the root of one copy
of Bi.

I Lemma 14. T (Φint) has size polynomial in m = 2n.

Proof. Observe that each clause-tree T (Q`) has size O(p`24n) (see Definition 11), where p`
is polynomial in m (since p` is at most the number nm of variables). Moreover, the number
L of clauses is polynomial in m by the definition of Φint. J

I Lemma 15. If Φint is integrally satisfiable, then χw(T (Φint)) ≤M .

Proof. Let (yji)i<n,j<m be a valid integral assignment for Φint. For any 0 ≤ i < n, let ji be
the (unique) index such that yjii is true. We construct a coloring c of (T (Φint), w) such that

J. Araujo, N. Nisse, and S. Pérennes 85

w(c) ≤M . By Lemma 5, in any coloring c of T (Φint) such that w(c) ≤M , the colors of all
nodes of the binomial subtrees of T (Φint) are forced. Consequently, we only need to decide
the colors of the following nodes: the roots and sub-roots of any copy of Aji , the roots of the
trees T (yji), and the nodes added to connect the variables-trees into clause-trees (the nodes
a, b, c, d, e, f in Figure 5), for any 0 ≤ i < n and 0 ≤ j < m.

We first set the weight of color Si for any 0 ≤ i < 4n. In particular, for any 0 ≤ i < n,
the color S4i+1 must have weight wji4i+1. As we observed in the proof of Lemma 10, this
choice fixes the colors of all roots and sub-roots of all the Aji trees, i.e. all the nodes in the
variable trees, except to the roots of the variable-trees T (yjii), by Lemma 10.

More precisely, for any 0 ≤ i < n and 0 ≤ j < m, let us consider a subtree T (yji). Let
j′ ∈ {j, j + 1}. The sub-root of Aj

′

4i+1 receives color S4i+1 if j′ ≤ ji and receives color S4i

otherwise. The root of Aj
′

4i+1 receives color S4i if j′ ≤ ji and receives color W0 otherwise.
The sub-root of Am−j

′

4i+3 receives color S4i+3 if j′ > ji and receives color S4i+2 otherwise. The
root of Am−j

′

4i+3 receives color S4i+2 if j′ > ji and receives color W0 otherwise. Finally, if
j 6= ji, the root of T (yji) is colored W1. On the other hand, if j = ji, none of the neighbors
of the root of T (yji) is colored W0, therefore, we can color it either W0 or W1.

Now, let Q` = ∨1≤k≤p`uk be any clause of Φint. We show that we can extend the
previous coloring such that the root of the clause-tree T (Q`) is colored W0 and the weight
of the coloring is < M . This is by induction on p`. Indeed, if p` = 1, then Q` consists of a
unique variable and this variable must be assigned to true (since the formula is true). Hence,
Q` = yjii for some 0 ≤ i < n. That is T (Q`) is a subtree T (yjii). Hence, we can color the
root of it with W0.

Now, assume that the result is correct for any clause of length p ≥ 1 and let p` = p+ 1.
Thus, Q` = up+1 ∨ (∨1≤k≤puk). Recall that T (Q`) is built from a variable subtree T (up+1)
and a clause-subtree T (Qp`). There are two cases to consider: either our assignment satisfies
∨1≤k≤puk or not. In the first case, the root of the clause-tree T (Qp`) (node b in Figure 5)
is colored W0 by induction. Moreover, by above paragraphs, the root of T (up+1) (node a
in Figure 5) can be colored W1. It is then easy to extend this coloring such that the root
of T (Q`) is colored W0: in Figure 5, node c is colored W1, node e is colored W2 and nodes
f and d are colored W0. If our assignment does not satisfy ∨1≤k≤puk, then it must satisfy
up+1. That is, up+1 = yjii for some 0 ≤ i < n. By a similar induction, we prove that the root
of T (Qp`) can be colored W1. Moreover, by above paragraphs, the root of T (up+1) = T (yjii)
can be colored W0. This coloring can be extended such that the root of T (Q`) is colored W0:
in Figure 5, node f is colored W1, node e is colored W2 and nodes c and d are colored W0.

Thus, we color the roots of all the clause-trees with color W0 and the root of T (Φint)
with the color W1.

Hence, the weight of this coloring c is w(c) =
∑4n+2
i=0

1
2i + n(m− 1)ε = M . J

I Lemma 16. If Φint is not integrally satisfiable, then χw(T (Φint)) > M .

Proof. Φint is not integrally satisfiable. Let c be a coloring of T (Φint) with weight at most
M . By Lemma 10, there are integers (j0, . . . , jn−1) such that the color of the root of any
subtree T (yji) is forced to be W1, if j 6= ji. Let Y = (yji)i<n,j<m be the corresponding
integral assignment. In other words, for any variable yji (0 ≤ i < n, 0 ≤ j < m), yji = 0 if
j 6= ji. Since Φint is not integrally satisfiable, there is a clause Q that is not satisfied by this
assignment. Let us consider the clause-subtree T (Q). It has been built from variable-trees
corresponding to the variables constituting the clause Q. Because all these variables are
assigned to false, the roots of these variable-trees are all colored with W1, by Lemma 10.

STACS’14

86 Weighted Coloring in Trees

By induction on the length of Q and by Lemma 12, the color of the root of T (Q`) must
be W1. Thus, the root of T (Φint) can just be colored W3. Consequently, the coloring c has
weight w(c) ≥

∑4n+3
i=0

1
2i + n(m− 1)ε > M . J

Proposition 3 follows directly from Lemmas 14, 15 and 16.

References
1 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

3rd Annual ACM Symp. on Theory of Computing (STOC), pages 151–158, 1971.
2 Dominique de Werra, Marc Demange, Bruno Escoffier, Jérôme Monnot, and Vangelis Th.

Paschos. Weighted coloring on planar, bipartite and split graphs: Complexity and approx-
imation. Discrete Applied Mathematics, 157(4):819–832, 2009.

3 Marc Demange, Dominique de Werra, Jérôme Monnot, and Vangelis Th. Paschos. Weighted
node coloring: When stable sets are expensive. In 28th Int. Workshop on Graph-Theoretic
Concepts in Computer Science (WG), volume 2573 of LNCS, pages 114–125. Springer, 2002.

4 Leah Epstein and Asaf Levin. On the max coloring problem. Theor. Comput. Sci., 462:23–
38, 2012.

5 Bruno Escoffier, Jérôme Monnot, and Vangelis Th. Paschos. Weighted coloring: further
complexity and approximability results. Inf. Process. Lett., 97(3):98–103, 2006.

6 D. J. Guan and Xuding Zhu. A coloring problem for weighted graphs. Inf. Process. Lett.,
61(2):77–81, 1997.

7 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

8 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a sym-
posium on the Complexity of Computer Computations, The IBM Research Symposia Series,
pages 85–103. Plenum Press, New York, 1972.

9 Telikepalli Kavitha and Julián Mestre. Max-coloring paths: tight bounds and extensions.
J. Comb. Optim., 24(1):1–14, 2012.

10 C. Linhares Sales and B. Reed. Weighted coloring on graphs with bounded tree width. In
Annals of 19th International Symposium on Mathematical Programming, 2006.

11 Sriram V. Pemmaraju, Sriram Penumatcha, and Rajiv Raman. Approximating interval
coloring and max-coloring in chordal graphs. In Proc. 3rd Int. Workshop on Experimental
and Efficient Algorithms (WEA), volume 3059 of LNCS, pages 399–416. Springer, 2004.

12 Sriram V. Pemmaraju, Sriram Penumatcha, and Rajiv Raman. Approximating interval
coloring and max-coloring in chordal graphs. ACM J. of Exp. Algorithmics, 10, 2005.

13 Sriram V. Pemmaraju and Rajiv Raman. Approximation algorithms for the max-coloring
problem. In Proceedings 32nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 3580 of LNCS, pages 1064–1075. Springer, 2005.

14 Sriram V. Pemmaraju, Rajiv Raman, and Kasturi R. Varadarajan. Buffer minimization
using max-coloring. In 15th ACM-SIAM Symp. on Discrete Alg. (SODA), pages 562–571,
2004.

15 Sriram V. Pemmaraju, Rajiv Raman, and Kasturi R. Varadarajan. Max-coloring and online
coloring with bandwidths on interval graphs. ACM Trans. on Algorithms, 7(3):35, 2011.

16 Ryan Williams. A new algorithm for optimal constraint satisfaction and its implications.
In 31st International Colloquium on Automata, Languages and Programming (ICALP),
volume 3142 of Lecture Notes in Computer Science, pages 1227–1237. Springer, 2004.

Generalized Reordering Buffer Management
Yossi Azar∗1, Matthias Englert†2, Iftah Gamzu3, and Eytan Kidron1

1 Blavatnik School of Computer Science, Tel-Aviv University, Israel
{azar,eytankid}@tau.ac.il

2 Department of Computer Science and DIMAP, University of Warwick, UK
englert@dcs.warwick.ac.uk

3 Yahoo! Research
iftah.gamzu@yahoo.com

Abstract
An instance of the generalized reordering buffer management problem consists of a service station
that has k servers, each configured with a color, and a buffer of size b. The station needs to serve
an online stream of colored items. Whenever an item arrives, it is stored in the buffer. At any
point in time, a currently pending item can be served by switching a server to its color. The
objective is to serve all items in a way that minimizes the number of servers color switches. This
problem generalizes two well-studied online problems: the paging problem, which is the special
case when b = 1, and the reordering buffer problem, which is the special case when k = 1.

In this paper, we develop a randomized online algorithm that obtains a competitive ratio of
O(
√
b ln k). Note that this result beats the easy deterministic lower bound of k whenever b < k2−ε.

We complement our randomized approach by presenting a deterministic algorithm that attains
a competitive ratio of O(min{k2 ln b, kb}). We further demonstrate that if our deterministic
algorithm can employ k/(1 − δ) servers where δ ∈ (0, 1), then it achieves a competitive ratio of
O(min{ln b/δ2, b/δ}) against an optimal offline adversary that employs k servers.

1998 ACM Subject Classification F.2.2 Nonnumerical algorithms and problems

Keywords and phrases Online algorithms, paging, reordering buffer

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.87

1 Introduction

We consider the generalized reordering buffer management problem. In this problem, there is
a service station, which is equipped with k servers and a buffer of size b. Each of the servers
is initially configured with some color. An online stream of colored items has to be served
by the service station. Whenever an item arrives, it is stored in the buffer. At any point in
time, a currently pending item can be served by removing it from the buffer and switching a
server to its color. In particular, if one of the servers is already configured with the color of
a pending item, this item can be served without switching any server. The goal is to serve
all items while minimizing the overall number of color switches of the servers.

This problem is a natural generalization of two well-studied online problems: the paging
problem, introduced by Sleator and Tarjan [19], is the special case when b = 1, and the
reordering buffer problem, introduced by Räcke et al. [18], is the special case when k = 1.

∗ Supported in part by the Israel Science Foundation (grant No. 1404/10) and by the Israeli Centers of
Research Excellence (I-CORE) program (Center No. 4/11).
† Supported in part by EPSRC award EP/D063191/1 and EPSRC grant EP/F043333/1.

© Yossi Azar, Matthias Englert, Iftah Gamzu, and Eytan Kidron;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 87–98

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.87
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

88 Generalized Reordering Buffer Management

Apart from this, the problem is also an interesting abstraction of a number of problem
scenarios occurring in computer science and manufacturing. We give two examples.

Consider a network device that can maintain a maximum of k TCP/IP connections open
at the same time. This device receives an online stream of unit sized packets that need
to be forwarded to specific destinations. Arriving packets can be forwarded if they are
addressed to one of the k currently open connections; otherwise, they have to be stored
in a finite-sized random access packet buffer. If the buffer is full, the device needs to
close one of the k open connections, and open a new one to the destination of one or
more packets stored in the buffer. These packets can then be forwarded using the new
connection and free up space in the buffer. The goal is to transmit all packets while
minimizing the number of connection open/close operations.
In the painting shop of a car manufacturing plant, car bodies traverse the final layer
of painting, where each car body is painted with its own predetermined top coat. The
painting shop is equipped with k painting machines and a finite-sized parking lot. Each
machine, once configured with a color, can paint multiple cars with that color. However,
switching a color in a machine causes non-negligible set-up and cleaning cost. The goal of
the painting shop is to paint all incoming cars with a minimum number of color switches.
The parking lot can be used to change the order in which the cars are painted, but it
must never overflow.

Chan et al. [9] seem to have been the first to mention the generalized reordering buffer
problem. They established that the offline variant of the problem, in which the entire stream
of items is known in advance, is NP-hard. To the best of our knowledge, no other work has
been done on generalized reordering buffer. In particular, no results are known for the online
setting of the problem which we study.

Our results. We develop a randomized online algorithm that attains a competitive ratio
of O(

√
b ln k). Note that for any b < k2−ε with ε > 0, our randomized upper bound beats

the easy deterministic lower bound of k that applies for any b. Our algorithm has its roots
in the randomized marking algorithm of Fiat et al. [12] for the paging problem, combined
with several clean-up procedures. We emphasize that one natural approach for designing
an algorithm for our generalized setting is to combine an algorithm for the reordering
buffer problem with an algorithm for the paging problem. Specifically, the reordering buffer
algorithm decides which color to serve next, and the paging algorithm decides which server
should switch to that color. Unfortunately, we do not know if there are combinations of
this nature that attain good performance guarantees. For example, we could combine the
O(ln k)-competitive randomized marking algorithm for paging with a deterministic algorithm
for the reordering buffer problem, some of which are O(ln b)-competitive or better. While one
can easily prove that this combination is an O(b ln k)-competitive algorithm, this guarantee
is still weak; for example, when b = k. In fact, we were unable to show any bounds that are
sublinear in k for such combinations.

We further present a deterministic online algorithm that attains a competitive ratio
of O(min{k2 ln b, kb}). This algorithm can complement our randomized algorithm in cases
where b is large. Note that any lower bound for the paging problem also applies to the
generalized reordering buffer management problem. To see this, consider any sequence
of requests for pages (colors). This sequence can be modified by replacing each request
to a page by b successive requests to that page. This does not change the cost for the
paging problem, but it neutralizes the buffer of size b in the generalized reordering buffer

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 89

problem, i.e., at any time, all pending requests are always for the same page. Therefore, no
deterministic online algorithm can be better than k-competitive for our problem, and our
randomized online algorithm outperforms the best possible deterministic online algorithm for
any b = o((k/ log k)2). We also show that if our deterministic algorithm can employ k/(1− δ)
servers where δ ∈ (0, 1), then it achieves a competitive ratio of O(min{ln b/δ2, b/δ}) against
an optimal offline adversary that employs k servers. Notice that this implies that if our
algorithm can employ a constant fraction of servers more than the optimal algorithm then it
achieves logarithmic competitiveness.

Note that due to space constraints, some proofs are omitted from this extended abstract
and may be found in the full version of the paper.

Related work. The paging problem was introduced in the seminal paper of Sleator and
Tarjan [19]. They proved that the LRU and FIFO strategies are k-competitive, and established
that no deterministic algorithm can achieve a competitive ratio smaller than k. Karlin et
al. [14] showed that the same bound is achieved by the flush-when-full strategy. Fiat et
al. [12] presented a randomized 2Hk-competitive marking algorithm, outperforming the lower
bound for deterministic algorithms. Note that Hk is the kth harmonic number. They also
established a lower bound of Hk on the competitive ratio that any randomized algorithm can
achieve. Later on, Achlioptas et al. [1] and McGeoch and Sleator [17] provided algorithms
matching this lower bound.

The reordering buffer problem was introduced by Räcke et al. [18], who devised an
O(ln2 b) -competitive algorithm. Englert and Westermann [11] presented an algorithm with
an improved competitive ratio of O(ln b), which can be applied to a generalized non-uniform
cost setting. Avigdor-Elgrabli and Rabani [4] developed an LP-based algorithm whose
competitive ratio is O(ln b/ ln ln b). Adamaszek et al. [2] presented an algorithm whose
competitive ratio is O(

√
ln b), and established lower bounds of Ω(

√
ln b/ ln ln b) and Ω(ln ln b)

for deterministic and randomized algorithms, respectively. Recently, Avigdor-Elgrabli and
Rabani [6] developed a randomized online algorithm matching this lower bound.

Asahiro et al. [3] and Chan et al. [9] considered the offline variant of the reordering buffer
problem, and established that it is NP-hard. Very recently, Avigdor-Elgrabli and Rabani [5]
designed a constant factor approximation algorithm for this offline setting. The reordering
buffer problem has also been studied on other metric spaces [8, 15, 13]. For example, Englert
et al. [10] considered the more general variant in which items are associated with points in
a metric space, and obtained a competitive ratio of O(ln2 b lnn), where n is the number of
distinct points in the metric. Some research has been done on a maximization variant of the
problem [16, 7].

2 A Randomized Algorithm

In this section, we develop a randomized algorithm whose competitive ratio is O(
√
b ln k).

The algorithm sensibly combines the randomized marking algorithm due to Fiat et al. [12]
with several buffer clean-up procedures.

2.1 The algorithm
We begin by briefly describing the random marking algorithm for the paging problem. Recall
that in the underlying paging setting, there are k servers and a trivial buffer (i.e., b = 1).
The algorithm is made up of phases. At the beginning of each phase, all colors are unmarked.
When an item of color χ arrives, χ becomes marked and a server is moved to χ if there

STACS’14

90 Generalized Reordering Buffer Management

is no server there already. In order to decide which server moves, the algorithm chooses a
server uniformly at random from the servers which are located on unmarked colors. If there
is no such server, then the current phase ends and a new phase begins. At the end of a
phase, markings are removed from all colors. A crucial observation regarding this algorithm
is that although it has random components, the order in which the colors are marked is
deterministic and so is the partition into phases. We make use of this property also in the
analysis of our algorithm.

Our algorithm combines the random marking algorithm with several buffer clean-up
procedures. Similarly to the marking algorithm, our algorithm is also made up of phases.
Each color has a phase counter, which is set to 0 at the beginning of each phase. When an
item of color χ arrives, it is placed in the buffer, and the phase counter of χ is incremented
by 1. When the phase counter of a color reaches

√
b, the color becomes marked and is served

in a similar way to the marking algorithm. Note that the partition into phases is defined as
in the marking algorithm.

We further define a status to each color: marked, half-marked, or unmarked. At the end
of a phase, all half-marked colors become unmarked, and all marked colors become half-
marked. Accordingly, arriving items are said to be either marked, half-marked or unmarked
depending on the status of their color at their arrival time. For example, an item is said
to be half-marked if its color was marked in the previous phase. We partition the buffer
into two sub-buffers, each of size b/2. The unmarked sub-buffer stores unmarked items and
the half-marked sub-buffer stores half-marked items. Note that marked items never stay in
the buffer since a marked color always consists of a server that can immediately serve the
arriving item. In fact, this may also be true for half-marked items, but it is never true for
unmarked items. Namely, half-marked colors may or may not consist a server, but unmarked
colors never consist of a server. If a half-marked item arrives, and a server is present on its
corresponding color, then it is served immediately and does not need to be placed in the
half-marked sub-buffer. Note that the phase counter of that color is still incremented. In
order to avoid buffer overflows, we introduce the following three clean-up procedures:

Half-marked clean-up. A half-marked clean-up event takes place when the half-marked
sub-buffer is full, and also at the end of each phase. Upon a half-marked clean-up event, all
items in the half-marked sub-buffer are served. This is done by moving an arbitrary server
through all the colors of items in the half-marked sub-buffer. The server then returns to its
original position. Note that the number of half-marked clean-up moves in a half-marked
clean-up event is one plus the number of different colors in the half-marked sub-buffer at the
time of the event.

Targeted clean-up. A targeted single-color clean-up event takes place when a buffer counter
of some color reaches 2

√
b. The buffer counter maintains the number of items a color has

in the unmarked sub-buffer. Note that this counter should not be confused with the phase
counter used for marking. In a targeted single-color unmarked clean-up event, or simply
targeted clean-up event, the items of a single color from the unmarked sub-buffer are served.
An arbitrary server moves to that color and back to its original position. Hence, a targeted
clean-up event consists of two targeted clean-up moves.

Unmarked clean-up. An unmarked clean-up event takes place if there are
√
b/4 different

colors in the unmarked sub-buffer, and after
√
b targeted clean-up events. Similarly to a

half-marked clean-up event, upon an unmarked clean-up event, all items in the unmarked

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 91

sub-buffer are served by an arbitrary server, which later returns to its original position. The
number of unmarked clean-up moves in an unmarked clean-up event is one plus the number
of different colors in the unmarked sub-buffer at the time of the event.

2.2 The analysis
We begin by pointing out that although the algorithm is randomized, it still has several
deterministic aspects: the points in time in which each color becomes marked, half-marked
and unmarked are deterministic, and so is the partition into phases. In particular, the
partition into phases is deterministic since a phase ends just before some color gets marked
when each of precisely k different colors already got

√
b items in that phase. The content of

the unmarked sub-buffer at every point in time is also deterministic, and consequently, so is
the point in time of every unmarked clean-up event and targeted clean-up event. Finally,
we point out that although the content of the half-marked sub-buffer is not deterministic,
and neither is the point in time of half-marked clean-up events, at the end of each phase the
half-marked sub-buffer is emptied. Thus, the content of the entire buffer is deterministic at
the beginning of every phase. The following lemma establishes the feasibility of the algorithm.

I Lemma 1. The algorithm never has a buffer overflow.

Proof. Recall that the buffer is partitioned into two sub-buffers, each of size b/2. The
half-marked sub-buffer never overflows since whenever it becomes full, a half-marked clean-
up event is initiated. The unmarked items in the unmarked sub-buffer are served by a
combination of unmarked clean-up events and targeted clean-up events. The unmarked
clean-up events make sure that there are never more than

√
b/4 different colors in the

unmarked sub-buffer, and the targeted clean-up events ensure that no such color has more
than 2

√
b items in the sub-buffer. Together, there cannot be more than b/2 unmarked items

in that sub-buffer. J

Let ON and OPT denote our algorithm and the optimal offline algorithm, respectively. We
also denote the respective overall number of server moves in ON and OPT by ON and OPT .
Note that ON is the expected number of moves since ON is randomized. In the remainder of
this section, we prove that ON is O(

√
b ln k)-competitive. We first partition ON according

to four types of moves that the servers of ON do: ON = ONM + ONH + ONT + ONU ,
where ONM is the expected number of marking moves, ONH is the expected number of
half-marked clean-up moves, ONT is the number of targeted clean-up moves and ONU is
the number of unmarked clean-up moves. We also define ONi to be the expected number of
ON’s server moves in phase i, and OPTi is the number of OPT’s server moves in phases i− 1
and i. Note this latter asymmetry, and notice that OPT ≤

∑
iOPTi ≤ 2 ·OPT . Similarly,

for a set S of consecutive phases, we define ONS =
∑
i∈S ONi. Note that we also use the

same notation as before when considering a partition of the expected number of ON’s server
moves in a phase or a set of phases to the four types of moves. For example, ONU

i is the
expected number of unmarked clean-up moves that ON servers makes in phase i. We now
turn to bound the ratios between each of ON’s movement types and OPT. The competitive
ratio ON/OPT is the sum of these ratios.

Marking moves and half-marked clean-up moves. We bound the expected number of
marking moves, ONM , and the expected number of half-marked clean-up moves, ONH ,
using similar techniques. Let Hk =

∑k
j=1 1/j be the kth harmonic number, and let mi be

STACS’14

92 Generalized Reordering Buffer Management

the number of colors that are marked in phase i but not marked in phase i− 1. We start
with a bound on the expected number of marking moves.

I Lemma 2. For every phase i, ONM
i ≤ miHk.

The proof uses the same arguments as the proof for randomized marking algorithm by Fiat
et al. [12] and is deferred to the full version of the paper. We now can use Lemma 2 to also
derive our desired upper bound on half-marked clean-up moves.

I Lemma 3. For every phase i, ONH
i = O(min{mi

√
b ln k,m2

i ln k/
√
b+mi}).

Proof. Recall that half-marked items may only accumulate at colors which had a server at
the beginning of the phase, and that server left the color during that phase. Lemma 2 implies
that there can be at most miHk such colors in expectation. Since at most

√
b half-marked

items can arrive from each such color, no more than miHk

√
b items enter the half-marked

sub-buffer during phase i in expectation.
An immediate consequence of the above observation is that ONH

i = O(mi

√
b ln k). This

follows since each half-marked clean-up move, except the last move in each such event,
cleans at least one item. The last moves of all half-marked clean-up events add at most a
multiplicative factor of 2 to the number of half-marked clean-up moves.

For the purpose of proving that ONH
i = O((m2

i ln k)/
√
b + mi), notice that the half-

marked sub-buffer is full with b/2 items every time that half-marked clean-up event is
initiated (except maybe the last half-marked clean-up event in every phase). So the number
of events is upper bounded in expectation by miHk

√
b/(b/2) + 1 = 2miHk/

√
b + 1. Note

that the additional 1 is due to the half-marked clean-up event done at the end of each phase.
Now, at any given time, there are no more than mi void half-marked colors, namely, colors
without a server. This implies that there are no more than mi colors in the half-marked
sub-buffer, and hence, a server makes at most mi + 1 moves in each such event. As a result,
ONH

i = (2miHk/
√
b+ 1)(mi + 1) = O(m2

i ln k/
√
b+mi). J

We next set a bound of the ratio between ONM +ONH and OPT . For this purpose, we
partition the phases into groups of marking phase sequences. Each marking phase sequence
contains consecutive phases, and each phase belongs to exactly one marking phase sequence.
We let S denote the set of phases in a marking phase sequence, and use last(S) to denote the
last phase in S. Our partition maintains the property that in every marking phase sequence
S (except maybe the last one), mi ≤ 3

√
b for every i ∈ S \ {last(S)}, and mlast(S) > 3

√
b.

Namely, the partition is set according to phases i such that mi > 3
√
b. Let mS =

∑
i∈Smi.

I Lemma 4. For every marking phase sequence S, ONM
S +ONH

S = O((mS+mlast(S)
√
b) ln k).

Proof. Notice that ONM
S =

∑
i∈S ON

M
i ≤

∑
i∈SmiHk = O(mS ln k), where the inequality

holds by Lemma 2. In addition, observe that

ONH
S =

∑
i∈S\{last(S)}

ONH
i +ONH

last(S)

=
∑

i∈S\{last(S)}

O((m2
i ln k/

√
b) +mi) +O(mlast(S)

√
b ln k)

=
∑

i∈S\{last(S)}

O (mi ln k) +O(mlast(S)
√
b ln k) = O((mS +mlast(S)

√
b) ln k) ,

where the second equality follows from Lemma 3, and the third equality holds since mi ≤ 3
√
b

for every i ∈ S \ {last(S)}. J

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 93

We now turn to set a lower bound on OPTS , where OPTS is the overall number of server
moves of OPT in S and the last phase before S. Recall that OPTi is the number of server
moves of OPT in phases i and i− 1, and therefore, OPTS ≤

∑
i∈S OPT i ≤ 2 ·OPTS . We

first set a bound applicable for all marking phase sequences S having a large mS .

I Lemma 5. OPTS = Ω(mS/
√
b), for every marking phase sequence S having mS ≥ 3

√
b.

Proof. Observe that in each pair of phases i− 1 and i exactly k+mi colors are marked, and
the servers of OPT are present in no more than k +OPTi colors. Hence, there are at least√
b · (mi−OPTi) items that entered the buffer of OPT during phases i− 1 and i. The overall

number of items entering OPT’s buffer during S and the last phase before S is therefore at
least

√
b/2 ·

∑
i∈S(mi −OPTi), where the half factor is due to the fact that every item may

be counted twice. Now, notice that in each of the OPTS server moves, OPT can clear no
more than b items from its buffer. Moreover, there can be at most b items that may stay in
the buffer and not cleared at the end of S. Hence,

OPTS ≥
√
b/2 ·

∑
i∈S(mi −OPTi)− b

b
≥ mS

2
√
b
− OPTS√

b
− 1 ,

where the last inequality holds since
∑
i∈S OPT i ≤ 2 ·OPTS . This implies that OPTS =

Ω(mS/
√
b) since mS ≥ 3

√
b. J

The next lemma establishes a more specialized bound for all marking phase sequences S
having a large mlast(S).

I Lemma 6. OPTS = Ω(mS/
√
b + mlast(S)), for every marking phase sequence S having

mlast(S) > 3
√
b.

Proof. The fact that OPTS = Ω(mS/
√
b) follows from Lemma 5 by noticing that mS ≥

mlast(S) > 3
√
b. We now complete the proof by establishing that OPTS = Ω(mlast(S)). We

next prove a somewhat stronger argument stating that OPT i = Ω(mi), for every phase i
such that mi > 3

√
b. As a consequence, we attain that OPTS ≥ OPTlast(S) = Ω(mlast(S))

since mlast(S) > 3
√
b. For the purpose of proving the above argument, notice that the

number of items which arrived during phases i− 1 and i, and entered OPT’s buffer is at least√
b · (mi−OPTi). Since OPT’s buffer cannot overflow, we attain that b ≥

√
b · (mi−OPT i),

and therefore, OPTi ≥ mi−
√
b > 2mi/3, where the last inequality holds since mi > 3

√
b. J

The main result of this subsection is the following lemma.

I Lemma 7. ONM +ONH = O(
√
b ln k) ·OPT +O(b ln k).

Proof. Notice that OPT ≥
∑
S OPTS/2. Hence, it is sufficient that we establish the

above mentioned bound for each marking sequence. Lemma 4 and Lemma 6 prove that
ONM

S +ONH
S = O(

√
b ln k) ·OPTS , for every marking phase sequence S except maybe the

last marking phase sequence. Consider the last marking phase sequence S′. If mlast(S′) > 3
√
b

then the same bound also holds for S′. Otherwise, if mS′ > 3b then from Lemma 5 we know
that OPTS′ = Ω(mS′/

√
b), while from Lemma 4 we attain that ONM

S′ +ONH
S′ = O(mS′ ln k).

Namely, the same bound ratio holds also in this case. Finally, when mlast(S′) ≤ 3
√
b and

mS′ < 3b, we get that ONM
S′ +ONH

S′ = O(b ln k), which is exactly the additive term in the
above ratio. J

STACS’14

94 Generalized Reordering Buffer Management

Targeted clean-up moves. We now turn our attention to bound the number of targeted
clean-up moves ONT . Recall that each targeted clean-up event consists of two server moves,
and each such event happens when there are 2

√
b items of a single color in the unmarked

sub-buffer.

I Lemma 8. There is no time interval during which no server of OPT moves but more than
2
√
b targeted clean-up events occur.

Proof. Let us assume by way of contradiction that there exists a time interval I during which
no server of OPT moves and there are more than 2

√
b targeted clean-up events. Recall that

after every
√
b targeted clean-up events, the unmarked sub-buffer is cleared by an unmarked

clean-up event. This implies that the last
√
b targeted clean-up events in I clear items that

arrived during I. We next focus only on those
√
b targeted clean-up events. We number

them by 1, . . . ,
√
b.

Let χj be the color cleared in the jth targeted clean-up event. We say that a targeted
clean-up event j is an OPT-present clean-up event if OPT has a server on χj during I;
otherwise, this event is OPT-absent. Let ` be the number of OPT-present events and

√
b− `

be the number of OPT-absent events. In each of the
√
b − ` OPT-absent events, OPT

accumulates 2
√
b items arriving during I. We count only the first

√
b items in each such

event due to a reason that will be explained later. Thus, summing up over all OPT-absent
events, it follows that OPT accumulates at least

√
b(
√
b− `) items. The crucial observation

needed to complete the proof is that every OPT-present clean-up event implies that there is
an OPT server missing from a marked color at some phase. Specifically, let us concentrate
on an OPT-present clean-up event j. The 2

√
b unmarked items cleared at that event must

have been accumulated in the buffer of ON during at least two marking phases; otherwise,
the underlying color would have been marked. Let ij be the first phase during which the
unmarked items cleared by the jth targeted clean-up event started accumulating. Let di be
the number of OPT-present targeted clean-up events whose items started accumulating at
phase i, that is, di = |{j : i = ij}|. Notice that during the marking phase i, the servers of
OPT are not present on at least di colors that become marked. Since

√
b items arrive to

each of those colors, OPT accumulates in its buffer at least di
√
b items during that phase.

As a result, OPT accumulated at least `
√
b additional items as

∑
i di = `.

Notice that the number of items accumulated in OPT’s buffer during I is at least√
b(
√
b− `) + `

√
b = b, a contradiction to our assumption that OPT does not move during I.

Recall that we assumed that OPT accumulates
√
b (and not 2

√
b) items in each OPT-absent

event. This is required to ensure that the sets of accumulated items due to OPT-absent and
OPT-present events are disjoint. In general, an item cleared in a targeted clean-up move
may be counted as one of

√
b items that induced a marking move. However, none of the

first
√
b items accumulated may be counted towards a marking move since otherwise, the

underlying color becomes marked before the buffer counter reaches 2
√
b, and thus, a targeted

clean-up event cannot occur. J

Lemma 8 implies that ONT ≤ 4
√
b · (OPT + 1) since every targeted clean-up event

consists of two targeted clean-up moves. Since we may assume that OPT moves at least
once, this immediately gives us the following lemma.

I Lemma 9. ONT = O(
√
b) ·OPT .

Unmarked clean-up moves. We finally bound the number of unmarked clean-up moves
ONU . Recall that an unmarked clean-up event takes place when either (1) the unmarked

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 95

sub-buffer has
√
b/4 different colors, or (2) after

√
b targeted clean-up events. For the sake

of the analysis, it is sufficient that we focus only on unmarked clean-up moves due to type
(1). Clean-up moves due to type (2) can be charged against the targeted clean-up moves
with an additional constant multiplicative factor. Specifically, one can observe that the
number of unmarked clean-up moves of type (2) is no more than ONT /8. During

√
b targeted

clean-up events there are 2
√
b targeted clean-up moves, while the unmarked clean-up event

that results from this sequence of targeted clean-ups has at most
√
b/4 unmarked clean-up

moves; otherwise, an unmarked clean-up event of type (1) would take place before that. As
a result, in the remainder of this subsection, when we refer to unmarked clean-up events or
moves, we specifically mean unmarked clean-up events or moves of type (1).

Let ui be the number of unmarked clean-up events in phase i. We partition the marking
phases into groups of clean-up phase sequences. A clean-up phase sequence is a sequence
of consecutive marking phases such that each phase belongs to exactly one clean-up phase
sequence. A clean-up phase sequence S ends when

∑
i∈S ui > 60

√
b. Let uS =

∑
i∈S ui, and

observe that a straightforward upper bound on the number of unmarked clean-up moves
in any sequence S is ONU

S = O(uS
√
b) since every unmarked clean-up event has

√
b/4 + 1

moves. Since we do not have an upper bound on uS , it is convenient to consider two types
of clean-up phase sequences: a clean-up phase sequence S that has a phase i ∈ S such that
ui > 6

√
b, and a sequence S that does not have such a phase.

I Lemma 10. OPT i = Ω(ui) for a phase i such that ui > 6
√
b.

Proof. Notice that all the unmarked items that were cleared during phase i, with the
exception of the items cleared in the first unmarked clean-up event of the phase, arrived
during phase i. As a result, the number of unmarked items which arrive during phase i is at
least (ui − 1) ·

√
b/4. Note that no color is associated with more than

√
b of these items. In

phase i − 1, there are k marked colors. None of the previously mentioned (ui − 1) ·
√
b/4

unmarked items can be from those colors as any item of those colors arriving in phase i
would not be considered an unmarked item. Let us restrict our attention to the first

√
b

items of each of those marked colors. Summing up, we know that (ui− 1) ·
√
b/4 + k

√
b items

arrived during phases i− 1 and i, and no single color has more than
√
b of these items.

During phases i− 1 and i, the servers of OPT could not have been located in more than
k +OPT i different colors. Therefore, they could have served no more than

√
b · (k +OPT i)

of the previously mentioned items. The remaining items must have entered the buffer of
OPT. Since OPT’s buffer cannot accommodate more than b items, then

(ui − 1)
√
b

4 + k
√
b−
√
b · (k +OPT i) =

√
b ·
(
ui − 1

4 −OPT i
)
≤ b .

This implies that OPT i ≥ (ui − 1)/4 −
√
b ≥ ui/24, where the last inequality holds since

ui > 6
√
b. J

We now introduce the notion of an extended phase. An extended phase is defined only
for phases i with ui > 0. The extended phase includes phase i and phases i− 1, i− 2, and
so on, until a phase i′ with ui′ > 0. As a result, any extended phase contains at least two
phases, and only the first and last of them has unmarked clean-up events. For any clean-up
phase sequence S, let OPTS be the number of moves of OPT servers during the extended
phases of all relevant i ∈ S.

I Lemma 11. OPTS = Ω(
√
b) for any clean-up phase sequence S such that ui ≤ 6

√
b in all

phases i ∈ S.

STACS’14

96 Generalized Reordering Buffer Management

Proof. Let us assume by way of contradiction that OPTS ≤
√
b/60. Let χS be the set of

colors that OPT visited during the extended phases of S. Since OPT makes at most
√
b/60

moves, |χS | ≤ k +
√
b/60. Let xi be the number of items arriving during the extended phase

i whose colors are not in χS . We next argue that xi ≥ ui
√
b/30 for every extended phase

i ∈ S. Then, we get that the number of items arriving during the extended phases of S whose
colors are not in χS is at least

∑
i∈S xi/2 ≥

∑
i∈S ui

√
b/60 > b, where the half factor is due

to the fact that every item belongs to at most two extended phases, and the last inequality
results since uS > 60

√
b. This implies that OPT must have accumulated more than b items

in its buffer, a contradiction.
We turn to prove the above-mentioned argument. Let us focus on the extended phase i,

and recall that phase i− 1 is within this extended phase. At phase i− 1, k colors receive
at least

√
b items and become marked. Let Ri be the set of these colors that are not in

χS , and let ri = |Ri|. Note that at least ri
√
b items arrive out of χS . If ri ≥ ui/30 then

xi ≥ ui
√
b/30, and we are done. Hence, in the remainder of this proof, we may assume that

ri < ui/30 and |χS ∪ Ri| < k +
√
b/60 + ui/30. Notice that no more than

√
b/60 + ui/30

of the colors in χS ∪Ri may correspond to unmarked items in phase i. This follows since
χS ∪Ri includes the k colors marked in phase i− 1. Each unmarked clean-up event cleans
items from

√
b/4 different unmarked colors, and at least

√
b/4 −

√
b/60 − ui/30 items of

colors outside χS . However,
√
b/4−

√
b/60− ui/30 = 7

√
b/30− ui/30 ≥

√
b/30, where the

last inequality follows since ui ≤ 6
√
b in any phase i ∈ S. This implies that at least ui ·

√
b/30

unmarked items were cleaned in phase i. Notice that an unmarked item cleaned in phase i
must have arrived at the extended phase i, and thus, xi ≥ ui

√
b/30. J

We can now complete the main contribution of this subsection.

I Lemma 12. ONU = O(
√
b) ·OPT +O(b).

Proof. Notice that OPT ≥
∑
S OPTS/2. Hence, it is sufficient that we establish the above

mentioned bound for each clean-up phase sequence. We prove that ONU
S = O(

√
b) ·OPTS ,

for every clean-up phase sequence S except the last one. We then complete the proof by
demonstrating that the last clean-up phase sequence contributes an additive value of O(b).

Consider a clean-up phase sequence S that is not the last one. Observe that if there
is a phase i ∈ S such that ui > 6

√
b then uS = Θ(maxi∈S ui). This observation uses the

fact that such a clean-up phase sequence ends when
∑
i∈S ui > 60

√
b. Using Lemma 10,

one can infer that OPTS = Ω(maxi∈S ui), and the claimed bound follows by recalling that
ONU

S = O(uS
√
b). In case that ui ≤ 6

√
b for all phases i of S, then uS = O(

√
b), and

therefore, ONU
S = O(b) = O(

√
b) · OPTS , where the last equality follows from Lemma 11.

Now, let us focus on the last clean-up phase sequence S′. Clearly, uS′ < 60
√
b, and hence,

ONU
S′ = O(b). J

Putting everything together. Combining the bounds from Lemma 7, Lemma 9, and
Lemma 12, gives the main theorem of this section. Note that in adherence to competitive
analysis and online algorithms research, we allow additive terms that are independent of the
input stream and its properties.

I Theorem 13. There is a randomized algorithm whose competitive ratio is O(
√
b ln k).

3 A Deterministic Algorithm

We develop two deterministic algorithms: the first has a competitive ratio of O(ln b/δ2)
in a δ-augmentation setting and a competitive ratio of O(k2 ln b) when there is no server

Y. Azar, M. Englert, I. Gamzu, and E. Kidron 97

augmentation, and the other has a competitive ratio of O(b/δ) in a δ-augmentation setting
and a competitive ratio of O(kb) with no augmentation. Then, one can execute the algorithm
that achieves a better competitive ratio depending on the underlying parameters k, b, and
δ. This results in a O(min{k2 ln b, kb})-competitive algorithm, and a O(min{ln b/δ2, b/δ})-
competitive algorithm for the δ-augmentation settings. Note that in a δ-augmentation setting,
an online algorithm may employ k/(1− δ) servers where δ ∈ (0, 1), while an optimal offline
adversary can employ at most k servers. Also note that all the proofs of this section can be
found in the full version of the paper.

Algorithm 1. Our first algorithm sensibly combines the algorithm for the reordering buffer
problem on arbitrary metric spaces [10], and the FIFO algorithm for the paging problem [19].
Specifically, we utilize the algorithm for reordering buffer to decide which color to serve next,
and then use the FIFO algorithm to decide which of the servers moves to serve this color.
Formally, the algorithm consists of alternating selection and service steps. We maintain a
cost cχ ∈ [0, 1] for every color χ, which is initially 0. During the selection step the buffer is
full, and the cost of all inactive colors, namely, colors that currently do not consist of a server,
is incremented. The cost of each color is incremented at a rate proportional to the number
of items it has in the buffer. Once the cost of some color reaches 1, this color is selected,
and the selection step ends. If more than one color reaches a cost of 1 then one of them is
selected arbitrarily. Once the selection step ends, the service step begins. In the service step,
a server is moved to the selected color. The choice of which server should be moved is done
in a FIFO manner, that is, we move the server that has not moved the longest. Then, the
cost of the selected color drops from 1 to 0, and all its items in the buffer are cleared and
served. This makes room in the buffer for more items. Arriving items from active colors are
served immediately, while items from inactive colors are accumulated in the buffer. Once the
buffer is full again, a new selection step starts. Note that colors retain their cost from the
previous selection step.

I Theorem 14. Algorithm 1 achieves a competitive ratio of O(ln b/δ2) in a δ-augmentation
setting and a competitive ratio of O(k2 ln b) when there is no server augmentation.

Algorithm 2. Our second algorithm is simply a FIFO algorithm. This algorithm completely
ignores the buffer, and serves the items according to their arrival order. Specifically, when
an item arrives, it is immediately served by either a server that is already located on the
corresponding color, or by moving a server that has not moved the longest to that color.

I Theorem 15. There is a deterministic algorithm whose competitive ratio is O(b/δ) in a
δ-augmentation setting and O(kb) when there is no augmentation.

4 Conclusions

We made a first step in analyzing the generalized reordering buffer management problem in an
online setting, and provided non-trivial upper bounds on the competitive ratio. An obvious
direction for future research is the design of new algorithms with further improved bounds.
By now, both the paging problem and the reordering buffer problem are very well understood.
It seems natural to utilize the known techniques and state of the art algorithms for these
problems in order to obtain better results for generalized reordering buffer. Nevertheless, it
turns out to be a challenging task to establish bounds on such combinations. We do not know
whether natural combinations of such algorithms can attain good performance guarantees,

STACS’14

98 Generalized Reordering Buffer Management

although we have identified several combinations that fail. Any progress in this direction
would be of great interest.

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized

paging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000.
2 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. Almost tight

bounds for reordering buffer management. In STOC, pages 607–616, 2011.
3 Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano. Np-hardness of the sorting buffer

problem on the uniform metric. In FCS, pages 137–143, 2008.
4 Noa Avigdor-Elgrabli and Yuval Rabani. An improved competitive algorithm for reordering

buffer management. In SODA, pages 13–21, 2010.
5 Noa Avigdor-Elgrabli and Yuval Rabani. A constant factor approximation algorithm for

reordering buffer management. In SODA, pages 973–984, 2013.
6 Noa Avigdor-Elgrabli and Yuval Rabani. An optimal randomized online algorithm for

reordering buffer management. CoRR, abs/1303.3386, 2013.
7 Reuven Bar-Yehuda and Jonathan Laserson. Exploiting locality: Approximating sorting

buffers. Journal of Discrete Algorithms, 5(4):729–738, 2007.
8 Siddharth Barman, Shuchi Chawla, and Seeun Umboh. A bicriteria approximation for the

reordering buffer problem. In ESA, pages 157–168, 2012.
9 Ho-Leung Chan, Nicole Megow, Rob van Stee, and René Sitters. A note on sorting buffers

offline. Theoretical Computer Science, 423:11 – 18, 2012.
10 Matthias Englert, Harald Räcke, and Matthias Westermann. Reordering buffers for general

metric spaces. Theory of Computing, 6(1):27–46, 2010.
11 Matthias Englert and Matthias Westermann. Reordering buffer management for non-

uniform cost models. In ICALP, pages 627–638, 2005.
12 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,

and Neal E. Young. Competitive paging algorithms. CoRR, cs.DS/0205038, 2002.
13 Iftah Gamzu and Danny Segev. Improved online algorithms for the sorting buffer problem

on line metrics. ACM Transactions on Algorithms, 6(1):15:1–15:14, 2009.
14 Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel Dominic Sleator. Competi-

tive snoopy caching. Algorithmica, 3:77–119, 1988.
15 Rohit Khandekar and Vinayaka Pandit. Online sorting buffers on line. In STACS, pages

584–595, 2006.
16 Jens S. Kohrt and Kirk Pruhs. A constant approximation algorithm for sorting buffers. In

LATIN, pages 193–202, 2004.
17 Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging

algorithm. Algorithmica, 6(6):816–825, 1991.
18 Harald Räcke, Christian Sohler, and Matthias Westermann. Online scheduling for sorting

buffers. In ESA, pages 820–832, 2002.
19 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and

paging rules. Commun. ACM, 28(2):202–208, 1985.

Shapley meets Shapley
Haris Aziz1 and Bart de Keijzer2

1 NICTA and University of New South Wales, Sydney, Australia
haris.aziz@nicta.com.au

2 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
keijzer@cwi.nl

Abstract
This paper concerns the analysis of the Shapley value in matching games. Matching games
constitute a fundamental class of cooperative games which help understand and model auctions
and assignments. In a matching game, the value of a coalition of vertices is the weight of the
maximum size matching in the subgraph induced by the coalition. The Shapley value is one of the
most important solution concepts in cooperative game theory. After establishing some general
insights, we show that the Shapley value of matching games can be computed in polynomial time
for some special cases: graphs with maximum degree two, and graphs that have a small modular
decomposition into cliques or cocliques (complete k-partite graphs are a notable special case of
this). The latter result extends to various other well-known classes of graph-based cooperative
games. We continue by showing that computing the Shapley value of unweighted matching games
is #P-complete in general. Finally, a fully polynomial-time randomized approximation scheme
(FPRAS) is presented. This FPRAS can be considered the best positive result conceivable, in
view of the #P-completeness result.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combi-
natorics, G.2.2 Graph Theory

Keywords and phrases Matching games, Shapley, counting complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.99

1 Introduction

In economics and computer science, one of the most fundamental problems is the allocation of
profits or costs based on contributions of the nodes in a network. The problem has assumed
even more importance as networks have become ubiquitous. In this paper, we address this
problem by simultaneously studying two concepts that can be traced to Lloyd S. Shapley –
the Shapley value and matching games.

Lloyd S. Shapley is one of the most influential game theorists in history. Among his
numerous contributions, two of them are the following: (i) formulating the assignment game
as a rich and versatile class of cooperative games [25], and (ii) proposing the Shapley value
as a highly desirable solution concept for cooperative games [24]. Both contributions have
had far-reaching impact and were part of Shapley’s Nobel Prize winning achievements. The
assignment game is a cooperative game based on bipartite graphs, and models the interaction
between buyers and sellers. It is the transferable utility version of the well-known stable
marriage setting and is a fundamental model that is used for modelling exchange markets and
auctions [23]. Assignment games were later generalized to matching games, for non-bipartite
graphs (see e.g., [11, 17]). The main idea of a matching game is that each node represents an
agent and the value of a coalition of nodes is the weight of the maximum weight matching in
the subgraph induced by the coalition of nodes. Whereas the matching game is one of the

© Haris Aziz and Bart de Keijzer;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 99–111

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.99
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

100 Shapley meets Shapley

most natural and important cooperatives game, the Shapley value has been termed “the most
important normative payoff division scheme” in cooperative game theory [28]. It is based on
the idea that the payoff of an agent should be proportional to his marginal contributions
to the payoff for the set of all players. For an excellent overview of the concept, we refer
the reader to [21, Chapter 5,]. The Shapley value is the only solution concept that satisfies
simultaneously the following properties: efficiency, symmetry, additivity, and dummy player
property.

In this paper we address a gap in the computational cooperative game theory literature,
and we initiate research on the computational aspects of the Shapley value in matching games.
This gap is surprising on two fronts: (i) computational aspects of Shapley values have been
extensively studied for a number of cooperative games (see e.g., [12, 15, 14]) and (ii) matching
games are a well-established class of cooperative games, and the structure and computational
complexity of computing important solution concepts such as the core, least core, and
nucleolus have been examined in-depth for matching games (see e.g., [1, 26, 17, 10, 6, 5]).

Our results. We study the algorithmic aspects and computational complexity of the Shapley
value for matching games for the first time. We establish first some general insights and some
particular special cases for which the exact Shapley value can be computed in polynomial
time for: graphs with a constant size decomposition into clique and coclique modules (these
include e.g., complete k-partite graphs, for k constant), and for graphs with maximum degree
two. The non-trivial algorithm required for graphs of maximum degree two illustrates that
exact computation of the Shapley value quickly becomes rather complex, even for very simple
graph classes. We then move on to the central results of this paper, which concerns the
general problem: we prove that the computational complexity of computing the Shapley
value of matching games is #P-complete even if the graph is unweighted. The proof relies
on Berge’s Lemma and the fact that a certain matrix related to the Pascal triangle has a
non-zero determinant. We subsequently present an FPRAS (i.e., a fully polynomial time
randomized approximation scheme) for computing the Shapley value of (weighted) matching
games. In view of our #P-completeness result, the FPRAS is the best possible result we can
hope for.

Related work. The complexity of computing the Shapley value of important classes of
cooperative games has been the topic of detailed studies. The papers [12] and [15] present
polynomial-time algorithms to compute the Shapley value of graph games and marginal
contribution nets respectively. On the other hand, computing the Shapley value is known to
be intractable for a number of cooperative games (see e.g., [14, 2]).

Among the classes of cooperative games, matching games are one of the most well-studied.
The core of matching games is characterized in [11], where it is also shown that various
computational problems regarding the core and the least core of matching games can be
solved in polynomial time. For matching games, there has been considerable algorithmic
research on the nucleolus: an alternative single valued solution concept (see e.g., [26, 17]).

As networks analysis becomes an increasingly important area, centrality indices of graphs
have received immense interest (see e.g., [7]). The idea is to get a ranking of vertices
according to their ability to connect with other vertices. Recently, a Shapley-values based
game theoretic approach has been used to gauge the centrality or connectivity of vertices
by representing different valuation functions with a graph [20, see e.g.,]. The motivation
is that the Shapley value of a vertex captures various synergies which standard centrality
measures do not. In this vein, Shapley values of the matching game constitutes an interesting

H. Aziz and B. de Keijzer 101

method of gauging centrality/connectivity of the vertices. In particular it quantifies in a
principled manner the ability of a vertex to match with other vertices to increase the value
of the coalition.

2 Preliminaries

We work throughout this text with undirected weighted graphs G = (N,E,w), where N is
the vertex set, E is the edge set, and w : E → R≥0 is a weight function. For S ⊆ N , we
denote by G(S) the subgraph of G induced by S, i.e., the graph (S, {e ∈ E : e ∈ S×S}). We
assume for the remainder of this text that the reader is familiar with basic notions related to
graphs and matchings.

A cooperative game consists of a set N of n = |N | players and a characteristic function
v : 2N → R associating a value v(S) to every subset S ⊆ N . A subset of N is referred to as
a coalition in this context. Deciding how to distribute the value v(N) among the players
in a fair and stable manner is an objective of central importance in the research area of
cooperative games.

A matching game is a cooperative game (N, v) induced by an undirected weighted graph
G = (N,E,w) (with vertex set N , edge set E, and weight function w : E → R≥0) such that
for any S ⊆ N , v(S) is the weight of a maximum weight matching of the subgraph G(S). For
a given graph G, we will denote by MG(G) the matching game corresponding to graph G.

An unweighted matching game is a matching game for which all weights are 1 in the
associated graph. In unweighted matching games, it holds that v(S ∪ {i})− v(S) ∈ {0, 1}
for all S ⊂ N , i ∈ N\S. If, for an unweighted matching game (N, v), a player i ∈ N , and a
coalition S ⊆ N\{i}, it holds that v(S ∪ {i}) = v(S) + 1, then we say that player i is pivotal
(for coalition S, in game (N, v)). Similarly, if σ : N → N is a permutation on N , and i is
pivotal for set of players p(i, σ) = {j : σ−1(j) < σ−1(i)} (i.e., the players occurring before i
in σ), then we say that σ is pivotal for i.

For the general case of weighted matching games, when S is a coalition not containing
player i, we refer to the value v(S ∪{i})− v(S) as the marginal contribution of i to S. When
σ is a permutation of N , we refer to the value v(p(i, σ) ∪ {i})− v(p(i, σ)) as the marginal
contribution of i to σ.

The Shapley value of a player i ∈ N in a cooperative game (N, v) is denoted by ϕi(N, v),
and is defined as follows.

ϕi(N, v) = κi(N, v)/n!, κi(N, v) =
∑

S⊆N\{i}

(|S|!)(n− |S| − 1)!(v(S ∪{i})− v(S)). (1)

κi is called the raw Shapley value. It is well-known and straightforward to obtain that the
raw Shapley value can be written as κi(N, v) =

∑
σ∈SN (v(p(i, σ) ∪ {i})− v(p(i, σ),)), where

SN is the set of permutations on the player set N . For an unweighted matching game, the
raw Shapley value of a player is thus equal to the number of pivotal permutations. We refer
to the vectors ϕ = (ϕ1(N, v), . . . ϕn(N, v)) and κ = (κ1(N, v), . . . , κn(N, v)) respectively as
the Shapley value and the raw Shapley value of the game (N, v).

The players i, j ∈ N are called symmetric in (N, v) if v(S ∪ {i}) = v(S ∪ {j}) for any
coalition S ⊆ N \ {i, j}. A player i ∈ N is a dummy if v(S ∪ {i})− v(S) = 0 for all S ⊆ N .
The Shapley value satisfies the following properties: (i) Efficiency:

∑
i∈N ϕi(N, v) = v(N);

(ii) Symmetry: if i, j ∈ N are symmetric, then ϕi(N, v) = ϕj(N, v); (iii) Dummy: if i is a
dummy, then ϕi(N, v) = 0; (iv) Additivity: ϕi(N, v1 + v2) = ϕi(N, v1) + ϕi(N, v2) for all

STACS’14

102 Shapley meets Shapley

i ∈ N ;1 and (v) Anonymity: relabeling the agents does not affect their Shapley value. We
are interested in the following computational problem.

Shapley
Instance: A weighted graph G = (N,E,w) and a specified player i ∈ N .
Question: Compute ϕi(MG(G)).

2.1 General insights
In this subsection, we gain some general insights about the Shapley value of matching games.
First, if the graph is not connected, then the problem of computing the Shapley value of the
graph reduces to computing the Shapley value of the respective connected components.

I Lemma 1 (Shapley value in connected components). Let G = (N,E,w) be a weighted graph
with k connected components, and let the respective vertex sets of these connected components
be N1, . . . , Nk. Let v be the characteristic function of the matching game MG(G) on that
graph, and let c : N → [k] be the function that maps a vertex i to the number j such that
j ∈ Nk.2 Then, for every vertex i it holds that ϕi(v) = ϕi(vc(i)), where vj denotes the
characteristic function of the matching game on the subgraph induced by Nj.

It is rather straightforward to see that a vertex has a Shapley value zero if and only if it is
not connected to any other vertex.

I Observation 1. A player in a matching game has a non-zero Shapley value if and only if
there is an edge in the graph that contains the player. It can thus be decided in linear time
whether a player in a matching game has a Shapley value of zero.

Next, we present another lemma concerning the Shapley value of unweighted matching
games.

I Lemma 2. Consider an unweighted matching game (N, v). If for each s ∈ [n − 1], the
number of coalitions of size s for which player i is pivotal in (N, v) can be computed in time
f(n) for some function f : N→ R≥0, then the Shapley value of i can be computed in time
nf(n).

3 Exact algorithms for restricted graph classes

Some classes of matching games for which computing the Shapley value is trivial are symmetric
graphs (e.g. cliques and cycles), and graphs with a constant number of vertices. We proceed
to prove this for two additional special cases: weighted graphs that admit constant size
(co)clique modular decompositions, and unweighted graphs with degree at most two.

3.1 Graphs with a constant number of clique or coclique modules
An important concept in the context of undirected graphs is that of a module. A subset of
vertices S ⊆ N is a module if all members of S have the same set of neighbors in N \ S. We
can extend this notion to weighted graphs by requiring that all members of S are connected

1 The sum of two characteristic functions v1 and v2 on the same player set is defined in the standard way:
as v1(S) + v2(S) for all S ⊆ N .

2 For a ∈ N, we write [a] to denote {b ∈ N : 1 ≤ b ≤ a}.

H. Aziz and B. de Keijzer 103

to the same set of neighbors, by edges of the same weight. A modular decomposition is a
partition of the vertex set into modules.

A clique module (resp. coclique module) of a weighted graph is a module of which the
vertices are pairwise connected by edges of the same weight (resp. pairwise disconnected).
Note that every graph has a trivial modular decomposition into cliques (and cocliques): the
partition of N into singletons.

We prove that if a weighted graph G has a size k modular decomposition consisting of
only cliques or only cocliques, then the Shapley value of MG(G) can be found in polynomial
time. In fact, we will show that this holds for the more general class of subgraph-based
games: We call a cooperative game (N, v) subgraph-based if there exists a weighted graph
G = (N,E,w) such that for S, T ⊂ N , it holds that v(S) = v(T) if G(S) and G(T) are
isomorphic.

I Theorem 3. Consider a subgraph-based cooperative game (N, v). Then, the Shapley value
of (N, v) can be computed in polynomial time if the following three conditions hold: i.)
the weighted graph G = (N,E,w) associated to (N, v) is given or can be computed in time
polynomial in the size of the representation of (N, v); ii.) there exists a modular decomposition
γ(G) into k cocliques or k cliques and G is unweighted in the latter case; and iii.) v(S) can
be computed in polynomial time for all S ⊆ N .

Proof. Note first that one can find for G in polynomial time a minimum cardinality modular
decomposition into cocliques: simply check for each pair of vertices whether they are
disconnected and connected to identical sets of vertices through edges with identical weights.
If so, then they can be put in the same module. Similarly, a minimum cardinality modular
decomposition into cliques can be found in polynomial time in case the graph is unweighted,
by finding a minimum cardinality modular decomposition into cocliques in the complement
of G (i.e., the graph that contains only those edges not in E).

A set of players S is said to be of the same player type if all player pairs in S are symmetric.
We first show that all players in the same module of γ(G) are of the same player type. Let i, j
be two players in the same module M in γ(G). Then, for every coalition C ⊆ N\{i, j}, the
subgraphs G(C ∪ {i}) and G(C ∪ {j}) are isomorphic (because G(M) is a clique or coclique),
so v(C ∪ {i}) = v(C ∪ {j}). Therefore, we know that the vertices can be divided into a
constant number k of player types.

[27] showed that any cooperative game in which the value of a given coalition can be
computed in polynomial time, and there is known size k partition of the players into sets
of the same player type, then the Shapley value can be computed in polynomial time via
dynamic programming. The number of player types in our game is constant number k of
clique and coclique modules. Therefore the result of [27] can be applied, and this proves our
claim. J

For matching games, the function v can be evaluated using any polynomial time maximum
weight matching algorithm. Therefore, the above result implies that computing the Shapley
value can be done in polynomial time for classes of graphs where we can find efficiently a
size k modular decomposition into cliques or cocliques. This includes the class of complete
k-partite graphs and any strong product3 of an arbitrary size clique (or coclique) with a
graph on k vertices.

3 The strong product of two graphs G1 = (N, E1) and G2 = (M, E2) is defined as the graph (N ×M, E′),
where E′ = {{(iN , iM), (jN , jM)} ⊆ N ×M : iM = jM ∧ {iN , jN} ∈ E1 ∨ {iM , jM} ∈ E2}.

STACS’14

104 Shapley meets Shapley

I Corollary 4. For matching games based on complete k-partite graphs, where k is a constant,
the Shapley value can be computed in polynomial time.

Theorem 3 also applies to cooperative games such as s-t vertex connectivity games and
min-cost spanning tree games [10, 11], as these are subgraph-based games.

3.2 Graphs of degree at most two
We first examine linear graphs (or: “paths”), i.e., unweighted connected graphs in which two
vertices have out-degree one and the remaining vertices have out-degree two.

I Lemma 5. The Shapley value of a player in a matching game on an unweighted linear
graph can be computed in O(n4) time.

Proof. Assume without loss of generality that the vertex set is N and the edge set is
{{j, j + 1} : j ∈ N\{n}]}, and that i ∈ N is the player of whom we want to compute the
Shapley value. Fix any s ∈ [n− 1], and let ηsi be the number of coalitions of size s for which
vertex i is pivotal. We compute ηsi by subdividing in separate cases and taking the sum of
them:

The number ηs,lefti = |{S∪{i+1} : S ⊆ N\{i, i−1, i+1}, i is pivotal for S}|. Intuitively:
the number of coalitions S where i is pivotal such that adding i to S extends the left of a
line segment.
The number ηs,righti = |{S ∪ {i− 1} : S ⊆ N\{i, i− 1, i+ 1}, i is pivotal for S}|.
The number ηs,connecti = |{S ∪ {i− 1, i+ 1} : S ⊆ N\{i, i− 1, i+ 1}, i is pivotal for S}|.
Intuitively: the number of coalitions S where i is pivotal, such that i connects two line
segments.
ηs,isolatedi = |{S : S ⊆ N\{i, i− 1, i+ 1}, i is pivotal for S}|.

It is immediate that ηs,isolatedi = 0, since adding i to a coalition S not containing i+ 1
nor i− 1 results in a coalition forming a subgraph in which i is an isolated vertex. For the
remaining three values, ηs,lefti , ηs,righti , and ηs,connecti , we show below how to compute them
efficiently.

For ηs,lefti , observe that adding a vertex to the left of a (non-empty) line segment L
increases the cardinality of a maximum matching if and only if L has an even number of
edges (and thus an odd number of vertices). Therefore, define ηs,lefti (k) to be the number
of coalitions S of size s for which i is pivotal such that S contains the line segment
{i+ 1, . . . , i+ k + 1}, and does not contain {i− 1, i+ k + 2}. The number ηs,lefti (k) is
easy to determine:

ηs,lefti (k) =
{

0 if k is odd,(|N\{i−1,...,i+k+2}|
s−|{i−1,...,i+k+1}∩N |

)
otherwise.

We can then express ηs,lefti as
∑max{n−i−1,s−1}
k=1 ηs,lefti (k). There is only a linear number

of terms in this sum, and all of them can be computed in linear time.
ηs,righti is computed in an analogous fashion.
For ηs,connecti , observe that adding a vertex i to a coalition such that i connects two line
segments L1 and L2, increases the cardinality of a maximum matching if and only if L1
and L2 do not both have an odd number of edges (or equivalently: not both have an even
number of vertices). Therefore, define ηs,connecti (k1, k2) to be the number of coalitions S

H. Aziz and B. de Keijzer 105

of size s for which i is pivotal such that S contains the line segments {i−k1−1, . . . , i−1}
and {i+ 1, . . . , i+ k2 + 1}, and does not contain {i− k1 − 2, i+ k2 + 2}. The number
ηs,connecti (k1, k2) is easy to determine:

ηs,connecti (k1, k2) =
{

0 if k1 and k2 are both odd,(|N\({i−k−2,...,i+k+2}|
s−|{i−k−1,...,i+k+1}∩N |

)
otherwise.

We can then express ηs,connecti as
∑max{i−2,s−1}
k1=1

∑max{n−i−1,s−k1−2}
k2=1 ηs,lefti (k1, k2). The

number of terms in this sum is quadratic, and all of these terms can be computed in
linear time. We can thus compute ηs,connecti in O(n3) time.

The claim now follows from Lemma 2. J

I Theorem 6. For graphs with maximum degree 2, the Shapley value can be computed in
polynomial time.

Proof. A graph with degree at most two is a disjoint union of cycles and linear graphs. From
Lemma 1, we can compute the Shapley value of the connected components separately. From
Lemma 5, we know that the Shapley value of linear graphs can be computed in polynomial
time. Due to anonymity, the Shapley value of a cycle is uniform. J

The above proof for linear graphs demonstrates that computation of the Shapley value of
a matching game already becomes involved for even the simplest of graph structures. We
would be interested in seeing an extension of this result that enables us to exactly compute
the Shapley value in any non-trivial class of graphs that contains a vertex of degree at least
three.

4 Computational complexity of the general problem

In this section, we examine the computational complexity of the general problem of computing
the Shapley value for matching games. As we mentioned in Section 2, Shapley is equivalent
to the problem of counting the number of pivotal permutations for a player in an unweighted
matching game, and is therefore a counting problem. It is moreover easy to see that this
counting problem is a member of the complexity class #P.4

For certain cooperative games such as weighted voting games [14], intractability of
computing the Shapley value can be established by proving that even checking whether a
player gets non-zero Shapley value is NP-complete. Proposition 1 tells us that this is not the
case for matching games. Before we proceed, we establish some notation. Let G = (N,E)
be a graph. Let αk(G) be the number of vertex sets S ⊆ N such that |S| = k and the
subgraph G(S) of G induced by S admits a perfect matching. Then αk(G) =

(
n
k

)
− αk(G) is

the number of subsets S ⊆ N of size k such that G(S) does not admit a perfect matching.
In order to characterize the complexity of Shapley, we first define the following problem.
#MatchableSubgraphsk
Instance: Undirected and unweighted graph G = (N,E) and an even integer k.
Question: Compute αk(G).

I Lemma 7. #MatchableSubgraphsk is #P-complete.

4 Informally: #P is the class of computational problems that correspond to counting the number of
accepting paths on a non-deterministic Turing machine. We refer the reader to any introductory text
on complexity theory.

STACS’14

106 Shapley meets Shapley

Proof. In [9] it is proved that the following problem is #P-complete: Given an undirected and
unweighted bipartite graph G = (S∪I, E), compute the number of subsets of B ⊆ S, such that
G(B∪I) admits a perfect matching.5 The problem is equivalent to #MatchableSubgraphs2|I|.

J

I Theorem 8. Computing the Shapley value of a matching game on an unweighted graph is
#P-complete.

Proof. We present a polynomial-time Turing reduction from #MatchableSubgraphsk to
Shapley. We show that if there exists a polynomial-time algorithm for Shapley, then we
can solve #MatchableSubgraphsk for a given graph G in polynomial time, by solving
Shapley on a set of graphs that we construct from G. For each of these graphs, we show
that a linear equation holds that relates the Shapley value of a vertex of G to the values αk
and αk. The coefficient matrix of this system of equations will then turn out to be invertible,
hence it can be solved in polynomial time via Gaussian elimination in order to compute the
values αk and αk.

We remind the reader that the symbol κ is used to denotes the raw Shapley value, as
defined in Section 2.

Let G = (N,E) be the given graph, and let G0 be the graph in which a new vertex y0 is
added to G that is connected to all vertices in N . For i > 0, let Gi be G0 with i additional
vertices y1, y2, . . . , yi and i additional edges {{yj , yj−1} : j ∈ [i]}.

The first part of the proof consists of showing that the following set of equations hold:

κyi(MG(Gi)) =
{
C(i) +

∑n
k=0(k + i)!(n− k)!αk(G) if i is even, (2)

C(i) +
∑n
k=0(k + i)!(n− k)!αk(G) if i is odd, (3)

where

C(i) =
bi/2c∑
k=1

n+i−2k∑
j=0

(j + 2k − 1)!(n+ i− j − 2k + 1)!
(
n+ i− 2k

j

)
.

Define a type 1 pivotal coalition for yi in MG(Gi) as a pivotal coalition for i in MG(Gi)
that does not contain all players y0, . . . , yi−1. Define a type 2 pivotal coalition for yi in
MG(Gi) as a pivotal coalition for yi in MG(Gi) that does contain all players y0, . . . , yi−1.
Denote by Htype 1

i (s) (resp. Htype 2
i (s)) the set of type 1 (resp. type 2) pivotal coalitions for

i in MG(Gi) that are of size s. From (1), it follows that

κyi(MG(Gi)) =
n+i∑
s=1

s!(n+ i− s)!|Htype 1
i (s)|+

n+i∑
s=1

s!(n+ i− s)!|Htype 2
i (s)|. (4)

First we characterize the coalitions in Htype 2
i (s).

I Lemma 9. If i is even, a coalition S of MG(Gi) is in Htype 2
i (s) if and only if G(S∩N) is

not perfectly matchable (and {y0, . . . , yi−1} ⊆ S, |S| = s). If i is odd, a coalition S of MG(Gi)
is in Htype 2

i (s) if and only if G(S∩N) is perfectly matchable (and {y0, . . . , yi−1} ⊆ S, |S| = s).

5 The proof of Colbourn resolved “an exceptionally difficult problem” [9]. Interestingly, the corresponding
decision problem of checking whether there exists a subgraph of size k that does not admit a perfect
matching, appears to be open.

H. Aziz and B. de Keijzer 107

Proof. Case of even i. (⇒) Let M be a maximum matching for Gi(S). S is pivotal for yi,
so M is not a perfect matching. We can assume though, that all vertices {y0, . . . , yi−1} are
matched to each other in the matched graph (Gi(S),M), because Gi({y0, . . . , yi−1}) is a
linear graph with an even number of vertices, and is thus perfectly matchable. It follows
that the exposed nodes of (Gi(S),M) are all in N , and therefore the matching M restricted
to N is a maximum matching for G(S\{y0, . . . , yi−1}) = G(S ∩N) that is non-perfect.

(⇐) Let M be a maximum (non-perfect) matching for G(S ∩N) and let y be an exposed
vertex of (G(S ∩ N),M). Then M ′ = M ∪ {{yj , yj+1} : j even ∧ j < i} is a maximum
matching for Gi(S), by Berge’s Lemma, as it is clear that there is no augmenting path in
(Gi(S),M ′). Moreover, observe that in (Gi(S),M ′) there is an even-length alternating path
from y to yi−1. Therefore, there is in (Gi,M ′) an augmenting path from y to yi, and it
follows again by Berge’s lemma that S is pivotal.

Case of odd i. (⇒) Let M ′ be a maximum matching for Gi(S). S is pivotal, so in
(Gi(S),M ′) there is an even-length alternating path P from an exposed node y to yi−1.
Obtain the matching M by augmenting M ′ along P . M is then a maximum matching for
Gi(S) in which yi−1 is exposed. Gi({y0, . . . , yi−1}) is a linear graph and M is maximum, so
it follows that yi−1 is the only exposed node in (Gi(S),M) among {y0, . . . yi−1}. Therefore
S∩N must be matched to each other in (G(S),M) (for otherwise, in (Gi(S),M) there would
be an augmenting path from yi−1 to an exposed node of S ∩N , contradicting the fact that
M is a maximum matching for Gi(S)). It follows that G(S ∩N) is perfectly matchable.

(⇐) Let M be a maximum perfect matching for G(S ∩ N). Let M ′ be a maximum
matching for Gi({y0, . . . , yi−1}) in which yi−1 is the only exposed node. Then M ∪M ′ is a
matching for Gi(S) in which yi−1 is the only exposed node. M ∪M ′ is clearly a maximum
matching, and in (Gi,M ∪M ′) the edge {yi−1, yi} is exposed. So S is pivotal. J

From the above lemma, it follows that the coalitions in Htype 2
i (s) are precisely the

coalitions of the form T ∪ {y0, . . . , yi−1}, where T ⊂ N is such that for even i, G(T) is not
perfectly matchable, and for odd i, G(T) is perfectly matchable. Therefore |Htype 2

i (s)| =
αs−i(G) for even i and |Htype 2

i (s)| = αs−i(G) for odd i, and this implies:

n+i∑
s=1

s!(n+ i− s)!|Htype 2
i (s)| =

{∑n
k=0(k + i)!(n− k)!αk(G) if i is even,∑n
k=0(k + i)!(n− k)!αk(G) if i is odd.

In words: the second summation of (4) equals the summation of (2) when i is even, and the
summation of (3) when i is odd. Therefore, it suffices to prove that the first summation of
(4) equals C(i).

For this sake, define Htype 1
i (s, k) for k ∈ [bi/2c] as {S ∈ Htype 1

i (s) : yi−2k 6∈ S ∧
{yi−1, . . . , yi−2k+1} ⊆ S}. Observe that {Htype 1

i (s, 1), . . . ,Htype 1
i (s, i/2)} is a partition of

Htype 1
i (s). For a given k and s, note that the set Htype 1

i (s, k) consists of all coalitions of
the form T ∪ {yi−1, . . . , yi−2k+1}, where T ⊆ N ∪ {y0, . . . , yi−2k−1}, |T | = s− 2k+ 1. Hence,
|Htype 1

i (s, k)| =
(
n+i−2k
s−2k+1

)
(defining

(
a
b

)
= 0 whenever b < 0 or b > a). Therefore:

n+i∑
s=1

s!(n+ i− s)!|Htype 1
i (s)| =

bi/2c∑
k=1

n+i−1∑
s=2k−1

s!(n+ i− s)!
(
n+ i− 2k
s− 2k + 1

)

=
bi/2c∑
k=1

n+i−2k∑
j=0

(j + 2k − 1)!(n+ i− j − 2k + 1)!
(
n+ i− 2k

j

)
.

This shows that (2) and (3) hold.

STACS’14

108 Shapley meets Shapley

The second part of the proof consists of showing that all αk(G), k ∈ N can be computed
from κyi(MG(Gi)) in polynomial time, using (2) and (3), for i ∈ N ∪ {0}. This is sufficient
to complete the proof, because the graphs G0, . . . , Gn can clearly be constructed from G in
polynomial time, hence a polynomial time algorithm that computes αk from κyi(MG(Gi)), i ∈
N is a polynomial Turing reduction.

Let βi(G) = αi(G) for even i and let βi(G) = αi(G) for odd i. We can represent (2) and
(3) for i ∈ N ∪ {0} as the following system of equations:

0!n! 1!(n− 1)! · · · n!0!
1!n! · · · (n+ 1)!0!
...

...
. . .

...
n!n! · · · (2n)!0!

×

β0(G)
β1(G)

...
βn(G)

 =

κy0(MG(G0))− C(0)
κy1(MG(G1))− C(1)

...
κyn(MG(Gn))− C(n)

 (5)

Denote by A the (n + 1) × (n + 1) matrix in the above equation. Recall that a scalar
multiplication of a column by a constant c multiplies the determinant by c. Therefore, A is
nonsingular if and only if nonsingularity also holds for the (n+ 1)× (n+ 1) matrix B, defined
by Bij = (i+ j)!. B is a matrix that is related to Pascal’s triangle, and it is known that its
determinant is equal to

∏n
i=0 i!

2 6= 0 [3, 2]. It follows that A is nonsingular, so our system of
equations (5) is linearly independent and has a unique solution. Note that all entries in the
system can be computed in polynomial time (assuming that the Shapley value of a matching
game is polynomial time computable): The constants C(i) consist of polynomially many
terms, and all factorials and binomial coefficients that occur in (5) are taken over numbers
of magnitude polynomial in n.

Therefore, we can use Gaussian elimination to solve (5) in O(n3) time. It follows that for
all i ∈ N , βi(G) can be computed in polynomial time, and hence αi(G) can be computed in
polynomial time. Therefore, if there exists an algorithm that solves Shapley in polynomial
time, then it can also be used to solve #MatchableSubgraphsk in polynomial time. J

5 An approximation algorithm

In this section, we show that although computing exactly the Shapley value of matching
games is a hard problem, approximating it is much easier.

Let Σ be a finite alphabet in which we agree to describe our problem instances and
solutions. A fully polynomial time randomized approximation scheme (FPRAS) for a function
f : Σ∗ → Q is an algorithm that takes input x ∈ Σ∗ and a parameter ε ∈ Q>0, and returns
with probability at least 3

4 a number in between f(x)/(1 + ε) and (1 + ε)f(x). Moreover,
an FPRAS is required to run in time polynomial in the size of x and 1/ε. The probability
of 3

4 is chosen arbitrarily: by a standard amplification technique, it can be replaced by an
arbitrary number δ ∈ (1/2, 1). The resulting algorithm would then run in time polynomial
in n, 1/ε, and log(1/δ).

We will now formulate an algorithm that approximates the raw Shapley value of a player
in a weighted matching game, and show that it is an FPRAS. Note that we cannot utilize
approximation results in [18] and [4] since matching games are neither convex nor simple. Our
FPRAS is based on Monte Carlo sampling, and works as follows: Let (G = (N,E,w), i, ε) be
the input, where G is the weighted graph representing matching game MG(G), i ∈ N is a
player inMG(G), and ε is the precision parameter. For notational convenience, we write κi as
a shorthand for κi(MG(G)). The algorithm first determines whether κi = 0 (Observation 1).
If so, then it outputs 0 and terminates. If not, then it samples d4n2(n−1)2/ε2e permutations

H. Aziz and B. de Keijzer 109

of the player set uniformly at random. Denote this multiset of sampled permutations by
P . The algorithm then outputs the average marginal contribution of player i over the
permutations in P and terminates. Note that this average marginal contribution is efficiently
computable: it is given by 1/d4n2(n− 1)2/ε2e times the sum of the marginal contributions
of player i to each of the sampled permutations. Determining these marginal contributions
can be done in polynomial time, using any maximum weight matching algorithm. Denote
our sampling algorithm by MatchingGame-Sampler.

MatchingGame-Sampler resembles the algorithms in [19, 18]: the differences are
that the algorithm takes a different number of samples, and that it determines whether the
Shapley value of player i is 0 prior to running the sampling procedure. Moreover, its proof
of correctness requires different insights.6

I Theorem 10. MatchingGame-Sampler is an FPRAS for the raw Shapley value in a
weighted matching game.

Proof. Denote by κ̄i the output of the algorithm. If κi = 0, then MatchingGame-Sampler
is guaranteed to output the right solution, so assume that κi > 0. Let wmax

i be the maximum
weight among the edges attached to i, and let emax

i ∈ E be an edge that is attached to i
such that w(emax

i) = wmax
i . Let X be a random variable that takes the value of n! times the

marginal contribution of player i in a uniformly randomly sampled permutation of the players.
Note that E[X] = κi. Note that the marginal contribution of a player in any permutation is
at most wmax

i , so X is at most wmax
i n!.

Let j be the neighbor of i connected by emax
i . Observe that any permutation in which j

is positioned first, and i is positioned second, is a permutation for i in which the marginal
contribution of i is wmax

i . There are (n− 2)! such permutations, so the raw Shapley value κi
of i is at least wmax

i (n− 2)!. For the variance of X we obtain Var[X] = E[X2]−E[X]2 ≤
E[X2] ≤ (wmax

i)2n!2 ≤ n2(n− 1)2κ2
i .

Observe that κ̄i is a random variable that is equal to
∑d4n2(n−1)2/ε2e

j=1
Xj

d4n2(n−1)2/ε2e , where Xj are
independent random variables with the same distribution as X. From this we obtain that
E[κ̄i] = E[X] = κi. The desired approximation guarantee then follows from Chebyshev’s
inequality,7 and completes the proof:

Pr[|κ̄i − κi| ≥ εκi] ≤
Var[κ̄i]
ε2κ2

i

=
Var

[
1

d4n2(n−1)2/ε2e
∑d4n2(n−1)2/ε2e
j=1 Xj

]
ε2κ2

i

=

(
Var[X]

d4n2(n−1)2/ε2e

)
ε2κ2

i

≤ n2(n− 1)2κ2
i

(4n2(n− 1)2/ε2) · ε2κ2
i

≤ 1
4 .

J

I Corollary 11. The algorithm that runs MatchingGame-Sampler and returns its output
scaled down by 1/n!, is an FPRAS for the Shapley value of a weighted matching game.

Observe that MatchingGame-Sampler is an FPRAS in the strong sense that its
running time does not depend on the weights of the edges. Due to the #P-completeness
result stated in Theorem 7, this FPRAS is the best one can hope for, and provides us with a
complete answer to the precise complexity of this problem (based on our best judgment).

6 To be precise, this applies only to [18]. For the sampling algorithm in [19], no proof or approximation-
quality analysis of any kind is given.

7 Here, one could also choose to apply Hoeffding’s inequality instead of Chebyshev’s inequality, but this
will not result in an asymptotically better bound.

STACS’14

110 Shapley meets Shapley

6 Conclusions

In this paper, we examined the structure, algorithms, and computational complexity for the
problem of computing the Shapley value in a matching game. There are many special cases
of the problem that have not been treated in this paper, but nonetheless are potentially
worthwhile to analyze: trees, bipartite graphs, connected regular graphs, and series-parallel
graphs. Among these, bipartite graphs are especially interesting, since they model two-sided
markets. There are some interesting computational problems related to Shapley value
computation, such as the problem of comparing the Shapley values of two vertices. One
may also pursue the same questions for fractional matching games in which the value of a
coalition is the maximum size of a fractional matching [8]. Moreover, our study motivates the
investigation of unexplored connections with some objects in matching theory. The matching
polytope is one of the most-well studied objects in polyhedral combinatorics [22]. It will be
interesting to identify any relation between the matching polytope of a graph and the Shapley
values of the corresponding matching game. Secondly, network flows are fundamentally
connected to matchings for the case of bipartite graphs. An interesting research direction
is to explore the connection of network flow games [16] with matching games and whether
computing Shapley values of one game is reducible to computing Shapley values of the other
game, under certain conditions.

Acknowledgements. The authors thank Ross Kang for various helpful discussions.

References
1 A. Alkan and D. Gale. The core of the matching game. Games and Economic Behavior,

2(3):203–212, 1990.
2 H. Aziz, O. Lachish, M. Paterson, and R. Savani. Power indices in spanning connectivity

games. In Proc. of 5th International Conference on Algorithmic Aspects in Information
and Management (AAIM), volume 5564 of LNCS, pages 55–67. Springer, 2009.

3 R. Bacher. Determinants of matrices related to the Pascal triangle. Journal de théorie des
nombres de Bordeaux, 14:19–41, 2002.

4 Y. Bachrach, E. Markakis, E. Resnick, A. D. Procaccia, J. S. Rosenschein, and A. Saberi.
Approximating power indices: theoretical and empirical analysis. Autonomous Agents and
Multi-Agent Systems, 20:105–122, 2010.

5 P. Biró, M. Bornhoff, P. A. Golovach, W. Kern, and D. Paulusma. Solutions for the stable
roommates problem with payments. Theoretical Computer Science, 2013.

6 P. Biró, W. Kern, and D. Paulusma. Computing solutions for matching games. Interna-
tional Journal of Game Theory, 41(1):75–90, 2011.

7 U. Brandes and T. Erlebach, editors. Network Analysis, volume 3418 of LNCS. Springer,
2005.

8 N. Chen, P. Lu, and H. Zhang. Computing the nucleolus of matching, cover and clique
games. In Proc. of 26th AAAI Conference, 2012.

9 C. J. Colbourn, J. S. Provan, and D. Vertigan. The complexity of computing the Tutte
polynomial on transversal matroids. Combinatorica, 15(1):1–10, 1995.

10 X. Deng and Z. Fang. Algorithmic cooperative game theory. In A. Chinchuluun, P. M.
Pardalos, A. Migdalas, and L. Pitsoulis, editors, Pareto Optimality, Game Theory And
Equilibria, volume 17 of Springer Optimization and Its Applications. Springer-Verlag, 2008.

11 X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of combinatorial
optimization games. Mathematics of Operations Research, 24(3):751–766, 1999.

H. Aziz and B. de Keijzer 111

12 X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts.
Mathematics of Operations Research, 12(2):257–266, 1994.

13 J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
14 E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. On the computational

complexity of weighted voting games. Annals of Mathematics and Artificial Intelligence,
56(2):109–131, 2009.

15 S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation scheme for
coalitional games. In Proc. of 6th ACM-EC Conference, pages 193–202. ACM Press, 2005.

16 E. Kalai and E. Zemel. Generalized network problems yielding totally balanced games.
Operations Research, 30:998–1008, 1982.

17 W. Kern and D. Paulusma. Matching games: The least core and the nucleolus. Mathematics
of Operations Research, 28(2):294–308, 2003.

18 D. Liben-Nowell, A. Sharp, T. Wexle, and K. Woods. Computing shapley value in super-
modular coalitional games. In Proc. of 18thCOCOON, 2011.

19 I. Mann and L. S. Shapley. Values of large games, iv: Evaluating the electoral college by
montecarlo techniques. Technical Report RM-2651, RAND Corporation, 1960.

20 T. P. Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran, and N. R. Jennings.
Efficient computation of the shapley value for game-theoretic network centrality. Journal
of Artificial Intelligence Research, 46:607–650, 2013.

21 H. Moulin. Fair Division and Collective Welfare. The MIT Press, 2003.
22 M. D. Plummer. Matching theory - a sampler: from Dénes König to the present. Discrete

Mathematics, 100:177–219, 1992.
23 A. Roth and M. A. O. Sotomayor. Two-Sided Matching: A Study in Game Theoretic

Modelling and Analysis. Cambridge University Press, 1990.
24 L. S. Shapley. A value for n-person games. Annals of Math Studies, 28:307–317, 1953.
25 L. S. Shapley and M. Shubik. The Assignment Game I: The Core. International Journal

of Game Theory, 1:111–130, 1972.
26 T. Solymosi and T. E. S. Raghavan. An algorithm for finding the nucleolus of assignment

games. International Journal of Game Theory, 23:119–143, 1994.
27 S. Ueda, M. Kitaki, A. Iwasaki, and M. Yokoo. Concise characteristic function representa-

tions in coalitional games based on agent types. In T. Walsh, editor, Proc. of 22nd IJCAI,
pages 393–399. AAAI Press, 2011.

28 E. Winter. The Shapley value. In Handbook of Game Theory with Economic Applications,
chapter 53, pages 2025–2054. Elsevier, 2002.

STACS’14

Complexity classes on spatially periodic Cellular
Automata

Nicolas Bacquey

GREYC – Université de Caen Basse-Normandie / ENSICAEN / CNRS,
Caen, France, nicolas.bacquey@unicaen.fr

Abstract
This article deals with cellular automata (CA) working over periodic configurations, as opposed
to standard CA, where the initial configuration is bounded by persistent symbols. We study
the capabilities of language recognition and computation of functions over such automata, as
well as the complexity classes they define over languages and functions. We show that these
new complexity classes coincide with the standard ones starting from polynomial time. As a
by-product, we present a CA that solves a somehow relaxed version of the density classification
problem.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

Keywords and phrases Language recognition, Cyclic languages, Computable functions,
Algorithms on Cellular Automata, Linear space, Polynomial time, Density classification problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.112

1 Introduction

Spatially periodic computation on cellular automata is a natural and well-defined notion
(see e.g. [5]), though it seems it has not been studied extensively. This paper deals with
algorithms and computational complexity of cellular automata (CA) acting on spatially
periodic configurations, or, equivalently, on ring-cellular automata, i.e., CA whose underlying
structure is a ring. The input of a ring-CA is a circular word, that is a finite word defined up
to shift (around the ring). Clearly, a language recognized by a ring-CA is a cyclic language
(as defined in [1], [2]), i.e., a language which is closed under shift, power and root. To our
knowledge, our results are the first ones to deal with computational complexity on such
automata.

A natural problem is the following, denoted MINIMAL-PERIOD: Given a spatially peri-
odic configuration, compute its lexicographically minimal period, or, equivalently, given an
input word w around a ring, compute its canonical root u, i.e., the lexicographically minimal
word u such that w = up up to shift, for some (maximal) integer p. We exhibit an algorithm
on a ring-CA that computes the MINIMAL-PERIOD problem in polynomial time. This
basic result allows us to compare computational complexity of ring-CA with complexity of
standard CA whose input word is bounded by persistent symbols. Informally, we prove
that the complexity classes on ring-CA and standard CA coincide down to polynomial time
complexity. More precisely, we prove the following equivalences, for any cyclic language L:

L is recognizable on a ring-CA iff L is LINSPACE;
L is recognizable in polynomial time on a ring-CA iff L is recognized by a standard CA
in linear space and polynomial time.

© Nicolas Bacquey;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 112–124

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.112
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. Bacquey 113

Moreover, we naturally extend those complexity results to functions, and use these results
to show that the density classification problem (a well-studied problem defined in [6]) can
be solved if we can use more states than the input alphabet {0, 1}.

2 Definitions and context

2.1 The computational model

We will use along this article the standard definition of cellular automata (CA) as a tuple
A = (d,Q,N, δ) (see [5]). In these lines, we will work with d = 1, i.e. cellular automata
of dimension 1, so the underlying network will be Z. Q denotes the set of states, and
N = {−1, 0, 1} is the standard neighbourhood. The local transition function of the automaton
is denoted by δ : Q{−1,0,1} → Q. As we work with cellular automata from the point of view
of language recognition, we will identify a particular Σ ⊆ Q as the input alphabet. We also
introduce the global transition function Fδ : QZ → QZ defined by the global synchronous
application of δ over configurations of Z by ∀C ∈ QZ (Fδ(C))(i) = δ(C(i−1), C(i), C(i+1))).

We suppose that the reader is familiar with the notions of signals and computation layers
on cellular automata. If it is not the case, we strongly encourage the reading of [5] or [7] for
such general matters on cellular automata.

I Definition 1. We define a Ring-Cellular Automaton (ring-CA) as a cellular automaton
whose initial configuration (and therefore any subsequent configuration) is periodic. Note
that this model is equivalent to an automaton that would work on a finite, ring-like cell
network. Let u ∈ Σ∗, we denote Cu ∈ QZ the bi-infinite repetition of u (Cu = . . . uuu . . .).

2.2 Recognition on ring-CA

On a standard CA where the input word is bounded by persistent states, it is easy to identify
a particular cell of the configuration (e.g. the first one). We say that a word is accepted
(or rejected) when this particular cell enters a persistent acceptance (or rejection) state (see
[11] for all subjects related to language recognition on CA). However, if the configuration we
are working on is periodic, the identification of a particular cell is intrinsically impossible.
Therefore, we must define the acceptance or rejection of a word as a global phenomenon.
Here are the two definitions of acceptance that we will use on ring-CAs:

I Definition 2. We say that a language L ⊂ Σ∗ is ring-recognizable if there exists a ring-CA
C such that for all u ∈ Σ∗, the automaton C given the periodic configuration Cu as an input
evolves in such a way that for some time t:

weak recognition: All cells enter the same particular subset of states, either Sa ⊂ Q (for
accept) or Sr ⊂ Q (for reject) and never leave it afterwards.
strong recognition: All cells enter the same particular state (Sa and Sr are singletons),
with the transition function defined so that this configuration is a fixed point of the
global transition function Fδ.

Note that our definition of strong recognition is the best recognition we can hope for
on a ring-CA, due to its intrinsically spatially periodic nature. Also note that due to that
very nature, for any language that is weakly or strongly recognized, there exists a time
exponentially bounded in the length of the period after which all the cells are in their
definitive subset of states (Sa or Sr).

STACS’14

114 Spatially periodic computation on Cellular Automata

While it is obvious that any strongly recognizable language is weakly recognizable (actu-
ally by the same automaton), we will show that those two definitions are actually equivalent
in section 4.

I Definition 3. We introduce the shift function denoted as σ : Σ∗ → Σ∗ and defined for all
u = u1u2...un ∈ Σ∗ by σ(u) = u2...unu1.

Since one cannot discriminate between configurations produced by a word, and those pro-
duced by shifts, powers or roots of this word, every language recognized by a ring-CA must
be closed under shift, power and root operations. More formally, we can only recognize
cyclic languages defined as follows:

I Definition 4. A language L ⊂ Σ∗ is said to be cyclic (see [2]) if ∀w ∈ Σ∗,∀k ≥ 1:
w ∈ L iff σk(w) ∈ L,
w ∈ L iff wk ∈ L.

We say that a cyclic language L is strongly (resp. weakly) ring-recognizable if there exists a
ring-CA that strongly (resp. weakly) recognizes it.

2.3 Computability of functions on ring-CA
We can also design our ring-CAs to compute functions, as an extension of language recog-
nition, which is a particular function with {0, 1} as its output set. Intuitively, we want to
give the input of the function as a periodic configuration of the CA, wait some time, and
read the result of the function when the CA has reached a fixed point. We now give the
following formal definition of a computable function:

I Definition 5. Let f : Σ∗ → Γ∗ be a function over words of Σ∗.
f is said to be ring-computable if there exists a ring-CA A such that ∀u ∈ Σ∗ :

there exists an integer t such that F tδ (Cu) = Cf(u),
Fδ(Cf(u)) = Cf(u) (i.e. Cf(u) is a fixed point of Fδ).

We define the time complexity of the computation of such a function f on a ring-CA C
over a word u as the smallest t such that Cf(u) = F tδ (Cu).

We define an analogous to cyclic languages in the case of functions. As we read the
output of the function on the automaton where the word was input, we need an additional
condition on the length of the output of those functions (‖w‖ is the length of the word w):

I Definition 6. A function f : Σ∗ → Γ∗ is said to be cyclic if ∀u ∈ Σ∗,∀k ≥ 1:
f(σk(u)) = σk(f(u)),
f(uk) = f(u)k,
‖f(u)‖ = ‖u‖.

2.4 Complexity classes and results
I Definition 7. Due to the circular nature of the model, we define the size n of an input as
the length of its minimal period.

We note that, as a consequence of the fact that our work space can be seen as a finite
ring, we can’t use more than a linear space for our computations on ring-CAs, with respect
to the input size. Therefore, every language or function we study must be in LINSPACE,
which is a robust complexity class. Then we give the following definitions:

N. Bacquey 115

I Definition 8. We denote the complexity class of languages that are strongly recognizable
in polynomial time on a ring-CA as TIMEring(POLY (n)). We also denote the complexity
class of languages that are recognizable in linear space and polynomial time on a bounded
input CA (or equivalently, classical models such as Turing machines, RAM machines...) as
SPACETIME(n,POLY (n)). We will abusively use this notation to talk about complexity
classes of functions.

We will prove our results along these lines:

I Theorem 9 (Recognition of languages). Let L be a cyclic language, then:
L is strongly ring-recognizable ⇐⇒ L ∈ LINSPACE ,
L ∈ TIMEring(POLY (n)) ⇐⇒ L ∈ SPACETIME(n,POLY (n)).

I Theorem 10 (Computability of functions). Let f be a cyclic function, then:
f is ring-computable ⇐⇒ f ∈ LINSPACE ,
f ∈ TIMEring(POLY (n)) ⇐⇒ f ∈ SPACETIME(n,POLY (n)).

3 From the cyclic model to the standard model

Throughout the rest of the paper, L ⊂ Σ∗ will denote a cyclic language. In this section, we
will prove that L is ring-recognizable implies L ∈ LINSPACE .

This part of the proof is quite straightforward: Indeed, if we consider a ring-automaton C
that weakly recognizes L, it is easy to design a standard cellular automatonA that recognizes
it: it suffices to add an additional layer to C, in which A will write the mirrored input word in
a preprocessing phase. The automaton will now simulate two computations of C in parallel,
connecting the beginnings and ends of the two simulated configurations (see Fig 1). After
this linear time preprocessing, A will simulate C step-by-step.

Though, one must be careful when defining the halting conditions of A. Indeed, there can
be a state where all simulated cells of C are in the "accept" or "reject" subset of states, but
the computation has not ended yet. Therefore, A also has to construct the exponential time
bound before which we are sure that the computation of C is over, then decide if the word is
accepted or rejected by checking the state of an arbitrary cell of its array (by construction,
all cells are in the same "accept" or "reject" subset of states at that moment).

u0 u1 u2 u3 u4 u5 # #Initial configuration

#
u0 u1 u2 u3 u4 u5

u0u1u2u3u4u5
#After preprocessing

Figure 1 Simulating a ring-CA on a standard CA.

For the proof that L ∈ TIMEring(POLY (n)) implies L ∈ SPACETIME(n,POLY (n)), it
suffices to construct the polynomial time bound before which the computation of C is over
instead of the exponential one, and the construction still holds.

4 From the standard model to the cyclic model

In this section, we will prove that L ∈ LINSPACE implies L is ring-recognizable.
Let A be a standard CA recognizing L ⊂ Σ∗. We will design a ring-CA C that will mimic

the computation of A. If we denote as Q the work alphabet of A, our automaton C will use

STACS’14

116 Spatially periodic computation on Cellular Automata

a new set of states Q′ = Q× Σ× ω, where ω will handle all the specific constructions of C.
We also introduce a bijection val : Σ ∪ {`} → [0, |Σ|] such that val(`) = 0. We want each
cell of C to retain its input letter, which means that the Σ part of Q′ will never change. All
our computation will be done through two computational layers, namely Q× ω.

4.1 Global vision
We will now present a mechanism that is able to find a minimal period of every periodic
configuration it is started on. Note that this minimal period is defined up to a shift. We
will combine this mechanism to a simulation of A over the word contained in this minimal
period.

The periodic configuration of C will be divided into intervals, in which we will simulate
the computation of A over the word contained in the interval. We design those intervals so
that two different adjacent intervals will merge over time.

For a better understanding of the algorithm, we can imagine that each interval can be
in three states, namely "merge-to-the-right", "merge-to-the-left" and "waiting". Those states
can evolve over time, according to the following rule:
I Rule 11. If an interval is in the merge-to-the-right state and its right neighbour is in the
merge-to-the-left state, then they must merge together, and it is the only way for intervals
to merge.

When an interval is created, we use the Q layer to simulate the computation that A
would have done over the word contained in the interval. When the computation is over,
and if the interval has not merged yet, a special success/failure state of Q is propagated over
all the cells of the interval.

At the beginning, each cell will define its own interval, and those intervals will start to
merge as the computation goes. We state that intervals will merge until every two adjacent
intervals are equal (see fig 2 for an intuition of the fusion process).

Once this configuration where every interval contains the same word is reached, the
simulation of A in this interval and the propagation of the success/failure state will properly
match our first recognition condition (i.e. all cells enter the same particular subset of states
and never leave it).

1 1 1 0 1 1 1 0 1 1 1 0Beginning

1 1 1 0 1 1 1 0 1 1 1 0Intermediate

1 1 1 0 1 1 1 0 1 1 1 0End

Figure 2 Outline of the merging process on a cyclic configuration.

4.2 Basic tools
Intervals: Let us identify a specific sub-layer of our work alphabet ω, which is of the form
ω = ω′×{#,∅}; We define the intervals of a configuration as the maximum sets of adjacent
cells beginning with a # and containing exactly one #. The size of an interval I is the
number of cells it contains, denoted by size(I) (see Fig 3).

We define the content of an interval as the word formed by the concatenation of the
canonical projection of the states of its cells over Σ, preceded by the special symbol "`". We
say that two intervals are different if their contents are different words.

N. Bacquey 117

#

Figure 3 Intervals of size 2, 5 and 3.

We will construct a method ensuring the following property:

I Lemma 12. There exists an integer C such that, if two adjacent intervals have different
contents at time t, then at least one of them will merge before time t + C × n3, where n is
the size of the larger of both intervals.

Signals and pointers: Every interval will have a signal (as defined in, e.g. [8]) going back
and forth in it, starting from its left border, and will also keep a pointer over the letters of
its content (see Fig 4). Each time the signal will enter a cell containing the pointer from
its right, it will move the pointer one letter to the right (for this purpose, we suppose that
the first "`" is stored in the first cell of the interval). When the pointer is at the rightmost
letter of the content, its next move brings it back to "`" (in n time steps).

At the first time step, a # is written on each cell, so that every cell will form an interval
of size 1, a signal starts in each interval, and all the pointers are set to the first letter of the
two-letter content of each interval, namely "`". For an interval of size n, let ai denote the
symbol currently pointed, with i ∈ [0, n] and a0 = "`".

Let k = |Σ|+ 1. The signal will wait ti = kn2 + 2n× val(ai) time steps on each border,
then move at speed ±1 to the other border. These times (ti) will encode the content of
the interval, thus allowing an interval to compare itself with its neighbours, and merging if
necessary. Note that by standard techniques (see [8]), the function n 7→ kn2 +2n×val(ai) is
easily time-constructible using properly defined signals carrying val(ai) in their state, thus
allowing use to wait such times on the borders.

We say that an interval is in the merge-to-the-left (resp. merge-to-the-right) state of our
global vision if its signal is on the left border (resp. right border), and in the waiting state
otherwise.

4.3 Merging process

Let us consider what happens when two adjacent intervals I1 and I2 have their signals meet
on their common border. It ensues from our previous definitions that I1 is in the merge-
to-the-right state, and I2 is in the merge-to-the-left state. Therefore according to rule 11, a
merging of I1 and I2 must occur. We do so by erasing the # symbol defining their common
border, and destroying the signals. Then new signals are sent to the beginning and the end
of the new interval. Those two signals will reset the pointer to the beginning of the new
word, and reset the simulation of the computation of A. Finally, the whole process starts
again (see fig 5).

Proof of lemma 12. Let I1 and I2 be two adjacent intervals with different contents a and
b, and S1 and S2 be their respective signals. Let I1 be the interval on the left and I2 be
the one on the right. Let size(I1) = m and size(I2) = n. It suffices to consider the case
where neither I1 nor I2 merge with other intervals during the time spans we consider. We
will prove our lemma by considering two different cases, whether I1 and I2 have different
sizes or not.

STACS’14

118 Spatially periodic computation on Cellular Automata

a0=`
val(`)=0

a1=0
val(0)=1

a2=1
val(1)=2

0 1

0 1

0 1

t0

t0=3n2+2n×0
(shortened)

t1

t1=3n2+2n×1
(shortened)

n

Figure 4 Basic move of a signal in an interval (with
|Σ| = 2). The dashed square figures the pointer, which is
set to "`" at the beginning and until further notice.

merging

m n

I1 I2

Figure 5 The merging process –
different sizes

Merging intervals of different sizes

We suppose without loss of generality that m > n, and we will prove that the time interval
when S1 is on the common border cannot be contained in the time interval when S2 is away
from that border. The signal S1 will wait at least T1 = km2 on each border, in particular
on the border between I1 and I2. Now S2 will be away from a border during at most
T2 = kn2 + 2(k − 1)n+ 2n = kn2 + 2kn consecutive time steps (since the journey back and
forth from a border lasts 2n time steps, and val(ai) ≤ k − 1).

Since m ≥ n + 1, we have T1 ≥ k × (n + 1)2 = kn2 + 2kn + k = T2 + k > T2. T1 > T2
means that S2 cannot be away from the common border long enough not to meet S1, which
means that I1 and I2 will merge eventually.

Complexity analysis: It is easily seen that I1 and I2 will merge together in time
O(max(n,m)2), because the signal of the larger of both intervals cannot achieve a com-
plete trip back and forth without encountering the signal from the smaller one, and such a
trip takes a time O(max(n,m)2). A fortiori, there exists an integer c such that I1 and I2
will merge before time t+ c×max(n,m)3, which proves Lemma 12 for the case n 6= m.

N. Bacquey 119

Merging intervals of equal sizes and different contents

We now consider the case where two adjacent intervals have the same size n, but different
contents. We will show that they will merge when their pointer will be set on different
symbols. Let us start by defining some useful notions.

Asynchronicity: During the lifetime of I1, we consider the case where its signal S1 does one
or more round trips between its borders (the contrary would mean that I1 has merged before,
see Fig 6). Let t1 be any time when S1 reaches the left border. S1 comes from the right
border, where it has waited during a certain time interval T0. Note that by construction,
we must have T0 ≥ 2n, because kn2 ≥ 2n.

I1 has not merged during the time interval T0. That means that S2 must have been away
from the left border of I2 during that time. There are two cases: either S2 was on the right
border, or it was travelling through I2. Note that S2 can’t have been travelling more than
2n− 2 time steps, because that would mean it would have encountered the left border. As
T0 > 2n − 2, this means that there must be a time t′1 during T0 when S2 was on the right
border of I2. Let us now define t2 as the first time after t′1 when S2 will reach the left border
of I2.

I Definition 13. As we have defined a specific time for each interval, we can now define the
asynchronicity between them, as δ = t1 − t2.

We note that this asynchronicity can be defined each time S1 reaches the left border of
I1. Those times t1 and t2 are special in our construction, as they are the times when the
intervals move their pointer one cell to the right (or move it back to the first symbol of their
content). Thus, we can associate a pair of symbols (ai, bj) ∈ Σ ∪ {`} to each pair of times
(t1, t2) that define an asynchronicity (these symbols are the ones which are newly pointed
by I1 and I2 respectively). Now let us consider the boundaries of the asynchronicity δ: If
ai−1 = bj−1, we must have −n < δ < n. Indeed, the contrary would mean that S1 and
S2 would have met before t1, and a merging would have occurred (see Fig 7 for the absurd
cases where ai−1 = bj−1 and δ ≤ −n (7a) or δ ≥ n (7b)).

Let us prove that the sequences (aj) and (bj) cannot be the same if a 6= b. Indeed, the
contrary would mean that (aj) and (bj) would coincide on every symbol, including the only
"`" a and b contains, and therefore any subsequent symbol until the next "`". This would
mean that a = b, hence a contradiction (let us recall that "`" marks the beginning of the
content).

We consider the first pair of times (t1, t2) when the associated symbols (ai, bj) are dif-
ferent (it exists, since we have a 6= b). If we note δ the associated asynchronicity, we have
|δ| < n, because ai−1 = bj−1. We state that I1 and I2 will merge before their signals can go
back and forth. We will identify two cases, whether ai < bj or not (See Fig 8).

We will first see what happens if ai < bj (See Fig 8a). S1 will wait a time t0 =
kn2+2n×val(ai) on each border, and S2 will wait t0+∆t, with ∆t = 2n×(val(bj)−val(ai)).
Since ai < bj , we must have val(bj) > val(ai), and therefore ∆t ≥ 2n. Now S1 will arrive
on the right border of I1 at time t1 + t0 +n, and S2 will stay on this border from time t1 + δ

to time t1 + δ + t0 + ∆t. Let us prove that t0 + n ∈ [δ, δ + t0 + ∆t], which means that the
two signals will meet on the common border.

Since t0 > 0 and |δ| < n, we have t0 + n > δ. ∆t ≥ 2n, so δ + ∆t > n, and therefore
t0 + n < δ + t0 + ∆t.

If ai > bj (See Fig 8b), the merging occurs later, but for similar arguments. t0 is now
defined as the waiting time of S2, and ∆t as 2n× (val(ai)− val(bj)). We will have to prove

STACS’14

120 Spatially periodic computation on Cellular Automata

t1

t′1

t2
δ

T0

n n
I1 I2

Figure 6 Definition of asynchronicity between I1 and I2 at time (t1, t2).

t1

t2

δ

n n
I1 I2

(a) if δ ≤ −n

t1

t2

δ

n n
I1 I2

(b) if δ ≥ n

Figure 7 Boundaries of asynchronicity.

that 2t0 + 2n+ δ ∈ [t0 + ∆t + n, 2t0 + 2∆t + n], using all former remarks plus the fact that
∆t ≤ 2n2. The complete proof is left to the reader (see Fig 8b for an intuition).

Complexity analysis: Once again, let (t1, t2) be the first pair of times when their associated
symbols (ai, bj) are different. We claim that there exists a c such that I1 and I2 will merge

N. Bacquey 121

δ

δ

t0

n

t0

∆t

t1

t2

n n

I1 I2

(a) ai < bj

δ

t0

n

t0

n

t0

∆t

n

t0

∆t

t1

t2

n n

I1 I2

(b) ai > bj

Figure 8 The merging process – intervals of equal sizes.

before time t1 + c × n2 (or t2 + c × n2 equivalently, since |t1 − t2| < n). Indeed, it is true
because both signals cannot complete a trip back and forth from t1 (resp. t2). Now let us
see how much time happens before such a pair of times (t1, t2) is encountered. The pointers
over the contents of I1 and I2 change with delay O(n2) by construction. Therefore, the
signals S1 and S2 have a period of O(n3), which means that they must encounter in time
O(n3), thus proving the last remaining case of Lemma 12. J

Now let us recall that at the beginning, each period of our workspace is divided into n
intervals of size 1. Lemma 12 states that while there exists two adjacent different intervals
at least one of them must merge before time O(n3). Therefore, the number of intervals in a
single period of the workspace must decrease every O(n3) time steps until all intervals are
equal, which means there exists only one interval per period. At this point, which happens
after O(n4) time steps, it suffices to wait for the end of the simulation of A in each interval for
the ring-CA C to enter in a loop in which no merging can occur. The acceptance or rejection
of the input can be then decided by projection of the states of C over Q. This behaviour
matches our definition of weak recognition, therefore L is weakly ring-recognizable.

The proof remains the very same if L ∈ SPACETIME(n,POLY (n)) and we want to
prove L ∈ TIMEring(POLY (n)). Indeed, our construction only adds an O(n4) time before
the simulation of A decides in polynomial time whether or not the input belongs to L.

STACS’14

122 Spatially periodic computation on Cellular Automata

4.4 Strengthening the construction to achieve strong recognition
We will now add a few enhancements to our construction, so that the ring-CA C will strongly
recognize a language if the underlying standard automaton A recognizes it. The first thing
we have to do is to add two states encoding the acceptance or rejection of a word to our
work alphabet Q′ (we need this to cope with our definition of strong recognition). Our
new work alphabet is now: Q′ = (Q × Σ × ω) ∪ {accept, reject} The naive way to achieve
strong recognition is to put the cells of an interval in the accept or reject state when a local
simulation of A is over. This leads to a crucial issue, which will be explained in the following
paragraphs.

False positives: The main issue that arises when we enforce the accept or reject states into
the cells instead of letting the signals work is the risk of false acceptance (or rejection): one
can imagine a case where an interval decides that its word is accepted, then overwrites itself
with the accept state, whereas there are other intervals in the configuration, whose contents
are different from itself and thus need to merge with it, leading to an error. Even if we
somehow manage to reconstruct the interval afterwards, its initial content (a word from Σ∗)
is lost. The following mechanism solves this problem.

Saving private content: Regarding the previous paragraphs, an interval should not over-
write its content with accept or reject until we are sure that its initial input can be found
elsewhere, and then restored if necessary. We will design a mechanism that will ensure that
an interval overwrites itself only if the content of its left neighbour is the same as its proper
content. Our Lemma 12 ensures that if any pair of adjacent intervals I1 and I2 do not merge
during a certain time c × n3, then they have the same content. We want the intervals to
detect those cases that will eventually happen, and only to overwrite themselves when they
are assured that their left neighbour has the same content as themselves. As a consequence
of Lemma 12, there exists a constructible time teq such that if two adjacent intervals evolve
together during a time teq, then their content is equal. We will exploit that property by
adding a "timer" layer to the intervals that will wait for time teq and check if the left border
of the interval is periodically visited by the signal of its left neighbour (this ensures that its
left neighbour has not merged yet; One can check this by leaving a "token" when a signal
reaches the right border of its interval). We redesign the overwriting process so that it can
only happen when the interval has waited for at least teq alongside its left neighbour. This
ensures that an interval only overwrites itself when it is sure that its content can be restored
later.

Restoring lost content: As the right neighbour of an interval may have overwritten itself,
we must ensure that each time the content of an interval changes (i.e. when it merges),
its former content is sent to its right to replace the accept or reject states. We can copy
the content of an interval by the method detailed on Fig 9. When an interval gets its old
content back by this method, it immediately creates a new signal, begins its computation
as a newly created interval, and checks if its right neighbour should also be restored.

5 Extensions

Towards function computing: We suppose that we are given a standard CA A that com-
putes a cyclic function f . A few minor tweaks to the mechanism that gave us strong
recognition are enough to obtain a ring-CA that computes the function f . Indeed, instead

N. Bacquey 123

0 1 1 0 a/r a/r a/r a/r

0
1

1
0

n n

Figure 9 An intuition of the copying mechanism (a/r means accept/reject).

of adding the {accept, reject} set of states to the automaton, we will add Γ, the output al-
phabet of the function f . When an interval was supposed to overwrite itself with the accept
or reject state, it writes the output of f over its content instead (it has enough room to do
so, as ‖f(u)‖ = ‖u‖). Ceteris paribus, our new automaton exactly computes f , therefore f
is ring-computable.

Density classification problem: We consider the density classification problem, as defined
in [6] and studied in [3], [4]. The goal of this problem is to design a CA that works on periodic
configurations on the alphabet {0, 1} and converges towards the bi-infinite configuration
composed only of 1 (denoted as 1Z) if there are more 1s than 0s in the initial configuration and
0Z otherwise. This can be seen as the computation of a specific function, which happens to
be cyclic. Therefore, our construction provides a solution to the open problem of the density
classification in deterministic case, by using more states than the sole input alphabet.

6 Conclusion and open problems

We note that our method computes an optimal leader election on a spatially periodic config-
uration: the leaders are the cells where the # finally remain. We can shift those symbols in
such a way that they delimit the lexicographically minimal word, thus solving in polynomial
time the MINIMAL-PERIOD problem defined in the introduction.

Whereas spatially periodic CA have been studied in the framework of dynamic systems,
e.g. for proving that a given automaton is injective or surjective (see [5], [9]), very little work
has been done to our knowledge in the framework of language recognition or computability.
Several cyclic languages can be suggested from this article: the majority languages, which
consist of the languages where a specific symbol appears more than the other ones, or the
cyclic closure of regular languages. However, it is difficult to describe how comprehensive
and interesting cyclic languages can be. It is also natural to extend spatially periodic
computation problems to 2-dimensional cellular automata. As usual, it raises several issues,
including the very definition of a somehow "minimal pattern" of a bi-periodic infinite picture,
and its computability on a cellular automaton. Thus, in the 2-dimensional case the definition
of cyclic languages and cyclic functions fitting our framework is unclear, and is a fine food
for thought for future works.

STACS’14

124 Spatially periodic computation on Cellular Automata

References
1 Marie-Pierre Béal, Olivier Carton, and Christophe Reutenauer. Cyclic languages and

strongly cyclic languages. In STACS, volume 1046 of LCNS, pages 49–59, Berlin, 1996.
Springer.

2 Olivier Carton. A hierarchy of cyclic languages. ITA, 31(4):355–369, 1997.
3 Nazim Fatès. Stochastic cellular automata solve the density classification problem with an

arbitrary precision. In STACS, volume 9 of LIPIcs, pages 284–295, 2011.
4 Henryk Fúks. Solution of the density classification problem with two cellular automata

rules. Phys. Rev. E, 55:R2081–R2084, 1997.
5 Jarkko Kari. Basic concepts of cellular automata. In Rozenberg et al. [10], pages 3–24.
6 Mark WS Land and Richard K Belew. No two-state CA for density classification exists.

Physical Review Letters, 74(25):5148–5150, 1995.
7 Jacques Mazoyer. Computations on one-dimensional cellular automata. Annals of Math-

ematics and Artificial Intelligence, 16(1):285–309, 1996.
8 Jacques Mazoyer and Véronique Terrier. Signals in one-dimensional cellular automata.

TCS, 217(1):53–80, 1999.
9 John Myhill. The converse of Moore’s garden-of-eden theorem. In Proceedings of the

American Mathematical Society, volume 14, pages 658–686, 1963.
10 Grzegorz Rozenberg, Thomas Bäck, and Joost N. Kok, editors. Handbook of Natural Com-

puting. Springer, 2012.
11 Véronique Terrier. Language recognition by cellular automata. In Rozenberg et al. [10],

pages 124–158.

Asymmetry of the Kolmogorov complexity of
online predicting odd and even bits
Bruno Bauwens

Université de Lorraine, LORIA, Vandœuvre-lès-Nancy, France
Brbauwens@gmail.com

Abstract
Symmetry of information states that C(x) + C(y|x) = C(x, y) + O(logC(x)). In [3] an online
variant of Kolmogorov complexity is introduced and we show that a similar relation does not
hold. Let the even (online Kolmogorov) complexity of an n-bitstring x1x2 . . . xn be the length of
a shortest program that computes x2 on input x1, computes x4 on input x1x2x3, etc; and similar
for odd complexity. We show that for all n there exists an n-bit x such that both odd and even
complexity are almost as large as the Kolmogorov complexity of the whole string. Moreover,
flipping odd and even bits to obtain a sequence x2x1x4x3 . . . , decreases the sum of odd and even
complexity to C(x). Our result is related to the problem of inferrence of causality in timeseries.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases (On-line) Kolmogorov complexity, (On-line) Algorithmic Probability,
Philosophy of Causality, Information Transfer

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.125

1 Introduction

Imagine two people want to perform a two-person theater play. First suppose that the play
consists of only two independent monologues each one performed by one player. Before
performing, the players must memorize their part of the play, and the total studying effort
for the two players together can be assumed to be equal to the effort for one person to study
the whole script.

Now imagine a play consisting of a large dialogue where both players alternate lines.
Each player only needs to study their half of the lines, and it is sufficient to remember each
line only after hearing the last lines of the other player. Thus each player needs only to
remember their incremental amount of information in his lines, and this suggests the total
studying effort might be close to the effort for one person to study the whole script.

However, it often happens that after studying only his own lines, an actor can reproduce
the whole piece. Sometimes actors just study the whole piece. This suggests that studying
each half of the lines can be as hard as studying everything. In other words, the total effort
of both players together might be close to twice the effort of studying the full manuscript.

Can we interpret this example in terms of Shannon information theory? In the first case, let
a theater play be modeled by a probability density function P (X,Y) where X and Y represent
the two monologues. Symmetry of information states that H(X) +H(Y |X) = H(X,Y), i.e.
the information in the first part plus the new information in the second part equals the total
information. This equality is exact and can be extended to the interactive case where a
similar additivity property remains valid, and this contrasts to the story above.

An absolute measure of information in a string is given by its Kolmogorov complexity,
which is the minimal length of a program on a universal Turing machine that prints the string.

© Bruno Bauwens;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 125–136

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.125
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

126 Asymmetry of online Kolmogorov complexity

See section 2 for formal definitions. Symmetry of information for Kolmogorov complexity
holds within logarithmic terms [19, 1]: C(x) + C(y|x) = C(x, y) +O(logC(x, y)).

For the interactive case, we need the online variant of Kolmogorov complexity introduced
in [3]. Let Cev(x) denote the length of a shortest program that computes x2 on input x1,
computes x4 on input x1x2x3, etc.; and similar for Codd(x). In the above example all xi

with odd i correspond to lines for the first player and the others to the second.
In Theorem 1, we show that there exist infinitely many bitstrings x, such that both Cev(x)

and Codd(x) are almost as big as C(x), in agreement with our example. In Theorem 2, we
show that there exists c > 0 such that (Cev +Codd −C)(x) ≥ c|x|, i.e. the online asymmetry
of information can be large compared to the length of x. Finally, we raise the question how
large (Cev +Codd −C)(x) can be in terms of |x|. A more direct upper bound is |x|/2 +O(1),
and one can raise the question whether this is tight. We show there exists a smaller one:
there exists c > 0 such that (Cev + Codd − C)(x) ≤ (1/2− c)|x| for all large x.

Our main result is stronger and is related to the problem of defining causality in time
series. Imagine there exists a complex system (e.g. a brain) and we make some measurements
in two parts of it. The measurements are represented by bitstrings x (from some part X of
the brain) and y (from some part Y). We perform these measurements regularly and get a
sequence of pairs

(x1, y1), (x2, y2), . . .

We assume that both parts are communicating with each other, however, the time resolution
is not enough to decide whether yi is a reply to xi or vice versa. However, we might compare
the dialogue complexity Codd + Cev of

x1, y1, x2, y2, . . .

and

y1, x1, y2, x2, . . .

and (following Occam’s Razor principle) choose an ordering that makes the dialogue
complexity minimal. We show that these complexities can differ substantially.

Questions of causality are often raised in neurology and economics. The notions of Granger
causality and information transfer reflect the idea of “influence” and our result implies a
theoretical notion of asymmetry of influence that does not need to assume a time delay to
“transport” information between X and Y in contrast to existing definitions [6, 7, 15, 11].1

To understand why (current) practical algorithms need a time delay to make inferences
about the direction of influence, consider two variables X,Y with a joint probability density
function P (X,Y). Using Shannon entropy, we can quantify the influence of X upon Y as
I(Y ;X) = H(Y) − H(Y |X). Symmetry of information directly implies that this equals
the influence of Y upon X: H(X) −H(X|Y) = H(X) + H(Y) −H(X,Y). In the online
setting, mutual information is replaced by information transfer, which is well studied in the
engineering literature [4, 15, 10, 14, 18, 11, 13]. For time delays k and l > k the information
transfer from X to Y is given by

H(Yn|Yn−l, . . . , Yn−1)−H(Yn|Yn−l, . . . , Yn−1, Xn−l, . . . Xn−k) ,

1 In the case of three or more timeseries there exist algorithms that infer directed information flows
between some variables in some special cases where enough conditional independence exist among the
variables, see [12, p. 19–20, 50]. In our example no independence is assumed.

B. Bauwens 127

(if this term is dependent on n, the sum is taken). This quantification of causality coincides
with Granger causality [6, 7] if all involved conditional distributions are Gaussian.

If we incorporate a time delay k ≥ 1, the information transfers from X to Y and Y to X
can be different. On the other hand, for k = 0 they are always equal, and this is a corollary of
(the conditional version of) symmetry of information. In the offline case, a similar observation
holds for algorithmic mutual information: C(x)−C(x|y) = C(y)−C(y|x) +O(logC(x, y)).2
In the online setting, algorithmic mutual information can be generalized to algorithmic
information transfer. For an n-bit x and y the version without time delay is given by

IT (x→ y) = C(y)− Cev(x1y1 . . . xnyn) .

We show that for all ε > 0 there are infinitely many pairs (x, y) with |x| = |y| and C(x, y) ≥
Ω(|x|) such that IT (x→ y) ≤ εC(x, y) while IT (y → x) exceeds C(x, y) +O(1). Hence, in
contrast to Shannon information theory, significant online dependence of xi on yi might not
imply significant online dependence of yi on xi.

Warning: The example where influence (and causality) is asymmetric heavily uses that
shortest models are not computable. Decompression algorithms used in practice are always
total (or can be extended to total ones). On the other hand, if one wants to be practical, it
is natural to not only consider total algorithms but algorithms that terminate within some
reasonable time bound (say polynomial). On that level non-symmetry may reappear, even
for one pair of messages, which was not possible in our setting. For example suppose x1
represents a pair of large primes and y1 represents their product, then it is much easier to
produce first x1 and then y1 then vice versa.

Muchnik paradox is a result about online randomness [9] that is related to our observations.
Consider the example from [3]: in a tournament (say chess), a coin toss decides which player
starts the next game. Consider the sequence b1, w1, b2, w2, . . . of coin tosses and winners of
subsequent games. This sequence might not be random (the winner might depend on who
starts), but we would be surprised if the coin tossing depends on previous winners.

More precisely, a sequence is Martin-Löf random if no lower semicomputable martingale
succeeds on it. To define randomness for even bits, we consider martingales that only bet on
even bits, i.e. a martingale F satisfies F (x0) = F (x1) if |x0| is odd. The even bits of ω are
online random if no lower semicomputable martingale succeeds that only bets on even bits.
(In our example, coin tosses bi are unfair if a betting scheme makes us win on b1w1b2w2 . . .

while keeping the capital constant for “bets” on wi.) In a similar way randomness for odd
bits is defined. Muchnik showed that there exists a non-random sequence for which both odd
and even bits are online random. Hence, contributed information by the odd and even bits
does not “add up”. Muchnik’s paradox does not hold for the online version of computable
randomness (where martingales are restricted to computable ones), and is an artefact of the
non-computability of the considered martingales.

The article is organised as follows: the next section presents definitions and results. The
subsequent three sections are devoted to the proofs: first theorems are reformulated using
online semimeasures, and then lower bounds are proven. In the full version of the paper,
which is available on ArXiv, there are four appendices containing: a proof of the chain rule

2 However, logarithmic deviations can appear, if one considers prefix complexity, for example if y is chosen
to be a string consisting of K(x) zeros. In this case, it is known that for each n there exist n-bit x
such that K(K(x)) −K(K(x)|x) ≤ O(1) while K(x) −K(x|K(x)) ≥ logn − O(log logn). Moreover,
this small error was exploited in an earlier and more involved proof of Theorem 2 [2].

STACS’14

128 Asymmetry of online Kolmogorov complexity

for online complexity, the generalization of Theorem 1 for online computation with more
machines, a version of Theorem 2 with a larger linear constant, and a full proof of the upper
bound (Theorem 3).

2 Definitions and results

Kolmogorov complexity of a string x on an optimal machine U is the minimal length of
a program that computes x and halts. More precisely, associate with a Turing machine a
function U that maps pairs of strings to strings. The conditional Kolmogorov complexity is
given by

CU (x|y) = min {|p| : U(p, y) = x} .

This definition depends on U , but there exist a class of machines for which CU (x|y) is minimal
within an additive constant for all x and y. We fix such an optimal U , and drop this index,
see [8, 5] for details. If y is the empty string, we write C(x) in stead of C(x|y), and the
complexity of a pair C(x, y|z) is given by applying an injective computable pairing function
to x and y.

The even (online Kolmogorov) complexity [3] of a string z is

Cev(z) = min {|p| : U(p, z1 . . . zi−1) = zi for all i = 2, 4, . . . ,≤ |z|} .

Again, there exists a class of optimal machines U for which Cev is minimal within an
additive constant and we assume that U is such a machine. Note that C(x|y) − O(1) ≤
Cev(y1x1 . . . ynxn) ≤ C(x) + O(1) for n-bit x and y. Let Cev(w|v) be the conditional
variant. The chain rule for the concatenation vw of strings v and w holds: Cev(vw) =
Cev(v) + Cev(w|v) +O(log(|v|)), see the full version of the paper. In a similar way Codd(x)
is defined. A direct lower and upper bound for Codd + Cev are3

C(z)−O(log |z|) ≤ (Codd + Cev)(z) ≤ 2C(z) +O(1) .

The lower bound is almost tight, for example if all even bits of z are zero. Surprisingly, the
upper bound can also be almost tight and Codd +Cev can change significantly after a simple
permutation of the bits.

I Theorem 1. For every ε > 0 there exist δ > 0 and a sequence ω such that for large n

Codd(ω1 . . . ωn)
Cev(ω1 . . . ωn) ≥ (1− ε)C(ω1 . . . ωn) + δn .

Moreover, for all even n

Codd(ω2ω1 . . . ωnωn−1) = C(ω1 . . . ωn) +O(logn) (1)
Cev(ω2ω1 . . . ωnωn−1) ≤ O(1) . (2)

The first part implies

lim sup
|x|→∞

Codd(x) + Cev(x)
C(x) ≥ 2 ,

3 The O(log |x|) term could be decreased to O(1) if we compared online complexity with decision
complexity [17] as in [3]. However, plain and decision complexity differ by at most O(log |x|), and
because we focus on linear bounds, we do not use this rare variant of complexity.

B. Bauwens 129

and by the upper bound Codd, Cev ≤ C + O(1), this supremum equals 2. Recall the
definition IT (x → y) = C(y) − Cev(x1y1 . . . xnyn) for x, y, n such that n = |x| = |y|. Let
x = ω1ω3 . . . ω2n−1 and y = ω2ω4 . . . ω2n, Theorem 1 implies

IT (x→ y) ≤ εC(x, y) +O(1)
IT (y → x) = C(x, y) +O(1) ,

(where C(x, y) ≥ δn−O(1)).4
Theorem 1 can be generalized to dialogues between k ≥ 2 machines, i.e. if k sources need

to perform a dialogue, it can happen that each source must contain almost full information
about the dialogue. Moreover, if the order is changed, the “contribution” of all except one
source becomes computable. Let the complexity of bits i mod k be given by

Ci mod k(x) = min {|p| : U(p, x1 . . . xj−1) = xj for all j = i, i+ k, . . . ,≤ |x|} .

For every k and ε > 0 there exist a δ > 0 and a sequence ω such that for all i ≤ k and large n

Ci mod k(ω1 . . . ωn) ≥ (1− ε)C(ω1 . . . ωn) + δn

Moreover, for ω̃ = ωkω1 . . . ωk−1 ω2kωk+1 . . . ω2k−1 . . . for all n, and i = 2 . . . k:

C1 mod k(ω̃1 . . . ω̃n) = C(ω1 . . . ωn) +O(logn)
Ci mod k(ω̃1 . . . ω̃n) ≤ O(1) .

In Theorem 1 the difference between C and Codd +Cev is linear in the length of the prefix
of ω. One might wonder how big this difference can be. A direct bound is |x|/2 + O(1).
Indeed, the odd complexity of x is at most C(x) hence

(Codd + Cev) (x)− C(x) = (Codd(x)− C(x)) + Cev(x) ≤ O(1) + |x|/2 +O(1) .

The next theorem shows that the difference can indeed be c|x| for a significant c.

I Theorem 2. There exist a sequence ω such that for all n

(Codd + Cev)(ω1 . . . ωn) ≥ n(log 4
3)/2 + C(ω1 . . . ωn)−O(logn) .

Moreover, Equations (1) and (2) are satisfied.

The factor (log 4
3)/2 can be further improved to (log 3

2)/2 ≈ 0.292 at the cost of weakening (1)
and (2) (see full version of this paper). On the other hand, the upper bound 1/2 can not be
reached:

I Theorem 3. There exist β < 1
2 such that for large x

(Cev + Codd − C) (x) ≤ β|x| .

In summary, 1
2 log 3

2 ≤ lim sup (Cev+Codd−C)(x)
|x| < 1

2 , but the precise value of the lim sup is
unknown.

4 For the first we use C(y) ≤ C(ω1...2n) = C(x, y) up to O(1) terms. For the second C(x, y) ≥ C(x) ≥
Cev(y1x1 . . . ynxn) = C(x, y), thus C(x) = C(x, y), while Cev(y1x1 . . . ynxn) ≤ O(1). Also, note that
C(ω1...2n) must exceed δn because it exceeds Codd(ω1...2n) ≥ δn, all up to O(1) terms.

STACS’14

130 Asymmetry of online Kolmogorov complexity

3 Online semimeasures

We show that the problem of constructing strings where additivity of online complexity
is violated is equivalent to constructing lower semicomputable semimeasures that can not
be factorized into “odd” and “even” online lower semicomputable semimeasures. Before
defining such semimeasures and reformulating Theorems 1–3, we recall the algorithmic coding
theorem.

A (continuous) semimeasure P is a function from strings to [0, 1] such that P (x0)+P (x1) ≤
P (x) for all x. A real function f on strings is lower semicomputable if the set of all pairs (x, r)
of strings and rational numbers such that f(x) ≤ r is enumerable. There exist a maximal
lower semicomputable semimeasure M(x), i.e. a lower semicomputable that exceeds any
other such semimeasures within a constant factor: M(x) =

∑
i 2−iPi(x) for an enumeration

P1, P2, . . . of all such semimeasures (see [5, 8, 16] for details). The coding theorem [8,
Theorem 4.3.4] implies

log 1/M(x) = C(x) +O(logC(x)) .

An even (online) semimeasure [3] is a function from strings to [0, 1] such that for all x

i. P (x0) + P (x1) ≤ P (x) if |x0| is even,
ii. P (x0) = P (x1) = P (x) otherwise.

The coding theorem generalizes to the online setting.

I Theorem 4 ([3]). There exist maximal even (respectively odd) semimeasures. All such
semimeasures Mev (resp. Modd) satisfy

log 1/Mev(x) = Cev(x) +O (logCev(x)) .

Let ωk...l = ωk . . . ωl. Theorems 1, 2 and 3 follow from
I Proposition 5. For all ε > 0 and lower semicomputable odd and even online semimeasures
Qodd and Qev, there exist δ, a sequence ω, a lower semicomputable semimeasure P , and a
partial computable F such that for all n

(QoddQev)(ω1...n) ≤ (1− δ)nP (ω1...n)2−2ε

and F (ω1...2n, ω2n+2) = ω2n+1.
I Proposition 6. For all lower semicomputable odd and even online semimeasures Qodd
and Qev, there exist a sequence ω, a lower semicomputable semimeasure P , and a partial
computable F such that for all n

(QoddQev)(ω1...2n) ≤ (3/4)nP (ω1...2n)

and F (ω1...2n, ω2n+2) = ω2n+1.
I Proposition 7. For all lower semicomputable semimeasures Q, there exist α >

√
1/2 and a

family of odd and even semimeasures Podd,n and Pev,n uniformly lower-semicomputable in n,
such that for all x

Podd,|x|(x)Pev,|x|(x) ≥ α|x|Q(x)/4 . (3)

Proof that Proposition 7 implies Theorem 3. Choose Q = M in Proposition 7 and let for
a sufficiently small c > 0

Podd(x) = c

(
1
12Podd,1(x) + 1

22Podd,2(x) + . . .

)
.

B. Bauwens 131

a b c d

e f

γ

=

e e f f

e f

γ

1/α· ·

a
e

b
e

c
f

d
f

1 1

1

α·

Figure 1 Decomposing semimeasures into odd and even ones.

Note that Podd is a lower semicomputable odd semimeasure and by universality Podd(x) ≤
O(Modd(x)). Hence − logModd(x) ≤ − logPodd,|x|(x) + O(log |x|). Similar for Pev(x). By
the online coding theorem we obtain up to terms O(log |x|),

(Codd + Cev)(x) ≤ − log
(
Podd,|x|(x)Pev,|x|(x)

)
≤ −|x| logα− logQ(x) .

Here, − logα < 1/2 and the last term is bounded by − logM(x) ≤ C(x) +O(log |x|). The
O(log |x|) can be removed for large |x| by choosing − logα < β < 1/2. J

Proof that Proposition 6 implies Theorem 2. Choosing Qodd = Modd and Qev = Mev, the
first part is immediate by the coding theorem and (2) follows directly from the definition of
even complexity. For any x we have

Codd(x)−O(1) ≤ C(x) ≤ Codd(x) + Cev(x) +O(log |x|)

We obtain (1) by applying Cev(x) ≤ O(1). J

Proof that Proposition 5 implies Theorem 1. For Theorem 1 we also apply Proposition 5
with Qodd = Modd and Qev = Mev to obtain for some δ′ > 0

(Codd + Cev)(ω1...2n) ≥ (2− 2ε)C(ω1...2n) + δ′n .

Notice that Codd ≤ C +O(1), hence Cev(ω1...2n) ≥ (1− 2ε)C(ω1...2n) + δ′n; and similar for
Codd. Conditions (1) and (2) follow in a similar way as above. J

The generalization of Theorem 1 mentioned in section 2 is shown in the full version. We
remark that P in these theorems can not be computable, this follows from the subsequent
lemma.

I Lemma 8. For every computable semimeasure P , there exist computable odd and even
online semimeasures Podd and Pev such that PoddPev = P .

Proof. Let ε be the empty string and let Podd(ε) = P (ε) and Pev(ε) = 1. Suppose that at
some node x we have defined Podd(x) and Pev(x) such that Podd(x)Pev(x) = P (x). Then
Podd and Pev are defined on 2-bit extensions of x according to Figure 1 for γ = P (x) and
α = Pev(x) [our assumption implies Podd(x) = γ/α]. Note that Podd and Pev are indeed
computable odd and even semimeasures and that PoddPev = P . J

STACS’14

132 Asymmetry of online Kolmogorov complexity

p p q q

p q

1

r s u v

1 1

1

=⇒

pr ps qu qv

p q

1

>

1/4

<

1/2

⇐

r ≥ 1
2

<

1/2

⇐

p ≥ 1
2

Figure 2 Game for Proposition 6 with n = 1.

4 Proofs of lower bounds

We start with Proposition 6, and repeat it for convenience.
I Proposition. For all lower semicomputable odd and even online semimeasures Qodd and Qev,
there exist a sequence ω, a lower semicomputable semimeasure P , and a partial computable F
such that for all n

(QoddQev)(ω1...2n) ≤ (3/4)nP (ω1...2n)

and F (ω1...2n, ω2n+2) = ω2n+1.
To develop some intuition, we first consider a game. The game is played between two

players (Alice and Bob) who alternate turns. Alice maintains values for P (x) on 2-bit x.
At each round she might pass or increase some values as long as

∑
{P (x) : |x| = 2} = 3/4.

Bob maintains lower semicomputable odd and even semimeasures Qodd(x) and Qev(x), see
figure 2. Also Bob might pass or increase some values as long as the conditions of the
definition of online semimeasure are satisfied, (hence max{p+ q, r+ s, u+ v} ≤ 1 in figure 2).
Alice wins if in the limit P (x) ≥ Qodd(x)Qev(x) holds for some x (i.e. if P (00) ≥ pr or
P (01) ≥ ps or P (10) ≥ qu or P (11) ≥ qv).

In this game Alice has a winning strategy. She starts by putting 1/4 at one leaf and zero at
the others, say P (00) = 1/4. Then she waits until Bob increases either Qodd or Qev above 1/2
at this leaf (thus Qodd(0) = Qodd(00) > 1/2 or Qev(00) > 1/2). If none of this happens, Alice
wins. Otherwise if Qodd(0) > 1/2, she plays P (11) = 1/2 and if Qev(00) > 1/2, she plays
P (01) = 1/2. In the first case Alice wins because Qodd(1) ≤ 1−Qodd(0) < 1/2 and hence
Qodd(1)Qev(11) < 1/2 and in the second case she wins because Qev(01) ≤ 1−Qev(00) < 1/2
and hence Qodd(0)Qev(01) < 1/2. Note that in both cases

∑
{P (x) : |x| = 2} = 1/2 + 1/4,

(and otherwise it is 1/4) and Alice’s condition is always satisfied. (Also note that the
second bit of x on which Alice wins is 1 if Qodd(0) > 1/2 or Qev(00) > 1/2. So for lower-
semicomputable Qodd and Qev, we can use this bit to determine which inequality was first
realized, and hence to compute the first bit of x. A similar observation will be used to
construct F in the proof below.)

To show the proposition, we need to concatenate strategies for the game above to strategies
for larger games. For this, it seems that the winning rule needs to be strengthened, and
this makes either the winning rule or the winning strategy for the small game complicated.
Therefore, in the more concise proof below, we gave a formulation without use of game
technique.

B. Bauwens 133

Proof. We construct ω1...2n together with thresholds on, en inductively. Let o0 = e0 = 1.
For x of length 2n, consider the conditions Qodd(x0) > on/2 and Qev(x00) > en/2. We
fix some algorithm that enumerates Qodd and Qev from below and after each update tests
both conditions. Let Ox be the condition that Qodd(x0) > on/2 is true at some update and
Qev(x00) > en/2 did not appear at any update strictly before; and let Ex be the condition
that Qev(x00) > en/2 is true after some update but Qodd(x0) > on/2 is false at the current
update (and hence at any update before). Note that Ox and Ex cannot happen both. Let

(ω2n+1ω2n+2, on+1, en+1) =
(11, on/2, en) if Oω1...2n

happens,
(01, on, en/2) if Eω1...2n happens,
(00, on/2, en/2) otherwise.

By induction it follows that on ≥ Qodd(ω1...2n) and en ≥ Qev(ω1...2n). Indeed, this follows
directly for n = 0. For n ≥ 1, consider the case where Oω1...2n happens. Thus ω1...2n+2 =
ω1...2n+11 and

Qodd(ω1...2n1) ≤ Qodd(ω1...2n)−Qodd(ω1...2n0) ≤ on − on/2 = on/2 .

On the other hand, Qev(ω1...2n+2) ≤ Qev(ω1...2n) ≤ en = en+1. The case where Eω1...2n

happens is similar, and the last one is direct.
It remains to define F and P such that F (ω1...2n, ω2n+2) = ω2n+1 and

P (ω1...2n) = (4/3)nonen .

Note that ω2n+2 = 1 iff Oω1...2n or Eω1...2n happens, and knowing that one of the events
happens, we can decide which one and therefore also ω2n+1. Hence, given ω1...2n and ω2n+2
we can compute ω2n+1 and this procedure defines the partial computable function F .

To define P , observe that ω can be approximated from below: start with ω = 00 . . . , each
time Oω1...2n

(respectively Eω1...2n
) happens, change ω2nω2n+1 from 00 to 01 (respectively

to 11), let all subsequent bits be zero, and repeat the process. Hence, for all n and 2n-bit
x at most one pair (on, en) is defined which we denote as (ox, ex). Let P (x) be zero unless
(ox, ex) is defined in which case

P (x) = (4/3)|x|/2oxex .

Note that P is lower semicomputable and the equation above is satisfied. Also, P is a
semimeasure: P (ε) = (4/3)0 · 1 · 1 = 1, and in all three cases we have

∑
{oxbb′exbb′ : b, b′ ∈

{0, 1}} ≤ 3oxex/4 hence,
∑
{P (xbb′) : b, b′ ∈ {0, 1}} ≤ P (x). J

The proof of Proposition 5 follows the same structure.
I Proposition. For all ε > 0 and lower semicomputable odd and even online semimeasures
Qodd and Qev, there exist δ, a sequence ω, a lower semicomputable semimeasure P , and a
partial computable F such that for all n

(QoddQev)(ω1...n) ≤ (1− δ)nP (ω1...n)2−2ε

and F (ω1...2n, ω2n+2) = ω2n+1.

Proof. We first consider the following variant for the game above on strings of length two.
Alice should satisfy the weaker condition

∑
{P (x) : |x| = 2} ≤ 1− δ, where δ � ε will be

determined later. She wins if

(PoddPev)(x) ≤ (P (x))2−2ε

STACS’14

134 Asymmetry of online Kolmogorov complexity

for some x. The idea of the winning strategy is to start with a very small value somewhere,
say P (00) = δ. If ε = 0 then Bob could reply with Qodd(0) = Qev(00) = δ, (in fact he
could win by always choosing Qodd(x) = Qev(x) = P (x)). For ε > 0 and δ � ε one of the
online semimeasures should exceed δ1−ε = kδ for k = δ−ε. k can be arbitrarily large if
δ � ε is chosen sufficiently small. At his next move, (as before), Alice puts all his remaining
measure, i.e. 1− 2δ in a leaf that does not belong to a branch where the corresponding online
semimeasure is large. Note that 1− 2δ is close to 1 and taking a power 2 ≥ 2− 2ε we see that
Bob needs at least 1− 4δ in each online semimeasure, but he already used kδ in one of them.

More precisely, the winning strategy for Alice is to set P (00) = δ and wait until Qodd(0) >
δ1−ε or Qev(00) > δ1−ε. If these conditions are never satisfied, then Alice wins on x = 00.
Suppose at some moment Alice observes that the first condition holds, then she plays
P (11) = 1− 2δ, in the other case she plays P (01) = 1− 2δ. Afterwards she does not play
anymore. Note that

∑
{P (x) : |x| = 2} ≤ 1 − δ. We show that Alice wins. Assume that

Qodd(0) > δ1−ε (the other case is similar). We know that Qev(11) ≤ 1 hence if Alice does
not win, this implies Qodd(1) > (1− 2δ)2−2ε. This is lower bounded by (1− 2δ)2 ≥ 1− 4δ.
We choose δ = 2−2/ε. This implies

δ1−ε = 2−(2/ε)(1−ε) = 2−2/ε+2 = 4δ.

Hence Qodd(0) + Qodd(1) > 4δ + (1 − 4δ) = 1 and Bob would violate his restrictions.
Therefore Alice wins. For later use notice that in the first case our argument implies
Qodd(1) ≤ (1− 2δ)2−2ε.

In a similar way as before we adapt Alice’s strategy to an inductive construction of
ω and P : let Ox and Ex be defined as before using conditions Qodd(x0) > onδ

1−ε and
Qev(x00) > enδ

1−ε. Let β = (1− 2δ)2−2ε and let ω, on and en be given by

(ω2n+1ω2n+2, on+1, en+1) =
(11, onβ, en) if Oω1...2n

happens,
(01, on, enβ) if Eω1...2n happens,
(00, onδ

1−ε, enδ
1−ε) otherwise.

This implies on ≥ Qodd(ω1...2n) and en ≥ Qev(ω1...2n). F is defined and shown to satisfy the
condition in exactly the same way. It remains to construct P such that

(1− δ)nP (ω1...2n) = (onen)1/(2−2ε)
,

(the proposition follows after rescaling δ). In a similar way as before ox and ex are defined
and let

P (x) = (1− δ)−|x|/2(oxex)1/(2−2ε) .

To show that P is indeed a semimeasure observe that
∑
{P (xbb′) : b, b′ ∈ {0, 1}}

= (1− δ)−|x|/2−1
∑
{(oxbb′exbb′)1/(2−2ε) : b, b′ ∈ {0, 1}}

≤ (1− δ)−|x|/2−1
(
β1/(2−2ε) + δ

)
(oxex)1/(2−2ε)

,

and because β1/(2−2ε) = 1− 2δ this equals

= (1− δ)−|x|/2 (oxex)1/(2−2ε) = P (x) . J

B. Bauwens 135

Acknowledgements. The author is grateful to Alexander Shen, Nikolay Vereshchagin,
Andrei Romashchenko, Mikhail Dektyarev, Ilya Mezhirov and Emmanuel Jeandel for extensive
discussion and many useful suggestions. I also thank Ilya Mezhirov for implementing clever
code to study some games. Especially thanks to Alexander Shen for encouragement after
presenting earlier results and for arranging funding by grant NAFIT ANR-08-EMER-008-01.
The author is also grateful to Mathieu Hoyrup who arranged a grant under which the work
was finalized.

References

1 B. Bauwens and A. Shen. An additivity theorem for plain Kolmogorov complexity. Theory
Computing Systems, 52(2):297–302, 2013.

2 Bruno Bauwens. Computability in statistical hypotheses testing, and characterizations of
independence and directed influences in time series using Kolmogorov complexity. PhD
thesis, Ghent University, May 2010.

3 A. Chernov, A. Shen, N. Vereshchagin, and V.Vovk. On-line probability, complexity and
randomness. In ALT’08: Proceedings of the 19th international conference on Algorithmic
Learning Theory, pages 138–153, Berlin, Heidelberg, 2008. Springer-Verlag.

4 U. Feldmann and J. Bhattacharya. Predictability improvement as an asymmetrical measure
of interdependence in bivariate time series. International Journal of Bifurcation and Chaos,
14(2):505–514, 2004.

5 P. Gács. Lecture notes on descriptional complexity and randomness. http://www.cs.bu.
edu/faculty/gacs/papers/ait-notes.pdf, 1988–2011.

6 C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral
methods. Econometrica, 37:424–438, 1969.

7 G. John. Inference and causality in economic time series models. In Z. Griliches and M. D.
Intriligator, editors, Handbook of Econometrics, volume 2, chapter 19, pages 1101–1144.
Elsevier, 1984.

8 M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, New York, 2008.

9 An. A. Muchnik. Algorithmic randomness and splitting of supermartingales. Problems of
Information Transmission, 45(1):54–64, March 2009.

10 M. Palus and A. Stefanovska. Direction of coupling from phases of interacting oscillators: an
information theoretic approach. Physical Review E, Rapid Communications, 67:055201(R),
2003.

11 A. Papana, C. Kyrtsou, D. Kugiumtzis, and C. Diks. Simulation study of direct causality
measures in multivariate time series. Entropy, 15(7):2635–2661, 2013.

12 J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.
13 F.A. Razak. Mutual information based measures on complex interdependent networks of

neuro data sets. PhD thesis, Imperial College London, March 2013.
14 M. G. Rosenblum and A. S. Pikovsky. Detecting direction of coupling in interacting oscil-

lators. Phys. Rev. E, 64(4):045202, Sep 2001.
15 T. Schreiber. Measuring information transfer. Physical Review Letters, 85(2):461–464, Jul

2000.
16 V. A. Uspensky, N. K.Vereshchagin, and A. Shen. Kolmogorov complexity and algorithmic

randomness. To appear.
17 V. A. Uspensky and A. Shen. Relations between varieties of Kolmogorov complexities.

Theory of Computing Systems, 29(3):271–292, 1996.

STACS’14

http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf
http://www.cs.bu.edu/faculty/gacs/papers/ait-notes.pdf

136 Asymmetry of online Kolmogorov complexity

18 M. Winterhalder, B. Schelter, W. Hesse, K. Schwab, L. Leistritz, R. Bauer, J. Timmer, and
H. Witte. Comparison of linear signal processing techniques to infer directed interactions
in multivariate neural systems. Signal Processing, 85:2137–2160, 2005.

19 A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the development of
the concepts of information and randomness by means of the theory of algorithms. Russian
Mathematical Surveys, 25(6:156):83–124, 1970.

Two-Page Book Embeddings of 4-Planar Graphs∗

Michael A. Bekos1, Martin Gronemann2, and
Chrysanthi N. Raftopoulou3

1 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Germany
bekos@informatik.uni-tuebingen.de

2 Institut für Informatik, Universität zu Köln, Germany
gronemann@informatik.uni-koeln.de

3 School of Applied Mathematical & Physical Sciences, NTUA, Greece
crisraft@mail.ntua.gr

Abstract
Back in the eighties, Heath [7] showed that every 3-planar graph is subhamiltonian and asked
whether this result can be extended to a class of graphs of degree greater than three. In this
paper we affirmatively answer this question for the class of 4-planar graphs. Our contribution
consists of two algorithms: The first one is limited to triconnected graphs, but runs in linear time
and uses existing methods for computing hamiltonian cycles in planar graphs. The second one,
which solves the general case of the problem, is a quadratic-time algorithm based on the book
embedding viewpoint of the problem.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Book Embedding, Subhamiltonicity, 4-Planar Graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.137

1 Introduction

Book embeddings have a long history and arise in various application areas such as VLSI
design [5]. In a book embedding the placement of nodes is restricted to a line, the spine of
the book. The edges are assigned to different pages of the book. A page can be thought of
as a half-plane bounded by the spine where the edges are drawn as circular arcs between
their endpoints. We say that a graph admits a k-page book embedding if one can assign the
edges to k pages and there exists a linear ordering of the nodes on the spine such that no two
edges of the same page cross. The minimum number of pages required to construct such an
embedding is the book thickness or page number of a graph and has received much attention
in the past. Yannakakis [14] describes a linear-time algorithm to embed every planar graph
into a book of four pages. Bernhart et al. [2] show that a graph is two-page embeddable iff it
is subhamiltonian. A subhamiltonian graph is a subgraph of a planar hamiltonian graph. It
is NP-complete to determine whether a graph is subhamiltonian [13]. Often referred to as
augmented hamiltonian cycle, a subhamiltonian cycle is a cyclic sequence of nodes in a graph
that would form a hamiltonian cycle when adding the missing edges without destroying
planarity. The relation between subhamiltonian cycles and two-page book embeddings is

∗ Work on this problem began at Dagstuhl Seminar 13151. We thank the organizers, participants and
Prof. Dr. M. Kaufmann. The work of M.A. Bekos is implemented within the framework of the Action
“Supporting Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning”
(Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed by the
European Social Fund (ESF) and the Greek State.

© Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 137–148

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.137
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

138 Two-Page Book Embeddings of 4-Planar Graphs

Γin Bin

Ain

A

BΓ

Gin(T)

Γout Bout

Aout

Gout(T)

Figure 1 Triangle T separating
Gin(T) and Gout(T) on removal.

e

eout

ein

Γ

A

B

Hin(T)

H

Hout(T)

Figure 2 Merging Hin(T) (dotted) and
Hout(T) (dashed) into H (bold gray).

quite intuitive. The order of the nodes on the spine is equivalent to the cyclic order of the
subhamiltonian cycle. The edges are partitioned by whether they lie in the interior of the
cycle or not.

An early result is due to Whitney [12], who proves that every maximal planar graph with
no separating triangles is hamiltonian. Tutte [11] shows that every 4-connected planar graph
has a hamiltonian cycle. Chiba et al. [4] provide a linear-time algorithm to find a hamiltonian
cycle in a 4-connected planar graph. Chen [3] gives a proof that every maximal planar graph
with at least five vertices and no separating triangles is 4-connected. Sanders [10] generalizes
a theorem of Thomassen and shows that any 4-connected planar graph has a hamiltonian
cycle that contains two arbitrarily chosen edges of the graph. Based on Whitney’s theorem,
Kainen et al. [9] show that every planar graph with no separating triangles is subhamiltonian.
Another result is by Chen [3] who shows that if a maximal planar graph contains only one
such triangle, then it is hamiltonian. Helden [8] improves this result further to two triangles.
The aforementioned results are all related to the problem of embedding planar graphs into
two pages. However, there is an extensive amount of literature on embedding various types
of graphs into books; see e.g. [6]. One result that is interesting in our context is that of
Heath [7], who describes a linear-time algorithm to embed any 3-planar graph into two pages.

We study the problem of embedding 4-planar graphs into books with two pages. We
tackle this problem from two sides. The first approach is restricted to triconnected graphs
(Section 2) but builds on existent results and is therefore of a simple nature compared to
the second approach. Extending it to biconnected graphs is not straightforward, though.
The algorithm of Section 3 –which is less efficient in terms of time complexity– exploits the
degree restriction to construct a two-page book embedding. Due to space constraints, some
of our proofs are only sketched, omitted details are given in [1].

2 Subhamiltonicity of Triconnected 4-Planar Graphs

In this section, we first investigate properties of separating triangles in 4-planar graphs and
then we use those to derive a solution for a single separating triangle. Unlike Chen [3] and
Helden [8], we are able to extend our approach to an unbounded number of triangles by
exploiting the degree restriction. We say a subhamiltonian cycle H crosses a face if there are
two consecutive vertices in H that are incident to the face but not adjacent to each other.

I Lemma 1. Every triconnected planar graph with no separating triangles has a subhamilto-
nian cycle that crosses every face at most once and it can be computed in linear time.

Proof. In the triconnected case, Kainen et al. [9] construct a maximal planar graph G′ =
(V ′, E′) by inserting a vertex into each non-triangular face of G and connect it to the vertices

M.A. Bekos, M. Gronemann, and C.N. Raftopoulou 139

of that face. Clearly, this takes linear time and G′ is 4-connected. We can use the linear-time
algorithm of Chiba et al. [4] to obtain a hamiltonian cycle H ′ for G′. Deleting the vertices of
V ′ − V yields a subhamiltonian cycle H for G that crosses each face at most once. J

Given an embedded triconnected 4-planar graph G with a fixed outerface and a separating
triangle T with vertices V (T) = {A,B,Γ}, we denote the subgraph of G contained in T by
Gin(T) and the subgraph of G outside T by Gout(T). We also denote Gin(T) = G−Gout(T)
and Gout(T) = G − Gin(T). Since G is triconnected and 4-planar, every vertex of T has
degree four and is adjacent to exactly one vertex in Gin(T) and Gout(T), respectively. We
denote these with Ain, Bin,Γin and Aout, Bout,Γout, respectively (see Fig. 1).

I Lemma 2. Given a 4-planar triconnected graph G and a separating triangle T = {A,B,Γ},
then Ain, Bin,Γin(Aout, Bout,Γout) are pairwise distinct or all represent the same vertex.

Proof. In the other case, where w.l.o.g. Ain = Bin = v and Γin 6= v, there exists a
separation pair (v,Γ) contradicting the triconnectivity of G. A symmetric argument applies
to Aout, Bout,Γout. J

I Lemma 3. In a 4-planar triconnected graph, every pair of distinct separating triangles T
and T ′ is vertex disjoint, i.e. V (T) ∩ V (T ′) = ∅.

Proof. Assume to the contrary that T and T ′ share an edge or a vertex. In the first case,
let w.l.o.g. e = (u, v) be the common edge. The degree of both u and v is at least five, since
three edges are required for T , T ′ and two additional edges to connect Gin(T) and Gin(T ′)
to T and T ′, respectively. In the second case, let v denote the common vertex. Since v
is part of two edge disjoint cycles and connected to Gin(T) and Gin(T ′), it follows that
deg(v) ≥ 6. J

Consider now a 4-planar triconnected graph with a single separating triangle T . Similar
to Chen [3], the idea is to compute two cycles Hin(T) and Hout(T) for Gin(T) and Gout(T)
and link them via the separating triangle together. The crucial observation is that if two
cycles intersect as illustrated in Fig. 2, i.e., they contain two edges of the triangle but have
only one of them in common, then we can always merge them into one cycle.

I Lemma 4. Let G be a triconnected 4-planar graph, T a separating triangle, and Hin(T) and
Hout(T) two subhamiltonian cycles for Gin(T) and Gout(T), resp. If E(Hin(T)) ∩ E(T) =
{ein, e} and E(Hout(T)) ∩ E(T) = {eout, e} where {e, ein, eout} are the edges of T , then G
is subhamiltonian.

Proof. Let w.l.o.g. e = (A,B), ein = (B,Γ) and eout = (A,Γ) as illustrated in Fig. 2.
The result of removing the edges of T from both cycles are two paths Pout = B Γ and
Pin = Γ A. Joining them at Γ and inserting e yields a subhamiltonian cycle. J

It remains to show that we can always find two cycles that satisfy the requirements of
Lemma 4. We neglect the degenerated case of Lemma 2, where Gout(T) or Gin(T) is a single
vertex, because finding a cycle in that case is trivial. Consider for example Gout(T). To
obtain Hout(T), we temporarily replace T in Gout(T) with a single vertex vT as depicted in
Fig. 3a. The resulting graph G∗out(T) remains 4-planar and triconnected, because deg(vT) = 3
by construction and any path via T can use vT instead. One may argue that this operation
may introduce additional separating triangles. However, such a triangle must contain vT and,
therefore, deg(vT) = 4, a contradiction. Now let us assume that H∗out(T) is a subhamiltonian
cycle for G∗out(T). The idea is to reinsert T and reroute H∗out(T) through T such that the
resulting cycle Hout(T) contains two edges e1, e2 ∈ E(T).

STACS’14

140 Two-Page Book Embeddings of 4-Planar Graphs

Aout

Γout

Bout

vT

Gout(T)

(a) vT in G∗out(T)

Aout

Γout

Bout

Gout(T)

e1 e2

Γ B

A

(b) T in Gout(T)

Gin(T)

v′T

Γin Bin

Ain

(c) v′T in G∗in(T)

Gin(T)

A

BΓ e′1

e′2

(d) T in Gin(T)

A

BΓ

(e) G with T and H

Figure 3 (a) Subhamiltonian cycle H∗out(T) in G∗out(T) containing vT . (b) Augmenting H∗out(T)
yields Hout(T) containing edges e1 = (Γ, A) and e2 = (A, B). (c) Dummy vertex v′T as replacement
for T in G∗in(T) and a cycle H∗in(T). (d) Rerouting H∗in(T) through T resulting in Hin(T) with
edges e′1 = (Γ, B) and e2 = (A, B). (d) The result of merging Hin(T) and Hout(T) into a cycle H

for G.

I Lemma 5. Let G be a triconnected 4-planar graph, T a separating triangle. Furthermore,
let G∗out(T) denote the graph resulting from replacing T by a vertex vT in Gout(T). A
subhamiltonian cycle H∗out(T) for G∗out(T) can be augmented to a subhamiltonian cycle
Hout(T) for Gout(T) such that it contains two edges of T , i.e., E(Hout(T))∩E(T) = {e1, e2}.
If H∗out(T) crosses every face of G∗out(T) at most once, one may choose any pair e1, e2 ∈ E(T)
to lie on Hout(T).

Proof. We only sketch the proof. It is sufficient to consider every combination of e1, e2 and
the location of the predecessor and successor of vT in H∗out(T). It immediately becomes clear
that in almost every situation H∗out(T) can be rerouted through T such that the resulting
cycle Hout(T) contains two prescribed edges e1, e2 of T . Only in one case, where H∗out(T)
crosses an incident face twice to visit vT , a specific combination of edges is required. J

In the single-separating triangle scenario, both Gout(T) and Gin(T) are free of separating
triangles. Therefore, we may construct two graphs G∗out(T), G∗in(T) by replacing T with
dummy vertices. Applying Lemma 1 to them yields two subhamiltonian cycles H∗out(T)
and H∗in(T), both crossing every face of G∗out(T) and G∗in(T) at most once. Hence, we may
augment them with the aid of Lemma 5 such that they contain each two edges of T . By
choosing the combination of edges such that Hout(T) and Hin(T) meet the requirements of
Lemma 4, we can merge them into a single subhamiltonian cycle H for G.

While the property that G∗out(T) and G∗in(T) are both free of separating triangles enables
us to conveniently choose two edges for each cycle Hout(T), Hin(T), this only works for a
single separating triangle. However, a closer look reveals that it is sufficient to have a choice
for either Hout(T) or Hin(T), not necessarily both of them. The idea is to first augment
the cycle for which we do not have a choice to see which edges of T are part of it, then we
choose the edges for the second cycle accordingly. We summarize the idea as the main result
of this section and describe it in a more formal manner in form of a proof.

I Theorem 6. Every triconnected 4-planar graph is subhamiltonian.

Proof. Let G denote a triconnected 4-planar graph and τ(G) the number of separating
triangles in G. We prove by induction and claim that for any τ(G) ≥ 0, we can compute a
subhamiltonian cycle H for G. Base case: Since τ(G) = 0, we can directly apply Lemma 1.
Inductive case: For τ(G) > 0, we pick a separating triangle T such that τ(Gin(T)) = 0. Let
G∗out(T) be the result of replacing T by vT in Gout(T). Notice that τ(G∗out(T)) = τ(G)− 1
holds. Hence, by induction hypothesis, G∗out(T) has a subhamiltonian cycle H∗out(T). We

M.A. Bekos, M. Gronemann, and C.N. Raftopoulou 141

reinsert T and augment H∗out(T) such that the result Hout(T) contains two (arbitrary)
edges e1, e2 of T . In a similar way, we replace T in Gin(T) by v′T to obtain G∗in(T). Since
τ(Gin(T)) = τ(G∗in(T)) = 0 holds, we can apply Lemma 1 to G∗in(T) and compute a cycle
H∗in(T) that crosses each face at most once. With Lemma 5 we may obtain a cycle Hin(T)
for Gin(T) with two edges e′1, e′2 ∈ E(T) of our choice. Choosing e′1 = e1 and e′2 6= e2 yields
two cycles Hout(T), Hin(T) that meet the requirements of Lemma 4 and we can merge them
into one cycle H for G. J

The proof of Theorem 6 is constructive. Embedding G and identifying all separating
triangles in G can be done in linear time. Augmenting a cycle and merging two of them takes
constant time. Disjointness of separating triangles yields a linear number of subproblems
and every edge occurs in at most one such subproblem. Hence, the total time spent for the
subroutine of Lemma 1 is linear in the size of G.

I Corollary 7. A subhamiltonian cycle of a triconnected 4-planar graph can be found in
linear time.

3 Two-Page Book Embeddings of General 4-Planar Graphs

In this section, we prove that any planar graph of maximum degree 4 admits a two-page book
embedding. W.l.o.g. we assume that the input graph G is biconnected, since it is known
that the page number of a graph equals the maximum of the page number of its biconnected
components [2]. One can also neglect the exact geometry, as two edges that are drawn on the
same page cross iff their endpoints alternate along the spine. We say that an edge e nests a
vertex v iff one endpoint of e is to the left of v along the spine and the other endpoint of e
to its right. We also say that an edge e nests an edge e′ iff both e and e′ are drawn on the
same page and both endpoints of e′ are nested by e. Observe that nested edges do not cross.

Our approach is as follows: First remove from G cycle Cout delimiting the outerface of G
and contract each bridge-block of the remaining graph into a single vertex. Let F be the
implied graph, which is a forest, as G−Cout is not necessarily connected. Cout is embedded,
s.t.: (i) the order of the vertices of Cout along the spine is fixed (and follows the one in which
the vertices of Cout appear along Cout), and, (ii) all edges of Cout are on the same page,
except for the one that connects its outermost vertices. Then we describe how to embed
without crossings: (i) the chords of Cout, (ii) forest F , and, (iii) the edges between Cout and
F . To obtain a two-page book embedding of G, we replace each vertex of F with a cycle
(embedded similarly to Cout), whose length equals to the length of the cycle delimiting the
outerface of the bridge-block it corresponds to in G−Cout, and recursively embed its interior.

More formally, consider an arbitrary simple cycle C : v1 → v2 → . . . → vk → v1 of G.
The removal of C results in two planar subgraphs Gin(C) and Gout(C) of G that are the
components of G− C that lie in the interior and exterior of C in G, resp. Note that Gin(C)
and Gout(C) are not necessarily connected. Let Gin(C) (Gout(C), resp.) be the subgraph
of G induced by C and Gin(C) (Gout(C), resp.). For the recursive step, we assume the
following invariant properties:

IP-1: The order of the vertices of Gout(C) along the spine ` is fixed and the page in which
each edge of Gout(C) is drawn (i.e., top- or bottom-drawn) is determined s.t. the book
embedding of Gout(C) is planar. In other words, we assume that we have already
produced a two-page book embedding for Gout(C), in which no edge crosses the spine.

IP-2: The combinatorial embedding ofGout(C) is consistent with a given planar combinatorial
embedding of G.

STACS’14

142 Two-Page Book Embeddings of 4-Planar Graphs

IP-3: The vertices of C occupy consecutive positions along `, s.t. v1 (vk, resp.) is the leftmost
(rightmost, resp.) along `. Moreover, all edges of C are on the same page, except
for the one that connects v1 and vk. Say w.l.o.g. that (v1, vk) is on the top-page (or
top-drawn), while the remaining edges of C, namely edges (vi, vi+1) for 1 ≤ i < k, are
on the bottom-page (or bottom-drawn).

IP-4: If C is not identified with the cycle delimiting the outerface of G, the degree of either
v1 or vk is at most 3 in Gin(C). Say w.l.o.g. that vk is of degree at most 3.

IP-5: If vertex v1 has degree 4 in Gin(C), then it is adjacent to zero or two chords of C.

We note that the combinatorial embedding specified in IP-2 is maintained throughout the
whole drawing process. This combined with the fact that every edge entirely lies on one page
is sufficient to ensure planarity. Note that we first present the recursive step of our algorithm
and then its base, as this approach shows better how the different ideas flow one after the
other. Let vi be a vertex of C, i = 1, . . . , k. Since G is of max-degree 4, vi is incident to at
most two undrawn edges. Assume that vi has at least one undrawn edge. We refer to the
edge incident to vi that follows (vi, v(i+1) mod k) in the counterclockwise order of the edges
around vi (as defined by the combinatorial embedding specified by IP-2), as the right edge of
vi. If vi is adjacent to two undrawn edges, then the one that is not identified with the right
edge of vi is its left edge; otherwise, the left and the right edge of vi are identified.

Initially, we draw the chords of C on the top-page. By IP-2 and IP-3, no two chords
intersect. We then draw Gin(C) and the edges between C and Gin(C). Note that Gin(C) is
not necessarily connected. Hence, its bridge-block trees form a forest. As already stated,
we contract each bridge-block of Gin(C) into a single vertex, which we call block-vertex;
see Figs. 4a-4b. We distinguish two types of block-vertices: those adjacent to vertices of C
(anchors) and those adjacent to other block-vertices only (ancillaries). From the contraction,
it follows that an edge between C and a certain anchor can be of multiplicity at most two.
Edges among block-vertices are always simple. We will first determine the positions of all
anchors along `. Consider an anchor c, then among the edges between c and C, we select and
mark exactly one, s.t.: (i) the marked edge will be drawn on the bottom-page and (ii) all
other edges incident to c (i.e., either edges between c and C that are not marked, or between
c and block-vertices) will be drawn on the top-page. Let vl,c be the leftmost vertex of C
adjacent to c along `. If (c, vl,c) is simple, we select and mark this edge. Otherwise, we mark
the right edge of vl,c. Hence, each anchor has exactly one marked edge and each vertex of C
is incident to at most two marked edges. Let v ∈ C be a vertex of C adjacent to at least one
anchor through a marked edge. We distinguish two cases:

Case 1 v is adjacent to exactly two anchors c and c′ through two marked edges e and e′,
resp.: Assume w.l.o.g. that e is the left edge of v and e′ its right edge. Then, both c and
c′ are placed directly to the right of v and c precedes c′ (see Fig. 4d). Note that v cannot
be the rightmost vertex of C due to IP-4.

Case 2 v is adjacent to one anchor c through a marked edge e: If deg(v) = 3 in Gin(C),
then we distinguish two sub-cases. If v is not the rightmost vertex of C, then c is placed
directly to the right of v (see Fig. 4e). Otherwise, directly to its left (see Fig. 4f). It now
remains to consider the case where deg(v) = 4 in Gin(C). In this case, by IP-4 it follows
that v is not the rightmost vertex of C. Again, we distinguish two sub-cases:

− If e is the right edge of v, then c is placed directly to the right of v (see Fig. 4g).
− If e is the left edge of v, then c is placed directly to the left of v (see Fig. 4h); v cannot

be the leftmost vertex of C, as the right edge of v would be a chord, violating IP-5.

M.A. Bekos, M. Gronemann, and C.N. Raftopoulou 143

(a) Bridge-blocks of
Gin(C)

(b) Forest of block-
vertices

(c) Placement of an-
chors

v c c′

(d)

v c

(e)

vc

(f)

v c

(g)

vc

(h)

Figure 4 In all figures, the edges of C are drawn dotted, bridge-blocks are colored gray and edges
between C and anchors are drawn dashed; marked edges are highlighted in gray.

All marked edges are bottom-drawn. Edges between anchors and C that are not marked
are top-drawn; see Fig. 4c. Observe that we do not change the underlying combinatorial
embedding of G, preserving IP-2. Hence, the book embedding constructed so far is planar.

Now observe that ancillaries form a new forest (forest of ancillaries), which is a subgraph
of the initial forest containing all block-vertices. Let T be a tree of the forest of ancillaries
and let c1, . . . , ct be anchors that (i) are adjacent to at least one ancillary of T , and (ii) ci

is to the left of ci+1, i = 1, . . . , t− 1. We refer to c1, . . . , ct as the anchors of T , and to the
tree formed by T and its anchors as the anchored tree of T , denoted by T . We say that two
anchors of T are consecutive iff there is no anchor of T between them.

I Lemma 8. For anchored trees the following hold: (i) Two trees T and T ′ share at most a
common anchor; (ii) T contains at least two anchors; and (iii) every leaf of T is an anchor
of T , and vice versa.

Proof. The assumption that one of the two properties does not hold contradicts either the
connectivity or biconnectivity of G. J

Assume now that T is rooted at anchor c1 (rooted anchored tree). For an anchor or
ancillary c of T , denote by p(c) the parent of c in T and let p(c1) be any of the vertices of
C adjacent to c1. For an ancillary c of T (i.e., non-leaf in T), we define an order for its
children: if c′ and c′′ are children of c, then c′ < c′′ iff c′ precedes c′′ in the counterclockwise
order of the edges around c (defined by the combinatorial embedding specified by IP-2),
when starting from (c, p(c)). By this order, we label the vertices of T as they appear in the
pre-order traversal of T (labeled anchored tree); see Fig.5a.

I Lemma 9. For each ancillary c of a labeled anchored tree T there is (i) at least an anchor
of T with label smaller than that of c and (ii) at least another with label greater than that of c

Proof. The leftmost anchor (i.e. root) of T is zero labeled, which proves (i). The greatest
labeled vertex of T is a leaf of T (due to pre-order traversal) and by Lemma 8(iii) an anchor
of T which proves (ii). J

We first define the order in which the trees of the forest of ancillaries will be drawn. Let
GT

aux be an auxiliary graph whose vertices correspond to trees and there is a directed edge
(vT ′ , vT) in GT

aux iff T ′ has an anchor between two consecutive anchors of T . The desired
order is defined by a topological sorting of GT

aux, which exists due to the following lemma.

STACS’14

144 Two-Page Book Embeddings of 4-Planar Graphs

c1 c2 c3 c4 c5 c6 c7 c8 c9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

(a) A labeled anchored tree T

c1c1 c2 c3 c4 c5 c6 c7 c8 c9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

(b) The placement of the ancillaries of T

Figure 5 In both figures, anchors are colored gray; the indices of the vertical grid-lines denote
the labeling of T .

I Lemma 10. Auxiliary graph GT
aux is a directed acyclic graph.

Proof. Assume to the contrary that there is a cycle vT1 → . . . vTs
→ vT1 in GT

aux. Let Ii be
the interval defined by the left/right-most anchors of Ti. Edge (vTi

, vTi+1) implies that there
is an anchor of Ti between consecutive anchors of Ti+1. However, in this case all anchors of
Ti should be between the same two anchors of Ti+1, as otherwise the embedding specified
by IP-2 is not planar. So, Ii ⊆ Ii+1. By Lemma 8(i), it follows that Ii 6= Ii+1. Hence,
I1 ⊂ . . . ⊂ Is ⊂ I1, a contradiction. J

Lemma 10 implies that drawing the trees in the order defined by a topological sorting of
GT

aux, assures that the tree T ′ will be drawn before T , if T ′ has an anchor that is between
two consecutive anchors of T along `. Now assume that we have drawn zero or more of
these trees s.t. (i) all edges are top-drawn, (ii) there are no edge crossings, and (iii) the
combinatorial embedding specified by IP-2 is preserved. Let T be the next tree to be drawn.
The following lemma presents an important property of our drawing approach.

I Lemma 11. Assume that all trees that precede T in a topological sorting of GT
aux have

been drawn on the top-page without edge crossings by preserving the combinatorial embedding
specified by IP-2. If e is a top-drawn edge that does not belong to T and nests at least one
anchor of T , then it nests all anchors of T .

Proof. The detailed proof is based on a case-analysis on the type of edge e: (i) top-drawn edge
of C; (ii) edge of an anchored tree T ′ drawn before T ; and (iii) not an edge of a previously
drawn anchored tree (i.e., each endpoint of e is either a vertex of C or an anchor). J

We now describe how to draw T on the top page s.t. (i) there are no edge crossings,
and, (ii) the combinatorial embedding specified by IP-2 is preserved. More precisely, we
place each ancillary c of T between a pair of consecutive anchors of T , s.t. the label of
c is larger (smaller) than the label of the anchor to its left (right)1; for ancillaries placed
between the same pair of anchors, the one with smaller label is to the left; all edges of T
are top-drawn (see Fig.5b). Note that we have not fully specified the exact positions of the
ancillaries of T along `, since between consecutive anchors of T there may exist anchors that
do not belong to T or vertices of C or anchors/ancillaries of trees that have already been
drawn. Details will be given shortly. Notice that all ancillaries of T are placed between its
left/right-most anchors, which by Lemma 11 implies that if a top-drawn edge (that does not
belong to T) nests at least one anchor of T , then it nests the entire tree T . By exploiting the
correspondence between the left-to-right order of the vertices of T along ` and the labeling
of T , we can prove that the drawing of T is planar.

1 Note that the existence of this pair of consecutive anchors of T is implied by Lemma 9.

M.A. Bekos, M. Gronemann, and C.N. Raftopoulou 145

I Lemma 12. The drawing of the anchored tree T is planar.

Proof. Assume to the contrary that e = (c1, c2) and e′ = (c′1, c′2) of T cross. Since e and e′
are top-drawn, their endpoints alternate along `. Let the order on ` be c1 → c′1 → c2 → c′2.
Hence, c1 is the parent of c2, as the label of c1 is smaller than that of c2 and they are adjacent
in T . Similarly, c′1 is the parent of c′2. Since between c1 and c2 are drawn subtrees of T rooted
at children of c1 other than c2, c′1 and c′2 belong to a subtree rooted at a child of c1, different
from c2, which implies that the label of c′2 is smaller than that of c2, a contradiction. J

Recall that we have not fully specified the exact positions of the ancillaries of T along `.
Consider the following scenario. There is a path P of top-drawn edges (e.g., non-marked
edges incident to C and/or edges of previously drawn trees) joining a pair of consecutive
anchors of T and our algorithm must place an ancillary c of T between them. Since c is
nested by an edge of P and all edges of T are top-drawn, an edge connecting c with an
ancillary of T placed between another pair of consecutive anchors of T will cross P . The
following lemma ensures that this scenario cannot occur, as such a path cannot exist.

I Lemma 13. Let u0, u1, . . . , ul+1, l ≥ 0, be vertices (anchors/ancillaries are treated as
vertices) drawn on ` from left to right, s.t. u0 and ul+1 are two consecutive anchors of T .
Assume that all trees anchored at u1, . . . , ul have been drawn on the top-page without edge
crossings by preserving the combinatorial embedding specified by IP-2, while T has not been
drawn. Then, there is an index i ∈ {0, 1, . . . , l}, such that no two adjacent vertices uk and
um exist with 0 ≤ k ≤ i, i+ 1 ≤ m ≤ l + 1 and (uk, um) is top-drawn.

Proof. Assume to the contrary that for all i ∈ {0, . . . , l}, there are two adjacent vertices uk

and um with 0 ≤ k ≤ i, i+ 1 ≤ m ≤ l + 1 and (uk, um) is on the top-page. One can prove
that there is a top-drawn path P (u0 → ul+1) : u0 → uj1 . . . ujp

→ ul+1 consisting of vertices
of {u0, . . . , ul+1}, whose edges are top-drawn and for each edge of P (u0 → ul+1) there is not
a top-drawn edge with endpoints in {u0, . . . , ul+1} that nests it. However, the existence of
P (u0 → ul+1) implies that G should contain a vertex of degree five, a contradiction. J

We are now ready to specify the exact positions of the ancillaries of T along `. Assume
that a particular number of ancillaries of T should be drawn between two consecutive anchors
ci and ci+1 of T , i = 1, . . . , t− 1. By Lemma 13, there is a pair of vertices that are between
ci and ci+1 along ` and there is not a top-drawn edge with endpoints between ci and ci+1
nesting both of these vertices. We place between this pair of vertices all ancillaries of T that
must reside between ci and ci+1, without changing their relative order, i.e., for ancillaries
placed between ci and ci+1, the one with smaller label is to the left. Lemma 12 ensures the
planarity of T . It remains to prove that the combinatorial embedding specified by IP-2 is
preserved.

I Lemma 14. Assume that all trees that precede T in a topological sorting of GT
aux have

been drawn on the top-page without edge crossings by preserving the combinatorial embedding
specified by IP-2. When T is drawn, the combinatorial embedding specified by IP-2 is also
preserved.

Proof. We only sketch the proof. Since the drawing of T preserves the order of the edges
around all ancillaries, the combinatorial embedding specified by IP-2 is preserved for all
ancillaries of T . Then, one can prove that this property is propagated to all vertices of T . J

The following lemma focuses on the case where C contains a vertex with degree 2 in
Gin(C) (other than its leftmost or rightmost vertex). We will utilize this lemma later.

STACS’14

146 Two-Page Book Embeddings of 4-Planar Graphs

w0

w1 w2

wm

(a)

w0w1 w2 wm

(b)

w0 w1 w2 wm

(c)

w0
w

w′
T (w′) T (w′′)

w′′c

w1

wm

(d)

w0
w

c

w1

wm

w′
T (w′) T (w′′)

w′′

(e)

Figure 6 (a) The outerface of a block-vertex c. (b)–(c) different cases that occur when drawing
the outerface of c, in the case where c is anchor. (d) Ancillary c needs to be repositioned. (e) Its
placement is determined by Lemma 16.

I Lemma 15. Let v be a vertex of C with degree 2 in Gin(C) that is not the left/right-most
vertex of C. Let also vr (vl) be its next neighbor on C to its right (left resp.). Since edge
(v, vr) belongs to C, it is drawn on the bottom-page. However, it can also be drawn on
the top-page without edge-crossings, while the combinatorial embedding specified by IP-2 is
maintained.

Proof. We only sketch the proof. First observe that if no block-vertex is drawn between v
and vr, then obviously (v, vr) can be drawn on the top-page. Otherwise, one can move the
block-vertices in between to the left of v, so that v and vr are consecutive along `. J

Up to now, we have drawn Gin(C), s.t., every bridge-block of Gin(C) is contracted to a
block-vertex that lies on ` and each edge is drawn either on the bottom (if it is a marked
edge) or on the top-page (otherwise). Next, we describe how to recursively proceed. Let c
be a block-vertex of Gin(C) with outerface Fc. Initially, assume that Fc is a simple cycle.
If c is an anchor, denote by w0 the vertex of Fc incident to the marked edge of c. If c is
an ancillary, then c belongs to an anchored tree. In this case, w0 denotes the vertex of Fc

adjacent to the closest neighbor of c to its left, which is well-defined since c is always placed
between two consecutive anchors of the anchored tree it belongs to. Let w0, w1, . . . , wm be
the vertices of Fc, in the clockwise traversal of Fc from w0 (see Fig. 6a).

If c is an anchor (i.e., w0 is incident to a marked edge), then we place the vertices of Fc

on ` as follows: (i) w0 occupies the position of c and it is the rightmost vertex of Fc on `,
(ii) w1 is the leftmost vertex of Fc on `, (iii) wi is to the left of wi+1 for i = 1, . . . ,m − 1,
and, (iv) there are no vertices in between; see Fig. 6b. All edges of Fc are top-drawn, except
for (w1, w0). This placement is feasible, except for the case in which in the combinatorial
embedding specified by IP-2 there is an edge incident to w0 that is between (w0, w1) and
the marked edge incident to w0 in the counterclockwise order of the edges around w0 when
starting from (w0, w1); see Fig. 6c. In this case, we place w0 to the left of w1, . . . , wm, s.t.
w0 is the leftmost vertex of Fc. So, (w0, wm) is the bottom-drawn edge of Fc.

Suppose now that c is an ancillary. Let w be the closest neighbor of c to its left on `. w
is the parent of c in the tree in which c belongs to and (w0, w) is top-drawn. We place the
vertices of Fc as follows: (i) w0 occupies the position of c and it is the leftmost vertex of Fc

on `, (ii) wm is the rightmost vertex of Fc on `, (iii) wi is to the left of wi+1, i = 1, . . . ,m−1,
and, (iv) there are no vertices in between. All edges of Fc are top-drawn, except for (w0, wm).
This placement is infeasible only when in the combinatorial embedding specified by IP-2 there

M.A. Bekos, M. Gronemann, and C.N. Raftopoulou 147

is an edge incident to w0, say (w0, w
′), and between (w0, wm) and (w0, w) in the clockwise

order of the edges around w0 when starting from (w0, wm); see Fig. 6d. Since c has only its
parent to its left among the block-vertices of the anchored tree it belongs to, it follows that,
w′ is to the right of c. So, (w0, w

′) cannot be drawn on the top-page, without deviating the
combinatorial embedding specified by IP-2. Since G is biconnected, c is adjacent to at least
another block-vertex, say w′′, s.t. w′′ /∈ {w,w′}. The following lemma takes care of this case.

I Lemma 16. Ancillary c can be repositioned on `, s.t.: (i) c is placed between two
consecutive anchors of T . (ii) The combinatorial embedding specified by IP-2 is preserved and
the edges (w0, w), (w0, w

′) and (c, w′′) are top-drawn and crossing-free. (iii) w0 is leftmost
vertex of Fc and wi is to the left of wi+1, i = 1, . . . ,m− 1; All edges of Fc are top-drawn,
except for (w0, wm).

Proof. w is the parent of c and w′, w′′ are children of c in T , with w′ being the first child of
c. For our proof, w′′ is its second child. So, (c, w), (c, w′) and (c, w′′) are consecutive around
c as in Fig. 6d. Let T (w′) and T (w′′) be subtrees of T rooted at w′ and w′′, resp. c is to
the left of all vertices of T (w′), all vertices of T (w′) are to the left of all vertices of T (w′′)
and there are no ancillaries of T in between. We place c between the rightmost (leftmost)
anchor of T (w′) (T (w′′)); see Fig. 6e. So, c is placed between two consecutive anchors of T .
If we place the vertices of Fc, with w0 being leftmost on Fc and wi to the left of wi+1, then
(w0, w), (w0, w

′) and (c, w′′) are drawn on the top-page and the embedding is preserved. J

If we process all ancillaries that have to be repositioned from right to left along `, then by
Lemma 16 we obtain a planar drawing in which the embedding specified by IP-2 is preserved

w0

root

Figure 7 Fc is not simple.

once the outerface of each block-vertex is drawn and all edges
that connect block-vertices are eventually drawn on the top-
page. Initially, we assumed that Fc is simple. If not so, Fc

consists of smaller simple subcycles, s.t. (i) any two subcycles
share at most one vertex of Fc and (ii) any vertex of Fc is
incident to at most two subcycles. Hence, the “tangency graph”
of these subcycles (which has a vertex for each subcycle and
an edge between every pair of subcycles that share a vertex)
is a tree. Define w0 as in the case of simple cycle and let the
tangency tree be rooted at the cycle containing w0. Due to degree restriction, w0 cannot be
incident to two subcycles. We draw the subcycles of Fc in the order implied by the Breadth
First Search (BFS) traversal of the tangency tree. The first one (incident to w0) is drawn as
in the case of simple cycle. Each next subcycle is plugged into the drawing, as in Fig. 7.

It remains to ensure that IP-1 up to IP-5 are satisfied when a simple cycle, say Cs, is
recursively drawn. IP-1 holds, since each edge is drawn either on the bottom (if it is a marked
edge) or on the top-page (otherwise) and no two edges intersect. Lemma 14 implies IP-2. If
Cs is the outerface of a block-vertex or a leaf in the tangency tree, then IP-3 trivially holds.
If Cs is a non-leaf in the tangency tree, it contains at least one edge on the bottom-page (see
Fig. 7). This violates IP-3. However, we can benefit from Lemma 15 since the edge which
is improperly bottom-drawn is incident to a vertex (of degree four) that is not adjacent to
any other vertex in the interior of Cs. For the sake of the recursion we assume that it is
drawn on the top-page and once Cs is completely drawn, we redraw it on the bottom-page
using Lemma 15. If Cs is the outerface of a block-vertex or root of the tangency tree of a
non-simple outerface Fc, then at least one vertex of Cs is adjacent to Gout(Cs). If Cs is an
internal node of the tangency tree of Fc, then its leftmost vertex has two edges in Gout(Cs).
Hence, IP-4 also holds. Note that IP-5 does not necessarily hold. However, we can identify a

STACS’14

148 Two-Page Book Embeddings of 4-Planar Graphs

maximal separating path of chords of Cs adjacent to its leftmost vertex and use it to create
two subinstances, which can be recursively drawn; refer to [1] for details.

The recursion begins by specifying a drawing of G with a chordless outerface Cout : v1 →
. . . vk → v1. We place v1, . . . , vk in this order along ` and draw the edges of Cout as imposed
by IP-3. If there is a vertex of Cout with degree less than four, then it is chosen as vk and all
invariant properties are satisfied. Otherwise, we appropriately augment our graph, so that
IP-4 holds (the detailed proof is given in [1]). We are now ready to state our main theorem.

I Theorem 17. Any planar graph of maximum degree 4 on n vertices admits a two-page
book embedding, which can be constructed in O(n2) time.

Proof. At each step, our algorithm performs a series of computations; the computation of
the bridge-blocks, the topological sorting of GT

aux, BFS-traversals on the tangency trees. All
of these computations can be done in O(n) time, resulting in O(n2) total time. J

4 Conclusions and Open Problems

Two approaches were proposed to embed a 4-planar graph into two pages. One reasonable
question arising at this point is whether the result can be extended to 5-planar graphs.

References
1 Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-page book

embeddings of 4-planar graphs. Arxiv report arxiv.org/abs/1401.0684, 2013.
2 Frank Bernhart and Paul C. Kainen. The book thickness of a graph. Journal of Combin-

atorial Theory, 27(3):320–331, 1979.
3 Chiuyuan Chen. Any maximal planar graph with only one separating triangle is hamilto-

nian. Journal of Combinatorial Optimization, 7(1):79–86, 2003.
4 Norishige Chiba and Takao Nishizeki. The hamiltonian cycle problem is linear-time solvable

for 4-connected planar graphs. Journal of Algorithms, 10(2):187–211, 1989.
5 Fan R. K. Chung, Frank T. Leighton, and Arnold L. Rosenberg. Embedding graphs in

books: A layout problem with applications to VLSI design. SIAM Journal on Algebraic
and Discrete Methods, 8(1):33–58, 1987.

6 Vida Dujmovic and David R. Wood. On linear layouts of graphs. Discrete Mathematics &
Theoretical Computer Science, 6(2):339–358, 2004.

7 Lenwood S. Heath. Algorithms for Embedding Graphs in Books. PhD thesis, University of
North Carolina, Chapel Hill, 1985.

8 Guido Helden. Each maximal planar graph with exactly two separating triangles is hamilto-
nian. Discrete Applied Mathematics, 155(14):1833–1836, 2007.

9 Paul C. Kainen and Shannon Overbay. Extension of a theorem of Whitney. Applied
Mathematics Letters, 20(7):835–837, 2007.

10 Daniel P. Sanders. On paths in planar graphs. Journal of Graph Theory, 24(4):341–345,
1997.

11 William T. Tutte. A theorem on planar graphs. Transactions of the American Mathematical
Society, 82(1):99–116, 1956.

12 Hassler Whitney. A theorem on graphs. Annals of Mathematics, 32(2):378–390, 1931.
13 Avi Wigderson. The complexity of the hamiltonian circuit problem for maximal planar

graphs. Technical Report TR-298, EECS Department, Princeton University, 1982.
14 Mihalis Yannakakis. Embedding planar graphs in four pages. Journal of Computer and

System Sciences, 38(1):36–67, 1989.

http://arxiv.org/abs/1401.0684

Palindrome Recognition In The Streaming Model
Petra Berenbrink1, Funda Ergün1,2, Frederik Mallmann-Trenn1,
and Erfan Sadeqi Azer1

1 Simon Fraser University, Burnaby, Canada
2 Indiana University, Bloomington, US

Abstract
A palindrome is defined as a string which reads forwards the same as backwards, like, for example,
the string “racecar”. In the Palindrome Problem, one tries to find all palindromes in a given
string. In contrast, in the case of the Longest Palindromic Substring Problem, the goal is to find
an arbitrary one of the longest palindromes in the string.

In this paper we present three algorithms in the streaming model for the the above problems,
where at any point in time we are only allowed to use sublinear space. We first present a one-
pass randomized algorithm that solves the Palindrome Problem. It has an additive error and uses
O(
√
n) space. We also give two variants of the algorithm which solve related and practical prob-

lems. The second algorithm determines the exact locations of all longest palindromes using two
passes and O(

√
n) space. The third algorithm is a one-pass randomized algorithm, which solves

the Longest Palindromic Substring Problem. It has a multiplicative error using only O(log(n))
space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Palindromes, Streaming Model, Complementary Palindrome

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.149

1 Introduction

A palindrome is defined as a string which reads forwards the same as backwards, e.g., the
string “racecar”. In the Palindrome Problem one tries to find all palindromes (palindromic
substrings) in an input string. A related problem is the Longest Palindromic Substring
Problem in which one tries to find any one of the longest palindromes in the input.

In this paper we regard the streaming version of both problems, where the input arrives
over time (or, alternatively, is read as a stream) and the algorithms are allowed space sub
linear in the size of the input. Our first contribution is a one-pass randomized algorithm that
solves the Palindrome Problem. It has an additive error and uses O(

√
n) space. The second

contribution is a two-pass algorithm which determines the exact locations of all longest
palindromes. It uses the first algorithm as the first pass and uses O(

√
n) space. The third is

a one-pass randomized algorithm for the Longest Palindromic Substring Problem. It has a
multiplicative error using O(log(n)) space. We also give two variants of the first algorithm
which solve other related practical problems.1

Palindrome recognition is important in computational biology. Palindromic structures
can frequently be found in proteins and identifying them gives researchers hints about the
structure of nucleic acids. For example, in nucleic acid secondary structure prediction, one is
interested in complementary palindromes which are considered in the full version.

1 The full version of this paper can be accessed at arXiv:1308.3466.

© Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and
Erfan Sadeqi Azer;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 149–161

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.149
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

150 Palindrome Recognition In The Streaming Model

Related work. While palindromes are well-studied, to the best of our knowledge there are
no results for the streaming model. Manacher [5] presents a linear time online algorithm
that reports at any time whether all symbols seen so far form a palindrome. The authors of
[1] show how to modify this algorithm in order to find all palindromic substrings in linear
time (using a parallel algorithm).

Some of the techniques used in this paper have their origin in the streaming pattern
matching literature. In the Pattern Matching Problem, one tries to find all occurrences of
a given pattern P in a text T . The first algorithm for pattern matching in the streaming
model was shown in [6] and requires O(log(m)) space. The authors of [3] give a simpler
pattern matching algorithm with no preprocessing, as well as a related streaming algorithm
for estimating a stream’s Hamming distance to p-periodicity. Breslauer and Galil [2] provide
an algorithm which does not report false negatives and can also be run in real-time. All of
the above algorithms in the string model take advantage of Karp-Rabin fingerprints [4].

Our results. In this paper we present three algorithms, ApproxSqrt, Exact, and ApproxLog
for finding palindromes and estimating their length in a given stream S of length n.

We assume that the workspace is bounded while the output space is unlimited.
Given an index m in stream S, P [m] denotes the palindrome of maximal length cantered
at index m of S. Our algorithms identify a palindrome P [m] by its midpoint m and by
its length `(m). Our first algorithm outputs all palindromes in S and therefore solves the
Palindrome Problem.

I Theorem 1 (ApproxSqrt). For any ε ∈ [1/√n, 1] Algorithm ApproxSqrt(S, ε) reports for
every palindrome P [m] in S its midpoint m as well as an estimate ˜̀(m) (of `(m)) such that
w.h.p.2 `(m)− ε

√
n < ˜̀(m) ≤ `(m). The algorithm makes one pass over S, uses O(n/ε) time,

and O(√n/ε) space.

The algorithm can easily be modified to report all palindromes P [m] in S with `(m) ≥ t
and no P [m] with `(m) < t− ε

√
n for some threshold t ∈ N. For t ≤

√
n one can modify the

algorithm to report a palindrome P [m] if and only if `(m) ≥ t. Note, the algorithm is also
(1 + ε)-approximative.

Our next algorithm, Exact, uses two-passes to solve the Longest Palindromic Substring
Problem. It uses ApproxSqrt as the first pass. In the second pass the algorithm finds the
midpoints of all palindromes of length exactly `max where `max is the (initially unknown)
length of the longest palindrome in S.

I Theorem 2 (Exact). Algorithm Exact reports w.h.p. `max and m for all palindromes P [m]
with a length of `max. The algorithm makes two passes over S, uses O(n) time, and O(

√
n)

space.

Arguably the most significant contribution of this paper is an algorithm which requires only
logarithmic space. In contrast to ApproxSqrt (Theorem 1) this algorithm has a multiplicative
error and it reports only one of the longest palindromes (see Longest Palindromic Substring
Problem) instead of all of them due to the limited space.

I Theorem 3 (ApproxLog). For any ε in (0, 1], Algorithm ApproxLog reports w.h.p. an
arbitrary palindrome P [m] of length at least `max/(1 + ε). The algorithm makes one pass
over S, uses O(n log(n)

ε log(1+ε)) time, and O(log(n)
ε log(1+ε)) space.

2 We say an event happens with high probability (w.h.p.) if its probability is at least 1− 1/nc for c ∈ N.

P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 151

We also show two practical generalisations of our algorithms which can be run simultaneously.
These results are presented in the next observation and the next lemma.

I Observation 4. For `max ≥
√
n, there is an algorithm which reports w.h.p. the midpoints

of all palindromes P [m] with `(m) > `max − ε
√
n. The algorithm makes one pass over S,

uses O(n/ε) time, and O(√n/ε) space.

I Lemma 5. For `max <
√
n, there is an algorithm which reports w.h.p. `max and a P [m]

s.t. `(m) = `max. The algorithm makes one pass over S, uses O(n) time, and O(
√
n) space.

In the full version of the paper we will show an almost matching bound for the additive
error of Algorithm ApproxSqrt. In more detail, we will show that any randomized one-pass
algorithm that approximates the length of the longest palindrome up to an additive error of
ε
√
n must use Ω(√n/ε) space.

2 Model and Definitions

Let S ∈ Σn denote the input stream of length n over an alphabet Σ3. For simplicity we
assume symbols to be positive integers, i.e., Σ ⊂ N. We define S[i] as the symbol at index i
and S[i, j] = S[i], S[i+ 1], . . . S[j]. In this paper we use the streaming model: In one pass
the algorithm goes over the whole input stream S, reading S[i] in iteration i of the pass. In
this paper we assume that the algorithm has a memory of size o(n), but the output space is
unlimited. We use the so-called word model where the space equals the number of O(log(n))
registers (See [2]).

S contains an odd palindrome of length ` with midpoint m ∈ {`, . . . , n− `} if S[m− i] =
S[m + i] for all i ∈ {1, . . . , `}. Similarly, S contains an even palindrome of length ` if
S[m − i + 1] = S[m + i] for all i ∈ {1, . . . , `}. In other words, a palindrome is odd if and
only if its length is odd. For simplicity, our algorithms assume palindromes to be even
– it is easy to adjust our results for finding odd palindromes by apply the algorithm to
S[1]S[1]S[2]S[2] · · ·S[n]S[n] instead of S[1, n].

The maximal palindrome (the palindrome of maximal length) in S[1, i] with midpoint m
is called P [m, i] and the maximal palindrome in S with midpoint m is called P [m] which
equals P [m,n]. We define `(m, i) as the maximum length of the palindrome with midpoint
m in the substring S[1, i]. The maximal length of the palindrome in S with midpoint m
is denoted by `(m). Moreover, for z ∈ Z \ {1, . . . , n} we define `(z) = 0. Furthermore, for
`∗ ∈ N we define P [m] to be an `∗-palindrome if `(m) ≥ `∗. Throughout this paper, ˜̀() refers
to an estimate of `().

We use the KR-Fingerprint, which was first defined by Karp and Rabin [4] to compress
strings and was later used in the streaming pattern matching problem (see [6], [3], and
[2]). For a string S′ we define the forward fingerprint (similar to [2]) and its reverse as
follows. φFr,p(S′) =

(∑|S′|
i=1 S

′[i] · ri
)

mod p φRr,p(S′) =
(∑|S′|

i=1 S
′[i] · rl−i+1

)
mod p,<

where p is an arbitrary prime number in [n4, n5] and r is randomly chosen from {1, . . . , p}.
We write φF (φR respectively) as opposed to φFr,p(φRr,p respectively) whenever r and p are
fixed. We define for 1 ≤ i ≤ j ≤ n the fingerprint FF (i, j) as the fingerprint of S[i, j], i.e.,
FF (i, j) = φF (S[i, j]) = r−(i−1)(φF (S[1, j])− φF (S[1, i− 1])) mod p. Similarly, FR(i, j) =
φR(S[i, j]) = φR(S[1, j]) − rj−i+1 · φR(S[1, i − 1]) mod p. For every 1 ≤ i ≤ n −

√
n the

3 All soundness, space, and time complexity analyses assumes |Σ| to be polynomial. One can use a proper
random hash function for bigger alphabets.

STACS’14

152 Palindrome Recognition In The Streaming Model

ic1 c2 c3

FR(c0 + 1, m1)

FF (m2 + 1, i)

FF (m1 + 1, i)

FR(c1 + 1, m2)

m1 m2
c0

Figure 1 At iteration i two midpoints m1 and
m2 are checked. Corresponding substrings are
denoted by brackets. Note, the distance from c0

to m1 equals the distance from m1 to i. Similarly,
the distance from c1 to m2 equals the distance
from m2 to i.

m Legend:
sliding fingerprint partition

sliding window

i

Figure 2 Illustration of the F ingerprint

P airs after iteration i of algorithm with
√

n = 6,
ε = 1/3, and m = i−

√
n.

fingerprints FF (1, i− 1−
√
n) and FR(1, i− 1−

√
n) are called Master Fingerprints. Note

that it is easy to obtain FF (i, j + 1) by adding the term S[j + 1]rj+1 to FF (i, j). Similarly,
we obtain FF (i + 1, j) by subtracting S[i] from r−1 · FF (i, j). The authors of [2] observe
useful properties which we state in the full version.

3 Algorithm Simple ApproxSqrt

In this section, we introduce a simple one-pass algorithm which reports all midpoints and
length estimates of palindromes in S. Throughout this paper we use i to denote the current
index which the algorithm reads. Simple ApproxSqrt keeps the last 2

√
n symbols of S[1, i] in

the memory.
It is easy to determine the exact length palindromes of length less than

√
n since any

such palindrome is fully contained in memory at some point. However, in order to achieve
a better time bound the algorithm only approximates the length of short palindromes. It
is more complicated to estimate the length of a palindrome with a length of at least

√
n.

However, Simple ApproxSqrt detects that its length is at least
√
n and stores it as an RS-

entry (introduced later) in a list Li. The RS-entry contains the midpoint as well as a length
estimate of the palindrome, which is updated as i increases.
In order to estimate the lengths of the long palindromes the algorithm designates certain
indices of S as checkpoints. For every checkpoint c the algorithm stores a fingerprint FR(1, c)
enabling the algorithm to do the following. For every midpoint m of a long palindrome:
Whenever the distance from a checkpoint c to m (c occurs before m) equals the distance from
m to i, the algorithm compares the substring from c to m to the reverse of the substring from
m to i by using fingerprints. We refer to this operation as checking P [m] against checkpoint
c. If S[c+ 1,m]R = S[m+ 1, i], then we say that P [m] was sucessfully checked with c and
the algorithm updates the length estimate for P [m], ˜̀(m). The next time the algorithm
possibly updates ˜̀(m) is after d iterations where d equals the distance between checkpoints.
This distance d gives the additive approximation. See Figure 1 for an illustration.

We need the following definitions before we state the algorithm: For k ∈ N with 0 ≤ k ≤
b
√
n
ε c checkpoint ck is the index at position k · bε

√
nc thus checkpoints are bε

√
nc indices

apart. Whenever we say that an algorithm stores a checkpoint, this means storing the
data belonging to this checkpoint. Additionally, the algorithm stores Fingerprint Pairs,
fingerprints of size bε

√
nc, 2bε

√
nc, . . . starting or ending in the middle of the sliding window.

In the following, we first describe the data that the algorithm has in its memory after reading
S[1, i− 1], then we describe the algorithm itself. Let RS(m, i) denote the representation of
P [m] which is stored at time i. As opposed to storing P [m] directly, the algorithm stores m,
˜̀(m, i), FF (1,m), and FR(1,m).

P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 153

Memory invariants. Just before algorithm Simple ApproxSqrt reads S[i] it has stored the
following information. Note that, for ease of referencing, during an iteration i data structures
are indexed with the iteration number i.
That is, for instance, Li−1 is called Li after S[i] is read.

1. The contents of the sliding window S[i− 2
√
n− 1, i− 1].

2. The two Master Fingerprints FF (1, i− 1) and FR(1, i− 1).
3. A list of Fingerprint Pairs: Let r be the maximum integer s.t. r · bε

√
nc <

√
n.

For j ∈ {bε
√
nc, 2 · bε

√
nc, . . . , r · bε

√
nc,
√
n} the algorithm stores the pair

FR((i−
√
n)− j, (i−

√
n)− 1), and FF (i−

√
n, (i−

√
n) + j − 1). See Figure 2 for an

illustration.
4. A list CLi−1 which consists of all fingerprints of prefixes of S ending at already seen

checkpoints, i.e., CLi−1 =
[
FR(1, c1), FR(1, c2), . . . , FR

(
1, cb(i − 1)/bε

√
ncc
)]

5. A list Li−1 containing representation of all
√
n-palindromes with a midpoint located in

S[1, (i− 1)−
√
n]. The jth entry of Li−1 has the form

RS(mj , i− 1) = (mj , ˜̀(mj , i− 1), FF (1,mj), FR(1,mj)) where

(a mj is the midpoint of the jth palindrome in S[1, (i− 1)−
√
n] with a length of at least√

n. Therefore, mj < mj+1 for 1 ≤ j ≤ |Li−1| − 1.
(b ˜̀(mj , i− 1) is the current estimate of `(mj , i− 1).

In the following, we explain how the algorithm maintains the above invariants.

Maintenance. At iteration i the algorithm performs the following steps. It is implicit that
Li−1 and CLi− 1 become Li and CLi respectively.

1. Read S[i], set m = i−
√
n. Update the sliding window to S[m−

√
n, i] = S[i− 2

√
n, i]

2. Update the Master Fingerprints to be FF (1, i) and FR(1, i).
3. If i is a checkpoint (i.e., a multiple of bε

√
nc), then add FR(1, i) to CLi.

4. Update all Fingerprint Pairs: For j ∈ {bε
√
nc, 2 · bε

√
nc, , . . . , r · bε

√
nc,
√
n}

Update FR(m−j,m−1) to FR(m−j+1,m) and FF (m,m+j−1) to FF (m+1,m+j).
If FR(m− j + 1,m) = FF (m+ 1,m+ j), then set ˜̀(m, i) = j.
If ˜̀(m, i) <

√
n, output m and ˜̀(m, i).

5. If ˜̀(m, i) ≥
√
n, add add RS(m, i) to Li:

Li = Li ◦ (m, ˜̀(m, i), FF (1,m), FR(1,m)).
6. For all ck with 1 ≤ k ≤ b i

bε
√
ncc and RS(mj , i) ∈ Li with i −mj = mj − ck, check if

˜̀(mj , i) can be updated:

If the left side of mj is the reverse of the right side of mj (i.e., FR(ck + 1,mj) =
FF (mj + 1, i)) then update RS(mj , i) by updating ˜̀(mj , i) to i−mj .

7. If i = n, then report Ln.

In all proofs in this paper which hold w.h.p. we assume that fingerprints do not fail as
we take less than n2 fingerprints and by using the following Lemma, the probability that a
fingerprint fails is at most 1/nc+2.

I Lemma 6. (Theorem 1 of [2]) For two arbitrary strings s and s′ with s 6= s′ the probability
that φF (s) = φF (s′) is smaller than 1/nc+2 for some c ∈ N.

STACS’14

154 Palindrome Recognition In The Streaming Model

Thus, by applying the union bound the probability that no fingerprint fails is at least 1−n−c.
The following lemma shows that the Simple ApproxSqrt finds all palindromes along with the
estimates as stated in Theorem 1. Simple ApproxSqrt does not fulfill the time and space
bounds of Theorem 1; we will later show how to improve its efficiency. The proof can be
found in the full version.

I Lemma 7. For any ε in [1/√n, 1] ApproxSqrt(S, ε) reports for every palindrome P [m] in
S its midpoint m as well as an estimate ˜̀(m) such that w.h.p. `(m)− ε

√
n < ˜̀(m) ≤ `(m).

4 A space-efficient version

In this section, we show how to modify Simple ApproxSqrt so that it matches the time and
space requirements of Theorem 1. The main idea of the space improvement is to store the
lists Li in a compressed form.

Compression. It is possible in the simple algorithm for Li to have linear length. In such
cases S contains many overlapping palindromes which show a certain periodic pattern as
shown in Corollary 12, which our algorithm exploits to compress the entries of Li. This idea
was first introduced in [6], and is used in [3], and [2]. More specifically, our technique is a
modification of the compression in [2]. In the following, we give some definitions in order to
show how to compress the list. First we define a run which is a sequence of midpoints of
overlapping palindromes.

I Definition 8 (`∗−Run). Let `∗ be an arbitrary integer and h ≥ 3. Let m1,m2,m3, . . . ,mh

be consecutive midpoints of `∗-palindromes in S. m1, . . . ,mh form an `∗-run if mj+1−mj ≤
`∗/2 for all j ∈ {1, . . . , h− 1}.

In Corollary 12 we show that m2 −m1 = m3 −m2 = · · · = mh −mh−1. We say that a run
is maximal if the run cannot be extended by other palindromes. More formally:

I Definition 9 (Maximal `∗−Run). An `∗-run over m1, . . . ,mh is maximal it satisfies both
of the following: i) `(m1 − (m2 −m1)) < `∗, ii) `(mh + (m2 −m1)) < `∗.

Simple ApproxSqrt stores palindromes explicitly in Li, i.e., Li = [RS(m1, i); . . . ;RS(m|Li|, i)]
where RS(mj , i) = (mj , ˜̀(mj , i), FF (1,mj), FR(1,mj)), for all j ∈ {1, 2, . . . , h}. The im-
proved Algorithm ApproxSqrt stores these midpoints in a compressed way in list L̂i. Approx-
Sqrt distinguishes among three cases: Those palindromes which

1. are not part of a
√
n-run are stored explicitly as before. We call them RS-entries. Let

P [m, i] be such a palindrome. After iteration i the algorithm stores RS(m, i).
2. form a maximal

√
n-run are stored in a data structure called RF -entry. Letm1, . . . ,mh be

the midpoints of a maximal
√
n-run. The data structure stores the following information.

m1, m2 −m1, h, ˜̀(m1, i), ˜̀(mb 1+h
2 c, i),

˜̀(md 1+h
2 e, i),

˜̀(mh, i),
FF (1,m1), FR(1,m1), FF (m1 + 1,m2), FR(m1 + 1,m2)

3. form a
√
n-run which is not maximal (i.e., it can possibly be extended) in a data structure

called RNF -entry. The information stored in an RNF -entry is the same as in an RF -entry,
but it does not contain the entries: ˜̀(mb 1+h

2 c, i),
˜̀(md 1+h

2 e, i), and
˜̀(mh, i).

The algorithm stores only the estimate (of the length) and the midpoint of the following
palindromes explicitly.

P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 155

P [m] for an RS-entry (Therefore all palindromes which are not part of a
√
n-run)

P [m1], P [mb(h + 1)/2c], P [md(h + 1)/2e], and P [mh] for an RF -entry
P [m1] for an RNF -entry.

In what follows we refer to the above listed palindromes as explicitly stored palindromes.
We argue in Observation 15 that in any interval of length

√
n the number of explicitly stored

palindromes is bounded by a constant.

4.1 Algorithm ApproxSqrt

In this subsection, we describe some modifications of Simple ApproxSqrt in order to obtain a
space complexity of O(

√
n
ε) and a total running time of O(nε). ApproxSqrt is the same as

Simple ApproxSqrt, but it compresses the stored palindromes. ApproxSqrt uses the same
memory invariants as Simple ApproxSqrt, but it uses L̂i as opposed to Li.

ApproxSqrt uses the first four steps of Simple ApproxSqrt. Step 5, Step 6, and Step 7 are
replaced. The modified Step 5 ensures that there are at most two RS-entries per interval of
length

√
n. Moreover, Step 6 is adjusted since ApproxSqrt stores only the length estimate of

explicitly stored palindromes.

5. If ˜̀(m, i) ≥
√
n, obtain L̂i by adding the palindrome with midpoint m(= i−

√
n) to L̂i−1

as follows:

a. The last element in L̂i is the following RNF -entry(
m1,m2 −m1, h, ˜̀(m1, i), FF (1,m1), FR(1,m1), FF (m1 + 1,m2), FR(m1 + 1,m2)

)
.

i. If the palindrome can be added to this run, i.e., m = m1 + h(m2 −m1), then we
increment the h in the RNF -entry by 1.

ii. If the palindrome cannot be added: Store P [m, i] as an RS-entry: L̂i = L̂i ◦
(m, ˜̀(m, i), FF (1,m), FR(1,m)). Moreover, convert the RNF -entry into the RF -
entry by adding ˜̀(mb 1+h

2 c, i),
˜̀(md 1+h

2 e, i) and
˜̀(mh, i): First we calculatemb 1+h

2 c
=

m1 +
(
b 1+h

2 − 1c
)

(m2 − m1). One can calculate md 1+h
2 e

similarly. For m′ ∈
{mb 1+h

2 c,md 1+h
2 e,mh} calculate ˜̀(m′, i) =

max
i−2
√
n≤j≤i

{j−m′ | ∃ck with j−m′ = m′−ck and FR(ck+1,m′) = FF (m′+1, j)}.

b. The last two entries in L̂i are stored as RS-entries and together with P [m, i] form a√
n-run. Then remove the entries of the two palindromes out of L̂i−1 and add a new

RNF -entry with all three palindromes to L̂i−1:
m1, ˜̀(m1, i), FF (1,m1), FF (1,m2), FR(1,m1), FR(1,m2),m2 − m1, h = 3. Retrieve
FF (m1 + 1,m2) and FR(m1 + 1,m2).

c. Otherwise, store P [m, i] as an RS-entry: L̂i = L̂i ◦ (m, ˜̀(m, i), FF (1,m), FR(1,m))

6. This step is similar to step 6 of Simple ApproxSqrt the only difference is that we check
only for explicitly stored palindromes if they can be extended outwards. 4

7. If i = n. If the last element in L̂i is an RNF -entry, then convert it into an RF -entry as
in 5(a)ii. Report Ln.

4 This step is only important for the running time.

STACS’14

156 Palindrome Recognition In The Streaming Model

4.2 Structural Properties
In this subsection, we prove structural properties of palindromes. These properties allow us
to compress (by using RS-entries and RF -entries) overlapping palindromes P [m1], . . . , P [mh]
in such a way that at any iteration i all the information stored RS(m1, i), . . . , RS(mh, i) is
available. The structural properties imply, informally speaking, that the palindromes are
either far from each other, leading to a small number of them, or they are overlapping and it
is possible to compress them. Lemma 11 shows this structure for short intervals containing
at least three palindromes. Corollary 12 shows a similar structure for palindromes of a run
which is used by ApproxSqrt. We first give the common definition of periodicity.

I Definition 10 (period). A string S′ is said to have period p if it consists of repetitions of a
block of p symbols. Formally, S′ has period p if S′[j] = S[j + p] for all j = 1, . . . , |S′| − p. 5

I Lemma 11. Let m1 < m2 < m3 < · · · < mh be indices in S that are consecutive midpoints
of `∗-palindromes for an arbitrary natural number `∗. If mh −m1 ≤ `∗, then
(a) m1,m2,m3, . . . ,mh are equally spaced in S, i.e., |m2 − m1| = |mk+1 − mk| ∀k ∈
{1, . . . , h− 1}

(b) S[m1 + 1,mh] =
{

(wwR)h−1
2 h is odd

(wwR)h−2
2 w h is even

, where w = S[m1 + 1,m2].

Proof. Given m1,m2, . . . ,mh and `∗ we prove the following stronger claim by induction over
the midpoints {m1, . . . ,mj}. (a’) m1,m2, . . . ,mj are equally spaced. (b’) S[m1 + 1,mj + `∗]
is a prefix of wwRwwR... .
Base case j = 2: Since we assumem1 is the midpoint of an `∗-palindrome and `∗ ≥ mh−m1 ≥
m2 −m1 = |w|, we have that S[m1 − |w|+ 1,m1] = wR. Recall that `(m2) ≥ `∗ ≥ |w| and
thus, S[m1 + 1,m2 + |w|] = wwR.
We can continue this argument and derive that S[m1 + 1,m2 + `∗] is a prefix of wwR . . . wwR.
(a’) for j = 2 holds trivially.
Inductive step j − 1 → j: Assume (a’) and (b’) hold up to mj−1. We first argue that
|mj −m1| is a multiple of |m2 −m1| = |w|. Suppose mj = m1 + |w| · q + r for some integers
q ≥ 0 and r ∈ {1, . . . , |w| − 1}. Since mj ≤ mj−1 + `∗, the interval [m1 + 1,mj−1 + `∗]
contains mj . Therefore, by inductive hypothesis, mj − r is an index where either w or wR
starts. This implies that the prefix of wwR(or wRw) of size 2r is a palindrome and the string
wwR(or wRw) has period 2r. On the other hand, by consecutiveness assumption, there is no
midpoint of an `∗-palindrome in the interval [m1 + 1,m2 − 1]. does not have a period of 2p,
a contradiction. We derive that mj −m1 is multiple of |w|.
Hence, we assume mj = mj−1 + q · |w| for some q. The assumption that mj is a midpoint
of an `∗-palindrome beside the inductive hypothesis implies (b’) for j. The structure of
S[mj−1 +|w|−`∗+1,mj−1 +|w|+`∗] shows thatmj−1 +|w| is a midpoint of an `∗-palindrome.
This means that mj = mj−1 + |w|. This gives (a’) and yields the induction step. J

Corollary 12 shows the structure of overlapping palindromes and is essential for the
compression. The main difference between Corollary 12 and Lemma 11 is the required
distance between the midpoints of a run. Lemma 11 assumes that every palindrome in
the run overlaps with all other palindromes. In contrast, Corollary 12 assumes that every
palindrome P [mj] overlaps with P [mj−2], P [mj−1], P [mj+1], and P [mj+2]. It can be proven
by an induction over the midpoints and using Lemma 11. The proof is in the full version.

5 Here, p is called a period for S′ even if p > |S′|/2.

P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 157

I Corollary 12. If m1,m2, . . . ,mh form an `∗-run for an arbitrary natural number `∗ then
(a) m1,m2,m3, . . . ,mh are equally spaced in S, i.e., |m2 − m1| = |mk+1 − mk| ∀k ∈
{1, . . . , h− 1}

(b) S[m1 + 1,mh] =
{

(wwR)h−1
2 h is odd

(wwR)h−2
2 w h is even

, where w = S[m1 + 1,m2].

Lemma 13 shows the pattern for the lengths of the palindromes in each half of the run.
This allows us to only store a constant number of length estimates per run. The proof can
be found in the full version.

I Lemma 13. At iteration i, let m1,m2,m3, ...,mh be midpoints of a maximal `∗-run in
S[1, i] for an arbitrary natural number `∗. For any midpoint mj, we have:

`(mj , i) =
{
`(m1, i) + (j − 1) · (m2 −m1) j < h+1

2

`(mh, i) + (h− j) · (m2 −m1) j > h+1
2

4.3 Analysis of the Algorithm
We show that one can convert RS-entries into a run and vice versa and ApproxSqrt’s
maintenance of RF -entries and RNF -entries does not impair the length estimates. The
following lemma shows that one can retrieve the length estimate of a palindrome as well as
its fingerprint from an RF -entry.

I Lemma 14. At iteration i, the RF -entry over m1,m2, . . . ,mh is a lossless compression of
[RS(m1, i); . . . ;RS(mh, i)]

Let Compressed Run be the general term for RF -entry and RNF -entry. We argue that
in any interval of length

√
n we only need to store at most two single palindromes and two

Compressed Runs. Suppose there were three RS-entries, then, by Corollary 12, they form a√
n-run since they overlap each other. Therefore, the three RS-entries would be stored in a

Compressed Run. For a similar reason there cannot be more than two Compressed Runs in
one interval of length

√
n. We derive the following observation.

I Observation 15. For any interval of length
√
n there can be at most two RS-entries and

two Compressed Runs in L∗.
We now have what we need in order to prove Theorem 1; the proof is given in the full version.

5 Algorithm Exact

This section describes Algorithm Exact which determines the exact length of the longest
palindrome in S using O(

√
n) space and two passes over S.

For the first pass this algorithm runs ApproxSqrt (S, 1
2) (meaning that ε = 1/2) and the

variant of ApproxSqrt described in Lemma 5 simultaneously. The first pass returns `max
(Lemma 5) if `max <

√
n. Otherwise, the first pass (Theorem 1) returns for every palindrome

P [m], with `(m) ≥
√
n, an estimate satisfying `(m)− √n/2 < ˜̀(m) ≤ `(m) w.h.p..

The algorithm for the second pass is determined by the outcome of the first pass. For the
case `max <

√
n, it uses the sliding window to find all P [m] with `(m) = `max. If `max ≥

√
n,

then the first pass only returns an additive √n/2-approximation of the palindrome lengths.
We define the uncertain intervals of P [m] to be: I1(m) = S[m− ˜̀(m)− √n/2 + 1,m− ˜̀(m)]
and I2(m) = S[m+ ˜̀(m) + 1,m+ ˜̀(m) + √n/2].

The algorithm uses the length estimate calculated in the first pass to delete all RS-entries
(Step 3) which cannot be the longest palindromes. Similarly, the algorithm (Step 2) only

STACS’14

158 Palindrome Recognition In The Streaming Model

keeps the middle entries of RF -entries since these are the longest palindromes of their run
(A proof can be found in the full version). In the second pass, Algorithm Exact stores I1(m)
for a palindrome P [m] if it was not deleted. Algorithm Exact compares the symbols of I1(m)
symbol by symbol to I2(m) until the first mismatch is found. Then the algorithm knows the
exact length `(m) and discards I1(m). The analysis will show, at any time the number of
stored uncertain intervals is bounded by a constant.

First Pass. Run the following two algorithms simultaneously:
1. ApproxSqrt (S, 1/2). Let L be the returned list.
2. Variant of ApproxSqrt (See Lemma 5) which reports `max if `max <

√
n.

Second Pass

`max <
√
n: Use a sliding window of size 2

√
n and maintain two fingerprints FR[i −√

n− `max + 1, i−
√
n], and FF [i−

√
n+ 1, i−

√
n+ `max]. Whenever these fingerprints

match, report P [i−
√
n].

`max ≥
√
n: In this case, the algorithm uses a preprocessing phase first.

Preprocessing
1. Set ˜̀

max = max{˜̀(m) | P [m] is stored in L as an RF or an RS entry}.
2. For every RF -entry RF in L with midpoints m1, . . . ,mh remove RF from L and add
Rs(m, i) = (m, ˜̀(m), FF (1,m), FR(1,m)) to L, for m ∈ {mb(h+1)/2c,md(h+1)/2e}. To
do this, calculate mb 1+h

2 c
= m1 + (b 1+h

2 c− 1)(m2−m1) and md 1+h
2 e

= m1 + (d 1+h
2 e−

1)(m2 −m1). Retrieve FF (1,m) and FR(1,m) for m ∈ {mb(h+1)/2c,md(h+1)/2e}.
3. Delete all RS-entries (mk, ˜̀(mk), FF (1,mk), FR(1,mk)) with ˜̀(mk) ≤ ˜̀

max −
√
n/2

from L.
4. For every palindrome P [m] ∈ L set I1(m) := (m− ˜̀(m)− 1/2

√
n,m− ˜̀(m)] and set

finished(m) := false.

The resulting list is called L∗.

String processing. At iteration i the algorithm performs the following steps.

1. Read S[i]. If there is a palindrome P [m] such that i ∈ I1(m), then store S[i].
2. If there is a midpoint m such that m+ ˜̀(m) < i < m+ ˜̀(m) +

√
n

2 , finished(m) = false,
and S[m− (i−m) + 1] 6= S[i], then set finished(m) := true and `(m) = i−m− 1.

3. If there is a palindrome P [m] such that i ≥ ˜̀(m) +m+
√
n

2 , then discard I1(m).
4. If i = n, then output `(m) and m of all P [m] in L∗ with `(m) = `max.

We analyse Exact in the full version.

6 Algorithm ApproxLog

In this section, we present an algorithm which reports one of the longest palindromes and
uses only logarithmic space. ApproxLog has a multiplicative error instead of an additive
error term. Similar to ApproxSqrt we have special indices of S designated as checkpoints
that we keep along with some constant size data in memory. The checkpoints are used to
estimate the length of palindromes. However, this time checkpoints (and their data) are only
stored for a limited time. Since we move from additive to multiplicative error we do not
need checkpoints to be spread evenly in S. At iteration i, the number of checkpoints in any

P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 159

interval of fixed length decreases exponentially with distance to i. The algorithm stores a
palindrome P [m] (as an RS-entry or RNF -entry) until there is a checkpoint c such that P [m]
was checked unsuccessfully against c. A palindrome is stored in the lists belonging to the last
checkpoint with which is was checked successfully. In what follows we set δ ,

√
1 + ε − 1

for the ease of notation. Every checkpoint c has an attribute called level(c). It is used to
determine the number of iterations the checkpoint data remains in the memory.

Memory invariants. After algorithm ApproxLog has processed S[1, i−1] and before reading
S[i] it contains the following information:

1. Two Master Fingerprints up to index i− 1, i.e., FF (1, i− 1) and FR(1, i− 1).
2. A list of checkpoints CLi−1. For every c ∈ CLi−1 we have

level(c) such that c is in CLi−1 iff c ≥ (i− 1)− 2(1 + δ)level(c).
fingerprint(c) = FR(1, c)
a list Lc. It contains all palindromes which were successfully checked with c, but with
no other checkpoint c′ < c. The palindromes in Lc are either RS-entries or RNF -entries
(See Algorithm ApproxSqrt).

3. The midpoint m∗i−1 and the length estimate ˜̀(m∗i−1, i − 1) of the longest palindrome
found so far.

The algorithm maintains the following property. If P [m, i] was successfully checked with
checkpoint c but with no other checkpoint c′ < c, then the palindrome is stored in Lc. The
elements in Lc are ordered in increasing order of their midpoint. The algorithm stores
palindromes as RS-entries and RNF -entries. This time however, the length estimates are not
maintained. Adding a palindrome to a current run works exactly (the length estimate is not
calculated) as described in Algorithm ApproxSqrt.

Maintenance. At iteration i the algorithm performs the following steps.

1. Read S[i]. Update the Master Fingerprints to be FF (1, i) and FR(1, i).
2. For all k ≥ k0 = log(1/δ)/log(1 + δ)(The algorithm does not maintain intervals of size 0.)

a. If i is a multiple of bδ(1 + δ)k−2c, then add the checkpoint c = i (along with the
checkpoint data) to CLi. Set level(c) = k, fingerprint(c) = FR(1, i) and Lc = ∅.

b. If there exists a checkpoint c with level(c) = k and c < i− 2(1 + δ)k, then prepend
Lc to Lc′ where c′ = max{c′′ | c′′ ∈ CLi and c′′ > c}. Merge and create runs in Lc if
necessary (Similar to step 5 of ApproxSqrt). Delete c and its data from CLi.

3. For every checkpoint c ∈ CLi
a. Letmc be the midpoint of the first entry in Lc and c′ = max{c′′ | c′′ ∈ CLi and c′′ < c}.

If i−mc = mc − c′, then we check P [m] against c′ by doing the following:
i. If the left side of mc is the reverse of the right side of mc (i.e., FR(c′,mc) =
FF (mc, i)) then move P [mc] from Lc to Lc′ by adding P [mc] to Lc′ :
A. If |Lc′ | ≤ 1, store P [mc] as a RS-entry.
B. If |Lc′ | = 2, create a run out of the RS-entries stored in Lc′ and P [mc].
C. Otherwise, add P [mc] to the RNF -entry in Lc′ .

ii. If the left side of mc is not the reverse of the right side of mc, then remove mc from
Lc.

iii. If i−mc > ˜̀(m∗i), then set m∗i = mc and set ˜̀(m∗i) = i−mc.
4. If i = n, then report m∗i and ˜̀(m∗i).

STACS’14

160 Palindrome Recognition In The Streaming Model

6.1 Analysis
ApproxLog relies heavily on the interaction of the following two ideas. The pattern of the
checkpointing and the compression which is possible due to the properties of overlapping
palindromes (Lemma 11). On the one hand the checkpoints are close enough so that the
length estimates are accurate (Lemma 19). The closeness of the checkpoints ensures that
palindromes which are stored at a checkpoint form a run (Lemma 18) and therefore can be
stored in constant space. On the other hand the checkpoints are far enough apart so that
the number of checkpoints and therefore the required space is logarithmic in n.

We start off with an observation to characterise the checkpointing. Step 2 of the algorithm
creates a checkpoint pattern: Recall that the level of a checkpoint is determined when the
checkpoint and its data are added to the memory. The checkpoints of every level have the
same distance. A checkpoint (along with its data) is removed if its distance to i exceeds a
threshold which depends on the level of the checkpoint. Note that one index of S can belong
to different levels and might therefore be stored several times. The following observation
follows from Step 2 of the algorithm.

I Observation 16. At iteration i, ∀k ≥ k0 =
⌈
log((1+δ)2

δ)
log(1+δ)

⌉
. Let Ci,k = {c ∈ CLi | level(c) = k}.

1. Ci,k ⊆ [i− 2(1 + δ)k, i].
2. The distance between two consecutive checkpoints of Ci,k is bδ(1 + δ)k−2c.
3. |Ci,k| =

⌈
2(1+δ)k

bδ(1+δ)k−2c

⌉
.

This observation can be used to calculate the size of the checkpoint data which the algorithm
stores at any time. The proof can also be found in the full version.

I Lemma 17. At Iteration i of the algorithm the number of checkpoints is in O
(

log(n)
ε log(1+ε)

)
.

The space bounds of Theorem 3 hold due to the following property of the checkpointing:
If there are more than three palindromes stored in a list Lc for checkpoint c, then the
palindromes form a run and can be stored in constant space as the following lemma shows.

I Lemma 18. At iteration i, let c ∈ CLi be an arbitrary checkpoint. The list Lc can be
stored in constant space.

Proof. We fix an arbitrary c ∈ CLi. For the case that there are less than three palindromes
belonging to Lc, they can be stored as RS-entries in constant space. Therefore, we assume
the case where there are at least three palindromes belonging to Lc and we show that they
form a run. Let c′ be the highest (index) checkpoint less than c, i.e., c′ = max{c′′ | c′′ ∈
CLi and c′′ < c}. We disregard the case that the index of c is 1. Let k be the minimum value
such that (1 + δ)k−1 < i− c ≤ (1 + δ)k. Recall that Lc is the list of palindromes which the
algorithm has successfully checked against c and not against c′ yet. Let P [m] be a palindrome
in Lc. Since it was successfully checked against c we know that i−m ≥ m−c. Similarly, since
P [m] was not checked against c′ we have i−m < m− c′. Thus, for every P [m] in Lc we have
i+c′

2 < m ≤ i+c
2 . Therefore, all palindromes stored in Lc are in an interval of length less than

i+c
2 −

i+c′
2 = c−c′

2 . If we show that `(m) ≥ c−c′
2 for all P [m] in Lc, then applying Lemma 11

with `∗ = c−c′
2 on the palindromes in Lc implies that they are forming a run. The run can be

stored in constant space in an RNF -entry. Therefore, it remains to show that `(m) ≥ c−c′
2 .

We first argue the following: c − c′ ≤
Obs. 16

δ(1 + δ)k−2 ≤
δ≤1

(1+δ)k−1

2 <
Def. of k

i−c
2 . Since

P [m] was successfully checked against c and since m > i+c′
2 we derive that `(m) > i+c′

2 − c.
Therefore, `(m) > i+c′

2 − c = i−c
2 + c′−c

2 >
(6.1)

c− c′ + c′−c
2 = c−c′

2 . J

P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. Sadeqi Azer 161

The following lemma shows that the checkpoints are sufficiently close in order to satisfy
the multiplicative approximation. The proof is in the full version.

I Lemma 19. ApproxLog reports a midpoint m∗ such that w.h.p. `max
(1+ε) ≤ ˜̀(m∗) ≤ `max.

We are ready to prove Theorem 3. The correctness follows from Lemma 19. Lemma 17
and Lemma 18 yield the claimed space. In every iteration the algorithm processes every
checkpoint in CLi in constant time. The number of checkpoints is bounded by Lemma 17. A
full proof can be found in the full version.

References
1 Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes in

a string. Theoretical Computer Science, 141(1–2):163–173, 1995.
2 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. In Raffaele Giancarlo

and Giovanni Manzini, editors, Combinatorial Pattern Matching, volume 6661 of LNCS,
pages 162–172. Springer Berlin Heidelberg, 2011.

3 Funda Ergün, Hossein Jowhari, and Mert Saǧlam. Periodicity in streams. In Proceedings of
the 13th International Workshop on Approximation Algorithms for Combinatorial Optim-
ization Problems, and 14th International Workshop on Randomization and Computation
(APPROX/RANDOM’10), volume 6302 of LNCS, pages 545–559, Berlin, Heidelberg, 2010.
Springer-Verlag.

4 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, March 1987.

5 Glenn Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, July 1975.

6 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS’09, pages 315–323, Washington, DC, USA, 2009. IEEE Computer
Society.

STACS’14

New Bounds and Extended Relations Between
Prefix Arrays, Border Arrays, Undirected Graphs,
and Indeterminate Strings∗

Francine Blanchet-Sadri1, Michelle Bodnar2, and
Benjamin De Winkle3

1 Department of Computer Science, University of North Carolina, Greensboro,
USA
blanchet@uncg.edu

2 Department of Mathematics, University of California, San Diego, USA
mbodnar@ucsd.edu

3 Department of Mathematics, Tufts University, Medford, USA
benjamin.de_winkle@tufts.edu

Abstract
We extend earlier works on the relation of prefix arrays of indeterminate strings to undirected
graphs and border arrays. If integer array y is the prefix array for indeterminate string w, then we
say w satisfies y. We use a graph theoretic approach to construct a string on a minimum alphabet
size which satisfies a given prefix array. We relate the problem of finding a minimum alphabet size
to finding edge clique covers of a particular graph, allowing us to bound the minimum alphabet
size by n +

√
n for indeterminate strings, where n is the size of the prefix array. When we

restrict ourselves to prefix arrays for partial words, we bound the minimum alphabet size by
d
√

2ne. Moreover, we show that this bound is tight up to a constant multiple by using Sidon
sets. We also study the relationship between prefix arrays and border arrays. We show that
the slowly-increasing property completely characterizes border arrays for indeterminate strings,
whence there are exactly Cn distinct border arrays of size n for indeterminate strings (here Cn
is the nth Catalan number). We also bound the number of prefix arrays for partial words of a
given size using Stirling numbers of the second kind.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Indeterminate strings, Partial words, Prefix arrays, Border arrays, Un-
directed graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.162

1 Introduction

Strings are sequences of letters from a given alphabet. They have been extensively studied
and several generalizations have been proposed in the literature which include indeterminate
strings and strings with don’t cares [10, 1, 3]. An indeterminate string allows positions to be
subsets of cardinality greater than one of a given alphabet, while a string with don’t cares
allows positions to be the given alphabet. For example, a{a, b}bb{a, c} is an indeterminate
string of length 5 on the alphabet {a, b, c} and a{a, b, c}bb{a, b, c} is a string with don’t cares

∗ This material is based upon work supported by the National Science Foundation under Grant No.
DMS–1060775.

© Francine Blanchet-Sadri, Michelle Bodnar, and Benjamin De Winkle;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 162–173

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.162
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Blanchet-Sadri, M. Bodnar, and B. De Winkle 163

of same length on that alphabet. Strings with don’t cares are also referred to as partial
words and the don’t care symbol is often represented by the � symbol, or hole symbol, which
represents the alphabet. An alternative way of writing our example a{a, b, c}bb{a, b, c} is
a�bb�. Strings where each position is a singleton subset are referred to as regular strings.

The fundamental concept of border array has played an important role in pattern matching
for over four decades [6, 15]. If non-empty strings u1, u2, v1, v2 exist such that w = u1v1 =
v2u2 and u1 matches u2, denoted by u1 ≈ u2, then string w has a border of length |u1| = |u2|.
The border array β corresponding to a string w of length n is an integer array of same length
such that for j ∈ 0..n− 1, β[j] is the length of the longest border of w[0..j]. For example,
a{a, b}bb{a, c} and a�bb� give rise to the border arrays 01231 and 01234, respectively.

For a regular string w, any border of a border of w is also a border of w; thus w’s border
array gives all the borders of every prefix of w. This desirable property is lost however, when
we consider indeterminate strings or partial words, due to the lack of the transitivity of ≈
(e.g., a ≈ {a, b} and {a, b} ≈ b, but a 6≈ b implying that w = a{a, b}b has a border of length
2 having a border of length 1, but w has no border of length 1). Smyth and Wang [16]
showed that for indeterminate strings, the concept of prefix array provides more information
than the one of border array and specifies all the borders of every prefix. The prefix array
y corresponding to a string w of length n is an integer array of same length such that for
j ∈ 0..n− 1, y[j] is the length of the longest prefix of w[j..n) that matches a prefix of w. For
example, a{a, b}bb{a, c} and a�bb� give rise to the prefix arrays 53001 and 54001, respectively.
Main and Lorentz [13] described the first algorithm for computing the prefix array of any
given regular string as a routine in their well-known algorithm for finding all repetitions in a
regular string, and Smyth and Wang [16] described an algorithm for efficiently computing
the prefix array of any given indeterminate string.

The reverse problem of the one of designing an algorithm that computes the prefix array
of any given string is the problem of designing an algorithm that tests if an integer array
is the prefix array of some string and, if so, constructs such a string. Clément et al. [5]
described an O(n) time algorithm that tests if an integer array of size n is the prefix array of
some regular string and, if so, constructs the lexicographically least string having it as a prefix
array, the alphabet size of the string being bounded by log2 n. Recently, Christodoulakis
et al. [4] described an algorithm for computing an indeterminate string corresponding to a
given feasible prefix array. Such algorithmic characterizations of prefix arrays are not only
interesting from a theoretical point of view, but also from a practical point of view, e.g., they
help in the design of methods for randomly generating prefix arrays for software testing.

Christodoulakis et al. [4] established quite unexpected connections between indeterminate
strings, prefix arrays, and undirected graphs. Among them, they proved the surprising
result that every feasible array is the prefix array of some string. In this paper, we extend
connections between indeterminate strings, prefix/border arrays, and undirected graphs,
which yield combinatorial insights. In Section 2, we review some basics. In Section 3, we
revisit the problem of constructing an indeterminate string on a minimal alphabet satisfying
a given feasible prefix array y. We describe two methods: the first one relies on a graph Qy
built from y’s associated prefix graph Py, while the second one examines induced subgraphs
of Py. It turns out that the minimum alphabet size is the chromatic number of Qy and is also
the size of the smallest induced positive edge cover of Py. We bound the minimum alphabet
size for an array of size n by n+

√
n using results of Alon, Erdős et al., and Lovász on edge

clique covers. In Section 4, we explore the relationship between prefix arrays and border
arrays. In particular, we show that every slowly-increasing array is the border array for some
indeterminate string, whence the number of border arrays of size n for indeterminate strings

STACS’14

164 Prefix Arrays, Border Arrays, Undirected Graphs, and Indeterminate Strings

is the nth Catalan number. In Section 5, we restrict prefix arrays to partial words. We give
a characterization of such prefix arrays y in terms of the prefix graph Py. Moreover, we give
a method to construct a partial word on the smallest possible alphabet for a given prefix
array. We bound the minimum alphabet size for an array of size n by

⌈√
2n
⌉
, this bound

being tight (up to a constant multiple) using results of Erdős and Túran on Sidon sets. We
also bound the number of prefix arrays of a given size valid for partial words using Stirling
numbers of the second kind. Finally in Section 6, we conclude with some suggestions for
future work.

2 Preliminaries

Throughout the paper, we use many graph theoretical concepts and constructions. We refer
the reader to [11] for an introduction to these ideas.

A string w on alphabet A is a sequence of non-empty subsets of A, or may be empty.
If A has cardinality µ, we also say that w is a string on µ letters. We call a 1-element
subset of A a regular letter and larger subsets indeterminate letters. A string of all regular
letters is called a regular string (also referred to as a word), and a string which contains at
least one indeterminate letter is called an indeterminate string. A hole, denoted by �, is an
indeterminate letter which consists of the full alphabet, A. A partial word is a string which
consists of only regular letters and holes. We denote the length of string w by |w|.

Two non-empty subsets of A, α and α′, match if they have non-empty intersection. We
denote this by α ≈ α′. Similarly, two strings w and w′ match if |w| = |w′| and w[i] ≈ w′[i]
for each i ∈ 0..|w| − 1. As before, this is denoted by w ≈ w′.

An integer array y of size n such that y[0] = n and for every i ∈ 1..n− 1, 0 ≤ y[i] ≤ n− i,
is called feasible. The prefix array of a string w of length n is an array of integers y such
that y[j] is the length of the longest prefix of w[j..n) that matches a prefix of w. Note that
y[0] is the size of y for any prefix array y. If y is the prefix array of some regular string, then
y is called regular. If y is the prefix array of some partial word, then y is called valid for
partial words. If y is the prefix array of a string w, then w satisfies y.

I Lemma 2.1. [4] An integer array y of size n is the prefix array of a string w of length
n if and only if for each position i ∈ 0..n − 1, the following two conditions hold: (1)
w[0..y[i]) ≈ w[i..i+ y[i]) and (2) if i+ y[i] < n, then w[y[i]] 6≈ w[i+ y[i]].

The most important graph construction that we use is that of the prefix graph, which is
introduced in [4]. The prefix graph of a prefix array, y, of size n is denoted by Py and is
constructed as follows. Its vertex set, V (Py), is [0..n). Its edge set consists of two types of
edges. Let i ∈ 1..n− 1. For j ∈ 0..y[i]− 1, {j, i+ j} is a positive edge, while for i+ y[i] < n,
{y[i], i+ y[i]} is a negative edge (refer to Lemma 2.1).

Let E+(Py) be the set of positive edges of Py and E−(Py) be the set of negative edges of
Py (note we may write just E+ or E−, respectively, when Py is clear from context). We write
P+
y = (V (Py), E+(Py)) (i.e., the graph with the same vertex set, but with only the positive

edges) and P−y = (V (Py), E−(Py)) (same vertex set, only the negative edges). A string w
satisfies negative edge {i, j} if w[i] 6≈ w[j] and w violates {i, j} if w[i] ≈ w[j]. Similarly, w
satisfies positive edge {i, j} if w[i] ≈ w[j] and w violates {i, j} if w[i] 6≈ w[j]. The graph Py
encodes all the information of the prefix array y, that is to say, that string w satisfies y if
and only if w satisfies all positive and negative edges of Py. Figure 1 shows an example.

F. Blanchet-Sadri, M. Bodnar, and B. De Winkle 165

0
1

2

3
4

5

6

7

Figure 1 Prefix graph Py for y = 84201300. Solid lines indicate positive edges and dashed lines
indicate negative edges.

I Lemma 2.2. Let y be a feasible prefix array and w be an indeterminate string satisfying y.
If in Py, j0 and jk are joined by a negative edge and j0, j1, . . . , jk is a path on only positive
edges, then there exists some i ∈ 0..k such that w[ji] is an indeterminate letter.

3 Constructing Indeterminate Strings for Prefix Arrays

Returning to Figure 1, {a, c, e}{a, b}{a, b}{b, d}{c, d}ebb satisfies the prefix array y =
84201300. It is constructed on an alphabet of five letters a, b, c, d, e. Is the alphabet
size minimal? The answer is no since {a, b}{a, c}{b, c}{c, d}{a, d}bcc also satisfies y but is
constructed using only the four letters a, b, c, d. In this section, we describe two methods for
constructing indeterminate strings on a minimum alphabet size that satisfy a given prefix
array. For ease of notation, if y is a feasible prefix array, let µ(y) denote the minimum
alphabet size for an indeterminate string that satisfies y.

Let us describe our first method. Let V + be the set of vertices of Py which are incident
to a positive edge. We construct a new graph Q from Py as follows: V (Q) = E+ ∪ {{i, i} |
i ∈ V \V +}, and {{i1, j1}, {i2, j2}} ∈ E(Q) if and only if there exists some {r, s} ∈ E− such
that r ∈ {i1, j1} and s ∈ {i2, j2}. Since a prefix array y defines a unique Py, which in turn
defines a unique Q, we can call this graph Qy. We show how proper colorings of Qy and
indeterminate strings satisfying y are related.

Figure 2 gives an example. Since Qy has chromatic number 2, associate a with vertices
{0, 2} and {0, 3}, and b with vertices {1, 3}, {1, 4}, and {5, 5}. By assigning letters to each
vertex in Py corresponding to the letters associated with its incident positive edges, we obtain
the indeterminate {a}{b}{a}{a, b}{b}{b} which satisfies 602200.

I Theorem 3.1. Let µ be the minimum alphabet size for a string satisfying a given feasible
prefix array y. Then χ(Qy) = µ, where χ(Qy) denotes the chromatic number of Qy.

Proof. Let P = Py and Q = Qy. Suppose w is a string on µ letters which satisfies y, and
associate a distinct color to each letter. For each edge {i, j} ∈ E+ ∪ {{i, i} | i ∈ V \ V +},
color the vertex {i, j} in Q with the color associated to the first element in w[i] ∩ w[j]. The
intersection is always non-empty because positive edges and loops represent matchings. Now
suppose there is an edge connecting the vertices {i, j} and {r, s} in Q. Then there is a
negative edge in P connecting one endpoint of {i, j} to an endpoint of {r, s}. Without loss
of generality, assume {i, r} ∈ E−. This implies w[i]∩w[r] = ∅, so {i, j} and {r, s} must have
different colors. Thus, we have obtained a proper coloring of Q with µ colors, so χ(Q) ≤ µ.

STACS’14

166 Prefix Arrays, Border Arrays, Undirected Graphs, and Indeterminate Strings

0

1

2

3

4

5

0, 2
0, 3

1, 3
1, 4

5, 5

Figure 2 Py (left) and Qy (right) for the prefix array y = 602200, where solid lines indicate
positive edges and dashed lines indicate negative edges.

0
1

2

3 4

5

6

Figure 3 Py for y = 7612010, where solid lines indicate positive edges and dashed lines indicate
negative edges. One IPEC for Py is given by the sets V0 = {0, 1, 5}, V1 = {0, 2, 3}, V2 =
{1, 2, 4}, and V3 = {3, 4, 5, 6}. The construction in Theorem 3.2 gives the indeterminate string
w = {a, b}{a, c}{b, c}{b, d}{c, d}{a, d}d, which satisfies y.

Now suppose we are given a proper coloring of Q using χ(Q) colors. We may think
of each color as a letter and construct an indeterminate string w by assigning to w[i] the
color of each {k, j} ∈ V (Q) such that i = k or i = j. Let {i, j} be any positive edge of
P. Then w[i] and w[j] both contain the color given to {i, j}, so it is satisfied. It remains
to show that each negative edge is also satisfied. Suppose {i, j} ∈ E−. Then w[i] = {c |
c is the color on some {i, r} ∈ E+}, and w[j] = {c | c is the color on some {j, s} ∈ E+}.
Moreover, if {i, r}, {j, s} ∈ E+, then they are connected by an edge in Qy, so they have a
different color. Hence w[i]∩w[j] = ∅, so {i, j} is satisfied. Therefore, w satisfies y. Moreover,
w uses at most χ(Q) letters, which implies µ ≤ χ(Q). J

Let us describe our second method. Suppose indeterminate string w on alphabet A =
{a0, a1, . . . , aµ−1} satisfies prefix array y, and define Vi = {j | ai ∈ w[j]}. Notice that the
subgraph of Py induced by Vi contains no negative edges. Moreover, each positive edge is in
the subgraph induced by some Vi. This observation motivates the following definitions.

A subgraph of Py is negative-free if it does not contain any negative edges. We use the
notation Py[Vi] to denote the subgraph of Py induced by Vi. A set {V0, V1, . . . , Vk}, where
Vi ⊂ V (Py), is an induced positive edge cover (IPEC) of Py if Py[Vi] is negative-free for all
i ∈ 0..k, each positive edge of Py is in some Py[Vi], and each vertex of Py is in some Py[Vi].
Figure 3 gives an example of an IPEC.

I Theorem 3.2. Let y be a feasible prefix array. The minimum alphabet size for an
indeterminate string satisfying y is exactly the size of the smallest IPEC of Py.

Proof. Let µ be the minimum alphabet size for an indeterminate string satisfying y, and let
σ be the size of the smallest IPEC of Py. Suppose w is an indeterminate string that satisfies y

F. Blanchet-Sadri, M. Bodnar, and B. De Winkle 167

on the alphabet {a0, a1, . . . , aµ−1}. Let Vi be as defined above. We claim {V0, V1, . . . , Vµ−1}
is an IPEC of Py. It is clear that each vertex is in some Vi, because each position of w is
non-empty. Suppose {i, j} is a negative edge of Py. Since w satisfies y, it must satisfy {i, j},
so w[i] ∩ w[j] = ∅. Hence there is no Vk which contains both i and j, which implies {i, j} is
not in Py[Vk] for any k. This holds for any negative edge, so each Py[Vk] is negative-free.
Now suppose {i, j} is a positive edge of Py. As before, w must satisfy {i, j}, which implies
there exists some ak ∈ w[i] ∩w[j]. Then i, j ∈ Vk, so {i, j} is in the subgraph induced by Vk.
This proves our claim and shows σ ≤ µ.

Now suppose C = {V0, V1, . . . , Vσ−1} is an IPEC of Py. Let {a0, a1, . . . , aσ−1} be a
collection of distinct letters and construct an indeterminate string w by setting w[i] = {aj |
i ∈ Vj}. Since each i is in some Vj , w[i] is non-empty for all i. We claim w satisfies y.
Suppose i and j are connected by a negative edge in Py. Then there is no Vk ∈ C which
contains both i and j, so by construction, w[i]∩w[j] = ∅. Hence all negative edges of Py are
satisfied. Now suppose i and j are connected by a positive edge. This edge is in Py[Vk] for
some Vk ∈ C, which implies ak ∈ w[i]∩w[j], satisfying the positive edge. Thus all edges of Py
are satisfied, which proves our claim. Note w uses σ letters, so µ ≤ σ. Therefore, µ = σ. J

We can use this construction to bound µ(y), but first we introduce a few concepts. Given
a graph G, an edge clique cover of G is a set of cliques in G such that each edge of G is in at
least one of these cliques. The edge clique cover number of G is the size of the smallest edge
clique cover of G, which we denote by θ(G). We denote the complement of G by G, i.e., the
graph defined by V (G) = V (G) and two vertices of G are joined by an edge if and only if
they are not joined by an edge in G.

I Lemma 3.3. Let y be a feasible prefix array of size n such that y 6= n00 · · · 0 and y 6=
n(n− 2)(n− 3) · · · 0. Then µ(y) ≤ θ

(
P−y
)
.

Edge clique covers have been well studied, and we can use results on them to bound µ(y).
Specifically, we use the following results.

I Theorem 3.4 ([8, Theorem 2]). Let G be a graph on n vertices. Then θ(G) ≤ bn
2

4 c.

I Theorem 3.5 ([12, Theorem 5]). Let G be a graph on n vertices with m ≥ bn
2

4 c edges.
Further, set k =

(
n
2
)
−m (i.e., k is the number of edges in G) and let t be the greatest integer

such that t2 − t ≤ k. Then θ(G) ≤ k + t.

I Theorem 3.6 ([2, Theorem 1.4]). Let G be a graph on n vertices with maximum degree d.
Then θ(G) ≤ 2e2(d+ 1)2 lnn, where e is the base of the natural logarithm.

Now we can state a bound on µ(y).

I Theorem 3.7. Let y be a feasible prefix array of size n, and let r be the number of negative
edges in Py. Then µ(y) ≤ min{r+

√
r+1, 2e2(d+1)2 lnn}, where e is the base of the natural

logarithm and d is the maximum degree of a vertex in P−y .

Proof. We use Lemma 3.3, so we first check the cases y = n00 · · · 0 and y = n(n −
2)(n − 3) · · · 0. Suppose y = n00 · · · 0. Notice that y is satisfied by abb · · · b. Similarly, if
y = n(n− 2)(n− 3) · · · 0, then y is satisfied by aa · · · ab. In both of these cases, any string
satisfying y must have at least two letters. Moreover, in both of these cases r = n− 1, hence
µ(y) = 2 ≤ min{r +

√
r + 1, 2e2(r + 1)2 lnn} and the result holds.

Thus, by Lemma 3.3, we may assume that µ(y) ≤ θ
(
P−y
)
. Let θ = θ

(
P−y
)
. It follows

from Theorem 3.6 that θ ≤ 2e2(d + 1)2 lnn. To get the r +
√
r + 1 bound, we apply

STACS’14

168 Prefix Arrays, Border Arrays, Undirected Graphs, and Indeterminate Strings

Theorem 3.5, but this requires that P−y has at least bn
2

4 c edges. Note that P−y has
(
n
2
)
− r

edges. Since r < n, the number of edges in P−y is at least
(
n
2
)
− (n− 1) = n2−3n+2

2 .
Define the function f(n) = n2−3n+2

2 − n2

4 = n2−6n+4
4 . Whenever f is positive, P−y has at

least n2

4 edges. Note that f(6) = 1 > 0, and f ′(n) = n−3
2 is positive for any n > 3. Hence f

is positive for all n ≥ 6. Note that the complement of P−y is P−y , which has r edges. Hence,
by Theorem 3.5, if n ≥ 6 and t is the greatest integer such that t2 − t ≤ r, then θ ≤ r + t.
Notice that t <

√
r+ 1, so θ < r+

√
r+ 1. This just leaves the cases where n < 6. Note that

in these cases, r+
√
r+1 < 2e2(d+1)2 lnn, because r−1 < n. Moreover, we can easily check

that for each combination of n and r, either P−y has at least n2

4 edges, or n2

4 < r +
√
r + 1.

In the former case, we can apply Theorem 3.5 to give θ < r +
√
r + 1. In the latter case,

Theorem 3.4 gives us θ ≤ n2

4 , implying θ < r +
√
r + 1. J

Since r ≤ n− 1, we get the following corollary.

I Corollary 3.8. Let y be a feasible prefix array of size n. Then µ(y) ≤ n+
√
n.

4 Connecting Prefix Arrays and Border Arrays

An indeterminate string, w, of length n has a border of length ` ∈ 0..n − 1 if w[0..`) ≈
w[n− `..n). The border array, β[0..n), of an indeterminate string w is an integer array such
that β[0] = 0 and for i > 0, β[i] is the length of the longest border of w[0..i]. For example,
a{a, b}{a, b}bac has border array β = 012330. A border array β is feasible if there exists an
indeterminate string such that β is its border array. A prefix array y satisfies a border array
β if all strings with prefix array y also have border array β.

I Theorem 4.1. Let β be a border array of size n. Then a prefix array y satisfies β if and
only if the following two conditions hold: (1) β[j] ≤ y[j − β[j] + 1] for all j ∈ 0..n− 1, and
(2) y[i] ≤ j − i for all i ≤ j − β[j].

Proof. Let y be a prefix array that satisfies β and w be any string with prefix array y.
Since w[0..j] has a maximal border of length β[j], we have w[0..β[j]) ≈ w[j − β[j] + 1..j].
Since y[j − β[j] + 1] gives the length of the longest prefix of w that matches a prefix of
w[j − β[j] + 1..|w|), we have y[j − β[j] + 1] ≥ β[j] which gives (1). Now let i ≤ j − β[j] and
y[i] = j− i+r for some r. Then w[0..j− i+r) ≈ w[i..j+r). If r > 0 then w[0..j− i] ≈ w[i..j],
so w[0..j] has a border of length at least j − i+ 1. However, since β[j] ≤ j − i, w[0..j] has a
maximal border of length j − i, so r ≤ 0. Therefore y[i] ≤ j − i, so (2) must hold.

For the reverse implication, let y be a prefix array satisfying (1) and (2), and w be a string
with prefix array y. We show that w must have border array β. Let j ∈ 0..n− 1 be arbitrary.
By (1) the factor of w of length β[j] starting at position j − β[j] + 1 matches w[0..β[j]), so
w[0..j] has a border of length β[j]. To see that this border is maximal, suppose there exists
a border of w[0..j] with length β[j] + r for some r ≥ 1. Then y[j − β[j]− r + 1] ≥ β[j] + r

which contradicts (2). Thus, y satisfies β. J

This characterization of prefix arrays which satisfy a given border array leads to a natural
question: Given a border array, what degree of freedom do we have in creating a prefix array
which satisfies it? The following corollary answers this question, but requires one property of
border arrays referred to as the slowly-increasing property: for any border array β = β[0..n)
feasible by some indeterminate string w, β[j + 1] ≤ β[j] + 1 for all j ∈ 0..n− 2.

F. Blanchet-Sadri, M. Bodnar, and B. De Winkle 169

I Corollary 4.2. Let y be a prefix array that satisfies border array β. Then β completely
determines y[i], where i > 0 if and only if β[i] = 0 or there exists some j such that
i = j − β[j] + 1. Moreover, if i = j − β[j] + 1 for some j, then y[i] = β[j] for the largest j
with this property.

The slowly-increasing property characterizes border arrays of indeterminate strings.

I Theorem 4.3. Every slowly-increasing array is the border array for some indeterminate
string.

Proof. Since every feasible prefix array is satisfied by some indeterminate string, it suffices
to show that the set of prefix arrays which satisfy any slowly-increasing array is non-empty
and feasible. We use the conditions given in Theorem 4.1. Recall that if a prefix array y is
feasible, y[i] ≤ n− i for all i ∈ 0..n− 1. Let β be a slowly-increasing array. For j ∈ 0..n− 1
we have that β[j] ≤ n− (j − β[j] + 1), so satisfying (1) never forces y to be infeasible.

Now we check that (1) and (2) never force an empty set of possible assignments to a
position of a prefix array. Suppose to the contrary that there exist such positions j1 and
j2. Condition (1) gives β[j1] ≤ y[j1 − β[j1] + 1] and Condition (2) gives y[j1 − β[j1] + 1] ≤
j2−j1 +β[j1]−1 for j1−β[j1]+1 ≤ j2−β[j2]. Since we assume no y can satisfy both of these,
j2 − (j1 − β[j1] + 1) < β[j1], or equivalently j2 ≤ j1. This means that for i = j1 − β[j1] + 1,
there is no possible assignment for y[i] and thus no prefix array satisfying β. Condition (2)
requires that i ≤ j2 − β[j2], so in this case we have j1 − β[j1] + 1 ≤ j2 − β[j2]. However,
rearranging this gives β[j2] + j1 − j2 + 1 ≤ β[j1]. Since j2 ≤ j1, this violates the slowly-
increasing property of β, a contradiction. Thus, no such j1 and j2 can exist and we conclude
that there exists a non-empty set of assignments to y[i] for each i, so β is feasible. J

The following theorem counts the total number of slowly-increasing arrays of a given size.

I Theorem 4.4. For all n ≥ 1, the number of slowly-increasing arrays of size n is Cn =
1

n+1
(2n
n

)
, the nth Catalan number.

Proof. This follows easily using basic enumerative combinatorics (see, e.g., [18, 17]).
J

This gives us the following corollary.

I Corollary 4.5. The number of distinct border arrays of size n for indeterminate strings is
exactly the nth Catalan number, Cn = 1

n+1
(2n
n

)
.

5 Restricting Prefix Arrays to Partial Words

Since a hole matches any other letter, the following lemma follows directly from Lemma 2.1.

I Lemma 5.1. Let y be the prefix array for some partial word w. Then w[i] can be a hole if
and only if there does not exist j ∈ 0..n− 1 such that either (1) y[j] = i and i+ j < n or (2)
j + y[j] = i if and only if i is not incident to any negative edges in Py.

The next theorem gives a characterization of prefix arrays which can be satisfied by a
partial word. It is similar to a characterization of regular prefix arrays given by [4, Lemma 10].

I Theorem 5.2. Let y be a feasible prefix array and let V − be the set of vertices in Py
which are incident to a negative edge. The following are equivalent: (1) the array y is the
prefix array for some partial word, (2) every cycle in Py which contains exactly one negative
edge has at least one vertex which is not in V −, and (3) every negative edge of Py connects
vertices in two different connected components of P+

y [V −].

STACS’14

170 Prefix Arrays, Border Arrays, Undirected Graphs, and Indeterminate Strings

Proof. First we prove (1) implies (2) by contraposition. Assume {i, j} is a negative edge
in Py which connects vertices i and j, where i and j lie in the same connected component
of P+

y [V −]. Then there exists a path, p, in P+
y [V −] from i to j. Further suppose w is an

indeterminate string which satisfies y. Since each edge in path p is a positive edge, Lemma 2.2
implies there exists some k such that k is in this path and w[k] is an indeterminate letter.
However, k ∈ V −, so by Lemma 5.1, w[k] cannot be a hole. Since holes are the only
indeterminate letters allowed in a partial word, w is not a partial word.

Next we prove (2) implies (3), again by contraposition. Suppose {i, j} is a negative edge
such that i and j are in the same connected component of P+

y [V −]. Then there exists a path
from j to i which lies in P+

y [V −]. Note that all the edges in this path are positive, and all
the vertices are in V −. Then concatenating {i, j} to this path creates a cycle in Py which
contains exactly one negative edge, but whose vertices all are in V −.

Finally, we prove (3) implies (1). Assume every negative edge of Py connects vertices
in two different connected components of P+

y [V −]. Let C0, C1, . . . , C`−1 be the connected
components of P+

y [V −], and construct a partial word w on the alphabet {a0, a1, . . . , a`−1}
by setting w[i] = aj if i ∈ Cj and w[i] = � if i /∈ V −. Note that this construction does indeed
assign one letter (or hole) to each position of w, and we claim that w satisfies y.

Suppose {i, j} is a negative edge in Py. By assumption, i and j are in different connected
components of P+

y [V −], so w[i] 6≈ w[j]. Hence this edge is satisfied. Now suppose {i, j} is a
positive edge in Py. If i /∈ V −, then w[i] = �, which implies w[i] ≈ w[j] and w satisfies {i, j}.
A symmetric argument holds for j /∈ V −. Now assume i, j ∈ V −. This implies i and j are
in the same connected component of P+

y [V −], so w[i] = w[j], satisfying {i, j}. Therefore w
satisfies all edges of Py, proving that y is the prefix array for the partial word w. J

Based upon the construction given in the above proof, we define V −(Py) (or just V − if
Py is clear from context) to be the set of vertices in Py which are incident to a negative
edge. Further, construct the graph Cy as follows: make one vertex in Cy for each connected
component in P+

y [V −] and join two vertices in Cy if and only if there exists a negative edge
in Py between their corresponding components. Finally, if y is the prefix array for some
partial word, µ�(y) will denote the minimum alphabet size for a partial word satisfying y.

I Theorem 5.3. Let y be the prefix array for some partial word. Then µ�(y) = χ(Cy).

Proof. Let C1, C2, . . . , C` be the connected components of P+
y [V −] and assume we have a

valid coloring of Cy. We treat these colors as letters and construct w using a similar method
to the one given in the proof of Theorem 5.2. We let w[i] be the color of Ck if i ∈ Ck and let
w[i] = � otherwise. The proof that w satisfies y follows exactly the last part of the proof of
Theorem 5.2. Hence µ�(y) ≤ χ(Cy).

Let w be a partial word satisfying y on an alphabet, A, of minimum size. Suppose
i and i′ are in the same connected component of P+

y [V −]. Then there exists a path,
i = j1, j2, . . . , jk = i′, of positive edges from i to i′ such that each vertex in this path is in
V −. By Lemma 5.1, w[j`] must be a regular letter for each ` ∈ 1..k. Then, since j` and j`+1
are joined by a positive edge for each ` ∈ 1..k − 1, it follows that w[j1] = w[j2] = · · · = w[jk].
Hence w[i] = w[i′]. This implies that all positions of w associated with vertices in a given
connected component of P+

y [V −] must have the same letter.
Now we give a coloring of Cy using the letters in A. Color a vertex, v, of Cy with a ∈ A

if there exists some i in the connected component of P+
y [V −] represented by v such that

w[i] = a. It follows from the above discussion that this coloring operation is well-defined. We
claim that this is a valid coloring. Suppose u and v are vertices of Cy joined by an edge. This
edge corresponds to some negative edge {i, j} in Py, where i is in the connected component

F. Blanchet-Sadri, M. Bodnar, and B. De Winkle 171

of P+
y [V −] represented by u and j is in the connected component of P+

y [V −] represented by
v. Since i and j are connected by a negative edge, it must be that w[i] 6≈ w[j] which implies
u and v have different colors. Hence this is a valid coloring and χ(Cy) ≤ µ�(y). J

It is well known that if a graph G has e edges, then χ(G)(χ(G)−1)
2 ≤ e. We can use this

fact to bound µ�(y).

I Corollary 5.4. Let y be the prefix array for some partial word such that |y| = n. Then
µ�(y) ≤

⌈√
2n
⌉
.

We can show that this bound is tight within a constant multiple using Sidon sets. In
number theory, a set S = {s0, s1, . . . , sm−1} of natural numbers is a finite Sidon set, named
after the Hungarian mathematician Simon Sidon, if the pairwise sums si + sj , i ≤ j, are all
different. It is easy to show that Sidon sets have the property that the pairwise differences
|si − sj |, i < j, are also all different.

I Proposition 5.5. There exists a prefix array, y, of size n such that µ�(y) = (1− o(1))
√
n.

Proof. Erdős and Turán [7, 9] showed that there exists a Sidon set with (1 − o(1))
√
n

elements such that each element is less than n. Let S = {s0, s1, . . . , sm−1} be such a set,
where m = (1− o(1))

√
n. Define y = y[0..n) by

y[i] =
{
sj if i = sk − sj , for some sj , sk ∈ S, sj < sk,

n− i otherwise.

We show that P−y contains an m-clique. Consider sr, st ∈ S, where sr < st. This implies
y[st−sr] = sr, and since st−sr+sr = st < n, it follows that {y[st−sr], st−sr+y[st−sr]} =
{sr, st} ∈ E−, where {sr, st} indicates an edge between the vertices indexed by sr and st.
Moreover, this holds for any pair of elements in S, so the vertices indexed by S form an
m-clique in P−y . This implies µ�(y) ≥ m.

Now construct a partial word w on the alphabet A = {a0, a1, . . . , am−1} by w[i] = aj
if i = sj ∈ S, while w[i] = � otherwise. We claim that w satisfies y. Since i + y[i] = n

whenever y[i] /∈ S, the only negative edges of Py are of the form {sr, st} where sr, st ∈ S.
Note that w[sr] = ar 6≈ at = w[st], so w satisfies all of these negative edges. Moreover, since
S is an m-clique in P−y , any positive edge must be incident to some vertex i where i /∈ S.
Then w[i] = �, which matches anything, so this positive edge must be satisfied. Therefore w
satisfies y on m letters, implying µ�(y) ≤ m. J

Referring to the proof of Proposition 5.5, the Sidon set {0, 1, 4, 6} determines the prefix
array y = 7041010. Note that P−y contains the 4-clique {0, 1, 4, 6}.

Finally, two partial words w and w′ of length n are p-equivalent if for all i and j such that
0 ≤ i ≤ j < n we have w[i] ≈ w[j] if and only if w′[i] ≈ w′[j]. In other words, w′ is just a
relabeling of w. If two partial words are not p-equivalent, we say they are p-distinct. We use
this notion to bound pref�(n), the number of prefix arrays of size n valid for partial words.

I Proposition 5.6. For sufficiently large n,

pref�(n) ≤
⌈√

2n
⌉ { n+1
d√2ne+1

}
,

where
{ n+1
d√2ne+1

}
denotes a Stirling number of the second kind.

STACS’14

172 Prefix Arrays, Border Arrays, Undirected Graphs, and Indeterminate Strings

Proof. By Corollary 5.4, any prefix array valid for partial words can be satisfied by a partial
word with at most

⌈√
2n
⌉
letters. Partial words which are p-equivalent have the same prefix

array, so different prefix arrays are necessarily p-distinct. We may bound the number of
prefix arrays valid for partial words by the number of p-distinct partial words on at most⌈√

2n
⌉
letters. Using ideas from [14], the number of p-distinct partial words of length n

with h holes and µ letters is
(
n
h

){
n−h
µ

}
. Summing over all possible numbers of holes we have∑n−µ

h=0
(
n
h

){
n−h
µ

}
=
∑n
j=µ

(
n
j

){
j
µ

}
=
{
n+1
µ+1
}
.

Consider p-distinct partial words using less than
⌈√

2n
⌉
letters. The following facts about

Stirling numbers are useful. First, for sufficiently large µ and n we have
{
n
µ

}
< µn

µ! . Second,
for fixed n,

{
n
µ

}
is a unimodal sequence with mode asympototically approaching n

logn . Thus

for sufficiently large n, we have
{ n+1
d√2ne+1

}
≥
{
n+1
j

}
for all j <

⌈√
2n
⌉
. Summing over each

possible number of letters and using the unimodality of Stirling numbers,

pref�(n) ≤
∑d√2ne
µ=1

{
n+1
µ+1
}
≤
⌈√

2n
⌉ { n+1
d√2ne+1

}
.

J

6 Conclusion and Future Work

In Section 3, we demonstrated two methods for constructing an indeterminate string which
satisfies a given prefix array using the smallest alphabet possible. Moreover, we showed that
the minimum alphabet size for an indeterminate string satisfying a prefix array y of size n is
at most n+

√
n. Indeed, we showed that the minimum alphabet size is at most r +

√
r + 1,

where r is the number of negative edges in Py. One suggestion for future work is to improve
this bound or show it is tight. Since there are many results bounding chromatic numbers, we
believe the method involving Qy may be useful in lowering this bound. Examining many
prefix arrays has led us to the following conjecture.

I Conjecture 6.1. Let y be a feasible prefix array of size n. Then µ(y) < n.

Another suggestion for future work, as mentioned in [4], is to develop an efficient algorithm
to compute a string on an alphabet of minimum size for a given prefix array.

In section 5, we restricted ourselves to considering prefix arrays for partial words. We gave
a characterization of prefix arrays y valid for partial words in terms of the prefix graph Py.
Moreover, we gave a method to construct a partial word on the smallest possible alphabet for
a given prefix array. We showed that the minimum alphabet size for a partial word satisfying
a given prefix array of size n is at most

⌈√
2n
⌉
, and we showed that this bound is tight (up

to a constant multiple) using Sidon sets. We also bounded pref�(n), the number of prefix
arrays of size n valid for partial words, for large enough n, in terms of Stirling numbers of
the second kind. Based on experimental data, it seems that our bound is not tight, and we
believe that there is actually an exponential upper bound for pref�(n).

I Conjecture 6.2. For all n, pref�(n) ≤ 4n−1.

One final suggestion for future work is to develop an algorithm which enumerates all
prefix arrays of a given size valid for partial words. In the case of regular strings, all prefix
arrays of size n can be enumerated in constant time with respect to the output size [14].

In addition, we established a World Wide Web server interface at

http://www.uncg.edu/cmp/research/arrays

F. Blanchet-Sadri, M. Bodnar, and B. De Winkle 173

for automated use of a program that produces an indeterminate string with the minimum
number of letters for a given prefix array.

Acknowledgements. We thank Professor W. F. Smyth for sending us his paper on inde-
terminate strings, prefix arrays, and undirected graphs. We also thank Brian Bowers and
Nathan Fox for the slowly-increasing property, the number of slowly-increasing arrays of size
n equalling the nth Catalan number, and the fact that the number of p-distinct partial words
of length n with h holes and µ letters is

(
n
h

){
n−h
µ

}
, where

{
n
µ

}
denotes a Stirling number of

the second kind.

References
1 K. Abrahamson. Generalized string matching. SIAM Journal on Computing, 16:1039–1051,

1987.
2 N. Alon. Covering graphs by the minimum number of equivalence relations. Combinatorica,

6:201–206, 1986.
3 F. Blanchet-Sadri. Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC

Press, Boca Raton, FL, 2008.
4 M. Christodoulakis, P. J. Ryan, W. F. Smyth, and S. Wang. Indeterminate Strings, Prefix

Arrays & Undirected Graphs. preprint, 2013.
5 J. Clément, M. Crochemore, and G. Rindone. Reverse engineering prefix tables. In S. Albers

and J.-Y. Marion, editors, STACS 2009, 26th International Symposium on Theoretical As-
pects of Computer Science, Freiburg, Germany, volume 3 of LIPIcs, pages 289–300. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 2009.

6 M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University
Press, 2007.

7 P. Erdős. On a problem of Sidon in additive number theory and on some related problems.
Addendum. Journal of the London Mathematical Society, Second Series, 19:208, 1944.

8 P. Erdős, A. W. Goodman, and L. Pósa. The representation of a graph by set intersections.
Canadian Journal of Mathematics, 18:106–112, 1966.

9 P. Erdős and P. Turán. On a problem of Sidon in additive number theory, and on some
related problems. Journal of the London Mathematical Society, Second Series, 16:212–215,
1941.

10 M. Fischer and M. Paterson. String matching and other products. In R. Karp, editor, 7th
SIAM-AMS Complexity of Computation, pages 113–125, 1974.

11 J. L. Gross and J. Yellen. Handbook of Graph Theory. CRC Press, 2004.
12 L. Lovász. On covering of graphs. In Theory of Graphs (Proceedings of the Colloquium,

Tihany, 1966), pages 231–236. Academic Press, New York, 1968.
13 M. G. Main and R. J. Lorentz. An O(nlog n) algorithm for finding all repetitions in a

string. Journal of Algorithms, 5:422–432, 1984.
14 D. Moore, W. F. Smyth, and D. Miller. Counting distinct strings. Algorithmica, 23:1–13,

1999.
15 W. F. Smyth. Computing Patterns in Strings. Pearson Addison-Wesley, 2003.
16 W. F. Smyth and S. Wang. New perspectives on the prefix array. In 15th Symposium on

String Processing and Information Retrieval, volume 5280 of Lecture Notes in Computer
Science, pages 133–143. Springer-Verlag, Berlin, Heidelberg, 2008.

17 R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, 2001.
18 R. P. Stanley. Enumerative Combinatorics, volume 1. Cambridge Studies in Advanced

Mathematics, 2011.

STACS’14

Online Bin Packing with Advice∗

Joan Boyar1, Shahin Kamali2, Kim S. Larsen1, and
Alejandro López-Ortiz2

1 University of Southern Denmark, Denmark
{joan,kslarsen}@imada.sdu.dk

2 University of Waterloo, Canada
{s3kamali,alopez-o}@uwaterloo.ca

Abstract
We consider the online bin packing problem under the advice complexity model where the “online
constraint” is relaxed and an algorithm receives partial information about the future requests.
We provide tight upper and lower bounds for the amount of advice an algorithm needs to achieve
an optimal packing. We also introduce an algorithm that, when provided with logn + o(logn)
bits of advice, achieves a competitive ratio of 3/2 for the general problem. This algorithm is
simple and is expected to find real-world applications. We introduce another algorithm that
receives 2n+ o(n) bits of advice and achieves a competitive ratio of 4/3 + ε. Finally, we provide
a lower bound argument that implies that advice of linear size is required for an algorithm to
achieve a competitive ratio better than 9/8.

1998 ACM Subject Classification F.1.2 Modes of Computation (online computation)

Keywords and phrases online algorithms, advice complexity, bin packing

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.174

1 Introduction

In the classical one-dimensional bin packing problem the goal is to pack a given sequence of
items into a minimum number of bins with fixed and equal capacities. For convenience, it is
assumed that items sizes are in the range (0, 1] and the capacities of bins are 1. In the online
version of the problem, the items are revealed one by one, and an algorithm must pack each
item without any knowledge about future items. The decisions of an online algorithm are
irrevocable, i.e., it is not possible to move an item from one bin to another after it is packed
in a bin.

The online bin packing problem has many applications in practice, from loading trucks
subject to weight limitations to creating file backups in removable media [10]. Heuristics that
have been proposed for the problem include Next-Fit (Nf), First-Fit (Ff), Best-Fit (Bf),
and the Harmonic-based class of algorithms. Nf maintains a single open bin and places an
item in that bin; in the case the item does not fit, it closes the bin and opens a new one.
Ff keeps a list of bins in the order they are opened, packs an item in the first bin that has
enough space, and opens a new bin if necessary. Bf performs similarly to Ff, except that the
bins are ordered in increasing order of their remaining capacity. Harmonic-based algorithms
are based on the idea of packing items of similar sizes together in a bin. For HarmonicK , an

∗ The work of the first and third author was partially supported by the Danish Council for Independent
Research, Natural Sciences and the Villum Foundation, and most of the work was carried out while
these authors were visiting the University of Waterloo.

© Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 174–186

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.174
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Boyar, S. Kamali, K. S. Larsen, and A. López-Ortiz 175

item has type i (1 ≤ i ≤ K − 1) if it is in the range (1
i+1 ,

1
i], and type K if it is in the range

(0, 1
K]. The algorithm applies the Nf strategy for items of each type separately.
As for other online problems, the standard method for comparing bin packing algorithms

is competitive analysis. Under competitive analysis, the performance of an algorithm A
is compared to that of Opt, which is the optimal offline algorithm. More precisely, the
competitive ratio of an algorithm A is the asymptotically maximum ratio of the cost of A
to that of Opt for serving the same sequence σ. Ff and Bf have the same competitive
ratio of 1.7, while the best Harmonic-based algorithm has a competitive ratio of at most
1.58889 [22]. It is also known that no online algorithm can have a competitive ratio better
than 1.54037 [3].

The total lack of information about the future is unrealistic in many real-world scen-
arios [13]. A natural approach for addressing this issue is to relax the problem by providing
extra information about the input sequence. For the online bin packing problem, such
relaxations have been studied in the contexts of lookahead, in which the online algorithm can
look at the items arriving in the near future [16], and closed bin packing, in which the length
of the request sequence is known to the online algorithm [1]. In both cases, the average
performance of the online algorithm improves, compared to the online algorithms with no
information about the future.

The advice complexity model for online algorithms is a more general framework under
which the “no knowledge assumption” behind online algorithms is relaxed, and the algorithm
receives some bits of advice about the future requests. The advice can be any information
about the input sequence and is generated by an offline oracle which has unbounded compu-
tational power. Provided with the appropriate advice, the online algorithms are expected to
achieve improved competitive ratios. The advice model has received significant attention
since its introduction [8, 17, 13, 7, 18, 20, 9, 4, 11, 15, 19, 6, 5, 21].

In this paper, we study the advice complexity of the online bin packing problem. Our
interest in studying the problem under this setting is mostly theoretical. Nevertheless, in
many practical scenarios, it can be justified to allow a fast offline oracle to take a “quick
look” at the input sequence and send some advice to the online algorithm. For example, it
may be possible to take a quick look and count the number of items which are larger than
1/2 and smaller than 2/3 of the bin capacity. We show that this form of advice can be used
to achieve an algorithm which outperforms all online algorithms.

1.1 Model
In the last few years, slightly different models of advice complexity have been proposed
for online problems. All these models assume that there is an offline oracle with infinite
computational power, which provides the online algorithm with some bits of advice. How
these bits of advice are given to the algorithm is the source of difference between the models.
In the first model, presented in [12], an online algorithm poses a series of questions which are
answered by the offline oracle in blocks of answers. The total size of the answers, measured in
the number of bits, defines the advice complexity. The problem with this model is that a lot
of information can be encoded in the individual length of each block. To address this issue,
another model is proposed in [13] which assumes that online algorithms receive a fixed number
of bits of advice per request. We call this model the advice-with-request model. This model
is studied for problems, such as metrical task systems and k-server, and the results tend to
use at least a constant number of bits of advice per request [13, 20]. Nevertheless, there are
many online problems for which a sublinear and even a constant number of bits of advice in
total is sufficient to achieve good competitive ratios. However, under the advice-with-request

STACS’14

176 Online Bin Packing with Advice

model, the possibility of sending a sublinear number of advice bits to the algorithm is not
well defined. In [8, 7] another model of advice complexity is presented which assumes that
the online algorithm has access to an advice tape, written by the offline oracle. At any time
step, the algorithm may refer to the tape and read any number of advice bits. The advice
complexity is the number of bits on the tape accessed by the algorithm. We refer to this model
as advice-on-tape model. Since its introduction, the advice-on-tape model has been used to
analyze the advice complexity of many online problems including paging [8, 17, 18], disjoint
path allocation [8], job shop scheduling [8, 18], k-server [7, 20], knapsack [9], various coloring
problems [4, 15, 5, 21], set cover [19, 6], maximum clique [6], and graph exploration [11].

Under the advice-on-tape model, we require a mechanism to infer how many bits of advice
the algorithm should read at each time step. This could be implicitly derived during the
execution of the algorithm or explicitly encoded in the advice string itself. For example,
we may use a self-delimited encoding as used in [7], in which the value of a non-negative
integer X is encoded by writing the value of dlog(dlog(X + 1)e+ 1)e in unary (a string of
1’s followed by a zero), the value of dlog(X + 1)e in binary 1, and the value of X in binary.
These codes respectively require dlog(dlog(X + 1)e+ 1)e+ 1, dlog(dlog(X + 1)e+ 1)e, and
dlog(X + 1)e bits. Thus, the self-delimited encoding of X requires

e(X) = dlog(X + 1)e+ 2dlog(dlog(X + 1)e+ 1)e+ 1

bits. The existence of self-delimited encodings at the beginning of the tape usually adds a
lower-order term to the number of advice bits required by an algorithm.

Regarding notation, we use A(σ) to denote the costs of A for packing a request sequence
σ. When σ follows from the context, we simply use A to denote this cost. We use similar
notation for all algorithms, including Opt.

We consider the bin packing problem under the advice-on-tape model, which is formally
defined as follows, based on the definition of the advice model in [7]:

I Definition 1. In the online bin packing problem with advice, the input is a sequence of
items σ = 〈x1, . . . , xn〉, revealed to the algorithm in an online manner (0 < xi ≤ 1). The
goal is to pack these items in the minimum number of bins of unit size. At time step t, an
online algorithm should pack item xt into a bin. The decision of the algorithm to select the
target bin is a function of Φ, x1, . . . , xt−1, where Φ is the content of the advice tape. An
algorithm A is c-competitive with advice complexity s(n) if there exists a constant c0 such
that, for all n and for all input sequences σ of length at most n, there exists some advice Φ
such that A(σ) ≤ c Opt(σ) + c0, and at most the first s(n) bits of Φ have been accessed by
the algorithm. If c = 1 and c0 = 0, then A is optimal.

1.2 Contribution
We answer different questions about the advice complexity of the online bin packing problem.
First, we study how many bits of advice are required to achieve an optimal solution. We
consider two different settings of the problem. When there is no restriction on the number of
distinct items or their sizes, we present the easy result that ndlog Opt(σ)e bits of advice are
sufficient to achieve an optimal solution, where Opt(σ) is the number of bins in an optimal
packing. We also prove that at least (n− 2 Opt(σ)) log Opt(σ) bits of advice are required
to achieve an optimal solution.

1 In this paper we use log n to denote log2(n).

J. Boyar, S. Kamali, K. S. Larsen, and A. López-Ortiz 177

When there are m distinct items in the sequence, we prove that at least (m− 3) logn−
2m logm bits of advice are required to achieve an optimal solution. If m is a constant, there
is a linear time online algorithm that receives m logn+ o(logn) bits of advice and achieves
an optimal solution. We also show that, even if m is not a constant, there is a polynomial
time online algorithm that receives mdlog(n+ 1)e+ o(logn) bits of advice and achieves a
packing with (1 + ε) Opt(σ) + 1 bins.

We also study a relevant question that asks how many bits of advice are required to
perform strictly better than all online algorithms. We bound this by providing an algorithm
which receives logn+ o(logn) bits of advice and achieves a competitive ratio of 3/2. Recall
that any online bin packing algorithm has a competitive ratio of at least 1.54037 [3]. Hence,
our algorithm outperforms all online algorithms.

Moreover, we introduce an algorithm that receives 2n+ o(n) bits of advice and achieves a
competitive ratio of 4/3 + ε, for any fixed value of ε > 0. We also prove a lower bound that
implies that a linear number of bits of advice are required to achieve a competitive ratio of
9/8− δ for any fixed value of δ > 0.

Due to space restrictions, many proofs have been removed. They will appear in the long
version of the paper.

2 Optimal Algorithms with Advice

In this section we study the amount of advice required to achieve an optimal solution. We
first investigate the theoretical setting in which there is no restriction on the number of
distinct items or on their sizes. We observe that there is a simple algorithm that receives
ndlog Opt(σ)e bits of advice and achieves an optimal solution. Such an algorithm basically
reads dlog Opt(σ)e bits for each item, encoding the index of the bin that includes the item
in an optimal packing. We show that the upper bound given by this algorithm is tight up to
lower order terms, when n− 2 Opt(σ) ∈ Θ(n).

I Theorem 2. To achieve an optimal packing for a sequence of size n and optimal cost
Opt(σ), it is sufficient to receive ndlog Opt(σ)e bits of advice. Moreover, any deterministic
online algorithm requires at least (n − 2 Opt(σ)) log Opt(σ) bits of advice to achieve an
optimal packing.

Next, we consider a more realistic scenario where there are m ∈ o(n) distinct items and
the values of these items are known to the algorithm. Assume that the advice tape specifies
the number of items of each size. If we are not concerned about the running time of the online
algorithm, there is enough information to obtain an optimal solution. If we are concerned,
we can use known results for solving the offline problem [2, 14, 23] to obtain the following:

I Theorem 3. Consider the online bin packing problem in which there are m distinct
items. If m is a constant, there is a (linear time) optimal online algorithm that receives
m logn+ o(logn) bits of advice. If m is not a constant, there is a (polynomial time) online
algorithm that reads mdlog(n+ 1)e+ o(logn) bits of advice and achieves an almost optimal
packing with at most (1 + ε) Opt(σ) + 1 bins, for any small but constant value of ε.

We show that the above upper bound is asymptotically tight.

I Theorem 4. At least (m − 3) logn − 2m logm bits of advice are required to achieve an
optimal solution for the online bin packing problem on sequences of length n with m distinct
items, each of size at least 1

2m .

STACS’14

178 Online Bin Packing with Advice

3 An Algorithm with Sublinear Advice

In what follows we introduce an algorithm that receives logn+ o(logn) bits of advice and
achieves a competitive ratio of 3

2 , for any instance of the online bin packing problem. An
offline oracle can compute and write the advice on the tape in linear time, and the online
algorithm runs as fast as First-Fit. Thus, the algorithm might be applied in practical
scenarios in which it is allowed to have a “quick look” at the input sequence.

We call items tiny, small, medium, and large if their sizes lie in the intervals (0, 1/3],
(1/3, 1/2], (1/2, 2/3], and (2/3, 1], respectively. The advice that the algorithm receives is the
number of medium items, which we denote by α.

The algorithm reads the advice tape, obtains α, opens α bins, called critical bins, and
reserves 2/3 of the space in each of them. This reserved space will be used to pack a medium
item in each of the critical bins, and these bins have a virtual level of size 2/3 at the beginning.
All other bins have virtual level zero when they are opened. The algorithm serves an item x

in the following manner:
If x is a large item, open a new bin for it. Set the virtual level to its size.
If x is a medium item, put it in the reserved space of a critical bin B. Update the virtual
level to the actual level. (B will not have any reserved space now.)
If x is small or tiny, use the First Fit (Ff) strategy to put it into any of the open bins,
based on virtual levels (open a new bin if required). Add the size of the item to the
virtual level.

Note that the critical bins appear first in the ordering maintained by the algorithm as
they are opened before other bins.

I Theorem 5. There is an online algorithm which receives logn + o(logn) bits of advice
and has cost 3/2 Opt(σ) + 3 for serving any sequence σ of size n.

Proof. We prove that the algorithm described above has the desired property. The value
of α is encoded in X = dlog(n + 1)e bits of advice. In order to read this properly from
the tape, the algorithm needs to know the value of X. This can be done by adding the
self-delimited encoding of X in e(X) = dlogXe+ 2dlog log(X)e+ 2 bits at the beginning of
the tape. Consequently the number of advice bits used by the algorithm is X +O (logX),
which is logn+ o(logn) as stated by the theorem.

Consider the final packing of the algorithm for serving a sequence σ. There are two
cases. In the first case, there is a critical bin B so that no other item, except a medium
item, is packed in it. Since all tiny items are smaller than 1/3 and can fit in B, all the
non-critical bins that are opened after B include small and large items only. More precisely,
they include either a single large item or two small items (except the last one which might
have a single small item). Let L, M , and S denote the number of large, medium, and small
items. The cost of the algorithm is at most L+M + S/2 + 1. Now, if S ≤M , this would be
at most L+ 3/2M + 1. Since L+M is a lower bound on the cost of Opt, the cost of the
algorithm is at most 3/2 Opt(σ) + 1 and we are done. If S > M , Opt should open L+M

bins for large and medium items, and in the best case, it packs M small items together
with medium ones. For the other S −M bins, Opt has to open at least (S −M)/2 bins.
Hence the cost of Opt is at least L + M + (S −M)/2 = L + M/2 + S/2, and we have
3/2 Opt(σ) ≥ 3L/2 + 3M/4 + 3S/4 > L+M + S/2. Thus, the cost of the algorithm is at
most 3/2 Opt(σ) + 1.

In the second case, we assume that all critical bins include another item in addition to
the medium item. We claim that at the end of serving a sequence all bins, except possibly

J. Boyar, S. Kamali, K. S. Larsen, and A. López-Ortiz 179

two, have level at least 2/3. First, we verify this for non-critical bins (bins without medium
items). If a non-critical bin is opened by a large item, it clearly has level higher than 2/3.
All other non-critical bins only include items of size at most 1/2. Hence, these bins, except
possibly the last one, include at least two items. Among the non-critical bins that include
two items, consider two bins bi and bj (i < j) that have levels smaller than 2/3. Since bj

contains at least two items, at least one of them has size smaller than 1/3. This item could
fit in bi by the Ff property. We conclude that all non-critical bins, except possibly two,
have level at least 2/3. Now, suppose two critical bins bi and bj have levels smaller than 2/3.
Consider the first non-medium item x which is packed in bj (in the second case, such an item
exists). Since a medium item is packed in the bin, x should be either tiny or small. If x is
small, then the level of bj is at least 1/2 + 1/3, which contradicts the level of bj being smaller
than 2/3. Similarly, x cannot be a tiny item of size larger than 1/6 (since 1/2 + 1/6 ≥ 2/3).
Hence, x is a tiny item of size at most 1/6. This implies that at the time the online algorithm
packs x, bin bi has a virtual level of at least 5/6. The virtual level is at most 1/6 larger than
the actual level (the final level). Hence, the actual level of bi is at least 5/6 − 1/6 = 2/3.
We conclude that at most one critical bin has level smaller than 2/3. To summarize, at
most three bins have level smaller than 2/3. Hence, the cost of the algorithm is at most
3/2 Opt(σ) + 3. J

4 An Algorithm with Linear Advice

In this section, we present an algorithm that receives 2n+ o(n) bits of advice and achieves a
competitive ratio of 4/3 + ε for any sequence of size n, and arbitrarily small (but constant)
values of ε. Consider an algorithm that receives an approximate size for each sufficiently
large item x encoded using k bits. The approximate size of x would be larger than its actual
size by at most an additive term of 1/2k. The algorithm can optimally pack items by their
approximate sizes and achieve an approximate packing which includes a reserved space of size
x+ ε (ε ≤ 1/2k) for each item. Precisely, for each sufficiently large item x, the approximate
packing includes a reserved space of size x+ ε (ε ≤ 1/2k) for x. This enables the algorithm
to place x in the reserved space for it in the approximate packing. Smaller items are treated
differently and the algorithm does not reserve any space for them. In the reminder of this
section, we elaborate this idea to achieve a 4/3-competitive algorithm.

Notice that the cost of an approximate packing can be as large as 3
2 times the cost of

Opt. To see that, consider a sequence which is a permutation of 〈 1
2 + ε1,

1
2 − ε1,

1
2 + ε2,

1
2 −

ε2, . . . ,
1
2 + εn/2,

1
2 − εn/2〉, where εi < 1/2n(1 ≤ i ≤ n/2). Since Opt packs all bins tightly,

an increase in the sizes of items by a constant (small) ε results in opening a new bin for each
two bins Opt uses. Hence the cost of the optimal approximate packing can be as bad as 3

2
Opt. This example suggests that using approximate packings is not good for the bins in
which a small number of large items are tightly packed. To address this issue we divide the
bins of Opt into two groups:

I Definition 6. Consider an optimal packing of a sequence σ. Given a small parameter
ε′ < 1/60, define good bins to be those where the total size of the items smaller than 1/4 in
the bin is at least 5ε′. Define all other bins to be bad bins.

A part of the advice received for each item x indicates if x is packed by Opt in a good bin
or in a bad bin. This enables us to treat items packed in these two groups separately.

I Lemma 7. Consider sequences for which all bins in the optimal packing are good (as
defined above). There is an online algorithm that receives o(n) bits of advice and achieves a
competitive ratio of 4/3.

STACS’14

180 Online Bin Packing with Advice

Proof. Call an item small if it is smaller than or equal to 1/6 and large otherwise. The advice
bits define the approximate sizes of all large items with a precision of ε′. The amount of
advice will be roughly 21/ε′ logn which is o(n) for constant values of ε′. The online algorithm
A can build the optimal approximate packing of large items. In such a packing, there is a
reserved space of size at most x+ ε′ for any large item of size x. The algorithm considers
this packing as a partial packing and initializes the level of each bin to be the total sizes of
approximated items in that bin. For packing an item x, if x is large, A packs it in the space
reserved for it in the approximate packing. It also updates the level of the bin to reflect the
actual size of x. If x is small, A simply applies the First-Fit strategy to pack x in a bin of the
partial packing (and opens a new bin for it if necessary). We prove that A is 4/3-competitive.
In the final packing by A, call a bin “red” if all items packed in it are small items and call
it “blue” otherwise (the blue bins constitute the approximated packing at the beginning).
There are two cases to consider.

In the first case, there is no red bin in the final packing of A, i.e., all small items fit in
the remaining space of the bins in the approximate packing of large items. Let σ′ be a copy
of the input sequence in which the sizes of large items are approximated, i.e., increased by at
most ε′; also let X be the number of bins for the optimal packing of σ′. Since there is no
red bin in the final packing of A, the cost of A is equal to X. Consider the optimal packing
of the actual input sequence σ. Since all bins are good, one can transfer a subset of items
to provide an available space of size at least 5ε′ in each bin. After such a transfer, we can
increase the sizes of large items to their approximate sizes. Since there are at most 5 large
items in each bin and also available space of size at least 5ε′, the packing constructed this
way is a valid packing for the sequence σ′. Since the size of the transferred items for each
bin is at most 1/4, the transferred items from each group of four bins can fit in one new bin.
Consequently the number of bins in the new packing is at most 5/4 Opt(σ). We know that
the final packing by A is the optimal packing for σ′ (with cost X), and in particular not worse
than the packing constructed above. Hence, the cost of A is not more than 5/4 Opt(σ).

In the second case, there is at least one red bin in the final packing of A. We claim that
all bins in the final packing of A, except possibly the last, have levels larger than 3/4. The
claim obviously holds for the red bins since the levels of all these bins (excluding the last
one) are larger than 5/6. Moreover, since there is a bin which is opened by a small item,
all blue bins have levels larger than 5/6, i.e., the total size of packed items and reserved
space for the large items is larger than 5/6. Since there are at most 5 large items in each
bin, the actual level of each bin in the final packing of A is at least 5/6− 5ε′, which is not
smaller than 3/4 for ε′ ≤ 1/60. So, all bins, except possibly one, have levels larger than 3/4.
Consequently, the algorithm is 4/3-competitive. J

It remains to address how to deal with bad bins. The next three lemmas do this.

I Lemma 8. Consider sequences for which all bins in the optimal packing include precisely
two items. There is an algorithm that receives 1 bit of advice per request and achieves an
optimal packing.

I Lemma 9. Consider a sequence σ for which all items have sizes larger than 1/4 and for
which each bin in Opt’s packing includes precisely three items. The cost of the Harmonic
algorithm is at most 4/3 Opt(σ) + 3 for serving such a sequence.

I Lemma 10. Consider a sequence σ for which all bins in the optimal packing are bad bins
(as defined earlier). There is an algorithm that receives two bits of advice for each request,
and opens at most (4/3 + 5ε′

1−5ε′) Opt(σ) + 3 bins.

J. Boyar, S. Kamali, K. S. Larsen, and A. López-Ortiz 181

Proof. By the definition of bad bins, for any bin in the optimal packing, all items are either
smaller than 5ε′ or larger than 1/4. We call the former group of items tiny items and pack
them separately using the Ff strategy. We refer to other items as normal items. Consider an
offline packing P which is the same as Opt’s packing, except that all tiny items are removed
from their bins and packed separately in new bins using the Ff strategy. This implies that
the cost of P is larger than Opt(σ) by a multiplicative factor of at most 1 + 5ε′

1−5ε′ . Let Q be
the optimal packing for normal items. Since all normal items are larger than 1/4, each bin
of Q contains at most three items. We say a bin of Q has type i (i ∈ {1, 2, 3}), if it contains
i normal items. Similarly, we say an item x has type i if it is packed in a type i bin. All
items in type 3 bins have sizes smaller than 1/2 (otherwise one will have size at most 1/4
which contradicts the assumption). Moreover, the sizes of the items in all type 1 bins (except
possibly the last one) are larger than 1/2 (otherwise a better packing is achieved by pairing
two of them). With two bits of advice, we can detect the type of an item as follows: Let b
denote the two bits of advice with item x. If b is “01” and x > 1/2, then x has type 1; if b is
“01” and x ≤ 1/2, then x has type 3; and if b is “10” or b is “11”, then x has type 2. Note
that the code “00” is not used at this point (this is used later on), and the use of “10” and
“11” is still to be detailed.

LetXi denote the number of bins of type i (1 ≤ i ≤ 3). Hence, the cost of Q isX1+X2+X3,
and consequently the cost of P is at least X1 +X2 +X3 +X ′, where X ′ is the number of bins
filled by tiny items. Consider an algorithm A that performs as follows. If an item x has type
1, A simply opens a new bin for x. If x has type 2, A applies the strategy of Lemma 8 to
place it in one of the bins maintained for items of type 2. Recall that the advice in this case is
either “10” or “11”, so the second bit provides the advice required by Lemma 8. If x has type
3, A applies the Harmonic strategy to pack the item in a set of bins maintained for type 3
items. By Lemma 9, the cost of A for these items is at most 4/3X3 +3. Finally, A uses the Ff
strategy to pack tiny items in separate bins. Consequently, the cost of the algorithm is at most
X1 +X2 + 4/3X3 +X ′+ 3 ≤ (1 + 5ε′

1−5ε′) Opt(σ) +X3/3 + 3 ≤ (4/3 + 5ε′

1−5ε′) Opt(σ) + 3. J

Provided with the above results, we arrive at the following result:

I Theorem 11. There is an online algorithm which receives two bits of advice per request,
plus an additive lower order term, and achieves a competitive ratio of 4/3+ε, for any positive
value of ε.

Proof. Define ε′ to be 11ε
60 . For ε < 1/11, we have ε′ < 1/60. Moreover, we have 5ε′

1−5ε′ ≤
5ε′

1−1/12 = 60ε′

11 = ε. In an optimal packing, divide bins into good and bad bins using
Definition 6. Also, let Gd and Bd respectively denote the number of good and bad bins.
Use advice bits to distinguish items which are packed in good and bad bins, and pack
them in separate lists of bins. More precisely, let the two bits of advice for an item x

be “00” if it is packed by Opt in a good bin, and apply Lemma 7 to pack these items in
at most 4/3Gd bins. Similarly, apply Lemma 10 to pack items from bad bins in at most
(4/3 + 5ε′

1−5ε′)Bd+ 3 ≤ (4/3 + ε)Bd+ 3 bins, using bits of advice of the form “01”, “10”, or
“11”, as discussed in the proof of Lemma 10. Consequently, the cost of the algorithm will be
at most 4/3Gd+ (4/3 + ε)Bd+ 3 ≤ (4/3 + ε) Opt(σ) + 3. J

5 A Lower Bound for Linear Advice

The GMP problem [13] and the String Guessing Problem [6] both contain a core special case
of guessing a binary sequence. We use their results to show that an online algorithm needs a
linear number of bits of advice to achieve a competitive ratio better than 9/8 for bin packing.

STACS’14

182 Online Bin Packing with Advice

I Definition 12 ([13, 6]). The Binary String Guessing Problem with known history (2-SGKH)
is the following online problem. The input I = (n, σ = 〈x1, x2, . . . , xn〉) consists of n items
that are either “0” or “1” and that are revealed one by one. For each item xt, the online
algorithm A must guess if it is a “0” or a “1”. After the algorithm has made a guess, the
value of xt is revealed to the algorithm.

I Lemma 13 ([6]). On any input of length n, any deterministic algorithm for 2-SGKH that
is guaranteed to guess correctly on more than αn bits, for 1/2 ≤ α < 1, needs to read at least
(1 + (1− α) log(1− α) + α logα)n bits of advice.

Since the number of bits needed to express the number of “0”s in the input is at most
dlog(n+ 1)e ≤ logn+ 1, and this number can be given as advice by an oracle, if it is not
given to the algorithm otherwise, we easily obtain the following lemma. Recall that the
definition of e, the length of the encoding function, is given in Section 1.1.

I Lemma 14. Consider instances of size n of the 2-SGKH problem in which the number
of “0”s is given to the algorithm as part of the input. For these instances, any deterministic
algorithm that is guaranteed to guess correctly on more than αn bits, for 1/2 ≤ α < 1, needs
to read at least (1 + (1− α) log(1− α) + α logα)n− e(n) bits of advice.

In order to relate the Binary String Guessing Problem to the online bin packing problem,
we introduce another problem called the Binary Separation Problem.

I Definition 15. The Binary Separation Problem is the following online problem. The input
I = (n1, σ = 〈y1, y2, . . . , yn〉) consists of n = n1 + n2 positive values which are revealed one
by one. There is a fixed partitioning of the set of items into a subset of n1 large items and
a subset of n2 small items, so that all large items are larger than all small items. Upon
receiving an item yi, an online algorithm for the problem must guess if y belongs to the set
of small or large items. After the algorithm has made a guess, it is revealed to the algorithm
whether yi actually belongs to class of small or large items.

We provide reductions from the modified Binary String Guessing Problem to the Binary
Separation Problem, and from the Binary Separation Problem to the online bin packing
problem. In order to reduce a problem P1 to another problem P2, given an instance of P1
defined by a sequence σ1 and a set of parameters η1 (such as the length of σ1 or the number
of “0”s in it), we create an instance of P2 which is defined by a sequence σ2 and also a set of
parameters η2. In our reductions, we assume η2 is derived from η1, and since σ1 is revealed
in an online manner, σ2 is created in an online manner by looking only at η1 and the revealed
items of σ1.

I Lemma 16. Assume that there is an online algorithm that solves the Binary Separation
Problem on sequences of length n with b(n) bits of advice, and makes at most r(n) mistakes.
Then there is also an algorithm that solves the Binary String Guessing Problem on sequences
of length n, assuming the number of “0”s is given as a part of input, so that the algorithm
receives b(n) bits of advice and makes at most r(n) errors.

Proof. We assume that we have an algorithm Bsa that solves the Binary Separation Problem
under the conditions of the lemma statement. Using that algorithm, we define the number
n1 of large items to be the number of “0”s in the instance of the Binary String Guessing
Problem. Then, we implement our algorithm Bsga for the Binary String Guessing Problem
as outlined in Algorithm 1, which defines the reduction. This Bsga implementation, defined
in Algorithm 1, functions as an adversary for Bsa, e.g., in Line 4, Bsga gives Bsa its next

J. Boyar, S. Kamali, K. S. Larsen, and A. López-Ortiz 183

Algorithm 1 Implementing Binary String Guessing via Binary Separation.
The Binary Guessing algorithm knows the number of “0”s (n1) and passes it as a
parameter (the number of large items) to the Binary Separation algorithm

1: small = 0; large = 1
2: repeat
3: mid = (large − small) / 2
4: class_guess = SeparationAlgorithm.ClassifyThis(mid)
5: if class_guess = “large” then
6: bit_guess = 0
7: else
8: bit_guess = 1
9: actual_bit = Guess(bit_guess) {The actual value is received after guessing (2-SGKH).}

10: if actual_bit = 0 then
11: large = mid {We let “large” be the correct decision.}
12: else
13: small = mid {We let “small” be the correct decision.}
14: until end of sequence

request. Notice that we ensure that the Bsga makes a correct guess if and only if Bsa makes
a correct guess. The advice tape is filled with bits of advice for this combined algorithm.
The Bsga uses the Bsa as a sub-routine, but all the questions are effectively coming from
the Bsa.

The set-up, reminiscent of binary search, is carried out as specified in the algorithm with
the purpose of ensuring that when the Bsa is informed of the actual class of the item it
considered, no result can contradict information already obtained. Specifically, the next item
for the Bsa to consider is always in between the largest item which has previously been
deemed “small” and the smallest item which has previously been deemed “large”. The fact
that we give the middle item from that interval is unimportant; any value chosen from the
open interval would work. J

Now, we prove that if we can solve a special case of the bin packing problem, we can also
solve the Binary Separation Problem.

I Lemma 17. Consider the bin packing problem on sequences of length 2n for which Opt
opens n bins. Assume that there is an online algorithm A that solves the problem on these
instances with b(n) bits of advice and opens at most n+ r(n)/4 bins. Then there is also an
algorithm Bsa that solves the Binary Separation Problem on sequences of length n with b(n)
bits of advice and makes at most r(n) errors.

Proof. In the reduction, we encode requests for the Bsa as items for bin packing. Assume
we are given an instance I = (n1, σ = 〈y1, y2, . . . , yn〉) of the Binary Separation problem, in
which n1 is the number of large items (n1 + n2 = n), and the values of yts are revealed in
an online manner (1 ≤ t ≤ n). We create an instance of the bin packing problem which
has length 2n. Algorithm 2 shows the details of the reduction. The bin packing sequence
starts with n1 items of size 1

2 + εmin (in Algorithm 2, the variable “NumberOfLargeItems” is
n1 from the Binary Separation Problem). Any algorithm needs to open a bin for each of
these n1 items. We create the next n items in an online manner, so that we can use the
result of their packing to guess the requests for the Binary Separation Problem. Let τ = yt

STACS’14

184 Online Bin Packing with Advice

(1 ≤ t ≤ n) be a requested item of the Binary Separation Problem; we ask the bin packing
algorithm to pack an item whose size is an increasing function of τ , and slightly less than 1

2 .
Depending on the decision of the bin packing algorithm for opening a new bin or placing
the item in one of the existing bins, we decide the type of τ as being consecutively small or
large. The last n2 items of the bin packing instance are defined as complements of the items
in the bin packing instance associated with small items in the binary separation instance
(the complement of item x is 1− x). We do not need to give the last items complementing
the small items in order to implement the algorithm, but we need them for the proof of the
quality of the correspondence that we are proving.

Call an item in the bin packing sequence “large” if it is associated with large items in the
Binary Separation Problem, and “small” otherwise. For the bin packing sequence produced
by the reduction, an optimal algorithm pairs each of the large items with one of the first
n1 items (those with size 1

2 + εmin), placing them in the first n1 bins. Opt pairs the small
items with their complements, starting one of the next n2 bins with each of these small
items. Hence, the cost of an optimal algorithm is n1 + n2 = n. The values εmin and εmax in
Algorithm 2 must be small enough so that no more than two of any of the items given in the
algorithm can fit together in a bin. No other restriction is necessary.

We claim that each extra bin used by the bin packing algorithm, but not by Opt, results
in at most four mistakes made by the derived algorithm on the given instance of the Binary
Separation Problem. Consider an extra bin in the final packing of A. This bin is opened
by a large item which is incorrectly guessed as being small (bins which are opened by small
items also appear in Opt’s packing). Note that large items do not fit in the same bins
as complements of small items. The extra bin has enough space for another large item.
Moreover, there are at most two small items which are incorrectly guessed as being large
and placed in the space dedicated to the large items of the extra bin. Hence, there is an
overhead of at least one for four mistakes. To summarize, A has to decide if a given item is
small or large and performs accordingly, and it pays a cost of at least 1/4 for each incorrect
decision. If A opens at most n+ r(n)/4 bins, the algorithm derived from A for the Binary
Separation Problem makes at most r(n) mistakes. J

I Theorem 18. Consider the online bin packing problem on sequences of length n. To
achieve a competitive ratio of c (1 < c < 9/8), an online algorithm needs to receive at least
(n(1+(4c−4) log(4c−4)+(5−4c) log(5−4c))−(dlog(n+1)e+2dlog(dlog(n+1)e+1)e+1))/2
bits of advice.

Proof. Consider a bin packing algorithm A that receives b(n) bits of advice and achieves a
competitive ratio of c. This algorithm opens at most (c− 1) Opt(σ) bins more than Opt, so
when Opt(σ) = n/2, it opens at most (c− 1)n/2 more bins. By Lemma 17, the existence of
such an algorithm implies that there is an algorithm A that solves the Binary Separation
Problem on sequences of length n/2 with b bits of advice and makes at most 2(c − 1)n
errors. By Lemma 16, this implies that there is an algorithm B that solves the Binary
String Guessing Problem on sequences of length n/2 with b bits of advice and makes at most
2(c−1)n mistakes, i.e., it correctly guesses the other n/2−2(c−1)n = (5−4c)n/2 items. Let
α = 5− 4c, and note that α is in the range [1/2, 1) when c is in the range (1, 9/8]. Lemma 14
implies that in order to correctly guess more than αn/2 of the items in the binary sequence,
we must have b(n) larger than or equal to ((1 + (1 − α) log(1 − α) + α logα)n − e(n))/2.
Replacing α with 5− 4c completes the proof. J

Thus, to obtain a competitive ratio strictly better than 9/8, a linear number of bits of
advice is required. For example, to achieve a competitive ratio of 17/16, at least 0.188n bits
of advice are required asymptotically.

J. Boyar, S. Kamali, K. S. Larsen, and A. López-Ortiz 185

Algorithm 2 Implementing Binary Separation via Special Case Bin Packing.
1: Choose εmin and εmax so that 0 < εmin < εmax <

1
6

2: Choose a decreasing function f : R→ (εmin..εmax)
3: for i = 1 to NumberOfLargeItems do
4: BinPacking.Treat(1

2 + εmin) {The decision can only be to open a bin.}
5: repeat
6: Let τ be the next request
7: decision = BinPacking.Treat(1

2 − f(τ))
8: if decision = “packed with an 1

2 + εmin item” then
9: class_guess = “large”
10: else
11: class_guess = “small”

actual_class = Guess(class_guess)
12: if actual_class = “small” then
13: SmallItems.append(1

2 − f(τ)) {Collecting small items for later.}
14: until end of request sequence
15: for i = 1 to len(SmallItems) do
16: BinPacking.Treat(1 − SmallItems[i]) {The decision is not used.}

I Corollary 19. Consider the bin packing problem for packing sequences of length n. To
achieve a competitive ratio of 9/8− δ, in which δ is a small, but fixed positive number, an
online algorithm needs to receive Ω(n) bits of advice.

6 Concluding Remarks

We conjecture that a sublinear number of bits of advice is enough to achieve competitive
ratios smaller than 4/3. Note that our results imply that we cannot hope for ratios smaller
than 9/8 with sublinear advice.

References
1 E. Asgeirsson, U. Ayesta, E. Coffman, J. Etra, P. Momcilovic, D. Phillips, V. Vokhshoori,

Z. Wang, and J. Wolfe. Closed on-line bin packing. Acta Cybernet., 15(3):361–367, 2002.
2 J. Baewicz and K. Ecker. A linear time algorithm for restricted bin packing and scheduling

problems. Oper. Res. Lett., 2(2):80–83, 1983.
3 János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain classes

of bin packing algorithms. Theoret. Comput. Sci., 440–441:1–13, 2012.
4 Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovic, and Lucia Keller. On-

line coloring of bipartite graphs with and without advice. In COCOON ’12, volume 7434
of LNCS, pages 519–530, 2012.

5 Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovic, Sacha Krug, and Björn
Steffen. On the advice complexity of the online L(2, 1)-coloring problem on paths and cycles.
In COCOON ’13, volume 7936 of LNCS, pages 53–64, 2013.

6 Hans-Joachim Böckenhauer, Juraj Hromkovic, Dennis Komm, Sacha Krug, Jasmin Smula,
and Andreas Sprock. The string guessing problem as a method to prove lower bounds on
the advice complexity. In COCOON ’13, volume 7936 of LNCS, pages 493–505, 2013.

7 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, and Richard Královič. On
advice complexity of the k-server problem. In ICALP ’1s1, volume 6755 of LNCS, pages
207–218, 2011.

STACS’14

186 Online Bin Packing with Advice

8 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and To-
bias Mömke. On the advice complexity of online problems. In ISAAC ’09, volume 5878 of
LNCS, pages 331–340, 2009.

9 Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith. On
the advice complexity of the knapsack problem. In LATIN ’12, volume 7256 of LNCS,
pages 61–72, 2012.

10 Edward G. Coffman, Michael R. Garey, and David S. Johnson. Approximation algorithms
for bin packing: A survey. In D. Hochbaum, editor, Approximation algorithms for NP-hard
Problems. PWS Publishing Co., 1997.

11 Stefan Dobrev, Rastislav Královic, and Euripides Markou. Online graph exploration with
advice. In SIROCCO ’12, volume 7355 of LNCS, pages 267–278, 2012.

12 Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-relevant
information in input. RAIRO Inform. Theor. Appl., 43(3):585–613, 2009.

13 Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with advice.
Theoret. Comput. Sci., 412(24):2642 – 2656, 2011.

14 W. Fernandez de la Vega and G. Lueker. Bin packing can be solved within 1 + ε in linear
time. Combinatorica, 1:349–355, 1981.

15 Michal Forišek, Lucia Keller, and Monika Steinová. Advice complexity of online coloring
for paths. In LATA ’12, volume 7183 of LNCS, pages 228–239, 2012.

16 Edward F. Grove. Online binpacking with lookahead. In SODA ’95, pages 430–436, 1995.
17 Juraj Hromkovič, Rastislav Královič, and Richard Královič. Information complexity of

online problems. In MFCS ’10, volume 6281 of LNCS, pages 24–36, 2010.
18 D. Komm and R. Královič. Advice complexity and barely random algorithms. RAIRO

Inform. Theor. Appl., 45(2):249–267, 2011.
19 Dennis Komm, Richard Královic, and Tobias Mömke. On the advice complexity of the set

cover problem. In CSR ’12, volume 7353 of LNCS, pages 241–252, 2012.
20 Marc P. Renault and Adi Rosén. On online algorithms with advice for the k-server problem.

In WAOA ’11, volume 7164 of LNCS, pages 198–210, 2011.
21 Sebastian Seibert, Andreas Sprock, and Walter Unger. Advice complexity of the online

coloring problem. In CIAC ’13, volume 7878 of LNCS, pages 345–357, 2013.
22 Steven S. Seiden. On the online bin packing problem. J. ACM, 49:640–671, 2002.
23 Vijay V. Vazirani. Approximation Algorithms. Springer, 2004.

Balls into bins via local search: cover time and
maximum load∗

Karl Bringmann1, Thomas Sauerwald2, Alexandre Stauffer3, and
He Sun1

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 University of Cambridge, UK
3 University of Bath, UK

Abstract
We study a natural process for allocating m balls into n bins that are organized as the vertices of
an undirected graph G. Balls arrive one at a time. When a ball arrives, it first chooses a vertex
u in G uniformly at random. Then the ball performs a local search in G starting from u until
it reaches a vertex with local minimum load, where the ball is finally placed on. Then the next
ball arrives and this procedure is repeated. For the case m = n, we give an upper bound for the
maximum load on graphs with bounded degrees. We also propose the study of the cover time of
this process, which is defined as the smallest m so that every bin has at least one ball allocated
to it. We establish an upper bound for the cover time on graphs with bounded degrees. Our
bounds for the maximum load and the cover time are tight when the graph is vertex transitive
or sufficiently homogeneous. We also give upper bounds for the maximum load when m > n.

1998 ACM Subject Classification G.3 Mathematics of Computing: Probability and Statistics

Keywords and phrases Balls and Bins, Stochastic Process, Randomized Algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.187

1 Introduction

A very simple procedure for allocating m balls into n bins is to place each ball into a bin
chosen independently and uniformly at random. We refer to this process as 1-choice process.
It is well known that, when m = n, the maximum load for the 1-choice process (i.e., the
maximum number of balls allocated to any single bin) is Θ

(
logn

log logn

)
[10]. Alternatively, in

the d-choice process, balls arrive sequentially one after the other, and when a ball arrives,
it chooses d bins independently and uniformly at random, and places itself in the bin that
currently has the smallest load among the d bins (ties are broken uniformly at random). It
was shown by Azar et al. [2] and Karp et al. [7] that the maximum load for the d-choice
process with m = n and d > 2 is Θ

(
log logn

log d

)
. The constants omitted in the Θ are known

and, as shown by Vöcking [11], they can be reduced with a slight modification of the d-choice
process. Berenbrink et al. [3] extended these results to the case m� n.

In some applications, it is important to allow each ball to choose bins in a correlated
way. For example, such correlations occur naturally in distributed systems, where the bins

∗ Karl Bringmann is a recipient of the Google Europe Fellowship in Randomized Algorithms, and this
research is supported in part by this Google Fellowship. The research of Alexandre Stauffer is supported
in part by a Marie Curie Career Integration Grant PCIG13-GA-2013-618588 DSRELIS. The research of
He Sun has partially been funded by the Cluster of Excellence “Multimodal Computing and Interaction”
within the Excellence Initiative of the German Federal Government.

© Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 187–198

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.187
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

188 Balls into bins via local search: cover time and maximum load

1 2 3 4 5 6
(a)

1 2 3 4 5 6
(b)

ball i

1 2 3 4 5 6
(c)

ball i+ 1

1 2 3 4 5 6
(d)

ball i+ 2

Figure 1 Illustration of the local search allocation. Black circles represent the vertices 1–6
arranged as a path, and yellow circles represent the balls of the process (the most recently allocated
ball is marked red). Figure (a) shows the configuration after placing i − 1 balls. In Figure (b), ball i

born at vertex 4 has two choices in the first step of the local search (vertices 3 or 5) and is finally
allocated to vertex 2. Figures (c) and (d) show the placement of balls i + 1 and i + 2.

represent processors that are interconnected as a graph and the balls represent tasks that
need to be assigned to processors. From a practical point of view, letting each task choose d
independent random bins may be undesirable, since the cost of accessing two bins which are
far away in the graph may be higher than accessing two bins which are nearby. Furthermore,
in some contexts, tasks are actually created by the processors, which are then able to forward
tasks to other processors to achieve a more balanced load distribution. In such settings,
allocating balls close to the processor that created them is certainly very desirable as it
reduces the costs of probing the load of a processor and allocating the task.

With this motivation in mind, Bogdan et al. [4] introduced a natural allocation process
called local search allocation. Consider that the bins are organized as the vertices of a graph
G = (V,E) with n = |V |. At each time step a ball is “born” at a vertex chosen independently
and uniformly at random from V , which we call the birthplace of the ball. Then, starting
from its birthplace, the ball performs a local search in G, where the ball repeatedly moves to
the adjacent vertex with the smallest load, provided that this load is strictly smaller than the
load of its current vertex. We assume that ties are broken independently and uniformly at
random. The local search ends when the ball visits the first vertex that is a local minimum,
which is a vertex for which no neighbor has a smaller load. After that, the next ball is born
and the procedure above is repeated. See Figure 1 for an illustration.

The main result in [4] establishes that when G is an expander graph with bounded
maximum degree, the maximum load after n balls have been allocated is Θ(log logn). Hence,
local search allocation on bounded-degree expanders achieves the same maximum load (up
to constants) as in the d-choice process, but has the extra benefit of requiring only local
information during the allocation. In [4], it was also established that the maximum load is

Θ
((

logn
log logn

) 1
d+1
)

on d-dimensional grids, and Θ(1) on regular graphs of degrees Ω(logn).

1.1 Results

In this paper, we derive new upper and lower bounds for the maximum load and propose
the study of another natural quantity, which we refer to as the cover time. In order to state
our results, we need to introduce the following two quantities that are related to the local
neighborhood growth of G:

R1 = R1(G) = min{r ∈ N : r|Bru| log r > logn for all u ∈ V }

K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 189

and
R2 = R2(G) = min{r ∈ N : r|Bru| > logn for all u ∈ V },

where Bru denotes the set of vertices within distance r from vertex u. Note that R1 6 R2
for all G. For the sake of clarity, we state our results here for vertex-transitive graphs only.
In later sections we state our results in full generality, which will require a more refined
definition of R1 and R2. We also highlight that for all the results below (and throughout this
paper) we assume that ties are broken independently and uniformly at random; the impact
of tie-breaking procedures in local search allocation was investigated in [4, Theorem 1.5].

Maximum load
We derive an upper bound for the maximum load after n balls have been allocated. Our
bound holds for all bounded-degree graphs, and is tight for vertex-transitive graphs (and,
more generally, for graphs where the neighborhood growth is sufficiently homogeneous across
different vertices).

I Theorem 1.1 (Maximum load when m = n). Let G be any vertex-transitive graph with
bounded degrees. Then, with probability at least 1 − n−1, the maximum load after n balls
have been allocated is Θ(R1).

Theorem 1.1 is a special case of Theorem 3.1, which gives a more precise version of the result
above and generalizes it to non-transitive graphs; in particular, we obtain that for any graph
with bounded degrees the maximum load is O(R1) with high probability. We state and prove
Theorem 3.1 in Section 3.

Note that for bounded-degree expanders we have R1 = Θ(log logn), and for d-dimensional

grids we have R1 = Θ
((

logn
log logn

) 1
d+1
)
. Hence the results for bounded-degree graphs in [4]

are special cases of Theorems 1.1 and 3.1. Furthermore, the proof of Theorems 1.1 and 3.1
uses different techniques (it follows by a subtle coupling with the 1-choice process) and is
substantially shorter than the proofs in [4].

Our second result establishes an upper bound for the maximum load when m > n. We
point out that all other results known so far were limited to the case m = n. We establish
that, when m = Ω(R2n), the maximum load is of order Θ(m/n) (i.e., the same order as the
average load). We note that the difference between the maximum load and the average load
for the local search allocation is always bounded above by the diameter of the graph. This is
in some sense similar to the d-choice process, where the difference between the maximum
load and the average load does not depend on m [3].

I Theorem 1.2 (Maximum load when m > n). Let G be any graph with bounded degrees.
Then for any m > n, with probability at least 1− n−1, the maximum load after m balls have
been allocated is O(mn +R2).

Cover time
We propose to study the following natural quantity related to any process based on allocating
balls into bins. Define the cover time as the first time at which all bins have at least one ball
allocated to them. This is in analogy with cover time of random walks on graphs, which is
the first time at which the random walk has visited all vertices of the graph. Note that for
the 1-choice process, the cover time corresponds to the time of a coupon collector problem,
which is known to be n logn+Θ(n) [9, Section 2.4.1]. For the d-choice process with d = Θ(1),
we obtain that the cover time is also of order n logn.

STACS’14

190 Balls into bins via local search: cover time and maximum load

We show that for the local search allocation the cover time can be much smaller than
n logn: Our next theorem establishes that the cover time for vertex-transitive bounded-
degree graphs is Θ(R2n) with high probability. Since R2 = O(

√
logn) for all connected

graphs, it follows that the cover time for any connected, bounded-degree graph is at most
O(n
√

logn), which is significantly smaller than the cover time of the d-choice process for
any d = Θ(1). In particular, we have R2 = Θ(log logn) for bounded-degree expanders, and
R2 = Θ

(
(logn)

1
d+1

)
for d-dimensional grids.

I Theorem 1.3 (Cover time for bounded-degree graphs). Let G be any vertex-transitive graph
with bounded degrees. Then, with probability at least 1− n−1, the cover time of local search
allocation on G is Θ(R2n).

The theorem above is a special case of Theorem 4.2, which we state and prove in Section 4.
Our final result provides a general upper bound on the cover time for dense graphs.

Theorem 1.4 below is a special case of Theorem 4.3, which gives an upper bound on the
cover time for all regular graphs. We state and prove Theorem 4.3 in Section 4.

I Theorem 1.4 (Cover time for dense graphs). Let G be any d-regular graph with d =
Ω(logn log logn). Then, with probability at least 1− n−1, the cover time is Θ(n).

Due to space limitations, we skip some proofs. The full version can be found in [5].

2 Key technical argument

Aside from Theorem 1.4, we assume throughout this paper that G has bounded degrees; i.e.,
the maximum degree ∆ is bounded above by a constant independent of n. We also assume
that, in the local search allocation, ties are broken independently and uniformly at random.

For each m > 0 and vertex v ∈ V , let X(m)
v denote the load of v (i.e., the number of balls

allocated to v) after m balls have been allocated. Initially we have X(0)
v = 0 for all v ∈ V

and, for any m > 0, we have
∑
v∈V X

(m)
v = m. Denote by X(m)

max the maximum load after m
balls have been allocated; i.e., X(m)

max = maxv∈V X(m)
v . Also, denote by Tcov = Tcov(G) the

cover time of G, which we define as the first time at which all vertices have load at least 1.
More formally, Tcov = min{m > 0: X(m)

v > 1 for all v ∈ V }.
Let Ui ∈ V denote the birthplace of ball i and, for each m > 0 and v ∈ V , let X(m)

v

denote the load of v after m balls have been allocated according to the 1-choice process. Let
X

(m)
max denote the maximum load for the 1-choice process. More formally,

X
(m)
v =

m∑
i=1

1 (Ui = v) and X
(m)
max = max

v∈V
X

(m)
v (2.1)

We now prove a key technical result (Lemma 2.2 below) that will play a central role in
our proofs later. Let µ : V → Z be any integer function on the vertices of G that satisfies the
following property:

for any two neighbors u, v ∈ V , we have |µ(u)− µ(v)| 6 1. (2.2)

We see µ as an initial attribution of weights to the vertices of G. Then, for any m > 1, after
m balls are allocated, we define the weight of vertex v by

W (m)
v = X(m)

v + µ(v). (2.3)

K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 191

Note that for any m > 1 and v ∈ V , we have that Wv can increase by at most one after each
step; i.e., W (m)

v ∈ {W (m−1)
v ,W

(m−1)
v + 1}. The lemma below establishes that a ball cannot

be allocated to a vertex with larger weight than the vertex where the ball is born.

I Lemma 2.1. Let m > 1 and denote by v the vertex where ball m is born (i.e., v = Um).
Let v′ be the vertex where ball m is allocated. Then, W (m−1)

v′ 6W
(m−1)
v .

Proof. Assume that v 6= v′, thus the local search of ball m visits at least two vertices. Let w
be the second vertex visited during the local search. Since v and w are neighbors in G, we
have

W (m−1)
w = X(m−1)

w + µ(w) = X(m−1)
v − 1 + µ(w) 6 X(m−1)

v + µ(v) = W (m−1)
v .

Proceeding inductively for each step of the local search, we obtain W (m−1)
v′ 6W

(m−1)
v . J

For vectors A = (a1, a2, . . . , an) and A′ = (a′1, a′2, . . . , a′n) such that
∑n
i=1 ai =

∑n
i=1 a

′
i,

we say that A majorizes A′ if, for each κ = 1, 2, . . . , n, the sum of the κ largest entries of A
is at least the sum of the κ largest entries of A′. More formally, if j1, j2, . . . , jn are distinct
numbers such that aj1 > aj2 > · · · > ajn and j′1, j′2, . . . , j′n are distinct numbers such that
a′j′1

> a′j′2
> · · · > a′j′n , then A majorizes A′ if

κ∑
i=1

aji >
κ∑
i=1

a′j′
i

for all κ = 1, 2, . . . , n. (2.4)

Let W (m)
v be the weight of vertex v after m balls are allocated according to the 1-choice

process; i.e., W (m)
v = X

(m)
v + µ(v) for all v ∈ V . The lemma below establishes that W (m)

majorizes W (m) for any m.

I Lemma 2.2. For any fixed m > 0, we can coupleW (m) andW (m) so that, with probability 1,
W

(m) majorizes W (m).

For the proof of this lemma, we need the following result from [2].

I Lemma 2.3 ([2, Lemma 3.4]). Let v = (v1, v2, . . . , vn), u = (u1, u2, . . . , un) be two vectors
such that v1 > v2 > · · · > vn and u1 > u2 > · · · > un. If v majorizes u, then also v + ei
majorizes u+ ei, where ei is the ith unit vector.

Proof of Lemma 2.2. The proof is by induction on m. Clearly, for m = 0, we have W (0)
v =

W
(0)
v = µ(v) for all v ∈ V . Now, assume that we can couple W (m−1) with W (m−1) so that

W
(m−1) majorizes W (m−1). Let i1, i2, . . . , in be distinct elements of V so that

W
(m−1)
i1

>W
(m−1)
i2

> · · · >W
(m−1)
in

.

Similarly, let j1, j2, . . . , jn be distinct elements of V so that

W
(m−1)
j1 >W

(m−1)
j2 > · · · >W

(m−1)
jn .

Let ` be a uniformly random integer from 1 to n. Then, for the process (W (m)
v)v∈V , let the

birthplace of ball m be vertex i` and for the process (W (m)
v)v∈V , let the birthplace of ball m

be j`. For the process (W (m)
v)v∈V , ball m may not necessarily be allocated at vertex i`, so

let us define ι as the integer so that iι is the vertex to which ball m is allocated.

STACS’14

192 Balls into bins via local search: cover time and maximum load

In order to prove that W (m) majorizes W (m), let us define by W̃ (m) the vector which is
obtained from W (m−1) by allocating ball m to vertex i` (the birthplace of ball m). Applying
Lemma 2.3 gives that W (m) majorizes W̃ (m), since by the induction hypothesis W (m−1)

majorizes W (m−1). Next observe that

W (m) = W̃ (m) − ei` + eiι ,

so we obtain the vector W (m) from W̃ (m) by removing one ball from vertex i` and adding
one ball to vertex iι. By Lemma 2.1, we have W (m−1)

iι
6 W

(m−1)
i`

. This implies W̃ (m)
i`

=
W

(m−1)
i`

+ 1 > W
(m−1)
iι

+ 1 and in turn that W̃ (m) majorizes W (m). Combining this with
the insight that W (m) majorizes W̃ (m) implies that W (m) majorizes W (m). This completes
the induction and the proof. J

Now we illustrate the usefulness of the above result by relating the probability of a vertex
to have a certain load to the probability that balls are born in a neighborhood around a
vertex. For any two vertices u, v ∈ V , we denote by dG(u, v) their distance on G.

I Lemma 2.4. For any v ∈ V , and any `,m > 1, we have

Pr
[
X(m)
v > `

]
> Pr

[⋂
w∈B`−1

v

{
X

(m)
w > `− dG(v, w)

}]
and

Pr
[
X(m)
v > `

]
6 Pr

[⋃
w∈V

{
X

(m)
w > `+ dG(v, w)

}]
.

Proof. For the first inequality, set µ(w) = dG(v, w) for all w ∈ V . Let A(m) be the
event that all vertices have weight at least ` after m balls are allocated, and let A(m) be
the same event for the 1-choice process. In symbols A(m) = {minu∈V W (m)

u > `} and
A(m) = {minu∈V W

(m)
u > `}. By Lemma 2.2, we have that Pr

[
A(m)] > Pr

[
A(m)].

Clearly, we have that A(m) implies {X(m)
v > `}, but the two events are in fact equal since,

by the smoothness of the load vector ([4, Lemma 2.2]), {X(m)
v > `} implies A(m). The proof

is then complete since A(m) =
⋂
w∈B`v

{
X

(m)
w > `− dG(v, w)

}
.

For the second inequality, set µ(w) = −dG(v, w) for all w ∈ V . Then define B(m)

to be the event that there exists at least one vertex with weight at least ` after m balls
are allocated, and let B(m) be the corresponding event for the 1-choice process. Thus,
B(m) = {maxu∈V W (m)

u > `} and B(m) = {maxu∈V W
(m)
u > `}. Similarly as for the event

A(m), we have that the events {X(m)
v > `} and B(m) are identical. Applying Lemma 2.2 we

obtain that Pr
[
B(m)] 6 Pr

[
B(m)] = Pr

[⋃
w∈V

{
X

(m)
w > `+ dG(v, w)

}]
. J

I Remark. The lemma above states that one can couple {X(m)
v }v∈V and {X(m)

v }v∈V so that
if X(m)

w > ` − dG(v, w) for all w ∈ B`−1
v , then X(m)

v > `. However, this is not necessarily
achieved with the “trivial” coupling where each ball is born at the same vertex for both
processes {X(m)

v }v∈V and {X(m)
v }v∈V . In other words, knowing that the number of balls

born at vertex w is at least `− dG(v, w) for all w ∈ B`v does not imply that X(m)
v > `.

Now we extend the proof of Lemma 2.4 to derive an upper bound on the load of a subset
of vertices. The proof of this proposition can be found in the full version [5].

K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 193

I Proposition 2.5. Let S ⊂ V be fixed and ∆ be the maximum degree inG. Then, for allm > n

and ` > 300∆m
n we have Pr

[∑
v∈S X

(m)
v > `|S|

]
6 4 exp

(
− |S|`14 log

(
`n
m

))
+ exp

(
−m4

)
.

Moreover, for any given u ∈ V , it holds that Pr
[
X

(m)
u > 2`

]
6 4 exp

(
− |B

`
u|`

14 log
(
`n
m

))
+

exp
(
−m4

)
.

In many of our proofs we analyze a continuous-time variant where the number of balls
is not fixed, but is given by a Poisson random variable with mean m. Equivalently, in this
variant balls are born at each vertex according to a Poisson process of rate 1/n. We refer
to this as the Poissonized version. We will use the Poissonized versions of both the local
search allocation and the 1-choice process in our proofs. Since the probability that a mean-m
Poisson random variable takes the value m is of order Θ(m−1/2) we obtain the following
relation.

I Lemma 2.6. Let A be an event that holds for the Poissonized version of the local search
allocation (respectively, 1-choice process) with probability 1− ε for some ε ∈ (0, 1). Then,
the probability that A holds for the non-Poissonized version of the local search allocation
(respectively, 1-choice process) is at least 1−O(ε

√
m).

3 Maximum Load

We start stating a stronger version of Theorem 1.1 which also holds for non-transitive graphs.
For γ ∈ (0, 1/2], let

R
(γ)
1 = R

(γ)
1 (G) = max

{
r ∈ N : there exists S ⊆ V with |S| > n

1
2 +γ

such that r|Bru| log r < logn for all u ∈ S
}
.

Note that R(γ)
1 is non-increasing with γ. Also, when G is vertex transitive, we have R1 =

R
(γ)
1 + 1 for all γ ∈ (0, 1/2], because in this case, for any given r, the size of Bru is the same

for all u ∈ V . The theorem below establishes that, for any bounded-degree graph, if there
exists a γ ∈ (0, 1/2] for which R(γ)

1 = Θ(R1), then the maximum load when m = n is Θ(R1).
In the following, ω(1) stands for a term that goes to ∞ as n→∞.

I Theorem 3.1 (General version of Theorem 1.1). Let G be any graph with bounded degrees.
For any γ ∈ (0, 1/2] and α > 1, we have

Pr
[
X(n)

max <
γR

(γ)
1

4

]
6 n−ω(1) and Pr

[
X(n)

max > 56αR1

]
6 5n−α.

Proof. We start establishing a lower bound for X(n)
max. Let A be a Poisson random variable

with mean 1. We first consider the Poissonized versions of the local search allocation and
the 1-choice process (recall the definition of these variants from the paragraph preceding
Lemma 2.6). For any v ∈ V and any ` > 0, Lemma 2.4 gives that

Pr
[
X(n)
v > `

]
>

`−1∏
r=0

(Pr [A > `− r])|N
r
v | >

`−1∏
r=0

(
e−1(`− r)−`+r

)|Nrv | ,
where Nr

v is the set of vertices at distance r from v so that B`v =
⋃`
r=0N

r
v . Hence,

Pr
[
X(n)
v > `

]
> exp

(
−|B`v| − `|B`v| log(`)

)
> exp

(
−2`|B`v| log(`)

)
,

STACS’14

194 Balls into bins via local search: cover time and maximum load

where the last step follows for all ` > 2. Given γ > 0, set ` = γR
(γ)
1

4 . Since |Brv | log r is
increasing with r, there exists a set S with |S| = dn 1

2 +γe such that

Pr
[
X(n)
v >

γR
(γ)
1

4

]
> exp

−γR(γ)
1 |B

R
(γ)
1

v | log(R(γ)
1)

2

 > n−γ/2 for all v ∈ S. (3.1)

Let Y = Y (γ) be the random variable defined as the number of vertices v satisfying X(n)
v >

γR
(γ)
1

4 . Let K be the total number of balls allocated in the Poissonized version of the local
search allocation. Note that E [K] = n and by standard tail bounds, Pr [K > 2en] 6 21−2ne.
Regard Y as a function of the K independently chosen birthplaces U1, U2, . . . , UK . Then,
for any given K, Y is 1-Lipschitz by [4, Lemma 2.5], and (3.1) implies that

E [Y | K 6 2en] > n
1
2 +γ ·

(
n−γ/2 −Pr [K > 2en]

Pr [K 6 2en]

)
>
n

1
2 + γ

2

2 .

With this, we apply the method of bounded differences [8, Lemma 1.2] to obtain

Pr
[
X(n)

max <
γR

(γ)
1

4

]

6 Pr
[
|Y −E [Y | K 6 2en] | > 1

2E [Y | K 6 2en] | K 6 2en
]

+ Pr [K > 2en]

6 n−ω(1) + 21−2ne = n−ω(1).

This result can then be translated to the non-Poissonized model via Lemma 2.6.
Now we establish the upper bound, where we consider the non-Poissonized process. For

any fixed u ∈ V , we have from the second part of Proposition 2.5 (with m = n) that

Pr
[
X(n)
u > 56αR1

]
6 4 exp

(
−28αR1|B28αR1

u |
14 log(28αR1)

)
+ exp

(
−n4

)
6 4 exp

(
−2αR1|BR1

u | logR1
)

+ exp
(
−n4

)
6 5n−2α.

Taking the union bound over u we obtain that Pr
[
X

(n)
max > 56αR1

]
6 5n−2α+1 6 5n−α. J

Proof of Theorem 1.2. Applying Proposition 2.5 with ` =
(
m
n +R2

)
c for any constant

c > 300∆, we obtain

Pr
[∑

u∈BR2
u

X(m)
u >

(m
n

+R2

)
c · |BR2

u |
]

6 4 exp
(
−
(m
n

+R2

) c|BR2
u |

14 log c
)

+ exp
(
−m4

)
6 4 exp

(
−cR2|BR2

u |
14 log c

)
+ exp

(
−m4

)
,

where BR2
u denotes the set of vertices within distance R2 from u. By setting c > 0 sufficiently

large, the right-hand side above can be made smaller than n−2. If u has load k, then the
number of balls allocated to vertices in BR2

u is at least
R2∑
i=0

(k − i)|N i
u| > (k −R2)|BR2

u |.

Therefore, on the event
∑
u∈BR2

u
X

(m)
u 6

(
m
n +R2

)
c|BR2

u |, we have X(m)
u 6 c

(
m
n +R2

)
+

R2 6 2c
(
m
n +R2

)
. Taking a union bound over all u ∈ V completes the proof. J

K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 195

4 Cover time

The proposition below gives an upper bound for the cover time.

I Proposition 4.1. Let G be a graph with bounded degrees. Then for any α > 1 there exists
a C = C(α) > 0 such that for all m > CR2n we have Pr

[
X

(m)
min <

m
224n log ∆

]
6 n−α, where

X
(m)
min = minv∈V X(m)

v .

Proof. Fix an arbitrary vertex u ∈ V . We will use the concept of weights defined in Section 2.
Define µ(v) = dG(u, v) and W (m)

v = X
(m)
v + µ(v). Similarly, for the 1-choice process, define

W
(m)
v = X

(m)
v + µ(v). Let Y := minv∈V W

(m)
v be the minimum weight of all vertices in V in

the 1-choice process. Let ` = m
28n log ∆ and recall that Bru is the set of vertices within distance

r from u. We have

Pr [Y < `] = Pr
[⋃

v∈B`−1
u

{
W

(m)
v < `

}]
6 |B`u|Pr

[
X

(m)
u < `

]
6 |B`u|Pr

[∣∣∣X(m)
u −E

[
X

(m)
u

] ∣∣∣ > m

n

(
1− 1

28 log ∆

)]
.

Using a variant of Hoeffding’s inequality, we obtain

Pr [Y < `] 6 |B`u| exp

− m2

n2

(
1− 1

28 log ∆

)2

7m
3n

6 |B`u| exp

(
− 3m

28n

)
6 exp

(
m

28n −
3m
28n

)
6

1
2 ,

where the last inequality holds since m/n > CR2 = ω(1) for bounded degree graphs. Now
define Z as the sum of the |BR2

u | smallest values of
{
W

(m)
v : v ∈ V

}
and Z as the sum

of the |BR2
u | smallest values of

{
W

(m)
v : v ∈ V

}
. By Lemma 2.2, we can couple W (m)

and W
(m) so that, with probability 1, Z > Z. Further, E

[
Z
]
> `|BR2

u |
2 . We now apply

Azuma’s inequality [6, Theorem 6.1] in order to show that Z is likely to be at least `|B
R2
u |
4 . Let

A1, A2, . . . , Am be the martingale adapted to the filtration Fi generated by U1, U2, . . . , Ui; i.e.,
Ai = E

[
Z | Fi

]
. Since changing the birthplace of ball i (and keeping all other birthplaces the

same) can change Z by at most one [4, Lemma 2.5], we have that E [Ai −Ai−1 | Fi−1] 6 1.
Now fix i. Let ζu be the value of Ai when Ui = u and let ζ = 1

n

∑
u∈V ζu. Then we have

EUi

[
(Ai −Ai−1)2

∣∣∣∣⋂i−1

j=1
{Uj = uj}

]
= 1
n

∑
u∈V

(ζu − ζ)2,

where the expectation above is taken with respect to Ui. Since |ζu− ζu′ | 6 1 for all u, u′ ∈ V ,
we can write

1
n

∑
u∈V

(ζu − ζ)2 6
1
n

∑
u∈V
|ζu − ζ| =

1
n

∑
u∈V

∣∣∣∣ ∑
u′∈V

1
n

(ζu − ζu′)
∣∣∣∣ 6 1

n2

∑
u∈V

∑
u′∈V

|ζu − ζu′ | .

Note that, for any realization of U1, U2, . . . , Ui−1, Ui+1, . . . , Um, ζu and ζu′ only differ if
exactly one of u or u′ is among the |BR2

u | smallest loads. Hence,
∑
u∈V

∑
u′∈V |ζu − ζu′ | 6

2|BR2
u |n. Consequently, EUi

[
(Ai −Ai−1)2

∣∣∣⋂i−1
j=1{Uj = uj}

]
6 2|BR2

u |
n . Now, Azuma’s

STACS’14

196 Balls into bins via local search: cover time and maximum load

inequality [6, Theorem 6.1] gives

Pr
[
Z <

`|BR2
u |

4

]
6 Pr

[
|Z −E

[
Z
]
| > 1

2E
[
Z
]]

6 exp

− (1
2E
[
Z
])2

4 · |B
R2
u |
n ·m+ 1

6E
[
Z
]
 .

Clearly, E
[
Z
]
6 m|BR2

u |
n , which gives that

Pr
[
Z <

`|BR2
u |

4

]
6 exp

− E
[
Z
]2

16 · |B
R2
u |
n ·m+ 2m|BR2

u |
3n

 6 exp
(
−`

2|BR2
u |/4

17m/n

)
.

Using the value of ` and m, we have

Pr
[
Z <

`|BR2
u |

4

]
6 exp

(
−

m
n |B

R2
u |

68(28 log ∆)2

)
6 exp

(
− CR2|BR2

u |
68(28 log ∆)2

)
6 n

− C
68(28 log ∆)2 .

Due to our coupling which gives Z > Z we conclude that with probability at least 1 −
n
− C

68(28 log ∆)2 there exists a vertex v ∈ BR2
u with W (m)

v > `
4 and thus X(m)

v > `
4 −R2. Then,

by smoothness of the load vector [4, Lemma 2.2], we have that with probability at least
1− n−

C
68(28 log ∆)2 , every vertex in BR2

u has load at least `
4 − 3R2 > m

224n log ∆ , where the last
step follows for all C > 672 log ∆. The result follows by taking the union bound over all
u ∈ V , which yields that, with probability at least 1− n−

C
68(28 log ∆)2

+1, all vertices have load
at least m

224n log ∆ . The proof is completed by setting C large enough with respect to α so
that C

68(28 log ∆)2 − 1 > α. J

We prove a stronger version of Theorem 1.3, which holds also for non-transitive graphs.
For γ ∈ (0, 1/2], let

R
(γ)
2 = R

(γ)
2 (G) = max

{
r ∈ N : there exists S ⊆ V with |S| > n

1
2 +γ

such that r|Bru| < logn for all u ∈ S
}
.

Note that R(γ)
2 is non-increasing with γ. Also, when G is vertex transitive, we have R2 =

R
(γ)
2 + 1 for all γ > 0, because in this case, for any given r, the size of Bru is the same for all

u ∈ V . The theorem below establishes that, for any bounded-degree graph, if there exists a
γ ∈ (0, 1/2] for which R(γ)

2 = Θ(R2), then the cover time is Θ(R2).

I Theorem 4.2 (General version of Theorem 1.3). Let G be any graph with bounded degrees.
For any γ ∈ (0, 1/2] and α > 1, there exists C = C(α,∆) such that

Pr
[
Tcov <

γR
(γ)
2 n

8∆

]
6 n−ω(1) and Pr [Tcov > CR2n] 6 n−α.

Proof. The second inequality is established by Proposition 4.1. For the first inequality, let
S be a set of n 1

2 +γ vertices u for which R(γ)
2 ·BR

(γ)
2

u < logn. Let m = γR
(γ)
2 n

8∆ . We consider
the Poissonized version of the local search allocation and the 1-choice process. We abuse
notation slightly and let X(m)

v and X(m)
v denote the load of v for the Poissonized version of

the local search allocation and 1-choice process, respectively, when the expected number of

K. Bringmann, T. Sauerwald, A. Stauffer, and H. Sun 197

balls allocated in total is m. For any u ∈ S, we will bound the probability that X(m)
u = 0.

By the second part of Lemma 2.4, we have that

Pr
[
X(m)
u = 0

]
> Pr

[⋂
w∈V

{
X

(m)
w 6 dG(u,w)

}]
.

Recall that Nr
u is the set of vertices at distance r from u and B`u =

⋃`
r=0N

r
u. By independence

of the Poissonized model, we can write

Pr
[
X(m)
u = 0

]
> Pr

[⋂
w∈B

R
(γ)
2

u

{
X

(m)
w = 0

}]
Pr
[⋂

i>R
(γ)
2

⋂
w∈Niu

{
X

(m)
w 6 i

}]

> exp

−m|BR(γ)
2

u |
n

(1−
∑

i>R
(γ)
2

∑
w∈Niu

Pr
[
X

(m)
w > i

])

> exp

−m|BR(γ)
2

u |
n

(1− 2
∑

i>R
(γ)
2

∑
w∈Niu

(me
ni

)i)
,

where the last inequality follows by a Chernoff bound [1, Theorem A.1.15]. Using the simple
bound |N i

u| 6 ∆i and the fact that me∆
ni 6 1

2 for all i > R
(γ)
2 (as ∆/R(γ)

2 = o(1) since
∆ = O(1)), we have

Pr
[
X(m)
u = 0

]
> exp

−m|BR(γ)
2

u |
n

1− 4
(
me∆
nR

(γ)
2

)R(γ)
2
 > n−γ/8 · 1

2 .

Now let Y be the random variable defined as the number of vertices v satisfying X(m)
v = 0.

Let K be the random variable for the total number of balls allocated and regard Y as a
function of the K independently chosen birthplaces U1, U2, . . . , UK . Then, Y is 1-Lipschitz
by [4, Lemma 2.5] for any given K. The calculations above give that

E [Y | K 6 2em] > E [Y] > n
1
2 + 7γ

8

2 .

Note thatm = O(n logn) for anyG. With this, we apply the method of bounded differences [8,
Lemma 1.2] and a standard tail bound to obtain

Pr
[
X

(n)
min = 0

]
6 Pr

[
|Y −E [Y | K 6 2em] | > 1

2E [Y | K 6 2em]
∣∣∣∣K 6 2em

]
+ Pr [K > 2em]

6 2 exp
(
−n

1+14γ/8

8(2em)

)
+ 21−2me = n−ω(1).

This result can then be translated to the non-Poissonized process using Lemma 2.6 and the
fact that m = γR

(γ)
2 n

4 = O(n logn). J

We now state a stronger version of Theorem 1.4. The proof is in the full version [5].

I Theorem 4.3 (General version of Theorem 1.4). Let G be any d-regular graph. Then, for
any α > 1 there exists C = C(α) > 0 such that

Pr
[
Tcov > C ·

(
n
(

1 + logn · log d
d

))]
6 n−α.

STACS’14

198 Balls into bins via local search: cover time and maximum load

5 Remarks and open questions

Blanket time
In analogy with the cover time for random walks, for each δ > 1, we can define the blanket
time as the first time at which the load of each vertex is in the interval (1

δ ·
m
n , δ ·

m
n). It

follows from Theorem 1.2 and Proposition 4.1 that, for bounded-degree vertex-transitive
graphs, the blanket time is Θ(nR2) for all large enough δ.

Extreme graphs

Note that for any connected graph G, we have R1(G) 6
√

logn
log logn and R2(G) 6

√
logn.

Thus, the cycle is the graph with the largest possible maximum load (when m = n) and
largest possible cover time among all bounded-degree graphs up to constant factors. Also,
for any graph G with bounded degrees, we have R1(G) and R2(G) are of order Ω(log logn).
Thus, bounded-degree expanders are the graphs with the smallest maximum load (when
m = n) and smallest cover time among all bounded-degree graphs up to constant factors.

Open questions
1. For any vertex-transitive graph (not necessarily of bounded degrees), does it hold that

X
(n)
max = Θ(R1) and Tcov = Θ(R2n) with high probability?

2. For any vertex-transitive graph (not necessarily of bounded degrees) and any m = ω(nR2),
does it hold that X(m)

max = m
n + Θ(R2) with high probability?

3. For any vertex-transitive graph, is the blanket time of order nR2 for all δ > 1? Also, is
the blanket time of the same order as the cover time for all vertex-transitive graphs?

4. Let G = (V,E) and G′ = (V,E′) be two graphs such that E ⊂ E′. Is the maximum load
on G stochastically dominated by the maximum load on G′ for any m?

References
1 N. Alon and J.H. Spencer. The probabilistic method. John Wiley & Sons, 3rd edition, 2008.
2 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM

J. Comput., 29(1):180–200, 1999.
3 Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced alloc-

ations: The heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006.
4 P. Bogdan, T. Sauerwald, A. Stauffer, and H. Sun. Balls into bins via local search. In Proc.

of the 24th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 16–34, 2013.
5 K. Bringmann, T. Sauerwald, H. Sun, and A. Stauffer. Balls into bins via local search:

cover time and maximum load, 2013. Preprint at arXiv:1310.0801.
6 F. Chung and L. Lu. Concentration inequalities and Martingale inequalities: a survey.

Internet Mathematics, 3:79–127, 2006.
7 Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. Efficient PRAM

simulation on a distributed memory machine. Algorithmica, 16(4/5):517–542, 1996.
8 C. McDiarmid. On the method of bounded differences. Surveys in Combinatorics, 141:148–

188, 1989.
9 M. Mitzenmacher and E. Upfal. Probability and Computing: randomized algorithms and

probabilistic analysis. Cambridge University Press, 2005.
10 Martin Raab and Angelika Steger. Balls into bins – a simple and tight analysis. In 2nd

Int’l Workshop on Randomization and Computation (RANDOM’98), pages 159–170, 1998.
11 Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4), 2003.

Meet Your Expectations With Guarantees:
Beyond Worst-Case Synthesis in Quantitative
Games?

Véronique Bruyère1, Emmanuel Filiot2, Mickael Randour1, and
Jean-François Raskin2

1 Computer Science Department, Université de Mons (UMONS), Belgium
2 Département d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium

Abstract
Classical analysis of two-player quantitative games involves an adversary (modeling the environ-
ment of the system) which is purely antagonistic and asks for strict guarantees while Markov
decision processes model systems facing a purely randomized environment: the aim is then to op-
timize the expected payoff, with no guarantee on individual outcomes. We introduce the beyond
worst-case synthesis problem, which is to construct strategies that guarantee some quantitative
requirement in the worst-case while providing an higher expected value against a particular
stochastic model of the environment given as input. We consider both the mean-payoff value
problem and the shortest path problem. In both cases, we show how to decide the existence
of finite-memory strategies satisfying the problem and how to synthesize one if one exists. We
establish algorithms and we study complexity bounds and memory requirements.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases two-player games on graphs, Markov decision processes, quantitative
objectives, synthesis, worst-case and expected value, mean-payoff, shortest path

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.199

1 Introduction

Two-player zero-sum quantitative games [14, 28, 3] and Markov decision processes (MDPs) [24,
5] are two popular formalisms for modeling decision making in adversarial and uncertain
environments respectively. In the former, two players compete with opposite goals (zero-sum),
and we want strategies for player 1 (the system) that ensure a given minimal performance
against all possible strategies of player 2 (its environment). In the latter, the system
plays against a stochastic model of its environment, and we want strategies that ensure a
good expected overall performance. Those two models are well studied and simple optimal
memoryless strategies exist for classical objectives such as mean-payoff [22, 14, 15] or shortest
path [1, 12]. But both models have clear weaknesses: strategies that are good for the
worst-case may exhibit suboptimal behaviors in probable situations while strategies that are
good for the expectation may be terrible in some unlikely but possible situations.

In practice, we want strategies that both ensure (a) some worst-case threshold no matter
how the adversary behaves (i.e., against any arbitrary strategy) and (b) a good expectation

? Work partially supported by European project CASSTING (FP7-ICT-601148). Filiot and Randour are
respectively F.R.S.-FNRS research associate and research fellow. Raskin is supported by ERC Starting
Grant inVEST (279499).

© Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and
Jean-François Raskin;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 199–213

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.199
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

200 Beyond Worst-Case Synthesis in Quantitative Games

against the expected behavior of the adversary (given as a stochastic model). We study how
to construct such finite-memory strategies. We consider finite memory for player 1 as it can
be implemented in practice (as opposed to infinite memory). Player 2 is not restricted in his
choice of strategies, but we show that simple strategies suffice. Our problem, the beyond
worst-case synthesis problem, makes sense for any quantitative measure. We focus on
two classical ones: the mean-payoff, and the shortest path.

home

station traffic

waiting
room work

1
10

9
10

2
10

7
10

1
10

train
2

car
1

back home
1

bicycle
45

delay
1

wait
4

light
20

medium
30

heavy
70

departs
35

Figure 1 Player 1 wants to minimize its
expected time to reach “work”, but while en-
suring it is less than an hour in all cases.

Example. Consider the weighted game in
Fig. 1 to illustrate the shortest path context.
Circle states belong to player 1, square states to
player 2, integer labels are durations in minutes,
and fractions are probabilities that model the
expected behavior of player 2. Player 1 wants a
strategy to go from “home” to “work” such that
“work” is guaranteed to be reached within 60
minutes (to avoid missing an important meet-
ing), and player 1 would also like to minimize
the expected time to reach “work”. The strat-
egy that minimizes the expectation is to take
the car (expectation is 33 minutes) but it is
excluded as there is a possibility to arrive after
60 minutes (in case of heavy traffic). Bicycle is
safe but the expectation of this solution is 45
minutes. We can do better with the following
strategy: try to take the train, if the train is delayed three time consecutively, then go back
home and take the bicycle. This strategy is safe as it always reaches “work” within 59 minutes
and its expectation is ≈ 37, 56 minutes (so better than taking directly the bicycle). Our
algorithms are able to decide the existence of (and synthesize) such finite-memory strategies.

Contributions. For the mean-payoff, we provide an NP ∩ coNP algorithm (Thm. 7), which
would be in P if mean-payoff games were proved to be in P, a long-standing open problem [3, 7].
For the shortest path, we give a pseudo-polynomial time algorithm (Thm. 9), and show that
the problem is NP-hard (Thm. 11). For both, synthesized strategies may require up to pseudo-
polynomial memory (Thm. 8 and Thm. 10), but accept natural, elegant representations,
based on states of the game and simple integer counters. An extended version of this work,
including full proofs, can be found in [4].

Related work. Our problems generalize the corresponding problems for two-player zero-sum
games and MDPs. In mean-payoff games, optimal memoryless worst-case strategies exist and
the best known algorithm is in NP ∩ coNP [14, 28, 3]. For shortest path games, where we
consider game graphs with strictly positive weights and try to minimize the cost to target, it
can be shown that memoryless strategies also suffice, and the problem is in P. In MDPs,
optimal expectation strategies are studied in [24, 15] for both measures: memoryless strategies
suffice and they can be computed in P. Our strategies are strongly risk averse: they avoid at
all cost outcomes below a given threshold (no matter their probability), and inside the set of
those safe strategies, we maximize expectation. To the best of our knowledge, we are the first
to consider such strategies. Other notions of risk have been studied for MDPs: e.g., in [27],
the authors want to find policies minimizing the probability (risk) that the total discounted

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin 201

rewards do not exceed a specified value; in [16], the authors want to achieve a specified value
of the long-run limiting average reward at a given probability level (percentile). While those
strategies limit risk, they only ensure low probability for bad behaviors but not their absence,
furthermore, they do not ensure good expectation either. Another body of related work is
the study of strategies in MDPs that achieve a trade-off between the expectation and the
variance over the outcomes (e.g., [2] for the mean-payoff, [23] for the cumulative reward),
giving a statistical measure of the stability of the performance. In our setting, we strengthen
this requirement by asking for strict guarantees on individual outcomes, while maintaining
an appropriate expected payoff.

Future work. Study of other value functions, extension to more general settings (decidable
classes of imperfect information games [13], multi-dimension [6, 9], etc), and application to
practical cases.

Acknowledgments. We thank G. Latouche and G. Louchard for fruitful discussions about
Chernoff bounds in Markov models, and an anonymous reviewer for pointing out interesting
related works.

2 Beyond Worst-Case Synthesis

Weighted directed graphs. A weighted directed graph is a tuple G = (S,E,w) where (i)
S is the set of vertices, called states; (ii) E ⊆ S × S is the set of directed edges; and (iii)
w : E → Z is the weight function. Given s ∈ S, let Succ(s) = {s′ ∈ S | (s, s′) ∈ E} be its set
of successors. We assume that for all s ∈ S, Succ(s) 6= ∅ (no deadlock). We denote by W
the largest absolute weight.

A play in G from an initial state sinit ∈ S is an infinite sequence of states π = s0s1s2 . . .

such that s0 = sinit and (si, si+1) ∈ E for all i ≥ 0. The prefix up to the n-th state of π
is the finite sequence π(n) = s0s1 . . . sn. We denote its last state by Last(π(n)) = sn. The
set of plays of G is denoted by Plays(G) and the corresponding set of prefixes is denoted
by Prefs(G). Given a play π ∈ Plays(G), we denote by Inf(π) ⊆ S the set of states that are
visited infinitely often along the play.

Given a function f : Plays(G) → R ∪ {−∞, ∞}, the value of a play π is f(π). The
mean-payoff of a prefix ρ = s0s1 . . . sn is MP(ρ) = 1

n

∑i=n−1
i=0 w((si, si+1)). For plays,

MP(π) = lim infn→∞MP(π(n)). Given a graph with strictly positive weights (w : E → N0)
and a target set T ⊆ S, the truncated sum up to T is TST : Plays(G)→ N ∪ {∞}, TST (π =
s0s1s2 . . .) =

∑n−1
i=0 w((si, si+1)), with n the first index such that sn ∈ T , and TST (π) =∞

if π never reaches any state in T .

Probability distributions. Given a finite set A, a (rational) probability distribution on A
is a function p : A→ [0, 1] ∩Q such that

∑
a∈A p(a) = 1. We denote the set of probability

distributions on A by D(A). The support of the probability distribution p on A is Supp(p) =
{a ∈ A | p(a) > 0}.

Two-player games. We consider two-player turn-based games and denote the two players
by P1 and P2. A finite two-player game is a tuple G = (G, S1, S2) composed of (i) a finite
weighted graph G = (S,E,w); and (ii) a partition of its states S into S1 and S2 that resp.
denote the sets of states belonging to P1 and P2. A prefix π(n) of a play π belongs to Pi,
i ∈ {1, 2}, if Last(π(n)) ∈ Si. The set of prefixes that belong to Pi is denoted by Prefsi(G).

STACS’14

202 Beyond Worst-Case Synthesis in Quantitative Games

We sometimes denote by |G| the size of a game, defined as a polynomial function of |S|, |E|
and V = dlog2W e.

Strategies. A strategy for Pi, i ∈ {1, 2}, is a function λi : Prefsi(G) → D(S) such that
for all ρ ∈ Prefsi(G), we have Supp(λi(ρ)) ⊆ Succ(Last(ρ)). A strategy is pure if its
support is a singleton for all prefixes. A strategy λi for Pi has finite memory if it can be
encoded by a stochastic finite state machine with outputs, called stochastic Moore machine,
M(λi) = (Mem,m0, αu, αn), where (i) Mem is a finite set of memory elements, (ii) m0 ∈ Mem
is the initial memory element, (iii) αu : Mem × S → Mem is the update function, and (iv)
αn : Mem× Si → D(S) is the next-action function. If the game is in s ∈ Si and m ∈ Mem is
the current memory, then the strategy chooses s′, the next state of the game, according to
the distribution αn(m, s). When the game leaves a state s ∈ S, the memory is updated to
αu(m, s). Pure strategies have deterministic next-action functions. A strategy is memoryless
if |Mem| = 1, i.e., it only depends on the current state of the game.

We resp. denote by Λi(G) and ΛFi (G) the sets of general (i.e., possibly randomized and
infinite-memory) and finite-memory strategies for player Pi on the game G. We do not write
G in this notation when the context is clear. A play π is said to be consistent with a strategy
λi ∈ Λi if for all n ≥ 0 such that Last(π(n)) ∈ Si, we have Last(π(n+ 1)) ∈ Supp(λi(π(n)).

Markov decisions processes. A finite Markov decision process (MDP) is a tuple P = (G, S1,

S∆,∆) where (i) G = (S,E,w) is a finite weighted graph, (ii) S1 and S∆ define a partition
of the set of states S into states of P1 and stochastic states, and (iii) ∆: S∆ → D(S) is the
transition function that, given a stochastic state s ∈ S∆, defines the probability distribution
∆(s) over the possible successors of s, such that for all states s ∈ S∆, Supp(∆(s)) ⊆ Succ(s).
In contrast to some other classical definitions of MDPs in the literature, we explicitly
allow that, for some states s ∈ S∆, Supp(∆(s)) (Succ(s): some edges of the graph G
are assigned probability zero by the transition function. We define the subset of edges
E∆ = {(s1, s2) ∈ E | s1 ∈ S∆ Rightarrows2 ∈ Supp(∆(s1))}, representing all edges that
either start in a state of P1, or are chosen with non-zero probability by the transition function
∆. The notions of prefixes belonging to P1 and of strategies for P1 are naturally extended to
MDPs.

End-components. We define end-components (ECs) of an MDP as subgraphs in which P1
can ensure to stay despite stochastic states [11]. Let P = (G, S1, S∆,∆) be an MDP, with
G = (S,E,w) its underlying graph. An EC in P is a set U ⊆ S such that (i) the subgraph
(U,E∆∩ (U ×U)) is strongly connected, with E∆ defined as before, i.e., stochastic edges with
probability zero are treated as non-existent; and (ii) for all s ∈ U ∩S∆, Supp(∆(s)) ⊆ U , i.e.,
in stochastic states, all outgoing edges either stay in U or belong to E \ E∆ (the probability
of leaving U from a state s ∈ S∆ is zero).

Markov chains. A finite Markov chain (MC) is a tuple M = (G, δ) where (i) G = (S,E,w)
is a finite weighted graph; and (ii) δ : S → D(S) is the transition function that, given s ∈ S,
defines the distribution δ(s), such that for all s ∈ S, Supp(δ(s)) ⊆ Succ(s). In an MC,
an event is a measurable set of plays A ⊆ Plays(G). Every event has a uniquely defined
probability [26] (Carathéodory’s extension theorem induces a unique probability measure
on the Borel σ-algebra over Plays(G)). We denote by PMsinit

(A) the probability that a play
belongs to A when the MC M starts in sinit ∈ S and is executed for an infinite number of

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin 203

steps. Given a measurable function f : Plays(G)→ R∪{−∞, ∞}, we denote by expectMsinit
(f)

the expected value or expectation of f over a play starting in sinit.

Outcomes. Let M = (G, δ) be a Markov chain, with G = (S,E,w) its underlying graph.
Given an initial state sinit ∈ S, we define the set of its possible outcomes as

OutsM (sinit) = {π = s0s1s2 . . . ∈ Plays(G) | s0 = sinit ∧ ∀n ∈ N, sn+1 ∈ Supp(δ(sn))} .

Let G = (G, S1, S2) be a two-player game, with G = (S,E,w) its graph. Given two
strategies, λ1 ∈ Λ1 and λ2 ∈ Λ2, and an initial state sinit ∈ S, we extend the notion of
outcomes as follows:

OutsG(sinit, λ1, λ2) = {π = s0s1s2 . . . ∈ Plays(G) | s0 = sinit ∧ π is consistent with λ1 and λ2} .

When fixing the strategies, we obtain an MC denoted by G[λ1, λ2]. This MC is finite if both
λ1 and λ2 are finite-memory strategies. The outcomes of G and G[λ1, λ2] are not sensu
stricto of the same nature as the graph of the MC is obtained through the product of the
memory elements of the strategies given as Moore machines and the states of the game. Still,
there exists a bijection between outcomes of the MC and their traces in the initial game,
thanks to the projection operator on S. For the sake of readability, we equivalently refer to
outcomes and their traces.

Let P = (G, S1, S∆,∆) be an MDP, with G = (S,E,w) its graph. Again, we can fix
the strategy λ1 of P1 and obtain the MC P [λ1]. Its set of outcomes starting in sinit ∈ S is
denoted OutsP (sinit, λ1). Finally, back to the two-player game G, if we fix the strategy λi of
only one player Pi, i ∈ {1, 2}, we obtain not an MC, but an MDP for the remaining player
P3−i. This MDP is denoted by G[λi].

Subgraphs and subgames. Given a graph G = (S,E,w) and a subset A ⊆ S, we define the
induced subgraph G � A = (A,E ∩ (A×A), w) naturally. Subgames are defined similarly by
considering their induced subgraphs: they are only properly defined if the induced subgraphs
contain no deadlock.

Worst-case synthesis. Given a game G = (G, S1, S2), with G = (S,E,w), an initial state
sinit ∈ S, a function f : Plays(G) → R ∪ {−∞, ∞}, and a threshold µ ∈ Q, the worst-case
threshold problem asks to decide if P1 has a strategy λ1 ∈ Λ1 such that ∀λ2 ∈ Λ2, ∀π ∈
OutsG(sinit, λ1, λ2), f(π) ≥ µ. For the mean-payoff, pure memoryless optimal1 strategies
exist for both players [22, 14]. Hence, deciding the winner is in NP ∩ coNP, and it was
furthermore shown to be in UP ∩ coUP [28, 21, 18]. Whether the problem is in P is a
long-standing open problem [3, 7]. For the shortest path (truncated sum value function), it
can be shown that the decision problem takes polynomial time, as a winning strategy of P1
should avoid all cycles (because they yield strictly positive costs), hence usage of attractors
and comparison of the worst possible sum of costs with the threshold suffices.

1 A strategy for Pi, i ∈ {1, 2}, is said to be optimal if it ensures a threshold higher or equal to the
threshold ensured by any other strategy of the same player. The threshold ensured by an optimal
strategy is called the optimal value.

STACS’14

204 Beyond Worst-Case Synthesis in Quantitative Games

Expected value synthesis. Given an MDP P = (G, S1, S∆,∆), with G = (S,E,w), an
initial state sinit ∈ S, a measurable function f : Plays(G)→ R ∪ {−∞, ∞}, and a threshold
ν ∈ Q, the expected value threshold problem asks to decide if P1 has a strategy λ1 ∈ Λ1 such
that EP [λ1]

sinit (f) ≥ ν. Optimal expected mean-payoff in MDPs can be achieved by memoryless
strategies, and the corresponding decision problem can be solved in polynomial time through
linear programming [15]. The truncated sum value function has been studied in the literature
under the name of shortest path problem: again, memoryless strategies suffice to be optimal
and the problem is solvable in polynomial time [1, 12].

Beyond worst-case synthesis. We study the synthesis of finite-memory strategies that
ensure, simultaneously, a value greater than a threshold µ in the worst-case (i.e., against
any strategy of the adversary), and an expected value greater than a threshold ν against a
given finite-memory stochastic model of the adversary (e.g., representing commonly observed
behavior of the environment).

I Definition 1. Given a game G = (G, S1, S2), with G = (S,E,w), an initial state sinit ∈ S,
a finite-memory stochastic model λstoch

2 ∈ ΛF2 of the adversary, represented by a stochastic
Moore machine, a measurable value function f : Plays(G)→ R∪{−∞, ∞}, and two thresholds
µ, ν ∈ Q, the beyond worst-case (BWC) problem asks to decide if P1 has a finite-memory
strategy λ1 ∈ ΛF1 such that{

∀λ2 ∈ Λ2, ∀π ∈ OutsG(sinit, λ1, λ2), f(π) > µ (1)

EG[λ1,λ
stoch
2]

sinit (f) > ν (2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

We take the convention to ask for values strictly greater than the thresholds to ease the
formulation of our results in the following. Indeed, for some thresholds, it is possible to
synthesize strategies that ensure ε-close values, for any ε > 0, while it is not feasible to
achieve the exact threshold. Notice that we can assume ν > µ, otherwise the problem reduces
to the classical worst-case analysis.

3 Mean-Payoff Value Function

We present algorithm BWC_MP (Alg. 1) for the BWC synthesis problem and we highlight
its cornerstones. Results on memory requirements follow. A sample game is presented in
Fig. 2.

Inputs and outputs. The algorithm takes as input: a game Gi, a finite-memory stochastic
model of the adversary λi2, a worst-case threshold µi, an expected value threshold νi, and an
initial state siinit. Its output is Yes if and only if there exists a finite-memory strategy of P1
satisfying the BWC problem. We present how to synthesize such a satisfying strategy in the
following.

Preprocessing. The first part of the algorithm (lines 1-7) is the preprocessing of the game Gi
and the stochatic model λi2 given as inputs in order to apply the second part of the algorithm
(lines 8–11) on a modified game G and stochastic model λstoch

2 , simpler to manipulate. We
ensure that the answer to the BWC problem on the modified game is Yes if and only if it is
also Yes on the input game, and that winning strategies of P1 in G can be transferred to
winning strategies in Gi.

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin 205

Algorithm 1 BWC_MP(Gi, λi
2, µ

i, νi, si
init)

Require: Gi =
(
Gi, Si

1, S
i
2
)
a game, Gi =

(
Si, Ei, wi

)
its underlying graph, λi

2 ∈ ΛF
2 (Gi) a finite-

memory stochastic model of the adversary, M(λi
2) = (Mem,m0, αu, αn) its Moore machine,

µi = a
b
, νi ∈ Q, µi < νi, resp. the worst-case and the expected value thresholds, and si

init ∈ Si

the initial state
Ensure: The answer is Yes if and only if P1 has a finite-memory strategy λ1 ∈ ΛF

1 (Gi) satisfying
the BWC problem from si

init, for the thresholds pair (µi, νi) and the mean-payoff value function
{Preprocessing}

1: if µi 6= 0 then define ∀ e ∈ Ei, wi
new(e) := b ·wi(e)−a, and consider thresholds (0, ν := b ·νi−a)

2: Compute SWC :=
{
s ∈ Si | ∃λ1 ∈ Λ1(Gi), ∀λ2 ∈ Λ2(Gi), ∀π ∈ OutsGi (s, λ1, λ2), MP(π) > 0

}
3: if si

init 6∈ SWC then return No else
4: Let Gw := Gi � SWC be the subgame induced by worst-case winning states
5: Build G := Gw ⊗M(λi

2) = (G, S1, S2), G = (S,E,w), S ⊆ (SWC ×Mem), the game obtained
by product with the Moore machine, and sinit := (si

init,m0) the corresponding initial state
6: Let λstoch

2 ∈ ΛM
2 (G) be the memoryless transcription of λi

2 on G
7: Let P := G[λstoch

2] = (G, S1, S∆ = S2,∆ = λstoch
2) be the MDP obtained from G and λstoch

2

{Main algorithm}
8: Compute Uw the set of maximal winning end-components of P
9: Build P ′ = (G′, S1, S∆,∆), where G′ = (S,E,w′) and w′ is defined s.t. ∀ e = (s1, s2) ∈ E,

w′(e) := w(e) if ∃ U ∈ Uw s.t. {s1, s2} ⊆ U , or w′(e) := 0 otherwise
10: Compute the maximal expected value ν∗ from sinit in P ′
11: if ν∗ > ν then return Yes else return No

First, we modify the weights of Gi in order to consider the equivalent BWC problem
with thresholds (0, ν). This classical trick is used to get rid of explicitely considering the
worst-case threshold in the following, as it is equal to zero. Second, observe that any strategy
that is winning for the BWC problem must also be winning for the classical worst-case
problem. Such a strategy cannot allow visits of any state from which P1 cannot ensure
winning against an antagonistic adversary: entering such a state would be losing no matter
the prefix. Indeed, mean-payoff is prefix-independent: for all ρ ∈ Prefs(G), π ∈ Plays(G) we
have that MP(ρ · π) = MP(π). Hence, we reduce our study to Gw, the subgame induced
by worst-case winning states in Gi (lines 2 and 4). Obviously, if from the initial state siinit,
P1 cannot win the worst-case problem, then the answer to the BWC problem is No (lines
3). Third, we build the game G which states are defined by the product of the states of
Gw and the memory elements of M(λi2) (line 5). Intuitively, we expand the initial game by
integrating the memory of the stochastic model of P2 in the graph. This does not modify
the power of the adversary. Fourth, the finite-memory stochastic model λi2 on Gi clearly
translates to a memoryless stochastic model λstoch

2 on G (line 6). This helps us obtain elegant
proofs for the second part of the algorithm.

Analysis of end-components. The second part of the algorithm (lines 8-11) operates on a
game G such that from all states, P1 has a strategy to achieve a strictly positive mean-payoff
(recall µ = 0). We consider the MDP P = G[λstoch

2] and notice that the underlying graphs of
G and P are the same thanks to λstoch

2 being memoryless. The next steps rely on the analysis
of end-components in the MDP, i.e., strongly connected subgraphs in which P1 can ensure to
stay when playing against the stochastic adversary. The motivation to this analysis arises
from the following well-known result.

STACS’14

206 Beyond Worst-Case Synthesis in Quantitative Games

s1 s2

s3 s4

s5s6s7

U3

U2 U1

1
2

1
2

1
2

1
2

00

0 −1

0

1

0

1

1

0

−1

9

Figure 2 End component U2 is losing. The set of maximal winning ECs is Uw = {U1, U3}. The
set of winning ECs is W = Uw ∪ {{s5, s6}, {s6, s7}}.

I Lemma 2 ([10, 11]). Let P = (G, S1, S∆,∆) be an MDP, G = (S,E,w) its underlying
graph, E ⊆ 2S the set of its ECs, sinit ∈ S the initial state, and λ1 ∈ Λ1(P) an arbitrary
strategy of P1. Then,

PP [λ1]
sinit

(
{π ∈ OutsP [λ1](sinit) | Inf(π) ∈ E}

)
= 1.

Recall that the mean-payoff is prefix-independent, therefore the value of any outcome only
depends on the states that are seen infinitely often. Hence, the expected mean-payoff in
P [λ1] depends uniquely on the value obtained in the ECs. Inside an EC, we can compute
the maximal expected value that can be achieved by P1, and this value is the same in all
states of the EC [15].

To satisfy the expected value requirement (eq. (2)), an acceptable strategy has to favor
reaching ECs with a sufficient expectation, but under the constraint that it also ensures the
worst-case requirement (eq. (1)): some ECs with high expected values may still need to be
avoided because they do not permit to guarantee this constraint. This is the cornerstone of
the classification of ECs that follows.

Classification of end-components. Let E ⊆ 2S be the set of all ECs in P . By definition,
only edges in E∆, as defined in Sect. 2, are involved to determine which sets of states form
an EC in P . For any EC U ∈ E , there may exist edges from E \E∆ starting in U , such that
P2 can force leaving U when using an arbitrary strategy. Still these edges will never be used
by the stochastic model λstoch

2 . This remark is important to the definition of strategies of P1
that guarantee the worst-case requirement, as P1 needs to be able to react to the hypothetic
use of such an edge. It is also the case inside an EC.

Now, we want to consider the ECs in which P1 can ensure that the worst-case requirement
will be fulfilled (without having to leave the EC): we call them winning. The others need to
be eventually avoided, hence have zero impact on the expectation of a finite-memory strategy
satisfying the BWC problem. So we call the latter losing. Formally, let U ∈ E be an EC. It
is winning if, in the subgame G � U , from all states, P1 has a strategy to ensure a strictly
positive mean-payoff against any strategy of P2 that only chooses edges which are assigned
non-zero probability by λstoch

2 , or equivalently, edges in E∆. We denote W ⊆ E the set of such
ECs. Non-winning ECs are losing: in those, whatever the strategy of P1 played against the
stochastic model λstoch

2 (or any strategy with the same support), there exists at least one
outcome for which the mean-payoff is not strictly positive (even if its probability is zero, its
mere existence is not acceptable for the worst-case requirement).

Maximal winning end-components. Based on these definitions, observe that line 8 of
algorithm BWC_MP does not actually compute the set W containing all winning ECs, but

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin 207

the set Uw ⊆ W, defined as Uw = {U ∈ W | ∀U ′ ∈ W, U ⊆ U ′ ⇒ U = U ′}, i.e., the set of
maximal winning ECs.

The intuition on why we can restrict to this subset is as follows. If an EC U1 ∈ W
is included in another EC U2 ∈ W, then the maximal expected value achievable in U2 is
at least equal to the one achievable in U1. Indeed, P1 can reach U1 with probability one
(by virtue of U2 being an EC and U1 ⊆ U2) and stay in it with probability one (by virtue
of U1 being an EC): the expectation is equal to what can be obtained in U1 thanks to
the prefix-independence. Hence it is sufficient to consider maximal winning ECs in our
computations.

As for why we do it, the complexity gain is critical. The number of winning ECs can
be exponential in the size of the input, as |W| ≤ |E | ≤ 2|S|. Yet, the number of maximal
ones is bounded by |Uw| ≤ |S| as they are disjoint by definition: for any two winning ECs
with a non-empty intersection, their union is also an EC, and is still winning because P1 can
essentially stick to the EC of his choice.

I Lemma 3. The set Uw of maximal winning ECs can be computed in NP ∩ coNP.

Roughly sketched, our recursive subalgorithm computes the maximal EC decomposition of
an MDP (in polynomial time [8]), then checks for each EC U in the decomposition (their
number is polynomial) if U is winning or not, which requires a call to an NP ∩ coNP oracle
solving the worst-case threshold problem on the corresponding subgame. If U is losing, it
may still be the case that a sub-EC U ′ (U is winning. We recurse on the MDP reduced
to U , where states from which P2 can win in U have been removed: the stack of calls is at
most polynomial.

Ensure reaching winning end-components. We now refine Lemma 2 for finite-memory
strategies that satisfy the BWC problem.

I Lemma 4. Let G = (G, S1, S2) be a two-player game, λstoch
2 ∈ ΛM2 a memoryless stochastic

model of P2, P = G[λstoch
2] the resulting MDP and sinit ∈ S the initial state. Let λf1 ∈ ΛF1 be

a finite-memory strategy of P1 that satisfies the BWC problem for thresholds (0, ν) ∈ Q2.
Then, we have that

PP [λf
1]

sinit

({
π ∈ OutsP [λf

1](sinit) | Inf(π) ∈W
})

= 1.

Equivalently, the probability that Inf(π) = U for some U ∈ E \W is zero. The equality is
crucial. It may be the case, with non-zero probability, that Inf(π) = U ′ (U for some U ′ ∈W
and U ∈ E \W (hence the recursive algorithm to compute Uw). It is clear that P1 should
not visit all the states of a losing EC forever, as then he would not be able to guarantee the
worst-case threshold.

Our goal is to build an MDP P ′, sharing the same graph and ECs as P , such that an
optimal strategy for the expectation problem on P ′ will naturally avoid losing ECs and
prescribe which winning ECs are the most interesting to reach for a BWC strategy on the
initial game G and MDP P . The expected value obtained in P by any BWC satisfying
strategy of P1 only depends on the weights of edges involved in winning ECs, or equivalently,
in maximal winning ECs (as the set of outcomes that are not trapped in them has measure
zero). We build P ′ by modifying the weights of P (line 9): we keep them unchanged in edges
that belong to some U ∈ Uw, and we put them to zero everywhere else, which is lower than
the expectation granted by winning ECs (strictly positive by definition).

STACS’14

208 Beyond Worst-Case Synthesis in Quantitative Games

Reach the highest valued winning end-components. We compute the maximal expected
value ν∗ that can be achieved by P1 in the MDP P ′, from the initial state (line 10). It
takes polynomial time and memoryless strategies suffice to achieve the maximal value [15].
Basically, we build a strategy that favors reaching ECs with high associated expectations
in P ′. We argue that the ECs reached with probability one by this strategy are necessarily
winning ECs. Clearly, if a winning EC is reachable instead of a losing one, it will be favored
because of the weights definition in P ′ (expectation is strictly higher in winning ECs). It
remains to check if winning ECs are reachable with probability one from any state in S. They
are, due to the preprocessing. Indeed, all states are winning for the worst-case requirement.
Clearly, from any state in A = S \

⋃
U∈ ecsSet U , P1 cannot ensure to stay in A (otherwise it

would form an EC) and must be able to win the worst-case from reached ECs. Now for any
state in B =

⋃
U∈E U \

⋃
U∈Uw

U , i.e., states in losing ECs and not in any sub-EC winning,
P1 cannot win the worst-case by staying in B, by definition of losing EC. Since P1 can ensure
the worst-case by hypothesis, he must be able to reach C =

⋃
U∈Uw

U from any state in B,
as claimed.

Inside winning end-components. Based on that, winning ECs are reached with probability
one. Consider what we can say about such ECs assuming that E∆ = E, i.e., if all possible
edges are mapped to non-zero probabilities. We establish a finite-memory combined strategy
of P1 that ensures (i) worst-case satisfaction while yielding (ii) an expected value ε-close to
the maximal expectation inside the component. For two well-chosen parameters K,L ∈ N,
it is informally defined as follows: in phase (a), play a memoryless expected value optimal
strategy for K steps and memorize Sum ∈ Z, the sum of weights along these steps; in phase
(b), if Sum > 0, go to (a), otherwise play a memoryless worst-case optimal strategy for L
steps, then go to (a). In phases (a), P1 tries to increase its expectation and approach its
optimal one, while in phase (b), he compensates, if needed, losses that occured in phase (a).
The two memoryless strategies exist on the subgame induced by the EC: by definition of
ECs, based on E∆, the stochastic model of P2 will never be able to force leaving the EC
against the combined strategy. A key result of our paper is the existence of values for K
and L such that (i) and (ii) are verified, as stated in the next theorem.

I Theorem 5. Inside a WEC with ν∗ ∈ Q the maximal expectation achievable by P1, for
all ε > 0, there exists a finite-memory strategy of P1 that satisfies the BWC problem for
thresholds (0, ν∗ − ε).

We see plays as sequences of periods, each starting with phase (a). First, for any K, we can
define L(K) such that any period composed of phases (a) + (b) ensures a mean-payoff at
least 1/(K + L) > 0. Periods containing only phase (a) trivially induce a mean-payoff at
least 1/K. Both rely on the weights being integers. As the length of any period is bounded,
the inequality remains strict for the mean-payoff of any play, granting (i). Now, consider
parameter K. Clearly, when K →∞, the expectation over a phase (a) tends to the optimal
one. Nevertheless, phases (b) also contribute to the overall expectation of the combined
strategy, and (in general) lower it so that it is strictly less than the optimal for any K,L ∈ N.
Hence to prove (ii), we not only need that the probability of playing phase (b) decreases
when K increases, but also that it decreases faster than the increase of L, needed to ensure
(i), so that overall, the contribution of phases (b) tends to zero when K →∞. This is indeed
the case and can be proved using results bounding the probability of observing a mean-payoff
significantly (more than some ε) different than the optimal expectation along a phase (a) of
length K ∈ N: this probability decreases exponentially when K increases [25, 19] (related to

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin 209

the notions of Chernoff bounds and Hoeffding’s inequality in MCs), while L only needs to be
polynomial in K.

Now, consider what happens if E∆ (E. If P2 uses an arbitrary strategy, he can take
edges of probability zero, i.e., in E \ E∆, either staying in the EC, or leaving it. In both
cases, this must be taken into account in order to satisfy eq. (1) as it may involve dangerous
weights (recall that zero-probability edges are not considered when an EC is classified as
winning or not). Fortunately, if this were to occur, P1 could switch to a worst-case winning
memoryless strategy, which exists in all states thanks to the preprocessing (line 4). This has
no impact on the expectation as it occurs with probability zero against λstoch

2 . The strategy
to follow in winning ECs adds this reaction procedure to the combined strategy: we call it
the witness-and-secure strategy.

Global strategy synthesis. In summary, losing ECs should be avoided and will be by a
strategy that optimizes the expectation on the MDP P ′; in winning ECs, P1 can obtain the
expectation of the EC (at some arbitrarily small ε close) and ensure the worst-case threshold.
We finally compare the value ν∗ with the threshold ν (line 11): (i) if ν∗ > ν, there exists
a finite-memory strategy satisfying the BWC problem, and (ii) if not, there does not exist
such a strategy.

I Lemma 6. Algorithm BWC_MP is correct and complete.

To prove (i), we establish a finite-memory strategy in G, called global strategy, of P1 that
ensures a strictly positive mean-payoff against any antagonistic adversary, and ensures an
expected mean-payoff ε-close to ν∗ (hence, strictly greater than ν) against the stochastic
adversary modeled by λstoch

2 (i.e., in P). The intuition is as follows. We play the memoryless
optimal strategy of the MDP P ′ for a sufficiently long time, defined by a parameter N ∈ N,
in order to be with probability close to one in a winning EC (the convergence is exponential
by results on absorption times in MCs [20]). Then, if inside a winning EC, we switch to the
witness-and-secure strategy which ensures both thresholds. If not yet in a winning EC, we
switch to a worst-case winning strategy in G, existing by hypothesis. Thus the mean-payoff
of plays that do not reach winning ECs is strictly positive. Since in winning ECs we are
ε-close to the maximal expected value of the EC, we conclude that it is possible to play the
optimal expectation strategy of MDP P ′ for sufficiently long to obtain an overall expected
value which is arbitrarily close to ν∗, and still guarantee the worst-case threshold in all
outcomes. To prove (ii), it suffices to understand that only ECs have an impact on the
expectation, and that losing ECs cannot be used forever without endangering the worst-case
requirement. Given a winning strategy on G, we can build a corresponding winning strategy
on Gi by reintegrating the memory elements of the Moore machine in the memory of the
strategy of P1.

Complexity bounds. The input size depends on the sizes of the game and the Moore machine
for the stochastic model, and the encodings of weights and thresholds. All computations
require (deterministic) polynomial time except for external calls solving the worst-case
threshold problem, which is in NP ∩ coNP [28, 21] and not known to be in P. Hence, the
overall complexity is in NP ∩ coNP and may collapse to P if the worst-case problem were
to be proved in P: the BWC framework for mean-payoff surprisingly provides additional
modeling power without negative impact on the complexity class. We establish that the
BWC problem is at least as difficult as the worst-case problem thanks to a polynomial time
reduction from the latter to the former. Thus, membership to NP ∩ coNP can be seen as
optimal regarding our current knowledge of the worst-case problem.

STACS’14

210 Beyond Worst-Case Synthesis in Quantitative Games

I Theorem 7. The beyond worst-case problem for the mean-payoff value function is in
NP ∩ coNP and at least as hard as mean-payoff games.

Memory requirements. The global strategy suffices if satisfaction of the BWC problem is
possible. All the involved strategies (global, witness-and-secure, combined) are alternations
between pure memoryless strategies, based on parameters N , K and L ∈ N, which only
need to be polynomial in the size of the game and the stochastic model, and in the values,
granting the upper bound of Thm. 8. This bound is tight as polynomial memory in the
value of weights is needed in general. Consider a family of games, (G(X))X∈N0 , based on the
subgame G � U3 in Fig. 2, but with weights −X and X + 5 instead of −1 and 9 respectively.
When choosing µ = 0 and ν ∈]1, 5/4[, the BWC problem is satisfiable and it cannot be
achieved by the memoryless strategy that always chooses edge (s6, s5). It is thus mandatory
to choose (s6, s7) infinitely often in order to win. Moreover, after some point, everytime this
edge is chosen, a satisfying strategy must eventually counteract the potential negative weight
−X by taking edge (s1, s2) for bX/2c+ 1 times. Hence polynomial memory in W is needed.

I Theorem 8. Memory of pseudo-polynomial size may be necessary and is always sufficient
to satisfy the BWC problem for the mean-payoff: polynomial in the size of the game and the
stochastic model, and polynomial in the weight and threshold values.

4 Truncated Sum Value Function - Shortest Path Problem

Let us consider a game graph such that w : E → N0 assigns strictly positive integer weights
to all edges, and a target set T ⊆ S that P1 wants to reach with a path of bounded value.
In other words, we study the BWC problem for the shortest path [1, 12]. More precisely,
given an initial state sinit ∈ S, the goal of P1 is to ensure to reach T with a path of truncated
sum strictly lower than µ ∈ N against all possible behaviors of P2 while guaranteeing, at
the same time, an expected cost to target strictly lower than ν ∈ Q against the stochastic
model of the adversary specified by the stochastic Moore machine M(λstoch

2). Regarding Def.
1, the inequalities are reversed. Hence we assume ν < µ.

A pseudo-polynomial time algorithm. First, we construct, from the original game G and
the worst-case threshold µ, a new game Gµ such that there is a bijection between the
strategies of P1 in Gµ and the strategies of P1 in the original game G that are winning for
the worst-case requirement: we unfold the original graph G, tracking the current value of
the truncated sum up to the worst-case threshold µ, and integrating this value in the states
of an expanded graph G′. In the corresponding game G′, we compute the set of states R
from which P1 can reach the target set with cost lower than µ and we define the subgame
Gµ = G′ � R such that any path in the graph of Gµ satisfies the worst-case requirement.
Second, from Gµ and the stochastic Moore machine M(λstoch

2), we construct an MDP in
which we search for a playerOne strategy that ensures reachability of T with an expected
cost strictly lower than ν. If it exists, it is guaranteed that it will also satisfy the worst-case
requirement against any strategy of P2 thanks to the bijection evoked earlier.

I Theorem 9. The beyond worst-case problem for the shortest path can be solved in pseudo-
polynomial time: polynomial in the size of the underlying game graph, the Moore machine
for the stochastic model of the adversary and the encoding of the expected value threshold,
and polynomial in the value of the worst-case threshold.

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin 211

Memory requirements. The construction of Thm. 9 yields an upper bound that is polyno-
mial in the size of the game and the stochastic model, and in the value of the worst-case
threshold. Indeed, the synthesized strategy is memoryless in the MDP P that is obtained by
taking the product of the expanded game Gµ, such that |Gµ| ≤ |G| · (µ+ 1), with the Moore
machine M(λstoch

2).

s1 s2

s3

1
2

1
2

1

1
⌊
µ

2

⌋

1

1

Figure 3 Family of games requir-
ing linear memory in µ.

We exhibit a family of games (Fig. 3) for which
winning requires memory linear in µ, proving that the
pseudo-polynomial bound is tight. Let µ ∈ {13 + k · 4 |
k ∈ N}. From s1, P1 can ensure reaching the target set
T = {s3} at a guaranteed cost of

⌊
µ
2
⌋
. Yet, in order to

minimize the expected cost of reaching T , P1 should try to
reach it via state s2, as the cost will be diminished. Hence,
P1 should play edge (s1, s2) repeatedly, up to the point
where playing (s1, s3) becomes mandatory to preserve the
worst-case requirement (i.e., when the running sum of
weights becomes equal to

⌊
µ
2
⌋
as the total cost for the

worst outcome will be 2 ·
⌊
µ
2
⌋
< µ). To implement this

strategy, P1 has to play (s1, s2) exactly
⌊
µ
4
⌋
times and

then switch to (s1, s3). This requires memory linear in
the value µ. The expected value threshold ν can be chosen sufficiently low so that P1 is
compelled to use this optimal strategy to satisfy the BWC problem.

I Theorem 10. Memory of pseudo-polynomial size may be necessary and is always sufficient
to satisfy the BWC problem for the shortest path: polynomial in the size of the game and the
stochastic model, and polynomial in the worst-case threshold value.

NP-hardness of the decision problem. We establish that it is very unlikely that a truly-
polynomial (i.e., also polynomial in the size of the encoding of the worst-case threshold) time
algorithm exists, as the decision problem is NP-hard. Actually, it is likely that the problem
is not in NP at all, since we prove a reduction from the Kth largest subset problem which is
known to be NP-hard and commonly thought to be outside NP as natural certificates for
the problem are larger than polynomial [17].

The Kth largest subset problem is as follows. Given a finite set A, a size function
h : A → N0 assigning strictly positive integer values to elements of A, and two naturals
K,L ∈ N, decide if there exist K distinct subsets Ci ⊆ A, 1 ≤ i ≤ K, such that h(Ci) =∑
a∈Ci

h(a) ≤ L for all K subsets. The reduction is as follows. We build a game composed of
two gadgets. The random subset selection gadget stochastically generates paths representing
subsets of A, with the property that all subsets are equiprobable. The choice gadget follows.
In it, P1 decides either to go to a state se, which leads to lower expectations but may be
dangerous for the worst-case requirement, or to go to a state swc, always safe with regard to
the worst-case but inducing an higher expected cost. The crux of the proof is to define values
of the thresholds and the weights such that an optimal (i.e., minimizing the expectation
while guaranteeing a given worst-case threshold) strategy for P1 consists in choosing se only
when the generated subset C ⊆ A satisfies h(C) ≤ L, as asked by the Kth largest subset
problem; and such that this strategy satisfies the BWC problem if and only if there exist K
distinct subsets that verify this bound, i.e., if and only if the answer to the Kth largest subset
problem is Yes.

I Theorem 11. The beyond worst-case problem for the shortest path is NP-hard.

STACS’14

212 Beyond Worst-Case Synthesis in Quantitative Games

References
1 D.P. Bertsekas and J.N. Tsitsiklis. An analysis of stochastic shortest path problems. Math-

ematics of Operations Research, 16:580–595, 1991.
2 T. Brázdil, K. Chatterjee, V. Forejt, and A. Kucera. Trading performance for stability

in Markov decision processes. In Proc. of LICS, pages 331–340. IEEE Computer Society,
2013.

3 L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for
mean-payoff games. Formal Methods in System Design, 38(2):97–118, 2011.

4 V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin. Meet your expectations with guaran-
tees: beyond worst-case synthesis in quantitative games. CoRR, abs/1309.5439, 2013.
http://arxiv.org/abs/1309.5439.

5 K. Chatterjee and L. Doyen. Games and Markov decision processes with mean-payoff parity
and energy parity objectives. In Proc. of MEMICS, LNCS. Springer, 2011.

6 K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and
energy games. In Proc. of FSTTCS, LIPIcs 8, pages 505–516. Schloss Dagstuhl - LZI, 2010.

7 K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and
total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer,
2013.

8 K. Chatterjee and M. Henzinger. An O(n2) time algorithm for alternating Büchi games.
In Proc. of SODA, pages 1386–1399. SIAM, 2012.

9 K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional
quantitative objectives. In Proc. of CONCUR, LNCS 7454, pages 115–131. Springer, 2012.

10 C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM,
42(4):857–907, 1995.

11 L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University,
1997.

12 L. de Alfaro. Computing minimum and maximum reachability times in probabilistic sys-
tems. In Proc. of CONCUR, LNCS 1664, pages 66–81. Springer, 1999.

13 A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torunczyk. Energy and mean-
payoff games with imperfect information. In Proc. of CSL, LNCS 6247, pages 260–274.
Springer, 2010.

14 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. Int. Journal
of Game Theory, 8(2):109–113, 1979.

15 J. Filar and K. Vrieze. Competitive Markov decision processes. Springer, 1997.
16 J.A. Filar, D. Krass, and K.W. Ross. Percentile performance criteria for limiting average

Markov decision processes. Transactions on Automatic Control, pages 2–10, 1995.
17 M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the Theory of

NP-Completeness. Freeman New York, 1979.
18 T. Gawlitza and H. Seidl. Games through nested fixpoints. In Proc. of CAV, LNCS 5643,

pages 291–305. Springer, 2009.
19 P.W. Glynn and D. Ormoneit. Hoeffding’s inequality for uniformly ergodic Markov chains.

Statistics & Probability Letters, 56(2):143–146, 2002.
20 C.M. Grinstead and J.L. Snell. Introduction to probability. American Mathematical Society,

1997.
21 M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett.,

68(3):119–124, 1998.
22 T.M. Liggett and S.A. Lippman. Stochastic games with perfect information and time

average payoff. Siam Review, 11(4):604–607, 1969.
23 S. Mannor and J.N. Tsitsiklis. Mean-variance optimization in Markov decision processes.

In Proc. of ICML, pages 177–184. Omnipress, 2011.

http://arxiv.org/abs/1309.5439

V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin 213

24 M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

25 M. Tracol. Fast convergence to state-action frequency polytopes for MDPs. Oper. Res.
Lett., 37(2):123–126, 2009.

26 M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
Proc. of FOCS, pages 327–338. IEEE Computer Society, 1985.

27 C. Wu and Y. Lin. Minimizing risk models in Markov decision processes with policies
depending on target values. Journal of Mathematical Analysis and Applications, 231(1):47–
67, 1999.

28 U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158:343–359, 1996.

STACS’14

Chordal Editing is Fixed-Parameter Tractable∗

Yixin Cao† and Dániel Marx

Institute for Computer Science & Control, Hungarian Academy of Sciences
yixin@sztaki.hu, dmarx@cs.bme.hu

Abstract
Graph modification problems are typically asked as follows: is there a set of k operations that
transforms a given graph to have a certain property. The most commonly considered operations
include vertex deletion, edge deletion, and edge addition; for the same property, one can define
significantly different versions by allowing different operations. We study a very general graph
modification problem which allows all three types of operations: given a graph G and integers
k1, k2, and k3, the chordal editing problem asks if G can be transformed into a chordal
graph by at most k1 vertex deletions, k2 edge deletions, and k3 edge additions. Clearly, this
problem generalizes both chordal vertex/edge deletion and chordal completion (also
known as minimum fill-in). Our main result is an algorithm for chordal editing in time
2O(k log k) · nO(1), where k := k1 + k2 + k3; therefore, the problem is fixed-parameter tractable
parameterized by the total number of allowed operations. Our algorithm is both more efficient
and conceptually simpler than the previously known algorithm for the special case chordal
deletion.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases chordal graph, parameterized computation, graph modification problems,
chordal deletion, chordal completion, clique tree decomposition, holes, simplicial vertex sets

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.214

1 Introduction

A graph is chordal if it contains no hole, that is, an induced cycle of at least four vertices.
After more than half century of intensive investigation, the properties and the recognition of
chordal graphs are well understood. Their natural structure earns them wide applications,
some of which might not seem to be related to graphs at first sight. During the study
of Gaussian elimination on sparse positive definite matrices, Rose [15, 16] formulated the
chordal completion problem, which asks for the existence of a set of at most k edges
whose insertion makes a graph chordal, and showed that it is equivalent to minimum fill-in.
Balas and Yu [1] proposed a heuristics algorithm for the maximum clique problem by first
finding a maximum (spanning) chordal subgraph. This is equivalent to the chordal edge
deletion problem, which asks for the existence of a set of at most k edges whose deletion
makes a graph chordal. Dearing et al. [5] observed that a maximum chordal subgraph can also
be used to find maximum independent set and sparse matrix completion. This observation
turns out to be archetypal: many NP-hard problems (coloring, maximum clique, etc.) are
known to be solvable in polynomial time when restricted to chordal graphs, and hence admit
a similar heuristics algorithm. Cai [3] considered the parameterized complexity of coloring

∗ Research supported by the European Research Council (ERC) grant 280152 and the Hungarian Scientific
Research Fund (OTKA) grant NK105645.
† Work partially done as a Ph.D. student at Texas A&M University, when he was supported by US NSF
under the grants CCF-0830455 and CCF-0917288.

© Yixin Cao and Dániel Marx;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 214–225

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.214
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Y. Cao and D. Marx 215

problems on graphs close to certain graph classes. In particular, he asked as an open question
on the graphs that can be made chordal by the deletion of k vertices or edges, of which
the edge version was resolved by Marx [11] affirmatively. It should be noted that such a
coloring algorithm needs first the set of k vertices or edges. For chordal graphs, to find
them is equivalent to solving the chordal vertex/edge deletion problem. Though with
slightly different purpose, the inspiration behind [1, 5] and [3] are exactly the same.

All the three problems, unfortunately but understandably, are NP-hard [18, 13, 10].
Therefore, early work of Cai [2] and Kaplan et al. [8] focused on their parameterized
complexity. They proved that that the chordal completion problem can be solved in
time 4k · nO(1), implying that it is fixed-parameter tractable (FPT). Marx [12] showed that
the complementary deletion problems, both edge and vertex versions, are also FPT. Recently,
Fomin and Villanger [7] gave an algorithm for chordal completion with running time
kO(
√

k) · nO(1), that is, with subexponential dependence on k.
The three operations can be combined, and then the question becomes: can a graph be

made chordal by deleting at most k1 vertices and k2 edges and adding at most k3 edges.
This leads us to the chordal editing problem, which generalizes all three aforementioned
problems in a natural way. Note that chordal graphs are hereditary, hence it does not make
sense to add new vertices. The budgets for different operations are not transferable, as
otherwise it degenerates to chordal vertex deletion. Our main result establishes the
fixed-parameter tractability of chordal editing parameterized by k := k1 + k2 + k3.

I Theorem 1.1 (Main result). There is a 2O(k log k) · nO(1) time algorithm for deciding,
given an n-vertex graph G, whether there are a set V− of at most k1 vertices, a set E− of at
most k2 edges, and a set E+ of at most k3 non-edges, such that the deletion of V− and E−
and the addition of E+ make G a chordal graph.

As a corollary, we get a new FPT algorithm for the special case chordal deletion; our
algorithm is far simpler and faster than the algorithm of [12].

Related work. Observing that a large hole cannot be fixed by the insertion of a small
number of edges, it is easy to devise a bounded search tree algorithm for the chordal
completion problem [8, 2]. No such simple argument works for the deletion versions: the
removal of a single vertex/edge suffices to break a hole of an arbitrary length. The way
Marx [12] showed that this problem is FPT is to (1) prove that if the graph contains a large
clique, then we can identify an irrelevant vertex whose deletion does not change the problem;
and (2) observe that if the graph has no large cliques, then it has bounded treewidth, so
the problem can be solved by standard techniques, such as the application of Courcelle’s
Theorem. In contrast, our algorithm uses simple reductions and structural properties, which
reveal a better understanding of the chordal vertex deletion problem, and easily extend
to the more general chordal editing problem.

We remark that there were formulations that consider both edge operations, e.g., the
cluster editing problem [4], as well as the many problems studied by Natanzon et al. [13].
Their objective is to minimize the total number of edge operations, i.e., k2 + k3 in our
notation, which is slightly different from them. As a matter of fact, our problem formulation
is more general: if we can solve the version where the edge additions and edge deletions are
bounded separately, then we can try every combination of k2 and k3 where k2 + k3 satisfies
the given bound.

Our techniques. As a standard opening step, we use the iterative compression method
introduced by Reed et al. [14] and concentrate on the compression problem, where we are

STACS’14

216 Chordal Editing is Fixed-Parameter Tractable

equipped with a hole cover M . The subgraph G−M is chordal and hence admits a clique
tree decomposition. First, we break every short hole by simple branching. The main technical
idea appears in the way we break long holes. We use the clique decomposition to show that
the shortest hole H can be decomposed into a bounded number of segments, where the
internal vertices of each segment, as well as the part of the graph “close” to them behave in
a well-structured and simple way with respect to their interaction with M . To break H, we
have to break some of the segments, and the properties of the segments allow us to show
that we need to consider only a bounded number of canonical separators breaking these
segements. Therefore, we can branch on chosing one of these canonical separators and break
the hole using it, resulting in an FPT algorithm.

Notation. All graphs discussed in this paper shall always be undirected and simple. The
length |H| of a hole H is defined to be the number of edges in it; note that |H| = |V (H)|. If
a pair of vertices is adjacent, we say u ∼ v. By v ∼ X we mean v is adjacent to at least one
vertex of the set X. Two vertex sets X and Y are completely connected if x ∼ y for each
pair of x ∈ X and y ∈ Y . A vertex is simplicial if N(v) induce a clique. The notation NU (v)
stands for the neighbors of v in the set U , i.e., NU (v) = N(v) ∩ U , regardless of whether
v ∈ U or not. We use NH(v) as a shorthand for NV (H)(v).

A set S of vertices separates x and y, and is called an (x, y)-separator if there is no (x,
y)-path in the subgraph G− S; it is minimal if no proper subset of S separates x and y. A
graph is chordal if and only if every minimal separator in it induces a clique [6].

Let T be a tree whose nodes, called bags, correspond to the maximal cliques of a graph
G. With the customary abuse of notation, the same symbol K is used for a bag in T and
its corresponding maximal clique of G. Let T (x) denote the subgraph of T induced by all
bags containing x. The tree T is a clique tree of G if for any vertex x ∈ V (G), the subgraph
T (x) is connected. It is known that the intersection of any pair of adjacent bags Ki and
Kj of T makes a minimal separator; in particular, it is a separator for any pair of vertices
x ∈ Ki \Kj and y ∈ Kj \Ki. A vertex is simplicial if and only if it belongs to exactly one
maximal clique; thus, any non-simplicial vertex appears in some minimal separator(s) [9].

2 Outline of the algorithm

A subset V− ⊆ V (G) is called a hole cover of G if its deletion makes G chordal. We say
that (V−, E−, E+), where V− ⊆ V (G) and E− ⊆ E(G) and E+ ⊆ V (G)2 \E(G), is a chordal
editing set of G if the deletion of V− and E− and the addition of E+, applied successively,
make G chordal. Its size is defined to be the 3-tuple (|V−|, |E−|, |E+|), and we say that it is
smaller than (k1, k2, k3) if all of |V−| ≤ k1 and |E−| ≤ k2 and |E+| ≤ k3 hold true and at
least one inequality is strict. Note that since chordal graphs are hereditary, it does not make
sense to add new vertices. The main problem studied in the paper is formally defined as
follows.

chordal editing (G, (k1, k2, k3))
Input: A graph G and three nonnegative integers k1, k2, and k3.
Task: Either construct a chordal editing set (V−, E−, E+) of G that has size at most

(k1, k2, k3), or report that no such a set exists.

One might be tempted to define the editing problem by imposing a combined quota on
the total number of operations, i.e., a single parameter k = k1 + k2 + k3, instead of three
separate parameters. However, this formulation is computationally equivalent to chordal
deletion in a trivial sense, as vertex deletions are clearly preferable to both edge operations.

Y. Cao and D. Marx 217

0. return if G is chordal or one of k1, k2, and k3 becomes negative;
1. find a shortest hole H;
2. if H is shorter than k + 4 then guess a way to fix it; goto 0.
3. else decompose H into O(k3) segments;

guess a segment and break it;
4. goto 0.

Figure 1 Outline of our algorithm for chordal editing compression.

We use the technique of iterative compression: we define and solve a compression version
of the problem first and argue that this implies the fixed-parameter tractability of the
original problem. In the compression problem a hole cover M of bounded size is given in the
input, making the problem somewhat easier: as G−M is chordal, we have useful structural
information about the graph. Note that the definition below has a slightly technical (but
standard) additional condition, i.e., we are not allowed to delete a vertex in M .

chordal editing compression (G, M, (k1, k2, k3))
Input: A graph G, three nonnegative integers k1, k2, and k3, and a hole cover M of

G whose size is at most k1 + k2 + k3 + 1.
Task: Either construct a chordal editing set (V−, E−, E+) of G such that its size is

at most (k1, k2, k3) and V− is disjoint from M , or report that no such a set
exists.

The set M is called the modulator of this instance. We use k := k1 + k2 + k3 to denote
the total numbers of operations.

We sketch how the technique of iterative compression can be applied to use an algorithm
for chordal editing compression to solve chordal editing.

Let v1, v2, . . . , vn be an arbitrary ordering of V (G), and let Gi be the graph induced by
{v1, . . . , vi}. We try to find a chordal editing set of size (k1, k2, k3) for each Gi. Assume
that we have obtained a solution (V i

−, Ei
−, Ei

+) for Gi, then we can make a hole cover
Xi of Gi by taking V i

−, and an arbitrary endvertex from each edge in Ei
− ∪ Ei

+. Clearly,
Xi ∪ {vi+1} is a hole cover of Gi+1. By guessing the (possibly empty) set Xi

− of vertices of
a hypothetical solution that is in Xi ∪ {vi+1} and deleting them from Gi+1, we make an
instance of chordal editing compression where the graph is Gi+1−Xi

−, the modulator is
M i+1 := Xi∪{vi+1}\Xi

−, and the parameters are (k1−|Xi
−|, k2, k3). Then the compression

algorithm for chordal editing compression can be used to find a chordal editing set
disjoint from M i+1 for Gi+1 −Xi

−. If the answer is “NO,” then we can conclude that the
original instance is also “NO.” Otherwise the obtained solution, together with Xi

−, gives
the solution (V i+1

− , Ei+1
− , Ei+1

+) for Gi+1. We proceed to Gi+2, until we reach Gn which is
G. Hence the original problem is solved with at most n calls of the algorithm for chordal
editing compression.

The main part of this paper will be focused on an algorithm for chordal editing
compression. Its outline is described in Figure 1. We will endeavor to prove

I Theorem 2.1. chordal editing compression is solvable in time 2O(k log k) · nO(1).

Steps 1 and 2 are straightforward: we can find a shortest hole H in polynomial time,
and if |H| ≤ k + 3, then there are only O(k2) ways to fix it. To fix a hole of length
|H| ≥ k + 4 > k3 + 3, we need to delete at least one vertex or edge from it. As we shall see in
Section 3, such a hole can be divided into a bounded number of “segments” and the deletions
have to “break” at least one of the segments (i.e., delete one vertex or edge from it). In our

STACS’14

218 Chordal Editing is Fixed-Parameter Tractable

case, breaking a segment means a strange mixed form of separation: we have to separate two
vertices by removing both edges and vertices. We study this notion of mixed separation on
chordal graphs in Section 4. Finally, we show in Section 5 that there is a bounded number of
canonical ways of breaking a segment and we may branch on choosing one segment and one
of the canonical ways of breaking it. This completes the proofs of Theorem 2.1 and 1.1.

3 Segments

We shall define a hierarchy of vertex sets V0, V1, and V2. Each set is a subset of the preceding
one, and all of them induce chordal subgraphs. Let A denote the set of common neighbors
of the shortest hole H found in step 1, and define AM = A ∩M and A0 = A \M . We can
assume that A induces a clique: if two vertices x, y ∈ A are nonadjacent, then together with
the two nonadjacent vertices v1 and v3 of H, they form a 4-hole (xv1yv3x). The following
observation follows from the fact that H is the shortest hole of G.

I Proposition 3.1. A vertex not in A is adjacent to at most three vertices of H and these
vertices have to be consecutive in H.

The first set is defined by V0 = V (G) \ (M ∪A). Note that {M , V0, A0} partitions V (G),
and H is disjoint from A0. Since |H| ≥ k + 4 > |M |, the hole H intersects both M and
V0. Every component of H −M is an induced path of G0, and there are at most |M | such
paths. Observing |M | = O(k), to decompose H into O(k3) segments as claimed, it suffices to
divide each of these paths into O(k2) parts. Let P denote such a path (v1v2 . . . vp). To avoid
triviality, we may assume p > 3; as a result and by Proposition 3.1, the distance between v1
and vp in G0 is at least 3. A further consequence is v1 6∼ vp.

Let G0 denote the chordal subgraph G[V0], and let T be a fixed clique tree for G0. We
take the unique path of bags P =(K1, . . . , Kq) that connects the disjoint subtrees T (v1)
and T (vp) in T , where K1 ∈ T (v1) and Kq ∈ T (vp). The condition p > 3 implies that q > 2.
The removal of K1 and Kq will separate T into a set of subtrees, one of which contains all
K` with 1 < ` < q; let T1 denote this nonempty subtree. The second set, V1, is defined to be
the union of all bags in T1 and {v1, vp}. By definition and observing that V1 fully contains
P , it induces a connected subgraph.

We then focus on bags in P and their union. (One may have judiciously observed that
vertices in bags of P induce an interval graph.) From the definition of clique tree, we can
infer that v1 and vp appear only in K1 and Kq respectively, while every internal vertex of
P appears in more than one bags of P. For every i with 1 ≤ i ≤ p, we denote by first(i)
(resp., last(i)) the smallest (resp., largest) index ` such that 1 ≤ ` ≤ q and vi ∈ K`, e.g.,
first(1) = last(1) = first(2) = 1 and last(p− 1) = first(p) = last(p) = q. As P is
an induced path, for each i with 1 < i < p, we have

first(i) ≤ last(i− 1) < first(i + 1) ≤ last(i). (1)

For 1 ≤ ` < q, we define S` := K`∩K`+1. For any pair of nonadjacent vertices vi, vj in P , (i.e.,
1 ≤ i < i+1 < j ≤ p,) all minimal (vi, vj)-separators are then {S` | last(i) ≤ ` < first(j)}.

The third set, V2, is defined to be the union of vertices in all induced (v1, vp)-paths in
G0. Since a vertex x is an internal vertex of an induced (v1, vp)-path of G0 if and only if it
is in some minimal (v1, vp)-separator of G0, we have (noting q > 2)

I Proposition 3.2. A vertex is in V2 \ {v1, vp} if and only if it appears in more than one
bags of P. Moreover, V2 \ {v1, vp} ⊆

⋃
1<`<q K`.

Y. Cao and D. Marx 219

The definition of V0 and G0 depend upon the hole H, while the definition of V1 and V2
depend upon both the hole H and the path P . In this paper, we are always concerned with
a particular path of a particular hole, which will be specified before the usage of V1 and V2.

The set V0 \ V1 is easily understood, and we now consider V1 \ V2. Given a pair of
nonadjacent vertices x, y ∈ V2, we say that x lies to the left (resp., right) of y if the bags of P
containing x have smaller (resp., greater) indices than those containing y. If an induced path
of G[V2] consists of three or more vertices, then its endvertices are nonadjacent and have a
left-right relation. This relation can be extended to all pairs of consecutive (and adjacent)
vertices x, y in this path, the one with smaller distance to the left endvertex of the path is
said to the left of the other. It is easy to verify that these two definitions are compatible.

I Lemma 3.3. For any component C of the subgraph induced by V1 \ V2, the set NV0(C)
induces a clique and there exists ` such that 1 < ` < q and NV0(C) ⊆ K`.

Proof. Consider a vertex x ∈ C, which is different from v1 and vp. Since x ∈ V1, it appears
in some bag of T1. Recall that the only bag of T1 that is adjacent to K1 is K2. Thus if x ∈ K1,
then it has to be in K2 as well, which is impossible as x 6∈ V2 (Proposition 3.2). Therefore,
x 6∈ K1; for the same reason, x 6∈ Kq. As a result, NV0(x) ⊆ V1, and then NV0(C) ⊆ V2.

It now suffices to show that NV0(C) induces a clique. Suppose that, for contradic-
tion, there is a pair of nonadjacent vertices x, y ∈ NV0(C). We can find an induced (v1,
vp)-path P ′ through x and y; without loss of generality, let x lie to the left of y, i.e.,
P ′ =(v1 · · ·x · · · y · · · vp). Let x′ and y′ be the first and last vertices in P ′ that are adjacent
to C, and (x′P ′′y′) be an induced path with all internal vertices from C. Note that x′ either
is x or lies to the left of x in P ′ and y′ either is y or lies to the right of y, which imply x′ 6∼ y′.
Thus (v1 · · ·x′P ′′y′ · · · vp) is an induced (v1, vp)-path through C, which is impossible. This
completes the proof. J

Such a component C is called a branch of P , and we say that it is near to vi ∈ P if
there is an ` with first(i) ≤ ` ≤ last(i) satisfying the condition of Lemma 3.3. Since a
component C is near to vi ∈ P if and only if NV0(C) ⊆ N [vi], and applying Proposition 3.1
on any vertex in NV0(C), we conclude that a branch is near to at most three vertices of P . If
a hole passes through C, then C has to be adjacent to M : by Lemma 3.3, NV0(C) is a clique,
thus a hole cannot enter and leave C both via NV0(C). The converse is not necessarily true:
some branch that is adjacent to M might still be disjoint from all holes, e.g., if N(C) is a
clique. This observation inspires us to generalize the definition of simplicial vertices to sets
of vertices.

I Definition 3.4. A set X of vertices is called simplicial in a graph G if N [X] induces a
chordal subgraph of G and N(X) induces a clique of G.

It is easy to verify that a simplicial set of vertices is disjoint from all holes. This suggests
that simplicial sets are irrelevant to chordal editing problem and we may never want to
add/delete edges incident to a vertex in a simplicial set. However, this is not true in general,
and we may need to add/delete such edges if N(X) was modified. As characterized by the
following lemma, this is the only reason for touching X in the solution: set X will only
concern us after N(X) has been changed. We say that a chordal editing set (V−, E−, E+)
edits a set X ⊂ V (G) of vertices if either V− contains a vertex of X or E− ∪E+ contains an
edge with at least one endpoint in X. We use a classic result of Dirac [6] stating that the
graph obtained by identifying two cliques of the same size from two chordal graphs is also
chordal.

STACS’14

220 Chordal Editing is Fixed-Parameter Tractable

I Lemma 3.5. A minimal chordal editing set edits a simplicial set U only if it removes at
least one edge induced by N(U).

Proof. Let (V−, E−, E+) be a minimal editing set of G such that E− does not contain any
edge induced by N(U). We restrict the editing set to the subgraph G−U , i.e., we consider the
set (V− \U, E− \ (U ×V (G)), E+ \ (U ×V (G))), and let G′ be the graph obtained by applying
it to G. Clearly G′ −U = G−U is chordal, where N(U) \ V− induces a clique. Also chordal
is the subgraph of G′ induced by N [U] \ V−. Both of them contain the clique N(U) \ V−.
Since G′ can be obtained from them by identifying N(U)\V−, it is also chordal. Then by the
minimality of (V−, E−, E+), it must be the same as (V−\U, E−\(U×V (G)), E+\(U×V (G))),
and this proves this lemma. J

Now we are ready to define segments of P , which are delimited by some special vertices
called junctions. By definition, a branch is simplicial in G0, but unnecessarily in G. We say
that a vertex w 6∈ K is adjacent to a bag K if w is adjacent to at least one vertex in K.

I Definition 3.6 (Segment). A vertex v ∈ P is called a junction (of P) if (1) some bag K

that contains v is adjacent to M \AM ; (2) some branch near to v is adjacent to M \AM ;
(3) some branch near to v is not simplicial in G; or (4) NV2(v) is not completely connected
to A. A sub-path (vs · · · vt) of P is called a segment, denoted by [vs, vt], if vs and vt are the
only junctions in it.

We point out that the four types are not exclusive, and one junction might be in more
than one types. For a junction v of type (1) or (2), we say that the vertex in M \AM used
in its definition witnesses it.

I Remark. Informally speaking, for a junction v of type (1) or (2), there is a connection from
v to M \AM that is local to v in some sense; for a junction v of type (3) or (4), there is a
hole near to v, and its disposal might interfere with that of H. If another hole H ′ intersects
a segment [vs, vt], then H ′ has to go through the whole segment, or more specifically, it
necessarily enters and exits the segment via N [vs] and N [vt], respectively.

The definition of junction and segment extends to all paths of H−M . In polynomial time,
we can construct V0 for H and V1, V2 for each path P of H −M , from which all junctions
of H can be identified. For each path of H −M , the endvertices are adjacent to M \AM ,
hence junctions. As a result, every vertex in V (H) \M is contained in some segment, and in
each path of H −M , the number of segments is the number of junctions minus one.

We are now ready for the main result of this section that gives a cubic bound on the
number of segments of H. It should be noted the constants—both the exponent and the
coefficient—in the following statement are not tight, and the current values simplify the
argument significantly. Recall that a vertex not in A sees at most three vertices in H, and
they have to be consecutive.

I Theorem 3.7. If H contains more than |M | · (12k2 + 92k + 82) segments, then we can
either find a vertex that has to be in V−, or return “NO.”

Proof. We show that H contains at most |M | · (12k2 + 92k + 82) junctions. Recall that there
are at most |M | paths in H −M . To obtain a contradiction, we suppose that some path P of
H −M contains 12k2 + 92k + 82 junctions. Let us first attend to junctions of type (1) in P .

I Claim 1. Each w ∈M \AM witness at most 15 junctions of type (1).

Y. Cao and D. Marx 221

Proof. Suppose, for contradiction, that 15 vertices in H appears in some bag adjacent to
w; let X be this set of vertices. Assume first that X is consecutive. At most 3 of them
are adjacent to w, and they are consecutive in H. Thus, we can always pick 6 consecutive
vertices from X that are disjoint from NH(w); let them be {vi, . . . , vi+5}. By definition,
there are two vertices u1, u2 ∈ V0 ∩ N(w) such that u1 ∼ vi and u2 ∼ vi+5. It is easy to
verify that u2 6∼ vi+2 and u1 6∼ vi+3 and u1 6∼ u2. Therefore, we can find an induced (u1,
u2)-path with all interval vertices from {vi, . . . , vi+5}. The length of this path is at least 3,
and hence it makes a hole with w of length at most 9. Assume now that X is not consecutive
in P , then we can pick a pair of nonadjacent vertices vi, vj from X such that the v` 6∈ X

for every i < ` < j. There are two vertices u1, u2 ∈ V0 ∩ N(w) such that u1 ∼ vi and
u2 ∼ vj . It is easy to verify that (wu1vi · · · vju2w) is a hole. By assumption that |X| ≥ 15,
we have j − i ≤ |H| − 13. In either case, we end with a hole strictly shorter than H. The
contradictions prove this claim. y

I Claim 2. If some vertex w ∈M \AM witnesses 5k + 80 junctions of the first two types in
P , then we can return “NO.”

Proof. Let X be this set of junctions, we order them according to their indices in P and
group each consecutive five from the beginning. We omit groups that contain junctions of
type (1) witnessed by w, and in each remaining group, we pair the second and last vertices
in it. According to Claim 1, we end with at least k + 1 pairs, which we denote by (v`1 , vr1),
· · · , (v`k+1 , vrk+1), · · · .

For each pair (v`j
, vrj

), where 1 ≤ j ≤ k + 1, we construct a hole Hj as follows. By
definition, there is a branch C`j

(resp., Crj
) whose neighborhood in H is a proper subset of

{v`j−1, v`j
, v`j+1} (resp., {vrj−1, vrj

, vrj+1}). By the selection of the pair v`j
and vrj

(two
vertices of X have been skipped in between), they are nonadjacent, and rj−`j > 2. Therefore,
C`j

and Crj
are distinct and necessarily nonadjacent. Since C`j

induces a connected subgraph
and is adjacent to both w and {v`j−1, v`j , v`j+1}, we can find an induced (w, v`j+1)-path
P`j

with all internal vertices from C`j
∪ {v`j−1, v`j

}. Likewise, we can obtain an induced
(w, vrj−1)-path Prj with all internal vertices from Crj−1 ∪ {vrj , vrj+1}. These two paths P`j

and Prj
, together with (v`j+1 . . . vrj−1), make the hole Hj : we have `j + 1 < rj − 1; for each

`j + 1 ≤ s ≤ rj − 1, vs 6∼ w; and for each `j + 1 < s < rj − 1, vs 6∼ C`j
, Crj

. This hole goes
through w. This way we can construct k + 1 holes, and it can be easily verified that they
intersect only in w. Since we are not allowed to delete w, we cannot fix all these holes by at
most k operations. Thus we can return “NO.” y

If Claim 2 applies, then we are already done; otherwise, there are at most |M | · (5k + 80)
junctions of the first two types. We proceed by considering the set B of junctions that are
only of type (3) or (4) but not of the first two types. Its number is at least

(12k2 + 92k + 82)− (5k + 80) · |M | ≥ 7k2 + 7k + 1.

We order B according to their indices in P , and let bi denote the index of the ith vertex of
B in P . For each 0 ≤ i ≤ k(k + 1), we use the (7i + 3)th vertex of B to construct a hole Hi.
Then we argue that this collection of holes either allows us to identify a vertex that has to
be in the solution, or conclude infeasibility.

The first case is when there is a pair of nonadjacent vertices x ∈ NV2(vb7i+3) and
y ∈ A. In this case we can assume that x is adjacent to neither vb7i+1 nor vb7i+5 ; otherwise
(xvb7i+1yvb7i+3x) or (xvb7i+3yvb7i+5x) is a 4-hole, which contradicts the fact that H is the
shortest. In other words, x only appears in some bag between Klast(b7i+1) and Kfirst(b7i+5);
on the other hand, by definition of V2, it appears in at least two of these bags. There is thus

STACS’14

222 Chordal Editing is Fixed-Parameter Tractable

an induced (vb7i+1 , vb7i+5)-path Pi via x in G[V2]. Starting from x, we traverse Pi to the left
until the first vertex x1 that is adjacent to y; the existence of such a vertex is ensured by the
fact that y ∼ vb7i+1 . Similarly, we find the first neighbor x2 of y in Pi to the right of x. Then
the sub-path of Pi between x1 and x2, together with y, gives the hole Hi. By construction,
no vertex of Hi − y is adjacent to vb7i

or vb7i+6 .
In the other case, some branch Ci near to vb7i+3 is not simplicial in G. By definition,

either the subgraph induced by N(Ci) is not a clique, or the subgraph induced by N [Ci] is not
chordal. Since vb7i+3 does not satisfy the conditions of type (1) and (2), N(Ci) ∩M ⊆ AM ,
i.e., N(Ci) \ V0 ⊆ A. On the other hand, according to Lemma 3.3, N(Ci) ∩ V0 induces a
clique. Therefore, there must be a pair of nonadjacent vertices x ∈ N(Ci) ∩ V0 and y ∈ AM .
As Ci is near to vb7i+3 , it must hold that x ∈ N(vb7i+3); this has already been discussed
in the previous case. Suppose now that N(Ci) induces a clique and there is a hole Hi in
N [Ci]. We have seen that N [Ci] ∩M = AM , thus this hole Hi intersects AM ; let w be a
vertex in V (Hi) ∩AM . If Hi is disjoint from A0, then no vertex in Hi \M can be adjacent
to vb7i or vb7i+5 . Otherwise, it contains some vertex u ∈ A0; noting that A induces a clique,
Hi ∩ A = {u, w}. Moreover, N(Ci) ∩ V2 is in the neighborhood of vb7i+3 and therefore
N(Ci) ∩ V2 and N(Cj) ∩ V2 are disjoint for i 6= j: the existence of a vertex x ∈ V2 adjacent
to both Ci and Cj would contradict Proposition 3.1 (noting that the distance of vb7i+3 and
vb7j+3 is greater than 2 on the hole H).

In sum, we have a set H of at least k(k + 1) + 1 distinct holes such that (1) each hole
in H contains at most one vertex of A0, and (2) the intersection of any pair of them is in
A. Recall that each hole has length at least k + 4, hence cannot be fixed by edge additions
only. If there is a u ∈ A0 contained in at least k + 1 holes of H, then we have to put u into
V−; otherwise we have to delete distinct elements (edges or vertices) to break different holes,
which is impossible. Now assume that no such a vertex u exists, then there must be k + 1
holes that intersect only in M , which allow us to return “NO.” J

4 Mixed separators in chordal graphs

Given a pair of nonadjacent vertices x, y of a graph, we say that a pair of vertex set VS

and edge set ES is a mixed (x, y)-separator if the deletion of VS and ES leaves x and y in
two different components; its size is defined to be (|VS |, |ES |). A mixed (x, y)-separator is
inclusive-wise minimal if there exists no other mixed (x, y)-separator (V ′S , E′S) such that
V ′S ⊆ VS and E′S ⊆ ES and at least one containment is proper.
I Lemma 4.1. Let x and y be a pair of nonadjacent vertices in a chordal graph F . For any
pair of nonnegative integers (a, b), we can find a mixed (x, y)-separator of size at most (a, b)
or asserts its nonexistence in time 3a+b+1 · |V (F)|O(1).

Another interpretation of this lemma is
I Corollary 4.2. Let x and y be a pair of nonadjacent vertices in a chordal graph F . For any
nonnegative integer a ≤ k1, in time 3k1+k2+1 · |V (F)|O(1) we can find the minimum number
b such that b ≤ k2 and there is a mixed (x, y)-separator of size (a, b) or assert that there is
no mixed (x, y)-separator of size (a, k2).

5 Proof of Theorem 2.1

We are now ready to put everything together and finish the analysis of the algorithm. We say
that a chordal editing set is minimum if there exists no chordal editing set with a smaller size.
Note that a segment is contained in a unique path of H −M , which determines V1 and V2.

Y. Cao and D. Marx 223

Proof of Theorem 2.1. Let (V ∗−, E∗−, E∗+) be a minimum chordal editing set of G of size no
more than (k1, k2, k3). We start from a closer look at how it breaks H; by Theorem 3.7, we
may assume that H contains O(k3) segments. There are three options for breaking H. In
the first case, V ∗− contains some junction, or E∗− contains some edge of H that is in M × V0.
In this case, we can branch on including one of these vertices or edges into the solution;
there are O(k3) of them. Otherwise, we need to delete an internal vertex or edge from some
segment. Let d = 2k + 4. In the second case, there is either (1) some i with s < i ≤ s + d

such that vi ∈ V ∗− or vi−1vi ∈ E∗−; or (2) some j with t − d ≤ j < t such that vj ∈ V ∗− or
vjvj+1 ∈ E∗−. In particular, if the segment to be broken satisfies t− s ≤ 2d, then we must be
in this case. If one of the two aforementioned cases is correct, then we can identify one vertex
or edge of the solution by branching. In total, there are O(k4) branches we need to try.

Henceforth, we assume that none of these two cases holds. We still have to delete at least
one vertex or edge from H; this vertex or edge must belong to some segment [vs, vt] with
t− s > 2d. For such a segment, we consider V1 and V2 corresponding to it. For any pair of
indices i, j with s ≤ i < i + 3 ≤ j ≤ t, we use U[i,j] to denote the union of the set of bags in
the nonempty subtree of T − {Klast(i), Kfirst(j)} that contains {Klast(i)+1, . . . , Kfirst(j)−1}
as well as {vi, vj}. Let G[i,j] be the subgraph induced by U[i,j].

I Claim 3. There must be some segment [vs, vt] such that vertices vs+d and vt−d are
disconnected in G[s,t] − V ∗− − E∗−.

Proof. We prove by contradiction. For a segment [vs, vt] with t− s ≤ 2d, the path (vs · · · vt)
remains intact in G− V ∗− −E∗−. Thus it suffices to consider segments [vs, vt] with t− s > 2d.
Let s′ = s + d and t′ = t− d. For such a segment, we can find an induced (vs, vt)-path P[s,t]
in G[s,t] − V ∗− − E∗−, which is also an (unnecessarily induced) path of G. This path has to
visit every bag K` with last(s) ≤ ` ≤ first(t). In other words, in the original graph G,
the path P[s,t] intersects every N [vi] with s < i ≤ s′. Since we delete at most k2 ≤ k edges
each of which is adjacent to a single vertex in the sub-path (vs · · · vs′), and (d− k2) ≥ k + 4,
there must be a vertex vs′′ with s′′ ≥ s + k + 4 that is not incident to any edge in E∗−. This
vertex is either in or adjacent to P[s,t] in G[s,t] − V ∗− − E∗−. Likewise, we can find a vertex
vt′′ with t′′ ≤ t− k − 4 that is in or adjacent to P[s,t] in G[s,t] − V ∗− − E∗−. We now change
the path into (vs · · · vs′′P ′vt′′ · · · vt), where P ′ is an induced (vs′′ , vt′′)-path with all internal
vertices from P[s,t].

Let s′′′ with s ≤ s′′′ ≤ s′′ be the smallest index such that vs′′′ is adjacent to P ′. We
argue that s′′′ ≥ s′′ − 2. Otherwise, the neighbor x of vs′′′ in P ′ (noting that it is not in
A) is to the left of vs′′ . Any path from vs′′′ to vt in G0 has to visit N [vs′′]. Since no edge
incident to vs′′ is deleted, the path P ′ has a chord, which is impossible. Similarly, let t′′′ with
t′′ ≤ t′′′ ≤ t be the greatest such that vt′′′ is adjacent to P ′, and we have t′′′ ≤ t′′ + 2. We
can take an induced (vs′′′ , vt′′′)-path of G− V ∗− − E∗− with all internal vertices from P ′, and
extend it by including (vs · · · vs′′′) and (vt′′′ · · · vt) to make a chordless (vs, vt)-path P ′[s,t] in
G− V ∗− − E∗−. The length of this path is at least 2(k + 4− 2) ≥ 2k3 + 4.

Therefore, for each segment [vs, vt] of H, we have obtained an induced (vs, vt)-path P ′[s,t]
in G− V ∗− − E∗−. Concatenating all these paths, as well as edges of H in M × V (G), we get
a cycle C. To verify that C is a hole, it suffices to verify that the internal vertices of P ′[s,t] is
disjoint and nonadjacent to other parts of C. On the one hand, no internal vertex of P ′[s,t] is
adjacent to M \ AM by definition (C is disjoint from A). On the other hand, all internal
vertices of P ′[s,t] appear in the subtree that contains Klast(s+4) in T −{Klast(s+3), Kfirst(t−3)},
while no vertex in the (vt, vs)-path in C does. This verifies that C is a hole of G− V ∗− −E∗−.
Since the length of C is longer than 2k3 + 4, there must be a hole after the addition of E∗+,
which contains at most k3 edges. This contradiction proves the claim. J

STACS’14

224 Chordal Editing is Fixed-Parameter Tractable

In other words, (V ∗−, E∗−) contains some inclusive-wise minimal mixed ({vs, . . . , vs′},
{vt′ , . . . , vt})-separator (V ∗S , E∗S) in G[s,t]. The resulting graph obtained by deleting (V ∗S , E∗S)

from G[s,t] is characterized by the following claim.

I Claim 4. Let (VS , ES) be an inclusive-wise minimal mixed (vs′ , vt′)-separator in G[U[s′,t′]].
For any pair of indices s′′, t′′ with s ≤ s′′ ≤ s′ < t′ ≤ t′′ ≤ t, both X \ {vs′′} and Y \ {vt′′}
are simplicial in G′ = G−VS −ES , where X and Y be the components of G[s′′,t′′]−VS −ES

containing vs′′ and vt′′ , respectively.

Proof. It is easy to verify that NG′(X \ {vs′′}) ⊆ (Klast(s′′) ∩V2)∪A. The set Klast(s′′) ∩V2
is completely connected to A; otherwise s′′ + 1 is a junction, which is impossible. Let
X ′ = NG′ [X \ {vs′′}]; a vertex in X ′ is either in V2, some branch, or A. We now verify that
X ′ induces a chordal subgraph of G′, which means that X \ {vs′′} is simplicial in G′. Since
(VS , ES) is inclusive-wise minimal, no edge in ES is induced by X or Y . As a result, for
every branch C near to some vertex vi with s < i < t, C ∩X ′ is simplicial. On the other
hand, by definition of segments, V2 ∩X ′ is completely connected to A. Therefore, G′[X ′] is
chordal. A symmetric argument applies to Y \ {vt′′}. y

We consider the subgraph obtained from G by deleting (V ∗S , E∗S), i.e., G′ = G− V ∗S −E∗S .
Note that (V ∗− \ V ∗S , E∗− \ E∗S , E∗+) is a minimum chordal editing set of G′.

I Claim 5. For any mixed ({vs, . . . , vs′}, {vt′ , . . . , vt})-separator (V ∗S , E∗S) of size at most
(|V ∗S |, |E∗S |) in G[s,t], substituting (VS , ES) for (V ∗S , E∗S) in (V ∗−, E∗−, E∗+) gives another mini-
mum editing set to G.

Proof. We first argue the existence of some vertex vs′′ with s ≤ s′′ ≤ s′ such that E− contains
no edge induced by Klast(s′′). For each s′′ with s ≤ s′′ ≤ s′, since last(s′′) ≥ first(s′′ + 1)
and every vertex in them is adjacent to at most 3 vertices of H (Proposition 3.1), bags
Klast(s′′) and Klast(s′′+2) are disjoint. In particular, an edge cannot be induced by both
Klast(s′′) and Klast(s′′+2). Suppose that E− contains an edge induced by Klast(s′′) for each
s′′ with s ≤ s′′ < s′, then we must have |E−| > (s′−s)/2 ≥ k2, which is impossible. Likewise,
we have some vertex vt′′ with t′ ≤ t′′ ≤ t such that E− contains no edge induced by Klast(t′′).
By Claim 4, it follows that every vertex of U[s′′,t′′] is in a simplicial set of G − V ∗S − E∗S .
Since (V ∗− \ V ∗S , E∗− \E∗S , E∗+) is a minimum chordal editing set to G− V ∗S −E∗S , we have by
Lemma 3.5 that (V ∗− \ V ∗S , E∗− \ E∗S , E∗+) does not edit any vertex of U[s′′,t′′].

Suppose that there is a hole C in the graph obtained by applying ((V ∗− \ V ∗S) ∪ VS , (E∗− \
E∗S) ∪ ES , E∗+) to G. By construction, C contains a vertex of U[s′,t′] ⊆ U[s′′,t′′]. However,
by Claim 4, every vertex of U[s′′,t′′] is in some simplicial set of G − VS − ES and, as
(V ∗− \ V ∗S , E∗− \ E∗S , E∗+) does not edit U[s′′,t′′], every such vertex is in a simplical set after
applying ((V ∗− \ V ∗S) ∪ VS , (E∗− \E∗S) ∪ES , E∗+) to G. Thus no vertex of U[s′′,t′′] is on a hole,
a contradiction. y

For any segment [vs, vt], we can use Corollary 4.2 to find all possible sizes of minimum
mixed ({vs, . . . , vs′}, {vt′ , . . . , vt})-separator. There are at most k1 of them. By Claim 5,
one of them can be used to compose a minimum chordal editing set. In each iteration, we
branch into O(k4) instances to break a hole, and in each branch decreases k by at least 1.
The runtime is thus O(k)4k · nO(1) = 2O(k log k) · nO(1). This completes the proof. J

Acknowledgement. We thank Sylvain Guillemot for a careful reading of an early version
of this paper.

Y. Cao and D. Marx 225

References
1 E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph. SIAM J. Comput.,

15(4):1054–1068, 1986.
2 L. Cai. Fixed-parameter tractability of graph modification problems for hereditary proper-

ties. Inf. Proc. Letters, 58(4):171–176, 1996.
3 L. Cai. Parameterized complexity of vertex colouring. Discrete Appl. Math., 127(3):415–429,

2003.
4 Y. Cao and J. Chen. Cluster editing: kernelization based on edge cuts. Algorithmica,

64(1):152–169, 2012.
5 P. Dearing, D. Shier, and D. Warner. Maximal chordal subgraphs. Discrete Appl. Math.,

20(3):181–190, 1988.
6 G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25(1):71–76, 1961.
7 F. V. Fomin and Y. Villanger. Subexponential parameterized algorithm for minimum fill-in.

SIAM J. Comput., 42(6):2197–2216, 2013. A preliminary version appeared in SODA 2012.
8 H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems

on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput., 28(5):1906–
1922, 1999. A preliminary version appeared in FOCS 1994.

9 J. G. Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for reordering sparse matrices
for parallel factorization. SIAM J. Sci. Comput., 10(6):1146–1173, Nov. 1989.

10 J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is
NP-complete. J. Comput. System Sci., 20(2):219–230, 1980.

11 D. Marx. Parameterized coloring problems on chordal graphs. Theor. Comp. Sci.,
351(3):407–424, 2006.

12 D. Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768, 2010.
13 A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modifica-

tion problems. Discrete Appl. Math., 113(1):109–128, 2001. A preliminary version appeared
in LNCS vol. 1665, WG 1999.

14 B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper. Res. Letters,
32(4):299–301, 2004.

15 D. J. Rose. Triangulated graphs and the elimination process. J. Math. Anal. Appl.,
32(3):597–609, 1970.

16 D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. In R. C. Reed, editor, Graph Theory and Computing, pages
183–217. Academic Press, New York, 1973.

17 J. Xue. Edge-maximal triangulated subgraphs and heuristics for the maximum clique
problem. Networks, 24(2):109–120, 1994.

18 M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Discrete
Methods, 2(1):77–79, 1981.

STACS’14

Online Dynamic Power Management with Hard
Real-Time Guarantees∗

Jian-Jia Chen1, Mong-Jen Kao2, D. T. Lee2,3, Ignaz Rutter1, and
Dorothea Wagner1

1 Faculty for Informatics, Karlsruhe Institute of Technology (KIT), Germany
j.chen@kit.edu, rutter@kit.edu, dorothea.wagner@kit.edu

2 Institute for Information Science, Academia Sinica, Taipei, Taiwan
mong@iis.sinica.edu.tw

3 Department of Computer Science and Information Engineering, National
Chung-Hsing University, Tai-Chung, Taiwan
dtlee@ieee.org

Abstract
We consider the problem of online dynamic power management that provides hard real-time
guarantees for multi-processor systems. In this problem, a set of jobs, each associated with an
arrival time, a deadline, and an execution time, arrives to the system in an online fashion. The
objective is to compute a non-migrative preemptive schedule of the jobs and a sequence of power
on/off operations of the processors so as to minimize the total energy consumption while ensuring
that all the deadlines of the jobs are met. We assume that we can use as many processors as
necessary. In this paper we examine the complexity of this problem and provide online strategies
that lead to practical energy-efficient solutions for real-time multi-processor systems.

First, we consider the case for which we know in advance that the set of jobs can be scheduled
feasibly on a single processor. We show that, even in this case, the competitive factor of any
online algorithm is at least 2.06. On the other hand, we give a 4-competitive online algorithm
that uses at most two processors. For jobs with unit execution times, the competitive factor of
this algorithm improves to 3.59.

Second, we relax our assumption by considering as input multiple streams of jobs, each of
which can be scheduled feasibly on a single processor. We present a trade-off between the energy-
efficiency of the schedule and the number of processors to be used. More specifically, for k given
job streams and h processors with h > k, we give a scheduling strategy such that the energy
usage is at most 4 ·

⌈
k

h−k
⌉
times that used by any schedule which schedules each of the k streams

on a separate processor. Finally, we drop the assumptions on the input set of jobs. We show
that the competitive factor of any online algorithm is at least 2.28, even for the case of unit job
execution times for which we further derive an O(1)-competitive algorithm.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Energy-Efficient Scheduling, Online Dynamic Power Management

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.226

1 Introduction

Reducing power consumption and improving energy efficiency have become important
design requirements in computing systems. For mobile devices, effective power management

∗ This work was supported in part by National Science Council (NSC), Taiwan, under Grants NSC101-
2221-E-005-026-MY2 and NSC101-2221-E-005-019-MY2.

© Jian-Jia Chen, Mong-Jen Kao, D.T. Lee, Iganz Rutter, and
Dorothea Wagner;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 226–238

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.226
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J.-J. Chen, M.-J. Kao, D. T. Lee, I. Rutter, and D. Wagner 227

can considerably extend the standby period and prolong battery lifetime. For large-scale
computing clusters, appropriately powering down the idling processing units can considerably
reduce the electricity bill.

In order to increase the energy efficiency, two different mechanisms have been introduced
to reduce the energy consumption. (1) Power-down Mechanism: When a processor is idling,
it can be put into a low-power state, e.g., sleep or power-off. While the processor consumes
less power in these states, a fixed amount of energy is required to switch the system back to
work. In the literature, the problem of deciding the sequence of state transitions is referred to
as dynamic power management (DPM). (2) Dynamic Speed Scaling: The concept of dynamic
speed scaling refers to the flexibility provided by a processor to adjust its processing speed
dynamically. The rate of energy consumption is typically described by a convex function of
the processing speed. This feature is also referred to as dynamic voltage frequency scaling
(DVFS), following its practical implementation scheme.

The majority of previous work regarding energy-efficient scheduling focuses mainly on uni-
processor systems. For systems that support power-down mechanism, Baptiste [5] considered
hard real-time jobs, i.e., deadline misses of jobs are not allowed, with unit execution times
and proposed the first polynomial-time algorithm that computes an optimal strategy for
turning on and powering off a processor. In a follow-up paper, Baptiste et al. [6] further
extended the result to jobs with arbitrary execution times and reduced the time complexity.
When considering workload-conserving scheduling, i.e., the system is not allowed to enter
low-power states when the ready queue is not empty, Augustine et al. [4] considered systems
with multiple low-power states and provided online algorithms.

Dynamic speed scaling was introduced to allow computing systems to reach a balance
between high performance and low power consumption dynamically. Hence, scheduling
algorithms that assume dynamic speed scaling, e.g., Yao et al. [30], usually execute jobs as
slowly as possible while ensuring that timing constraints are met. When the energy required
to keep the processor active is not negligible, however, executing jobs too slowly may result
in more energy consumption. For most realistic power-consumption functions, there exist a
critical speed, which is the most energy-efficient for job execution [12,22].

Irani et al. [22] initiated the study of combining both mechanisms. For offline energy-
minimization, they presented a 2-approximation. For the online version, they introduced a
greedy procrastinating principle, which enables online algorithms that have certain properties
and that are designed for speed scaling without power-down mechanism to additionally
support the power-down mechanism. The idea behind this principle is to postpone job
execution as much as possible in order to bundle workload for batch execution. The usage of
job procrastination with dynamic speed scaling for periodic tasks has later been explored
extensively in a series of studies [11,12,26].

The combination of the power-down mechanism with dynamic speed scaling suggests the
philosophy of racing-to-idle: Execute jobs at higher speeds and gain longer quality sleeping
intervals. Albers and Antoniadis [1] showed that the problem of minimizing the energy
consumption for speed scaling with a sleep state is NP-hard and provided a 4

3 -approximation.
All of the aforementioned work mainly focuses on uni-processor systems. By contrast, for

multi-processor systems, relatively fewer results are known. Demaine et al. [17] considered
unit jobs and presented a polynomial-time algorithm based on dynamic programming for
power-down mechanism. Approximations for several variations were also presented. In a
follow-up paper, Demaine and Zadimoghaddam [18] presented logarithmic approximations for
general formulations of scheduling problems with submodular objective functions, including
energy consumption. Albers et al. [2] considered dynamic speed scaling with job migration

STACS’14

228 Online Dynamic Power Management with Hard Real-Time Guarantees

and presented polynomial-time algorithms based on maximum flow problems.
As scheduling to meet deadline constraints is a long-standing difficult problem [14–16,20],

additional augmentation on the hardware level, e.g., speed of the processors or number of the
machines, has been considered to provide practical solutions. See, for example, [3, 8, 10,28].
In practice, machine augmentation follows the trends in multi-core systems, while speed
augmentation has been shown its limits as overclocking is difficult to achieve due to the
dramatic increase of power consumption and thermal dissipation.

Our Focus and Contribution. In this paper, we examine the problem of online dynamic
power management that provides hard real-time guarantees, i.e., each job must finish its
execution before its deadline, for multi-processor systems. We assume a system equipped
with multiple processors that are identical and that operate independently from each other,
and we can use as many processors as necessary. Job executions can be preempted but
can not be migrated, i.e., the execution of a job must be done on the same processor. The
objective is to compute a schedule of the jobs and a sequence of switch on/off operations
of the processors so as to minimize the total energy consumption. For this problem model
we give an elaborate study that leads to practical energy-efficient solutions for real-time
multi-processor systems.

First, we consider the case for which we know in advance that the set of jobs can be
scheduled feasibly on one processor. We show that the competitive factor of any online
algorithm is at least 2.06, even for this restricted case. Then we propose the idea of energy-
efficient anchors, which are defined for each of the jobs, to indicate a proper moment for
which the online scheduler should no longer postpone the execution of the jobs. We show
that this idea leads to a 4-competitive online algorithm which uses at most two processors.
For jobs with unit execution times, we show that the competitive factor improves to 3.59.

Second, we relax the conditions of our assumption by considering as input multiple
streams of jobs, each of which can be scheduled feasibly on one processor. We present a
simple strategy, as a byproduct of our first algorithm, to allow a trade-off between the number
of processors we have and the energy-efficiency of the resulting schedule. More specifically,
for k given job streams and h processors with h > k, we give a scheduling strategy such that
the energy usage is at most 4 ·

⌈
k

h−k

⌉
times that used by any schedule which schedules each

of the k streams on a separate processor.
The above algorithms lead to practical energy-efficient solutions in real-time systems

for which partitioned scheduling with recurrent real-time task model is adopted [7, 9]. The
recurrent task models, such as the sporadic real-time task model [27] or the arrival curve model
in Real-Time Calculus (RTC) [29], describe an infinite sequence of job arrivals, generated by
the tasks. Under such a model, the worst-case characteristics of job arrivals are specified.
For example, a sporadic real-time task defines the minimum inter-arrival time of any two
consecutive jobs. With the partitioned scheduling scheme, it is required that all the jobs
generated by a recurrent task be executed on a single processor. In many cases, however, the
real-time system needs to provide hard deadline guarantees and verifying the system could
be very costly, and the goal is to make the schedule more efficient by using more processors
without going through the costly verification steps. Therefore, even though the partitioned
scheduling scheme is more restricted in the sense that the jobs are partitioned in advance,
it has been widely adopted in practical real-time systems [7, 9] as it incurs no additional
overhead for ensuring the feasibility of the resulting online schedule. Our algorithms provide
an online energy-efficient solution with a reasonable trade-off for this situation.

Finally we drop the assumptions on the schedulability as well as the number of job

J.-J. Chen, M.-J. Kao, D. T. Lee, I. Rutter, and D. Wagner 229

streams and consider general set of jobs with unit execution times.
We show that the competitive factor of any online algorithm is at least 2.28. For the

positive side, we present a O(1)-competitive algorithm, which combines ideas from different
results and is interesting in its own right.

2 Notations and Problem Definition

In this section, we formally define the scheduling problem we consider and introduce notations
that will be used throughout this paper. Each job, say, j, is associated with three non-negative
integral parameters, namely, the arrival time aj , the execution time cj , and the deadline
dj . The arrival time of a job is the time it arrives to the system. The execution time is the
amount of CPU time it requires to finish its execution, and the deadline is the latest moment
at which the job must be completed. We assume that cj and dj are known at the moment
when j arrives to the system.

For notational brevity, we use a triple j = (aj , dj , cj) to denote the corresponding
parameters for any job j. We say a job j is a unit job if cj = 1 and we write j = (aj , dj). In
addition, a job j is said to be urgent if cj = dj − aj .

We make the following assumptions on the processors. When a processor is off, it cannot
execute any job and consumes no power. Switching on, or, alternatively, turning on, a
processor requires Ew units of energy. When a processor is on, it can execute jobs at a fixed
speed. We say that a processor is in the busy state if it is executing a job. If a processor is on
but not executing any job, then it is said to be in the standby state. The energy consumed
by a processor per unit of time, i.e., the power consumption, is ψb when it is busy and ψσ
when it is in standby, respectively. We assume that ψσ ≤ ψb. Initially all processors are off.

The break-even time, denoted by B, is defined to be Ew/ψσ. Intuitively, this corresponds
to the amount of time a processor has to stay in standby in order to have the same energy
consumption for switching on a processor. The break-even time is an important concept that
has been widely used for ski-rental-related problems [25] and dynamic power management
algorithms in the literature, e.g., [21–23].

Below we define the concept of job scheduling. LetM = {M1,M2, . . . ,Mm} be the set
of processors and J be a set of jobs.

I Definition 1 (A Schedule for a Set of Jobs). A schedule S for J on M is a set of pairs
(I1, job1), (I2, job2), . . . , (Im, jobm), where for each 1 ≤ i ≤ m,
Ii denotes the set of time intervals during which processor Mi is on, and
jobi : R+ −→ J ∪ {∅} is a function of time t that indicates the job to be executed on
processor Mi at time t. If Mi is not executing any job or is off at time t, then jobi(t) = ∅.

The schedule S is said to be feasible for J on M if for each job j ∈ J , there exists a
processor Mi ∈M such that∑

I∈Ii

∫
I∩[aj ,dj]

δ(jobi(t), j) · dt = cj ,

where δ(x, y) is defined to be 1 if x = y and 0 otherwise. In other words, the schedule S is
feasible if for each job j, there exists a processor Mi such that the amount of time Mi is
executing j during the time interval [aj , dj] is cj . We remark that, it is implicitly implied in
the definition that a feasible schedule is also a preemptive schedule and the jobs can only be
executed without migration.

STACS’14

230 Online Dynamic Power Management with Hard Real-Time Guarantees

The number of processors the schedule S uses is defined to be |{i : 1 ≤ i ≤ m, Ii 6= ∅}|,
i.e., the number of processors that have been switched on at least once in S. The energy
consumption of the schedule S, denoted E(S), is defined as

E(S) =
∑

1≤i≤m

(
Ew · |Ii|+

∑
I∈Ii

|I| · ψσ

)
+
∑
j∈J

cj · (ψb − ψσ),

where |Ii| denotes cardinality of Ii, i.e., the number of time intervals it contains, and |I|
denotes the length of the time interval I.

I Definition 2 (DPM Job Scheduling). Given a set J of jobs and a setM = {M1,M2, . . . ,

Mm} of processors, the DPM Job Scheduling Problem is to find a feasible schedule S for J
onM such that E(S) is minimized.

In this paper, we consider the online version of the DPM job scheduling problem in
which the jobs arrive to the system dynamically in an online manner, i.e., at any time t,
the algorithm only sees the jobs whose arrival times are less than or equal to t, and the
scheduling decisions have to be made without prior knowledge on future job arrivals. To be
more precise, let J be the input job set and J (t) = {j : j ∈ J , aj ≤ t} be the subset of J
that contains the jobs whose arrival times are no greater than t. At any time t, the algorithm
sees the job set J (t) and is able to decide the assignment of the jobs to the processors as
well as the state transitions of the processors, i.e., turning on or switching off, at that time.
The objective is to compute a feasible schedule for J such that the energy consumed is
minimized.

An online algorithm Π is said to be η-competitive for the online DPM job scheduling
problem if for any job set J , we have E(Π(J)) ≤ η · E(Opt(J)) + x, where Π(J) is the
schedule computed by algorithm Π, Opt(J) is an optimal schedule for J , i.e., the one that
results in the minimum energy consumption, and x is a constant.

3 Preliminary Results

In this section, we present preliminary results that are related to our assumptions for the
problem models we addressed. We begin with the characterization of the job sets that
are packable on one processor. For any job set J and any 0 ≤ ` < r, let Υ(J , `, r) =
{j : j ∈ J , ` ≤ aj , dj ≤ r} be the set of jobs that arrive and have to be done within the
time interval [`, r]. Let Υ#(J , `, r) =

∑
j∈Υ(J ,`,r) cj denote the total amount of workload in

Υ(J , `, r).
Chetto et al. [13] studied the schedulability of any given set of jobs using the earliest-

deadline-first (EDF) principle, which always selects the job with the earliest deadline for
execution at any moment, and proved the following lemma.

I Lemma 3 (Chetto et al. [13]). For any set J of jobs, J can be scheduled on one processor
using the EDF principle if and only if the following condition holds:

For any time interval [`, r], Υ#(J , `, r) ≤ r − `. (1)

It is well-known that, for any job set J , if there exists a feasible schedule that uses
only one processor for J , then the EDF principle is also guaranteed to produce a feasible
schedule [19]. Hence, Condition (1) gives a necessary and sufficient condition for any set of
jobs to be able to be packable on a processor.

J.-J. Chen, M.-J. Kao, D. T. Lee, I. Rutter, and D. Wagner 231

However, even when the set of jobs is known in advance to be packable on a processor,
we still need multiple processors in order to achieve energy-efficiency in an online setting.
This is illustrated by the following lemma.

I Lemma 4. Let Π be an online algorithm that produces feasible schedules using only one
processor for any job set that can be packed feasibly on one processor. For any α > 0, there
exists a job set Jα that can be packed feasibly on one processor such that the competitive
factor of Π on Jα is at least α.

Hence it is essential to use additional processors in order to give an energy-efficient
scheduling scheme for the online DPM job scheduling problem. This dilemma is further
extended in §4.1 to obtain a lower bound on the competitive factor of any online algorithm.

Below we introduce notions related to the number of processors required by a set of unit
jobs. For any job set J and any 0 ≤ ` < r, let

ρ(J , `, r) = Υ#(J , `, r)
r − `

denote the density of workload of J with respect to the time interval [`, r]. Let %̂(J) =
max0≤`<r ρ(J , `, r) denote the maximum density of J . Let P#(J) denote the minimum
number of processors required by any feasible schedule for J . The following lemma gives an
alternative characterization of P#(J) when J is composed merely by unit jobs.

I Lemma 5 ([24]). For any set J of unit jobs, we have P#(J) = d%̂(J)e.

However, for jobs with arbitrary execution times, packing the jobs using a minimum
number of processors is a long-standing difficult problem even for the offline case [14–16,20],
and for the online version only very special cases were studied [16,24].

4 Online Scheduling for Job Sets Packable on One Processor

In this section, we consider the case for which we know in advance that the input set of jobs
can be scheduled feasibly on one processor, i.e., Condition (1) from Lemma 3 holds for the
input set of jobs. First we prove a lower bound of 2.06 on the competitive factor of any online
algorithm by designing an online adversary A that observes the behavior of the scheduling
algorithm and that determines the forthcoming job sequence. In §4.2 we present an online
strategy that gives a 4-competitive schedule using at most two processors. In §4.3 we show
that this strategy leads to a 3.59-competitive schedule when the jobs have unit execution
times.

4.1 Lower Bound on the Competitive Factor
Let Π be an online scheduling algorithm for this problem. We set ψb = ψσ = ψ = 1 and
Ew = k, where k is an integer chosen to be sufficiently large. Hence the break-even time B is
also k. We define a monitor operation of the adversary A as follows.

I Definition 6. When A monitors Π during time interval [t0, t1], it checks if Π keeps at
least one processor on between time t0 and t1. If Π turns off all the processors at some point
t between t0 and t1, then A releases an urgent unit job (t+ 1, t+ 2), forcing Π to turn on at
least one processor to process it. If Π keeps at least one processor on during the monitored
period, then A does nothing.

STACS’14

232 Online Dynamic Power Management with Hard Real-Time Guarantees

Let x, η, and χ, where 0 ≤ x ≤ 2
5 , be three non-negative parameters to be chosen. The

online adversary works as follows. At time 0, A releases a unit job (0,B) and observes the
behavior of Π. Let t be the moment at which Π schedules this job to execute. Since Π
produces a feasible schedule, we know that 0 ≤ t ≤ B − 1. We have the following two cases.
Case(1): If 0 ≤ t ≤

(1
2 − x

)
B, then A monitors Π from time t to 3

2B.
Case(2): If j is not executed till

(1
2 − x

)
B, the adversary A releases

(1
2 + x

)
B − 1 unit jobs

with deadline B at time
(1

2 − x
)
B + 1. As a result, the online algorithm is forced to switch

on at least two processors to execute these jobs. The adversary continues to monitor Π until
time

(3
2 + η

)
B. If no urgent unit job has been released till time

(3
2 + η

)
B, the adversary A

terminates. Otherwise, A monitors Π for another χB units of time until
(3

2 + η + χ
)
B.

Let E(Π) and E(O) denote the energy consumed by algorithm Π and an offline optimal
schedule on the input sequence generated by A, respectively. By deriving a lower bound on
E(Π) and an upper bound on E(O), we obtain the following theorem.

I Theorem 7. The competitive factor of any online algorithm for the online DPM job
scheduling problem is at least 2.06, even for the case of unit jobs that are known in advance
to be packable on one processor.

4.2 4-Competitive Online Scheduling
In order to design an online algorithm that produces an energy-efficient schedule, we have to
deal with two questions. (1) To what extent should we bundle the execution of the jobs in
order to achieve energy-efficiency? (2) Provided that the job execution may be delayed, how
do we guarantee the feasibility of the resulting schedule?

For the former question, we introduce the concept of energy-efficient anchors for the
jobs to determine the appropriate timing to begin their execution. For the latter question,
the feasibility is guaranteed by suitably partitioning the job set such that the jobs that are
delayed still satisfy Condition (1) from Lemma 3. Below we describe our algorithm in more
detail. Let J be the input set of jobs, and recall that J (t) is the subset of jobs whose arrival
times are smaller than or equal to t.

For any t, t† with 0 ≤ t ≤ t†, let Q(t) be the subset of J (t) that contains the jobs that have
not yet finished their execution up to time t, and let Q(t, t†) be the subset of Q(t) containing
those jobs whose deadlines are smaller than or equal to t†. Note that, by definition, we have
Q(t, t†) ⊆ Q(t) ⊆ J (t) ⊆ J . For notational brevity, let c′j(t) denote the remaining execution
time of job j at time t, and let W (t) =

∑
j∈Q(t) c

′
j(t) and W (t, t†) =

∑
j∈Q(t,t†) c

′
j(t) denote

the total remaining execution time of the jobs in Q(t) and Q(t, t†), respectively. Furthermore,
we divide Q(t) into two subsets according to the arrival times of the jobs. For any t, t∗ with
0 ≤ t∗ ≤ t, let Qt∗

proc(t) be the subset of Q(t) containing the jobs whose arrival times are less
than t∗, and let Qt∗

forth(t) = Q(t)\Qt∗

proc(t).
Let λ, 0 ≤ λ ≤ 1, be a constant to be determined later. For each job j ∈ J , we define

a parameter hj to be max {aj , dj − λB}. The value hj is referred to as the energy-efficient
anchor for job j.

Let M1 and M2 denote the two processors which our algorithm S will manage. We say
that the system is busy, if at least one processor is executing a job. The system is said to be
off if both processors are turned off. Otherwise, the system is said to be in standby. During
the process of job scheduling, our algorithm S maintains an urgency flag, which is initialized
to be false. The description of the algorithm S is provided in Table 1.

J.-J. Chen, M.-J. Kao, D. T. Lee, I. Rutter, and D. Wagner 233

Table 1 A description of the online scheduling algorithm S.

At any time t, S proceeds as follows.
(A) Conditions for turning on
the processors:

(B) Handling the job schedul-
ing:

(C) Conditions for turning off
the processors:

1. If the system is off and
there exists some j ∈ Q(t)
such that hj ≤ t, then
turn on processor M1.

2. If the urgency flag is false
and there exists some t†

with t† > t such that
W (t, t†) > t† − t, then

turn on M1 if it is off,
turn on M2, set t∗ to be
t, and set the urgency
flag to be true.

1. If the urgency flag is true,
then use the EDF prin-
ciple to schedule jobs from
Qt∗

proc(t) on M1 and jobs
from Qt∗

forth(t) on M2.
2. If the urgency flag is false

and the system is not off,
then use the EDF prin-
ciple to schedule jobs from
Q(t) on the processor that
is on.

1. If the urgency flag is true
and Qt∗

proc(t) empty, then
turn off M1 and set the ur-
gency flag to be false.

2. If the urgency flag is false,
the system is standby, and
t − t1 ≥ B, where t1 is
the time processor M1 was
turned on, then turn off
all processors.

Note that, M1 and M2 can both be on only when the urgency flag is true. To prove
the claimed competitive factor, we analyze the relative positions between the time intervals
during which an optimal offline schedule keeps the system off and our online algorithm is
executing jobs. Then we charge the energy consumed by our schedule to that consumed by
the optimal offline schedule to obtain the claimed bound.

I Theorem 8. By setting λ = 1, the algorithm S computes a 4-competitive schedule that
uses at most two processors for any set of jobs satisfying Condition (1) for the online DPM
job scheduling problem.

4.3 3.59-Competitive Scheduling for Unit Jobs
When the jobs have unit execution times, we show that we can benefit even more from a
properly chosen parameter λ = 4 −

√
10. The major difference is that, when the system

is in urgency while Qt∗

forth(t) is empty, i.e, processor M2 is in standby, we use a global
earliest-deadline-first scheduling by executing two jobs on M1 and M2 instead of keeping
one processor in standby, which in turn improves resource utilization. Let S† denote the
modified algorithm. We have the following theorem.

I Theorem 9. By setting λ = 4−
√

10, the algorithm S† computes a 3.59-competitive schedule
that uses at most two processors for any set of unit jobs satisfying Condition (1) for the
online DPM job scheduling problem.

5 Online Multi-Processor Scheduling

In this section we present results derived for online dynamic power management in multi-
processor systems. In §5.1 we generalize the algorithm S presented in §4.2 for a given
set of job streams, each of which delivers a set of jobs that can be scheduled feasibly on
one processor. This allows a trade-off between the number of processors we have and the
energy-efficiency of the resulting schedule.

Then we consider online dynamic power management for general sets of unit jobs. In §5.2
we prove a lower bound of 2.28 on the competitive factor of any online algorithm. Finally in
§5.3 we present an online algorithm that gives a O(1)-competitive schedule.

STACS’14

234 Online Dynamic Power Management with Hard Real-Time Guarantees

5.1 Trading the Energy-Efficiency with the Number of Processors
In §4.2 we have shown how a stream of jobs satisfying Condition (1) can be scheduled
by the algorithm S to obtain a 4-competitive schedule which uses at most two processors.
In this section, we show that, by suitably delaying and bundling the workload, we can
generalize the algorithm S for a given set of job streams, each of which delivers a job set
satisfying Condition (1), to allow a trade-off between the number of processors we have and
the energy-efficiency of the resulting schedule.

Let J1,J2, . . . ,Jk be the given set of job streams, where Ji satisfies Condition (1) for
all 1 ≤ i ≤ k. Below we present a strategy that leads to a schedule that uses at most h
processors for any h > k and whose energy usage is at most 4 ·

⌈
k

h−k

⌉
times that used by

any schedule which schedules each of the k streams on a separate processor.
First, if h ≥ 2k, then we apply the algorithm S on every pair of the streams, i.e., on

J2i and J2i+1, for all 1 ≤ i ≤ k
2 , and we get a schedule with a factor of 4. For the case

k < h < 2k, we divide J1,J2, . . . ,Jk into h− k subsets such that each subset gets at most
dk/(h− k)e streams. The h processors are allocated in the following way. Each stream of
jobs, i.e., Ji for all 1 ≤ i ≤ k, gets one processor, and each of the remaining h− k processors
are allocated to each of the h− k subsets such that no two processors are allocated to the
same subset. Therefore, the problem is reduced to the remaining case, h = k + 1.

Below we describe how the case h = k + 1 is handled. Let M0,M1, . . . ,Mk denote the
k + 1 processors to be managed, and let Qi, 1 ≤ i ≤ k, be the corresponding ready queue
for processor Mi. We use the parameter λ = 1 to set the energy-efficient anchor for each
job that arrives. Recall that c′j(t) is the remaining execution time of job j at time t. For
any t ≥ 0 and any t† with t† ≥ t, we use W0(t, t†) =

∑
j∈Q0,dj≤t† c

′
j(t) to denote the total

remaining execution time of the jobs in Q0 whose deadlines are less than or equal to t†.
The algorithm works as follows. When a job j ∈ Ji, 1 ≤ i ≤ k, arrives to the system, we

check whether or not processor Mi is on. If Mi is on, then we add j to Qi. Otherwise, we
further check whether W0(t, t†) + cj ≤ t† − t holds for all t† ≥ dj . If it does, then j is added
to Q0. Otherwise, we add j to Qi and turn on the processors Mi and M0 (if M0 is off). At
any time t, we have the following further conditions to consider.
(a) Conditions for turning on M0: If the energy-efficient anchor of some job in Q0 is met

or if ∃ t† ≥ t such that W0(t, t†) ≥ t† − t, then we turn on M0 if it is off.
(b) Job scheduling: For each 0 ≤ i ≤ k such that Mi is on, we use the EDF principle to

schedule the jobs of Qi on Mi.
(c) Conditions for turning off the processors: If Q0 becomes empty and M0 has been

turned on for at least B amount of time, then we turn off M0 immediately. For 1 ≤ i ≤ k,
if Mi is on, Qi becomes empty, and M0 is off, then we turn off Mi.

Let Smulti denote the algorithm. We have the following theorem.

I Theorem 10. Given a set of k job streams, each of which can be scheduled feasibly on
one processor, algorithm Smulti computes a schedule that uses at most h processors, for any
h > k, such that the energy usage is at most 4 ·

⌈
k

h−k

⌉
times that used in any schedule which

schedules each of the k streams on a separate processor, for the online DPM job scheduling
problem.

5.2 Lower Bound on the Competitive Factor
In this section we prove a lower bound of 2.28 on the competitive factor of any online
algorithm for the online DPM scheduling problem with unit jobs. Let Π be an online

J.-J. Chen, M.-J. Kao, D. T. Lee, I. Rutter, and D. Wagner 235

scheduling algorithm for this problem. More specifically, we present an online adversary A,
which observes the behavior of Π and which decides the set of forthcoming jobs such that
the competitive ratio of Π on the input sequence generated by A is at least 2.28.

We set ψb = ψσ = ψ = 1 and Ew = k, where k � 1 is an integer chosen to be sufficiently
large. Hence the break-even time, B, is also k. The adversary A works in two stages. In the
first stage, A uses the gadget designed in [24] for the machine-minimizing job scheduling
problem to force Π to use more processors than necessary. As a result, at the time when
the first stage ends, the number of processors Π uses is at least 2.09 times that required
by any optimal schedule for J ∗ in terms of number of processors. In the second stage, A
monitors the number of active processors Π keeps and makes sure that Π does not turn off
the processors too fast. Below we describe the second stage in more detail.

Stage II. Let η be a non-negative real number to be decided later. We define the real-valued
function fη(t) : [0, 1] → R to be fη(t) = η + et · (3.09− 2η), where e is the base of natural
logarithm, i.e., the Euler’s number.

The adversary A works as follows. At each time t with qα2 ≤ t < qα2 + B, the
adversary checks if the number of processors algorithm Π keeps in the state of on is at
least %̂(J ∗) · fη

(
t−qα2

B

)
. If it is, then A does nothing. Otherwise, A punishes the aggressive

behavior of Π by releasing d%̂(J ∗)e urgent jobs with deadline t+ 1 and terminates.

I Lemma 11. If the algorithm Π gets punished by A, then the competitive factor of the
resulting schedule is at least η.

Lemma 11 gives a bound when the algorithm Π turns off the processors in an aggressive
way. On the other hand, if Π does not behave aggressively, then the resulting competitive
factor will decrease as η increases. By setting η to be 2.28, we get the following theorem.

I Theorem 12. The competitive factor of any online algorithm for the online DPM job
scheduling problem is at least 2.28, even for unit jobs.

5.3 O(1)-Competitive Online Scheduling for Unit Jobs
In this section we consider the case for which the jobs have unit execution times. The lower
bound result provided in §5.2 gives a rough idea on the difficulty of this problem, which
includes the following. (a) First, how many processors should be used when we have no prior
knowledge on future job arrivals? (b) Second, how can we turn the standby processors off so
that we do not suffer much when we have to turn them on again later?

We incorporate the results of [24] as a partial solution to question (a) mentioned above and
give a O(1)-competitive online algorithm, denoted S†multi, for this problem. The algorithm
works as follows. At each moment, S†multi computes the density of the workload that has
arrived to the system “recently” and makes its scheduling decisions accordingly. If the density
is low, then S†multi adopts the strategy presented in §4.2 and §4.3 to bundle the execution of
the jobs on two processors. Otherwise, S†multi uses the approach suggested in [24] to estimate
the number of processors required by future job arrivals for multi-processor scheduling. For
question (b), we let each processor stay on for an additional amount of time before it is
turned off.

The approach we use combines ideas from different results. Although the idea is conceiv-
able, bounding the energy efficiency is tricky and requires further non-trivial observations on
the connections between online schedules and optimal schedules.

STACS’14

236 Online Dynamic Power Management with Hard Real-Time Guarantees

Below we describe the algorithm S†multi in more detail. Let J denote the input set of jobs
and Q denote the ready queue which contains the set of jobs that arrive and that are not
yet scheduled. The algorithm S†multi maintains a variable t∗, initialized to be −1, to denote
the last time when Q becomes empty. Let J ∗ = J \J (t∗) be the set of jobs that arrive after
time t∗. In addition, the algorithm S†multi maintains another variable t∗h to denote the first
time for which the workload density becomes greater than or equal to 1 since time t∗, i.e., t∗h
is the smallest integer such that t∗h > t∗ and %̂(J ∗(t∗h)) ≥ 1. For notational brevity, t∗h is set
to be ∞ if there is no such moment.

At each time t, the algorithm S†multi computes the workload density %̂(J ∗(t)) and updates
the value of t∗h if necessary. Depending on the value of t∗h, the jobs that arrive are handled
differently. If t∗h > t, then the jobs that have just arrived are added to the lightly-loaded
ready queue Q`. Otherwise, they are added to the heavily-loaded ready queue Qh.

For the jobs that are added to Q`, we use the algorithm S† proposed in §4.3 to schedule
them. To help describe the algorithm, in the following we use M1 and M2 to denote the two
specific processors that are used by S†. In addition, we use #i, where i ≥ 1, to denote the
remaining processors that will be used to handle the jobs that are added to Qh.

Handling the heavily-loaded ready queue Qh. Let γ2 be a constant chosen to be 5.2. If
t∗h > t, then Qh(t) is empty and there is nothing to process. If t∗h ≤ t, then the algorithm
S†multi makes sure that at least dγ2 · %̂(J ∗(t))e processors, excluding M1 and M2, have been
turned on for job execution. Let #(t) be the number of processors that are on, excluding M1
and M2, and let χ = min {#(t), |Qh(t)|}. We remark that, as %̂(J ∗(t)) changes over time, it
is possible that #(t) > dγ2 · %̂(J ∗(t))e.

The algorithm S†multi fetches χ jobs with earliest deadlines from Qh(t) and assigns them
for execution on #1,#2, . . . ,#χ. If |Qh(t)| < #(t), then S†multi continues to fetch jobs from
Q`(t), if there exists any, using the first-fit principle, i.e., the processor with smaller index
has higher priority for job execution, such that either all of the #(t) processors are occupied
or Q`(t) becomes empty.

Turning off the processors. After the scheduling decisions on the ready queues, i.e., Q`

and Qh, are made, the algorithm S†multi checks the following conditions. For all i with
1 ≤ i ≤ #(t), if processor #i has stayed in standby for B amount of time since turned on,
then S†multi switches processor #i off immediately.

At any time t, if the ready queue Q becomes empty after the scheduling decisions on Q`

and Qh are made, then t∗ is set to t and t∗h is set to be ∞. We conclude the result with the
following theorem.

I Theorem 13. The algorithm S†multi computes a (γ1 + 52 · γ2 + 1)-competitive schedule for
the online DPM job scheduling problem with unit jobs, where γ1 = 3.59 is the competitive
factor of S† and γ2 = 5.2 is a constant.

References
1 Susanne Albers and Antonios Antoniadis. Race to idle: new algorithms for speed scaling

with a sleep state. In SODA, pages 1266–1285, 2012.
2 Susanne Albers, Antonios Antoniadis, and Gero Greiner. On multi-processor speed scaling

with migration: extended abstract. In SPAA, pages 279–288, 2011.
3 S. Anand, Naveen Garg, and Nicole Megow. Meeting deadlines: How much speed suffices?

In ICALP (1), volume 6755 of LNCS, pages 232–243. Springer, 2011.

J.-J. Chen, M.-J. Kao, D. T. Lee, I. Rutter, and D. Wagner 237

4 John Augustine, Sandy Irani, and Chaitanya Swamy. Optimal power-down strategies. In
FOCS, pages 530–539, 2004.

5 P. Baptiste. Scheduling unit tasks to minimize the number of idle periods: A polynomial
time algorithm for offline dynamic power management. In SODA, pages 364–367, 2006.

6 Philippe Baptiste, Marek Chrobak, and Christoph Dürr. Polynomial time algorithms for
minimum energy scheduling. In ESA, pages 136–150, 2007.

7 Sanjoy K. Baruah and Nathan Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. In RTSS, pages 321–329, 2005.

8 V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. A constant-approximate feasibility
test for multiprocessor real-time scheduling. In ESA, pages 210–221, 2008.

9 Jian-Jia Chen and S. Chakraborty. Resource augmentation bounds for approximate demand
bound functions. In RTSS, pages 272–281, 2011.

10 Jian-Jia Chen and S. Chakraborty. Partitioned packing and scheduling for sporadic real-
time tasks in identical multiprocessor systems. In ECRTS, pages 24–33, 2012.

11 Jian-Jia Chen and Tei-Wei Kuo. Procrastination for leakage-aware rate-monotonic schedul-
ing on a dynamic voltage scaling processor. In LCTES, 2006.

12 Jian-Jia Chen and Tei-Wei Kuo. Procrastination determination for periodic real-time tasks
in leakage-aware dynamic voltage scaling systems. In ICCAD, 2007.

13 Houssine Chetto and Maryline Silly-Chetto. Scheduling periodic and sporadic tasks in a
real-time system. Inf. Process. Lett., 30(4):177–184, 1989.

14 Julia Chuzhoy and Paolo Codenotti. Resource minimization job scheduling. In AP-
PROX’09/RANDOM’09, pages 70–83, Berlin, Heidelberg, 2009. Springer-Verlag.

15 Julia Chuzhoy, Sudipto Guha, Sanjeev Khanna, and Joseph Naor. Machine minimization
for scheduling jobs with interval constraints. In FOCS’04, 2004.

16 M. Cieliebak, T. Erlebach, F. Hennecke, B. Weber, and P. Widmayer. Scheduling with
release times and deadlines on a minimum number of machines. In IFIP. Springer, 2004.

17 E. Demaine, M. Ghodsi, M. Hajiaghayi, A. Sayedi-Roshkhar, and M. Zadimoghaddam.
Scheduling to minimize gaps and power consumption. In SPAA, pages 46–54, 2007.

18 Erik D. Demaine and Morteza Zadimoghaddam. Scheduling to minimize power consump-
tion using submodular functions. In SPAA, pages 21–29, 2010.

19 Michael L. Dertouzos. Control robotics: The procedural control of physical processes. In
IFIP Congress, pages 807–813, 1974.

20 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co, 1979.

21 Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Giorgio C. Buttazzo. Ap-
plying real-time interface and calculus for dynamic power management in hard real-time
systems. Real-Time Systems, 47(2):163–193, 2011.

22 Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power savings. In SODA,
pages 37–46, 2003.

23 Sandy Irani, Sandeep K. Shukla, and Rajesh K. Gupta. Online strategies for dynamic
power management in systems with multiple power-saving states. ACM Trans. Embedded
Comput. Syst., 2(3):325–346, 2003.

24 M.-J. Kao, J.-J. Chen, I. Rutter, and D. Wagner. Competitive design and analysis for
machine-minimizing job scheduling problem. In ISAAC, pages 75–84, 2012.

25 A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Competitive randomized algorithms
for nonuniform problems. Algorithmica, 11(6):542–571, 1994.

26 Yann-Hang Lee, Krishna P. Reddy, and C. M. Krishna. Scheduling techniques for reducing
leakage power in hard real-time systems. In ECRTS, pages 105–112, 2003.

STACS’14

238 Online Dynamic Power Management with Hard Real-Time Guarantees

27 A. K. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1983.

28 Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling
via resource augmentation (extended abstract). In STOC, pages 140–149, 1997.

29 L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time
systems. ISCAS, 4:101–104, 2000.

30 F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In FOCS,
pages 374–382, 1995.

Depth-4 Lower Bounds, Determinantal
Complexity: A Unified Approach
Suryajith Chillara and Partha Mukhopadhyay

Chennai Mathematical Institute, Siruseri, India
{suryajith, partham}@cmi.ac.in

Abstract
Tavenas has recently proved that any nO(1)-variate and degree n polynomial in VP can be com-
puted by a depth-4 ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit of size 2O(

√
n logn) [14]. So, to prove VP 6= VNP it is

sufficient to show that an explicit polynomial in VNP of degree n requires 2ω(
√
n logn) size depth-4

circuits. Soon after Tavenas’ result, for two different explicit polynomials, depth-4 circuit size
lower bounds of 2Ω(

√
n logn) have been proved (see [7] and [4]). In particular, using combinatorial

design Kayal et al. [7] construct an explicit polynomial in VNP that requires depth-4 circuits of
size 2Ω(

√
n logn) and Fournier et al. [4] show that the iterated matrix multiplication polynomial

(which is in VP) also requires 2Ω(
√
n logn) size depth-4 circuits.

In this paper, we identify a simple combinatorial property such that any polynomial f that
satisfies this property would achieve a similar depth-4 circuit size lower bound. In particular, it
does not matter whether f is in VP or in VNP. As a result, we get a simple unified lower bound
analysis for the above mentioned polynomials.

Another goal of this paper is to compare our current knowledge of the depth-4 circuit size
lower bounds and the determinantal complexity lower bounds. Currently the best known determ-
inantal complexity lower bound is Ω(n2) for Permanent of a n× n matrix (which is a n2-variate
and degree n polynomial) [3]. We prove that the determinantal complexity of the iterated matrix
multiplication polynomial is Ω(dn) where d is the number of matrices and n is the dimension of
the matrices. So for d = n, we get that the iterated matrix multiplication polynomial achieves
the current best known lower bounds in both fronts: depth-4 circuit size and determinantal com-
plexity. Our result also settles the determinantal complexity of the iterated matrix multiplication
polynomial to Θ(dn).

To the best of our knowledge, a Θ(n) bound for the determinantal complexity for the iterated
matrix multiplication polynomial was known only for any constant d > 1 [6].

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Arithmetic Circuits, Determinantal Complexity, Depth-4 Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.239

1 Introduction

One of the main challenges in algebraic complexity theory is to separate VP from VNP. This
problem is well known as Valiant’s hypothesis [15]. This is an algebraic analog of the problem
P vs NP. Recall that a multivariate polynomial family {fn(X) ∈ F[x1, x2, . . . , xn] : n ≥ 1} is
in the class VP if fn has degree of at most poly(n) and can be computed by an arithmetic
circuit of size poly(n). It is in VNP if it can be expressed as

fn(X) =
∑

Y∈{0,1}m
gn+m(X,Y)

© Suryajith Chillara and Partha Mukhopadyay;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 239–250

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.239
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

240 Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

where m = |Y| = poly(n) and gn+m is a polynomial in VP. Permanent polynomial char-
acterizes the class VNP over the fields of all characteristics except 2 and the determinant
polynomial characterizes the class VP with respect to the quasi-polynomial projections.

I Definition 1. The determinantal complexity of a polynomial f , over n variables, is the
minimum m such that there are affine linear functions Ak,`, 1 ≤ k, ` ≤ m defined over the
same set of variables and f = det((Ak,`)1≤k,`≤m). It is denoted by dc(f).

To resolve Valiant’s hypothesis, proving dc(permn) = nω(logn) is sufficient. Von zur Gathen
[16] proved dc(permn) ≥

√
8
7n. Later Cai [2], Babai and Seress [17], and Meshulam [10]

independently improved the lower bound to
√

2n. In 2004, Mignon and Ressayre [11] came
up with a new idea of using second order derivatives and proved that dc(permn) ≥ n2

2 over
the fields of characteristic zero. Subsequently, Cai et al. [3] extended the result of Mignon
and Ressayre to all fields of characteristic 6= 2.

For any polynomial f , Valiant [15] proved that dc(f) ≤ 2(F (f) + 1) where F (f) is the
arithmetic formula complexity of f . Later, Nisan [12] proved that dc(f) = O(B(f)) where
B(f) is the arithmetic branching program complexity of f .

Another possible way to prove Valiant’s hypothesis is to prove that the permanent
polynomial can not be computed by any polynomial size arithmetic circuit. In 2008, Agrawal
and Vinay proved that any arithmetic circuit of sub-exponential size can be depth reduced
to a depth-4 circuit maintaining a nontrivial upper bound on the size [1]. Subsequently,
Koiran [8] and Tavenas [14] have come up with improved depth reductions (in terms of
parameters). In particular, Tavenas proved that any nO(1)-variate polynomial of degree n in
VP can also be computed by a ΣΠ[O(

√
n)]ΣΠ[

√
n]-circuit of top fan-in 2O(

√
n logn).

In a recent breakthrough, Gupta et al. [5] proved a 2Ω(
√
n) lower bound for the size of the

depth-4 circuits computing the determinant or the permanent polynomial using the method
of shifted partial derivatives. Subsequently, Kayal et al. [7] improved the situation by proving
a 2Ω(

√
n logn) depth-4 ΣΠ[O(

√
n)]ΣΠ[

√
n]-circuit size lower bound for an explicit polynomial in

VNP.
More precisely, in [7] the following family of polynomials constructed from the combinat-

orial design of Nisan-Wigderson [13] was considered:

NWn,ε(X) =
∑

a(z)∈F[z]

x1a(1)x2a(2) . . . xna(n) .

where a(z) runs over all univariate polynomials of degree < k = ε
√
n where 0 < ε < 1

is a suitably fixed parameter, and F is a finite field of size n. Here we consider the natural
identification of F with the set {1, 2, . . . , n}. Since the number of monomials in NWn,ε(X) is
nO(
√
n), the result from [7] gives a tight bound of 2Θ(

√
n logn) for the depth-4 circuit complexity

of NWn,ε(X). From the explicitness of the polynomial, it is clear that the polynomial family
NWn,ε(X) is in VNP for any 0 < ε < 1.

Although the combined implication of [7] and [14] looks very exciting from the perspective
of lower bounds, a recent result by Fournier et al. [4] shows that such a lower bound is
also obtained by the iterated matrix multiplication polynomial which is in VP. Similar to
the works of Gupta et al. [5] and Kayal et al. [7], Fournier et al. also used the method of
shifted partial derivatives as their main technical tool. The iterated matrix multiplication
polynomial of d generic n×n matrices X(1),X(2), . . . ,X(d) is the (1, 1)th entry of the product
of the matrices. More formally, let X(1),X(2), . . . ,X(d) be d generic n × n matrices with
disjoint set of variables and x(k)

ij be the variable in X(k) indexed by (i, j) ∈ [n]× [n]. Then

S. Chillara and P. Mukhopadyay 241

the iterated matrix multiplication polynomial (denoted by IMMn,d) is defined as follows:

IMMn,d(X) =
∑

i1,i2,...,id−1∈[n]

x
(1)
1i1x

(2)
i1i2

. . . x
(d−1)
i(d−2)i(d−1)

x
(d)
i(d−1)1 .

Notice that IMMn,d(X) is a n2(d− 2) + 2n-variate polynomial of degree d. To see that
IMMn,d(X) ∈ VP, it is sufficient to observe that it can be computed by a polynomial-size
algebraic branching program. For the sake of completeness, we recall the definition of the
algebraic branching programs.

I Definition 2. An algebraic branching program (ABP), over the set of variables X and field
F is a layered (i.e. the edges are only between two consecutive layers) directed acyclic graph
G with two special vertices s and t. The weight of an edge is a linear form in F[X]. The
weight of a path is the product of the weights of its edges. The polynomial computed by G
is the sum of the weights of all the paths from s to t in G.

To prove IMMn,d(X) ∈ VP, one just needs to observe that for all 1 ≤ i ≤ d the matrix X(i)

can be identified with the adjacency matrix of the subgraph between the layers i and i+ 1.
Hence, the result from [4] is also tight and shows the optimality of the depth reduction of
Tavenas [14]. Recent work of Kumar and Saraf [9] shows that the depth reduction as shown
by [14] is optimal even for the homogenous formulas. This strengthens the result of [4] who
proved the optimality of depth reduction for the circuits.

One of the main motivations of our study comes from this tantalizing fact that two
seemingly different polynomials NWn,ε(X) ∈ VNP and IMMn,d(X) ∈ VP behave very similarly
as far as the 2Ω(

√
n logn)-size lower bound for depth-4 circuits are concerned. In this paper,

we seek a conceptual reason for this behaviour. We identify a simple combinatorial property
such that any polynomial that satisfies it would require 2Ω(

√
n logn)-size depth-4 arithmetic

circuits. We call it Leading Monomial Distance Property. In particular, it does not matter
whether the polynomial is easy (i.e. in VP) or hard (i.e. the polynomial is in VNP but not
known to be in VP). As a result of this abstraction we present a simple unified analysis of
the depth-4 circuit size lower bounds for NWn,ε(X) and IMMn,d(X).

To define the Leading Monomial Distance Property, we first define the notion of distance
between two monomials.

I Definition 3. Let m1,m2 be two monomials over a set of variables. Let S1 and S2 be the
(multi)-sets of variables corresponding to the monomialsm1 andm2 respectively. The distance
dist(m1,m2) between the monomials m1 and m2 is the min{|S1| − |S1 ∩S2|, |S2| − |S1 ∩S2|}
where the cardinalities are the order of the (multi)-sets.

For example, let m1 = x2
1x2x

2
3x4 and m2 = x1x

2
2x3x5x6. Then S1 = {x1, x1, x2,

x3, x3, x4}, S2 = {x1, x2, x2, x3, x5, x6}, |S1| = 6, |S2| = 6 and dist(m1,m2) = 3.
We say that a nO(1)-variate and n-degree polynomial has the Leading Monomial Distance

Property, if the leading monomials of a large subset (≈ n
√
n) of its span of the derivatives

(of order ≈
√
n) have good pair-wise distance. Leading monomials are defined by defining a

suitable order on the set of variables. We denote the leading monomial of a polynomial f(X)
by LM(f). More formally, we prove the following theorem in Section 4.

I Theorem 4. Let f(X) be a nO(1)-variate polynomial of degree n. Let there be s ≥ nδk (δ
is any constant > 0) different polynomials in 〈∂=k(f)〉 for k = ε

√
n such that any two of

their leading monomials have pair-wise distance of at least ∆ ≥ n
c for any constant c > 1,

and 0 < ε < 1
40c . Then any depth-4 ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit that computes f(X) must be of

size eΩδ,c(
√
n lnn).

STACS’14

242 Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

In fact, from the proof it will be clear that the theorem remains valid for any constant ε
arbitrarily close to 1

4c . For technical simplicity, we prefer to the state the above theorem in
its current form.

Another motivation of this work is to find a connection between our current knowledge
of the determinantal complexity lower bounds and the depth-4 circuit size lower bounds.
The best known determinantal complexity lower bound for a nO(1)-variate and n degree
(Permanent) polynomial is Ω(n2). Here we ask the following question: can we give an
example of an explicit nO(1)-variate degree n polynomial in VNP for which the determinantal
complexity is Ω(n2) and the depth-4 complexity is 2Ω(

√
n logn) ? We settle this problem

by showing a Ω(n2) lower bound for dc(IMMn,n(X)) which is a O(n3)-variate and n-degree
polynomial. In particular, we prove the following theorem.

I Theorem 5. For any integers n and d > 1, the determinantal complexity of the iterated
matrix multiplication polynomial IMMn,d is Ω(dn).

Since IMMn,d(X) has an algebraic branching program of size O(dn) [12], from the above
theorem it follows that dc(IMMn,d(X)) = Θ(dn). This improves upon the earlier bound of
Θ(n) for the determinantal complexity of the iterated matrix multiplication polynomial for
any constant d > 1 [6]. Similar to the approach of [3] and [11], we also use the the rank of
Hessian matrix as our main technical tool.

2 Organization

In Section 3, we state a few results from [5], [7], and [14]. In Section 4, we do a unified analysis
of the depth-4 lower bound results of [7] and [4]. We prove the determinantal complexity
lower bound of IMMn,d(X) in Section 5. We state a few open problems in Section 6.

3 Preliminaries

The following beautiful lemma (from [5]) is the key to the asymptotic estimates required for
the lower bound analyses.

I Lemma 6 (Lemma 6, [5]). Let a(n), f(n), g(n) : Z≥0 → Z≥0 be the integer valued functions
such that (f + g) = o(a). Then,

ln (a+ f)!
(a− g)! = (f + g) ln a±O

(
(f + g)2

a

)
.

In this paper, whenever we apply this lemma, (f + g)2 will be o(a). So, we will not worry
about the error term (which will be asymptotically zero) generated by this estimate.

The ΣΠ[D]ΣΠ[t] circuits are depth-4 arithmetic circuits with alternating layers of addition
and multiplication gates where the fan-in of the multiplication gates in the bottom layer is
bounded by a parameter t and the fan-in of the multiplication gates in the layer adjacent to
the output gate is bounded by the parameter D. These circuits compute polynomials of the
form C =

∑s
i=1
∏Di
j=1Qij(X) where the degree of the polynomial Qij is bounded by t for all

i and j.
Building on the results of [1] and [8], Tavenas [14] proved the following theorem.

I Theorem 7 (Theorem 4, [14]). Let f be an N -variate polynomial computed by a circuit of
size s and of degree d. Then f is computed by a ΣΠ[D]ΣΠ[t] circuit C of size 2O(

√
d log(ds) logN).

Furthermore, if f is homogenous, it will also the case for C.

S. Chillara and P. Mukhopadyay 243

Following Tavenas’ proof, one can choose D = 15
√
d and t =

√
d. As a consequence,

we infer that any nO(1)-variate polynomial of degree n in VP can be computed by a
ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit of size 2O(

√
n logn).

For a monomial xi = xi11 x
i2
2 . . . xinn , let ∂if be the partial derivative of f with respect to

the monomial xi. The degree of the monomial is denoted by |i| where |i| = (i1 + i2 + · · ·+ in).
We recall the following definition of shifted partial derivatives from [5].

I Definition 8. Let f(X) ∈ F[X] be a multivariate polynomial. The span of the `-shifted
k-th order derivatives of f , denoted by 〈∂=kf〉≤`, is defined as

〈∂=kf〉≤` = F-span{xi · (∂jf) : i, j ∈ Zn≥0 with |i| ≤ ` and |j| = k} .

We denote by dim(〈∂=kf〉≤`) the dimension of the vector space 〈∂=kf〉≤`.

Let � be any admissible monomial ordering. The leading monomial of a polynomial
f(X) ∈ F[X], denoted by LM(f) is the largest monomial xi ∈ f(X) under the order �. The
next lemma follows directly from Proposition 11 and Corollary 12 of [5].

I Lemma 9. For any multivariate polynomial f(X) ∈ F[X],

dim(〈∂=kf〉≤`) ≥ #{xi · LM(g) : i, j ∈ Zn≥0 with |i| ≤ `, |j| = k, and g ∈ F-span{∂jf}} .

In [7], the following upper bound on the dimension of the shifted partial derivative space
for polynomials computed by ΣΠ[D]ΣΠ[t] circuits was shown. This bound was implicit in the
work of Gupta et al. [5].

I Lemma 10 (Lemma 4, [7]). If C =
∑s′

i=1Qi1Qi2 . . . QiD where each Qij ∈ F[XN] is a
polynomial of degree bounded by t. Then for any k ≤ D,

dim(〈∂=k(C)〉≤`) ≤ s′
(
D

k

)(
N + `+ k(t− 1)

N

)
.

4 Unified analysis of depth-4 lower bounds

In this section, we first prove a simple combinatorial lemma which we believe is the crux
of the best known depth-4 lower bound results. In fact, the lower bounds on the size of
ΣΠ[O(

√
n)]ΣΠ[

√
n] circuits computing the polynomials NWn,ε(X) and IMMn,n(X) follow easily

from this lemma by suitable setting of the parameters.

I Lemma 11. Let m1,m2, . . . ,ms be the monomials over N variables s.t. dist(mi,mj) ≥ ∆
for all i 6= j. Let M be the set of monomials of the form mim

′ where 1 ≤ i ≤ s and m′ is a
monomial of length at most ` over the same set of N variables. Then, the cardinality of M
is at least

(
sB − s2(N+`−∆

N

))
where B =

(
N+`
N

)
.

Proof. Let Bi be the set of all monomials mim
′ where m′ is a monomial of length at most `.

It is easy to see that |Bi| =
(
N+`
N

)
. We would like to estimate | ∪i Bi|. Using the principle of

inclusion and exclusion, we get | ∪si=1 Bi| ≥
∑
i∈[s] |Bi| −

∑
i,j∈[s],i6=j |Bi ∩Bj |.

Now we estimate the upper bound for |Bi ∩Bj | such that i 6= j. Consider the monomials
Mi and Mj in Bi and Bj respectively. For Mi and Mj to match, Mi should contain at least
∆ variables from mj and similarly Mj should contain at least ∆ variables from mi. The rest
of the at most (`−∆) degree monomials should be identical in Mi and Mj . The number of
such monomials over N variables is at most

(
N+`−∆

N

)
. Thus, |Bi ∩Bj | ≤

(
N+`−∆

N

)
.

STACS’14

244 Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Then the total number of monomials of the form mim
′ for all i ∈ [s] where m′ is a

monomial of length at most ` is lower bounded as follows:

|∪si=1Bi| ≥ sB − s2
(
N + `−∆

N

)
= sB

(
1− s

B

(
N + `−∆

N

))
.

J

We use the above lemma to prove the main theorem of this section (restated from
Section 1).

I Theorem 12. Let f(X) be a nO(1)-variate polynomial of degree n. Let there be at least nδk
(δ is any constant > 0) different polynomials in 〈∂=k(f)〉 for k = ε

√
n such that any two

of their leading monomials have a distance of at least ∆ ≥ n
c for any constant c > 1, and

0 < ε < 1
40c . Then any depth-4 ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit that computes f(X) must be of size

eΩδ,c(
√
n lnn).

Proof. Consider a set of s = nδk polynomials f1, f2, . . . , fs ∈ 〈∂=k(f)〉 such that
dist(LM(fi), LM(fj)) ≥ n/c for all i 6= j. We denote by mi, the leading monomial LM(fi).

We now invoke Lemma 11 with the parameters s = nδk,∆ = n/c. Let N be the number
of variables in f . From Lemma 11, we know that | ∪si=1 Bi| ≥ sB

(
1− s

B

(
N+`−∆

N

))
. To get

a good lower bound for | ∪si=1 Bi|, we need to upper bound s
B

(
N+`−∆

N

)
. Let us bound it by

an inverse polynomial in n by suitably choosing `. We set s(N+`−d
N)

(N+`
N) ≤ 1

p(n) where p(n) is a
polynomial in n.

After simplification, we get s (N+`−∆)!
(N+`)!

`!
(`−∆)! ≤

1
p(n) . Using Lemma 6 we tightly estimate

the subsequent computations. In particular, we always choose the parameter ` such that
∆2 = o(N+`). This also shows that the error term given by Lemma 6 is always asymptotically
zero and we need not worry about it.

We now apply Lemma 6 to derive s
(

`
N+`

)∆
≤ 1

p(n) or equivalently s
(

1
1+N

`

)∆
≤ 1

p(n) .

We use the inequality 1 + x > ex/2 for 0 < x < 1 to lower bound
(
1 + N

`

)∆ by eN∆
2l . Thus, it

is enough to choose ` in a way that s · p(n) ≤ eN∆
2` or equivalently ` ≤ N∆

2 ln(s·p(n)) . By fixing
p(n) = n2 and substituting for the parameters k and ∆ , we get ` ≤ N

√
n

4cδε lnn . From Lemma 9,
we get that the dimension of 〈∂=kf〉≤` ≥ (1− 1

n2) s
(
N+`
N

)
.

Combining this with Lemma 10, we get s′ ≥ (1− 1
n2)s(N+l

N)
(Dk)(N+l+k(t−1)

N) . Suppose we choose ` such

that (kt− k)2 = o(`). Then, by applying Lemma 6 we can easily show the following:

s′ ≥
s
(
1− 1

n2

)(
D
k

)
(1 + N

l)(kt−k)
≥
nδk

(
1− 1

n2

)(
D
k

)
e
N
` kt

.

Since D = O(
√
n) and k = ε

√
n, we can estimate

(
D
k

)
to be eOε(

√
n) by Shannon’s entropy

estimate for binomial coefficients. To get the required lower bound it is sufficient to choose `
such that Nkt

` < (0.1)δk lnn. Since t ≤
√
n, it is enough to choose ` > 10N

√
n

δ lnn . By comparing
the lower and upper bounds of `, we can fix ε such that ε < 1

40c . Since ε depends only on c,
we can infer that s′ = eΩδ,c(

√
n lnn). J

The above proof clearly goes through even if we set Nkt
` < µδk lnn for any 0 < µ < 1,

and choose ε < µ
4c . But for simplicity, we prefer to state Theorem 12 in its current form.

In the next section, we show that the lower bounds on the size of ΣΠ[O(
√
n)]ΣΠ[

√
n]

circuits computing NWn,ε(X) and IMMn,n(X) can be obtained by simply applying Theorem 12.

S. Chillara and P. Mukhopadyay 245

Moreover, it shows that the lower bound arguments of IMMn,n(X) are essentially same as
the lower bound arguments of NWn,ε(X).

4.1 Lower bounds on the size of depth-4 circuits computing NWn,ε(X)
and IMMn,n(X)

Now we derive the depth-4 circuit size lower bound for NWn,ε(X) polynomial by a simple
application of Theorem 12.

I Corollary 13. For 0 < ε < 1/80, any depth-4 ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit computing the

polynomial NWn,ε(X) must be of size 2Ω(
√
n logn).

Proof. Recall that NWn,ε(X) =
∑
a(z)∈F[z] x1a(1)x2a(2) . . . xna(n) where F is a finite field of

size n and a(z) is a univariate polynomial of degree ≤ k− 1 where k = ε
√
n. Notice that any

two monomials can intersect in at most k − 1 variables.
We differentiate the polynomial NWn,ε(X) with respect to the first k = ε

√
n variables of

each monomial. After differentiation, we get nk monomials of length (n − k) each. Since
they are constructed from the image of univariate polynomials of degree at most (k − 1), the
distance ∆ between any two monomials ≥ n− 2k > n/2. So to get the required lower bound
we invoke Theorem 12 with δ = 1 and c = 2. J

Next we derive the lower bound on the size of the depth-4 circuit computing IMMn,n(X).

I Corollary 14. Any depth-4 ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit computing the IMMn,n(X) polynomial

must be of size 2Ω(
√
n logn).

Proof. Recall that IMMn,n(X) =
∑
i1,i2,...,in−1∈[n] x

(1)
1i1x

(2)
i1i2

. . . x
(n−1)
i(n−2)i(n−1)

x
(n)
i(n−1)1. It is a

polynomial over (n− 2)n2 + 2n variables. We fix the following lexicographic ordering on the
variables of the set of matrices {X(1),X(2), . . . ,X(n)} as follows: X(1) � X(2) � X(3) � . . . �
X(n) and in any X(i) the ordering is x(i)

11 � x
(i)
12 � . . . � x

(i)
1n � . . . � x

(i)
n1 . . . � x

(i)
nn.

Choose a prime p such that n
2 ≤ p ≤ n. Consider the set of univariate polynomials

a(z) ∈ Fp[z] of degree at most (k − 1) for k = ε
√
n where ε is a small constant to be fixed

later in the analysis.
Consider a set of 2k of the matrices X(2),X(3+ n

4k), . . . ,X(2k+1+ (2k−1)n
4k) such that they are

n/4k distance apart. Clearly 2k + 1 + (2k−1)n
4k < n. For each univariate polynomial a of

degree at most (k − 1), define a set Sa = {x(2)
1,a(1), x

(3+ n
4k)

2,a(2) , . . . , x
(2k+1+ (2k−1)n

4k)
2k,a(2k) }. Number of

such sets is at least
(
n
2
)k and |Sa ∩ Sb| < k for a 6= b. Now we consider a polynomial f(X)

which is a restriction of the polynomial IMMn,n(X). By restriction, we simply mean that
a few variables of IMMn,n(X) are fixed to some elements from the field and the rest of the
variables are left untouched. We define the restriction as follows:

x
(q)
ij = 0 if r + (r − 2)n

4k < q < (r + 1) + (r − 1)n
4k − 1 for 2 ≤ r ≤ 2k and i 6= j.

The rest of the variables are left untouched.
Next we differentiate the polynomial f(X) with respect to the sets of variables Sa indexed

by the polynomials a(z) ∈ F[z]. Consider the leading monomial of the derivatives with respect
to the sets Sa for all a(z) ∈ F[z]. Since |Sa ∩Sb| < k, it is straightforward to observe that the
distance between any two leading monomials is at least k · n4k = n

4 . The intuitive justification
is that whenever there is a difference in Sa and Sb, that difference can be stretched to a
distance n

4k because of the restriction that eliminates the non diagonal entries.

STACS’14

246 Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Now we prove the lower bound for the polynomial f(X) by applying Theorem 12. Notice
that f(X) is a nO(1)-variate polynomial of degree n such that there are at least (n/2)k > n

1
4 (2k)

different polynomials in 〈∂=2k(f)〉 such that any two of their leading monomials have distance
∆ ≥ n/4. So we set the parameters δ = 1/4 and c = 4 in Theorem 12. A simple calculation
shows that the parameter ε can be fixed to something < 1/320.

Since f(X) is a restriction of IMMn,n(X), any lower bound for f(X) is a lower bound for
IMMn,n(X) too. Otherwise, if IMMn,n(X) has a 2o(

√
n logn) sized ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit,

then we get a 2o(
√
n logn) sized ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit for f(X) by substituting for the

variables according to the restriction. J

5 Determinantal complexity of IMMn,d(X)

We start by recalling a few facts from [3]. Let Ak,`(X), 1 ≤ k, ` ≤ m be the affine linear
functions over F[X] such that the following is true:

IMMn,d(X) = det((Ak,`(X))1≤k,`≤m) .

Consider a point X0 ∈ Fn2d such that IMMn,d(X0) = 0. The affine linear functions Ak,`(X)
can be expressed as Lk,`(X − X0) + yk,` where Lk,` is a linear form and yk,` is a constant
from the field. Thus, (Ak,`(X))1≤k,`≤m = (Lk,`(X − X0))1≤k,`≤m + Y0. If IMMn,d(X0) = 0
then det(Y0) = 0. Let C and D be two non-singular matrices such that CY0D is a diagonal
matrix:

CY0D =
(

0 0
0 Is

)
.

Since det(Y0) = 0, s < m. From the previous works [17], [2], [11], and [3], it is
enough to assume that s = m − 1. Since the first row and the first column of CY0D
are zero, we may multiply CY0D by diag(det(C)−1, 1, . . . , 1) and diag(det(D)−1, 1, . . . , 1) on
the left and the right side. Without loss of generality, we may assume that det(C) =
det(D) = 1. By multiplying with C and D on the left and the right and suitably renaming
(Lk,`(X− X0))1≤k,`≤m and Y0 we get

IMMn,d(X) = det((Lk,`(X− X0)1≤k,`≤m + Y0))

where Y0 = diag(0, 1, . . . , 1).
We use HIMMn,d

(X) to denote the Hessian matrix of the iterated matrix multiplication
and is defined as follows:

HIMMn,d
(X) = (Hs;ij,t;k`(X))1≤i,j≤n,1≤s,t≤d

Hs;ij,t;k`(X) = ∂2IMMn,d(X)
∂x

(s)
ij ∂x

(t)
k`

where x(s)
ij and x(t)

k` denote the (i, j)th and (k, `)th entries of the variable sets X(s) and X(t)

respectively.
By taking second order derivatives and evaluating the Hessian matrices of IMMn,d(X) and

det((Ak,`(X))1≤k,`≤m) at X0, we obtain HIMMn,d
(X0) = LHdet(Y0)LT where L is a n2d×m2

matrix with entries from the field. It follows that rank(HIMMn,d
(X0)) ≤ rank(Hdet(Y0)). It

was observed in the earlier work of [11] and [3] that it is relatively easy to get an upper bound
for rank(Hdet(Y0)). The main task is to construct a point X0 such that IMMn,d(X0) = 0, yet
the rank of HIMMn,d

(X0) is high. We give an explicit construction of a point X0 ∈ Fn2d such
that IMMn,d(X0) = 0 and rank(HIMMn,d

(X0)) ≥ d(n− 1). First for the sake of completeness,
we briefly recall the upper bound argument for the rank of Hdet(Y0) from Section 2.1 of [3].

S. Chillara and P. Mukhopadyay 247

5.1 Upper bound for the rank of Hdet(Y0)
When we take a partial derivative ∂

∂xij
of the determinant, we get the minor after striking out

the row i and column j. The second order derivative of det(Y) with respect to the variables
yij and yk` eliminates the rows {i, k} and the columns {j, `}. Considering the form of Y0,
the non-zero entries in Hdet(Y0) are obtained only if 1 ∈ {i, k} and 1 ∈ {j, `} and thus (ij, k`)
are of the form (11, tt) or (t1, 1t) or (1t, t1) for any t > 1. Thus, rank(Hdet(Y0)) = O(m).

5.2 Lower bound for the rank of HIMMn,d
(X0)

In this section, we prove Theorem 5. In particular, we give a polynomial time algorithm to
construct a point X0 explicitly such that IMMn,d(X0) = 0 and rank(HIMMn,d

(X0)) ≥ d(n−1).
Since rank(Hdet(Y0)) = O(m) and rank(HIMMn,d

(X0)) ≤ rank(Hdet(Y0)), we get that m =
Ω(dn). As mentioned in the section 1, the determinantal complexity of IMMn,d(X) is O(dn).
Together, it implies that m = Θ(dn).

I Theorem 15. For any integers n, d > 1, there is a point X0 ∈ Fn2d such that IMMn,d(X0) =
0 and rank(HIMMn,d

(X0)) ≥ d(n− 1). Moreover, the point X0 can be constructed explicitly
in polynomial time.

Proof. We prove the theorem by induction on d. For the purpose of induction, we maintain
that the entries indexed by the indices (1, 2), (1, 3), . . . , (1, n) of the matrix obtained after
multiplying the first (d− 1) matrices are not all zero at X0.

We first prove the base case for d = 2. The corresponding polynomial is IMMn,2(X) =
n∑
i=1

x
(1)
1i x

(2)
i1 . It is easy to observe that the rank of the Hessian matrix is 2n > 2(n− 1) at any

point since each non-zero entry of the Hessian matrix is 1 and the structure of the Hessian
matrix is the following:

HIMMn,2
(X) =

[
0 B12
B21 0

]
where B21 = BT12. The matrix B12 is formally described as follows.

(B12)
x

(1)
ij
x

(2)
kl

=
{

1 if i = l = 1 and j = k

0 otherwise.

We set the values of the variables as follows: x(1)
11 = 0, x(2)

11 = 1, x(2)
21 = x

(2)
31 = · · · =

x
(2)
n1 = 0 and x(1)

12 , x
(1)
13 , . . . , x

(1)
1n arbitrarily but not all to zero. The point thus obtained (say

X0) is clearly a zero of the polynomial IMMn,2(X).
For induction hypothesis, assume that the statement of the theorem is true for the

case where the number of matrices being multiplied is ≤ d. Consider the polynomial
IMMn,(d+1)(X):

IMMn,(d+1)(X) =
∑

i1,i2,...,id−1,id∈[n]

x
(1)
1i1x

(2)
i1i2

. . . x
(d−1)
i(d−2)i(d−1)

x
(d)
i(d−1)id

x
(d+1)
id1 .

Let the matrix obtained after multiplying the first d matrices be the following:
P11(X) P12(X) · · · P1n(X)
P21(X) P22(X) · · · P2n(X)

...
...

. . .
...

Pn1(X) Pn2(X) · · · Pnn(X)

STACS’14

248 Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

where

Pk`(X) =
∑

i1,i2,...,id−1∈[n]

x
(1)
ki1
x

(2)
i1i2

. . . x
(d−1)
i(d−2)i(d−1)

x
(d)
i(d−1)`

for 1 ≤ k, l ≤ n .

Thus, we have the following expression:

IMMn,(d+1)(X) = P11(X)x(d+1)
11 + P12(X)x(d+1)

21 + · · ·+ P1n(X)x(d+1)
n1 .

Now consider the Hessian matrix HIMMn,d+1
(X) which is a (d+ 1)n2× (d+ 1)n2 sized matrix:

HIMMn,d+1
(X) =

0 B1,2 B1,3 B1,4 · · · B1,(d+1)
B2,1 0 B2,3 B2,4 · · · B2,(d+1)
B3,1 B3,2 0 B3,4 · · · B3,(d+1)
...

...
...

. . .
...

...
...

...
...

...
. . .

...
B(d+1),1 B(d+1),2 · · · · · · B(d+1),d 0

.

Each Bi,j is a block of size n2 × n2 which is indexed by the variables from the matrices
M (i) andM (j) with the corresponding variable sets X(i) and X(j). Consider the block B(d+1),d
which is indexed by the variable sets X(d+1) and X(d). The only non-zero rows in B(d+1),d

are indexed by the variables x(d+1)
11 , x

(d+1)
21 , . . . , x

(d+1)
n1 . The potential non-zero entries for the

row x
(d+1)
11 are indexed by the columns x(d)

11 , x
(d)
21 , . . . , x

(d)
n1 . Similarly the potential non-zero

entries for the row x
(d+1)
21 are indexed by the columns x(d)

12 , x
(d)
22 , . . . , x

(d)
n2 and so on.

Consider the entries indexed by the indices (x(d+1)
11 , x

(d)
11), (x(d+1)

11 , x
(d)
21), . . . , (x(d+1)

11 , x
(d)
n1).

They are s1, s2, . . . , sn respectively and they can be expressed as follows:

sj =
∑

i1,i2,...,id−2∈[n]

x
(1)
1i1x

(2)
i1i2

. . . x
(d−1)
i(d−2)j

for 1 ≤ j ≤ n.

For the other rows indexed by the variables x(d+1)
21 , x

(d+1)
31 , . . . , x

(d+1)
n1 , the sequence of

potential non-zero entries is the same (s1, s2, . . . , sn) but their positions are shifted by a
column compared to the previous non-zero row. Formally, we have the following:

(B(d+1),d)x(d+1)
ij

x
(d)
kl

=
{
sk if j = 1, l = i, and i, k ∈ [n]
0 otherwise.

s1, s2, . . . , sn are also the entries indexed by the indices (1, 1), (1, 2), . . . , (1, n) of the matrix
obtained after multiplying the first (d − 1) matrices. By induction hypothesis, we know
that the entries indexed by the indices (1, 2), . . . , (1, n) are not all zero at the point X0
which is a zero of the polynomial IMMn,d(X). This also makes the rows indexed by the
variables x(d+1)

11 , x
(d+1)
21 , . . . , x

(d+1)
n1 linearly independent. It is important to note that P11(X) =

IMMn,d(X).
Now, let us define a point such that it is a zero of the polynomial IMMn,(d+1)(X). Let

X0 be the zero of the polynomial P11(X) = IMMn,d(X). Now to construct the new point,
we inductively fix the variables appearing in P11(X) by the values assigned by X0. We set
x

(d+1)
11 = 1 and x(d+1)

21 = x
(d+1)
31 = · · · = x

(d+1)
n1 = 0. We will fix the rest of the variables later.

We call the new point which is a zero of the polynomial IMMn,(d+1)(X), as X0 as well.

S. Chillara and P. Mukhopadyay 249

Now, consider the first d× d blocks of the Hessian matrix HIMMn,(d+1)
(X0). It precisely

represents the Hessian matrix of P11(X) which is also the Hessian matrix of the polyno-
mial IMMn,d(X) at the point X0

1. By induction hypothesis, the rank of this minor of
HIMMn,(d+1)

(X0) is at least d(n− 1). The only non-zero entries in the columns indexed by
the variable set X(d) are indexed by the variables x(d)

11 , x
(d)
21 , . . . , x

(d)
n1 . This is because the

other variables of X(d) do not appear in IMMn,d(X). The row in B(d+1)d indexed by x(d+1)
11

is the only row that interferes with any of the rows of B1d, B2d, . . . , Bdd. The rows indexed
by the variables x(d+1)

21 , x
(d+1)
31 , . . . , x

(d+1)
n1 in B(d+1)d are linearly independent of the rows of

B1d, B2d, . . . , Bdd. Hence the rank of HIMMn,(d+1)
at the point described is ≥ (d+ 1)(n− 1).

For the purpose of induction, we must verify that the entries indexed by the indices
(1, 2), (1, 3), . . . , (1, n) of the matrix obtained after multiplying the first d matrices are not
all zero at X0. These entries are the polynomials P12, P13, . . . , P1n. We shall express each of
the polynomials in terms of s1, s2, . . . , sn as follows:

P1j = s1x
(d)
1j + s2x

(d)
2j + · · ·+ snx

(d)
nj for 2 ≤ j ≤ n.

By induction hypothesis, we already know that s2, s3, . . . , sn are not all zero at X0.
Notice that the variables in X(d) \ {x(d)

11 , x
(d)
21 , . . . , x

(d)
n1 } were never set in the previous steps

of induction2. Therefore, we can fix these variables suitably such that P12, P13, . . . , P1n are
not all zero when evaluated at the point X0 (in fact, we can make all of them non-zero). It is
clear that we construct the point X0 in polynomial time. This completes the proof. J

6 Open Problems

In [5] it was proved that any ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit for computing the determinant or the

permanent polynomial of a n× n matrix must be of size 2Ω(
√
n). A natural question is to ask

whether one can improve the lower bound to 2Ω(
√
n logn). It is unclear whether the leading

monomial distance property can be applied directly to Determinant or Permanent to prove
such a result. We suspect that it will require a new idea.

I Problem 16. Prove that any ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit computing Determinant or Perman-

ent of a n× n matrix must be of size 2Ω(
√
n logn).

We do not have a good understanding of the determinantal complexity of the NWn,ε(X)
polynomial. In particular, we would like to pose the following problem.

I Problem 17. Prove that the determinantal complexity of the NWn,ε(X) polynomial is
Ωε(n2).

Acknowledgement. We are grateful to the anonymous STACS 2014 referees for their
comments and suggestions.

1 This can be easily seen from the setting of the variables x
(d+1)
11 = 1 and x

(d+1)
21 = x

(d+1)
31 = · · · = x

(d+1)
n1 = 0.

2 Because they do not appear in the polynomial P11.

STACS’14

250 Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

References
1 Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings-

Annual Symposium on Foundations of Computer Science, pages 67–75. IEEE, 2008.
2 Jin-Yi Cai. A note on the determinant and permanent problem. Information and Compu-

tation, 84(1):119–127, 1990.
3 Jin-Yi Cai, Xi Chen, and Dong Li. A quadratic lower bound for the permanent and

determinant problem over any characteristic 6= 2. In Proceedings of the 40th annual ACM
symposium on Theory of computing, pages 491–498. ACM, 2008.

4 Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds
for depth 4 formulas computing iterated matrix multiplication. Electronic Colloquium on
Computational Complexity (ECCC), 20:100, 2013.

5 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching
the chasm at depth four. In Proceedings of the Conference on Computational Complexity
(CCC), 2013.

6 Maurice Jansen. Lower bounds for the determinantal complexity of explicit low degree
polynomials. Theory of Computing Systems, 49(2):343–354, 2011.

7 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower
bound for regular arithmetic formulas. Electronic Colloquium on Computational Complexity
(ECCC), 20:91, 2013.

8 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput.
Sci., 448:56–65, 2012.

9 Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic formulas:
It’s all about the top fan-in. Electronic Colloquium on Computational Complexity (ECCC),
20:153, 2013.

10 Roy Meshulam. On two extremal matrix problems. Linear Algebra and its Applications,
114:261–271, 1989.

11 Thierry Mignon and Nicolas Ressayre. A quadratic bound for the determinant and per-
manent problem. International Mathematics Research Notices, 2004(79):4241–4253, 2004.

12 Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the
twenty-third annual ACM symposium on Theory of computing, pages 410–418. ACM, 1991.

13 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

14 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. In MFCS,
pages 813–824, 2013.

15 Leslie G Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual
ACM symposium on Theory of computing, pages 249–261. ACM, 1979.

16 Joachim von zur Gathen. Permanent and determinant. In FOCS, pages 398–401. IEEE
Computer Society, 1986.

17 Joachim von zur Gathen. Permanent and determinant. Linear Algebra and its Applications,
96:87–100, 1987.

Constant Factor Approximation for Capacitated
k-Center with Outliers∗

Marek Cygan and Tomasz Kociumaka

Institute of Informatics, University of Warsaw, Poland
{cygan, kociumaka}@mimuw.edu.pl

Abstract
The k-center problem is a classic facility location problem, where given an edge-weighted graph
G = (V,E) one is to find a subset of k vertices S, such that each vertex in V is “close” to some
vertex in S. The approximation status of this basic problem is well understood, as a simple
2-approximation algorithm is known to be tight. Consequently different extensions were studied.

In the capacitated version of the problem each vertex is assigned a capacity, which is a strict
upper bound on the number of clients a facility can serve, when located at this vertex. A constant
factor approximation for the capacitated k-center was obtained last year by Cygan, Hajiaghayi
and Khuller [FOCS’12], which was recently improved to a 9-approximation by An, Bhaskara and
Svensson [arXiv’13].

In a different generalization of the problem some clients (denoted as outliers) may be disreg-
arded. Here we are additionally given an integer p and the goal is to serve exactly p clients, which
the algorithm is free to choose. In 2001 Charikar et al. [SODA’01] presented a 3-approximation
for the k-center problem with outliers.

In this paper we consider a common generalization of the two extensions previously studied
separately, i.e. we work with the capacitated k-center with outliers. We present the first constant
factor approximation algorithm with approximation ratio of 25 even for the case of non-uniform
hard capacities.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximation algorithms, k-center, capacities, outliers, LP rounding

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.251

1 Introduction

The k-center problem is a classic facility location problem and is defined as follows: given
a finite set V and a symmetric distance (cost) function d : V × V → R≥0 satisfying the
triangle inequality, find a subset S ⊆ V of size k such that each vertex in V is “close” to
some vertex in S. More formally, once we choose S the objective function to be minimized
is maxv∈V minu∈S d(v, u). The vertices of S are called centers or facilities. The problem is
known to be NP-hard [12]. Approximation algorithms for the k-center problem have been
well studied and are known to be optimal [13, 15, 16, 17].

In the capacitated setting, studied for twenty years already, we are additionally given
a capacity function L : V → Z≥0 and no more than L(u) vertices (called clients) may be
assigned to a chosen center at u ∈ V . For the special case when all the capacities are
identical (denoted as the uniform case), a 6-approximation was developed by Khuller and
Sussmann [19] improving the previous bound of 10 by Bar-Ilan, Kortsarz and Peleg [4]. In the

∗ This work is partially supported by Foundation for Polish Science grant HOMING PLUS/2012-6/2.

© Marek Cygan and Tomasz Kociumaka;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 251–262

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.251
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

252 Constant Factor Approximation for Capacitated k-Center with Outliers

soft capacities version, in contrast to the standard (hard capacities), we are allowed to open
several facilities in a single location, i.e. the facilities may form a multiset. For the uniform
soft capacities version the best known approximation ratio equals 5 [19]. For general hard
capacities a constant factor approximation has been obtained only recently [11], somewhat
surprisingly by using LP rounding. It was followed by a cleaner and simpler approach of
An, Bhaskara and Svensson [1] who gave a 9-approximation algorithm. From the hardness
perspective a (3− ε) lower bound on the approximation ratio is known [9, 11].

Another natural direction in generalizing the problem is an assumption that instead of
serving all the clients we are given an integer p and we are to select exactly p clients to
serve. The disregarded clients are in the literature called outliers. The k-center problem
with outliers admits a 3-approximation algorithm, which was obtained by Charikar et al. [8].

In this article we study a common generalization of the two mentioned variants of the k-
center problem, i.e. involving both capacities and outliers. In order to simplify our algorithms
we work with a slight generalization, the Capacitated k-supplier with Outliers problem,
where vertices are either clients or potential facility locations. These vertices may coincide,
so that one may have both a client and a potential facility location at the same point, as in
k-center. Below we give the formal problem definition.

Capacitated k-supplier with Outliers
Input: Integers k, p ∈ Z≥0, finite sets C and F , a symmetric distance (cost) function
d : (C ∪ F)× (C ∪ F)→ R≥0 satisfying the triangle inequality, and a capacity function
L : F → Z≥0
Find: Sets C ⊆ C, F ⊆ F , and a function φ : C → F satisfying
|C| = p,
|F | = k,
|φ−1(u)| ≤ L(u) for each u ∈ F .

Minimize: maxv∈C d(v, φ(v)).
Again, in the soft capacities version, F is allowed to be a multiset, and in the uniform

capacities version, the capacity function L is constant.
Existence of an r-approximation algorithm for Capacitated k-center with Outliers

can be shown to be equivalent to existence of an r-approximation algorithm for Capacitated
k-supplier with Outliers.1 Interestingly, such an equivalence is not known to hold if we
do not allow outliers: the best known approximation factor for the Capacitated k-supplier
is 11 while for the Capacitated k-center it is 9, see [1].

1.1 Our results and organization of the paper
The following is the main result of this paper.

I Theorem 1. The Capacitated k-supplier with Outliers problem, both in hard and
soft capacities version, admits a 25-approximation algorithm. The hard uniform capacities
version admits a 23-approximation, and soft uniform capacities – a 13-approximation.

Note that taking C = F = V shows that the k-supplier problem generalizes the k-center
problem, and consequently gives the same approximation bounds for the latter.

I Corollary 2. The Capacitated k-center with Outliers problem, both in hard and
soft capacities version, admits a 25-approximation algorithm. The hard uniform capacities
version admits a 23-approximation, and soft uniform capacities – a 13-approximation.

1 The proof is left for the full version of the paper.

M. Cygan and T. Kociumaka 253

It is worth noting, that the already known approximation algorithm for the k-center
problem with outliers relies on the fact that a single vertex can serve all the clients that
are its neighbors, i.e. there are no capacity constraints. At the same time the previous
approximation algorithms for the capacitated k-center problem (both in the uniform and
non-uniform case) heavily used the fact that each vertex of the graph is close to some center
in any solution. For this reason it was possible to create a path-like [11] or tree-like [1]
structure with integrally opened non-leaf vertices, that was the crux in the rounding process.
Consequently none of the algorithms for the two previously independently studied extensions
of the basic problem, i.e. capacities and outliers, works for the problem we are interested in.

The first step of our algorithm (Section 3) is the standard thresholding technique, where
we reduce a general metric to a distance metric of an unweighted graph. In Section 4 we
introduce our main conceptual contribution, i.e. the notion of a skeleton. A skeleton is a set
S of vertices, for which there exists an optimum solution F ⊆ F , such that each vertex of S
can be injectively mapped to a nearby vertex of F and moreover each vertex of F is close
to some vertex of S. Intuitively a skeleton is not yet a solution, but it looks similar to at
least one optimum solution. If no outliers are allowed, any inclusionwise maximal subset of
F with vertices far enough from each other, is a skeleton. In [11] and [1], such a set is then
mapped to non-leaf vertices of the structure steering the rounding process. We use a skeleton
in a similar way, but before we are able to do that, we need to bound the integrality gap.
Without outliers, it was sufficient to take the standard LP relaxation and decompose the
graph into connected components. Although with outliers this is no longer the case, as shown
in Section 5, a skeleton lets us both strengthen the LP relaxation, adding an appropriate
constraint, and obtain a more granular decomposition of the initial instance into several
subinstances, for which the strengthened LP relaxation is feasible and has bounded integrality
gap. Further in Section 6 we show how each of these smaller instances can be independently
rounded using tools previously applied for the capacitated setting [1].2 Section 7 contains a
wrap-up of the whole algorithm.

The improvements in the approximation ratio when soft or uniform capacities are con-
sidered, are postponed to the full version of the paper.

1.2 Related facility location work
The facility location problem is a central problem in operations research and computer science
and has been a testbed for many new algorithmic ideas resulting a number of different
approximation algorithms. In this problem, given a metric (via a weighted graph G), a set of
nodes called clients, and opening costs on some nodes called facilities, the goal is to open a
subset of facilities such that the sum of their opening costs and connection costs of clients to
their nearest open facilities is minimized. Up to now, the best known approximation ratio is
1.488, due to Li [21] who used a randomized selection in Byrka’s algorithm [6]. Guha and
Khuller [14] showed that this problem is hard to approximate within a factor better than
1.463, assuming NP 6⊆ DTIME

[
nO(log logn)].

When the facilities have capacities, the problem is called the capacitated facility location
problem. It has also received a great deal of attention in recent years. Two main variants
of the problem are soft-capacitated facility location and hard-capacitated facility location:
in the latter problem, each facility is either opened at some location or not, whereas in

2 The final rounding step can be also done using the path-like structures notion of [11], however we use
the ideas of [1] as it allows cleaner presentation.

STACS’14

254 Constant Factor Approximation for Capacitated k-Center with Outliers

the former, one may specify any integer number of facilities to be opened at that location.
Soft capacities make the problem easier and by modifying approximation algorithms for the
uncapacitated problems, we can also handle this case [23, 18]. To the best of our knowledge all
the existing constant-factor approximation algorithms for the general case of hard capacitated
facility location are local search based, and the most recent of them is the 5-approximation
algorithm of Bansal, Garg and Gupta [3]. The only LP-relaxation based approach for this
problem is due to Levi, Shmoys and Swamy [20] who gave a 5-approximation algorithm
for the special case in which all facility opening costs are equal (otherwise the LP does not
have a constant integrality gap). Obtaining an LP based constant factor approximation
algorithm for capacitated facility location is considered a major problem in approximation
algorithms [24].

A problem very close to both facility location and k-center is the k-median problem in
which we want to open at most k facilities and the goal is to minimize the sum of connection
costs of clients to their nearest open facilities. Very recently Li and Svensson [22] obtained
an LP rounding (1 +

√
3)-approximation algorithm, improving upon the previously best

(3 + ε)-approximation local search algorithm of Arya et al. [2]. Unfortunately obtaining a
constant factor approximation algorithm for capacitated k-median still remains open despite
consistent effort. The only previous attempts with constant approximation factors for this
problem violate the capacities within a constant factor for the uniform capacity case [7]
and the non-uniform capacity case [10] or exceed the number k of facilities by a constant
factor [5].

2 Preliminaries

For a fixed instance of the Capacitated k-supplier with Outliers, we call (C,F, φ)
a solution if it satisfies the required conditions. We often identify the solution by φ only
(considering it as a partial function from C to F), using Cφ and Fφ to refer to the other
elements of the triple. If φ satisfies maxv∈C d(v, φ(v)) ≤ τ , we say that φ is a distance-τ
solution.

Let G = (V,E) be an undirected graph. By dG we denote the metric defined by G. For
sets A,B ⊆ V we define dG(A,B) = mina∈A,b∈B dG(a, b). If B = {b} we write dG(A, b)
instead of dG(A,B).

For a vertex v ∈ V and an integer k ∈ Z≥0 we denote Nk
G(v) = {u ∈ V : dG(u, v) = k}

and Nk
G[v] = {u ∈ V : dG(u, v) ≤ k}. We omit the superscript for k = 1 and the subscript if

there is no confusion which graph we refer to.
For a set S and an element s by S + s we denote S ∪ {s}.

3 Reduction to graphic instances

As usual when working with a min max problem we start with the standard thresholding
argument, i.e. reduce a general metric function to a metric defined by an unweighted graph.

We say that an instance of the k-supplier problem is graphic, if d is defined as the distance
function of an unweighted bipartite graph G = (C,F , E), and the goal is to find a distance-1
solution. An r-approximation algorithm is then allowed to either give a distance-r solution,
or, only if it finds out that no distance-1 solution exists, a NO answer.

Below we show how to build an r-approximation algorithm for Capacitated k-supplier
with Outliers given an r-approximation (in the aforementioned sense) for the graphic
instances. Correctness of the reduction is standard. If an optimal solution exists, then

M. Cygan and T. Kociumaka 255

its value OPT belongs to T . In particular, in the phase corresponding to OPT , there is
a distance-1 solution in G≤OPT . Thus the algorithm for graphic instances is required to
find a solution. Therefore returns a solution φ for the first time at phase corresponding
to τ∗ ≤ OPT . Since d(v, u) ≤ τ∗dG≤τ∗ (v, u), φ is a distance-r · τ∗ solution, hence also
distance-r ·OPT solution.

T := {d(v, u) : v ∈ C, u ∈ F};
foreach τ ∈ T in ascending order do

G≤τ := (C,F , {(v, u) : d(v, u) ≤ τ});
solve the graphic instance for G≤τ ;
if a solution φ found then return φ;

return NO;

Algorithm 1: Reduction to graphic instances

4 Finding a skeleton

From now on we work with graphic instances only. Without loss of generality we may
assume that L(u) ≤ deg(u) for each u ∈ F . Indeed, setting L(u) := min(L(u), deg(u)) has
no influence on distance-1 solutions, while no additional distance-r solutions are created.

The first phase of the algorithm outputs several subsets of F . If a distance-1 solution
exists, at least one of them resembles (in a certain sense, to be defined later) a distance-1
solution and can be successfully used by the subsequent phases as a hint for constructing a
distance-r solution. We formalize the features of a good hint in the following definition.

I Definition 3. A set S ⊆ F is called a skeleton if
(separation property) d(u, u′) ≥ 6 for any u, u′ ∈ S, u 6= u′,
there exists a distance-1 solution (Cφ, Fφ, φ) such that:

(covering property) d(u, S) ≤ 4 for each u ∈ Fφ,
(injection property) there exists an injection f : S ↪→ Fφ satisfying d(u, f(u)) ≤ 2
for each u ∈ S.

If just separation and injection properties are satisfied, we call S a preskeleton.

In other words a skeleton is a set S, each vertex of which can be injectively mapped to a
vertex of a distance-1 solution Fφ, and at the same time no two vertices of S are close and
N4[S] contains the whole set Fφ.

Note that the separation property implies that sets N2[u] are pairwise disjoint for u ∈ S,
hence any function f : S → Fφ satisfying d(u, f(u)) ≤ 2 is in fact an injection, however we
make it explicit for the sake of presentation.

I Lemma 4. Let S be a preskeleton and let U = {u ∈ F : d(u, S) ≥ 6}. Then S is a skeleton,
or U 6= ∅ and S + s is a preskeleton, where s is a highest-capacity vertex of U .

Proof. Let φ be a distance-1 solution, which witnesses S being a preskeleton, where f : S ↪→
Fφ satisfies the injection property. If φ witnesses S being a skeleton, we are done. Otherwise
the covering property is not satisfied, hence there exists u ∈ Fφ such that d(u, S) > 4. Since
d is a distance function of a bipartite graph, this implies d(u, S) ≥ 6, so u ∈ U 6= ∅. If
|Fφ ∩ N2[s]| ≥ 1, then φ already witnesses S + s being a preskeleton, as one can extend
the injection f by mapping a vertex of Fφ ∩ N2[s] to s. Therefore, we may assume that
N2[s] ∩ Fφ = ∅. In particular, this means that the clients in N(s) are not served by any
facility of Fφ.

STACS’14

256 Constant Factor Approximation for Capacitated k-Center with Outliers

Let us modify φ to obtain ψ as follows: close the facility in u, opening one in s instead.
Let c be the number of clients assigned to u in φ. No longer serve these, instead serve any
c neighbors of s in ψ (as we have observed before, they are not served in φ). Note that
c ≤ L(u) ≤ L(s) ≤ deg(s) by the choice of u maximizing the capacity and by the assumption
of L being bounded by deg. Consequently, there are enough neighbors of s to serve, and the
capacity constraint for s is satisfied. Moreover, the number of open facilities and the number
of served clients are preserved. Other open facilities remain unchanged, so ψ satisfies the
capacity and distance constraints for them, and therefore is a distance-1 solution. Finally,
consider a function f ′ = f + (s, s). As s is at distance at least 6 from S, by the injection
property for S we know that s does not belong to the image of f , hence f ′ is an injection.
Consequently ψ and f ′ ensure S + s satisfies the injection property. Moreover s is far from
S, hence S + s is a preskeleton. J

With ∅ being trivially a preskeleton provided that any distance-1 solution exists, Lemma 4
lets us generate a sequence of sets, which contains a skeleton (see Algorithm 2). Note that
any skeleton, by the injection property, is of size at most k.

I Lemma 5. If there exists a distance-1 solution, there is at least one skeleton among sets
output by Algorithm 2.

S := ∅;
while |S| ≤ k − 1 do

U := {u ∈ F : d(u, S) ≥ 6};
if U = ∅ then break;
s := argmax{L(u) : u ∈ U};
S := S + s;
output S;

Algorithm 2: Construction of a family of sets containing at least one skeleton.

5 Clustering

For a set S ⊆ F define the following linear program LPk,p(G,L, S), where a variable yu for
u ∈ F denotes whether we open a facility in u or not, while a variable xuv for u ∈ F , v ∈ C
corresponds to whether u serves v or not.

∑
u∈F

yu = k (1)∑
u∈F,v∈C

xuv = p (2)

xuv ≤ yu for each u ∈ F , v ∈ C (3)∑
v

xuv ≤ L(u) · yu for each u ∈ F (4)∑
u

xuv ≤ 1 for each v ∈ C (5)∑
u∈F∩N2[s]

yu ≥ 1 for each s ∈ S (6)

xuv = 0 for each u ∈ F , v ∈ C such that (v, u) /∈ E (7)
0 ≤ x, y ≤ 1 (8)

M. Cygan and T. Kociumaka 257

Constraints (1)–(5),(7) are the standard constraints for Capacitated k-supplier with
Outliers, ensuring that we open exactly k facilities (1), serve exactly p clients (2), obey
capacity constraints (3)–(5), and serve clients which are close to facilities (7).

Observe that if S is a skeleton and a distance-1 solution φ witnesses that fact, we get
a feasible solution of LPk,p(G,L, S) setting yu = 1 iff u ∈ Fφ and xuv = 1 iff v ∈ Cφ and
v = φ(u). Indeed the injection property ensures that constraint (6) is satisfied. However,
as usual in a capacitated problem with hard constraints, the integrality gap of this LP is
unbounded. Similarly to the standard capacitated k-center [11], this issue is addressed
by considering the connected components of G separately. When all the clients need to
be served having a connected graph with a feasible solution of the standard LP is enough
to round it [1, 11]. However, if we allow outliers, there are sill connected instances with
arbitrarily large integrality gap.3 For this reason we use the additional constraint (6) together
with the assumption that all the vertices are close to S. This way we crucially exploit the
covering, injection and separation properties of a skeleton.

In the following we shall prove that any instance with a skeleton can be decomposed into
several smaller instances with additional properties. In the next section we will show how to
round the obtained smaller instances.

I Lemma 6. Let S ⊆ F , let G1, . . . , G` be components of G after all vertices v with
d(v, S) > 5 are removed and let Si = S ∩ V (Gi) for 1 ≤ i ≤ `.

If S is a skeleton, then in polynomial time one can find partitions k =
∑`
i=1 ki and

p =
∑`
i=1 pi such that LPki,pi(Gi, L, Si) are all feasible.

Proof. Observe that if S is a skeleton, then a witness solution φ opens facilities at distance
at most 4 from S, and thus serves clients with distance at most 5 from S. Consequently all
vertices further from S can be safely removed and S remains a skeleton. Then G might contain
several connected components G1, . . . , G` with Gi = (Ci,Fi, Ei). The witness solution φ can
be partitioned among these components so that we get assignments φi which in total open k
facilities to serve p clients. In particular, this means that for some partitions k =

∑
i ki and

p =
∑
i pi sets Si = S ∩ Fi are skeletons, and consequently LPki,pi(Gi, L, Si) are feasible.

The latter condition can be tested efficiently for any values ki and pi. While we cannot
exhaustively test all partitions of k and p, dynamic programming lets us find partitions such
that these linear programs are feasible for each i.

For i ∈ {0, . . . , `}, k′ ∈ {0, . . . , k} and p′ ∈ {0, . . . , p} define a boolean value F [i][k′][p′],
which equals true iff there exist partitions k′ =

∑i
j=1 kj and p′ =

∑i
j=1 pj such that

LPkj ,pj (Gj , L, Sj) are all feasible for j ≤ i.
Clearly F [0][0][0] is true, while F [0][k′][p′] is false for any other pair (k′, p′). For i > 1

the value F [i][k′][p′] is simply an alternative of F [i− 1][k′ − ki][p′ − pi] for every pair (ki, pi)
such that LPki,pi(Gi, L, Si) is feasible, ki ≤ k′ and pi ≤ p′. Thus in polynomial time one can
check whether the desired partitions exists, and provided that together with a true value we
also store the witness partitions, also find these partitions. J

6 Rounding

In the previous section we have shown how given a skeleton S one can partition the initial
instance into smaller subinstances with more structural properties. Our main goal in this

3 The construction is simple, but due to space restrictions it is left for the full version of the paper.

STACS’14

258 Constant Factor Approximation for Capacitated k-Center with Outliers

section is to show that those structural properties are in fact sufficient to construct a solution
for each of the subinstances, which is formalized in the following lemma.

I Lemma 7. Let I = (G = (C,F , E), L, k, p) be an instance of Capacitated k-supplier
with Outliers and let S ⊆ F . If the following four conditions are satisfied:
(i) G is connected,
(ii) for any u, u′ ∈ S, u 6= u′ we have d(u, u′) ≥ 6,
(iii) N5[S] = F ∪ C,
(iv) LPk,p(G,L, S) admits a feasible solution,
then one can find a distance-25 solution for I in polynomial time.

Before we give a proof of Lemma 7, in Section 6.1 we recall (an adjusted version) of a
distance-r transfer, a very useful notion introduced in [1], together with its main properties.
Next, in Section 6.2 we prove Lemma 7.

6.1 Distance r-transfer
I Definition 8. Given a graph G = (V,E) with W ⊆ V , a capacity function L : W → Z≥0
and y ∈ RW≥0, a vector y′ ∈ RW≥0 is a distance-r transfer of (G,L, y) if

1.
∑
v∈W y′v =

∑
v∈W yv and

2.
∑
v∈W :d(v,U)≤r L(v)y′v ≥

∑
u∈U L(u)yu for all U ⊆W .

If y′ is a characteristic vector of F ⊆W , we say that F is an integral distance-r transfer
of (G,L, y).

Less formally a distance-r transfer is a reassignment, where the sum of y-variables is
preserved and locally for any set U ⊆W the total fractional capacity in a small neighborhood
of U does not decrease.

Like in [1], an integral distance-r transfer of the fractional solution of the LP already
gives a distance-r + 1 solution (in particular point 2 of Definition 8 ensures that the Hall’s
condition is satisfied). The proof must be modified though, so that it encompasses outliers.

I Lemma 9. Let G = (C,F , E) be a bipartite graph with a capacity function L : F → Z≥0.
Assume (x, y) is a feasible solution of LPk,p(G,L, S) and F ⊆ F is an integral distance-r
transfer of y. Then one can find a distance-r + 1 solution (C,F, φ) in polynomial time.

U

NH′ [U]

C

multiplicated F

v

L(u) copies
u1 u2 u3

Figure 1 Graph H ′ obtained from H by removing vertices from F \ F and duplicating each
vertex u ∈ F to its capacity. Shaded ellipses represent sets used in Hall’s theorem.

M. Cygan and T. Kociumaka 259

Proof. Consider a bipartite graph H = (C,F , EH) with (v, u) ∈ EH if dG(v, u) ≤ r + 1.
Modify H to obtain H ′ by removing vertices from F \ F and duplicating each vertex u ∈ F
to its capacity, i.e. L(u) times, see also Fig. 1. Observe that cardinality-p matchings in this
graph correspond to distance-r + 1 solutions for G. If any, such a matching can clearly be
found in polynomial time. We shall prove its existence by checking the deficit version of
Hall’s theorem, i.e. that for each U ⊆ C we have∑

u∈F :d(u,U)≤r+1

L(u) ≥ |U | − |C|+ p

First, observe that

∑
v∈U,u∈F

xuv =
∑

v∈C,u∈F
xuv −

∑
v∈C\U,u∈F

xuv
(2),(5)
≥ p−

∑
v∈C\U

1 = p− |C \ U | = |U | − |C|+ p.

Moreover

∑
v∈U,u∈F

xuv =
∑

v∈U,u∈NG(U)

xuv ≤
∑

u∈NG(U)

∑
v∈C

xuv
(4)
≤

∑
u∈NG(U)

L(u)yu

Def. 8 point 2
≤

∑
u∈F :dG(u,NG(U))≤r

L(u) =
∑

u∈F :dG(u,U)≤r+1

L(u) .

Together these equalities conclude the proof. J

We proceed with a pair of simple properties of transfers.

I Fact 10. Let G = (V,E) be a graph with W ⊆ V and a capacity function L : W → Z≥0,
and let y, y′, y′′ ∈ RW≥0. Assume y′ is a distance-r transfer of (G,L, y) and y′′ is a distance-r′
transfer of (G,L, y′). Then y′′ is a distance-r + r′ transfer of (G,L, y).

I Fact 11. Let G = (V,E) and G′ = (V ′, E′) be graphs with W ⊆ V and W ⊆ V ′ and a
capacity function L : W → Z≥0. Let y, y′ ∈ RW≥0 and let f : Z≥0 → Z≥0 be a monotonic
function such that dG(u, v) ≤ f(dG′(u, v)) for any u, v ∈ W . Assume y′ is a distance-r
transfer of (G′, L, y). Then y′ is a distance-f(r) transfer of (G,L, y).

The following is the main technical contribution of [1].

I Lemma 12 ([1]). Let T = (V,E) be a tree with a capacity function L : V → Z≥0 and let
y ∈ [0, 1]V be a vector such that yv = 1 for every non-leaf v ∈ V and

∑
v∈V yv ∈ Z≥0. Then

one can find in polynomial time an integral distance-2 transfer of (T, L, y).

6.2 Final rounding
I Lemma 13. Let G = (C,F , E) be a connected bipartite graph and let S ⊆ F such that
d(v, S) ≤ 5 for every v ∈ C ∪ F . There exists an auxiliary tree T = (S,ET) such that
d(u, u′) ≤ 10 for any {u, u′} ∈ ET . Moreover, such a tree can be computed in polynomial
time.

Proof. We shall grow a tree adding a leaf in each step. At the beginning we select any
s ∈ S and initialize with a single-vertex tree. Assume we have already grown a tree with
vertex-set S′ ⊆ S. Choose a shortest path connecting S′ to S′ \ S. Such a path exists
since G is connected. If its length is at most 10, we add the endpoint in S \ S′ to the tree,

STACS’14

260 Constant Factor Approximation for Capacitated k-Center with Outliers

s
ms

≤ 2

≤ 4

s′t
mt

≤ 2

≤ 4

t′

Figure 2 A fragment of the tree T ′ with s, t ∈ S. Nodes of F are marked in black, of S′ in gray.
Edges of T ′ are represented as dashed lines. Note that ms and mt are not vertices of T ′.

joining it with the other endpoint. For a proof by contradiction assume that a shortest path
has length greater than 10. Since G is bipartite, its length needs to be even, and thus at
least 12. Choose the midpoint of such a path. Its distance both to S′ and to S′ \ S is at
least 6, otherwise the path could be shortened. This vertex contradicts the assumption that
d(v, S) ≤ 5 for every v ∈ C ∪ F . J

We are ready to prove Lemma 7.

Proof of Lemma 7. Since G is connected and every vertex of G is within distance 5 from S,
we can use Lemma 13 to construct a tree T = (S,ET). Let us add a duplicate s′ of every
s ∈ S to create a bipartite graph G′ = (C,F ′, E′), where F ′ = F ∪ S′ and S′ = {s′ : s ∈ S}.
For each s ∈ S choose ms = argmax{L(u) : u ∈ N2[s] ∩ F} and set L(s′) = L(ms). Let us
create a tree T ′ with V (T ′) = F ′ \ {ms : s ∈ S}. We build it in two steps, see also Fig. 2:

1. create a tree with vertex set S′ so that {u′, v′} is an edge iff {u, v} ∈ E(T),
2. connect each vertex in F \ {ms : s ∈ S} to the closest vertex in S′.

Observe that endpoints of the edges created in the first step are at most at distance
10 in G′, while endpoints of the edges created in the second step, at most at distance 4.
Consequently, dG′(u, v) ≤ 10dT ′(u, v) for any u, v ∈ V (T ′). Moreover, note that all non-leaves
of T ′ belong to S′.

Let (x, y) be a feasible solution of LPk,p(G,L, S). Note that y can be interpreted as a
vector in RF ′≥0 extending with zeroes at S′. We shall give an integral distance-24 transfer
F of (G′, L, y). Despite it being formally a transfer in G′, F will be a subset of F , i.e. a
transfer of (G,L, y) as well.

Recall that by (2), the sets N2[s] are pairwise disjoint and in particular ms are pairwise
different. This lets us use (6) to gather in s′ one unit from N2[s] for every s ∈ S so that the
whole value in ms is transferred to s′. Note that L(s′) ≥ L(u) for each u ∈ N2[s], so this way
we obtain a distance-2 transfer y′ of (G′, L, y). Additionally, we have made sure that y′ms = 0,
so y′ can be interpreted as a vector in RV (T ′)

≥0 , and that y′s′ = 1, so y′ is 1 for all non-leaves
of T ′. This lets us use Lemma 12 to obtain an integral distance-2 transfer F ′ ⊆ V (T ′) of
(T ′, L, y′). According to Fact 11 it can be interpreted as a distance-20 transfer of (G′, L, y′).
Finally we move the value from s′ to ms for each s ∈ S. Note that these vertices have equal
capacities, so this step can be interpreted as an integral distance-2 transfer.

M. Cygan and T. Kociumaka 261

The final transfer is therefore a composition of a distance-2 transfer, a distance-20 transfer
and a distance-2 transfer. Thus, by Fact 10 it is a distance-24 transfer.4 By Lemma 9 having
an integral distance-24 transfer is enough to construct a distance-25 solution φ in polynomial
time, which concludes the proof of Lemma 7. J

7 Wrap-up

With the results of previous section, we are ready to the prove the main theorem.

I Theorem 14. The Capacitated k-supplier with Outliers problem admits a 25-
approximation algorithm.

Proof. Section 3 with Algorithm 1 provides (a Turing-like) reduction to graphic instances.
Algorithm 2 of Section 4 given such an instance outputs several sets. Provided that a distance-
1 solution exists, one of them is guaranteed to be a skeleton. Each of these sets is then
processed separately. As described in Section 5, some redundant vertices are removed and the
graph is partitioned into connected components. Dynamic programming (Lemma 6) is then
used to find a compatible partition of k and p, so that each linear program LPki,pi(Gi, L, Si)
admits a feasible solution. While this procedure might fail in general, it is guaranteed to
succeed for a skeleton, hence at least once if a distance-1 solution exists.

Note that if such a partition is found, then for each of the instances (Gi, L, ki, pi) together
with sets Si, we can use Lemma 7 as all the conditions (i) − (iv) are satisfied. A sum of
solutions for these ` instances is finally returned as a distance-25 solution for the original
graphic instance. J

Acknowledgements. We would like to thank Samir Khuller for suggesting the study of this
variant of the k-center problem and helpful discussions.

References
1 Hyung-Chan An, Aditya Bhaskara, and Ola Svensson. Centrality of trees for capacitated

k-center. CoRR, abs/1304.2983, 2013.
2 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and

Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In
Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, STOC, pages 21–29.
ACM, 2001.

3 Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capacitated
facility location. In Leah Epstein and Paolo Ferragina, editors, ESA, volume 7501 of
Lecture Notes in Computer Science, pages 133–144. Springer, 2012.

4 Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to allocate network centers. Journal
of Algorithms, 15(3):385–415, 1993.

5 Yair Bartal, Moses Charikar, and Danny Raz. Approximating min-sum k-clustering in
metric spaces. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors,
STOC, pages 11–20. ACM, 2001.

4 A simpler construction gives a distance-30 transfer, without introducing additional vertices S′. It is
enough first to gather one unit from N2[s] in ms and build a tree on vertices ms, where adjacent vertices
of the tree are at distance at most 14 in G. By using Lemma 12 one obtains a distance-28 transfer,
which together with the initial distance-2 transfer gives an integral distance-30 transfer.

STACS’14

262 Constant Factor Approximation for Capacitated k-Center with Outliers

6 Jaroslaw Byrka and Karen Aardal. An optimal bifactor approximation algorithm for the
metric uncapacitated facility location problem. SIAM J. Comput., 39(6):2212–2231, 2010.

7 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer and System
Sciences, 65(1):129–149, 2002.

8 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for
facility location problems with outliers. In S. Rao Kosaraju, editor, SODA, pages 642–651.
ACM/SIAM, 2001.

9 Julia Chuzhoy, Sudipto Guha, Eran Halperin, Sanjeev Khanna, Guy Kortsarz, Robert Krau-
thgamer, and Joseph Naor. Asymmetric k-center is log∗ n-hard to approximate. Journal
of the ACM, 52(4):538–551, 2005.

10 Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities.
In SODA, pages 952–958. SIAM, 2005.

11 Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers
with non-uniform hard capacities. In FOCS, pages 273–282. IEEE Computer Society, 2012.

12 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

13 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

14 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location al-
gorithms. Journal of Algorithms, 31(1):228–248, 1999.

15 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10:180–184, 1985.

16 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.

17 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1:209–216, 1979.

18 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. Journal
of the ACM, 48(2):274–296, 2001.

19 Samir Khuller and Yoram J. Sussmann. The capacitated k-center problem. SIAM Journal
on Discrete Mathematics, 13(3):403–418, 2000.

20 Retsef Levi, David B. Shmoys, and Chaitanya Swamy. LP-based approximation algorithms
for capacitated facility location. Mathematical Programming, 131(1-2):365–379, 2012.

21 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013.

22 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC, pages 901–910. ACM,
2013.

23 David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems. In Frank Thomson Leighton and Peter W. Shor, editors, STOC, pages
265–274. ACM, 1997.

24 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

Bounds on the Cover Time of Parallel Rotor
Walks∗

Dariusz Dereniowski1, Adrian Kosowski2,3, Dominik Pająk2, and
Przemysław Uznański2,4

1 Department of Algorithms and System Modeling, Gdańsk University of
Technology, Gdańsk, Poland

2 CEPAGE Project, Inria Bordeaux Sud-Ouest – LaBRI, Talence, France
3 GANG Project, Inria Paris Rocquencourt – LIAFA, Paris, France
4 CNRS and Aix-Marseille Université – LIF, Marseille, France

Abstract
The rotor-router mechanism was introduced as a deterministic alternative to the random walk in
undirected graphs. In this model, a set of k identical walkers is deployed in parallel, starting from
a chosen subset of nodes, and moving around the graph in synchronous steps. During the process,
each node maintains a cyclic ordering of its outgoing arcs, and successively propagates walkers
which visit it along its outgoing arcs in round-robin fashion, according to the fixed ordering.

We consider the cover time of such a system, i.e., the number of steps after which each node
has been visited by at least one walk, regardless of the starting locations of the walks. In the case
of k = 1, Yanovski et al. (2003) and Bampas et al. (2009) showed that a single walk achieves a
cover time of exactly Θ(mD) for any n-node graph with m edges and diameter D, and that the
walker eventually stabilizes to a traversal of an Eulerian circuit on the set of all directed edges
of the graph. For k > 1 parallel walks, no similar structural behaviour can be observed.

In this work we provide tight bounds on the cover time of k parallel rotor walks in a graph.
We show that this cover time is at most Θ(mD/ log k) and at least Θ(mD/k) for any graph,
which corresponds to a speedup of between Θ(log k) and Θ(k) with respect to the cover time of
a single walk. Both of these extremal values of speedup are achieved for some graph classes. Our
results hold for up to a polynomially large number of walks, k = O(poly(n)).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Distributed graph exploration, Rotor-Router, Collaborative robots,
Parallel random walks, Derandomization

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.263

1 Introduction

In graph exploration problems, a walker or group of walkers (agents) is placed on a node of a
graph and moves between adjacent nodes, with the goal of visiting all the nodes of the graph.
The study of graph exploration is closely linked to central problems of theoretical computer
science, such as the question of deciding if two nodes of the graph belong to the same
connected component (st-connectivity). For example, fast approaches to connectivity testing

∗ Research partially supported by ANR project DISPLEXITY and by NCN under contract DEC-
2011/02/A/ST6/00201. Dariusz Dereniowski was partially supported by a scholarship for outstanding
young researchers founded by the Polish Ministry of Science and Higher Education. The full text of the
paper is available online at: http://hal.inria.fr/hal-00865065.

© Dariusz Dereniowski, Adrian Kosowski, Dominik Pająk, and
Przemysław Uznański;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 263–275

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.263
http://hal.inria.fr/hal-00865065
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

264 Bounds on the Cover Time of Parallel Rotor Walks

in little memory rely on the deployment of multiple random walks [6, 11]. In these algorithms,
the initial locations of the walkers are chosen according to a specific probability distribution.

More recently, multiple walks have been studied in a worst-case scenario where the k
agents are placed on some set of starting nodes and deployed in parallel, in synchronous steps.
The considered parameter is the cover time of the process, i.e., the number of steps until
each node of the graph has been visited by at least one walker. Alon et al. [2], Efremenko
and Reingold [9], and Elsässer and Sauerwald [10] have studied the notion of the speedup
of the random walk for an undirected graph G, defined as the ratio between the cover time
of a k-agent walk in G for worst-case initial positions of agents and that of a single-agent
walk in G starting from a worst-case initial position, as a function of k. A characterization
of the speedup has been achieved for many graph classes with special properties, such as
small mixing time compared to cover time. However, a central question poised in [2] still
remains open: what are the minimum and maximum values of speed-up of the random walk
in arbitrary graphs? The smallest known value of speedup is Θ(log k), attained e.g. for
the cycle, while the largest known value is Θ(k), attained for many graph classes, such as
expanders, cliques, and stars.

In this work, we consider a deterministic model of walks on graphs, known as the rotor-
router. The rotor-router model, introduced by Priezzhev et al. [14], provides a mechanism
for the environment to control the movement of the agent deterministically, mimicking
the properties of exploration as the random walk. In the rotor-router, the agent has no
operational memory and the whole routing mechanism is provided within the environment.
The edges outgoing from each node v are arranged in a fixed cyclic order known as a port
ordering, which does not change during the exploration. Each node v maintains a pointer
which indicates the edge to be traversed by the agent during its next visit to v. If the agent
has not visited node v yet, then the pointer points to an arbitrary edge adjacent to v. The
next time when the agent enters node v, it is directed along the edge indicated by the pointer,
which is then advanced to the next edge in the cyclic order of the edges adjacent to v.

For a single agent, the (deterministic) cover time of the rotor-router and the (expected)
cover time of the random walk prove to be surprisingly convergent for many graph classes.
In general, it is known that for any n-node graph of m edges and diameter D, the cover time
of the rotor-router in a worst-case initialization is precisely Θ(mD) [16, 3]. By comparison,
the random walk satisfies an upper bound of O(mD logn) on the cover time, though this
bound is far from tight for many graph classes.

The behavior of the rotor-router model with multiple agents appears to be much more
complicated. Since the parallel walkers interact with the pointers of a single rotor-router
system, they cannot be considered independent (in contrast to the case of parallel random
walks). In the first work on the topic, Yanovski et al. [16] showed that adding a new agent to
a rotor-router system with k agents cannot increase the cover time, and showed experimental
evidence suggesting that a speedup does indeed occur. Klasing et al. [13] have provided the
first evidence of speedup, showing that for the special case when G is a cycle, a k-agent
system explores an n-node cycle Θ(log k) times more quickly than a single agent system.

In this work we completely resolve the question of the possible range of speedups of the
parallel rotor-router model in a graph, showing that its value is between Θ(log k) and Θ(k),
for any graph. Both of these bounds are tight. Thus, the proven range of speedup for the
rotor-router corresponds precisely to the conjectured range of speedup for the random walk.

1.1 Related work
The rotor-router model. Studies of the rotor-router started with works of Wagner et al. [15]
who showed that in this model, starting from an arbitrary configuration (arbitrary cyclic

D. Dereniowski, A. Kosowski, D. Pająk, and P. Uznański 265

orders of edges, arbitrary initial values of the port pointers and an arbitrary starting node)
the agent covers all m edges of an n-node graph within O(nm) steps. Bhatt et al. [5] showed
later that within O(nm) steps the agent not only covers all edges but enters (establishes)
an Eulerian cycle. More precisely, after the initial stabilization period of O(nm) steps, the
agent keeps repeating the same Eulerian cycle of the directed symmetric version ~G of graph
~G (see Section 3 for a definition). Subsequently, Yanovski et al. [16] and Bampas et al. [3]
showed that the Eulerian cycle is in the worst case entered within Θ(mD) steps in a graph
of diameter D. Considerations of specific graph classes were performed in [12]. Robustness
properties of the rotor-router were further studied in [4], who considered the time required
for the rotor-router to stabilize to a (new) Eulerian cycle after an edge is added or removed
from the graph. Regarding the terminology, we note that the rotor-router model has also
been referred to as the Propp machine [3] or Edge Ant Walk algorithm [15, 16], and has also
been described in [5] in terms of traversing a maze and marking edges with pebbles. Studies
of the multi-agent rotor-router was performed by Yanovski et al. [16] and Klasing et al. [13],
and its speedup was considered for both worst-case and best-case scenarios.

A variant of the multi-agent rotor-router mechanism has been extensively studied in a
different setting, in the context of balancing the workload in a network. The single agent
is replaced with a number of agents, referred to as tokens. Cooper and Spencer [7] study
d-dimensional grid graphs and show a constant bound on the discrepancy, defined as the
difference between the number of tokens at a given node v in the rotor-router model and
the expected number of tokens at v in the random-walk model. Subsequently, Doerr and
Friedrich [8] analyze in more detail the distribution of tokens in the rotor-router mechanism
on the 2-dimensional grid. Akbari and Berenbrink [1] showed an upper bound of O(log3/2 n)
on the discrepancy for hypercubes and a bound of O(1) for a constant-dimensional torus.

Parallel random walks. Alon et al. [2] introduced the notion of the speed-up of k independent
random walks as the ratio of the cover time of a single walk to the cover time of k random walks.
They conjectured that the speed-up is between log k and k for any graph. The speedup was
shown to be k for many graph classes, such as complete graphs [2], d-dimensional grids [2, 10],
hypercubes [2, 10], expanders [2, 10], and different models of random graphs [2, 10]. For the
cycle, the speed-up is equal to log k [2]. For general graphs, an upper bound min{k logn, k2}
on the speed-up was obtained by Efremenko et al. [9]. Independently, Elsässer et al. [10]
showed the k logn upper bound. Another measure studied by Efremenko et al. [9] concerns
the speedup with respect to a different exploration parameter — the maximing hitting time,
i.e., the maximum over all pairs of nodes of the graph of the expected time required by the
walk to move from one node to the other. For this parameter, they show a bound on speedup
of O(k), mentioning that it is tight in many graph classes.

1.2 Our results and overview of the paper
In this work we establish bounds on the minimum and maximum possible cover time for a
worst-case initialization of a k-rotor-router system in a graph G with m edges and diameter D.

We start by providing a formal definition of the rotor-router model and recalling its
basic properties in Section 2. In Section 3, we first prove that the cover time tC satisfies
tC ∈ O(mD/ log k), when k < 216D. We then extend this result to the case of k ∈ O(poly(n)),
i.e., k < nc for some absolute constant c. The main part of our proofs relies on a global
analysis of the number of visits to edges in successive time steps, depending on the number
of times that these edges have been traversed in the past. We first prove a stronger version
of local structural lemmas proposed by Yanovski et al. [16], and apply them within a global

STACS’14

266 Bounds on the Cover Time of Parallel Rotor Walks

Table 1 Values of speed-up for k-agent exploration with the rotor-router and parallel random
walks. All results hold at least for k ≤ n, except for those cited from [13] which hold for k ≤ n1/11.

Graph class Speedup of Rotor-Router Speedup of Random Walk
for cover time for cover time for max hitting time

General case: Ω(log k), O(k) (Thm. 8, 9) O(k2), O(k log n) [9, 10] O(k) [10]

Cycle: Θ(log k) [13] Θ(log k) [2] Θ(log k) [2]

Star: Θ(k) (Prop. 10) Θ(k) [2] Θ(k) [2]

amortization argument over all time steps and all edges in the graph. The extension to the
case of k ∈ O(poly(n)) relies on a variant of a similar amortized analysis, and also makes use
of a technique known as delayed deployments introduced by Klasing et al. [13], which we
briefly recall in Section 2. We remark that by [13], a cover time of Θ(mD/ log k) is achieved
when G is a cycle with all agents starting from one node, when k < n1/11.

In Section 4, we show a complementary lower bound on the cover time of the k-agent rotor-
router in worst case initialization, namely, tC ∈ Ω(mD/k). As a starting point, the proof uses
a decomposition of the edge set of a graph, introduced by Bampas et al. [3], into a “heavy
part” containing a constant proportion of the edges and a “deep part”, having diameter linear
in D. The main part of the analysis is to show that an appropriate initialization of k agents
in the heavy part takes a long time to reach the most distant nodes of the deep part. The
argument also takes advantage of the delayed deployment technique. We close the section by
remarking that a cover time of Θ(mD/k) is, in fact, achieved for some graphs, such as stars.

Table 1 contains a summary of our results on the speed-up of the k-agent rotor-router,
compared to corresponding results from the literature for parallel random walks. Note that
for a deterministic process such as the rotor-router, the notions of cover time and maximum
hitting are equivalent, and hence we only refer to cover times.

2 Model and preliminaries

Let G = (V,E) be an undirected connected graph with n nodes, m edges and diameter D.
We denote the neighborhood of a node v ∈ V by Γ(v). The directed graph ~G = (V, ~E) is the
directed symmetric version of G, where the set of arcs ~E = {(v, u) : {v, u} ∈ E}. We will
denote arc (v, u) by v → u.

Model definition. We consider the rotor-router model (on graph G) with k ≥ 1 indistin-
guishable agents, which run in steps, synchronized by a global clock. In each step, each agent
moves in discrete steps from node to node along the arcs of graph ~G. A configuration at the
current step is defined as a triple ((ρv)v∈V , (πv)v∈V , {r1, . . . , rk}), where ρv is a cyclic order
of the arcs (in graph ~G) outgoing from node v, πv is an arc outgoing from node v, which
is referred to as the (current) port pointer at node v, and {r1, . . . , rk} is the (multi-)set of
nodes currently containing an agent. For each node v ∈ V , the cyclic order ρv of the arcs
outgoing from v is fixed at the beginning of exploration and does not change in any way
from step to step.

For an arc v → u, let next(v → u) denote the arc next after arc (v → u) in the cyclic
order ρv. The exploration starts from some initial configuration and then keeps running
in all future rounds, without ever terminating. During the current step, first each agent i
is moved from node ri traversing the arc πri

, and then the port pointer πri
at node ri is

D. Dereniowski, A. Kosowski, D. Pająk, and P. Uznański 267

advanced to the next arc outgoing from ri (that is, πri becomes next(πri)). This is performed
sequentially for all k agents. Note that the order in which agents are released within the
same step is irrelevant from the perspective of the system, since agents are indistinguishable.
For example, if a node v contained two agents at the start of a step, then it will send one of
the agents along the arc πv, and the other along the arc (v, next(πv)).

Notation. Throughout the paper, N+ denotes the set of positive integers, and N = N+∪{0}.
We introduce compact notation for discrete intervals of integers: [a, b] ≡ {a, a + 1, . . . , b},
and [a, b) ≡ [a, b− 1], for a, b ∈ N.

We will denote by a(t)(e) the number of agents traversing directed arc e ∈ ~E during step
t+ 1. We recall that multiple agents traversing one arc e ∈ ~E in the same time step t are
considered to move simultaneously. By d(t)(e) we denote the number of traversals of directed
arc e ∈ ~E till the end of step t, d(t)(e) =

∑
t′∈[0,t) a

(t′)(e). For a node v ∈ V , let d(t)(v) =
minw∈Γ(v){d(t)(v → w)} be the number of fully completed rotations of the rotor at node v
at the end of step t. We note that for any arc u→ v ∈ ~E, 0 ≤ d(t)(u→ v)− d(t)(u) ≤ 1 [16].

We also denote V (t)
i = {v ∈ V : d(t)(v) ≤ i} and E

(t)
i = {e ∈ ~E : d(t)(e) ≤ i}. Given

a graph G = (V,E) and a subset X ⊆ V , G[X] denotes the subgraph of G induced by X,
G[X] = (X, {{u, v} ∈ E

∣∣ u, v ∈ X}).
Delayed deployment technique. In some of the proofs, we will make use of modified
executions of the k-agent rotor-router system called delayed deployments [13], in which some
agents may be stopped at a node, skipping their move for some number of rounds. Formally, a
delayed deployment D of k agents is defined as a function D : V ×N→ N, where D(v, t) ≥ 0
represents the number of agents which are stopped in node v in step t of the execution of
the system. Delayed deployments may be conveniently viewed as algorithmic procedures
for delaying agents, and are introduced for purposes of analysis, only. The following lemma
relates the cover time of the rotor-router system to that of its delayed deployment.

I Lemma 1. [13] Let R be a k-rotor router system with an arbitrarily chosen initialization,
and let D be any delayed deployment of R. Suppose that deployment D covers all the nodes
of the graph after T rounds, and in at least τ of these rounds, all k agents were active in D.
Then, the cover time tC of the rotor-router system R can be bounded by: τ ≤ tC ≤ T.

3 Upper bound on cover time

In this section, we will show that a k-agent parallel rotor-router system explores a graph in
O(mD/ log k) steps, regardless of initialization. We start by providing an informal intuition
of the main idea of the proof. After some initialization phase of duration t0, but before
exploration is completed at time tC , we consider a shortest path connecting the arc of the
graph which has already been visited many times at time t0, with an arc which will remain
unvisited at time tC . We look at the number of visits to consecutive arcs on this path. It
turns out that the rotor-router admits a property which can be informally stated as follows:
if, up to some step t of exploration, an arc el+1 of the considered path has been traversed
more times than the next arc el on the path by some difference of δ, then in the next step
t + 1 of exploration, at least δ − O(1) agents will traverse arcs which have, so far, been
visited not more often (up to a constant additive factor) than el. In this way, the larger
the discrepancy between the number of visits to adjacent arcs, the more activity will the
rotor-router perform to even out this discrepancy, by traversing under-visited arcs. This

STACS’14

268 Bounds on the Cover Time of Parallel Rotor Walks

load-balancing behavior of the system will be shown to account for the (log k)-speedup in
cover time with respect to the case of a single agent.

We start by proving two structural lemmas which generalize the results of Yanovski
et al. [16, Theorem 2]. The first lemma establishes a connection between the existence of
an arc entering a subset of nodes S ⊆ V that has been traversed more times than all arcs
outgoing from S, and the number of agents currently located within set S.

I Lemma 2. For any time t ∈ N and d ∈ N, consider the partition of the set of nodes
V = S ∪ T such that each node in set S (set T) has completed at most d (more than d) full
cycles of if its rotor, S = V

(t)
d and T = V \ S. Suppose that for some nodes v ∈ S, u ∈ T ,

and some δ ∈ N, there exists an arc u→ v, such that d(t)(u→ v) ≥ d+ δ. Then, the set of
arcs having their tail at a node of S will be traversed by at least δ − 1 agents in total in step
t+ 1.

By an application of the above lemma, we obtain the key property of a pair of consecutive
arcs which have a different number of traversals at time t.

I Lemma 3. Let G = (V,E) be any undirected graph and let e2 = u→ v, e1 = v → w be two
consecutive arcs of ~G. Fix a time step t ∈ N+. Then, for any x ≥ d(t)(e1) + 1, the number
of agents that traverse arcs from set E(t)

x in time step t+ 1 satisfies:∑
e∈E

(t)
x
a(t)(e) ≥ d(t)(e2)− d(t)(e1)− 1.

The property of the rotor-router captured by the above lemma is, in fact, sufficient to
prove the main results of the section, following the general approach outlined at the beginning
of the section. To show a bound of tC ∈ O(mD/ log k), we will apply two separate arguments,
first one for the range of relative small k (k ∈ 2O(D), which corresponds to tC ∈ Ω(m)), and
then one for values of k which are larger, but polynomially bounded with respect to n.

I Theorem 4. Let G = (V,E) be any undirected graph with arbitrary initialization of pointers
and let D be the diameter of G. If k ≤ 216D, then a team of k agents performing in parallel
the rotor-router movement explores G in less than 500mD/ log k steps, regardless of the
initial positions of agents.

Proof. First, assume that k > 2160 and fix b = b(log k)/2c. Consider the first t0 steps, where
t0 = d2b+1mD/ke. Since in every step there are exactly k arc traversals, the total number of
them during the first t0 steps is at least 2b+1mD. We have 2m arcs in total. Thus, there
exists an arc e′ such that d(t0)(e′) ≥ 2bD. These first t0 steps we will call as a form of setup
stage, after which we begin to analyze the behavior of the rotor-router process.

Denote by tC the cover time of G with k agents for a given initialization. We will assume
that tC > t0, i.e., at least one arc of the graph has not been explored at time t0; otherwise,
tC ≤ t0 = d2b+1mD/ke ≤ d2mD/

√
ke, since b = b(log k)/2c, and the claim of the theorem

holds for all k.
Take e′′ ∈ ~E to be an arc which is explored for the first time in step tC , i.e., such that

d(tC−1)(e′′) = 0. Since the diameter of G is D, there exists a path P = 〈e′′ = e1, e2, . . . eD′ =
e′〉 such that D′ ≤ D + 2, and for each l ∈ [1, D′], el = vl+1 → vl where vl, vl+1 ∈ V .

Fix a time step t ∈ [t0, tC). We will place some of the arcs of path P in groups (buckets)
I1, I2, . . . , Ib, such that all arcs in bucket Ii have been traversed between 2i−1D and 2iD

times until step t. Formally, denote:

Ii =
{
l : d(t)(el) ∈ [2i−1D, 2iD)

}
⊆ [1, D′], for i ∈ [1, b].

D. Dereniowski, A. Kosowski, D. Pająk, and P. Uznański 269

Figure 1 An illustration of sets Ii and ∆l in the proof of Theorem 4.

We now analyze which buckets successive arcs of the path P fall into. For l ∈ [1, D′), define

∆l =
{

[d(t)(el), d(t)(el+1)), if d(t)(el) < d(t)(el+1),
∅, otherwise.

Note that the union of all ∆l covers the interval [0, 2bD), since for any x ∈ [0, 2bD) there
exists l∗ ∈ [1, D′) such that x ∈ ∆l∗ because d(t)(e1) = 0 and d(t)(eD′) ≥ 2bD (see Fig. 1 for
an illustration).

The intuition of the proof is now as follows: Since there are at most D′ non-empty
intervals ∆l spanning the total range [0, 2bD) of all buckets I1, I2, . . . , Ib, in a large number
(linear in b) of these buckets Ii, the average length of an intervals ∆l starting in bucket Ii

will be at least |Ii|b/D = 2i−1b, up to a constant factor. The existence of such long intervals
∆l beginning in Ii will allow us to exploit Lemma 3 to show that arcs el, el+1 differ in the
number of traversals by a constant times 2i−1b. This implies that for the considered bucket
indices i, the number of agents active at time t on edges from buckets I1, . . . , Ii will be at
least 2i−1b, up to constant factors and minor shifts at bucket boundaries. We now proceed
to formalize the above arguments.

For i ∈ [1, b], denote by Xi the set of intervals ∆l beginning in bucket Ii: Xi =
⋃

l∈Ii
∆l .

Consider any x ∈ [0, 2bD), and let l∗ be such that x ∈ ∆l∗ . We have d(t)(el∗) ≤ x < 2bD,
hence l∗ ∈ Ii∗ , for some i∗ ∈ [1, b], and x ∈ Xi∗ . It follows that:

[0, 2bD) ⊆
⋃

i∈[1,b]

Xi. (1)

For i ∈ N, denote by a(t)
i the number of agents that traverse arcs from set E(t)

2iD in step
t+ 1, a(t)

i ≡
∑

e∈E
(t)
2iD

a(t)(e), and let a(t)
−1 = 0. (We remark that E(t)

2iD ⊇ I1 ∪ . . . ∪ Ii.) First,

note that for all i ∈ [1, b] and for l ∈ Ii, we have d(t)(el) < 2iD. So, by Lemma 3:

a
(t)
i ≥ d

(t)(el+1)− d(t)(el)− 1 = |∆l| − 1 =⇒ |∆l| ≤ a(t)
i + 1. (2)

Now, observe that for any i ∈ [1, b]:

maxXi = max
l∈Ii

(max ∆l) ≤ max
l∈Ii

(
d(t)(el) + |∆l| − 1

)
< 2iD + a

(t)
i , (3)

where we took into account inequality (2) and that d(t)(el) < 2iD for l ∈ Ii.
Next, we will show that for all i ∈ [1, b]:

2i−1D − a(t)
i−1 ≤ |Xi| ≤ |Ii|(a(t)

i + 1). (4)

STACS’14

270 Bounds on the Cover Time of Parallel Rotor Walks

The right inequality in (4) is proved as follows: |Xi| ≤
∑

l∈Ii
|∆l| ≤ |Ii|(a(t)

i + 1), where the
latter inequality is a consequence of (2).

We now prove the left inequality in (4). If a(t)
i−1 ≥ 2i−1D, then the bound is trivial. In

the case when a(t)
i−1 < 2i−1D, we will first prove that:

[2i−1D + ai−1, 2iD) ⊆ Xi. (5)

To this end, take any x ∈ [2i−1D + ai−1, 2iD) and observe that by (1), there exists some
j ∈ [1, b] such that x ∈ Xj . Moreover, note that:

1. For any j < i, x /∈ Xj , because, by (3), maxXj < 2jD + a
(t)
j ≤ 2i−1D + a

(t)
i−1 ≤ x.

2. For any j > i, x /∈ Xj , because: minXj = minl∈Ij ,∆l 6=∅min ∆l = minl∈Ij ,∆l 6=∅ d
(t)(el) ≥

2j−1D ≥ 2iD > x.

Thus, x ∈ Xi, and (5) follows. Equation (5) implies that |Xi| ≥ 2i−1D−a(t)
i−1, which completes

the proof of (4). Next, by (4), |Ii| ≥
2i−1D−a

(t)
i−1

a
(t)
i

+1
for all i ∈ [1, b]. The buckets I1, I2, . . . , Ib

are pairwise disjoint by definition and contain at most D′ elements altogether, which gives:

D + 2 ≥ D′ ≥
b∑

i=1
|Ii| ≥

b∑
i=1

2i−1D − a(t)
i−1

a
(t)
i + 1

≥
b∑

i=1

2i−1D

a
(t)
i + 1

− b,

where in the last inequality we used the fact that a(t)
i ≥ a

(t)
i−1 for i ∈ [2, b]. Dividing the sum

in the last inequality by bD, we get the following expression for the arithmetic average:

1
b

b∑
i=1

2i−1

a
(t)
i + 1

≤ D + b+ 2
bD

= 1
b

+ 1 + 2/b
D

<
9.2
b
,

where in the last inequality we took into account that k ≤ 216D and b ≤ (log k)/2 by
assumption, hence D ≥ (log k)/16 ≥ b/8, and that b = b(log k)/2c ≥ 80. All the elements
of the considered sum are positive, hence by Markov’s inequality, there exists a subset of
indices S(t) ⊆ [1, b], with |S(t)| ≥ b/2, such that for all j ∈ S(t) we have:

2j−1

a
(t)
j + 1

≤ 2 · 1
b

b∑
i=1

2i−1

a
(t)
i + 1

≤ 18.4
b
.

This implies that for all j ∈ S(t):

a
(t)
j ≥ b

18.4 · 2
j−1 − 1 > b

25 · 2
j−1, (6)

where we again took into account that b ≥ 80. Fix t1 = d100mD/be. We now prove that

tC ≤ t0 + 2t1 + 4m. (7)

Suppose, by contradiction, that tC > t0 +2t1 +4m. We will say that an index j ∈ [1, b] is good
after time t if j ∈ S(t). Since for all t ∈ [t0, tC) we have |S(t)| ≥ b/2 and S(t) ⊆ [1, b], by the
pigeon-hole principle there must exist an index j∗ that is good in at least (tC−t0)/2 = t1+2m
steps in [t0, tC); we will call these steps good steps.

For an arc e of the graph, we denote by te the so called exit time step for arc e, after
which the total number of visits to arc e of the graph for the first time exceeds 2j∗D:
d(te)(e) ≤ 2j∗D < d(te+1)(e). The set of all exit time steps, taken over all arcs of the graph,

D. Dereniowski, A. Kosowski, D. Pająk, and P. Uznański 271

is denoted T̂ = {te : e ∈ ~E}. Note that e ∈ E(t)
2j∗D

if and only if t ≤ te, and therefore we may
write:∑

t∈[0,tC)\T̂

a
(t)
j∗ =

∑
t∈[0,tC)\T̂

∑
e∈E

(t)
2j∗D

a(t)(e) ≤
∑
e∈~E

te−1∑
t=0

a(t)(e) =
∑
e∈~E

d(te)(e) ≤ 2m · 2j∗D. (8)

Now, recall that there are at least t1 + 2m good time steps t ∈ [t0, tC) for which index j∗
satisfies (6), and that |T̂ | ≤ 2m. It follows that:∑

t∈[0,tC)\T̂

a
(t)
j∗ > t1 ·

b

25 · 2
j∗−1 =

⌈
100mD

b

⌉
b

25 · 2
j∗−1 ≥ 2m · 2j∗D,

a contradiction with (8). Thus, we have proved (7). By (7), we obtain

tC ≤ t0 + 2t1 + 4m =
⌈

2b+1mD

k

⌉
+ 2

⌈
100mD

b

⌉
+ 4m ≤

≤ mD

log k

(
2b+1 log k

k
+ 200 log k

b
+ 4 log k

D
+ 3 log k

mD

)
(9)

Taking into account that b = b(log k)/2c, k ≤ 216D, and k > 2160, we obtain that the
expression in the above bracket can be bounded by a constant, giving: tC < 500 mD

log k . This
completes the proof for the case k > 2160.

Suppose now that k ≤ 2160. Yanovski et al. [16] showed that a single agent explores
the graph in at most 2mD steps regardless of the initialization, and moreover, that adding
agents cannot decrease the number of traversals on any edge. We thus trivially obtain the
claim: tC ≤ 2mD < 500 mD

log k . J

We now consider the case when k ≥ 216D. Here, we first make the additional assumption
that each agent starts from a distinct node. We show that additional assumption implies
that no arc is traversed by more than one agent in a single step. The proof then proceeds
along similar lines as that of Theorem 4, and we show that in many time steps t, there exists
a pair of arcs el+1, el in P with a large difference in the number of traversals up to time t.
However, instead of counting the number of long arcs on path P belonging to a bucket Ii,
in this proof we take advantage of the fact that the length of the path D′ ≤ D + 2 is small
compared to log k, which can be used to infer the existence of the sought arc pairs.

I Lemma 5. Let G = (V,E) be any undirected graph with arbitrary initialization of pointers
and let D be the diameter of G. If k ≥ 216D, then a team of k agents performing parallel
rotor-router movement, with each agent starting from a distinct node of the graph, explores
G in time 16mD/ log k.

It remains to consider the case not covered by the above lemma, when not all agents start
from distinct positions. In fact, we will reduce such a case to the one already considered by
making use of the concept of delayed deployments discussed in Section 2.

I Lemma 6. Let R and R′ be two starting configurations of the k-agent rotor-router system
with cover times tC and t′C , respectively. Suppose that there exists a delayed deployment D of
R whose execution transforms the starting configuration of R into the starting configuration
of R′ in t̂ time steps. Then, tC ≤ t̂+ t′C .

The next lemma provides an upper bound on the time of transforming a rotor-router
configuration with at most n agents into one in which agents occupy distinct starting nodes.

STACS’14

272 Bounds on the Cover Time of Parallel Rotor Walks

I Lemma 7. For any initialization R of the rotor-router system with k agents, k ≤ n, there
exists a delayed deployment D of R which terminates in a configuration in which all agents
occupy distinct positions after t̂ ≤ k4 steps.

When 1 < k ≤ dn1/5e, we can bound the time t̂ in the above lemma as: t̂ ≤ k4 ≤ 32n/k ≤
64m/k ≤ 128 mD

log k .

Combining the above result with Lemmas 5 and 6, we obtain that for any rotor router
initialization with k agents, k ≤ dn1/5e and k ≥ 216D, exploration is completed within time
tC = t̂+t′C ≤ 128 mD

log k +16 mD
log k = 144 mD

log k . On the other hand, when k < 216D, by Theorem 4,
the cover time is tC ≤ 500 mD

log k . It follows that the bound tC ≤ 500 mD
log k holds for all starting

configurations with k ≤ dn1/5e.
When k > dn1/5e, we can make use of a result of Yanovski et al. [16], stating that the

worst-case initialization of a rotor-router system with k agents cannot have greater cover
time than the worst-case initialization of a system with k′ < k agents. Putting k′ = dn1/5e,
for any k > dn1/5e we obtain: tC ≤ 500 mD

log k′ ≤ 2500 mD
log n . Finally, combining the results for

k ≤ dn1/5e and k > dn1/5e gives the following theorem.

I Theorem 8. Let G = (V,E) be any undirected graph with arbitrary initialization of pointers
and let D be the diameter of G. A team of k agents performing in parallel the rotor-router
movement explores G in time max{500mD/ log k, 2500mD/ logn}, regardless of the initial
positions of agents. In particular, if k ≤ nc for some c > 0, then the cover time is at most
2500c ·mD/ log k. J

Theorems 4 and 8 imply that the cover time of the rotor-router is O(mD/ log k) for all
graphs, whenever k ∈ 2O(D) or k ∈ O(poly(n)).

4 Lower bound on cover time

I Theorem 9. Let G = (V,E) be any undirected graph of diameter D. There exists a port
labeling of the edges of G, an initialization of pointers and an assignment of starting positions
to a team of k agents, such that the exploration performed in parallel with the rotor-router
movement has cover time tC ≥ 1

4mD/k.

Proof. If k > m, we make all agents start from an arbitrarily chosen single node, and choose
an arbitrary pointer initialization. In such scenario, the exploration will be completed after
time at least D > mD

k . Thus, we can safely assume that k ≤ m.
For any graph G = (V,E), as shown in [3, Theorem 2], there exists a partition of the

edge set E = E1 ∪ E2, such that:
(i) |E1| ≥ m

2 ,
(ii) there exist V1 ⊆ V and V2 ⊆ V such that the subgraphs H1 = G[V1] and H2 = G[V2]

are connected and their edge sets are E1 and E2, respectively,
(iii) there exists a node v ∈ V2 being at distance at least D

2 from each node of H1.
Denote by F ⊂ E2 the set of edges incident to some node from H1. Now, let C =
{e1, e2, . . . , e2|E1|} be a directed Eulerian cycle in ~H1 (the bidirected subgraph corresponding
to H1) traversing every edge in E1 exactly once in each direction. To simplify notation, let
∆ =

⌊
2|E1|

k

⌋
. We choose an arbitrary set of indexes 1 = j1 < j2 < . . . < jk ≤ 2|E1| such that

they are spread (almost-)equidistantly in {1, . . . , 2|E1|}, that is:

∀1≤i<k ji+1 − ji ∈ {∆,∆ + 1} and j1 − jk + 2|E1| ∈ {∆,∆ + 1} .

D. Dereniowski, A. Kosowski, D. Pająk, and P. Uznański 273

This is possible because, due to 1, 2|E1| ≥ k. We partition E1 into ∆ sets S1, . . . , S∆ of size
k:

Si+1 = {ej1+i, ej2+i, . . . , ejk+i} , for 0 ≤ i < ∆,

and one set for all remaining edges: R = E1 \
⋃∆

t=1 St.

We choose the starting positions of k agents, the port assignment, and the initialization
of pointers for the edges in E1 such that in their first ∆ + 1 steps, the k agents traverse all
edges in E1 in the following delayed deployment: for each t ∈ {1, . . . ,∆}, in the t-th step,
exactly the edges in St are traversed, whereas in the (∆ + 1)-th step we delay some agents so
that exactly the edges in R are traversed. We achieve this by setting outgoing ports so that,
for every node u in H1, we order the edges in E1 incident to u by assigning smaller ports to
edges in St than to the edges in St+1, for each t ∈ {1, . . . ,∆}, where S∆+1 = R. Such a port
ordering is enough to explore the graph H1, with delayed deployment, with the property
that every edge is visited once every ∆ + 1 steps.

Now we assign ports to the edges in F . To this end, we consider the subgraph of G,
denoted by G̃, consisting of the edges in E1 ∪ F . In other words, we take H1 (together with
the port assignment obtained above) and we add the edges in F , obtaining G̃. Note that,
by 2, each edge in F has one endpoint in V1 and the other endpoint in V \ V1. The ports
in F are determined by analyzing the behavior of agents in the graph G̃ in the delayed
deployment described above. Whenever any set of agents are about to leave H1 and traverse
any edge from F , we select a single agent in a deterministic way (for example, by choosing
the agent located on a node with the smallest index, having indexes assigned to nodes). We
stop all other agents and perform traversals only with the selected agent, until it returns
to H1. We set the ports of the edges in F so that whenever an agent leaves H1 through an
edge (v → u) ∈ F (v ∈ V1, u /∈ V1), it returns to H1 through the edge (u→ v) (we call this
property the property of return). Having the property of return, we achieve that the agents
patrol E1, and whenever an agent is about to leave H1, the other agents are delayed until the
agent returns to the same node. Since the selection of agents is done deterministically, the
edges in F are always traversed in separated periods of time (when one agent is traversing
edges from F , all other agents are stopped) in a cyclic fashion, i.e., the sequence of traversal of
the edges in F is (f1, f

′
1, f2, f

′
2, . . . , f|F |, f

′
|F |)∗, where f ′ means the reversed edge to an edge

f , i.e., if f = (u→ v), then f ′ = (v → u). Denote fi = (ui → vi) for each i ∈ {1, . . . , |F |}.
It remains to assign port labels to the edges in E2 \ F , and to initialize the pointers

for the nodes in V \ V (G̃). This is done by first constructing a multigraph G′ and then by
analyzing a single agent movement in G′. The node set of G′ is {h} ∪ (V \ V1). For each
(u→ v) ∈ E2 \ F , let (u→ v) be an edge of G′, and for each i ∈ {1, . . . , |F |}, let (h, vi) and
(vi, h) be the edges of G′. In other words, we construct G′ by taking G, leaving the edges in
E \E1 untouched, and contracting (identifying) the nodes of H1 into the single node h. (The
loops at h formed by the edges in E1 are discarded.) For each i ∈ {1,|F |}, the ports of
(h→ vi) and (vi → h) equal the ports of (ui, vi) and (vi, ui), respectively.

We set the remaining ports in G′ and pointer initialization so that a single agent that
starts at h explores G′ in the following way:
(a) The edges in F are traversed according to the order(

(h→ v1), (v1 → h), (h→ v2), (v2 → h), . . . , (h→ v|F |), (v|F | → h)
)
.

Later on, we use the port labeling of G′ to assign port labels to the edges in E2 in G,
and the above allows us to maintain the return property in G.

(b) The agent requires D/2 traversals through at least one edge in F (and D/2− 1 through
every other edge from F). This follows from the fact that, due to 3, there exists a node
in G′ being at distance at least D/2 from h.

STACS’14

274 Bounds on the Cover Time of Parallel Rotor Walks

The above process assigns port labels to the edges in E2 and sets initial values of all pointers
in G′, which completes the construction of G and the initial setup of the rotor-router.

Now we analyze the delayed deployment performed by the k agents in G. We divide the
exploration of G into phases. The i-th phase starts in the step in which each edge in S1 is
traversed for the i-th time, and ends in the step preceding the beginning of the (i+ 1)-th
stage. Note that each stage contains at least ∆ steps in which all agent move simultaneously.
By 3a, the property of return holds in G, and therefore each edge in F is traversed exactly
once in each of the phases except the 1st phase. (In the 1st phase, agents only traverse
edges from E1.) Thus, by 3b, at least D/2− 1 + 1 full phases are required in the delayed
deployment to explore G (not counting the very last, partial phase in which the exploration
of last vertex happens, but counting the initial phase in which no edges from F are traversed).
This means that we need τ steps in which all agents move simultaneously to fully explore
the graph G, where:

τ ≥ ∆ ·D/2 =
⌊

2|E1|
k

⌋
·D/2 ≥

⌊
m
k

⌋
·D/2 ≥ 1

4mD/k .

We can now apply Lemma 1 for the considered deployment, obtaining that the cover time of
G is tC ≥ τ ≥ 1

4mD/k. J

The bound in Theorem 9 is asymptotically tight, e.g., for the class of stars.

I Proposition 10. Let G be a star on n nodes. A team of k ≤ n agents covers G in time
tC ≤ 2dn/ke, for any initialization of the rotor-router and any initial positions of agents. J

References
1 Hoda Akbari and Petra Berenbrink. Parallel rotor walks on finite graphs and applications

in discrete load balancing. In SPAA, pages 186–195, 2013.
2 Noga Alon, Chen Avin, Michal Koucký, Gady Kozma, Zvi Lotker, and Mark R. Tuttle.

Many random walks are faster than one. Combinatorics, Probability & Computing,
20(4):481–502, 2011.

3 Evangelos Bampas, Leszek Gasieniec, Nicolas Hanusse, David Ilcinkas, Ralf Klasing, and
Adrian Kosowski. Euler tour lock-in problem in the rotor-router model. In DISC, pages
423–435, 2009.

4 Evangelos Bampas, Leszek Gasieniec, Ralf Klasing, Adrian Kosowski, and Tomasz Radzik.
Robustness of the rotor-router mechanism. In OPODIS, volume 5923 of LNCS, pages
345–358, 2009.

5 S. N. Bhatt, S. Even, D. S. Greenberg, and R. Tayar. Traversing directed eulerian mazes.
J. Graph Algorithms Appl., 6(2):157–173, 2002.

6 Andrei Z. Broder, Prabhakar Raghavan, Robert W. Taylor, Anna R. Karlin, Anna R.
Karlin, Eli Upfal, and Eli Upfal. Trading space for time in undirected s-t connectivity.
In In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
pages 543–549, 1991.

7 J. N. Cooper and J. Spencer. Simulating a random walk with constant error. Combinatorics,
Probability & Computing, 15(6):815–822, 2006.

8 B. Doerr and T. Friedrich. Deterministic random walks on the two-dimensional grid. Com-
binatorics, Probability & Computing, 18(1-2):123–144, 2009.

9 Klim Efremenko and Omer Reingold. How well do random walks parallelize? In APPROX-
RANDOM, pages 476–489, 2009.

10 Robert Elsässer and Thomas Sauerwald. Tight bounds for the cover time of multiple
random walks. Theor. Comput. Sci., 412(24):2623–2641, 2011.

D. Dereniowski, A. Kosowski, D. Pająk, and P. Uznański 275

11 Uriel Feige. A Spectrum of Time–Space Trade-offs for Undirected s-t Connectivity. Journal
of Computer and System Sciences, 54(2):305 – 316, 1997.

12 Tobias Friedrich and Thomas Sauerwald. The cover time of deterministic random walks.
In COCOON, volume 6196 of LNCS, pages 130–139, 2010.

13 Ralf Klasing, Adrian Kosowski, Dominik Pajak, and Thomas Sauerwald. The multi-agent
rotor-router on the ring: a deterministic alternative to parallel random walks. In PODC,
pages 365–374, 2013.

14 V.B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy. Eulerian walkers as a model of
self-organized criticality. Phys. Rev. Lett., 77(25):5079–5082, Dec 1996.

15 I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed covering by ant-robots
using evaporating traces. IEEE Trans. Robotics and Automation, 15:918–933, 1999.

16 V. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant algorithm for efficiently
patrolling a network. Algorithmica, 37(3):165–186, 2003.

STACS’14

Packing a Knapsack of Unknown Capacity
Yann Disser∗, Max Klimm, Nicole Megow†, and Sebastian Stiller

Department of Mathematics, Technische Universität Berlin, Germany
{disser,klimm,nmegow,stiller}@math.tu-berlin.de

Abstract
We study the problem of packing a knapsack without knowing its capacity. Whenever we attempt
to pack an item that does not fit, the item is discarded; if the item fits, we have to include it
in the packing. We show that there is always a policy that packs a value within factor 2 of the
optimum packing, irrespective of the actual capacity. If all items have unit density, we achieve a
factor equal to the golden ratio ϕ ≈ 1.618. Both factors are shown to be best possible.

In fact, we obtain the above factors using packing policies that are universal in the sense that
they fix a particular order of the items and try to pack the items in this order, independent of
the observations made while packing. We give efficient algorithms computing these policies. On
the other hand, we show that, for any α > 1, the problem of deciding whether a given universal
policy achieves a factor of α is coNP-complete. If α is part of the input, the same problem is
shown to be coNP-complete for items with unit densities. Finally, we show that it is coNP-hard
to decide, for given α, whether a set of items admits a universal policy with factor α, even if all
items have unit densities.

1998 ACM Subject Classification F.2.2 Sequencing and Scheduling

Keywords and phrases Knapsack, unknown capacity, robustness, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.276

1 Introduction

In the standard knapsack problem we are given a set of items, each associated with a size
and a value, and a capacity of the knapsack. The goal is to find a subset of the items with
maximum value whose size does not exceed the capacity. In this paper, we study the oblivious
knapsack problem where the capacity of the knapsack is not given. Whenever we try to pack
an item, we observe whether or not it fits the knapsack. If it does, the item is packed into the
knapsack and cannot be removed later. If it does not fit, we discard it and continue packing
with the remaining items. The central question of this paper is how much we loose by not
knowing the capacity, in the worst case. The oblivious variant of the knapsack problem
naturally arises whenever items are prioritized by a different entity or at a different time
than the actual packing of the knapsack. For example, waiting lists for stand-by capacities
and services, e.g., on an airplane, have to be fixed before the exact amount of free seats due
to no-shows is known. The order of the list must be determined based only on the size of the
items (e.g., the sizes of groups of travelers) and their value (e.g., compensation for service
denial).

A solution to the oblivious knapsack problem is a policy that governs the order in which
we attempt to pack the items, depending only on the observation which of the previously
attempted items did fit into the knapsack and which did not. In other words, a policy is a

∗ Supported by the Alexander von Humboldt Foundation.
† Supported by the German Science Foundation (DFG) under contract ME 3825/1.

© Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 276–287

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.276
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Y. Disser, M. Klimm. N. Megow, and S. Stiller 277

binary decision tree with the item that is tried first at its root. The two children of the root
are the items that are tried next, which of the two depends on whether or not the first item
fits the knapsack, and so on. We aim for a solution that is good for every possible capacity,
compared to the best solution of the standard knapsack problem for this capacity. Formally,
a policy has robustness factor α if, for any capacity, packing according to the policy results
in a value that is at least a 1/α-fraction of the optimum value for this capacity.

We show that the oblivious knapsack problem always admits a robustness factor of 2.
In fact, this robustness factor can be achieved with a policy that packs the items according
to a fixed order, irrespective of the observations made while packing. Such a policy is
called universal. We provide an algorithm that computes a 2-robust, universal policy in
time Θ(n logn) for a given set of n items. We complement this result by showing that no
robustness factor better than 2 can be achieved in general, even by policies that are not
universal. In other words, the cost of not knowing the capacity is exactly 2.

We give a different efficient algorithm for the case that all items have unit density, i.e.,
size and value of each item coincide. This algorithm produces a universal policy with a
robustness factor of at most the golden ratio ϕ ≈ 1.618. Again, we show that no better
robustness factor can be achieved in general, even by policies that are not universal.

While good universal policies can be found efficiently, it is intractable to compute the
robustness factor of a given universal policy and it is intractable to compute the best
robustness factor an instance admits. Specifically, we show that, for any fixed α ∈ (1,∞), it
is coNP-complete to decide whether a given universal policy is α-robust. For unit densities
we establish a slightly weaker hardness result by showing that it is coNP-complete to decide
whether a given universal policy achieves a given robustness factor α. Finally, we show that,
for given α, it is coNP-hard to decide whether an instance of the oblivious knapsack problem
admits a universal policy with robustness factor α, even when all items have unit density.

Related work

The knapsack problem has been studied for different models of imperfect information. In
the stochastic knapsack problem, sizes and values of the items are random variables. It is
known that a policy maximizing the expected value is PSPACE-hard to compute, see Dean
et al. [7]. The authors assume that the packing stops when the first item does not fit the
knapsack, and give a universal policy that approximates the value obtained by an optimal,
not necessarily universal, policy by a factor of 2. They also provide a non-universal policy
within a factor of 3 + ε of the optimal policy. Bhalgat et al. [3] give an algorithm with an
improved approximation guarantee of 8/3 + ε. They also give a PTAS for the case that it is
allowed to violate the capacity of the knapsack by a factor of 1 + ε.

In robust knapsack problems, a set of possible scenarios for the sizes and values of the items
is given. Yu [23], Bertsimas and Sim [2], Goetzmann et al. [11], and Monaci and Pferschy [18]
study the problem of maximizing the worst-case value of a knapsack under various models.
Büsing et al. [5] and Bouman et al. [4] study the problem from a computational point of view.
Both allow for an adjustment of the solution after the realization of the scenario. Similar to
our model, Bouman et al. consider uncertainty in the capacity.

The notion of a robustness factor that we adopt in this work is due to Hassin and
Rubinstein [12] and is defined as the worst-case ratio of solution and optimum, over all
realizations. Kakimura et al. [14] analyze the complexity of deciding whether an α-robust
solution exists for a knapsack instance with an unknown bound on the number of items
that can be packed. Megow and Mestre [16] study a variant of the knapsack problem with
unknown capacity closely related to ours. In contrast to our model, they assume that the

STACS’14

278 Packing a Knapsack of Unknown Capacity

packing stops once the first item does not fit the remaining capacity. In this model, a
universal policy with a constant robustness factor may fail to exist, and, thus, Megow and
Mestre resort to instance-sensitive performance guarantees. They provide a PTAS that
constructs a universal policy with robustness factor arbitrarily close to the best possible
robustness factor for every particular instance.

The concept of obliviousness is used in various other contexts (explicitly or implicitly),
such as hashing (Carter and Wegman [6]), caching (Frigo et al. [10], Bender et al. [1])
routing (Valiant and Brebner [22], Räcke [20]), TSP (Papadimitriou [19], Deineko et al. [8],
Jia et al, [13]), Steiner tree and set cover (Jia et al, [13]), and scheduling (Epstein et al. [9],
Megow and Mestre [16]). In all of these works, the general idea is that specific parameters of
a problem instance are unknown, e.g., the cache size or the set of vertices to visit in a TSP
tour, and the goal is to find a universal solution that performs well for all realizations of the
hidden parameters.

Universal policies for the oblivious knapsack problem play a role in the design of public key
cryptosystems. One of the first such systems – the Merkle–Hellman knapsack cryptosystem
[17] – is based on particular instances that allow for a 1-robust universal policy for the
oblivious knapsack problem. The basic version of this cryptosystem can be attacked efficiently,
e.g., by the famous attack of Shamir [21]. This attack uses the fact that the underlying
knapsack instance has exponentially increasing item sizes. A better understanding of universal
policies may help to develop knapsack-based cryptosystems that avoid the weaknesses of
Merkle and Hellman’s.

2 Preliminaries

An instance of the oblivious knapsack problem is given by a set of n items I, where each
item i ∈ I has a non-negative value v(i) ∈ Q≥0 and a strictly positive size l(i) ∈ Q>0. For a
subset S ⊆ I of items, we write v(S) =

∑
i∈S v(i) and l(S) =

∑
i∈S l(i) to denote its total

value and total size, respectively, of the items in S. A solution for instance I is a policy P

that governs the order in which the items are considered for packing into the knapsack. The
policy must be independent of the capacity of the knapsack, but the choice which item to
try next may depend on the observations which items did and which items did not fit the
knapsack so far. Formally, a solution policy is a binary decision tree that contains every item
exactly once along each path from the root to a leaf. The packing P(C) ⊆ I of P for a fixed
capacity C is obtained as follows: We start with P(C) = ∅ and check whether the item r at
the root of P fits the knapsack, i.e., whether l(r) + l(P(C)) ≤ C. If the item fits, we add r to
P(C) and continue packing recursively with the left subtree of r. Otherwise, we discard r
and continue packing recursively with the right subtree of r.

A universal policy Π for instance I is a policy that does not depend on observations made
while packing, i.e., the decision tree for a universal policy has a fixed permutation of the
items along every path from the root to a leaf. We identify a universal policy with this fixed
permutation and write Π = (Π1,Π2, . . . ,Πn). Analogously to general policies, the packing
Π(C) ⊆ I of a universal policy Π for capacity C ≤ l(I) is obtained by considering the items in
the order given by the permutation Π and adding every item if it does not exceed the remaining
capacity. We measure the quality of a policy for the oblivious knapsack problem by comparing
its packing with the optimal packing for each capacity. More precisely, a policy P for instance
I is called α-robust for capacity C, α ≥ 1, if it holds that v(Opt(I, C)) ≤ α · v(P(C)), where
Opt(I, C) denotes an optimal packing for capacity C. We say P is α-robust if it is α-robust
for all capacities. In this case, we call α the robustness factor of policy P.

Y. Disser, M. Klimm. N. Megow, and S. Stiller 279

3 Solving the Oblivious Knapsack Problem

In this section, we describe an efficient algorithm that constructs a universal policy for a
given instance of the oblivious knapsack problem. The solution produced by our algorithm is
guaranteed to pack at least half the value of the optimal solution for any capacity C. We
show that this is the best possible robustness factor.

The analysis of our algorithm relies on the classical modified greedy algorithm (cf. [15]).
We compare the packing of our policy, for each capacity, to the packing obtained by the
modified greedy algorithm instead of the actual optimum. As the modified greedy is a
2-approximation, to show that our policy is 2-robust it is sufficient to show that its packing
is never worse than the one obtained by the modified greedy algorithm. We briefly review
the modified greedy algorithm.

Let d(i) = v(i)/l(i) denote the density of item i. The modified greedy algorithm
(MGreedy) for a set of items I and known knapsack capacity C first discards all items
that are larger than C from I. The remaining items are sorted in non-increasing order of
their densities, breaking ties arbitrarily. The algorithm then either takes the longest prefix P
of the resulting sequence that still fits into capacity C, or the first item s that does not fit
anymore, depending on which of the two has a greater value. In the latter case, we say that s
is a swap item (for capacity C) and that C is a swap capacity. In both cases, we refer to P
as the greedy set for capacity C. See Algorithm 1 for a formal description.

For our analysis, it is helpful to fix the tie-breaking rule under which MGreedy initially
sorts the items. To this end, we assume that there is a bijection t : I → {1, 2, . . . , n}, that
maps every item i ∈ I to a tie-breaking index t(i), and that the modified greedy algorithm
initially sorts the items decreasingly with respect to the tuple d̃(·) = (d(·), t(·)), i.e., the
items are sorted non-increasingly by density and whenever two items have the same density,
they are sorted by decreasing tie-breaking index. In the following, for two items i, j, we write
d̃(i) � d̃(j) if and only if d(i) > d(j), or d(i) = d(j) and t(i) > t(j), and say that i has higher
density than j.

We evaluate the quality of our universal policy by comparing it for every capacity with the
solution of MGreedy. This analysis suffices because of the following well-known property
of the modified greedy algorithm.

I Theorem 1 (cf. [15]). For every instance (I, C) of the standard knapsack problem with
known capacity, v(Opt(I, C)) ≤ 2 · v(MGreedy(I, C)).

We are now ready to describe our algorithm Universal (Algorithm 2) that produces a
universal policy tailored to imitate the behavior of MGreedy without knowing the capacity.

Algorithm 1: MGreedy(I, C)
Input: set of items I, capacity C
Output: subset S ⊆ I such that l(S) ≤ C and v(S) ≥ v(Opt(I, C))/2
D ←

〈
items in {i ∈ I | l(i) ≤ C} sorted decreasingly by density d̃

〉
k ← max{j | l({D1, . . . , Dj}) ≤ C}
P ← (D1, . . . , Dk), s← Dk+1
if v(P) ≥ v(s) then

return P

else
return {s}

STACS’14

280 Packing a Knapsack of Unknown Capacity

Algorithm 2: Universal(I)
Input: set of items I
Output: sequence of items Π
L← 〈items in I sorted by non-decreasing size〉
Π(0) ← ∅
for r ← 1, . . . , n do

if Lr is a swap item then
Π(r) ← (Lr,Π(r−1))

else
j ← 1
while j ≤ |Π(r−1)| and d̃(Π(r−1)

j) � d̃(Lr) do
j ← j + 1

Π(r) ← (Π(r−1)
1 , . . . ,Π(r−1)

j−1 , Lr,Π(r−1)
j , . . .)

return Π(n)

First, Universal determines which items are swap items. It then starts with an empty
permutation, and considers the items in order of non-decreasing sizes, inserting each item
into the permutation. Swap items are always placed in front of all items already in the
permutation, and all other items are inserted in front of the first item in the permutation
that has a lower density.

We prove the following result.

I Theorem 2. The algorithm Universal constructs a universal policy of robustness factor 2.

Before we prove this theorem, we first analyze the structure of the permutation output
by Universal in terms of density, size, and value. First, we prove that every item following
a non-swap item has lower density.

I Lemma 3. For a sequence Π returned by Universal, we have d̃(Πk) � d̃(Πk+1) for every
non-swap item Πk, 1 ≤ k < n.

Proof. For j ∈ {k, k + 1}, let r(j) ∈ {1, . . . , n} be the index of the iteration in which
Universal inserts Πj into Π. We distinguish two cases.

If r(k) < r(k + 1), then the item Πk+1 cannot be a swap item, since it would appear in
front of the item Πk if it was. As each non-swap item is inserted into Π such that all items
left of it are larger with respect to d̃, the claim follows.

If r(k) > r(k + 1), since it is not a swap item, Πk is put in front of Πk+1 because it has a
higher density. J

We prove that no item preceding a swap item has smaller size.

I Lemma 4. For a permutation Π returned by Universal, we have l(Πj) ≥ l(Πk) for every
swap item Πk, 1 < k ≤ n, and every other item Πj , 1 ≤ j < k.

Proof. Since Πk is a swap item, it stands in front of all items inserted earlier into Π. Hence,
all items that appear in front of Πk in Π have been inserted in a later iteration of Universal.
Since Universal processes items in order of non-decreasing sizes, we have l(Πj) ≥ l(Πk). J

We prove that no item preceding a swap item has smaller value.

Y. Disser, M. Klimm. N. Megow, and S. Stiller 281

I Lemma 5. For a permutation Π returned by Universal, we have v(Πj) ≥ v(Πk) for
every swap item Πk, 1 < k ≤ n, and every other item Πj , 1 ≤ j < k.

Proof. We distinguish three cases.
First case: Πj is a swap item and d̃(Πj) � d̃(Πk). By Lemma 4, we have l(Πj) ≥ l(Πk),

and the claim trivially holds.
Second case: Πj is a swap item and d̃(Πj) ≺ d̃(Πk). Since Πj is a swap item, there is a

capacity C ≥ l(Πj) such that

v(Πj) > v({i ∈ I | l(i) ≤ C and d̃(i) � d̃(Πj)}).

In particular, for C = l(Πj) we obtain

v(Πj) > v({i ∈ I | l(i) ≤ l(Πj) and d̃(i) � d̃(Πj)}). (1)

Since, by Lemma 4, l(Πj) ≥ l(Πk), the item Πk is included in the set on the right hand
side of (1). We conclude that v(Πj) > v(Πk).

Third case: Πj is not a swap item. Let Πj′ be the first swap item after Πj in Π, i.e.,

j′ = min{i ∈ {j + 1, . . . , k} | Πi is a swap item }.

Note that the minimum is attained as Πk is a swap item. The analysis of the first two cases
implies that v(Πj′) ≥ v(Πk). By Lemma 3 we have d̃(Πj) � d̃(Πj+1) � · · · � d̃(Πj′), and by
Lemma 4 we have l(Πj) ≥ l(Πj′). Hence, v(Πj) ≥ v(Πj′) ≥ v(Πk). J

Finally, the next lemma gives a legitimation for the violation of the density order in the
output permutation. Essentially, whenever an item precedes denser items, we guarantee that
it is worth at least as much as all of them combined.

I Lemma 6. For a permutation Π returned by Universal, we have

v(Πk) ≥ v
({

Πj | j > k and d̃(Πj) � d̃(Πk)
})

for every item Πk, 1 ≤ k < n.

Proof. We distinguish whether Πk is a swap item, or not.
If Πk is a swap item, by definition, Πk is worth more than the greedy set for some capacity

C ≥ l(Πk). Thus,

v(Πk) > v
({

Πj | l(Πj) ≤ C and d̃(Πj) � d̃(Πk)
})

≥ v
({

Πj | l(Πj) ≤ l(Πk) and d̃(Πj) � d̃(Πk)
})
.

Since items whose size is strictly larger than l(Πk) are inserted into Π at a later iteration of
Universal, they can only end up behind Πk if they are smaller with respect to d̃. Hence,

{Πj | j > k and d̃(Πj) � d̃(Πk)} ⊆ {Πj | l(Πj) ≤ l(Πk) and d̃(Πj) � d̃(Πk)},

and thus v(Πk) > v({Πj | j > k and d̃(Πj) � d̃(Πk)}), as claimed.
If, on the other hand, Πk is not a swap item, let Πk′ be the first swap item after it in Π.

If no such item exists, the claim holds by Lemma 3, since{
Πj | j > k and d̃(Πj) � d̃(Πk)

}
= ∅.

STACS’14

282 Packing a Knapsack of Unknown Capacity

Otherwise, by Lemma 3, we obtain d̃(Πk) � d̃(Πk+1) � · · · � d̃(Πk′) and hence

{Πj | j > k and d̃(Πj) � d̃(Πk)} = {Πj | j > k′ and d̃(Πj) � d̃(Πk)}
⊆ {Πj | j > k′ and d̃(Πj) � d̃(Πk′)}.

Consequently, and by the argument above for swap items,

v(Πk′) > v({Πj | j > k′ and d̃(Πj) � d̃(Πk′)}) ≥ v({Πj | j > k and d̃(Πj) > d̃(Πk)})).

Finally, by Lemma 5, we have v(Πk) ≥ v(Πk′) ≥ v({Πj | j > k and d̃(Πj) � d̃(Πk)}). J

We now prove Theorem 2.

Proof of Theorem 2. We show that for every item set I, the permutation Π =Universal(I)
satisfies v(Opt(I, C)) ≤ 2v(Π(C)) for every capacity C ≤ l(I). By Theorem 1, it suffices
to show v(Π(C)) ≥ v(MGreedy(I, C)) for all capacities. We distinguish between swap
capacities and capacities where MGreedy outputs a greedy set.

First, assume that C is a swap capacity, and let {Πk} = MGreedy(I, C) be the swap
item returned by the modified greedy algorithm. Then, Π(C) contains at least one item Πj

with j ≤ k. By Lemma 5, we have v(Π(C)) ≥ v(Πj) ≥ v(Πk) = v(MGreedy(I, C)).
Now assume that C is not a swap capacity. Let G+ = MGreedy(I, C) \Π(C) be the

set of items in the greedy set for capacity C that are not packed by the permutation Π.
Similarly, let U+ = Π(C)\MGreedy(I, C). If G+ = ∅, then v(Π(C)) ≥ v(MGreedy(I, C))
and we are done. Suppose now that G+ 6= ∅. Then, also U+ 6= ∅, since Π(C) is inclusion
maximal. For all items i ∈ U+, we have l(i) ≤ C and i /∈MGreedy(I, C). Since C is not
a swap capacity, MGreedy(I, C) is the greedy set for capacity C, and thus d̃(i) ≺ d̃(i′)
for all i ∈ U+ and i′ ∈ G+. By definition of Π(C) and since U+ 6= ∅, we also have
k = min{j | Πj ∈ U+} < min{k′ | Πk′ ∈ G+}, i.e., the first item Πk ∈ U+ in Π is
encountered before every item from G+. It follows that

G+ ⊆
{

Πj | j > k and d̃(Πj) � d̃(Πk)
)}
.

By Lemma 6, v(Πk) ≥ v(G+), and hence we obtain

v(Π(C)) = v
(
Π(C) ∩MGreedy(I, C)

)
+ v(U+)

≥ v
(
Π(C) ∩MGreedy(I, C)

)
+ v(Πk)

≥ v
(
Π(C) ∩MGreedy(I, C)

)
+ v(G+) = v(MGreedy(I, C)). J

While it is obvious that Universal runs in polynomial time, we show that it can be
modified to run in time Θ(n logn). The proof is omitted due to space constraints.

I Theorem 7. The algorithm Universal can be implemented to run in time Θ(n logn).

We now give a general lower bound on the robustness factor of any policy for the oblivious
knapsack problem. This shows that Universal is best possible.

I Theorem 8. For every δ > 0, there are instances of the oblivious knapsack problem where
no policy achieves a robustness factor of 2− δ.

Proof. We give a family of instances, one for each size n ≥ 3. We ensure that for every item
i of the instance of size n, there is a capacity C, such that packing item i first can only lead
to a solution that is worse than Opt(I, C) by a factor of at least (2− 4/n). This completes
the proof, as the factor approaches 2 for increasing values of n. The instance of size n is

Y. Disser, M. Klimm. N. Megow, and S. Stiller 283

given by I = {1, 2, . . . , n} with l(i) = Fn + Fi − 1, and v(i) = 1 + i
n , where Fi denotes the

i-th Fibonacci number (F1 = 1, F2 = 1, F3 = 2, . . .).
We need to show that, no matter which item is tried first (i.e., no matter which item is

the root of the policy), there is a capacity for which this choice ruins the solution. Observe
that both values and sizes of the items are strictly increasing. Assume that item i ≥ 3 is
packed first. Since the smallest item has size l(1) = Fn, for capacity Ci = 2Fn + Fi − 2 <
2Fn+Fi−1 = l(1)+ l(i), no additional item fits the knapsack. However, the unique optimum
solution in this case is Opt(I, Ci) = {i − 1, i − 2}. These two items fit the knapsack, as
l(i− 1) + l(i− 2) = 2Fn + Fi−1 + Fi−2 − 2 = 2Fn + Fi − 2 = Ci. By definition,

v(i− 1) + v(i− 2)
v(i) = 2n+ 2i− 3

n+ i
= 2− 3

n+ i
≥ 2− 3

n
.

Thus, policies that first pack item i ≥ 3 cannot attain a robustness factor better than 2−3/n.
Now, assume that one of the two smallest items is packed first. For capacity C1,2 = l(n) =

2Fn − 1 < 2Fn = l(1) + l(2), no additional item fits the knapsack. The unique optimum
solution, however, is to pack item n. It remains to compute the ratios

v(n)
v(1) >

v(n)
v(2) = 2n

n+ 2 = 2− 4
n+ 2 > 2− 4

n
.

Hence, policies that first pack item 1 or item 2 do not achieve a robustness factor better
than 2− 4/n. J

4 Unit Densities

In this section we restrict ourselves to instances of the oblivious knapsack problem, where
all items have unit density, i.e., v(i) = l(i) for all items i ∈ I. For two items i, j ∈ I
we say that i is smaller than j and write i ≺ j if v(i) < v(j), or v(i) = v(j) and t(i) <
t(j), where t is the tiebreaking index introduced in Section 3. We give an algorithm
UniversalUD (cf. Algorithm 3) that produces a universal policy tailored to achieve the
best possible robustness factor equal to the golden ratio ϕ ≈ 1.618. The algorithm considers
the items from smallest to largest, and inserts each item into the output sequence as far to
the right as possible, such that the item is not preceded on its left by other items that are
more than a factor ϕ smaller. Intuitively, the algorithm tries as much as possible to keep the
resulting order sorted increasingly by size; only when an item dominates another item by a
factor of at least ϕ the algorithm ensures that it precedes this item in the final sequence.
Note that, even though ϕ is irrational, for rationals a, b the condition a < ϕb can be tested
efficiently by testing the equivalent condition a/b < 1 + b/a.

I Theorem 9. The algorithm UniversalUD constructs a universal policy of robustness
factor ϕ when all items have unit density.

Proof. Given an instance I of the oblivious knapsack problem with unit densities and
any capacity C ≤ v(I), we compare the packing Π(C) that results from the solution
Π = UniversalUD(I) with an optimal packing Opt(I, C). We define the set M of
items in Π(C) for which at least one smaller item is not in Π(C), i.e., more precisely, let
M = {i ∈ Π(C) | ∃j ∈ I\Π(C) : j ≺ i}.

We first consider the case that M 6= ∅ and set i = min≺M to be the smallest item in
M with respect to ‘≺’. Consider the iteration r of UniversalUD in which i is inserted
into Π, i.e., i = Lr. By definition of M , there is an item j ≺ i with j /∈ Π(C). Let j be

STACS’14

284 Packing a Knapsack of Unknown Capacity

Algorithm 3: UniversalUD(I)
Input: set of items I
Output: sequence of items Π
L← 〈items in I sorted such that L1 ≺ · · · ≺ Ln〉
Π(0) ← ∅
for r ← 1, . . . , n do

j ← 1
while j ≤ |Π(r−1)| and v(Lr) < ϕv(Π(r−1)

j) do
j ← j + 1

Π(r) ← (Π(r−1)
1 , . . . ,Π(r−1)

j−1 , Lr,Π(r−1)
j , . . .)

return Π(n)

the first such item in Π. Since j ≺ i, we have j ∈ Π(r). From i ∈ Π(C) and j /∈ Π(C), it
follows that i precedes j in Π (and thus in Π(r)). Let i′ be the item directly preceding j in
Π(r). If i′ = i, i was compared with j when it was inserted into Π(r), with the result that
v(i) ≥ ϕv(j) and thus v(Π(C)) ≥ ϕv(j). If i′ 6= i, by definition of j, we still have i′ ∈ Π(C).
Also, either i′ � j and thus v(i′) ≥ v(j), or j was compared with i′ when it was inserted
into Π in an earlier iteration of UniversalUD, with the result that v(i′) > 1

ϕv(j). Again,
v(Π(C)) ≥ v(i) + v(i′) > v(j) + 1

ϕv(j) = ϕv(j).
In both cases it follows from j /∈ Π(C) that v(Opt(I, C)) ≤ C < v(Π(C)) + v(j), and

using v(j) ≤ 1
ϕv(Π(C)) we get

v(Opt(I, C))
v(Π(C)) <

v(Π(C)) + v(j)
v(Π(C)) < 1 + 1

ϕ
= ϕ.

Now, assume that M = ∅. Intuitively, this means that Π(C) consists of a prefix of
L (the smallest items). Let i1 � · · · � ik be the items in Π(C) \ Opt(I, C), and let
j1 � · · · � jl be the items in Opt(I, C) \Π(C). As Π(C) consists of a prefix of L, we have
|Π(C)| ≥ |Opt(I, C)| and thus k ≥ l. If k = 0, the claim trivially holds. Otherwise, since M
is empty, we have jl � i1. Is suffices to show v(jh) ≤ ϕv(ih) for all h ≤ l. To this end, we
consider any fixed h ≤ l. From v({i1, . . . , ih−1}) ≤ v({j1, . . . , jh−1}) it follows that

v(jh) ≤ v(Opt(I, C))− v({j1, . . . , jh−1}) ≤ C − v({i1, . . . , ih−1}).

This implies that jh cannot precede all items of {ih, . . . , ik} in Π, as jh /∈ Π(C). Hence,
there is an item i′′ ∈ {ih, . . . , ik} that precedes jh in Π. Since jh � i′′, in the iteration when
UniversalUD inserted jh into Π, i′′ was already present. From the fact that i′′ ended up
preceding jh it follows that jk was compared with i′′ and thus v(jh) < ϕv(i′′) ≤ ϕv(ih). We
obtain

v(Opt(I, C))
v(Π(C)) ≤ v(Opt(I, C) \Π(C))

v(Π(C) \Opt(I, C)) =
∑l
h=1 v(jh)∑k
h=1 v(ih)

≤
∑l
h=1 ϕv(ih)∑l
h=1 v(ih)

= ϕ.
J

A naïve implementation of UniversalUD runs in time Θ(n2). We improve this running
time to Θ(n logn). The proof of the following theorem is omitted due to space constraints.

I Theorem 10. The algorithm UniversalUD can be implemented to run in time Θ(n logn).

We now establish that UniversalUD is best possible, even if we permit non-universal
policies (the proof is omitted due to space constraints).

Y. Disser, M. Klimm. N. Megow, and S. Stiller 285

I Theorem 11. There are instances of the oblivious knapsack problem where no policy
achieves a robustness factor of ϕ− δ, for any δ > 0, even when all items have unit density.

5 Hardness

Although we can always find a 2-robust universal policy in polynomial time, we show in this
section that, for any fixed α ∈ (1,∞), it is intractable to decide whether a given universal
policy is α-robust. This hardness result also holds for instances with unit densities when α is
part of the input. As the final – and arguably the most interesting – result of this section, we
establish coNP-hardness of the the problem to decide for a given instance and given α > 1,
whether the instance admits a universal policy with robustness factor α. All proofs rely on
the hardness of the following version of SubsetSum.

I Lemma 12. Let W = {w1, w2, . . . , wn} be a set of positive integer weights and T ≤∑n
k=1 wk be a target sum. The problem of deciding whether there is a subset U ⊆ W with∑
w∈U w = T is NP-complete, even when

1. T = 2k for some integer k ≥ 3,
2. all weights are in the interval [2, T/2),
3. all weights have a difference of at least 2 to the closest power of 2.

We first show that it is intractable to determine the robustness factor of a given universal
policy.

I Theorem 13. For any fixed and polynomially representable α > 1 it is coNP-complete to
decide whether a given universal policy for the oblivious knapsack problem is α-robust.

Sketch of proof. For the proof of the coNP-hardness, we reduce from the variant of Sub-
setSum specified in Lemma 12. An instance of this problem is given by a set W =
{w1, w2, . . . , wn} of positive integer weights in the range [2, T/2) and a target sum T = 2k
for some integer k ≥ 3. Let α > 1 be polynomially representable. We construct an instance I
and a sequence Π such that Π is an α-robust universal policy for I if and only if the instance
of SubsetSum has no solution. First, we introduce for each weight w ∈W a regular item
with l(iw) = v(iw) = w. This ensures that the optimal knapsack solution for capacity T
is at least T if the instance of SubsetSum has a solution. We further introduce a set of
additional items that ensure that the robustness factor for all capacities except T is at least
α, regardless whether the instance of SubsetSum has a solution, or not. Specifically, let
m = log2 T − 1. Then, for each k ∈ {0, 1, . . . ,m} we introduce an auxiliary item jk with
size l(jk) = 2k and value v(jk) = 2k(1− ε), where ε > 0 is suitably chosen depending on α.
Intuitively, the set of auxiliary items ensures that all capacities less than T can be packed
well enough. Finally, we introduce a dummy item with size T + 1 and large value. Intuitively,
the dummy item ensures that all capacities larger than T can be packed well enough. The
hardness is then established by showing that the sequence that contains first the dummy
item, then the auxiliary items in decreasing order, and then the regular items is an α-robust
universal solution if and only if the instance of SubsetSum has no solution. J

We give a result similar to Theorem 13 for unit densities. Note that this time we require
α to be part of the input. The proof is technically more involved, and we only give a sketch
due to space constraints.

I Theorem 14. It is coNP-complete to decide whether, for given α > 1, a given universal
policy for the oblivious knapsack problem is α-robust, even when all items have unit density.

STACS’14

286 Packing a Knapsack of Unknown Capacity

Sketch of proof. We use a similar construction as in the proof of Theorem 13, with the
additional complication that we are only permitted to use items of unit density. To meet this
requirement, we modify the auxiliary items to have sizes and values equal to (1− ε)2k, in
such a way that all capacities up to T − 1 are packed well (but not optimally) by our policy.
We replace the dummy item with a series of items of exponentially growing sizes and values.
These dummy items ensure that all capacities larger than T can be packed well. The crucial
capacities are those close to T . For these capacities, we use that if the SubsetSum instance
has no solution, a value of at most T − ε can be packed, while if the instance has a solution,
the optimum value is T . On the other hand, the policy we construct packs (1− ε)(T − 1). By
setting α = T−ε

(1−ε)(T−1) , we ensure that our policy can only be α-robust if the SubsetSum
instance has a solution. It remains to tune ε such that our policy is α-robust for all capacities
(including fractional ones) except those close to T . Note that the proof relies on the fact
that α is part of the input and may thus be set arbitrarily close to 1. J

Finally, we prove that it is hard to decide whether a given instance admits an α-robust
universal policy when α is part of the input. The full proof is omitted due to space constraints.

I Theorem 15. It is coNP-hard to decide whether, for given α > 1, an instance of the
oblivious knapsack problem admits an α-robust universal policy, even when all items have
unit density.

Sketch of proof. We consider the same set of items I as in the proof of Theorem 14. We
show that, if an α-robust, universal policy exists, then it must be similar to the policy Π that
we construct in the proof of Theorem 14. From this, we are able to infer that I admits an
α-robust, universal policy if and only if Π is α-robust. As shown in the proof of Theorem 14,
it follows that I admits an α-robust universal policy if and only if the underlying instance of
SubsetSum has no solution. J

References
1 M. A. Bender, R. Cole, and E. D. Demaine. Scanning and traversing: maintaining data

for traversals in a memory hierarchy. In Proceedings of the 10th European Symposium on
Algorithms (ESA), pages 139–151, 2002.

2 Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows.
Mathematical Programming, 98:49–71, 2003.

3 A. Bhalgat, A. Goel, and S. Khanna. Improved approximation results for stochastic knap-
sack problems. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1647–1665, 2011.

4 P. C. Bouman, J. M. van den Akker, and J. A. Hoogeveen. Recoverable robustness by
column generation. In Proceedings of the 19th European Symposium on Algorithms (ESA),
pages 215–226, 2011.

5 Christina Büsing, Arie M.C.A. Koster, and Manuel Kutschka. Recoverable robust knap-
sacks: the discrete scenario case. Optimization Letters, 5(3):379–392, 2011.

6 J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18:143–154, 1979.

7 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic
knapsack problem: The benefit of adaptivity. In Proceddings of the 45th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 208–217, 2004.

8 Vladimir G. Deineko, Rüdiger Rudolf, and Gerhard J. Woeginger. Sometimes travelling
is easy: The master tour problem. In Proceedings of the 3rd European Symposium on
Algorithms (ESA), pages 128–141. Springer, 1995.

Y. Disser, M. Klimm. N. Megow, and S. Stiller 287

9 Leah Epstein, Asaf Levin, Alberto Marchetti-Spaccamela, Nicole Megow, Julian Mestre,
Martin Skutella, and Leen Stougie. Universal sequencing on an unreliable machine. SIAM
Journal on Computing, 41(3):565–586, 2012.

10 M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS), pages
285–297, 1999.

11 Kai-Simon Goetzmann, Sebastian Stiller, and Claudio Telha. Optimization over integers
with robustness in cost and few constraints. In Proceedings of the 9th Workshop on Ap-
proximation and Online Algorithms (WAOA), pages 89–101, 2011.

12 Refael Hassin and Shlomi Rubinstein. Robust matchings. SIAM Journal on Discrete
Mathematics, 15(4):530–537, 2002.

13 Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram.
Universal approximations for TSP, Steiner tree, and set cover. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing (STOC), pages 386–395, 2005.

14 Naonori Kakimura, Kazuhisa Makino, and Kento Seimi. Computing knapsack solutions
with cardinality robustness. In Proceedings of the 22nd International Conference on Al-
gorithms and Computation (ISAAC), pages 693–702, 2011.

15 Bernhard Korte and Jens Vygen. Combinatorial Optimization. Theory and Algorithms.
Springer, 2nd edition, 2002.

16 Nicole Megow and Julián Mestre. Instance-sensitive robustness guarantees for sequencing
with unknown packing and covering constraints. In Proceedings of the 4th Conference on
Innovations in Theoretical Computer Science (ITCS), pages 495–504, 2013.

17 Ralph Merkle and Martin E. Hellman. Hiding information and signatures in trapdoor
knapsacks. IEEE Transactions on Information Theory, 24(5):525–530, 1978.

18 Michele Monaci and Ulrich Pferschy. On the robust knapsack problem. In Proceedings of
the 10th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW),
pages 207–210, 2011.

19 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
20 Harald Räcke. Survey on oblivious routing strategies. In Proceedings of the 5th Confer-

ence on Computability in Europe: Mathematical Theory and Computational Practice (CiE),
pages 419–429, 2009.

21 Adi Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosys-
tem. In Proceedings of the 23rd Symposium on Foundations of Computer Science (FOCS),
pages 145–152, 1982.

22 L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In Proceed-
ings of the 13th Annual ACM Symposium on Theory of Computing (STOC), pages 263–277,
1981.

23 Gang Yu. On the max-min 0-1 knapsack problem with robust optimization applications.
Operations Research, 44(2):407–415, 1996.

STACS’14

Exploring Subexponential Parameterized
Complexity of Completion Problems∗

Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and
Yngve Villanger

University of Bergen, Norway
{Pal.Drange|Fedor.Fomin|Michal.Pilipczuk|Yngve.Villanger}@ii.uib.no

Abstract
Let F be a family of graphs. In the F-Completion problem, we are given an n-vertex graph
G and an integer k as input, and asked whether at most k edges can be added to G so that the
resulting graph does not contain a graph from F as an induced subgraph. It appeared recently
that special cases of F-Completion, the problem of completing into a chordal graph known
as Minimum Fill-in, corresponding to the case of F = {C4, C5, C6, . . .}, and the problem of
completing into a split graph, i.e., the case of F = {C4, 2K2, C5}, are solvable in parameterized
subexponential time 2O(

√
k log k)nO(1). The exploration of this phenomenon is the main motivation

for our research on F-Completion.
In this paper we prove that completions into several well studied classes of graphs without

long induced cycles also admit parameterized subexponential time algorithms by showing that:

The problem Trivially Perfect Completion is solvable in parameterized subexponential
time 2O(

√
k log k)nO(1), that is F-Completion for F = {C4, P4}, a cycle and a path on four

vertices.
The problems known in the literature as Pseudosplit Completion, the case where F =
{2K2, C4}, and Threshold Completion, where F = {2K2, P4, C4}, are also solvable in
time 2O(

√
k log k)nO(1).

We complement our algorithms for F-Completion with the following lower bounds:

For F = {2K2}, F = {C4}, F = {P4}, and F = {2K2, P4}, F-Completion cannot be
solved in time 2o(k)nO(1) unless the Exponential Time Hypothesis (ETH) fails.

Our upper and lower bounds provide a complete picture of the subexponential parameterized
complexity of F-Completion problems for F ⊆ {2K2, C4, P4}.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases edge completion, modification, subexponential parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.288

1 Introduction

Let F be a family of graphs. In this paper we study the following F-Completion problem.

F-Completion Parameter: k

Input: A graph G = (V, E) and a non-negative integer k.
Question: Does there exist a supergraph H = (V, E ∪ S) of G, such that |S| ≤ k and H

contains no graph from F as an induced subgraph?

∗ The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959.

© Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and
Yngve Villanger;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 288–299

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.288
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 289

The F-Completion problems form a subclass of graph modification problems where one
is asked to apply a bounded number of changes to an input graph to obtain a graph with
some property. Graph modification problems arise naturally in many branches of science and
have been studied extensively during the past 40 years. Interestingly enough, despite the
long study of the problem, there is no known dichotomy classification of F-Completion
explaining for which classes F the problem is solvable in polynomial time and for which the
problem is NP-complete.

One of the motivations to study completion problems in graph algorithms comes from
their intimate connections to different width parameters. For example, the treewidth of a
graph, one of the most fundamental graph parameters, is the minimum over all possible
completions into a chordal graph of the maximum clique size minus one [2]. The treedepth of
a graph, also known as the vertex ranking number, the ordered chromatic number, and the
minimum elimination tree height, plays a crucial role in the theory of sparse graphs developed
by Nešetřil and Ossona de Mendez [20]. Mirroring the connection between treewidth and
chordal graphs, the treedepth of a graph can be defined as the largest clique size in a
completion to a trivially perfect graph. Similarly, the vertex cover number of a graph is equal
to the minimum of the largest clique size taken over all completions to a threshold graph,
minus one.
Parameterized algorithms for completion problems. For a long time in parameterized
complexity the main focus of studies in F-Completion was for the case when F was an
infinite family of graphs, e.g., Minimum Fill-in or Interval Completion [15, 19, 21].
This was mainly due to the fact that when F is a finite family, F-Completion is solvable on
an n-vertex graph in time f(k) · nO(1) for some function f by a simple branching argument;
this was first observed by Cai [4]. More precisely, if the maximum number of non-edges in a
graph from F is d, then the corresponding F-Completion is solvable in time dk ·nO(1). The
interest in F-Completion problems started to increase with the advance of kernelization.
It appeared that from the perspective of kernelization, even for the case of finite families F
the problem is far from trivial. Guo [12] initiated the study of kernelization algorithms
for F-Completion in the case when the forbidden set F contains the graph C4, see
Figure 1. (In fact, Guo considered edge deletion problems, but they are polynomial time
equivalent to completion problems to the complements of the forbidden induced subgraphs.)
In the literature, the most studied graph classes containing no induced C4 are the split
graphs, i.e., {2K2, C4, C5}-free graphs, threshold graphs, i.e., {2K2, P4, C4}-free graphs,
and {C4, P4}-free graphs, that is, trivially perfect graphs [3]. Guo obtained polynomial
kernels for the completion problems for chain graphs, split graphs, threshold graphs and
trivially perfect graphs and concluded that, as a consequence of his polynomial kernelization,
the corresponding F-Completion problems: Chain Completion, Split Completion,
Threshold Completion and Trivially Perfect Completion are solvable in times
O(2k + mnk), O(5k + m4n), O(4k + kn4), and O(4k + kn4), respectively.

(a) P4 (b) C4 (c) 2K2 = C4

Figure 1 Forbidden induced subgraphs. Trivially perfect graphs are {C4, P4}-free, threshold
graphs are {2K2, P4, C4}-free, and cographs are P4-free.

STACS’14

290 Exploring Subexponential Parameterized Complexity of Completion Problems

Obstruction set F Graph class name Complexity
C4, C5, C6, . . . Chordal SUBEPT [9]
C4, P4 Trivially Perfect SUBEPT (Theorem 1)
2K2, C4, C5 Split SUBEPT [10]
2K2, C4, P4 Threshold SUBEPT (Theorem 10)
2K2, C4 Pseudosplit SUBEPT (Theorem 11)
P3, Kt, t = o(k) Co-t-cluster SUBEPT [8]
P3 Co-cluster E [16]
2K2 2K2-free E (Theorem 12)
C4 C4-free E (Theorem 12)
P4 Cograph E (Theorem 12)
2K2, P4 Co-Trivially Perfect E (Theorem 12)

Figure 2 Known subexponential complexity of F-Completion for different sets F . SUBEPT
means the problem is solvable in subexponential time 2o(k)nO(1) and E means that the problem is
not solvable in subexponential time unless ETH fails.

The work on kernelization of F-Completion problems was continued by Kratsch and
Wahlström [17] who showed that there exists a set F consisting of one graph on seven vertices
for which F-Completion does not admit a polynomial kernel. Guillemot et al. [11] showed
that Cograph Completion, i.e., the case F = {P4}, admits a polynomial kernel, while for
F = {P13}, the complement of a path on 13 vertices, F-Completion has no polynomial
kernel. These results were significantly improved by Cai and Cai [5]: For F = {P`} or
F = {C`}, the problems F-Completion and F-Edge Deletion admit a polynomial kernel
if and only if the forbidden graph has at most three edges.

It appeared recently that for some choices of F , F-Completion is solvable in sub-
exponential time. The exploration of this phenomenon is the main motivation for our
research on this problem. The last chapter of Flum and Grohe’s textbook on parameterized
complexity theory [7, Chapter 16] concerns subexponential fixed parameter tractability, the
complexity class SUBEPT, which, loosely speaking—we skip here some technical conditions—
is the class of problems solvable in time 2o(k)nO(1), where n is the input length and k is
the parameter. Until recently, the only notable examples of problems in SUBEPT were
problems on planar graphs, and more generally, on graphs excluding some fixed graph as a
minor [6]. In 2009, Alon et al. [1] used a novel application of color coding, dubbed chromatic
coding, to show that parameterized Feedback Arc Set in Tournaments is in SUBEPT.
As Flum and Grohe [7] observed, for most of the natural parameterized problems, already
the classical NP-hardness reductions can be used to refute the existence of subexponential
parameterized algorithms, unless the following well-known complexity hypothesis formulated
by Impagliazzo, Paturi, and Zane [14] fails.

I Exponential Time Hypothesis (ETH). There exists a positive real number s such that
3-CNF-SAT with n variables cannot be solved in time 2sn.

Thus, it is most likely that the majority of parameterized problems are not solvable
in subexponential parameterized time and until very recently no natural parameterized
problem solvable in subexponential parameterized time on general graphs was known. A
subset of the authors recently showed that Minimum Fill-in, also known as Chordal
Completion, which is equivalent to F-Completion with F consisting of cycles of length at
least four, is in SUBEPT [9], simultaneously establishing that Chain Completion is solvable
in subexponential time. Later, Ghosh et al. [10] showed that Split Completion is solvable

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 291

in subexponential time. On the other hand, Komusiewicz and Uhlmann [16], showed that
an edge modification problem known as Cluster Deletion, does not belong to SUBEPT
unless ETH fails. Let us note that Cluster Deletion is equivalent to F-Completion
when F = {P3}, the complement of the path P3. On the other hand, it is interesting to
note that by the result of Fomin et al. [8], Cluster Deletion into t Clusters, i.e., the
complement problem for F-Completion for F = {P3, Kt}, is in SUBEPT for t = o(k).

Our results. In this work we extend the class of F-Completion problems admitting
subexponential time algorithms, see Figure 2. Our main algorithmic result is the following:

Trivially Perfect Completion is solvable in time 2O(
√

k log k)nO(1) and is thus in
SUBEPT. This problem is the F-Completion problem for F = {C4, P4}.

On a very high level, our algorithm is based on the same strategy as the algorithm for
completion into chordal graphs [9]. Just like in that algorithm, we enumerate in parameterized
subexponential time special structures called potential maximal cliques which are the maximal
cliques in some minimal completion into a trivially perfect graph that uses at most k edges.
As far as we succeed in enumerating these objects, we do dynamic programming to find an
optimal completion. But here the similarities end. To enumerate potential maximal cliques
for trivially perfect graphs, we have to use completely different structural properties from
those used for the case of chordal graphs.

We also show that within the same running time the F-Completion problem is solvable
for F = {2K2, C4}, and F = {2K2, P4, C4}. This corresponds to completion into threshold
and pseudosplit graphs, respectively. Let us note that combined with the results of Fomin
and Villanger [9] and Ghosh et al. [10], this implies that all four problems considered by Guo
in [12] are in SUBEPT, in addition to admitting a polynomial kernel. We finally complement
our algorithmic findings by showing the following:

For F = {2K2}, F = {C4}, F = {P4} and F = {2K2, P4}, the F-Completion
problem cannot be solved in time 2o(k)nO(1) unless ETH fails.

Thus, we obtain a complete classification for all F ⊆ {2K2, P4, C4}.

Organization of the paper. In Section 2 we give structural results about trivially perfect
graphs and their completions, and give the main result of the paper: an algorithm solving
Trivially Perfect Completion in subexponential time. In Section 3 we briefly discuss
the tools needed to obtain subexponential time algorithms for Threshold Completion and
Pseudosplit Completion. Due to space constraints, full expositions of these algorithms
have been deferred to the full version. In Section 4, we mention the lower bounds on F-
Completion when F is {2K2}, {C4}, {P4}, or {2K2, P4}. Full proofs for the lower bounds
have also been deferred to the full version, where, in addition, proofs for results marked
with ♠ can be found. Finally, in Section 5 we give some concluding remarks and state some
interesting remaining questions.

Notation. We consider only finite simple undirected graphs. We use n to denote the number
of vertices and m the number of edges in a graph G. If G = (V, E) is a graph, and A, B ⊆ V ,
we write E(A, B) for the edges with one endpoint in A and the other in B, and we write
E(A) = E(A, A) for the edges inside A and mA for |E(A)|.

We write N(U) for U ⊆ V (G) to denote the open neighborhood
⋃

v∈U (N(v)) \ U , and
N [U] = N(U) ∪ U to denote the closed neighborhood. For a graph G and a set of edges S,
we write G + S = (V, E ∪ S) and G− S = (V, E \ S), and if U ⊆ V is a set of vertices, then
G− U = G[V \ U]. A universal vertex in a graph is a vertex v such that N [v] = V (G). Let

STACS’14

292 Exploring Subexponential Parameterized Complexity of Completion Problems

uni(G) denote the set of universal vertices of G. Observe that uni(G), when non-empty, is
always a clique, and we will refer to it as the (maximal) universal clique.

2 Completion to trivially perfect graphs

In this section we study the Trivially Perfect Completion problem which is the special
case of F-Completion for F = {C4, P4}. The decision version of the problem was shown
to be NP-complete by Yannakakis [22]. Since trivially perfect graphs are characterized by a
finite set of forbidden induced subgraphs, it follows from Cai [4] that the problem also is
fixed parameter tractable, i.e., it belongs to the class FPT.

The main result of this section is the following theorem.

I Theorem 1. For an input (G, k), Trivially Perfect Completion is solvable in time
2O(
√

k log k) +O(kn4).

Throughout this section, an edge set S is called a completion for G if G + S is trivially
perfect. Furthermore, a set S is called a minimal completion for G if no proper subset of S

is a completion for G. The main outline of the algorithm is as follows:

Step A: On input (G, k), we first apply the algorithm by Guo [12] to obtain a kernel of size
O(k3). The running time of this algorithm is O(kn4).

Step B: Assuming our input instance is of size O(k3), we show how to generate all special
vertex subsets of the kernel which we call vital potential maximal cliques in time
2O(
√

k log k). A vital potential maximal clique Ω ⊆ V (G) is a vertex subset which is
a maximal clique in some minimal completion of size at most k.

Step C: Using dynamic programming, we show how to compute an optimal solution or to
conclude that (G, k) is a no instance, in time polynomial in the number of vital
potential maximal cliques.

2.1 Structure of trivially perfect graphs
Apart from the aforementioned characterization by forbidden induced subgraphs, several other
equivalent definitions of trivially perfect graphs are known. These definitions reveal more
structural properties of this graph class which will be essential in our algorithm. Therefore,
before proceeding with the proof of Theorem 1, we establish a number of results on the
structure of trivially perfect graphs and minimal completions which will be useful.

The trivially perfect graphs have a decomposition tree which we call a universal clique
decomposition, in which each node in the tree corresponds to a maximal set of vertices that
all are universal for the graph induced by the vertices in the subtree.

Let T be a rooted tree and t be a node of T . We denote by Tt the maximal subtree
of T rooted in t. We can now use the universal clique uni(G) of a trivially perfect graph
G = (V, E) to make a decomposition structure.

I Definition 2 (Universal clique decomposition). A universal clique decomposition of a con-
nected trivially perfect graph G = (V, E) is a pair (T = (VT , ET),B = {Bt}t∈VT

), where T is
a rooted tree and B is a partition of the vertex set V into disjoint non-empty subsets, such that

if vw ∈ E(G) and v ∈ Bt and w ∈ Bs, then s and t are on a path from a leaf to the root,
with possibly s = t, and
for every node t ∈ VT , the set of vertices Bt is the maximal universal clique in the
subgraph G[

⋃
s∈V (Tt) Bs].

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 293

We call the vertices of T nodes and the sets in B bags of the universal clique decomposition
(T,B). By slightly abusing the notation, we often do not distinguish between nodes and bags.
Note that by the definition, in a universal clique decomposition every non-leaf node has at
least two children, since otherwise the universal clique contained in the corresponding bag
would not be maximal.

I Lemma 3 (♠). A connected graph G admits a universal clique decomposition if and only
if it is trivially perfect. Moreover, such a decomposition is unique up to isomorphisms.

For the purposes of the dynamic programming procedure, we define the following notion.

I Definition 4 (Block). Let (T = (VT , ET),B = {Bt}t∈VT
) be the universal clique decompos-

ition of a connected trivially perfect graph G = (V, E). For each node t ∈ VT , we associate a
block Lt = (Bt, Dt), where

Bt is the subset of V contained in the bag corresponding to t, and
Dt is the set of vertices of V contained in the bags corresponding to the nodes of the
subtree Tt.

The tail of a block Lt is the set of vertices Qt contained in the bags corresponding to the
nodes of the path from t to r in T , where r is the root of T .

When t is a leaf of T , we have that Bt = Dt and we call the block Lt = (Bt, Dt) a leaf
block. If t is the root, we have that Dt = V (G) and we call Lt the root block. Otherwise, we
call Lt an internal block.

Observe that for every block Lt = (Bt, Dt) with tail Qt we have that Bt ⊆ Qt, Bt ⊆ Dt,
and Dt ∩ Qt = Bt. Note also that Qt is a clique and the vertices of Qt are universal to
Dt \Bt. The following lemma summarizes the properties of universal clique decompositions,
maximal cliques, and blocks used in our proof.

I Lemma 5 (♠). Let (T,B) be the universal clique decomposition of a connected trivially
perfect graph G and let L = (B, D) be a block with Q as its tail.
(i) If L is a leaf block, then Q = NG[v] for every v ∈ B.
(ii) The following are equivalent:

1. L is a leaf block,
2. D = B, and
3. Q is a maximal clique of G.

(iii) If L is a non-leaf block, then for every two vertices u, v from different connected
components of G[D \B], we have that Q = NG(u) ∩NG(v).

2.2 Structure of minimal completions
Before we proceed with the algorithm, we provide some properties of minimal completions.
The following lemma gives insight to the structure of a yes instance.

I Lemma 6 (♠). Let G = (V, E) be a connected graph, S a minimal completion and
H = G + S. Suppose L = (B, D) is a block in some universal clique decomposition of H and
denote by D1, D2, . . . , D` the connected components of H[D]−B.
(i) If L is not a leaf block, then ` > 1;
(ii) if ` > 1, then in G every vertex v ∈ B has at least one neighbor in each set

D1, D2, . . . , D`;
(iii) the graph G[Di] is connected for every i ∈ {1, . . . , `}; and
(iv) for every i ∈ {1, . . . , `}, B ⊆ NG(D \ (B ∪Di)).

STACS’14

294 Exploring Subexponential Parameterized Complexity of Completion Problems

2.3 The algorithm
As has been already mentioned, the following concept is crucial for our algorithm. Recall
that when Ω is a set of vertices in a graph G, by mΩ we mean the number of edges in G[Ω].

I Definition 7 (Vital potential maximal clique). Let (G, k) be an instance of Trivially
Perfect Completion. A vertex set Ω ⊆ V (G) is a potential maximal clique if Ω is a
maximal clique in some minimal trivially perfect completion of G. If moreover this trivially
perfect completion contains at most k edges, then the potential maximal clique is called vital.

Observe that given a yes instance (G, k) and a minimal completion S of size at most k,
every maximal clique in G + S is a vital potential maximal clique in G. Note also that in
particular, any vital potential maximal clique contains at most k non-edges.

The following definition will be useful:

I Definition 8 (Fill number). Let G = (V, E) be a graph, S a completion and H = G + S.
We define the fill of a vertex v, denoted by fnG

H(v) as the number of edges incident to v in S.

Let us observe that there are at most 2
√

k vertices v such that fnG
H(v) >

√
k. It follows that

for every set U ⊆ V such that |U | > 2
√

k, there is a vertex u ∈ U with fnG
H(u) ≤

√
k. Any

vertex u such that fnG
H(u) ≤

√
k will be referred to as a cheap vertex.

Everything is settled to start the proof of Theorem 1. Our algorithm proceeds in three
steps. We first compress the instance to an instance of size O(k3), then we enumerate all
(subexponentially many) vital potential cliques in this new instance, and finally we do a
dynamic programming procedure on these objects.

Step A. Kernelization. For a given input (G, k), we start by applying the kernelization
algorithm by Guo [12] to construct in time O(kn4) an equivalent instance (G′, k′), where
G′ has O(k3) vertices and k′ ≤ k. Therefore, from now on we can simply assume that the
input graph G has O(k3) vertices. Without loss of generality, we can also assume that G is
connected, since we may treat each connected component of G separately.

Step B. Enumeration. In this step, we give an algorithm that in time 2O(
√

k log k) outputs
a family C of vertex subsets of G such that

the size of C is 2O(
√

k log k), and
every vital potential maximal clique belongs to C.

We identify five different types of vital potential maximal cliques. For each type i,
1 ≤ i ≤ 5, we list a family Ci of 2O(

√
k log k) subsets containing all vital potential maximal

cliques of this type. Finally, C = C1 ∪ · · · ∪ C5. We show that every vital potential maximal
clique of (G, k) is of at least one type and that all objects of each type can be enumerated in
2O(
√

k log k) time.
Let Ω be a vital potential maximal clique. By the definition of Ω, there exists a minimal

completion with at most k edges into a trivially perfect graph H such that Ω is a maximal
clique in H. Let (T = (VT , ET),B = {Bt}t∈VT

) be the universal clique decomposition of H.
Recall that by Lemma 5, Ω corresponds to a path Prt = Bt0Bt1 · · ·Btq

in T from the root
r = t0 to a leaf t = tq. Then for the corresponding leaf block (Bt, Dt) with tail Qt, we have
that Ω = Qt. To simplify the notation, we use Bi for Bti

.
Note that the algorithm does not know neither the clique Ω nor the completed trivially

perfect graph H. However, in the analysis we may partition all the vital potential maximal
cliques Ω with respect to structural properties of Ω and H, and then provide simple enu-
meration rules that ensure that all vital potential maximal cliques of each type are indeed
enumerated. We proceed to description of the types and enumeration rules.

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 295

Type 1. Potential maximal cliques of the first type are such that |V \ Ω| ≤ 2
√

k + 2. The
family C1 consists of all sets W ⊆ V such that |V \W | ≤ 2

√
k + 2. There are

(O(k3)
2
√

k+2

)
such

sets and we can find all of them in time 2O(
√

k log k) by the brute-force algorithm trying all
vertex subsets of size at least |V | − 2

√
k + 2. Thus every Type 1 vital potential maximal

clique is in C1.

Type 2. By Lemma 5 (1), we have that Ω = Qt = NH [v] for each vertex v ∈ Dt = Bt. Vital
potential maximal cliques of the second type are such that |Bt| > 2

√
k. Observe that then

at least one vertex v ∈ Bt should be cheap, i.e., fnG
H(v) ≤

√
k. We generate the family C2

as follows. Every set in C2 is of the form W1 ∪W2, where W1 = NG[v] for some v ∈ V ,
and |W2| ≤

√
k. There are at most O(

(O(k3)√
k

)
k3) such sets and they can be enumerated by

computing for every vertex v the set W1 = NG[v] and adding to each such set all possible
subsets of size at most

√
k. Hence every Type 2 vital potential maximal clique is in C2.

Thus if Ω is not of Types 1 or 2, then |V \ Ω| > 2
√

k + 2 and for the corresponding leaf
block we have |Bt| ≤ 2

√
k. Since |V \Ω| > 2

√
k + 2 it follows that if (G, k) is a yes instance,

then V \ Ω contains at least two cheap vertices, i.e., vertices with fill number at most
√

k.
We partition the nodes of T that are not on the path B0, B1, . . . , Bq into q disjoint sets

Z0, Z1, . . . , Zq−1 according to the nodes of the path Prt. Node x /∈ V (Prt) belongs to Zi,
i ∈ {0, . . . , q − 1}, if i is the largest integer such that ti is an ancestor of x in T . In other
words, Zi consists of bags of subtrees outside Prt attached below ti.

Let j be the maximum index such that a bag from Zj contains a cheap vertex. We
define the set of vertices Z>j =

⋃q−1
i=j+1 Zi. Observe that since Z>j does not contain cheap

vertices, then |Z>j | ≤ 2
√

k. We also define V0,j as the set of vertices contained in the bags
corresponding to nodes B0, B1, . . . , Bj of Prt and set Vj+1,q as the set of vertices contained
in bags Bj+1, . . . , Bq = Bt. Observe also that Ω = V0,j ∪ Vj+1,q and by the definition of a
block, V0,j is exactly the tail Qj of the block (Bj , Dj). From Lemma 6 (1, 4) we have that
Vj+1,q ⊆ Bt ∪NG(Z>j) ⊆ Ω. This follows from the fact that every vertex in B` for ` < q

has at least one neighbor in G in Z`.
Let v be a cheap vertex belonging to Zj . The remaining types of vital potential maximal

cliques are defined according to the existence and locations in T of a few other cheap vertices.
We use Cv to denote the connected component of G[Dj]−Bj containing v.

Type 3. For vital potential maximal cliques of this type there is a cheap vertex u 6= v

belonging to Zj but not belonging to Cv. Since V0,j = Qj , by Lemma 5 (3), we have
that V0,j = NH(u) ∩ NH(v) and Vj+1,q ⊆ Bq ∪ NG(Z>j) ⊆ Ω. Hence we arrive at Ω =
V0,j ∪ Vj+1,q =

(
NH(u) ∩NH(v)

)
∪Bt ∪NG(Z>j).

The family C3 consists of all sets of the form W1 ∪W2 ∪W3, where:
|W1| ≤ 2

√
k. Enumerating sets W1 corresponds to guessing Bt.

W2 is the open neighborhood in G of a set of size at most 2
√

k. The set W2 corresponds
to NG(Z>j).
W3 is the intersection of the sets NG(x) ∪A and NG(y) ∪B, where x, y ∈ V , and A, B

are sets of size at most
√

k. The set W3 corresponds to intersection of two neighborhoods
in H of two cheap vertices u, v.

It is clear that the size of the family C3 is 2O(
√

k log k) and that all sets from C3 can be listed
using 2O(

√
k log k) time. It follows from the construction that every Type 3 vital potential

maximal clique is in C3.

Type 4. Let Z be the set of vertices of V \ Ω which do not belong to Cv. In other words,
Z = (V \Ω) \ V (Cv). Vital potential maximal cliques of Type 4 are such that Z contains no

STACS’14

296 Exploring Subexponential Parameterized Complexity of Completion Problems

cheap vertices. Thus the only cheap vertices among vertices of V \ Ω belong to Cv. In this
case, we have that |Z| ≤ 2

√
k.

Recall that Ω = V0,j ∪ Vj+1,q, where V0,j and Vj+1,q are the vertices contained in
bags of paths from r to tj , and correspondingly, from tj+1 to t in T . By Lemma 6, we
have that Vj+1,t = (Bt ∪NG(Z>j)) \NH(v). Furthermore, by Lemma 6 (4) we infer that
V0,j = NG(Z ∪ Vj+1,t), so it follows that Ω = V0,j ∪ Vj+1,t =

(
NG(Z ∪ ((Bt ∪ NG(Z>j)) \

NH(v)))
)
∪
(
(Bt ∪NG(Z>j)) \NH(v)

)
.

We therefore let the family C4 consist of all sets of W1 ∪W2, where
W1 = (X1 ∪ NG(X2)) \ (NG(v) ∪ X3) and the sets X1, X2, and X3 are sets of size at
most 2

√
k and v ∈ V . The set W1 corresponds to guessing Vj+1,t, X1 to Bt, X2 to Z>j ,

and NG(v) ∪X3 to NH(v), and
W2 = NG(X4 ∪W1), where X4 is of size at most 2

√
k and corresponds to guessing Z.

By the construction, the size of C4 is 2O(
√

k log k) and all sets from C4 can be listed in time
2O(
√

k log k). It also follows from the construction that every Type 4 vital potential maximal
clique is in C4.

Type 5. The only remaining type of vital potential maximal cliques are such that a cheap
vertex u 6= v is in Z. If Ω is not of Type 3, then we know that at least one cheap vertex is in
some bag of Zi, i < j. Let j′ < j be the largest index smaller than j such that Zj′ contains
a cheap vertex. Let u be such a vertex.

Let V0,j′ be the set of vertices contained in the B0, B1, . . . , Bj′ . Then V0,j′ = Qj′ and by
Item (3) of Lemma 5, V0,j′ = NH(u) ∩NH(v). Let Z ′ =

⋃j
i=j′+1 Zi \ Cv.

There is no cheap vertex in Z ′, hence |Z ′| ≤ 2
√

k. On the other hand, by Item (4)
of Lemma 6, Vj′+1,j , that is, vertices contained in the bags Bj′+1, . . . , Bj , is contained in
NG(Vj+1,t ∪ Z>j) ∪ NG(Z ′) ⊆ Ω. Thus Ω = Vj+1,t ∪ V0,j′ ∪ Vj′+1,j = Vj+1,t ∪

(
NH(u) ∩

NH(v)
)
∪
(
NG(Vj+1,t ∪ Z>j) ∪NG(Z ′)

)
.

Finally, as in Type 4 we have that Vj+1,t = (Bt ∪NG(Z>j)) \NH(v). Therefore, we let
C5 consist of all sets of the form W1 ∪W2 ∪W3, where

W1 = (X1 ∪NG(X2)) \ (NG(v) ∪X3) and sets X1, X2, and X3 are sets of size at most
2
√

k and v ∈ V . As in the previous case for Type 4 vital potential maximal cliques, the
set W1 corresponds to Vj+1,t.
W2 = (NG(u) ∪ X4) ∩ (NG(v) ∪ X5). Here X4, X5, are sets of size at most

√
k and

u, v ∈ V . The set W2 corresponds to V0,j′ , while NG(u) ∪X4 and NG(v) ∪X5 to NH(u)
and NH(v) respectively.
W3 = NG(W1∪X2)∪NG(X6), where X6 is a set of size at most 2

√
k that was corresponds

to Z ′, while X2 was already chosen before and corresponds to Z>j .

From the construction it immediately follows that the size of family C5 is 2O(
√

k log k), that
its elements can be enumerated in the same amount of time, and that every Type 5 vital
potential maximal clique is in C5. Since every vital potential maximal clique is of Type 1, 2,
3, 4, or 5, we can infer the following lemma that formalizes the result of Step B.

I Lemma 9 (Enumeration Lemma). Let (G, k) be an instance of Trivially Perfect
Completion such that |V (G)| = O(k3). Then in time 2O(

√
k log k), we can construct a family

C consisting of 2O(
√

k log k) subsets of V (G) such that every vital potential maximal clique of
(G, k) is in C.

Step C. Dynamic programming. At this point we assume that we have the family C
containing all vital potential maximal cliques of (G, k). We start by generating in time

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 297

2O(
√

k log k) a family S of pairs (X, Y), where X, Y ⊆ V (G), such that for every minimal
completion S of size at most k, and the corresponding universal clique decomposition (T,B)
of H = G + S, it holds that every block (B, D) is in S, and the size of S is 2O(

√
k log k). The

construction of S is based on the following observations about blocks and vital potential
maximal cliques: Let G be a graph, S a minimal completion and L = (B, D) a block of the
universal clique decomposition of H = G + S, where H is not a complete graph, with Q

being its tail. Then the following holds:

If L is a leaf block, then B = Ω1 \ Ω2 for some vital potential maximal cliques Ω1 and
Ω2, and D = B.
If L is the root block, then the tail of L is B, B = Ω1 ∩ Ω2 for some vital potential
maximal cliques Ω1 and Ω2, and D = V .
If L is an internal block, then Q is the intersection of two vital potential maximal cliques
Ω1 and Ω2 of G, B = Q \ Ω3 for some vital potential maximal clique Ω3, and D is the
connected component of G− (Q \B) containing B.

From this observation, we can conclude that by going through all triples Ω1, Ω2, Ω3, we
can compute the set S consisting of all blocks (B, D) of minimal completions. We now define
value dp(B, D) as the minimum number of edges needed to be added to G[D] to make it a
trivially perfect graph with B being the universal clique contained in the root of the universal
clique decomposition. It is easy to derive recurrence equations that enable us to compute
all the relevant values of dp(·, ·) using dynamic programming. Finally, the minimum cost of
completing G to a trivially perfect graph is equal to min(B,V (G))∈S dp(B, V (G)).

3 Completion to threshold and pseudosplit graphs

I Theorem 10 (♠). Threshold Completion is solvable in time 2O(
√

k log k) +O(kn4).

The proof of Theorem 10 is a combination of the following known techniques: the
kernelization algorithm by Guo [12], the chromatic coding technique of Alon et al. [1], also
used in the subexponential algorithm of Ghosh et al. [10] for split graphs, and the algorithm
of Fomin and Villanger for chain completion [9].

I Theorem 11 (♠). Pseudosplit Completion is solvable in time 2O(
√

k log k)nO(1).

The crucial property of pseudosplit graphs that will be of use is that a pseudosplit graph
is either a split graph, or a split graph containing one induced C5 which is completely
non-adjacent to the independent set of the split graph, and completely adjacent to the clique
set of the split graph [18]. Hence, assuming we are looking for the latter type of a pseudosplit
graph, we can with O(n5) overhead guess the correct set that will become the S = C5, and
after some preprocessing we can apply the subexponential algorithm of Ghosh et al. [10]
solving Split Completion.

4 Lower bounds

To complete our study, we provide lower bounds based on the Exponential Time Hypothesis
for the remaining subsets of {2K2, P4, C4}. More precisely, we prove the following theorem:

I Theorem 12 (♠). Unless the Exponential Time Hypothesis (ETH) fails, none of the
following problems are solvable in 2o(k)nO(1) time:

STACS’14

298 Exploring Subexponential Parameterized Complexity of Completion Problems

2K2-Free Completion,
C4-Free Completion,
P4-Free Completion,
{2K2, P4}-Free Completion (also known as Co-Trivially Perfect Completion).

To prove each of the lower bounds above we give a linear reduction from 3Sat. That
is, we provide an algorithm that, given a 3-CNF formula ϕ on n variables and m clauses,
produces in polynomial-time an equivalent instance of the problem at hand with parameter
k = O(n+m). Then pipelining the reduction with the assumed subexponential parameterized
algorithm for the problem would give an algorithm for 3Sat working in 2o(n+m) time. The
existence of such an algorithm, however, would contradict ETH by the sparsification lemma
of Impagliazzo et al. [14].

Our reductions follow in spirit those of, for instance Komusiewicz and Uhlmann [16], or
Fomin et al. [8]: we create a gadget graph for each variable and each clause, and carefully
wire the gadgets together so that they encode the input instance. However, since we are
dealing with very particular graph classes with a lot of structure, the design and analysis of
the gadgets requires a number of non-trivial ideas.

5 Conclusion and open problems

In this paper, we provided several upper and lower subexponential parameterized bounds for
F-Completion. The most natural open question would be to ask for a dichotomy type of
result characterizing for which sets F , F-Completion problems are in P, in SUBEPT, and
not in SUBEPT (under ETH). Keeping in mind the lack of such characterization concerning
classes P and NP, an answer to this question can be very non-trivial. Even a more modest
task—deriving general arguments explaining what causes a completion problem to be in
SUBEPT—is an important open question.

Similarly, from an algorithmic perspective obtaining generic subexponential algorithms
for completion problems would be a big step forwards. With the current knowledge, for
different cases of F , the algorithms are built on different ideas like chromatic coding, potential
maximal cliques, k-cuts, etc. and each new case requires special treatment.

Finally, some concrete problems. We have the chain of graph classes

threshold ⊂ trivially perfect ⊂ interval ⊂ chordal,

corresponding to the parameters vertex cover, treedepth, pathwidth, and treewidth, in the
sense that the width parameter is the minimum, over all completions to the graph class
mentioned, of the size of the maximum clique (±1). We know that all of these problems
have subexponential completion problems, except for Interval Completion. The problem
is known to be in FPT [21]. It is natural to ask whether or not this problem also belongs
to SUBEPT. Another chain connecting graph classes to width parameters is the chain
corresponding to bandwidth, pathwidth and treewidth, proper interval ⊂ interval ⊂
chordal. The existence of a subexponential algorithm for Proper Interval Completion
is also open.

P.G. Drange, F. V. Fomin, M. Pilipczuk, and Y. Villanger 299

References
1 Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In ICALP 2009, volume

5555 of LNCS, pages 49–58. Springer, 2009.
2 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretial

Computer Science, 209(1-2):1–45, 1998.
3 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes. A Survey.

SIAM Monographs on Discrete Mathematics and Applications. Philadelphia, USA, 1999.
4 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary

properties. Information Processing Letters, 58(4):171–176, 1996.
5 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. In

IPEC 2013. To appear.
6 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.

Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

7 Jörg Flum and Martin Grohe. Parameterized complexity theory. Springer-Verlag New York
Inc, 2006.

8 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing. In STACS 2013, volume 20
of LIPIcs, pages 32–43, 2013.

9 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for min-
imum fill-in. In SODA 2012, pages 1737–1746. SIAM, 2012.

10 Esha Ghosh, Sudeshna Kolay, Mrinal Kumar, Pranabendu Misra, Fahad Panolan, Ashutosh
Rai, and M.S. Ramanujan. Faster parameterized algorithms for deletion to split graphs. In
SWAT 2012, volume 7357 of LNCS, pages 107–118. Springer, 2012.

11 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the
(non-)existence of polynomial kernels for Pl-free edge modification problems. Algorithmica,
65(4):900–926, 2013.

12 Jiong Guo. Problem kernels for NP-complete edge deletion problems: Split and related
graphs. In ISAAC 2007, volume 4835 of LNCS, pages 915–926. Springer, 2007.

13 Pinar Heggernes, and Federico Mancini. Minimal split completions. Discrete Applied Math-
ematics, 157(12):2659—2669, 2009.

14 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

15 Haim Kaplan, Ron Shamir, and Robert E. Tarjan. Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on
Computing, 28:1906–1922, May 1999.

16 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modi-
fications. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

17 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polyno-
mial kernels. In IWPEC 2009, volume 5917 of LNCS, pages 264–275. Springer, 2009.

18 Frédéric Maffray and Myriam Preissmann. Linear recognition of pseudo-split graphs. Dis-
crete Applied Mathematics, 52(3):307–312, 1994.

19 Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm
for the minimum fill-in problem. SIAM Journal on Computing, 30:1067–1079, 2000.

20 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

21 Yngve Villanger, Pinar Heggernes, Christophe Paul, and Jan Arne Telle. Interval comple-
tion is fixed parameter tractable. SIAM Journal on Computing, 38(5):2007–2020, 2009.

22 Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 2(1):77–79, 1981.

STACS’14

From Small Space to Small Width in Resolution
Yuval Filmus1, Massimo Lauria2, Mladen Mikša2,
Jakob Nordström2, and Marc Vinyals2

1 Simons Institute for the Theory of Computing, University of California,
Berkeley, USA

2 School of Computer Science and Communication, KTH Royal Institute of
Technology, Stockholm, Sweden

Abstract
In 2003, Atserias and Dalmau resolved a major open question about the resolution proof system
by establishing that the space complexity of formulas is always an upper bound on the width
needed to refute them. Their proof is beautiful but somewhat mysterious in that it relies heavily
on tools from finite model theory. We give an alternative, completely elementary, proof that
works by simple syntactic manipulations of resolution refutations. As a by-product, we develop
a “black-box” technique for proving space lower bounds via a “static” complexity measure that
works against any resolution refutation—previous techniques have been inherently adaptive. We
conclude by showing that the related question for polynomial calculus (i.e., whether space is an
upper bound on degree) seems unlikely to be resolvable by similar methods.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes – Relations among
complexity measures, F.4.1 Mathematical Logic – Computational logic, F.2.2 Nonnumerical Al-
gorithms and Problems – Complexity of proof procedures

Keywords and phrases proof complexity, resolution, width, space, polynomial calculus, PCR

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.300

1 Introduction

A resolution proof for, or resolution refutation of, an unsatisfiable formula F in conjunctive
normal form (CNF) is a sequence of disjunctive clauses (C1, C2, . . . , Cτ), where every clause Ct
is either a member of F or is logically implied by two previous clauses, and where the final
clause is the contradictory empty clause ⊥ containing no literals. Resolution is arguably
the most well-studied proof system in propositional proof complexity, and has served as a
natural starting point in the quest to prove lower bounds for increasingly stronger proof
systems on proof length/size (which for resolution is the number of clauses in a proof).

Resolution is also intimately connected to SAT solving, in that it lies at the foundation
of state-of-the-art SAT solvers using so-called conflict-driven clause learning (CDCL). This
connection has motivated the study of proof space as a second interesting complexity measure
for resolution. The space usage at some step t in a proof is measured as

the number of clauses occurring before Ct that will be used to derive clauses after Ct,
and the space of a proof is obtained by taking the maximum over all steps t.

For both of these complexity measures, it turns out that a key role is played by the
auxiliary measure of width, i.e., the size of a largest clause in the proof. In a celebrated
result, Ben-Sasson and Wigderson [10] showed that there are short resolution refutations of
a formula if and only if there are also (reasonably) narrow ones, and almost all known lower
bounds on resolution length can be (re)derived using this connection.

© Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and
Marc Vinyals;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 300–311

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.300
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals 301

In 2003, Atserias and Dalmau (journal version in [2]) established that width also provides
lower bounds on space, resolving a problem that had been open since the space complexity
of propositional proofs started being studied in the late 1990s ([1, 13]). This means that for
space also, almost all known lower bounds can be rederived by using width lower bounds
and appealing to [2]. This is not a two-way connection, however, in that formulas of almost
worst-case space complexity may require only constant width as shown in [8].

The starting point of our work is the lower bound on space in terms of width in [2].
This is a very elegant but also magical proof in that it translates the whole problem to
Ehrenfeucht–Fraïssé games in finite model theory, and shows that resolution space and width
correspond to strategies for two opposite players in such games. Unfortunately, this also
means that one obtains essentially no insight into what is happening on the proof complexity
side (other than that the bound on space in terms of width is true). It has remained an open
problem to give a more explicit, proof complexity theoretic, argument.

In this paper, we give a purely combinatorial proof in terms of simple syntactic manipu-
lations of resolution refutations. To summarize in one sentence, we study the conjunctions of
clauses in memory at each time step in a small-space refutation, negate these conjunctions
and then expand them to conjunctive normal form again, and finally argue that the new sets
of clauses listed in reverse order (essentially) constitute a small-width refutation of the same
formula.

This new, simple proof also allows us to obtain a new technique for proving space lower
bounds. This approach is reminiscent of [10] in that one defines a static “progress measure”
on refutations and argues that when a refutation has made substantial progress it must have
high complexity with respect to the proof complexity measure under study. Previous lower
bounds on space have been inherently adaptive and in that sense less explicit.

One other important motivation for our work was the hope that a simplified proof of the
space-width inequality would serve as a stepping stone to resolving the analogous question for
the polynomial calculus proof system, where the width of clauses corresponds to the degree
of polynomials. While we recently showed in [14] the analogue of [8] that there are formulas
of worst-case space complexity that require only constant degree, the question of whether
degree lower bounds imply space lower bounds remains open. Unfortunately, as discussed
towards the end of this paper we show that it appears unlikely that this question can be
resolved by methods similar to our proof of the corresponding inequality for resolution.

The rest of this paper is organized as follows. After some brief preliminaries in Section 2,
we present the new proof of the space-width inequality in [2] in Section 3. In Section 4 we
showcase the new technique for space lower bounds by studying so-called Tseitin formulas.
Section 5 explains why we believe it is unlikely that our methods will extend to polynomial
calculus. Some concluding remarks are given in Section 6.

2 Preliminaries

Let us start by a brief review of the preliminaries. The following material is standard and
can be found, e.g., in the survey [18].

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its
negation that is denoted either as ¬x or x (a negative literal). We define x = x. A clause
C = a1 ∨ · · · ∨ ak is a disjunction of literals and a term T = a1 ∧ · · · ∧ ak is a conjunction of
literals. We denote the empty clause by ⊥ and the empty term by ∅. The logical negation of
a clause C = a1∨ · · · ∨ak is the term a1∧ · · · ∧ak that consists of the negations of the literals
in the clause. We will sometimes use the notation ¬C or C for the term corresponding to the

STACS’14

302 From Small Space to Small Width in Resolution

negation of a clause and ¬T or T for the clause negating a term. A clause (term) is trivial if
it contains both a variable and its negation. For the proof systems we study, trivial clauses
and terms can always be eliminated without any loss of generality.

A clause C ′ subsumes clause C if every literal from C ′ also appears in C. A k-clause
(k-term) is a clause (term) that contains at most k literals. A CNF formula F = C1∧· · ·∧Cm
is a conjunction of clauses, and a DNF formula F = T1 ∨ · · · ∨ Tm is a disjunction of terms.
A k-CNF formula (k-DNF formula) is a CNF formula (DNF formula) consisting of k-clauses
(k-terms). In this paper we only consider CNF formulas that do not contain the empty clause.
We think of clauses, terms, and CNF formulas as sets: the order of elements is irrelevant and
there are no repetitions.

Let us next describe a slight generalization of the resolution proof system by Krajíček [16],
who introduced the the family of r-DNF resolution proof systems, denoted R(r), as an
intermediate step between resolution and depth-2 Frege systems. An r-DNF resolution
configuration C is a set of r-DNF formulas. An r-DNF resolution refutation of a CNF
formula F is a sequence of configurations (C0, . . . ,Cτ) such that C0 = ∅, ⊥ ∈ Cτ , and for
1 ≤ t ≤ τ we obtain Ct from Ct−1 by one of the following steps:
Axiom download Ct = Ct−1 ∪ {A}, where A is a clause in F (sometimes referred to as an

axiom clause).
Inference Ct = Ct−1 ∪ {D}, where D is inferred by one of the following rules (where G,H

denote r-DNF formulas, T, T ′ denote r-terms, and a1, . . . , ar denote literals):

r-cut (a1 ∧ · · · ∧ ar′) ∨G a1 ∨ · · · ∨ ar′ ∨H
G ∨H

, where r′ ≤ r.

∧-introduction G ∨ T G ∨ T ′
G ∨ (T ∧ T ′) , as long as |T ∪ T ′| ≤ r.

∧-elimination G ∨ T
G ∨ T ′ for any non-empty T ′ ⊆ T .

Weakening G
G ∨H for any r-DNF formula H.

Erasure Ct = Ct−1 \ {C}, where C is an r-DNF formula in Ct−1.

When setting r = 1 we obtain the standard resolution proof system. In this case the
only nontrivial inference rules are weakening and r-cut, where the former can be eliminated
without loss of generality (but is sometimes convenient to have for technical purposes) and
the latter simplifies to the resolution rule C∨x D∨x

C∨D . We identify a resolution configuration C
with the CNF formula

∧
C∈C C.

The length L(π) of an r-DNF resolution refutation π is the number of download and
inference steps, and the space Sp(π) is the maximal number of r-DNF formulas in any
configuration in π. We define the length LR(r)(F ` ⊥) and the space SpR(r)(F ` ⊥) of
refuting a formula F in r-DNF resolution by taking the minimum over all refutations F with
respect to the relevant measure. We drop the proof system R(r) from this notation when it
is clear from context.

For the resolution proof system, we also define the width W(π) of a resolution refutation π
as the size of a largest clause in π, and taking the minimum over all resolution refutations
we obtain the width W(F `⊥) of refuting F . We remark that in the context of resolution
the space measure defined above is sometimes referred to as clause space to distinguish it
from other space measures studied for this proof system.

Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals 303

3 From Space to Width

In this section we present our new combinatorial proof that width is a lower bound for clause
space in resolution. The formal statement of the theorem is as follows (where we recall that
in this article all CNF formulas are assumed to be non-trivial in that they do not contain
the contradictory empty clause).

I Theorem 1 ([2]). Let F be a k-CNF formula and let π : F `⊥ be a resolution refutation
in space Sp(π) = s. Then there is a resolution refutation π′ of F in width W(π′) ≤ s+ k− 3.

The proof idea is to take the refutation π in space s, negate the configurations one by one,
rewrite them as equivalent sets of disjunctive clauses, and list these sets of clauses in reverse
order. This forms the skeleton of the new refutation, where all clauses have width at most s.
To see this, note that each configuration in the original refutation is the conjunction of at
most s clauses. Therefore, the negation of such a configuration is a disjunction of at most
s terms, which is equivalent (using distributivity) to a conjunction of clauses of width at
most s. To obtain a legal resolution refutation, we need to fill in the gaps between adjacent
sets of clauses. In this process the width increases slightly from s to s+ k − 3.

Before presenting the full proof, we need some technical results. We start by giving a
formal definition of what a negated configuration is.

I Definition 2. The negated configuration neg(C) of a configuration C is defined by induction
on the number of clauses in C:

neg(∅) = {⊥},
neg(C ∪ {C}) = {D ∨ a | D ∈ neg(C) and a ∈ C},

where we remove trivial and subsumed clauses from the final configuration.

In the proof we will use a different characterization of negated configurations that is
easier to work with.

I Proposition 3. The negated configuration neg(C) is the set of all minimal (non-trivial)
clauses C such that ¬C implies the configuration C. That is

neg(C) = {C | ¬C � C and for every C ′ ⊆ C it holds that ¬C ′ 6� C} .

Proof. Let us fix the configuration C and let D denote the set of all minimal clauses
implying C. We prove that for each clause C ∈ neg(C) there is a clause C ′ ∈ D such
that C ′ ⊆ C and vice versa. The proposition then follows because by definition neither D
nor neg(C) contains subsumed clauses.

First, let C ∈ neg(C). By the definition of neg(C) we know that for every clause D ∈ C
the clause C contains the negation of some literal from D. Hence, ¬C implies C as it is a
conjunction of literals from each clause in C. By taking the minimal clause C ′ ⊆ C such
that ¬C ′ � C we have that C ′ ∈ D.

In the opposite direction, let C ∈ D and let us show that C must contain a negation of
some literal in D for every clause D ∈ C. Assume for the sake of contradiction that D ∈ C is
a clause such that none of its literals has a negation appearing in C. Let α be a total truth
value assignment that satisfies ¬C (such an assignment exists because C is non-trivial). By
assumption, flipping the variables in α so that they falsify D cannot falsify ¬C. Therefore, we
can find an assignment that satisfies ¬C but falsifies D ∈ C, which contradicts the definition
of D. Hence, the clause C must contain a negation of some literal in D for every D ∈ C and
by the definition of neg(C) there is a C ′ ∈ neg(C) such that C ′ ⊆ C. J

STACS’14

304 From Small Space to Small Width in Resolution

The following observation, which formalizes the main idea behind the concept of negated
configurations, is an immediate consequence of Proposition 3.

I Observation 4. An assignment satisfies a clause configuration C if and only if it falsifies
the negated clause configuration neg(C). That is, C is logically equivalent to ¬neg(C).

Recall that what we want to do is to take a resolution refutation π = (C0,C1, . . . ,Cτ)
and argue that if π has small space, then the reversed sequence of negated configurations
π′ = (neg(Cτ),neg(Cτ−1), . . . ,neg(C0)) has small width. However, as noted above π′ is not
necessarily a legal resolution refutation. Hence, we need to show how to derive the clauses
in each configuration of the negated refutation without increasing the width by too much.
We do so by a case analysis over the derivation steps in the original refutation, i.e., axiom
download, clause inference, or clause erasure. The following lemma show that for inference
and erasure steps all that is needed in the reverse direction is to apply weakening.

I Lemma 5. If C � C′, then for every clause C ∈ neg(C) there is a clause C ′ ∈ neg(C′)
such that C is a weakening of C ′.

Proof. For any clause C is in neg(C) it holds by Proposition 3 that ¬C � C. Since C � C′,
this in turns implies that ¬C � C′. Applying Proposition 3 again, we conclude that there
exists a clause C ′ ⊆ C such that C ′ ∈ neg(C′). J

The only time in a refutation π = (C0,C1, . . . ,Cτ) when it does not hold that Ct−1 � Ct
is when an axiom clause is downloaded at time t, and such derivation steps will require a bit
more careful analysis. We provide such an analysis in the full proof of Theorem 1, which we
are now ready to present.

Proof of Theorem 1. Let π = (C0,C1, . . . ,Cτ) be a resolution refutation of F in space s.
For every configuration

Ct ∈ π, let Dt denote the corresponding negated configuration neg(Ct). By the discussion
preceding Definition 2, it is clear than each clause of Ct contributes at most one literal to
each clause of Dt. Hence, the clauses of Dt have width at most s. We need to show how to
transform the sequence π′ = (Dτ ,Dτ−1, . . . ,D0) into a legal resolution refutation of width at
most s+ k − 3.

The initial configuration of the new refutation is Dτ itself, which is empty by Definition 2.
If Ct+1 follows Ct by inference or erasure, then we can derive any clause of Dt from a clause
of Dt+1 by weakening, as proven in Lemma 5. If Ct+1 follows Ct by axiom download, then we
can derive Dt from Dt+1 in width at most s+k− 3, as we show below. The last configuration
D0 includes the empty clause ⊥ by Definition 2, so the new refutation is complete.

It remains to take care of the case of axiom download. We claim that we can assume
without loss of generality that prior to each axiom download step the space of the config-
uration Ct is at most s − 2. Otherwise, immediately after the axiom download step the
proof π needs to erase a clause in order to maintain the space bound s. By reordering the
axiom download and clause erasure steps we get a valid refutation of F for which it holds
that Sp(Ct) ≤ s− 2.

Suppose Ct+1 = Ct ∪ {A} for some axiom A = a1 ∨ · · · ∨ a`, with ` ≤ k. Consider now
some clause C that is in the negated configuration Dt and that does not belong to Dt+1.
Again by Definition 2, the clause C has at most one literal per clause in Ct, so W(C) ≤ s− 2.
To derive C from Dt+1 we first download axiom A and then show how to derive C from the
clauses in Dt+1 ∪ {A}.

Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals 305

First, note that all clauses Ca = C ∨a are either contained in or are weakenings of clauses
in Dt+1. This follows easily from Definition 2 as adding an axiom A to the configuration Ct
results in adding negations of literals from A to all clauses C ∈ Dt. Hence, we can obtain C
by the following derivation:

A = a1 ∨ · · · ∨ a` Ca1 = C ∨ a1

C ∨ a2 ∨ · · · ∨ a` Ca2 = C ∨ a2

C ∨ a3 ∨ · · · ∨ a`
...

C ∨ a` Ca`
= C ∨ a`

C

When C is the empty clause, the width of this derivation is upper-bounded by W(A) ≤ k.
Otherwise, it is upper bounded by W(C) + W(A)− 1 ≤ s+ k − 3. Any resolution refutation
has space at least 3 (unless the formula contains the empty clause itself), so the width of π′
is upper-bounded by W(π′) ≤ s+ k − 3. J

The proof of Theorem 1 also works for r-DNF resolution, with some loss in parameters.
We now define the negated configuration of an r-DNF resolution configuration and sketch a
proof that resolution width is a lower bound for r-DNF resolution space.

I Theorem 6. Let F be a k-CNF formula and let π : F `⊥ be an r-DNF resolution refutation
of F in space Sp(π) ≤ s. Then there exists a resolution refutation π′ of F in width at most
W(π′) ≤ (s− 2)r + k − 1.

Proof sketch. We define the negated configuration negR(r)(C) of a R(r) configuration to be
negR(r)(∅) = {⊥},
negR(r)(C ∪ {C}) = {D ∨ T | D ∈ negR(r)(C) and T ∈ C},

with trivial and subsumed clauses removed. It is easy to see that an s space r-DNF
configuration gets transformed into a resolution configuration of width sr. We can prove
an analogue of Proposition 3 for this definition of the negated configuration and, hence, the
analogue of Lemma 5 easily follows. The case of axiom download is the same as in the proof
of Theorem 1 as axioms are clauses. Hence, running the negated refutation backwards we
get a resolution refutation of F in width (s− 2)r + k − 1. J

4 A Static Technique for Proving Space Lower Bounds

Looking at the proof complexity literature, the techniques used to prove lower bounds for
resolution length and width (e.g., [10, 11, 15, 19]) are essentially different from ones used to
prove resolution space lower bounds (e.g., [1, 7, 13], in that the former are static or oblivious
while the latter are dynamic.

Lower bounds on resolution length typically have the following general structure: if
a refutation is too short, then we obtain a contradiction by applying a suitable random
restriction (the length of the proof figures in by way of a union bound); so any refutation
must be long. When proving lower bounds on resolution width, one defines a complexity
measure, and uses the properties of this measure to show that every refutation must contain
a complex clause; in a second step one then argues that such a complex clause must be wide.

In contrast, most lower bound proofs for resolution space use an adversary argument. As-
suming that the resolution derivation is in small space, one constructs a satisfying assignment
for each clause configuration. Such assignments are updated inductively as the derivation

STACS’14

306 From Small Space to Small Width in Resolution

progresses, and one shows that the update is always possible given the assumption that the
space is small. This in turn shows that the contradictory empty clause can never be reached,
implying a space lower bound on refutations. The essential feature separating this kind of
proofs from the ones above is that the satisfying assignments arising during the proof depend
on the history of the derivation; in contrast, the complexity measures in width lower bounds
are defined once and for all, as are the distributions of random restrictions in length lower
bounds.

In this section we present a static lower bound on resolution space. Our proof combines
the ideas of Section 3 and the complexity measure for clauses used in [10]. We define a
complexity measure for configurations which can be used to prove space lower bounds along
the lines of the width lower bounds mentioned above.

This approach works in general in that complexity measure for clauses can be transformed
into a complexity measure for configurations. This turns many width lower bound techniques
into space lower bound ones (e.g., width lower bounds for random 3-CNF formulas.) In this
section we give a concrete example of this for Tseitin formulas, which are a family of CNFs
encoding a specific type of systems of linear equations.

I Definition 7 (Tseitin formula). Let G = (V,E) be an undirected graph and χ : V → {0, 1}
be a function. Identify every edge e ∈ E with a variable xe, and let PARITY v,χ denote the
CNF encoding of the constraint

∑
e3v xe = χ(v) (mod 2) for any vertex v ∈ V . Then the

Tseitin formula over G with respect to χ is Ts(G,χ) =
∧
v∈V PARITY v,χ.

When the degree of G is bounded by d, PARITY v,χ has at most 2d−1 clauses, all of
width at most d, and hence Ts(G,χ) is a d-CNF formula with at most 2d−1|V | clauses. We
say that a set of vertices U has odd (even) charge if

∑
u∈U χ(u) is odd (even). A simple

counting argument shows that when V (G) has odd charge, Ts(G,χ) is unsatisfiable. On
the other hand, if G is connected then for each v ∈ V it is always possible to satisfy the
constraints PARITY u,χ for all u 6= v. If G is a good expander, then large space is needed to
refute Ts(G,χ).

I Definition 8 (Edge expansion). The graph G = (V,E) is an (s, δ)-edge expander if for
every set of vertices U ⊆ V such that |U | ≤ s, the set of edges E

(
U
)
has size at least δ|U |,

where E
(
U
)
is the set of edges of G with exactly one vertex in U .

I Theorem 9. For a d-degree (s, δ)-edge expander G it holds that Sp(Ts(G,χ)) ≥ δs/d.

We remark that Theorem 9 was originally proven in [1, 13] (and with slightly better
parameters, as discussed below).

For the rest of this section we fix a particular connected graph G of degree d, a function χ
with respect to which V (G) has odd charge, and the corresponding Tseitin formula Ts(G,χ).
The main tool used to prove Theorem 9 is a complexity measure for configurations. We show
that if G is a good expander, then every refutation of Ts(G,χ) must have a configuration with
intermediate measure. We conclude the proof by showing that the space of a configuration is
at least the value of its measure, if the latter falls within a specific range of values.

We first define our configuration complexity measure for terms (i.e. configurations con-
sisting of unit clauses), and then we extend it to general configurations. In words, the term
complexity measure is the smallest number of parity axioms of Ts(G,χ) that collectively
contradict the term, and the configuration complexity measure is the maximum measure
over all terms that imply the configuration.

I Definition 10 (Configuration complexity measure). The term complexity measure ν(T) of
a term T is ν(T) = min

{
|V ′| : V ′ ⊆ V and T ∧

∧
v∈V ′ PARITY v,χ � ⊥

}
.

Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals 307

The configuration complexity measure µ(C) of a resolution configuration C is defined as
µ(C) = max {ν(T) : T � C}. When only trivial terms T imply C, we have µ(C) = 0.

We now introduce the convenient concept of witness for the measure: a witness for ν(T)
is a set of vertices V ∗ for which ν(T) = |V ∗| and T ∧

∧
v∈V ∗ PARITY v,χ � ⊥. Similarly, for

configurations, a witness for µ(C) is a term T ∗ for which ν(T ∗) = µ(C) and T ∗ � C.
There is a big gap between the measure of the initial and final configurations of a

refutation, and we will see that the measure does not change much at each step. Hence,
the refutation must pass through a configuration of intermediate measure. Formally, we
have that µ(∅) = |V |, because the empty term implies ∅ and has measure |V |, and µ(C) = 0
when ⊥ ∈ C, as only trivial terms imply contradiction.

To study how the measure changes during the refutation, we look separately at what
happens at each type of step. As in the proof of Theorem 1, we can deal with inference and
clause erasure steps together.

I Lemma 11. If C � C′ then µ(C) ≤ µ(C′).

Proof. Let T ∗ be a witness for µ(C). Then, T ∗ � C and, hence, we also have T ∗ � C′.
Therefore, µ(C′) ≥ ν(T ∗) = µ(C). J

Again, as in the proof of Theorem 1, axiom download requires most of the work. We
show that if the graph has constant degree d, then the measure decreases slowly.

I Lemma 12. For a clause A in Ts(G,χ) and a graph G of bounded degree d, if C′ = C∪{A}
then d · µ(C′) + 1 ≥ µ(C).

Proof. Fix a witness T ∗ for µ(C). Since µ(C) = ν(T ∗), to prove the lemma we need to
upper-bound the value ν(T ∗) by d · µ(C′) + 1.

For any literal a in A, we know that T ∗ ∧ a implies C′ because T ∗ implies C and a

implies A. Hence, it holds that µ(C′) ≥ ν(T ∗ ∧ a), and so it will be sufficient to relate ν(T ∗)
to the values ν(T ∗ ∧ a). To this end, we look at the set of vertices V ∗ =

⋃
a∈A Va ∪ {vA},

where each Va is a witness for the corresponding measure ν(T ∗ ∧ a), and vA is the vertex
such that A ∈ PARITY vA,χ. Note that by definition we have |Va| = ν(T ∗ ∧ a) for every
a ∈ A and also that |V ∗| ≤

∑
a∈A|Va|+ 1, which can in turn be bounded by d · µ(C′) + 1

because A has at most d literals.
We conclude the proof by showing that T ∗ ∧

∧
v∈V ∗ PARITY v,χ � ⊥, which shows that

ν(T ∗) ≤ |V ∗|. The implication holds because any assignment either falsifies clause A, and
so falsifies PARITY vA,χ, or one of the literals a ∈ A is satisfied. But then we have as a
subformula T ∗ ∧

∧
v∈Va

PARITY v,χ, which is unsatisfiable by the definition of Va when a is
true. The bound ν(T ∗) ≤ |V ∗| then follows, and so µ(C) ≤ |V ∗| ≤ d · µ(C′) + 1. J

The preceding results imply that every resolution refutation of the Tseitin formula has a
configuration of intermediate complexity. This holds because every refutation starts with
a configuration of measure |V | and needs to reach the configuration of measure 0, while at
each step the measure drops at most a factor 1/d by previous lemmas.

I Corollary 13. For any resolution refutation π of a Tseitin formula Ts(G,χ) over a connected
graph G of bounded degree d and any positive integer r ≤ |V | there exists a configuration
C ∈ π such that the configuration complexity measure is bounded by r/d ≤ µ(C) ≤ r.

It remains to show that a configuration having intermediate measure must also have large
space. Note that ν(T) is a monotone decreasing function, since T ⊆ T ′ implies ν(T) ≥ ν(T ′)

STACS’14

308 From Small Space to Small Width in Resolution

by definition. Hence, we only need to look at minimal terms T for which T � C in order to
determine µ(C).

In the case of expander graphs we have a space lower bound from the configuration
complexity measure.

I Lemma 14. Let G be an (s, δ)-edge expander graph. For every configuration C satisfying
µ(C) ≤ s it holds that Sp(C) ≥ δ · µ(C).

Proof. To prove the lemma, we lower-bound the size of a minimal witness T ∗ for µ(C) and
then use the bound Sp(C) ≥ |T ∗|. If only trivial terms imply C then the lemma immediately
follows because µ(C) = 0. The latter bound follows by noting that every literal of T ∗ must
imply at least one clause in C. Fix T ∗ to be a minimal witness for µ(C) and let V ∗ be a
witness for ν(T ∗). Note that |V ∗| = µ(C). We prove that T ∗ must contain a variable for
every edge in E

(
V ∗
)
.

Towards contradiction, assume that T ∗ does not contain some xe for an edge e in
E
(
V ∗
)
, and let ve be the vertex in V ∗ incident to e. Let α be an assignment that

satisfies T ∗ ∧
∧
v∈V ∗\{ve} PARITY v,χ. Such an assignment must exist as otherwise V ∗

would not be a witness for ν(T ∗). We can modify α by changing the value of xe so that
PARITY ve,χ is satisfied. By the assumption, the new assignment α′ still satisfies T ∗ and∧
v∈V ∗\{ve} PARITY v,χ as neither contains the variable xe. Thus, we have found an assign-

ment satisfying T ∗ ∧
∧
v∈V ∗ PARITY v,χ, which is a contradiction.

Hence, the term T ∗ contains a variable for every edge in E
(
V ∗
)
. Since G is an (s, δ)-edge

expander and |V ∗| ≤ s, the term T ∗ contains at least δ · |V ∗| variables. From Sp(C) ≥ |T ∗|
and the fact that |V ∗| = µ(C) we prove that Sp(C) ≥ δ · µ(C) if µ(C) ≤ s. J

The preceding lemma and Corollary 13 together imply Theorem 9, because by Corollary 13
there is a configuration with measure between s/d and s, and this configuration has space at
least δs/d by the previous lemma.

Theorem 9 gives inferior results compared to a direct application of Theorem 1 to known
width lower bounds. The bounds that we get are worse by a multiplicative factor of 1/d.
One might hope to remove this multiplicative factor by improving the bound in Lemma 12,
but this is not possible because that bound is tight.

To see this, assume that the graph G consists of a set of vertices V with one vertex v that
is a neighbor of d disjoint subgraphs each of size (|V |−1)/d. Also, let A be one of the clauses
in PARITY v,χ such that setting any literal in A to true pushes the odd charge into one of
the neighboring subgraphs of v. Taking C = ∅ and C′ = {A} we have that µ(C) = |V | and
µ(C′) = (|V | − 1)/d. The latter equality holds because every minimal term T satisfying A
contains exactly one literal from A, and so pushes the odd charge into one of the subgraphs
neighboring v. This makes the vertices of that subgraph a witness for ν(T). Hence, we have
an example where d · µ(C′) + 1 = µ(C), which shows that Lemma 12 is tight.

5 From Small Space to Small Degree in Polynomial Calculus?

An intriguing question is whether an analogue of the bound in Theorem 1 holds also for the
stronger algebraic proof system polynomial calculus introduced in [12]. In this context, it
is more relevant to discuss the variant of this system presented in [1], which is known as
polynomial calculus (with) resolution or PCR, which we briefly describe below.

In a PCR derivation, the configurations are sets of polynomials in F[x, x, y, y, . . .], where
x and x are different formal variables. By way of example, a clause x ∨ y ∨ z is translated
to the polynomial xyz consisting of one monomial. In addition to the translations of the

Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals 309

axiom clauses of the CNF formula to be refuted, the proof system also contain axioms x2− x
and x + x − 1. These axioms enforce that only assigments to {0, 1} are considered (and
hence that all polynomials are multilinear without loss of generality) and that x always
takes the opposite value of x. There are two inference rules, which preserve common roots
of the polynomials, namely linear combination p q

αp+βq and multiplication p
xp , where p and q

are (previously derived) polynomials, the coefficients α, β are elements of F, and x is any
variable (with or without bar). The refutation ends when 1 has been derived. The size,
degree and monomial space measures are analogues of length, width and clause space in
resolution (counting monomials instead of clauses). PCR can simulate resolution refutations
efficiently with respect to all of these measures.

Let us now discuss why the method we use to prove Theorem 1 is unlikely to generalize to
PCR. An example of formulas that seem hard to deal with in this way are so-called pebbling
contradictions, which we describe next.

Pebbling contradictions are defined in terms of directed acyclic graphs (DAGs) G = (V,E)
with bounded fan-in, where vertices with no incoming edges are called sources and vertices
without outgoing edges sinks. Assume G has a unique sink z and associate a variable V to
each vertex v ∈ V . Then the pebbling contradiction over G consists of the following clauses:

for each source vertex s, a clause s (source axioms),
for each non-source vertex v, a clause

∨
(u,v)∈E u ∨ v (pebbling axioms),

for the sink z, a clause z (sink axiom).

As shown in [6], pebbling contradictions exhibit space-width trade-offs in resolution in
that they can always be refuted in constant width as well as in constant space, but there are
graphs for which optimizing one of these measures necessary causes essentially worst-case
linear behaviour for the other measure.

There are two natural ways to refute pebbling contradictions in resolution. One approach
is to go “bottom-up” from sources to sinks in topological order, and derive for each vertex
v ∈ V (G) the clause v using the pebbling axiom for v and the clauses for the predecessors of
the vertex v. When the refutation reaches z it derives a contradiction with the sink axiom
z. This can be done in constant width but for some graphs requires large space. The other
approach is “top-down” starting from the sink axiom z and deriving clauses of the form
v1 ∨ · · · ∨ v`. A new clause is derived by replacing any vertex vi in the old one by all its
predecessors, i.e., resolving with the pebbling axiom for vi. Since G is acyclic we can repeat
this process until we get to the sources, for which the negated literals can be resolved away
using source axioms. This refutation can be carried out in constant clause space, but such a
refutation might require large width.

Now, one can observe that the transformation of configurations in our proof of Theorem 1
maps either of two refutations above into the other one, and this is the main reason why
our proof does not seem to generalize to PCR. In PCR, we can represent any conjunction
of literals a1 ∧ · · · ∧ ar as the binomial 1−

∏
i ai. Using this encoding with the bottom-up

approach yields a third refutation, which has constant space but possibly large degree. Hence,
there are constant space polynomial calculus refutations of pebbling contradictions in both
the bottom-up and the top-down direction. This in turn means that if our proof method
were to work for PCR, we would need to find constant degree refutations in both directions.
For the top-down case it seems unlikely that such a refutation exists.

6 Concluding Remarks

In this work, we present an alternative, completely elementary, proof of the result by Atserias
and Dalmau [2] that space is an upper bound on width in resolution. Our construction

STACS’14

310 From Small Space to Small Width in Resolution

gives a syntactic way to convert a small-space resolution refutation into a refutation in small
width. We also exhibit a new “black-box” approach for proving space lower bounds that
works by defining a progress measure à la Ben-Sasson and Wigderson [10] and showing that
when a refutation has made medium progress towards a contradiction it must be using a lot
of space. We believe that these techniques shed interesting new light on resolution space
complexity, and hope that they will serve to increase our understanding of this notoriously
tricky complexity measure.

As an example of a question about resolution space that still remains open, suppose we
are given a k-CNF formula that is guaranteed to be refutable in constant space. By [2] it is
also refutable in constant width, and a simple counting argument then shows that exhaustive
search in small width will find a polynomial-length resolution refutation. But is there any
way of obtaining such a short refutation from a refutation in small space that is more explicit
that doing exhaustive search? And can we obtain a short refutation without blowing up the
space by more than, say, a constant factor?

Known length-space trade-off results for resolution in [4, 5, 9, 17] do not answer this
question as they do not apply to this range of parameters. Unfortunately, our new proof of
the space-width inequality cannot be used to resolve this question either, since in the worst
case the resolution refutation we obtain might be as bad as the one found by exhaustive
search of small-width refutations (or even worse, due to repetition of clauses). This would
seem to be inherent—a recent result [3] shows that there are formulas refutable in space and
width s where the shortest refutation has length nΩ(s), i.e., matching the exhaustive search
upper bound up to a (small) constant factor in the exponent.

An even more intriguing question is how the space and degree measures are related in
polynomial calculus, as discussed in Section 5. For most relations between length, space,
and width in resolution, it turns out that they carry over with little or no modification to
size, space, and degree, respectively, in polynomial calculus. So can it be that it also holds
that space yields upper bounds on degree in polynomial calculus? Or could perhaps even
the stronger claim hold that polynomial calculus space is an upper bound on resolution
width? These questions remain wide open, but in the recent paper [14] we made some limited
progress by showing that if a formula requires large resolution width, then the “XORified
version” of the formula requires large polynomial calculus space. We refer to the introductory
section of [14] for a more detailed discussion of these issues.

Acknowledgments. The authors wish to thank Albert Atserias, Ilario Bonacina, Nicola
Galesi, and Li-Yang Tan for stimulating discussions on topics related to this work.

The research of the first author has received funding from the European Union’s Seventh
Framework Programme (FP7/2007–2013) under grant agreement no. 238381. Part of the work
of the first author was performed while at the University of Toronto and while visiting KTH
Royal Institute of Technology. The other authors were funded by the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) /
ERC grant agreement no. 279611. The fourth author was also supported by Swedish Research
Council grants 621-2010-4797 and 621-2012-5645.

References

1 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.
Preliminary version appeared in STOC ’00.

Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals 311

2 Albert Atserias and Víctor Dalmau. A combinatorial characterization of resolution width.
Journal of Computer and System Sciences, 74(3):323–334, May 2008. Preliminary version
appeared in CCC ’03.

3 Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow proofs may be maximally
long. In Proceedings of the 29th Annual IEEE Conference on Computational Complexity
(CCC’14), to appear, 2014.

4 Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space tradeoffs in resolution:
Superpolynomial lower bounds for superlinear space. In Proc. of the 44th Annual ACM
Symp. on Theory of Computing (STOC ’12), pages 213–232, May 2012.

5 Chris Beck, Jakob Nordström, and Bangsheng Tang. Some trade-off results for polynomial
calculus. In Proc. of the 45th Annual ACM Symp. on Theory of Computing (STOC ’13),
pages 813–822, May 2013.

6 Eli Ben-Sasson. Size space tradeoffs for resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version appeared in STOC ’02.

7 Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution. Ran-
dom Structures and Algorithms, 23(1):92–109, August 2003. Preliminary version appeared
in CCC ’01.

8 Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation
of space and length in resolution. In Proc. of the 49th Annual IEEE Symp. on Foundations
of Computer Science (FOCS ’08), pages 709–718, October 2008.

9 Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Sep-
arations and trade-offs via substitutions. In Proc. of the 2nd Symp. on Innovations in
Computer Science (ICS ’11), pages 401–416, January 2011. Full-length version available at
http://eccc.hpi-web.de/report/2010/125/.

10 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001. Preliminary version appeared in
STOC ’99.

11 Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, October 1988.

12 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proc. of the 28th Annual ACM Symp. on
Theory of Computing (STOC ’96), pages 174–183, May 1996.

13 Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Com-
putation, 171(1):84–97, 2001. Preliminary versions of these results appeared in STACS ’99
and CSL ’99.

14 Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, and Marc Vinyals. To-
wards an understanding of polynomial calculus: New separations and lower bounds (ex-
tended abstract). In Proc. of the 40th Int’l Colloquium on Automata, Languages and
Programming (ICALP ’13), volume 7965 of LNCS, pages 437–448. Springer, July 2013.

15 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2–3):297–
308, August 1985.

16 Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1–3):123–
140, 2001.

17 Jakob Nordström. A simplified way of proving trade-off results for resolution. Informa-
tion Processing Letters, 109(18):1030–1035, August 2009. Preliminary version appeared in
ECCC report TR07-114, 2007.

18 Jakob Nordström. Pebble games, proof complexity and time-space trade-offs. Logical
Methods in Computer Science, 9:15:1–15:63, September 2013.

19 Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
January 1987.

STACS’14

http://eccc.hpi-web.de/report/2010/125/

Explicit Linear Kernels via Dynamic Programming∗

Valentin Garnero1, Christophe Paul1, Ignasi Sau1, and
Dimitrios M. Thilikos1,2

1 AlGCo project-team, CNRS and Université de Montpellier 2, LIRMM,
Montpellier, France
FirstName.FamilyName@lirmm.fr

2 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece

Abstract
Several algorithmic meta-theorems on kernelization have appeared in the last years, starting with
the result of Bodlaender et al. [FOCS 2009] on graphs of bounded genus, then generalized by
Fomin et al. [SODA 2010] to graphs excluding a fixed minor, and by Kim et al. [ICALP 2013]
to graphs excluding a fixed topological minor. Typically, these results guarantee the existence
of linear or polynomial kernels on sparse graph classes for problems satisfying some generic
conditions but, mainly due to their generality, it is not clear how to derive from them constructive
kernels with explicit constants.

In this paper we make a step toward a fully constructive meta-kernelization theory on sparse
graphs. Our approach is based on a more explicit protrusion replacement machinery that, instead
of expressibility in CMSO logic, uses dynamic programming, which allows us to find an explicit
upper bound on the size of the derived kernels. We demonstrate the usefulness of our techniques
by providing the first explicit linear kernels for r-Dominating Set and r-Scattered Set on
apex-minor-free graphs, and for Planar-F-Deletion on graphs excluding a fixed (topological)
minor in the case where all the graphs in F are connected.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases parameterized complexity, linear kernels, dynamic programming, protru-
sion replacement, graph minors

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.312

1 Introduction

Motivation. Parameterized complexity deals with problems whose instances I come equipped
with an additional integer parameter k, and the objective is to obtain algorithms whose
running time is of the form f(k) · poly(|I|), where f is some computable function (see [6, 7]
for an introduction to the field). We will be only concerned with problems defined on graphs.
A fundamental notion in parameterized complexity is that of kernelization, which asks for
the existence of polynomial-time preprocessing algorithms that produce equivalent instances
whose size depends exclusively (preferably polynomially or event linearly) on k. Finding

∗ This work was supported by the ANR project AGAPE (ANR-09-BLAN-0159) and the Languedoc-
Roussillon Project “Chercheur d’avenir” KERNEL. The fourth author was co-financed by the E.U.
(European Social Fund - ESF) and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding
Program: “Thales. Investing in knowledge society through the European Social Fund”.

© Valentin Garnero, Christophe Paul, Ignasi Sau, and
Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 312–324

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.312
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 313

kernels of size polynomial or linear in k (called linear kernels) is one of the major goals of
this area.

An influential work in this direction was the linear kernel of Alber et al. [2] for Dominating
Set on planar graphs, which was generalized by Guo and Niedermeier [11] to a family of
problems on planar graphs. Several algorithmic meta-theorems on kernelization have appeared
in the last years, starting with the result of Bodlaender et al. [3] on graphs of bounded genus.
After that, similar results have been obtained on larger sparse graph classes, such as graphs
excluding a minor [9] or a topological minor [14].

Typically, the above results guarantee the existence of linear or polynomial kernels on
sparse graph classes for a number of problems satisfying some generic conditions but, mainly
due to their generality, it is hard to derive from them constructive kernels with explicit
constants. The main reason behind this non-constructibility is that the proofs rely on a
property of problems called Finite Integer Index (FII) that, roughly speaking, allows to
replace large “protrusions” (i.e., large subgraphs with small boundary to the rest of the
graph) with “equivalent” subgraphs of constant size. This substitution procedure is known
as protrusion replacer, and while its existence has been proved, so far, there is no generic
way to construct it. Using the technology developed in [3], there are cases where protrusion
replacements can become constructive given the expressibility of the problem in Counting
Monadic Second Order (CMSO) logic. This approach is essentially based on extensions of
Courcelle’s theorem [4] that, even when they offer constructibility, it is hard to extract from
them any explicit constant that upper-bounds the size of the derived kernel.

Results and techniques. In this article we tackle the above issues and make a step toward
a fully constructive meta-kernelization theory on sparse graphs with explicit constants. For
this, we essentially substitute the algorithmic power of CMSO logic with that of dynamic
programming on graphs of bounded decomposability (i.e., bounded treewidth). Our approach
provides a dynamic programming framework able to construct a protrusion replacer for a
wide variety of problems.

Loosely speaking, the framework that we present can be summarized as follows. First of all,
we propose a general definition of a problem encoding for the tables of dynamic programming
when solving parameterized problems on graphs of bounded treewidth. Under this setting,
we provide general conditions on whether such an encoding can yield a protrusion replacer.
While our framework can also be seen as a possible formalization of dynamic programming,
our purpose is to use it for constructing protrusion replacement algorithms and linear kernels
whose size is explicitly determined.

In order to obtain an explicit linear kernel for a problem Π, the main ingredient is to prove
that when solving Π on graphs of bounded treewidth via dynamic programming, we can use
tables such that the maximum difference between all the values that need to be stored is
bounded by a function of the treewidth. For this, we prove in Theorem 13 that when the
input graph excludes a fixed graph H as a (topological) minor, this condition is sufficient for
constructing an explicit protrusion replacer algorithm, i.e., a polynomial-time algorithm that
replaces a large protrusion with an equivalent one whose size can be bounded by an explicit
constant. Such a protrusion replacer can then be used, for instance, whenever it is possible
to compute a linear protrusion decomposition of the input graph (that is, an algorithm that
partitions the graph into a part of size linear in O(k) and a set of O(k) protrusions). As
there is a wealth of results for constructing such decompositions [3, 8, 9, 14], we can use them
as a starting point and, by applying dynamic programming, obtain an explicit linear kernel
for Π.

STACS’14

314 Explicit Linear Kernels via Dynamic Programming

We demonstrate the usefulness of this general strategy by providing the first explicit
linear kernels for three distinct families of problems on sparse graph classes. On the one hand,
for each integer r > 1, we provide a linear kernel for r-Dominating Set and r-Scattered
Set on graphs excluding a fixed apex graph H as a minor. Moreover, for each finite family
F of connected graphs containing at least one planar graph, we provide a linear kernel for
Planar-F-Deletion on graphs excluding a fixed graph H as a (topological) minor1.

We chose these families of problems as they are all tuned by a secondary parameter that
is either the constant r or the size of the graphs in the family F . That way, we not only
capture a wealth of parameterized problems, but we also make explicit the contribution of
the secondary parameter in the size of the derived kernels.

Organization of the paper. Due to space limitations, the proofs of the results marked with
‘[?]’ can be found in the full version of this paper, which is permanently available at [10]. For
the reader not familiar with the background used in previous work on this topic [3, 9, 14],
some preliminaries can be found in [10], including graph minors, parameterized problems,
(rooted) tree-decompositions, boundaried graphs, the canonical equivalence relation ≡Π,t for a
problem Π and an integer t, FII, protrusions, and protrusion decompositions. In Section 2 we
introduce the basic definitions of our framework and present an explicit protrusion replacer.
In Section 3 we show how to apply our methodology to various problems, and we conclude
with some directions for further research in Section 4.

2 An explicit protrusion replacer

In this section we present our strategy to construct an explicit protrusion replacer via dynamic
programming. For a positive integer t, we define Ft as the class of all t-boundaried graphs of
treewidth at most t− 1 that have a rooted tree-decomposition with all boundary vertices
contained in the root-bag. We will restrict ourselves to parameterized graph problems such
that a solution can be certified by a subset of vertices.

I Definition 1 (Vertex-certifiable problem). A parameterized graph problem Π is called
vertex-certifiable if there exists a language LΠ (called certifying language for Π) defined on
pairs (G,S), where G is a graph and S ⊆ V (G), such that (G, k) is a Yes-instance of Π
if and only if there exists a subset S ⊆ V (G) with |S| 6 k (or |S| > k, depending on the
problem) such that (G,S) ∈ LΠ.

Many graph problems are vertex-certifiable, like r-Dominating Set, Feedback Vertex
Set, or Treewidth-t Vertex Deletion. This section is structured as follows. In
Subsection 2.1 we define the notion of encoder, the main object that will allow us to
formalize in an abstract way the tables of dynamic programming. In Subsection 2.2 we use
encoders to define an equivalence relation on graphs in Ft that, under some natural technical
conditions, will be a refinement of the canonical equivalence relation defined by a problem
Π (see [10]). This refined equivalence relation allows us to provide an explicit upper bound
on the size of its representatives (Lemma 11), as well as a linear-time algorithm to find
them (Lemma 12). In Subsection 2.3 we use the previous ingredients to present an explicit

1 In an earlier version of this paper, we also described a linear kernel for Planar-F-Packing on graphs
excluding a fixed graph H as a minor. Nevertheless, as this problem is not directly vertex-certifiable
(see Definition 1), for presenting it we should restate and extend many of the definitions and results
given in Section 2 in order to deal with more general families of problems. Therefore, we decided not to
include this family of problems in this article.

V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 315

protrusion replacement rule (Theorem 13), which replaces a large enough protrusion with
a bounded-size representative from its equivalence class, in such a way that the parameter
does not increase.

2.1 Encoders
The Dominating Set problem, as a vertex-certifiable problem, will be used hereafter as
a running example to illustrate our general framework and definitions. Let us start with a
description of dynamic programming tables for Dominating Set on graphs of bounded
treewidth.

Running example: Let B be a bag of a rooted tree-decomposition (T,X) of width t − 1
of a graph G ∈ Ft. The dynamic programming (DP) tables for Dominating Set can
be defined as follows. The entries of the DP-table for B are indexed by the set of tuples
R ∈ {0, ↑ 1, ↓ 1}|B|, so-called encodings. As detailed below, the symbol 0 stands for vertices
in the (partial) dominating set, the symbol ↓ 1 for vertices that are already dominated, and
↑ 1 for vertices with no constraints. More precisely, the coordinates of each |B|-tuple are in
one-to-one correspondence with the vertices of B. For a vertex v ∈ B, we denote by R(v) its
corresponding coordinate in the encoding R. A subset S ⊆ V (GB) is a partial dominating
set satisfying R if the following conditions are satisfied:
∀v ∈ V (GB) \B, dGB

(v, S) 6 1; and
∀v ∈ B: R(v) = 0 ⇒ v ∈ S, and R(v) =↓ 1 ⇒ dGB

(v, S) 6 1.
Observe that if S is a partial dominating set satisfying R, then {v ∈ B | R(v) = 0} ⊆ S,
but S may also contain vertices with R(v) 6= 0. Likewise, the vertices that are not (yet)
dominated by S are contained in the set {v ∈ B | R(v) =↑ 1}. J

The following definition considers the tables of dynamic programming in an abstract way.

I Definition 2 (Encoder). An encoder E is a pair (C, LC) where
(i) C is a function that, for each (possibly empty) finite subset I ⊆ N+, outputs a (possibly

empty) finite set C(I) of strings over some alphabet. Each R ∈ C(I) is called a C-encoding
of I; and

(ii) LC is a computable language whose strings encode triples (G,S,R), where G is a
boundaried graph, S ⊆ V (G), and R ∈ C(Λ(G)). If (G,S,R) ∈ LC, we say that S
satisfies the C-encoding R.

As it will become clear with the running example, the set I represents the labels from a bag,
C(I) represents the possible configurations of the vertices in the bag, and LC contains triples
that correspond to solutions to these configurations.
Running example: Each rooted graph GB can be naturally viewed as a |B|-boundaried graph
such that B = ∂(GB) with I = Λ(GB). Let EDS = (CDS, LCDS) be the encoder described
above for Dominating Set. The tables of the dynamic programming algorithm to solve
Dominating Set are obtained by assigning to every CDS-encoding (that is, DP-table entry)
R ∈ CDS(I), the size of a minimum partial dominating set satisfying R, or +∞ if such a set
of vertices does not exist. This defines a function fEDS

G : CDS(I)→ N ∪ {+∞}. Observe that
if B = ∂(GB) = ∅, then the value assigned to the encodings in CDS(∅) is indeed the size of a
minimum dominating set of GB . �

For a general minimization problem Π, we will only be interested in encoders that permit
to solve Π via dynamic programming. More formally, we define a Π-encoder and the values
assigned to the encodings as follows. (Maximization problems are treated similarly, see [10]

STACS’14

316 Explicit Linear Kernels via Dynamic Programming

for the corresponding definitions of the functions fEG and fE,g
G defined below. The other

definitions of this section remain unchanged.)
I Definition 3 (Π-encoder and its associated function). Let Π be a vertex-certifiable minimiz-
ation problem.
(i) An encoder E = (C, LC) is a Π-encoder if C(∅) consists of a single C-encoding, namely

R∅, such that for every 0-boundaried graph G and every S ⊆ V (G), (G,S,R∅) ∈ LC if
and only if (G,S) ∈ LΠ.

(ii) Let G be a t-boundaried graph with Λ(G) = I. We define the function fEG : C(I) →
N ∪ {+∞} as

fEG(R) = min{k : ∃S ⊆ V (G), |S| 6 k, (G,S,R) ∈ LC}. (1)

In Equation (1), if such a set S does not exist, we set fEG(R) := +∞. We define
C∗G(I) := {R ∈ C(I) | fEG(R) 6= +∞}.
Condition (i) in Definition 3 guarantees that, when the considered graph G has no

boundary, the language of the encoder is able to certify a solution of problem Π. In other
words, we ask that the set {(G,S) | (G,S,R∅) ∈ LC)} is a certifying language for Π. Observe
that for a 0-boundaried graph G, the function fEG(R∅) outputs the minimum size of a set S
such that (G,S) ∈ LΠ.

The following definition provides a way to control the number of possible distinct values
assigned to encodings. This property will play a similar role to FII or monotonicity in
previous work [3, 9, 14].
I Definition 4 (Confined encoding). An encoder E is g-confined if there exists a function
g : N → N such that for any t-boundaried graph G with Λ(G) = I it holds that either
C∗G(I) = ∅ or

max
R∈C∗

G
(I)
fEG(R) − min

R∈C∗
G

(I)
fEG(R) 6 g(t). (2)

See the figure in [10] for a schematic illustration of a confined encoder. In this figure,
each column of the table corresponds to a C-encoder R, which is filled with the value fEG(R).
Running example: It is easy to observe that the encoder EDS described above is g-confined for
g(t) = t. Indeed, let G be a t-boundaried graph (corresponding to the graph GB considered
before) with Λ(G) = I. Consider an arbitrary encoding R ∈ C(I) and the encoding R0 ∈ C(I)
satisfying R0(v) = 0 for every v ∈ ∂(G). Let S0 ⊆ V (G) be a minimum-sized partial
dominating set satisfying R0, i.e., such that (G,S0, R0) ∈ LCDS . Observe that S0 also satisfies
R, i.e., (G,S0, R) ∈ LCDS . It then follows that fEDS

G (R0) = maxR f
EDS
G (R). Moreover, let

S ⊆ V (G) be a minimum-sized partial dominating set satisfying R, i.e., such that (G,S,R) ∈
LCDS

. Then note that R0 is satisfied by the set S ∪ ∂(G), so we have that for every encoding
R, fEDS

G (R) + |∂(G)| > fEDS
G (R0). It follows that fEDS

G (R0) − minR f
EDS
G (R) 6 |∂(G)| 6 t,

proving that the encoder is indeed g-confined. �
For some problems and encoders, we may need to “force” the confinement of an encoder

E that may not be confined according to Definition 4, while still preserving its usefulness for
dynamic programming, in the sense that no relevant information is removed from the tables
(for example, see the encoder for r-Scattered Set in [10]). To this end, given a function
g : N→ N, we define the function fE,g

G : C(I)→ N ∪ {+∞} as

fE,g
G (R) =

{
+∞, if fEG(R)− g(t) > minR∈C(I) f

E
G(R)

fEG(R), otherwise. . (3)

Intuitively, one shall think as the function fE,g
G as a “compressed” version of the function

fEG, which stores only the values that are useful for performing dynamic programming.

V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 317

2.2 Equivalence relations and representatives
An encoder E together with a function g : N→ N define an equivalence relation ∼E,g,t on
graphs in Ft as follows.

I Definition 5 (Equivalence relation ∼E,g,t). Let E be an encoder, let g : N → N, and let
G1, G2 ∈ Ft. We say that G1 ∼E,g,t G2 if and only if Λ(G1) = Λ(G2) =: I and there exists
an integer c, depending only on G1 and G2, such that for every C-encoding R ∈ C(I) it holds
that

fE,g
G1

(R) = fE,g
G2

(R) + c . (4)

Note that if there exists R ∈ C(I) such that fE,g
G1

(R) 6=∞, then the integer c satisfying
Equation (4) is unique, otherwise every integer c satisfies Equation (4). We define the
following function ∆E,g,t : Ft × Ft → Z, which is called, following the terminology from
Bodlaender et al. [3], the transposition function for the equivalence relation ∼E,g,t.

∆E,g,t(G1, G2) =

c, if G1 ∼E,g,t G2 and Eq. (4) holds for a unique integer c;
0, if G1 ∼E,g,t G2 and Eq. (4) holds for every integer; and

undefined otherwise.
(5)

If we are dealing with a problem defined on a graph class G, the protrusion replacement
rule has to preserve the class G, as otherwise we would obtain a bikernel instead of a kernel.
That is, we need to make sure that, when replacing a graph in Ft ∩ G with one of its
representatives, we do not produce a graph that does not belong to G anymore. To this end,
we define an equivalence relation ∼E,g,t,G on graphs in Ft ∩ G, which refines the equivalence
relation ∼E,g,t of Definition 5.

I Definition 6 (Equivalence relation ∼E,g,t,G). Let G be a class of graphs and let G1, G2 ∈
Ft ∩ G.
(i) G1 ∼G,t G2 if and only if for any t-boundaried graph H, G1 ⊕ H ∈ G if and only if

G2 ⊕H ∈ G.
(ii)] G1 ∼E,g,t,G G2 if and only if G1 ∼E,g,t G2 and G1 ∼G,t G2.

It is well-known by Büchi’s theorem that regular languages are precisely those definable
in Monadic Second Order logic (MSO logic). By Myhill-Nerode’s theorem, it follows that
if the membership in a graph class G can be expressed in MSO logic, then the equivalence
relation ∼G,t has a finite number of equivalence classes (see for instance [6, 7]). However,
we do not have in general an explicit upper bound on the number of equivalence classes of
∼G,t, henceforth denoted by rG,t. Fortunately, in the context of our applications in Section 3,
where G will be a class of graphs that exclude some fixed graph as a (topological) minor2,
this will always be possible, and in this case it holds that rG,t 6 2t log t · ht · 2h2 .

For an encoder E = (C, LC), we let sE(t) := maxI⊆{1,...,t} |C(I)|, where |C(I)| denotes the
number of C-encodings in C(I). The following lemma gives an upper bound on the number
of equivalence classes of ∼E,g,t,G , which depends also on rG,t.

2 A particular case of the classes of graphs whose membership can be expressed in MSO logic. We would
like to stress here that we rely on the expressibility of the graph class G in MSO logic, whereas in
previous work [3,9, 14] what is used in the expressibility in CMSO logic of the problems defined on a
graph class.

STACS’14

318 Explicit Linear Kernels via Dynamic Programming

I Lemma 7. Let G be a graph class whose membership can be expressed in MSO logic. For
any encoder E, any function g : N→ N, and any positive integer t, the equivalence relation
∼E,g,t,G has finite index. More precisely, the number of equivalence classes of ∼E,g,t,G is at
most r(E , g, t,G) := (g(t) + 2)sE(t) · 2t · rG,t.

Proof. Let us first show that the equivalence relation ∼E,g,t has finite index. Indeed, let
I ⊆ {1, . . . , t}. By definition, we have that for any graph G ∈ Ft with Λ(G) = I, the function
fE,g

G can take at most g(t) + 2 distinct values (g(t) + 1 finite values and possibly the value
+∞). Therefore, it follows that the number of equivalence classes of ∼E,g,t containing all
graphs G in Ft with Λ(G) = I is at most (g(t) + 2)|C(I)|. As the number of subsets of
{1, . . . , t} is 2t, we deduce that the overall number of equivalence classes of ∼E,g,t is at most
(g(t) + 2)sE(t) · 2t. Finally, since the equivalence relation ∼E,t,G is the Cartesian product
of the equivalence relations ∼E,g,t and ∼G,t, the result follows from the fact that G can be
expressed in MSO logic. J

In order for an encoding E and a function g to be useful for performing dynamic
programming on graphs in Ft that belong to a graph class G, we introduce the following
definition, which captures the natural fact that the tables of a dynamic programming
algorithm should depend exclusively on the tables of the descendants in a rooted tree-
decomposition. Before moving to the definition, we note that given a graph G ∈ Ft and a
rooted tree-decomposition (T,X) of G such that ∂(G) is contained in the root-bag of (T,X),
the labels of ∂(G) can be propagated in a natural way to all bags of (T,X) by introducing,
removing, and shifting labels appropriately. Therefore, for any node x of T , the graph Gx

can be naturally seen as a graph in Ft. (A brief discussion can be found in [10], and we refer
to [3] for more details.)

I Definition 8 (DP-friendly equivalence relation). An equivalence relation ∼E,g,t,G is DP-
friendly if for any graph G ∈ Ft and any rooted tree-decomposition (T,X) of G such that
∂(G) is contained in the root-bag of (T,X), and for any descendant x of the root r of T , if
G′ is the graph obtained from G by replacing the graph Gx ∈ Ft with a graph G′x ∈ Ft such
that Gx ∼E,g,t,G G

′
x, then G′ satisfies the following conditions:

(i) G ∼E,g,t,G G
′; and

(ii) ∆E,g,t(G,G′) = ∆E,g,t(Gx, G
′
x).

In Definition 8, as well as in the remainder of the article, when we replace the graph Gx

with the graph G′x, we do not remove from G any of the edges with both endvertices in the
boundary of Gx. That is, G′ = (G− (V (Gx)− ∂(V (Gx))))⊕G′x.

Recall that for the protrusion replacement to be valid for a problem Π, the equivalence
relation ∼E,g,t,G needs to be a refinement of the canonical equivalence relation ≡Π,t (note
that this implies, in particular, that if ∼E,g,t,G has finite index, then Π has FII). The next
lemma states a sufficient condition for this property, and furthermore it gives the value of the
transposition constant ∆Π,t(G1, G2), which will be needed in order to update the parameter
after the replacement.

I Lemma 9. [?] Let Π be a vertex-certifiable problem. If E is a Π-encoder and ∼E,g,t,G is a DP-
friendly equivalence relation, then for any two graphs G1, G2 ∈ Ft such that G1 ∼E,g,t,G G2,
it holds that G1 ≡Π,t G2 and ∆Π,t(G1, G2) = ∆E,g,t(G1, G2).

The following definition will be important to guarantee that, when applying our protrusion
replacement rule, the parameter of the problem under consideration does not increase.

V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 319

I Definition 10 (Progressive representatives of ∼E,g,t,G). Let C be some equivalence class of
∼E,g,t,G and let G ∈ C. We say that G is a progressive representative of C if for any graph
G′ ∈ C it holds that ∆E,g,t(G,G′) 6 0.

In the next lemma we provide an upper bound on the size of a smallest progressive
representative of any equivalence class of ∼E,g,t,G .

I Lemma 11. [?] Let G be a graph class whose membership can be expressed in MSO logic.
For any encoder E, any function g : N → N, and any t ∈ N such that ∼E,g,t,G is DP-
friendly, every equivalence class of ∼E,g,t,G has a progressive representative of size at most
b(E , g, t,G) := 2r(E,g,t,G)+1 · t, where r(E , g, t,G) is the function defined in Lemma 7.

The next lemma states that if one is given an upper bound on the size of the progressive
representatives of an equivalence relation defined on t-protrusions (that is, on graphs in
Ft)3, then a small progressive representative of a t-protrusion can be explicitly calculated
in linear time. In other words, it provides a generic and constructive way to perform a
dynamic programming procedure to replace protrusions, without needing to deal with the
particularities of each encoder in order to compute the tables. Its proof uses some ideas
taken from [3,9].

I Lemma 12. [?] Let G be a graph class, let E be an encoder, let g : N→ N, and let t ∈ N
such that ∼E,g,t,G is DP-friendly. Assume that we are given an upper bound b on the size
of a smallest progressive representative of any equivalence class of ∼E,g,t,G. Then, given
an n-vertex t-protrusion G, we can output in time O(n) a t-protrusion H of size at most
b such that G ∼E,g,t,G H and the corresponding transposition constant ∆E,g,t(H,G) with
∆E,g,t(H,G) 6 0, where the constant in the “O” notation depends only on E , g, b,G, and t.

2.3 Explicit protrusion replacer
We are now ready to piece everything together and state our main technical result, which
can be interpreted as a generic constructive way of performing protrusion replacement with
explicit size bounds. For our algorithms to be fully constructive, we restrict G to be the class
of graphs that exclude some fixed graph H as a (topological) minor.

I Theorem 13. Let H be a fixed graph and let G be the class of graphs that exclude H as a
(topological) minor. Let Π be a vertex-certifiable parameterized graph problem defined on G,
and suppose that we are given a Π-encoder E, a function g : N→ N, and an integer t ∈ N
such that ∼E,g,t,G is DP-friendly. Then, given an input graph (G, k) and a t-protrusion Y in
G, we can compute in time O(|Y |) an equivalent instance ((G− (Y − ∂(Y)))⊕ Y ′, k′), where
k′ 6 k and Y ′ is a t-protrusion with |Y ′| 6 b(E , g, t,G), where b(E , g, t,G) is the function
defined in Lemma 11.

Proof. By Lemma 7, the number of equivalence classes of the equivalence relation ∼E,g,t,G is
finite, and by Lemma 11 the size of a smallest progressive representative of any equivalence
class of ∼E,g,t,G is at most b(E , g, t,G). Therefore, we can apply Lemma 12 and deduce that, in
time O(|Y |), we can find a t-protrusion Y ′ of size at most b(E , g, t,G) such that Y ∼E,g,t,G Y

′,
and the corresponding transposition constant ∆E,g,t(Y ′, Y) with ∆E,g,t(Y ′, Y) 6 0. Since E
is a Π-encoder and ∼E,g,t,G is DP-friendly, it follows from Lemma 9 that Y ≡Π,t Y

′ and that

3 Note that we slightly abuse notation when identifying t-protrusions and graphs in Ft, as protrusions
are defined as subsets of vertices of a graph. Nevertheless, this will not cause any confusion.

STACS’14

320 Explicit Linear Kernels via Dynamic Programming

∆Π,t(Y ′, Y) = ∆E,g,t(Y ′, Y) 6 0. Therefore, if we set k′ := k + ∆Π,t(Y ′, Y), it follows that
(G, k) and ((G− (Y − ∂(Y))) oplusY ′, k′) are indeed equivalent instances of Π with k′ 6 k

and |Y ′| 6 b(E , g, t,G). J

The general recipe to use our framework on a parameterized problem Π defined on a
class of graphs G is as follows: one has just to define the tables to solve Π via dynamic
programming on graphs of bounded treewidth (that is, the encoder E and the function g),
check that E is a Π-encoder and that ∼E,g,t,G is DP-friendly, and then Theorem 13 provides a
linear-time algorithm that replaces large protrusions with graphs whose size is bounded by an
explicit constant, and that updates the parameter of Π accordingly. This protrusion replacer
can then be used, for instance, whenever one is able to find a linear protrusion decomposition
of the input graphs of Π on some sparse graph class G. In particular, Theorem 13 yields the
following corollary.

I Corollary 14. Let H be a fixed graph, and let G be the class of graphs that exclude H
as a (topological) minor. Let Π be a vertex-certifiable parameterized graph problem on G,
and suppose that we are given a Π-encoder E, a function g : N→ N, and an integer t ∈ N
such that ∼E,g,t,G is DP-friendly. Then, given an instance (G, k) of Π together with an
(α · k, t)-protrusion decomposition of G, we can construct a linear kernel for Π of size at most
(1 + b(E , g, t,G)) · α · k, where b(E , g, t,G) is the function defined in Lemma 11.

Proof. For 1 6 i 6 `, we apply the polynomial-time algorithm given by Theorem 13 to
replace each t-protrusion Yi with a graph Y ′i of size at most b(E , g, t,G), and to update
the parameter accordingly. In this way we obtain an equivalent instance (G′, k′) such that
G′ ∈ G, k′ 6 k, and |V (G′)| 6 |Y0|+ ` · b(E , g, t,G) 6 (1 + b(E , g, t,G))α · k . J

Notice that once we fix the problem Π and the class of graphs G where Corollary 14 is
applied, a kernel of size c · k can be derived with a concrete upper bound for the value of c.
Notice that such a bound depends on the problem Π and the excluded (topological) minor H.
In general, the bound can be quite big as it depends on the bound of Lemma 11, and this,
in turn, depends on the bound of Lemma 7. However, as we see in the next section, more
moderate estimations can be extracted for particular families of parameterized problems.

3 Application to concrete problems

In this section we demonstrate the applicability of our framework by providing linear kernels
for several problems on graphs excluding a fixed graph as a (topological) minor. Due to
space limitations, we focus here on r-Dominating Set and Planar-F-Deletion. The
linear kernel for r-Scattered Set can be found in [10].

The following result will be fundamental in order to find linear protrusion decompositions
when a treewidth-modulator X of the input graph G is given, with |X| = O(k). It is a
consequence of [14, Lemma 3, Proposition 1, and Theorem 1].

I Theorem 15 (Kim et al. [14]). Let c, t be two positive integers, let H be an h-vertex
graph, let G be an n-vertex H-topological-minor-free graph, and let k be a positive integer
(typically corresponding to the parameter of a parameterized problem). If we are given a set
X ⊆ V (G) with |X| 6 c · k such that tw(G−X) 6 t, then we can compute in time O(n) an
((αH · t · c) · k, 2t+ h)-protrusion decomposition of G, where αH is a constant depending only
on H, which is upper-bounded by 40h225h log h.

V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 321

As mentioned in Subsection 2.2, if G is a graph class whose membership can be expressed
in MSO logic, then ∼G,t has a finite number of equivalence classes, namely rG,t. In our
applications, we will be only concerned with families of graphs G that exclude some fixed
h-vertex graph H as a (topological) minor. In this case, using standard dynamic programming
techniques, it can be shown that rG,t 6 2t log t · ht · 2h2 . The details can be found in [10].

An explicit linear kernel for r-Dominating Set. Let r > 1 be a fixed integer. We define
the r-Dominating Set problem as follows.

r-Dominating Set
Instance: A graph G = (V, E) and a non-negative integer k.

Parameter: The integer k.
Question: Does G have a set S ⊆ V with |S| 6 k and such that every vertex

in V \ S is within distance at most r from some vertex in S?

For r = 1, the r-Dominating Set problem corresponds to Dominating Set. Our encoder
for r-Dominating Set is strongly inspired by the work of Demaine et al. [5], and it generalizes
to one given for Dominating Set in the running example of Section 2. It can be found
in [10], and we call it ErDS = (CrDS, LCrDS).

I Lemma 16. [?] The encoder ErDS is a rDS-encoder. Furthermore, if G is an arbitrary
class of graphs and g(t) = t, then the equivalence relation ∼ErDS,g,t,G is DP-friendly.

We now proceed to construct a linear kernel for r-Dominating Set when the input
graph excludes a fixed apex graph H as a minor. Toward this end, the following theorem will
play an important role. It follows mainly from the results of Fomin et al. [9], but also uses the
explicit combinatorial bound of Kawarabayashi and Kobayashi [12] on the relation between
the treewidth and the largest grid minor on H-minor-free graphs, and the algorithmic results
of Kawarabayashi and Reed [13] in order to obtain the claimed set X.

I Theorem 17 (Fomin et al. [9]). Let r > 1 be an integer, let H be an h-vertex apex graph,
and let rDSH be the restriction of the r-Dominating Set problem to input graphs which
exclude H as a minor. If (G, k) ∈ rDSH , then there exists a set X ⊆ V (G) such that
|X| = r · 2O(h log h) · k and tw(G−X) = r · 2O(h log h). Moreover, given an instance (G, k) of
rDSH with |V (G)| = n, there is an algorithm running in time O(n3) that either finds such a
set X or correctly reports that (G, k) is a No-instance.

We are now ready to present the linear kernel for r-Dominating Set.

I Theorem 18. Let r > 1 be an integer, let H be an h-vertex apex graph, and let rDSH

be the restriction of the r-Dominating Set problem to input graphs which exclude H as a
minor. Then rDSH admits a constructive linear kernel of size at most f(r, h) · k, where f is
an explicit function depending only on r and h, defined in Equation (6) below.

Proof. Given an instance (G, k) of rDSH , we run the cubic algorithm given by Theorem 17
to either conclude that (G, k) is a No-instance or to find a set X ⊆ V (G) such that
|X| = r · 2O(h log h) · k and tw(G − X) = r · 2O(h log h). In the latter case, we use the
set X as input to the algorithm given by Theorem 15, which outputs in linear time a
(r2 · 2O(h log h) · k, r · 2O(h log h))-protrusion decomposition of G. We now consider the encoder
ErDS = (CrDS, LCrDS) defined in [10]. By Lemma 16, ErDS is an rDS-encoder and ∼ErDS,g,t,G
is DP-friendly, where G is the class of H-minor-free graphs and g(t) = t. It can be proved

STACS’14

322 Explicit Linear Kernels via Dynamic Programming

that sErDS(t) 6 (2r + 1)t (see [10]). Therefore, we are in position to apply Corollary 14 and
obtain a linear kernel for rDSH of size at most

r2 · 2O(h log h) · b
(
ErDS, g, r · 2O(h log h),G

)
· k , (6)

where b
(
ErDS, g, r · 2O(h log h),G

)
is the function defined in Lemma 11. J

It can be easily checked that the multiplicative constant involved in the upper bound

of Equation (6) is 222r·log r·2O(h·log h)

, that is, it depends triple-exponentially on the integer r.

An explicit linear kernel for Planar-F-Deletion. Let F be a finite set of graphs. We define
the F-Deletion problem as follows.
F-Deletion

Instance: A graph G and a non-negative integer k.
Parameter: The integer k.

Question: Does G have a set S ⊆ V (G) such that |S| 6 k

and G− S is H-minor-free for every H ∈ F?

When all the graphs in F are connected, the corresponding problem is called Connected-
F-Deletion, and when F contains at least one planar graph, we call it Planar-F-Deletion.
When both conditions are satisfied, the problem is called Connected-Planar-F-Deletion.
Note that Connected-Planar-F-Deletion encompasses, in particular, Vertex Cover
and Feedback Vertex Set. We obtain a linear kernel for the problem using two different
approaches. The first one follows the same scheme as the one used so far, that is, we first
find a treewidth-modulator X in polynomial time, and then we use this set X as input to
the algorithm of Theorem 15 to find a linear protrusion decomposition of the input graph.
In order to find the treewidth-modulator X, we need that the input graph G excludes a
fixed graph H as a minor. With our second approach, that can be found in [10], we obtain
a linear kernel on the larger class of graphs that exclude a fixed graph H as a topological
minor. We provide two variants of this second approach. One possibility is to use the
randomized constant-factor approximation for Planar-F-Deletion by Fomin et al. [8] as
treewidth-modulator, which yields a randomized linear kernel that can be found in uniform
polynomial time. The second possibility consists in arguing just about the existence of a
linear protrusion decomposition in Yes-instances, and then greedily finding large protrusions
to be reduced by the protrusion replacer of Theorem 13. This yields a deterministic linear
kernel that can be found in time nf(H,F), where f is a function depending on H and F .

Our encoder for the F-Deletion problem (see [10]) uses the dynamic programming
machinery developed by Adler et al. [1]. We prove that this encoder is indeed an F-Deletion-
encoder and that the corresponding equivalence relation is DP-friendly, under the constraint
that all the graphs in F are connected. Interestingly, this phenomenon concerning the
connectivity seems to be in strong connection with the fact that the F-Deletion problem
has FII if all the graphs in F are connected [3, 8], but for some families F containing
disconnected graphs, F-Deletion has not FII (see [14] for an example of such family).

I Theorem 19. [?] Let F be a finite set of connected graphs containing at least one r-vertex
planar graph F , let H be an h-vertex graph, and let CPFDH be the restriction of the
Connected-Planar-F-Deletion problem to input graphs which exclude H as a minor.
Then CPFDH admits a constructive linear kernel of size at most f(r, h) · k, where f is an
explicit function depending only on r and h, which can be found in [10].

V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 323

4 Further research

The methodology for performing explicit protrusion replacement via dynamic programming
that we have presented is quite general, and it could also be used to obtain polynomial
kernels (not necessarily linear). We have restricted ourselves to vertex-certifiable problems,
but is seems plausible that our approach could be also extended to edge-certifiable problems
or to problems on directed graphs.

The linear kernel for Planar-F-Deletion requires that all graphs in the family F
are connected. It would be interesting to get rid of this assumption. All the applications
examined in this paper concerned parameterized problems tuned by a secondary parameter,
i.e., r for the case of r-Dominating Set and r-Scattered Set and the size of the graphs
in F for the case of F -Deletion. In all kernels derived for these problems, the dependency
on this secondary parameter is triple-exponential, while the dependency on the choice
of the excluded graph H is one exponent higher. Improving these dependencies on the
“meta-parameters” is worth being investigated, as well as examining to what extent this
exponential dependency is unavoidable under some assumptions based on automata theory
or (parameterized) complexity theory.

References
1 Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and Dimitrios M. Thilikos.

Faster parameterized algorithms for minor containment. Theoretical Comput. Science,
412(50):7018–7028, 2011.

2 J. Alber, M.R. Fellows, and R. Niedermeier. Polynomial-Time Data Reduction for Domin-
ating Set. Journal of the ACM, 51(3):363–384, 2004.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. In Proc. of the 50th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 629–638. IEEE Computer Society, 2009.

4 Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Information and Computation, 85(1):12–75, 1990.

5 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs.
ACM Transactions on Algorithms, 1(1):33–47, 2005.

6 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
7 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer Verlag, 2006.
8 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-

Deletion: Approximation, Kernelization and Optimal FPT Algorithms. In Proc. of the
53rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 470–479, 2012.

9 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proc. of the 21st ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 503–510. SIAM, 2010.

10 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
lernels via dynamic programming. CoRR, abs/1312.6585, 2013.

11 Jiong Guo and Rolf Niedermeier. Linear problem kernels for NP-hard problems on planar
graphs. In Proc. of the 34th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 4596 of LNCS, pages 375–386, 2007.

12 Ken ichi Kawarabayashi and Yusuke Kobayashi. Linear min-max relation between the
treewidth of H-minor-free graphs and its largest grid. In Proc. of the 29th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 14 of LIPIcs,
pages 278–289, 2012.

STACS’14

324 Explicit Linear Kernels via Dynamic Programming

13 Ken ichi Kawarabayashi and Bruce Reed. A Separator Theorem in Minor-Closed Classes.
In Proc. of the 51st IEEE Symposium on Foundations of Computer Science (FOCS), pages
153–162. IEEE Computer Society, 2010.

14 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. In Proc. of the 40th International Colloquium on Automata, Languages
and Programming (ICALP), volume 7965 of LNCS, pages 613–624, 2013.

Partition Expanders∗

Dmitry Gavinsky and Pavel Pudlák

Institute of Mathematics, Academy of Sciences, Prague, Czech Republic
dmitry.gavinsky@gmail.com, pudlak@math.cas.cz

Abstract
We introduce a new concept, which we call partition expanders. The basic idea is to study
quantitative properties of graphs in a slightly different way than it is in the standard definition
of expanders. While in the definition of expanders it is required that the number of edges
between any pair of sufficiently large sets is close to the expected number, we consider partitions
and require this condition only for most of the pairs of blocks. As a result, the blocks can be
substantially smaller.

We show that for some range of parameters, to be a partition expander a random graph
needs exponentially smaller degree than any expander would require in order to achieve similar
expanding properties.

We apply the concept of partition expanders in communication complexity. First, we give a
PRG for the SMP model of the optimal seed length, n+Olog k. Second, we compare the model
of SMP to that of Simultaneous Two-Way Communication, and give a new separation that is
stronger both qualitatively and quantitatively than the previously known ones.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases partitions, expanders, communication, complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.325

1 Introduction

Expanders are a very interesting and useful concept and appear in many applications in
computer science. Therefore several related concepts have been introduced; e.g., lossless
expanders [6], monotone expanders and dimension expanders [7], superexpanders [13].

In this paper we introduce yet another concept that we call partition expanders. The
definition is motivated by the following observation. The well-known Expander-Mixing
Lemma says, roughly speaking, that for every two sufficiently big sets of vertices A and B
the number of edges of the expander between A and B is close to d

n · |A| · |B|, where n is the
number of vertices and d is the degree. If we want to apply this lemma to smaller sets, we
have to increase the degree of expanders appropriately.

Now suppose we have a partition of the vertices of the graph and we only want to satisfy
the density condition for most of the pairs of sets. It turns out that a random graph with
relatively small degree is able to satisfy this condition for partitions with many blocks,
although the Expander-Mixing Lemma is not able to give any interesting estimate. So while
expanders are graphs with “typical connectivity” with respect to subsets of vertices, partition
expanders have “typical connectivity” with respect to partitions of vertices. Informally
speaking, in the context of expanders, partitions are “more structured” objects than subsets,
and therefore demanding the same “expanding performance” with respect to partitions can be

∗ Partially funded by the grant P202/12/G061 of GA ČR and by RVO: 67985840.

© Dmitry Gavinsky and Pavel Pudlák;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 325–336

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.325
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

326 Partition Expanders

viewed as a relaxation of usual expanders. In return, we expect partition expanders to have
considerably smaller degree than usual expanders with the same expanding performance.

There are several possible ways to formally define a partition expander. We choose the
following definition as “canonical” due to its brevity and robustness. We will give alternative
definitions shortly.

I Definition 1. Partition expanders Let G = (V,E) be an (undirected) graph. Let µ be
the uniform distribution over V × V , and let µG be the uniform distribution over E. For
any coloring c : V → [K], let νc and νcG be the distributions of the pair (c(v1), c(v2)) when
(v1, v2) is chosen according to µ or µG, respectively.

For K ∈ N and δ ∈ (0, 1), we say that G is a (K, δ)-partition expander if for every coloring
c : V → [K] the statistical distance between νc and νcG is at most δ.

It should be noted that this concept is interesting in the situations where the number K
of partitions is increasing with the number of vertices and the graphs are d-regular with d
increasing. We are mainly interested in the question of how small d can be for a given K,
assuming 0 < δ < 1 is a fixed constant.

1.1 Our results
We start by giving several equivalent definitions of partition expanders, which emphasize the
fact that they are a natural modification of usual expanders.

In Section 3 we analyze the behavior of random graphs as partition expanders. We prove
that random d-regular graphs almost always are good partition expanders – the dependence
of K on d is the best possible, namely exponential.

In Section 4 the notion of partition expanders is advocated through comparing it to
expanders. We show that the gap between the absolute values of the first two eigenvalues
does not ensure that the graph is a good partition expander. Namely, if only the spectral
gap is taken into account when a partition expander is constructed, then the degree has to
be exponentially larger than an optimal partition expander requires. Since the spectral gap
characterizes almost tightly the expander properties of a graph, this demonstrates exponential
advantage of partition expanders (in those scenarios when they are suitable) over expanders.
In other words, if “partition expansion” is the desired behavior, then using an expander
instead of an optimal partition expander would incur exponential loss in terms of the required
degree.

Based on the spectral properties only, we use the Hoffman-Wielandt inequality and get
a slightly better bound than what would follow from a direct application of the Expander-
Mixing Lemma.1 The fact that the spectral gap is incapable to characterize good partition
expanders partially explains why new methods are required for their construction.

In Section 5 we present another equivalent definition of partition expanders. We show
that a graph G = (V,E) is a partition expander if and only if the uniform distribution over
E is a Pseudo-Random Generator (PRG) in the setting of Simultaneous Message Passing
(SMP) in communication complexity. We use this fact to give a lower bound on the degree
of partition expanders, thus showing optimality of the randomized construction given in
Section 3.

In the second part of Section 5 we show two applications of our randomized construction
of a partition expander. First, we construct a PRG against SMP protocols of communication

1 We get quadratic improvement in terms of the partition size, and show that it is essentially optimal
general bound in terms of the spectral gap alone.

D. Gavinsky and P. Pudlák 327

cost k that requires seed length n+O(log k) (see Theorem 15 and the comment thereafter).2
Second, we compare the model of SMP to that of Simultaneous Two-Way Communication,
and give a new separation that is stronger both qualitatively and quantitatively than the
previously known ones (see Theorem 19).

2 Notation and more

Unless stated otherwise, all sets are assumed to be finite, and all graphs are undirected
and simple (having no self loops or multiple edges).3 For two subsets S1, S2 ⊆ V , we
denote by E(S1, S2) the set of ordered pairs (v1, v2) such that (v1, v2) is an edge in E,
v1 ∈ S1 and v2 ∈ S2, and write E(v1, v2) for E({v1} , {v2}).4 We will say that a set family
σ = {C1, . . . , CK} is a K-partition of a set X if ∪Ki=1Ci = X and C1, . . . , CK are pairwise
disjoint and nonempty.

The statistical distance between two distributions µ1 and µ2 defined over a set X is

dst(µ1, µ2) def= 1
2
∑
x∈X
|µ1(x)− µ2(x)| .

I Lemma 2. Let K ∈ N and δ ∈ R. The following statements are equivalent:
1. G = (V,E) is a (K, δ)-partition expander.
2. For every K-partition σ = {C1, . . . , CK} of V ,

δ ≥ 1
2
∑

i,j∈[K]

∣∣∣∣∣ |E(Ci, Cj)|
|E|

− |Ci| · |Cj |
|V |2

∣∣∣∣∣ . (1)

3. For every K-partition σ and S ⊆ [K]× [K],

δ ≥
∑

(i,j)∈S

(
|E(Ci, Cj)|
|E|

− |Ci| · |Cj |
|V |2

)
=
∑
S |E(Ci, Cj)|
|E|

−
∑
S |Ci| · |Cj |
|V |2

. (2)

4. Like 0c, but only over symmetric S (i.e., (i, j) ∈ S ⇔ (j, i) ∈ S).

Proof. Equivalence between 0a and 0b is immediate from Definition 1. Equivalence between
0c and 0d follows from the fact that G is undirected. To see that 0b is equivalent to 0c, note
that

∑
i,j∈[K]

(
|E(Ci, Cj)|
|E|

− |Ci| · |Cj |
|V |2

)
=
∑

[K]×[K] |E(Ci, Cj)|
|E|

−
∑

[K]×[K] |Ci| · |Cj |

|V |2
= 0.

J

There are many possible ways to define expanders. The standard definition is based
on the second largest absolute value of an eigenvalue of a graph G, which we will denote
by λ(G).

2 All previously known PRGs in communication complexity were given against stronger models, thus
requiring exponentially larger “overhead” over n in terms of seed length – for details, see Section 5.

3 In those cases when we explicitly allow multiple edges, the edges of a graph will be viewed as a collection
with repetitions.

4 Note that if v1, v2 ∈ S1 ∩ S2, then the edge (v1, v2) appears in E(S1, S2) twice: as ordered pairs (v1, v2)
and (v2, v1).

STACS’14

328 Partition Expanders

I Definition 3 (Expanders). A regular graph G is an `-expander if λ(G) ≤ `.

We will denote the degree of a regular graph G by d(G), or simply by d when G is clear
from the context.

The most natural relation between expanders and partition expanders comes from the
following well-known fact (e.g., see [2]).

I Lemma 4 (Expander-Mixing Lemma). Let (V,E) be an `-expander. Then for every S1, S2 ⊆
V , ∣∣∣∣∣ |E(S1, S2)|

|E|
− |S1| · |S2|

|V |2

∣∣∣∣∣ ≤ ` ·
√
|S1| · |S2|
|E|

= `

d
·
√
|S1| · |S2|
|V |

.

One can show using this lemma that an `-expander is a (K, δ)-partition expander for
constant δ > 0 and certain K ∈ Θ(d/`) – however, this trivial arguments fails for K ≥ d/`.
In Section 4 we will use the Hoffman-Wielandt inequality to show that an `-expander is
a (K,Ω(1))-partition expander for certain K ∈ Θ

(
(d/`)2), and that will be shown to be

optimal up to the factor of logn.

I Theorem 5 (Hoffman-Wielandt inequality [9]). If A and B are normal matrices with
respective eigenvalues λ1(A), . . . , λn(A) and λ1(B), . . . , λn(B), then

min
π

{
n∑
i=1

∣∣λi(A)− λπ(i)(B)
∣∣2} ≤ ‖A−B‖2F ,

where π runs over all permutations over [n] and ‖ . . . ‖2F denotes the square of the Frobenius
norm (the sum of squares of the absolute values of the elements).

If A and B are symmetric real matrices, we can drop the absolute value and write the
terms as λi(A)2 + λπ(i)(B)2 − 2λi(A)λπ(i)(B). Since the sum of the squares of eigenvalues of
a matrix is the square of its Frobenius norm, the inequality is equivalent to∑

i,j

aijbij ≤ max
π

{
n∑
i=1

λi(A)λπ(i)(B)
}
. (3)

Let d, n ∈ N be such that 2|dn, denote by Gn,d the uniform distribution on d-regular
(simple undirected) graphs on n vertices. In our analysis we will use the pairing method for
generating G ∼ Gn,d, due to Bollobás [5] (also see [14]).

I Lemma 6 (Pairing method [5]). The following procedure generates E ⊆ [n]× [n] such that
G = ([n], E) ∼ Gn,d.
1. Let π ⊂ [nd]×[nd] be a uniformly random perfect matching on [nd] (viewed as a symmetric

set of directed edges). For i ∈ [n], let celli
def= {x | id− d < x ≤ id} and dπ(v1, v2) def=

|π(cellv1 , cellv2)|.
2. For every (v1, v2) ∈ [n]× [n], let (v1, v2) be dπ(v1, v2) times an element of E.
3. Return to Step 0a if G = ([n], E) is not simple.

In the analysis we will consider the distribution of ([n], E) resulting from dropping Step 0c
off the above procedure; let us denote it by G′n,d. Observe that a graph G ∼ G′n,d is always
undirected, but doesn’t have to be simple.5

We will use the following estimate, due to McKay and Wormald [12]:

5 Note also that the distribution G′
n,d is not uniform over its support - e.g., G′

2,2 produces the graph with
two parallel edges with probability 2/3.

D. Gavinsky and P. Pudlák 329

I Lemma 7 ([12]). For d ∈ o(
√
n),

Pr
G∼G′

n,d

[G is simple] ∈ exp
(

1− d2

4 − d3

12n +O

(
d2

n

))
⊆ exp(o(n)).

3 Random d-regular graphs as partition expanders

Let us see that a random regular graph is likely to form a partition expander.

I Theorem 8. For d ∈ O
(
n1/3), a random d-regular simple undirected graph on n vertices

is a (K, δ)-partition expander with probability at least 1− exp
(
n logK +K2 − Ω

(
δ2nd

))
.

The proof can be found in the full version of the paper.

I Corollary 9. For any ε > 0 and B ∈ N there exists C ∈ N, such that the following holds:
A random d-regular graph on n vertices is a (K, δ)-partition expander with probability at least
1− ε, as long as K ≤ B ·

√
n and d ≥ C·logK

δ2 .

4 Partition expanders vs. expanders

Let us compare the notions of expanders and partition expanders in more detail.

I Theorem 10. Let G be a d-regular `-expander on n vertices. Then it is a (K,
√
K`/d)-

partition expander for every K < d2/`2.

The proof is based on the Hoffman-Wielandt inequality and can be found in the full
version of the paper.

Note that the Expander-Mixing Lemma (Lemma 4) only gives that G is a (K, δ) partition
expander for δ = O(K`/d), which is meaningful only forK < d/`. The statement of the above
theorem is essentially tight (cf. Theorem 12), and this means that only small (quadratic,
in terms of K vs. d) improvement can result from using partition expanders instead of
expanders, as long as the construction of a partition expanders relies on the spectral gap. On
the other hand, we will see soon that good partition expanders offer exponential improvement
in terms of the dependence of K on d.

Now we will show that the above bound is essentially optimal, and therefore, in general
expanders are not good partition expanders. We will use the following result of Alon and
Roichman [1]. (For a simpler proof, and an explicit and better bound, see [11].)

I Theorem 11 ([1, 11]). There exists an absolute constant c such that for every finite group
Γ and any d ≤ |Γ|, the following is true. If we pick uniformly at random the elements
g1, . . . , gd ∈ Γ, then the resulting Cayley-graph has the second largest eigenvalue λ satisfying

λ ≤ c ·
√
d log |Γ|

with probability going to 1 as |Γ| → ∞.

This theorem is not stated explicitly in those papers, but it is an immediate corollary of
Theorem 2 of [11]. (One can take any constant c such that c > 2 ln 2.)

Let m > 0 be a natural number and let Γ be the symmetric group on m elements
represented by permutations of [m]. Let π1, . . . , πd be some permutations for which the
bound on the eigenvalue is satisfied. W.l.o.g. we will assume that for every i ∈ [d] there is a
j ∈ [d] such that πj = π−1

i . Let G be the Cayley graph determined by Γ and π1, . . . , πd.

STACS’14

330 Partition Expanders

Let 1 ≤ t ≤ m. We will consider the partition {C1, . . . , CK} defined by the following
equivalence relation on G

ρ|[t] = σ|[t],

where ρ, σ ∈ G are permutations and |[t] denote their restriction to the first t elements. Thus
the number of blocks is K = m(m− 1) . . . (m− t+ 1). Consider the symmetric set S defined
by

(i, j) ∈ S ≡ ∃ρ ∈ Ci, σ ∈ Cj ∃s ∈ [d] ρ|[t] = πsσ|[t] . (4)

Note that if for some i and j the condition is satisfied by some s = s0, then for all
ρ ∈ Ci, σ ∈ Cj , we have ρ|[t] = πs0σ|[t].

Consider the equation (2) that defines partition expanders. The first term is in our case
equal to 1. To bound the second term, note that for a given s ∈ [d] the number of pairs ρ, σ
satisfying the condition ρ|[t] = π`σ|[t] is m!(m− t)!. Hence the second term is bounded by

d ·m!(m− t)!
(m!)2 = d

m(m− 1) . . . (m− t+ 1) = d

K
.

This proves that if d/K < 1− δ, then G is not a (K, δ)-partition expander.
Thus we have proved:

I Theorem 12. There exist a constant c such that for infinitely many n and every d ≤ n,
there are d-regular c

√
d logn-expanders on n vertices which are not (K, 1− d+1

K)-partition
expanders.

Comparing this statement to the bound given by Theorem 10 in the most natural regime
when a (K, 1 − Ω(1))-partition expander is required, we can see that the upper and the
lower bounds match up to the factor of logn in the spectral gap. In particular, since the
second eigenvalue of a graph is always Ω

(√
d
)
, K can be at most linear in d, as long as

our only assumption about G is the absolute value of its second eigenvalue. In contrast to
this, according to Corollary 9, there exist (K, 1− Ω(1)) partition expanders whose degree is
O(logK). Thus any construction of such partition expanders must rely on some properties
of G, other than the spectral gap.

5 Partition expanders as PRGs in communication complexity

Let us turn to the realm of communication complexity, where we give an equivalent formulation
of partition expanders. First, we use this equivalence to give a nearly-tight lower bound
on the degree of good partition expanders, thus arguing near-optimality of the randomized
construction given in Section 3. Second, we use the same construction to obtain a new
separation between two models of communication complexity, which is qualitatively stronger
than the previously known one.

We will use the following models of two-party communication complexity.

I Definition 13 (Models of communication complexity). Two players whose names are Alice
and Bob each receive a binary string of length n, respectively denoted by x and y. Players’
goal is to compute the value of f(x, y), where f : {0, 1}n × {0, 1}n → {0, 1} is fixed. The
players obey the following scenario:

D. Gavinsky and P. Pudlák 331

In the model of Simultaneous Message Passing (SMP), denoted by R‖, both Alice and
Bob send a message to the third participant, the referee. The referee does not know the
values of x and y, so his only input are the messages received from the players, and he
has to produce the answer using the information received from the players. All three
participants are allowed to use private randomness.
The model of SMP with shared randomness, denoted by R‖,pub, is similar to R‖ but the
players are allowed to use public randomness.6
In the model of One-Way Communication, denoted by R1 , Alice sends her message to
Bob, who has to produce the answer using his part of the input and the information
received from Alice.
In the model of Simultaneous Two-Way Communication, denoted by R↔, Alice and Bob
send their messages simultaneously, similarly to the case of SMP. But here the recipient
of Alice’s message is Bob, and the recipient of Bob’s message is Alice. Upon receiving
the partner’s message, each player must produce an answer.

We say that a communication protocol solves the problem represented by f if it produces
the correct answer(s) with probability at least 2/3 for every possible input. The communic-
ation cost of a protocol is the maximal total number of bits sent by the players, and the
communication cost of a function f is the minimal communication cost of a protocol that
solves it in the given model.

The models R‖, R‖,pub and R1 have been studied widely and the corresponding notation
is commonly used; the Simultaneous Two-Way model has been considered in several works
(see below), but no specific name was assigned to it. Note that when we say that an R↔-
protocol has produced the answer “a”, we refer to the situation when both the players have
produced the same answer.

I Definition 14 (Pseudo-randomness in communication complexity). LetM be a communica-
tion complexity model, and let µ be a distribution defined over {0, 1}n × {0, 1}n. We say
that µ is k-pseudo-random forM if for any protocol P of communication cost at most k it
holds that

Pr
(X,Y)∼µ

[P(X,Y) outputs “1”]− Pr
(X,Y)∼U{0,1}n×{0,1}n

[P(X,Y) outputs “1”] < 1
3 .

We say that g : {0, 1}s → {0, 1}n × {0, 1}n is a k-Pseudo-Random Generator (k-PRG) of
seed length s againstM if the distribution of g(X) when X ∼ U{0,1}s is k-pseudo-random
forM.

Pseudo-randomness in the context of communication complexity has been introduced in
[10]. Intuitively, both pseudo-randomness and lower bounds on communication cost can be
viewed as claims that certain problem is hard for the model under consideration.

Given a d-regular graph G = ({0, 1}n , E), let µG be the uniformly random distribution
of the edges from E. Note that in order to choose (v1, v2) ∼ µG, a “seed” of length n+ log d
is both necessary and sufficient.

I Theorem 15. Let k, n ∈ N and G = ({0, 1}n , E). The following statements are equivalent:
1. G is a (2Θ(k), δ)-partition expander for some δ < 1/3.
2. µG is Θ(k)-pseudo-random for R‖.

6 Note that in the communication complexity setting Alice and Bob collaborate, and therefore availability
of public randomness is equivalent to players’ ability to use mixed strategies.

STACS’14

332 Partition Expanders

In particular, our construction in Section 3 corresponds to a k-PRG against R‖ of seed
length n+O(log k). Note that due to the fact that in the context of communication complexity
the players are computationally unlimited, a randomized construction of a PRG is neither
meaningless nor trivial.7

Proof. Let C be a constant. First, suppose that G is a (2Ck, δ)-partition expander. Let P
be an R‖-protocol of cost at most Ck, and let us show that it cannot distinguish with high
confidence µG from U{0,1}n×{0,1}n . Without loss of generality assume that P is deterministic,
and let α : {0, 1}n → {0, 1}Ck be the mapping from x to the concatenation of Alice’s and
Bob’s messages in response to the input (x, x). Let νU and νG be the distributions of
(α(X), α(Y)) when, respectively, (X,Y) ∼ U{0,1}n×{0,1}n and (X,Y) ∼ µG. Clearly,

Pr
(X,Y)∼µG

[P(X,Y) outputs “1”]− Pr
(X,Y)∼U{0,1}n×{0,1}n

[P(X,Y) outputs “1”] ≤ dst(νG, νU).

Note that α defines a partition of {0, 1}n into at most 2Ck blocks, and by the definition of
partition expanders,

dst(νG, νU) ≤ δ < 1/3.

Therefore, µG “fools” P and thus it is Ck-pseudo-random for R‖.
Now assume that µG is 2Ck-pseudo-random for R‖, and let us show that G is a partition

expander. Let σ = {S1, . . . , S2Ck} be a partition of {0, 1}n, and for x ∈ {0, 1}n, define
σ(x) def= i for i such that x ∈ Si. Let Pσ be an R‖-protocol, where upon receiving input
(X,Y), Alice sends σ(X) and Bob sends σ(Y). Let τU and τG be the distributions of
(σ(X), σ(Y)) when, respectively, (X,Y) ∼ U{0,1}n×{0,1}n and (X,Y) ∼ µG. Note that Pσ is
of cost 2Ck, and therefore

dst(τU , τG) < 1/3,

since otherwise the referee would be able to distinguish the two cases with confidence high
enough to contradict pseudo-randomness of µG. Let δ be the maximum value of dst(τU , τG)
possible under any choice of 2Ck-partition σ, then δ < 1/3 and G is a (2Ck, δ)-partition
expander, as required. J

5.1 Lower bound on the degree of partition expanders
Let us use the correspondence between partition expanders and pseudo-random generators
given by Theorem 15 in order to get a lower bound on the degree of partition expanders.

I Theorem 16. For any δ < 1/3, if a d-regular graph G is a (K, δ)-partition expander then
d ∈ Ω

(
logK

log logK

)
.

In particular, the randomized construction given in Section 3 is optimal, up to the
multiplicative log logK factor.

7 For example, the models R1 and R↔ (and more generally, any two-party model where a k-bit message
from one player reaches the other player, who also receives his own n bits of input) require seed length
at least n + k − O(1) even with a non-uniform PRG, as witnessed by the protocol where the sender
sends the first k bits of his input and the computationally-unlimited recipient outputs “1” only if the
message together with his own n bits of input have Kolmogorov complexity n + k −O(1).

D. Gavinsky and P. Pudlák 333

Proof. For convenience, let n and d be powers of 2. Let G = ([n], E), and assume it is
a (K, δ)-partition expander. On the one hand, according to Theorem 15, µG is Ω(logK)-
pseudo-random for the SMP model. On the other hand, we will see below that an SMP
protocol of cost O(d log d) can distinguish µG from the uniform distribution with error at
most 1/4, and therefore d ∈ Ω

(
logK

log logK

)
, as required.

The distinguishing protocol is as follows. When her input is v ∈ V , Alice sends to the
referee the first log d+ 2 bits of the indices of the d neighbors of v. On input u ∈ V , Bob
sends to the referee the first log d + 2 bits of the index of u. The referee guesses that the
input pair (v, u) has been drawn from the distribution µG if the index-prefix received from
Bob appears in the list of d index-prefixes received from Alice. This protocol is always correct
if the input comes from the support of µG, and errs with probability at most 1/4 when the
input comes from the uniform distribution. J

5.2 Model separations based on PRGs
Model separation in computational complexity usually means demonstrating existence of
a computational problem that can be solved efficiently in one model, but not in the other.
If several classes of problems can be handled by the models under consideration, one can
define the corresponding types of model separations. When one problem class is a special
case of another, separation via an element of the smaller class can be viewed as a stronger
indication that the compared models have different computational power than separation
via an element of the bigger class. These ideas can be pushed further, resulting in various
“hierarchies” of model separations.

In the case of communication complexity, there are at least four natural classes of
computational problems8, namely:

Total functions f : A×B → Z

Partial functions f : C → Z, C ⊆ A×B
Relations P ⊆ A×B × Z
Distinguishing some distribution µ defined on A×B from the uniform (cf. Definition 14)

Consider the four types of model separations corresponding to these four classes. We
will call the fourth type separation via a PRG. Obviously, if two communication models are
separable via a total function they are also separated via a partial function, and separability
via a partial function implies separability via a relation. On the other hand, there are pairs
of communication models that can be separated via a relation but not via a partial function
(e.g., see [8]), and there are many pairs of models that have been separated via partial
functions, but are conjectured not to be separable via total functions (e.g., most of quantum
communication models form such pairs with their natural classical counterparts). Therefore,
in communication complexity it is always desirable to separate models via the “most limited”
possible type of separation, as that gives the “strongest” possible indication of difference in
the computational power of those models.

To the best of our knowledge, separation via a PRG has not been studied in the context of
communication complexity. It is probably incomparable to the first three types of separation:
On the one hand, it is straightforward to get a separation via a PRG by modifying slightly
one of the known separations via a partial function between quantum and classical one-way

8 The same applies to many other fields of complexity, where also most of the following discussion remains
valid – e.g., in the field of circuit complexity.

STACS’14

334 Partition Expanders

models, but it is conjectured that those two models cannot be separated via a total function.
Therefore, modulo that conjecture, separation via a PRG cannot, in general, be as limited as
separation via a total function. On the other hand, the models R‖ and R‖,pub cannot be
separated via a PRG (in general, it is easy to see that for any distribution-distinguishing
task there exists an optimal protocol that does not need any randomness), but they can be
separated via a total function – e.g., the equality function. Therefore, separation via a total
function cannot, in general, be as limited as separation via a PRG.

Is there a type of model separation that would be the most limited, and therefore
separations demonstrated through it would be the most “convincing” indication of difference
in the computational power of the compared models?

Take a total Boolean function f : A×B → {0, 1}, letM be a communication complexity
model, and consider the following two claims:

No protocol inM of cost less than k can compute f .
The distributions Uf−1(0) and Uf−1(1) are k-PRGs forM.

We will say that f is k-hard forM in the first case, and that f is k-pseudo-random forM
in the second.9 If f is k-pseudo-random forM, then it is also k-hard forM; the converse is
not necessarily true, as follows from the same example of the equality function in R‖.

As usual in communication complexity, we will say that a communication problem is easy
for a given model if it can be solved by a protocol of cost (logn)O(1).

I Definition 17 (Ultra-separation). Complexity modelsM1 andM2 are ultra-separated if
there is a total Boolean function f that is easy forM1 and nΩ(1)-pseudo-random forM2.

Ultra-separation is a very limited type of model separation – in fact, the most limited
“reasonable” one we came up with.
I Claim 18. For any two models that allow efficient error reduction for total functions,
ultra-separability implies separability both via a total function and via a PRG.

Here by efficient error reduction we mean that if f can be solved efficiently, then for any
constant ε there exists an efficient protocol that solves f with error at most ε. Probably all
studied communication complexity models satisfy this very natural property.

Proof. If f is nΩ(1)-pseudo-random forM2, then it is also nΩ(1)-hard forM2, and therefore
ultra-separability implies separability via a total function.

If f is easy forM1, then the elements of f−1(1) can be distinguished from the elements
of f−1(0) with worst-case error at most 1/10 by a protocol of cost (logn)O(1). Without loss of
generality, let Pr [f(X,Y) = 1] ≤ 1/2 when (X,Y) is uniformly random. Then there exist an
efficient protocol inM1 that outputs “1” with probability at least 9/10 when (X,Y) ∼ Uf−1(1),
and with probability at most 11/20 when (X,Y) is uniformly random. So, Uf−1(1) can be
distinguished from the uniform with “bias” more than 1/3 by an efficient protocol inM1,
and thus it is not a PRG. Therefore, ultra-separability implies separability via a PRG. J

5.3 Ultra-separation of R‖,pub and R↔

We have seen that ultra-separability of two models is a stronger evidence of difference in their
computational power than separability via a function (total or partial), via a relation, or via
a PRG. We are not aware of any type of model separation that would not be subsumed by

9 Note that we required both Uf−1(0) and Uf−1(1) to be k-PRGs forM when f is k-pseudo-random in
order not to require f to be balanced; if it is balanced, either condition implies the other.

D. Gavinsky and P. Pudlák 335

ultra-separation. Therefore, it is interesting to demonstrate ultra-separations even for those
pairs of models that have been separated previously via some “less convincing” methods.

For long time, it had been believed that the models R‖,pub and R↔ were equivalent. In
2002 Bar-Yossef, Jayram, Kumar and Sivakumar [4] demonstrated a separation between
these models via a cleverly constructed total function g, for which R↔(g) ∈ O(logn) and
R‖,pub(g) ∈ Ω(

√
n). The ideas used in their construction seem to be insufficient to yield

separation via a PRG.

I Theorem 19. The models R‖,pub and R↔ can be ultra-separated. Namely, there exists a
total Boolean function f , such that R↔(f) ∈ O(logn) and Uf−1(1) cannot be distinguished
from U{0,1}n×{0,1}n by any R‖,pub-protocol of cost o(n).

The new separation is stronger not only qualitatively, but quantitatively as well – the
improvement results from the (optimal) lower bound of Ω(n) on the R‖,pub-complexity of f .

Proof. From Corollary 9 it follows that for any constant δ there exists a graph G on 2n
vertices of degree d ∈ Θ(n), which is a (2n/2, δ)-partition expander. According to Theorem 15,
the corresponding µG is Θ(n)-pseudo-random for R‖. Clearly, the same is true for µḠ, where
Ḡ is the complement graph. If we define fG : {0, 1}n × {0, 1}n → {0, 1} to be the “edge
function” of G, then it is Θ(n)-pseudo random for R‖.

Let us see that R↔(fG) ∈ O(log d) = O(logn). Consider a protocol where the players use
shared randomness10 to choose a hash function from {0, 1}n to {0, 1}2 log d, then Alice sends
the hash-value of x and Bob answers “1” if the received value equals the hash-value of one of
the neighbors of y in G, and “0” otherwise (if Bob is the sender, they act symmetrically).
This protocol has communication cost O(d) and computes fG with error o(1). The result
follows. J

6 Discussion

The most interesting open problem is to find an explicit construction of a good partition
expander; more precisely, to construct a family of (K, δ)-partition expanders in which δ < 1
is constant, K goes to infinity, and the degrees are d = O(logK). We will call informally
such families of graphs good partition expanders. As we have shown in this paper, expanders
are, in general, not good partition expanders and it seems unlikely that the property would
be implied by a property of the spectrum of a graph. One possible way of constructing
good partition expanders could be by using zig-zag product or a similar kind of product.
Indeed, in a recent paper [13] Mendel and Naor have shown that zig-zag product can be
used for constructing various types of generalizations of expanders. These constructions start
with a small object, which can be found by brute force, and which are enlarged by applying
products repeatedly. They work well when one needs constant degree, but in our case we
need increasing degree and to satisfy a certain property for partitions with exponentially
increasing number of blocks. It is not totally excluded that some kind of product will work,
but it will require a new kind of argument to prove it.

We demonstrated some applications of partition expanders in communication complexity.
In particular, we defined the notion of ultra-separation and argued that it is one of the
weakest model-separating methods, thus applying it provides a very strong (probably, the
strongest known) evidence that the two separated models have different computational power.

10The power of the model R↔ is not affected by allowing public randomness.

STACS’14

336 Partition Expanders

We gave an example of such separation. It would be interesting to find more examples of
ultra-separations, not only in communication complexity.

We believe that partition expanders will be useful in many other areas of complexity
theory, especially when explicit constructions are found. For example, one could use good
partition expanders instead of expanders in the pseudorandom generators of Impagliazzo,
Nisan and Wigderson [10], provided that an explicit construction of good partition expanders
is found. Since the number of partitions corresponds to the exponential of space complexity,
they would certainly have better parameters. This, however, requires further research,
because the direct application of partition expanders in INW generators does not seem to
give substantially better results than the use of expanders.

Acknowledgments. We thank Hartmut Klauck and anonymous reviewers for helpful com-
ments.

References
1 N. Alon and Y. Roichman. Random Cayley Graphs and Expanders. Random Structures

and Algorithms 5, pages 271–284, 1994.
2 N. Alon and J. Spencer. The Probabilistic Method. John Wiley, 2008.
3 K. Azuma. Weighted Sums of Certain Dependent Random Variables. Tohoku Mathematical

Journal 68, pages 357–367, 1967.
4 Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. Information Theory Methods

in Communication Complexity. Proceedings of 17th IEEE Conference on Computational
Complexity, pages 93–102, 2002.

5 B. Bollobás. A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled
Regular Graphs. European Journal of Combinatorics 1, pages 311–316, 1980.

6 M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness Conductors and
Constant-Degree Lossless Expanders. Proceedings of the 34th Symposium on Theory of
Computing, pages 659–668, 2002.

7 Z. Dvir and A. Wigderson. Monotone Expanders: Constructions and Applications. Theory
of Computing 6(1), pages 291–308, 2010.

8 D. Gavinsky, O. Regev, and R. de Wolf. Simultaneous Communication Protocols with
Quantum and Classical Messages. Chicago Journal of Theoretical Computer Science, 7,
2008.

9 A. J. Hoffman and H. W. Wielandt. The Variation of the Spectrum of a Normal Matrix.
Duke Mathematical Journal 20, pages 37–39, 1953.

10 R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for Network Algorithms.
Proceedings of the 26th Symposium on Theory of Computing, pages 356–364, 1994.

11 Z. Landau and A. Russell. Random Cayley Graphs are Expanders: A Simple Proof of the
Alon-Roichman Theorem. Electronic Journal of Combinatorics 11, 2004.

12 B. D. McKay and N. C. Wormald. Asymptotic Enumeration by Degree Sequence of Graphs
with Degrees o(n1/2). Combinatorica 11(4), pages 369–382, 1991.

13 M. Mendel and A. Naor. Nonlinear Spectral Calculus and Super-Expanders. Publications
mathématiques de l’IHÉS, 2013.

14 N. C. Wormald. Models of Random Regular Graphs. Surveys in Combinatorics. Lecture
Note Series 276, pages 239–298, 1999.

Testing Generalised Freeness of Words∗

Paweł Gawrychowski1, Florin Manea2, and Dirk Nowotka2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gawry@cs.uni.wroc.pl

2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik, Kiel,
Germany
{flm,dn}@informatik.uni-kiel.de

Abstract
Pseudo-repetitions are a natural generalisation of the classical notion of repetitions in sequences:
they are the repeated concatenation of a word and its encoding under a certain morphism or
antimorphism (anti-/morphism, for short). We approach the problem of deciding efficiently,
for a word w and a literal anti-/morphism f , whether w contains an instance of a given pattern
involving a variable x and its image under f , i.e., f(x). Our results generalise both the problem of
finding fixed repetitive structures (e.g., squares, cubes) inside a word and the problem of finding
palindromic structures inside a word. For instance, we can detect efficiently a factor of the form
xxRxxxR, or any other pattern of such type. We also address the problem of testing efficiently, in
the same setting, whether the word w contains an arbitrary pseudo-repetition of a given exponent.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Stringology, Pattern matching, Repetition, Pseudo-repetition

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.337

1 Introduction

A word is a repetition if it can be written as a repeated concatenation of one of its prefixes
to itself. A word w is a pseudo-repetition if it can be written as a repeated concatenation of
one of its prefixes t and its image f(t) under some morphic or antimorphic function f (for
short, an “anti-/morphism” f), thus w ∈ t{t, f(t)}+.

The concept of pseudo-repetitions (introduced in [4]) draws its original motivations from
two important biological concepts: tandem repeat, i.e., the consecutive repetition of the same
sequence of nucleotides, and the inverted repeat, i.e., a sequence of nucleotides whose reversed
complement (or, Watson-Crick complement) occurred already in the longer DNA sequence we
analyse, both occurrences (the original one and the complemented one) encoding, essentially,
the same genetic information. Noting that the Watson-Crick complement can be abstracted
as an antimorphic involution on the DNA-alphabet, pseudo-repetitions formalise generalised
tandem repeats, in which one sequence is followed by several consecutive occurrences of
either its copy or of its reversed complement.

Other situation in which one encounters pseudo-repetitions appears in musical theory.
The repetition of some fragment, in its initial form but also slightly modified (like the initial
fragment on a higher or lower pitch), are used to provide unity to a musical piece. For
instance, the ternary (song) form appears frequently: three consecutive musical fragments

∗ P. Gawrychowski is supported by the NCN grant 2011/01/D/ST6/07164, F. Manea by the DFG grant
596676, D. Nowotka by the DFG Heisenberg grant 590179.

© Paweł Gawrychowski, Florin Manea, and Dirk Nowotka;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 337–349

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.337
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

338 Testing Generalised Freeness of Words

such that the first and third ones are identical, while the second one is constructed in order
to provide a contrast to the other two (and, sometimes, this can be seen as the image of the
other two parts under some simple anti-/morphism).

Note that both in biology and music, the function applied to obtain the pseudo-repetition
is structurally simple: it usually rewrites each letter (nucleotide or note) into another one (i.e.,
it is literal), and usually does not rewrite more letters into the same one (i.e., it is bijective).
Besides the two examples above, in which pseudo-repetitions occur, the concept seems to be
of intrinsic theoretical interest, as it generalises a combinatorics on words concept (that is,
repetitions) that is central both in theory and applications. If we consider palindromes as a
natural modification of squares, repetitive structures containing both normal occurrences of
some factor and mirrored occurrences of the same factor seem to be one of the most natural,
hence, interesting, concepts derived from the classical repetitions.

The results obtained so far on pseudo-repetitions were both of combinatorial [4, 12, 13] and
of algorithmic [6, 7, 14] nature. We continue here the study of algorithmic problems related to
this concept. More precisely, we study how efficiently can one decide, given an input word w,
a literal (in some cases, bijective) anti-/morphism f , and a pattern involving both a variable
x and its image under f , namely f(x), whether an input word contains as a factor an instance
of that pattern. The problem seems natural to us, both in the light of the combinatorial
questions on the avoidability of patterns under anti-/morphisms, raised in [13], as well as in
the respect that it generalises both the well-studied problems of efficiently deciding whether
a word contains k-repetitions or, alternatively, various palindromic structures.

The paper is structured as follows. We begin with a series of basic definitions, then we
overview our results and compare them to the existing literature, and conclude with two
technical sections, containing the proofs of our results.

Some Basic Concepts. For more detailed definitions we refer to [2].
Let V be a finite alphabet; V ∗ is the set of all words over V , and the empty word is

denoted by λ. The length of a word w ∈ V ∗ is denoted by |w|, while alph(w) denotes the set
of all letters that occur in w. In our problems, we assume that the letters of any word w of
length n are in fact integers from {1, . . . , n}; accordingly, w is a sequence of integers. This is
a common assumption in stringology (see, e.g., [8]).

If w = xuy, for w, x, u, y ∈ V ∗, then u is a factor of w, x is a prefix of w, and y is a suffix
of w. For 1 ≤ i ≤ j ≤ |w|, we denote by w[i] the symbol at position i in w and by w[i..j] the
factor w[i]w[i+ 1] · · ·w[j] of the word w. A word u occurs in w at position i if u is a prefix
of w[i..|w|]. The powers of a word w are defined recursively by w0 = λ and wn = wwn−1 for
n ≥ 1. A word w that is not a power of some other word is called primitive. If w is not
primitive, then there exists a unique primitive word u, called the primitive root of w, such
that w = un for some n ≥ 2. A period of a word w over V is a positive integer p such that
w[i] = w[j] for all i and j with i ≡ j (mod p); per(w) denotes the smallest period of w.

A function f : V ∗ → V ∗ is a morphism if f(xy) = f(x)f(y) for all x, y ∈ V ∗; f is an
antimorphism if f(xy) = f(y)f(x) for all x, y ∈ V ∗. To define an anti-/morphism it is
enough to define f(a), for all a ∈ V . We call f literal if |f(a)| = 1 for all a ∈ V . Let
f(V) = {f(a) | a ∈ V }. We assume that any literal anti-/morphism f is given as the image
of the letters of V under f (in order, from 1 to |V |).

We say that a word w is an f-repetition with root t or, alternatively, an f -power with
root t, if w is in {t, f(t)}+, for a factor t of w. If w is not an f -power, then w is f -primitive.
For example, the word abcaab is primitive from the classical point of view (i.e., 1-primitive,
where 1 is the identical morphism) as well as g-primitive for the morphism g defined by

P. Gawrychowski, F. Manea, and D. Nowotka 339

g(a) = b, g(b) = a, g(c) = c. However, when considering the morphism f(a) = c, f(b) = a,
f(c) = b, we get that abcaab = ab f(ab) ab, thus, being an f -repetition with root ab.

For an anti-/morphism f : V ∗ → V ∗, a unary f -pattern p is an element of the set
{x, f(x)}∗ (i.e., a word over the alphabet having the letters x and f(x)); here x is called
variable and, if p ∈ {x, f(x)}k, we say that k is the length of p. An instance of the f -pattern
p is a word obtained by replacing in it the variable x by a word t ∈ V + and evaluating the
resulting expression in V ∗. For instance, if f is the identity antimorphism (i.e., f is (·)R, the
mirror image) then xf(x) = xxR is a pattern whose instances are all palindromes of even
length; if f is the identity morphism then xf(x) = x2 is a pattern whose instances are all
squares. We will only discuss the case of unary f -patterns, called patterns for brevity.

Finally, the computational model we use is the standard unit-cost RAM with logarithmic
word size. Also, all logarithms appearing here are in base 2.

2 The problems

In [6], the problem of identifying, given a word w and an anti-/morphism f , all the f -
repetitions (either of arbitrary or of given exponent) contained in w was efficiently solved.
The solutions and their time complexities depended on the properties of f , but, in all cases,
they were influenced by the fact that we needed to output all f -repetitions.

Here we approach two related problems. We are given a word w, an anti-/morphism f ,
just like before, but also a unary f -pattern p. We want to test whether w has as factor

an instance of the given pattern p (i.e., whether w is p-free). Further, in the same setting,
but given a number k instead of the pattern, we are interested in testing whether the word w
contains an f -repetition of exponent k, that is, a word of the form {t, f(t)}k. This task was
called in [1] the problem of testing pseudo-kth-power freeness. Compared to the first problem,
this one requires deciding whether w contains an instance of any pattern of length k.

The results we present deal with the cases when f is a literal morphism or antimorphism;
moreover, in part of the results we restrict f to being bijective. These cases seem to be
interesting as they cover exactly the classes of morphisms and antimorphisms that play
an important role in the literature: the classical mirror image of words, the antimorphic
involutions used in the initial papers on pseudo-repetitions [1, 4, 14] to model the DNA
Watson-Crick complementarity, or the anti-/morphic permutations used in [13] in the context
of avoiding pseudo-repetitions or in [12] to show generalised periodicity lemmas.

The two problems are defined formally in the following.
I Problem 1. Given w ∈ V +, |w| = n, f : V ∗ → V ∗ a literal anti-/morphism, and an
f -pattern p of length k, decide whether there exists an instance of p occurring in w.
I Problem 2. Given w ∈ V +, |w| = n, f : V ∗ → V ∗ a literal anti-/morphism, and an integer
k > 0, decide whether there exists a factor v of w with v ∈ {t, f(t)}k for some t ∈ V +.

Our results are the following. We first give, in Section 4, solutions to Problem 1 and 2
that run in O(nk2) time when f is both a literal morphism or a literal antimorphism. This is
especially interesting as it shows that Problem 1 can be solved in linear time for f -patterns
of fixed length (or Problem 2 for constant k). For instance, the occurrence of patterns having
length 2 (generalised squares) or 3 (cubes under literal anti-/morphisms), inside a word can
be tested in linear time. The solutions we present here rely both on several combinatorics
on words results and on the possibility of constructing efficient data structures for word
processing. It is worth noting that our approach begins similarly to that used in [11] to
detect classical repetitions; however, the arguments used further in our algorithms and proofs
are more general and required both a deeper analysis and novel techniques. Moreover, the

STACS’14

340 Testing Generalised Freeness of Words

tools we developed may have a broader range of applications. For instance, Lemmas 3, 4,
or 7, provide novel insight in the combinatorics of pseudo-repetitions, while Lemma 2 shows
how an extended Lempel-Ziv-like factorisation of a word can be efficiently computed, which
might be useful in, e.g., efficiently detecting inverted repeats in DNA sequences.

In Section 5, we consider the problems for f bijective. As already described, this case
played an important role in the existing theory and its motivations. In this setting we propose
new solutions for Problems 1 and 2, running in O(n logn) time. While being based on a
different approach than the previous ones, these solution have also the nice feature that they
are efficient even for larger values of k. Moreover, the solution of Problem 2 can be used to
compute the maximum k such that w contains an instance of a pattern of length k.

Before concluding this section, let us note that our results improve significantly the
results reported in [14], [1], and [6]. In [14] it was shown that factors of the form tk−1f(t) or
(tf(t))k (and symmetrical) can be detected in O(kn) time; in [1] these results were extended
to show that that pseudo-cube freeness can be tested in O(n2) time. Both these results
were developed for f an antimorphic involution and an alphabet of constant size. In [1],
within the same setting, an algorithm outputting all the pseudo-k-powers contained in a
word in O(n2 logn) time was reported, and used to test pseudo-kth-power freeness; a faster
algorithm finding all the pseudo-k-powers occurring in a word in time Θ(n2) was given in [6]
(for f literal, and working over integer alphabets, as here), but it was still slower than our
algorithms when used to test pseudo-kth-power freeness. For patterns without functional
dependencies, Problems 1 and 2 coincide, and can be solved in linear time (see, e.g., [11]).

3 Prerequisites

For a word u, |u| = n, over V ⊆ {1, . . . , n} we can build in O(n) time the suffix tree and
suffix array structures, as well as data structures allowing us to retrieve in constant time
the length of the longest common prefix of any two suffixes u[i..n] and u[j..n] of u, denoted
LCPu(i, j) (the subscript u is omitted when there is no danger of confusion). Such structures
are called LCP data structures in the following. For details, see, e.g., [8], and the references
therein. Similarly, we can build structures allowing us to retrieve in constant time the length
of the longest common suffix of any two prefixes u[1..i] and u[1..j] of u, denoted LCSu(i, j).

I Remark 1. Given a word w of length n and a divisor ` of n we can use one LCP query to
check in constant time whether w = xk, where |x| = ` and k = n

` . Indeed, w = xk if and
only if LCP(1, `+ 1) = n− `. The longest prefix of w that is a power of u[1..`] is obtained
similarly, as the longest prefix w′ of w whose length is divisible by ` and |w′| ≤ LCP(1, `+ 1).

When solving Problems 1 and 2 we construct LCP data structures for the words w, wR

(the mirror image of w), and v = wf(w); this takes O(|w|) time. Note that, when f is a literal
morphism, checking whether f(w[i..j]) appears at position ` in w is equivalent to checking
whether `+ j − i ≤ n and LCPv(`, |w|+ i) ≥ j − i+ 1. When f is a literal antimorphism,
checking whether f(w[i..j]) appears at position ` in w is, in this case, equivalent to checking
whether `+ j − i ≤ n and LCPv(`, 2|w| − j + 1)) ≥ j − i+ 1.

In some of the proofs we will need an efficient solution for the interval union-find problem,
which asks to maintain a partition of the universe U = [1, n] into a number of disjoint
intervals, so that given any element we can locate its current interval, and we can merge
two currently adjacent intervals into one. Both operations can be implemented in amortised
constant time [5] in our model of computation.

The following classical combinatorial result is used in this paper; for proofs and details
see [10], the handbook [2, Chapter 9], and the references therein.

P. Gawrychowski, F. Manea, and D. Nowotka 341

I Lemma 1. Let w ∈ V ∗, with |w| = n, and PSw = {u primitive | u2 prefix of w}. Then
|PSw| ≤ 2 logn and one can compute all the sets PSw[i..n], for 1 ≤ i ≤ n, in O(n logn) time.

4 General solutions

The main result we show in this section is that both our problems can be solved in O(nk2)
time, so in linear time for constant k. That is, testing freeness with respect to a fixed
f -pattern or testing pseudo-kth-power freeness for constant k can be done in linear time.
These results seem highly interesting to us as they show that the efficiency of testing square,
cube, or palindrome freeness is preserved for a class of more general patterns.

We begin this section with a slightly modified version of the s-factorisation defined in [11]
(see also [2]), and series of lemmas on the newly defined concept. Let g : V ∗ → V ∗ be a
literal anti-/morphism and w ∈ V ∗ a word. The g-factorisation of w is defined as follows.
We factor w = u1 · · ·ur if the following hold for all i ≥ 1:

If letter a occurs in w immediately after u1 · · ·ui−1 and neither a nor g(a) appeared in
u1 · · ·ui−1, then ui = a.
Otherwise, ui is the longest word such that u1 · · ·ui−1ui is a prefix of w and ui or g(ui)
occurs at least once as a factor in u1 · · ·ui−1.

The 1-factorisation of w (the not-self-referential variant of the s-factorisation from [11]) is
obtained by just taking g to be 1, the identity morphism.

By arguments similar to those used in [3], it follows that g-factorisations of words can be
computed in linear time, for g literal anti-/morphism.

I Lemma 2. If g is a literal anti-/morphism we can compute the g-factorisation of a word
w of length n in time O(n).

The following combinatorial lemma shows the relation between possible occurrences of
an f -pattern p in a word and its f -factorisation, for a morphism f .

I Lemma 3. Let f be a literal morphism, w a word, and p a pattern of length k ≥ 2, such
that p 6= xk−1f(x). Let w = u1 · · ·ur be the f-factorisation of w and consider all instances
of p. Then for any instance w[i..j] with |u1 · · ·uh−1| < j ≤ |u1 · · ·uh| we have two mutually
exclusive possibilities:
1. i > |u1 · · ·uh−1|, and we call w[i..j] a secondary instance, completely contained in uh,
2. j − i+ 1 ≤ k(|uh−1|+ |uh|), and we call w[i..j] a crossing instance.
Furthermore, the leftmost instance of the pattern is crossing.

A related result can be shown also for f antimorphic, but in a slightly more particular
setting: the word w is 1-factored and the pattern p has at least length 3.

I Lemma 4. Let f be a literal anti-/morphism, w a word, and p a pattern of length
k ≥ 3, such that p /∈ {xk−1f(x), f(x)k−1x}. Let w = u1 · · ·ur be the 1-factorisation of
w and consider all instances of the pattern p. Then for any such instance w[i..j] with
|u1 · · ·uh−1| < j ≤ |u1 · · ·uh| we have two mutually exclusive possibilities:
1. i > |u1 · · ·uh−1|, and w[i..j] is a secondary instance, completely contained in uh,
2. j − i+ 1 ≤ k(|uh−1|+ |uh|), and w[i..j] is a crossing instance.
Furthermore, the leftmost instance of the pattern is crossing.

We only present here the solutions of Problems 1 and 2 for f antimorphic. The morphic
case can be solved in a similar manner with less technicalities. For Problem 1, for instance,
we compute the f -factorisation of the input word w, and then we try to identify (like in

STACS’14

342 Testing Generalised Freeness of Words

t f(t) t

y f(y′) yz f(z′) z

t = yz

`︷ ︸︸ ︷ `︷ ︸︸ ︷ `︷ ︸︸ ︷

f(t)

f(y′) f(z′)

w1 w2

f(t) = f(y′)f(z′)

α1 α1α2 α2

β1 β1β2 β2

Figure 1 Finding tf(t)tf(t) in the catenation of two words.

the antimorphic case, described below) the leftmost occurrence, if any, of an instance of the
pattern p, which is crossing by Lemma 3. The usage of f -factorisations is needed here so
that the case of patterns of length 2 (or f -squares) is also covered. The time complexity of
this approach is O(nk2).

The case of Problem 1, for antimorphisms. When f is an antimorphism we use 1-
factorisations of the input words, instead of f -factorisations. The major points of the
algorithm detecting instances of the pattern f are given in the following.

In the following, a pseudopalindrome of length ` is a word of the form uf(u) with |u| = `.
Its occurrence is centred at position i if the first character of f(u) is aligned there. The
pseudopalindromic radius at i is simply the length of the longest pseudopalindrome centred
at i, which can be computed in constant time using LCS queries on wf(w).

To begin with, patterns of the form xf(x) or f(x)x are detected in O(n) time by
checking the existence of positions with strictly positive pseudopalindromic radius in w and,
respectively, wR. Moreover, if the pattern is xk, the problem reduces to detecting the usual
repetitions, hence can be done in O(n) time. If the pattern is f(x)k, we just need to check
which letters can be an image under f , so which factors of w can contain an instance of the
pattern, and again we can reduce the problem to the standard case of detecting repetitions.

I Lemma 5. Let f be a literal antimorphism, w be a 1-factorised word, and p a pattern
of length k ≥ 3, p /∈ {xk−1f(x), f(x)xk−1, f(x)k−1x, xf(x)k−1, xk, f(x)k}. All M crossing
instances of p (if any) can be detected (and output as pairs of indices) in O(nk2 +M) time.

Proof. The proof is based on Lemma 4. Assume that the 1-factorisation of w is u1 · · ·ur and
for each h ≤ r we look for an instance of p ending inside uh, shorter than k(|uh−1|+ |uh|).

We describe how to find an instance v of a given pattern p of length k, in the concatenation
of two words w1 and w2, such that this occurrence crosses the boundary; then we can apply the
strategy for w2 = uh and w1 a suffix of u1 · · ·uh−1, |w1| = min{|u1 · · ·uh−1|, k(|uh−1uh|)−1}.
For each such w1 and w2 we construct a list of simple conditions which guarantee the
existence of an occurrence. Then we consider all such conditions together, and verify them
in a specific order. For simplicity, we only explain the case of v = tf(t)tf(t) (an instance of
p = xf(x)xf(x)), with k = 4, and then show how to generalise. Let us also assume that the
first letter of w2 belongs to the first f(t), see Figure 1; the other cases are analogous. Let `
denote |t| and assume that we built LCP and LCS data structures for w′ = w1w2f(w1)f(w2).

Now, let α1 be the length of the longest factor starting at positions |w1| − `+ 1 in w1
and ` in w2; let α2 be the length of the longest factor starting at positions 1 and 2` + 1
in w2. Similarly, let β1 be the length of the longest factor ending at positions |w1| − ` in
w1 and ` − 1 in w2, and β2 be the length of the longest factor ending at positions |w1| in
w1 and 2` in w2. All α1, α2, β1, β2 can be computed with LCPw′ and LCSw′ queries. Now,

P. Gawrychowski, F. Manea, and D. Nowotka 343

if min{α1, α2} + min{β1, β2} < `, clearly no instance exists. Otherwise, the only possible
instances have |z| ≤ min{α1, α2} and |z| ≥ `−min{β1, β2} (where z is defined as in Figure 1).
Moreover, those two conditions guarantee that all fragments corresponding to t are the same,
and all fragments corresponding to f(t) are equal, too. They do not guarantee, though, that
the fragment which is supposed to be f(t) is indeed an image of the fragment corresponding
to t. Hence we also need to check if the pseudopalindromic radius at |w1| − `+ |z| in w1w2
is at least `. That is, an instance of the pattern corresponds exactly to a pseudopalindrome
of length ` centred at i ∈ [|w1| −min{β1, β2}, |w1| − `+ min{α1, α2}] in w1w2, if any.

We build a list of all such conditions corresponding to different values of ` ≤ |w1|+|w2|
k

(and different pairs of concatenated words w1 and w2 = uh, as described in the beginning)
and then process them all at once in the order of increasing `. This is done efficiently by
maintaining in a structure S all positions i such that the pseudopalindromic radius at i is at
least the current `. Then, reporting all instances corresponding to a single condition requires
iterating through all i ∈ S such that i is in the corresponding range. Note now that S can
be implemented as the interval union-find structure. Then, if the range contains H numbers,
we output them in O(1 +H) time. We check similarly all the other possibilities for a factor
t or f(t) to fall on the border, so the claimed complexity (for p = xf(x)xf(x)) follows.

Other patterns of length 3 and 4 are analysed similarly. If the pattern is longer (of length
k > 4), we check k possibilities for the factor falling on the border. For each of them we need
to execute O(k) constant time queries to generate the conditions on |y| or detect that no such
instance is possible. Hence the total number of conditions is

∑
2≤h≤r

∑
`≤|uh−1|+|uh| k =

O(nk), and the total time to generate all of them is O(nk2), plus additional O(n) to maintain
the interval union-find structure. Then each instance is reported in constant time. J

Assume first that p /∈ {xk−1f(x), f(x)xk−1, f(x)k−1x, xf(x)k−1, xk, fk(x)}. Lemma 4
shows that if p occurs in w, then there exists a crossing instance of p in w. The previous
lemma shows that we can locate in O(nk2) time such a crossing instance of p, if any (just
output the first instance we meet and stop searching for others). If we found one, we conclude
that w contains an instance of the pattern; otherwise, w does not contain any instance of p.

Further, we only have to consider now the cases when p is xk−1f(x) or xf(x)k−1; the
other cases can be reduced to these two by looking for the occurrences of pR in wR. In the
first (respectively, second) remaining case, we only need to check if there is a position i such
that the pseudopalindromic radius at i is at least as long as the length of the shortest word
whose k-th power is a suffix (respectively, prefix) of w[1..i− 1] (respectively, w[i..n]). Thus,
to conclude, we apply the following lemma for w (respectively, wR).

I Lemma 6. Given a word w of length n and k ≥ 2, we can compute for each position i the
smallest ` ≥ 1 such that w[i− k`+ 1..i] is a power of w[i− `+ 1..i], in O(n) total time.

This technical lemma and its main consequence, that we can detect instances of the pat-
terns xk−1f(x) and f(x)k−1x in O(n) time, improves significantly the results reported in [14]:
we decreased the complexity from O(nk), and our algorithm works for integer alphabets.

The case of Problem 2, for antimorphisms. Let us first give the following lemma:

I Lemma 7. If w contains max(k, 3) pseudopalindromes of length ` starting at positions
s, s + δ1, s + δ2, . . . with all δi ≤ `

4 , then w has a factor rk with r = f(r). Accordingly, w
contains an instance of any pattern of length k.

To solve Problem 2, we begin with checking if there is an instance of xk, fk(x), f(x)k−1x,
xf(x)k−1, xk−1f(x), or f(x)xk−1 using the method from the previous section. If there is

STACS’14

344 Testing Generalised Freeness of Words

no such instance, we apply the reasoning described in Lemma 5. Of course, now we do not
know the exact structure of the pattern. Nevertheless, we can look at the 1-factorisation
w = u1 · · ·ur, and for each two adjacent factors uh−1 and uh we consider all possibilities for
the length ` of t, the image of the variable x. Assume that for each such possibility we get
that an instance of the pattern corresponds to the existence of a pseudopalindrome of length
` centred in a range of at most 2`k positions, these positions being the suffix of w1 of length
`k and the prefix of w2 of length `k, with w1 and w2 = uh defined as in the proof of Lemma 5.
We generate all pseudopalindromes in such ranges using the same approach as in that lemma,
i.e., by considering the entire set of conditions at once and maintaining an interval union-find
structure. If we can generate sufficiently many results, we terminate, as Lemma 7 shows that
w contains instances of all patterns of length k. More concretely, for each range of length
2`k there can be at most 8k2 pseudopalindromes of length ` centred there, provided that
no word rk with r = f(r) exists in w. Also, ` ≤ |uh−1|+ |uh| (by Lemma 4). So, summing
up over all h and ` we get that the total number of generated pseudopalindromes should
not exceed

∑
2≤h≤r

∑
`≤|uh−1|+|uh| 8k

2 = 16nk2. Thus, assume that we generated at most
16nk2 pseudopalindromes. Each of them corresponds to certain values of ` and i such that
the instance of xf(x) is centred at i and the image of x has length `. So, we can check in
O(k) time whether the image of xf(x) can be extended to an instance of a pattern of length
k. For this we do not need to know the exact structure of this pattern, we just check that
how many fragments of length ` are the same as either the left or the right half of the found
pseudopalindrome with LCP queries. This gives an O(nk3) time solution.

We can shave off one factor of k by using dynamic programming. We consider all generated
pseudopalindromes with the same value of ` at once. For each such pseudopalindrome vf(v),
we compute the largest k′ such that there is a k-repetition with x = v starting with this
vf(v). The idea is that after any vf(v) we must have a power of v or f(v) followed by
another vf(v) (or by the end of the instance of the pattern). Hence with a constant number
of LCP queries we can compute the highest power of both v and f(v) following this vf(v),
and then check if the next fragment of length 2` is vf(v) as well. Then the total running
time becomes proportional to the number of generated pseudopalindromes, which is O(nk2).

5 The bijective case

An O(n logn) solution for Problem 1. The second solution we propose for Problem 1 is
based on a careful analysis of the length 3 factors that may occur in the pattern, and is valid,
in this case, both for f literal bijective morphism and antimorphism.

We first check whether the pattern p contains any of the factors xxf(x), f(x)f(x)x,
f(x)xx, or xf(x)f(x). This takes O(k) ⊂ O(n) time. If not, then the pattern is a prefix of
x∞, f(x)∞, (xf(x))∞, or of (f(x)x)∞. We treat separately each of these cases.

First, let us note that if p is a prefix of x∞ then Problem 1 is equivalent to testing
whether w contains k-repetitions. This can be done in O(n) time, using the algorithm given
by Main [11]. When p is a prefix of f(x)∞ the Problem 1 can be solved similarly, in linear
time, by detecting repetitions in the factors of w containing only letters from f(V).

I Lemma 8. Testing whether a word w, |w| = n, has as factor an instance of a pattern p, |p| =
k, that contains xxf(x), f(x)f(x)x, f(x)xx, or xf(x)f(x), can be done in O(kn logn) time.

Proof. We analyse now the cases when p contains xxf(x) or f(x)f(x)x (the cases when
p contains f(x)xx or xf(x)f(x) are solved by considering the reversed word and reversed
pattern). Hence, any instance of p contains a square. We analyse the first occurrence of a

P. Gawrychowski, F. Manea, and D. Nowotka 345

factor xxf(x) or f(x)f(x)x in p and check whether it is possible that such a factor occurs at
position i in the word w, for all i ∈ {1, . . . , n}. To this end, we consider such a number i; by
Lemma 1, there are at most 2 logn primitive squares occurring at position i in w. Clearly,
when vvf(v) is a word that occurs at position i then v is a power of some y ∈ PSw[i..n].
Thus, we iterate through all the elements of y ∈ PSw[i..n] and see whether we can construct
a word v such that vvf(v) or f(v)f(v)v occurs at position i in w and v is a power of y.

Let us assume that xxf(x) occurs before any occurrence of f(x)f(x)x in p (the other
case can be treated similarly). We have two subcases to analyse. The first subcase is when
y = f(y) (and this can be checked in constant time). Then we compute the maximum q such
that yq is a prefix of w[i..n]; this takes O(1) time, as q = LCPw(i,i+|y|)

|y| + 1. Similarly, using
an LCPwR query, we compute the maximum ` such that y` is a suffix of w[1..i]. If q ≥ 3 we
take v = y and, clearly, an instance of the pattern p occurs in w whenever `+ q ≥ k, where
k = |p|. The second subcase is when y 6= f(y). Just like before, we compute the maximum q

such that yq is a prefix of w[i..n]. Now, if q is even and f(y) occurs at position 1 + q|y|, we
have v = y

q
2 ; if q is odd then v cannot be a power of y. Once we know v we check whether

an instance of p occurs in w such that its first factor xxf(x) is mapped to the factor vvf(v)
occurring at position i in w. This check is done in O(k) time, using LCPwf(w) queries.

If f(x)f(x)x occurs first in p (before xxf(x)) then one should also analyse, for each
y, two subcases just like before. If f(v)f(v)v occurs at position i then f(v) is a power of
some y ∈ PSw[i..n]. The first subcase is when y = f(y), and can be treated just as the case
y = f(y) above. The second subcase is when we assume that y = f(z) for some z 6= y. As f
is injective, we have y 6= f(y). Thus, z is the first factor of length |y| that occurs after the
maximal prefix yp of w[i..n]. We then check by an LCPwf(w) query whether f(z) = y and p
is even, and follow the same procedure as before, for v starting with z and of length p|y|

2 . J

In conclusion, the case when p contains an occurrence of the factor xxf(x) or of f(x)f(x)x
can be solved in O(kn logn) time. By similar arguments, the case when p is a prefix of
(xf(x))∞ is analysed faster, in O(n logn) time.

Altogether, the analysis of the above cases takes O(kn logn), where the most time-
consuming step is the case when p contains at least one factor xxf(x), f(x)f(x)x, f(x)xx,
or xf(x)f(x), and the word v, to which x is mapped, is different from f(v). In the following,
we show how we can reduce the time needed to analyse this case to O(n logn) (that is, shave
off the k factor), and, consequently, obtain that Problem 1 can be solved in O(n logn) time.

I Lemma 9. Testing whether a word w, |w| = n, has as factor an instance of a pattern p, |p| =
k, that contains xxf(x), f(x)f(x)x, f(x)xx, or xf(x)f(x), can be done in O(n logn) time.

Proof. The approach in Lemma 8 can be optimised as follows. Instead of iterating through
all positions where a factor of the form vvf(v), f(v)f(v)v, f(v)vv or vf(v)f(v) occurs, and
then verifying in O(k) time if a given occurrence can be extended to form an occurrence of
the whole pattern, we look at entire groups of such factors at once, and adapt the Knuth-
Morris-Pratt algorithm (see [9]) to verify all of them at once. To make this verification
efficient, we will run the pattern matching algorithm not on the original word, but on its
suitably constructed compressed representation.

Using the same strategy as in the initial analysis of this case, we identify all the factors
vvf(v), f(v)f(v)v, f(v)vv and vf(v)f(v) with v 6= f(v) in w. We saw above that there are
O(n logn) occurrences of such factors. Note that a factor vvf(v) (or a factor vf(v)f(v))
can be also identified as a factor f(v′)f(v′)v′ (respectively, as a factor f(v′)v′v′), but only
when f(f(a)) = a for all the letters a occurring in v.

STACS’14

346 Testing Generalised Freeness of Words

Then we group together the occurrences of vvf(v), f(v)f(v)v, f(v)vv and vf(v)f(v)
factors having the same length. This can be done in O(n logn) time by describing each
such factor as a pair containing the position where it starts and the length of |v|, and then
putting together in a set (ordered with respect to the starting position) all the factors with v
of a certain length. As |v| ≤ n we will have O(n) such sets. Furthermore, we additionally
partition each set into smaller sets (again, ordered with respect to the starting position)
according to the remainder of the starting position modulo the length of v, which takes
linear time in the size of the set. Finally, each such set is split into even smaller groups: we
put together all the consecutive elements in the (ordered) set, that have the form vvf(v),
f(v)f(v)v, f(v)vv and vf(v)f(v) for a certain (the same for all factors) word v. As we have
already mentioned, a factor vvf(v) (or a factor vf(v)f(v)) can be also identified as a factor
f(v′)f(v′)v′ (respectively, as a factor f(v′)v′v′), whenever v′ = f(v) 6= v; however, the group
corresponding to v is exactly the same one as the one constructed for v′, so we do not need
to consider them separately. Note that, in the end, there may be more than one group
corresponding to the same v; however, one occurrence of vvf(v) (as well as one occurrence
of f(v)f(v)v, f(v)vv and vf(v)f(v)) belongs to exactly one group.

The idea of this splitting into groups is that an instance of the pattern p, with x mapped
to v, should have all the occurrences of factors xxf(x), f(x)f(x)x, xf(x)f(x), or f(x)xx
mapped to elements of the same group, that corresponds to v. Hence, in what follows we fix a
single group (and, consequently, a word v) and show how to detect a corresponding instance
of the pattern, with x mapped to v, in linear time in the size of the group. In particular,
if f acts as an involution on the letters of v, we should also try to detect a corresponding
instance of p, with x mapped to f(v); but this is done analogously, and takes the same time.

We additionally partition the fixed group into subgroups. Each subgroup is a maximal
set of consecutive elements of the group such that between any two of them we either have a
power of either v or f(v) (note that two consecutive elements, say vvf(v) and vf(v)f(v),
might overlap, and in such case there is nothing between them). The partitioning requires
just a single left-to-right scan of the elements of the group, with a constant number of LCP
queries when moving from one element to the other. Now a single subgroup corresponds
to a factor of w of the form {v, f(v)}+, and we have an ordered list of all occurrences of
vvf(v), f(v)f(v)v, f(v)vv and vf(v)f(v) in this factor. Furthermore, the factor starts and
ends with factors of this form, so we call it v-delimited. We can represent an v-delimited
word in a unique compressed form, called v-representation, as follows.

Sweep through all occurrences of vvf(v), f(v)f(v)v, f(v)vv and vf(v)f(v). For each
of them append xxf(x), f(x)f(x)x, f(x)xx, or xf(x)f(x), respectively, to the current v-
representation. Then, for each such two adjacent occurrences additionally insert one of
the following between the corresponding elements of the current representation: −2 if the
occurrences overlap by 2|v|; −1 if the occurrences overlap by |v|; 0 if the occurrences are one
after another; (x, h) if the fragment between the occurrences is vh with h > 0; (f(x), h) if
the fragment between the occurrences is f(v)h with h > 0.

I Example 1. If v = a, f(v) = b, and the word is aabbaaaaabbbba, its v-representation is
[xxf(x),−1, f(x)f(x)x, (x, 2), xxf(x), (f(x), 1), f(x)f(x)x].

Finally, treat each element of the representation as a single character (over a new alphabet,
whose size is O(nc) for some constant c, so the characters can be compared in constant time),
and the whole representation as a single word. It is clear that above definition guarantees
that the v-representation is unique. Furthermore, given a subgroup we can construct its
v-representation in linear time (in the size of the subgroup). Similarly, we can locate the
first and the last occurrence of xxf(x), f(x)f(x)x, f(x)xx or xf(x)f(x) in the pattern and

P. Gawrychowski, F. Manea, and D. Nowotka 347

construct in linear time (in the length of the pattern) the representation of its x-delimited
factor starting at the first and ending at the last of such occurrences. Finally, observe that
an occurrence of the whole pattern with x mapped to v corresponds to an occurrence of such
maximal v-delimited factor, and furthermore given the latter we can verify in constant time
if it corresponds to the former using a few LCP queries (i.e., the maximal v-delimited factor
can be padded with powers of v or f(v), to get an actual instance of the pattern p).

Hence, we can focus on generating all instances of the maximal x-delimited factor of the
pattern, and this is what we designed the x-representation for. We simply apply the usual
Knuth-Morris-Pratt algorithm to locate all occurrences of the x-representation of the maximal
x-delimited factor of the pattern in the v-representation of the factor corresponding to the
subgroup. This takes linear time in the size of the subgroup, excluding the preprocessing,
and the number of occurrences is linear, too. Finally, note that the preprocessing of the
pattern is done for all subgroups just once. J

This approach clearly identifies an instance, if any, of a pattern p that contains one of the
factors xxf(x), f(x)xx, xf(x)f(x), or f(x)f(x)x, in time O(n logn). In conclusion, by this
last argument and the previous remarks, we obtained an O(n logn) solution for Problem 1.

An O(n logn) solution for Problem 2. In this case we want to test whether w contains
the image of any pattern p from {x, f(x)}k, for a given k. However, we will determine the
maximum ` such that w contains an instance of some pattern p ∈ {x, f(x)}`. Let us note
that for ` ≤ 3 we have a linear time solution for testing whether w contains an f -repetition
of exponent `, as described in Section 4. Hence we focus on the remaining case ` ≥ 4.

The key remark in our approach is that if w contains an instance of a pattern p ∈
{x, f(x)}k1 then it also contains an instance of a pattern p′ ∈ {x, f(x)}k2 where x is replaced
by a primitive word v and k2 ≥ k1. Hence, we identify first the maximal factors of w that
have the form {t, f(t)}∗, for some primitive word t (thus, with f(t) primitive, as well), and
contain either tt or f(t)f(t), and, then, the ones that do not contain such squares.

This is done similarly to the subgroup splitting of the previous section. We first locate
the occurrences of such factors, in O(n logn) time, and then refine this set to obtain the
subgroups containing the occurrences of factors defined by the same t which have between
them only elements from {t, f(t)}∗. Like before, this takes O(n logn) time.

So far, we obtained the maximal factors of w that have the form {t, f(t)}∗ and start
either with tt or f(t)f(t). For such a factor y that starts with tt we compute in constant
time the maximal factor z that ends just before y and has the form (t{f(t)t}∗∪{f(t)t}∗)f(t),
following Remark 1. Then zy is a maximal factor that contains tt. Similarly, for a factor
y ∈ f(t)f(t){t, f(t)}∗ we compute the maximal factor z that ends just before y and has
the form (f(t){tf(t)}∗ ∪ {tf(t)}∗)t. Then zy is a maximal factor that contains f(t)f(t).
Consequently, we computed the maximal factors of w that have the form {t, f(t)}∗ and
contain either tt or f(t)f(t). Clearly, the time complexity of this procedure is O(n logn).

Now, if at least one of the maximal factors of w of the form {t, f(t)}∗ and containing tt
or f(t)f(t) is an f -power of t having the exponent at least k, then we can answer Problem 2
positively. Otherwise, we need to check whether w contains a repetition of the form {tf(t)}`,
{tf(t)}`t, {f(t)t}`, or {f(t)t}`f(t), for a large enough exponent ` ≥ 2. But, when looking at
maximal f -repetitions of this type, we get that their prefix of length 2|t| (that is, tf(t) or f(t)t)
should be primitive; otherwise, longer repetitions were detected in the previous step. Hence,
such repetitions start with a primitively rooted square. Now, analysing all the primitively
rooted squares occurring in w, and mapping them to t(f)tf(t) or f(t)tf(t)t, depending on

STACS’14

348 Testing Generalised Freeness of Words

the form pattern we look for (from the ones above), we can detect all these repetitions in
O(n logn) time, too. In conclusion, we solve completely Problem 2 in O(n logn) time.

Using this strategy, we also identify, in O(n logn) time, all the factors t and v of w such
that t is primitive and v ∈ {t, f(t)}∗, and v cannot be extended, in any direction, by neither t
nor f(t). It is not hard to see that one of these f -repetitions is the one that has the maximum
exponent among all the f -repetitions contained in w. Thus, we can also find the maximum
power of an f -repetition contained in w, within O(n logn) time.

6 Conclusions

In this paper we showed the following theorems.

I Theorem 10. Given a word w ∈ V ∗, with |w| = n, a literal anti-/morphism f : V ∗ → V ∗,
and an f -pattern p of length k, we can decide whether w contains an instance of p in O(nk2)
time; for a fixed pattern p, the problem can be solved in linear time. If f is bijective, then
the problem can be solved in O(n logn) time.

I Theorem 11. Given a word w ∈ V ∗, with |w| = n, a literal anti-/morphism f : V ∗ → V ∗,
and a positive integer k, we can decide whether w contains a factor of the form {t, f(t)}k,
for some word t, in O(nk2) time; for a constant k, the problem can be solved in linear time.
If f is bijective, then we can compute the maximum k such that w contains a factor of the
form {t, f(t)}k, for some word t, in O(n logn) time.

We conjecture that results in the line of the second parts of our theorems (and similar
proofs) hold also for general literal morphisms. In this case, however, one has to overcome
the difficulty that when f is not bijective, then f(t) is no longer primitive for all primitive t;
accordingly, the technicalities are expected to be far more involved. Consequently, the time
bounds are expected to be larger (although still close to linear time).

The main question left open is whether the results reported here can be improved to find
(if there exist) algorithmic solutions for the approached problems running in O(n) time.

References
1 E. Chiniforooshan, L. Kari, and Z. Xu. Pseudopower avoidance. Fundamenta Informaticae,

114(1):55–72, 2012.
2 M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on strings. Cambridge University

Press, 2007.
3 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Wojciech Rytter, and Tomasz

Walen. Efficient algorithms for two extensions of lpf table: The power of suffix arrays. In
Proc. SOFSEM, volume 5901 of LNCS, pages 296–307, 2010.

4 E. Czeizler, L. Kari, and S. Seki. On a special class of primitive words. Theoretical Computer
Science, 411:617–630, 2010.

5 H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. In Proc. STOC, pages 246–251. ACM, 1983.

6 P. Gawrychowski, F. Manea, R. Mercas, D. Nowotka, and C. Tiseanu. Finding Pseudo-
repetitions. In Proc. STACS, volume 20 of LIPIcs vol. 20, pages 257–268, 2013.

7 P. Gawrychowski, F. Manea, and D. Nowotka. Discovering hidden repetitions in words. In
Proc. CiE, volume 7921 of LNCS, pages 210–219. Springer, 2013.

8 J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. J.
ACM, 53:918–936, 2006.

P. Gawrychowski, F. Manea, and D. Nowotka 349

9 D. E. Knuth, J. H. Morris Jr., and V. R. Pratt. Fast pattern matching in strings. SIAM J.
Comput., 6(2):323–350, 1977.

10 R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In
Proc. FOCS, pages 596–604. IEEE Computer Society, 1999.

11 M. G. Main. Detecting leftmost maximal periodicities. Discrete Applied Mathematics,
25(1-2):145–153, 1989.

12 F. Manea, R. Mercas, and D. Nowotka. Fine and Wilf’s theorem and pseudo-repetitions.
In Proc. MFCS, volume 7464 of LNCS, pages 668–680. Springer, 2012.

13 F. Manea, M. Müller, and D. Nowotka. The avoidability of cubes under permutations. In
Proc. DLT, volume 7410 of LNCS, pages 416–427. Springer, 2012.

14 Zhi Xu. A minimal periods algorithm with applications. In Proc. CPM, volume 6129 of
LNCS, pages 51–62. Springer, 2010.

STACS’14

Counting Homomorphisms to Cactus Graphs
Modulo 2∗

Andreas Göbel, Leslie Ann Goldberg, and David Richerby

Department of Computer Science, University of Oxford, Oxford, UK

Abstract
A homomorphism from a graph G to a graph H is a function from V (G) to V (H) that preserves
edges. Many combinatorial structures that arise in mathematics and computer science can be
represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms.
In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity
of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by
Valiant who famously introduced a problem for which counting modulo 7 is easy but counting
modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure
of homomorphism problems. In this case, the structure of the graph H has a big influence on the
complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution
for the class of cactus graphs, which are connected graphs in which every edge belongs to at most
one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor
networks and the comparison of genomes. We show that, for some cactus graphs H, counting
homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus
graph H, the problem is complete for the complexity class ⊕P which is a wide complexity class to
which every problem in the polynomial hierarchy can be reduced (using randomised reductions).
Determining which H lead to tractable problems can be done in polynomial time. Our result
builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a
tree.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases modular counting, homomorphisms, cactus graph, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.350

1 Introduction

A homomorphism from a graphG to a graphH is a function from V (G) to V (H) that preserves
edges (i.e., maps every edge of G to some edge of H). Many combinatorial structures arising
in mathematics and computer science can be represented naturally as graph homomorphisms.
For example, proper q-colourings of a graph G correspond to homomorphisms from G to
the q-clique, and independent sets of G correspond to homomorphisms from G the 2-vertex
connected graph with one self-loop (the set of vertices of G mapped to the unlooped vertex is
independent). Partition functions in statistical physics such as the Ising, Potts, and hard-core
models arise naturally as weighted sums of homomorphisms. See, e.g., [3, 11].

∗ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no.
334828. The paper reflects only the authors’ views and not the views of the ERC or the European
Commission. The European Union is not liable for any use that may be made of the information
contained therein. Some of the initial research was supported by the EPSRC grant EP/I011528/1. A
full version with proofs appears in [10].

© Andreas Göbel, Leslie Ann Goldberg, and David Richerby;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 350–361

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.350
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Göbel, L .A. Goldberg, and D. Richerby 351

H1 H2 H3

Figure 1 ⊕HomsToH1 and ⊕HomsToH3 are ⊕P-complete, but ⊕HomsToH2 is in FP.

We study the complexity of counting homomorphisms modulo 2. For graphs G and H,
let Hom(G,H) be the set of homomorphisms from G to H. For each fixed H, we study the
computational problem ⊕HomsToH, i.e., computing |Hom(G,H)| mod 2, given input G.

The structure of the graph H has a big influence on the complexity of ⊕HomsToH. For
example, consider the graphs H1, H2 and H3 depicted in Figure 1. Our result implies that
⊕HomsToH1 is complete for the class ⊕P (under polynomial-time Turing reductions). H2
is constructed by moving the top right “bristle” from H1 down to the bottom right. Under
the standard assumption that ⊕P 6= FP, moving this bristle makes the problem easier – our
result implies that ⊕HomsToH2 is solvable in polynomial time. The graph H3 is constructed
by moving the top bristle from left to right in H2. This makes the problem hard again –
⊕HomsToH3 is ⊕P-complete.

The goal of this research is to study the complexity of ⊕HomsToH for every fixed
graph H and to determine for which graphs H the problem is in FP, for which it is ⊕P-
complete, and whether there are any H for which the problem has intermediate complexity.
In this paper, we give a complete solution to this problem for the class of cactus graphs.

A cactus graph is a connected graph in which every edge belongs to at most one cycle.
Cactus graphs were first defined by Harary and Uhlenbeck [13] who attributed them to the
physicist Husimi and therefore called them Husimi Trees. Cactus graphs arise, for example,
in the modelling of wireless sensor networks [2] and in the comparison of genomes [18]. Some
NP-hard graph problems can be solved in polynomial time on cactus graphs [1].

1.1 The complexity of modular counting
The complexity of modular counting is an interesting topic with some surprising results
and we only mention a few highlights here. It is important to note that ⊕P (first studied
in [12, 17]) is a very large complexity class. We treat ⊕P from the point of view of function
computation: it is all problems of the form “compute f(x) mod 2” where computing f(x)
is in #P. ⊕P is sufficiently powerful that there is randomised polynomial-time reduction
[19] from every problem in the polynomial hierarchy to some problem in ⊕P. Thus, under
the natural hypothesis that problems in the higher levels of the polynomial hierarchy are
not solvable in (randomised) polynomial time, ⊕P-complete problems are much harder than
problems in FP, which is the class of of function-computation problems that are solvable in
polynomial time.

The complexity of counting modulo 2 is different from the complexity of decision problems
and counting problems. First, consider an NP-complete decision problem. The mod-2

STACS’14

352 Counting Homomorphisms to Cactus Graphs Modulo 2

counting version of this problem can be intractable, as you might expect (for example,
counting vertex covers or independent sets modulo 2 is ⊕P-complete [20]) but it can also be
tractable. As an example, consider counting proper 3-colourings of a graph modulo 2. There
are an even number of 3-colourings that use all three colours, since there are six permutations
of these colours. There are also an even number of 3-colourings that use exactly two colours,
since the colours can be swapped. It is easy to count 1-colourings, so it is easy to count all
proper colourings modulo 2. Next, consider a #P-complete counting problem. The mod-2
counting version of this problem can be intractable or tractable, as the examples given above
illustrate. As another example where the mod-2 counting version is tractable, consider the
problem of computing the permanent of a matrix modulo 2. Since −1 ≡ 1 (mod 2), the
permanent is equal modulo 2 to the determinant, so it can readily be computed in polynomial
time.

Another interesting aspect of modular counting is the fact that the value of the modulus
can affect the tractability of the problem. As an example, consider the well-known work of
Valiant [20] which identified a certain satisfiability problem where satisfying assignments are
easy to count modulo 7 but difficult to count modulo 2.

1.2 Dichotomies for graph homomorphism problems
Determining the border between tractability and intractability for large classes of modular
counting problems is an important step towards understanding the structure of the problems
themselves. In this paper we work within the context of graph homomorphism problems
because graph homomorphisms are general enough to capture a wide variety of combinatorial
problems, yet they exhibit sufficient structure that dichotomies exist. Hell and Nešetřil [14]
pioneered this direction by completely classifying undirected graphs according to the difficulty
of the graph homomorphism decision problem. They showed if a fixed graph H has a self-loop,
or is bipartite then the problem of determining whether an input graph has a homomorphism
to H is in P. For every other fixed graph H, the decision problem is NP-complete.

Over recent years, dichotomy theorems have also been established for the problem of
counting graph homomorphisms and computing weighted sums of homomorphisms. Dyer
and Greenhill [7] showed that the problem of counting homomorphisms to H is solvable in
polynomial time if every component of H is an isolated vertex, a complete graph with all
self-loops present, or a complete bipartite graph with no self-loops. For every other H, it
is #P-complete. In particular, there are no graphs H for which the problem has intermediate
complexity. This dichotomy was extended to the problem of computing weighted sums of
homomorphisms to H. A dichotomy was given by Bulatov and Grohe [3] for the case where
the weights are positive, by Goldberg, Grohe, Jerrum and Thurley [11] for the case where
the weights are real, and by Cai, Chen and Lu [4] for complex weights.

1.3 Counting graph homomorphisms modulo 2
The first results on the complexity of counting graph homomorphisms modulo 2 were obtained
by Faben and Jerrum [8, 9], who made some important structural discoveries which we also
use.

An involution of a graph is an automorphism of order 2. If σ is an automorphism of a
graph H then Hσ denotes the subgraph of H induced by the fixed points of σ.

I Lemma 1. ([9, Lemma 3.3]) If H is a graph and σ is an involution of H then, for any
graph G, |Hom(G,H)| ≡ |Hom(G,Hσ)| (mod 2).

A. Göbel, L .A. Goldberg, and D. Richerby 353

The lemma is useful because it enables us to reduce the problem of counting homomorph-
isms to H modulo 2 to the problem of counting homomorphisms to Hσ modulo 2. This
leads naturally to the idea of reduction by involutions. Let → be the relation on graphs
where H → H ′ if and only if there is an involution σ of H such that H ′ = Hσ. Let →∗
be the transitive closure of →. Faben and Jerrum showed that repeatedly applying → to a
graph H reduces H to a unique involution-free graph, up to isomorphism. Also, to classify
the complexity of counting homomorphisms to H, it suffices to study the complexity of
counting homomorphisms to its connected components.

I Lemma 2. ([9, Theorem 6.1]) Let H be an involution-free graph. If H has a connected
component H1 such that ⊕HomsToH1 is ⊕P-hard with respect to polynomial-time Turing
reductions, then ⊕HomsToH is also ⊕P-hard.

It is easy to see that, if ⊕HomsToHj is solvable in polynomial time for every connected
component Hj of H, then ⊕HomsToH is also solvable in polynomial time. Faben and
Jerrum used the structural results to give a dichotomy for the complexity of ⊕HomsToH
when H is a tree. Define the “involution-free reduction” H ′ of a graph H to be the
lexicographically-minimal involution-free graph such that H →∗ H ′. We can state their result
as follows.

I Theorem 3. ([9, Theorem 3.8]) If H is a tree then ⊕HomsToH is ⊕P-complete if the
involution-free reduction of H has more than one vertex. Otherwise, it is in FP.

Every involution-free tree is asymmetric (has no non-trivial automorphisms). Thus, the
technical work of proving Theorem 3 is to show that ⊕HomsToH is ⊕P-hard for every
asymmetric tree H with more than one vertex. Fortunately, this can be done without too
much technical complexity. Developing a dichotomy to cover all graphs seems to be much
harder and even the dichotomy for cactus graphs requires a substantial technical effort, as
we will see. Nevertheless, there is a general conjecture as to what the outcome would be.

I Conjecture 4 (Faben and Jerrum). Let H be a (not necessarily simple) graph. ⊕HomsToH
is in FP if the involution-free reduction of H is empty, a single vertex (with or without a
self-loop) or a graph with two isolated vertices, exactly one having a self-loop. Otherwise, it
is ⊕P-complete.

1.4 Our result
Recall that a cactus graph is a connected, simple graph in which every edge belongs to at
most one cycle. Our main result gives a proof of Faben and Jerrum’s conjecture for cactus
graphs.

I Theorem 5. Let H be a simple graph with every edge in at most one cycle. If the involution-
free reduction of H has at most one vertex, then ⊕HomsToH is solvable in polynomial time.
Otherwise, ⊕HomsToH is complete for ⊕P under polynomial-time Turing reductions.

To prove this, we must investigate all involution-free cactus graphs, not just the asymmetric
ones. This is because, unlike the situation for trees, there are involution-free cactus graphs,
such as H4 in Figure 2, that have non-trivial automorphisms. This graph has no involutions
but has an automorphism of order 3 which rotates the cycle. Incidentally, it is easy to see
that the graph H5 in the figure has an involution that moves all vertices, so ⊕HomsToH5 is
in FP. Our result implies that ⊕HomsToH4 is ⊕P-complete.

STACS’14

354 Counting Homomorphisms to Cactus Graphs Modulo 2

H4 H5

Figure 2 ⊕HomsToH4 is ⊕P-complete but ⊕HomsToH5 is in FP.

To prove the hardness result in Theorem 5, we introduce three graph-theoretic notions:
hardness gadgets, partial hardness gadgets, and mosaics. Hardness gadgets and partial
hardness gadgets are, as the name suggests, structures for proving ⊕P-hardness. Mosaics
are graphs built on unions of 4-cycles. They are what is left in inductive cases where
hardness gadgets don’t exist and we use them in our inductive proof. Our approach is
therefore recursive: we decompose involution-free cactus graphs at cut vertices so that every
component contains at least one of these three induced structures. We then combine these
structures to obtain hardness gadgets in the original graph. If an asymmetric graphH contains
a hardness gadget, then it is relatively easy to show that ⊕HomsToH is ⊕P-complete — the
proof is by reduction from the problem of counting independent sets modulo 2, generalising
the argument for trees. We will discuss the situation in which H is not asymmetric presently.

Even when H is asymmetric, the most difficult part of the argument is showing that every
non-trivial involution-free cactus graph does actually contain a hardness gadget. The presence
of cycles greatly complicates this argument, hence the need to define hardness gadgets, partial
hardness gadgets and mosaics and to decompose cactus graphs into components with these
three different structures, which can then be combined to form hardness gadgets.

When the graph has non-trivial automorphisms, there is a further complication. Suppose
that G and H are graphs and that p is a function from V (G) to 2V (H). A homomorphism f

from G to H is said to satisfy the “pinning” function p if, for every v ∈ V (G), we have
f(v) ∈ p(v). Now suppose that H is an involution-free graph containing a hardness-gadget.
The high-level strategy for proving that ⊕HomsToH is ⊕P-hard is to first reduce the problem
of counting independent sets modulo 2 to the problem of counting pinned homomorphisms
from G to H (modulo 2) and then to reduce the latter problem to ⊕HomsToH. This pinning
approach has been used successfully in dichotomy theorems in related domains [3, 5, 6].
When H is asymmetric, the application of pinning works smoothly. Building on work of
Lovász [15], Faben and Jerrum reduced the pinned problem to the unpinned one for the case
in which the pinning function pins some vertex to an orbit in the automorphism group of H.
When H is asymmetric (as it is, when H is a tree), the orbit is just a single vertex, and
this is just what is required. If H is not asymmetric, we do not know how to pin a vertex
of G to a particular vertex in H. To get around this, we augment G with a copy of H and
we pin every vertex in the copy to its own orbit in the automorphism group of H. Every
homomorphism from an involution-free cactus graph to itself that respects the orbits of all
of its vertices is, in fact, an automorphism of H, and this enables us to solve the problem.

Theorem 5 gives a dichotomy for cactus graphs. If the involution-free reduction of H has
at most one vertex then ⊕HomsToH is in FP. Otherwise, it is ⊕P-complete. Furthermore,
the meta-problem of determining which is the case, given input H, is computationally
easy. Finding an involution of H reduces in polynomial time to computing the size of H’s
automorphism group modulo 2. The latter problem is in FP for cactus graphs because, for
example, they are planar.

A. Göbel, L .A. Goldberg, and D. Richerby 355

1.5 Notation
Given two graphs G and H (not necessarily vertex-disjoint), G ∪H is the graph (V (G) ∪
V (H), E(G) ∪ E(H)). If E is a set of edges, let V (E) denote the set of endpoints of
edges in E and let G ∪ E denote the graph G ∪ (V (E), E). Given a set V ′ ⊆ V (G), let
G− V ′ = G[V (G) \ V ′]. We use the phrase “j-walk” in a graph to refer to a walk of length j.

We use ΓH(v) to denote the set of neighbours of vertex v in H. A rooted graph is a
pair (H,x) where H is a graph and x ∈ V (H) is a distinguished vertex, the root. An
automorphism of (H,x) is an automorphism of H that fixes x.

We use Aut(H) to denote the automorphism group of H and, for v ∈ V (H), we use
OrbH(v) to denote the set of vertices of H in the orbit of v under the action of Aut(H).

2 Pinning, gadgets and mosaics

In this section, we discuss pinning and define the gadgets we use to prove ⊕P-hardness of
⊕HomsToH problems by reduction from ⊕IS, counting independent sets modulo 2.

Recall from the introduction that a homomorphism f : V (G)→ V (H) satisfies a pinning
function p : V (G)→ 2V (H) if f(v) ∈ p(v) for all v ∈ V (G). Let HomPin(G,H, p) be the set
of homomorphisms from G to H that satisfy the pinning function p. Say that a pinning p is
r-restrictive if at most r vertices v ∈ V (G) have p(v) 6= V (H) and for each such vertex v, p(v)
is a union of orbits of the automorphism group of H. We consider the following computational
problem, which is parameterised by a graph H and a natural number r.
Name: ⊕r-PinnedHomsToH.
Input: A graph G and a r-restrictive pinning function p : V (G)→ 2V (H).
Output: |HomPin(G,H, p)| (mod 2).
Extending the work of Faben and Jerrum who, in turn, built on results of Lovász [15], we
prove the following theorem.

I Theorem 6. Let H be an involution-free graph and let r be a positive integer. There is a
polynomial-time Turing reduction from ⊕r-PinnedHomsToH to ⊕HomsToH.

We next introduce machinery that we will use to prove that ⊕r-PinnedHomsToH is
⊕P-complete when H is an involution-free cactus graph and r is defined appropriately.

I Definition 7. A hardness gadget in a graph H is a tuple (β, s, t, O, i,K, k, w) where β
is a positive integer, s, t and i are vertices of H, (O, {i},K) is a partition of ΓH(s), and
k : K → N>0 and w : K → V (H) are functions. The following conditions must be satisfied.
1. |O| is odd.
2. For any o ∈ O and y ∈ O ∪ {i}, s is the unique vertex that is adjacent to o and y and

has an odd number of β-walks to t.
3. There are an even number of (1 + β)-walks from i to t.
4. For all u ∈ K, w(u) has an even number of k(u)-walks to u and an odd number of

k(u)-walks to every vertex in O ∪ {i}.

These conditions simplify if β = 1, since having an odd number of 1-walks to a vertex is
the same as being adjacent to it.

The construction used in our reduction from ⊕IS is given formally in Definition 12.
Given a graph G and a hardness gadget Γ, we will produce a graph GΓ that includes a
copy of V (G). We call the vertices in this copy, “G-vertices”. We will use pinning to
consider homomorphisms from GΓ to H that map all G-vertices to neighbours of s. Part 4 of
Definition 7 ensures that there will be an even number of such homomorphisms that map any

STACS’14

356 Counting Homomorphisms to Cactus Graphs Modulo 2

G-vertices to members of K. These contribute nothing to the total modulo 2 so the effect is
to restrict to homomorphisms that map every G-vertex to O ∪ {i}. Part 3 of the definition
will ensure that the number of homomorphisms that map adjacent vertices in G to i is even,
so these also do not contribute. Thus, the homomorphisms that remain are those in which
an independent set of G-vertices are mapped to i. Our key technical result is that every
non-trivial, involution-free cactus graph contains a hardness gadget (Theorem 10).

In some cases, our decomposition might yield subgraphs that do not contain hardness
gadgets. We are still able to make progress using structures that can be combined with other
parts of the graph to produce a hardness gadget. A partial hardness gadget is, essentially, a
simplified hardness gadget that has K = ∅ and that doesn’t yet have a “t” vertex: at a later
point, we will find a vertex t with the properties necessary to produce a full hardness gadget.

I Definition 8. A partial hardness gadget in a rooted graph (H,x) is a tuple (s, i, O, P),
where s is a vertex of H, ({i}, O) is a partition of ΓH(s), and P is a path in H. The tuple
satisfies the following conditions.
1. |O| is odd.
2. P is the unique shortest path from x to i in H.
3. Ps is the unique shortest path from x to s in H.
4. For each o ∈ O, Pso is the unique shortest path from x to o in H.

The final structures arising in our decompositions are “mosaics”. Some of these (those
with “shortcuts”, defined below) already contain hardness gadgets. In other cases, a mosaic
will provide a “t” vertex for a partial hardness gadget elsewhere in the decomposed graph.

I Definition 9. An unbristled mosaic is the one-vertex rooted graph or a rooted cactus graph
that is a union of 4-cycles. A mosaic is a rooted graph (H,x) for which there is a partition
(V ′, V ′′) of V (H) such that: x ∈ V ′, (H[V ′], x) is an unbristled mosaic, and E(H) \E(H[V ′])
is a matching between V ′′ and a subset of V ′. The edges of the matching are called bristles.

The graphs in Figure 1 would be mosaics if a root were placed at any vertex on a cycle.
Note that every vertex of a mosaic is adjacent to at most one bristle, and that the one-vertex
rooted graph and a rooted edge are both mosaics.

A shortcut in a mosaic (H,x) is a pair of odd-degree vertices, with degree at least 3, that
have a unique shortest path P between them, and this path does not contain x. In the full
paper, we show that every mosaic with a shortcut contains a hardness gadget.

3 Finding hardness gadgets

In Sections 6 and 7 of the full paper, we prove the following result.

I Theorem 10. Every involution-free cactus graph H with more than one vertex contains a
hardness gadget.

Given a cut vertex v of a graph H, let H ′1, . . . ,H ′κ be the connected components of H−{v}.
Let the split of H at v be the set of graphs {H1, . . . ,Hκ}, where Hj = H[V (H ′j) ∪ {v}].
To prove Theorem 10, we mostly proceed by splitting at cut vertices and investigating the
resulting components. A key point is that, if {H1, . . . ,Hκ} is the split of an involution-free
graph H at a cut vertex v then each rooted graph (Hj , v) is involution-free, even though the
unrooted graph Hj might not be. This allows us to perform an induction on rooted graphs
to establish the following lemma. Theorem 10 then follows by choosing an appropriate root
and constructing a hardness gadget from the contents of the split at the root.

A. Göbel, L .A. Goldberg, and D. Richerby 357

x

t′6

t6

i8

s8
o8

t8

o′8 o′′8

u

z

i7
o7 s7

H6

H6

H8

H8H7

H7

Figure 3 An example graph illustrating the proof ideas of Theorem 10 and Lemma 11.

I Lemma 11. Every involution-free rooted cactus graph (H,x) contains a hardness gadget,
contains a partial hardness gadget or is a shortcut-free mosaic.

Rather than attempting to sketch the lengthy and technical proof of Lemma 11, we will
work through an example that illustrates the main techniques. Consider the cactus graph of
Figure 3. It is involution-free (in fact, asymmetric) and its split at the vertex x gives the
three involution-free rooted graphs (H6, x), (H7, x) and (H8, x).

We see immediately that (H6, x) is a mosaic, and it is shortcut-free, since it has only
one odd-degree vertex on a cycle (the degree of x in H6 is two). Note also that (H6, x) is
asymmetric but the unrooted graph H6 has an involution that exchanges x with the vertex
at distance 2 from it on the same 4-cycle.

Consider, now, (H7, x). This graph contains the partial hardness gadget (s7, i7, {o7}, xzi7):
({i7}, {o7}) partitions ΓH7(s7), |{o7}| is odd, xzi7 is the unique shortest x–i7 path, xzi7s7 is
the unique shortest x–s7 path and xzi7s7o7 is the unique shortest x–o7 path.

Now, we turn our attention to (H8, x), in which we will demonstrate a hardness gadget.
In the first instance, consider the graph without the dashed path, the easier case. As the
notation suggests, we take s = s8 and i = i8. A helpful feature for us here is the even-length
cycle that includes these two vertices: by choosing t to be the vertex t8, half way around
the cycle from i, and taking β = 2 (so the length of the cycle is 2(β + 1)), we ensure that
requirement 3 of the definition of hardness gadgets is met (an even number of (β + 1)-walks
from i to t). We take O = {o8, o

′
8, o
′′
8}, which has odd cardinality so satisfies requirement 1.

Requirement 2 is that, for each o ∈ O and y ∈ O ∪ {i}, s is the unique vertex adjacent to
o and y that has an odd number of β-walks to t. β = 2 and s and x are the only vertices
that send an odd number of 2-walks to t. Since x is not adjacent to any vertex in O, s meets
the requirement. Finally, since (O, {i}) is already a partition of ΓH8(s), we set K = ∅ and
requirement 4 is vacuous. Therefore, writing ⊥ for the function with empty domain,

Γ = (β, s, t, O, i,K, k, w) = (2, s8, t8, {o8, o
′
8, o
′′
8}, i8, ∅,⊥,⊥)

is a hardness gadget in H8.
To demonstrate a hardness gadget with non-empty K, consider the rooted cactus graph

(H ′8, x) formed by adding the dashed edges to H8. We take s, t, O, i and β as before but,
now, (O, {i}) is not a partition of ΓH′

8
(s). Thus, we set K = {u}, k(u) = 2 and w(u) = u.

u has two 2-walks to itself and one to i and each vertex in O, so requirement 4 is met.
Let us recap: we have split the graph H at cut vertex x and demonstrated that each of

the three components of this split contains a hardness gadget or a partial hardness gadget,

STACS’14

358 Counting Homomorphisms to Cactus Graphs Modulo 2

or is a shortcut-free mosaic. We now illustrate Theorem 10 by showing how to combine these
to produce a hardness gadget in H.

In fact, this is rather easy because the hardness gadget Γ in H8 is also a hardness gadget
in H. This is because the requirements for being a hardness gadget depend on the number
of 3-walks from i8, o8, o′8 and o′′8 to t8 and the number of 2-walks from u to vertices adjacent
to s8; however, none of these walks can ever leave H8. In the full version of the paper, we
give formal distance requirements that allow us to determine more generally when a hardness
gadget in an induced subgraph of H is also a hardness gadget in H.

Our goal is to illustrate the proof techniques, so we will continue and find a second
hardness gadget in H by combining the mosaic (H6, x) with the partial hardness gad-
get (s7, i7, {o7}, xzi7) in (H7, x). As we remarked earlier, if we can find appropriate values
for t and β, the partial hardness gadget will become a hardness gadget with K = ∅. The
properties we require of t and β are the following:

there are an even number of (1 + β)-walks from i7 to t;
s7 is the unique vertex adjacent to o7 that has an odd number of β-walks to t; and
s7 is the unique vertex adjacent to both o7 and i7 that has an odd number of β-walks
to t.

Since s7 is the only vertex adjacent to both o7 and i7, the third property follows from the
second. To make the second property easy to verify, we will choose t to have a unique shortest
path in H to o7, and this path will go through s and have length 1 + β.

Consider the vertices t6 and t′6, which are not adjacent but are on the same cycle, and
which have degree 2 and 3, respectively. Further, each has a unique shortest path to x and
these two paths differ only in their last edge. It is not hard to see that every involution-free
mosaic with at least one cycle must contain a pair of vertices with these properties and, in
the full paper, we call such a pair of vertices, along with the shared section of their shortest
paths to x, a 2,3-path.

We are going to take β = 6 (the distance from s7 to {t6, t′6}) and we claim that we can
choose one of t = t6 or t = t′6 to satisfy the first two properties. In fact, either choice satisfies
the second property, since either choice for t gives a unique 7-walk to o7.

To verify the claim, we will show that t6 and t′6 have different numbers of 7-walks to i7,
modulo 2. Therefore, one of them has an even number of 7-walks, and that will be our choice
for t. There is a unique 5-path from i7 to each of t6 and t′6: write this path as x1x2 . . . x6,
where i7 = x1. Every 7-walk from x1 to x6 is of one of the following two types:
1. walks that replace one of the edges (x3, x4), (x4, x5) or (x5, x6) by going along the other

three edges of the 4-cycle that contains it; and
2. walks that replace one of the vertices xa (1 ≤ a ≤ 6) with the 2-walk xayxa, for some

y ∈ ΓH(xa).

There are exactly three type-1 walks from i7 to each of t6 and t′6. The number of type-2
walks from i7 to t′6 is exactly one greater than the number to t6. For 1 ≤ a ≤ 5, there are
the same number of choices for y in each case; however, for a = 6, there are three choices
of y from t′6 but only two from t6. Therefore, the number of 7-walks from i7 to exactly one
of t6 and t′6 is even, and we choose that vertex to be t. The reader is invited to check that
there are, in total, twenty 7-walks to t′6 and nineteen to t6. Thus, the hardness gadget is

(β, s, t, O, i,K, k, w) = (6, s7, t
′
6, {o7}, i7, ∅,⊥,⊥) .

A. Göbel, L .A. Goldberg, and D. Richerby 359

t ve

x

y

s w(u1) . . . w(uj)

Px,u1

Px,uj

Py,u1

Py,uj

Pt,e

Figure 4 The induced subgraph of GΓ corresponding to the edge (x, y) ∈ E(G), with K =
{u1, . . . , uj}. H-vertices have double circles and are pinned in the proof of Theorem 13.

4 Counting homomorphisms to cactus graphs

Having shown that every involution-free cactus graph with more than one vertex contains a
hardness gadget, we now use these gadgets to show ⊕P-completeness of ⊕HomsToH for
non-trivial involution-free cactus graphs H. The reduction is from ⊕IS, which is ⊕P-complete
[20]. The reduction is more complicated than the case for trees because an involution-free
cactus graph is not necessarily asymmetric — recall the graph H4 in Figure 2.

In the following definition, “adding a new path P from x to y” in a graph G means
forming a graph G ∪ P where V (G) ∩ V (P) = {x, y}.

I Definition 12. Let Γ = (β, s, t, O, i,K, k, w) be a hardness gadget in H. For any graph G,
we construct the graph GΓ as follows. Begin with the graph G′ = (V ′, E(H)) where
V ′ = V (G) ∪ V (H) ∪ {ve | e ∈ E(G)} (these three sets are assumed to be disjoint) and add:

for every vertex x ∈ V (G), the edge (x, s);
for every edge e = (x, y) ∈ E(G), the edges (x, ve) and (y, ve);
for every edge e ∈ E(G), a new β-path Pt,e from t to ve; and
for every vertex x ∈ V (G) and every u ∈ K, a new k(u)-path Px,u from x to w(u).

In GΓ, we refer to vertices that are in V (G) as G-vertices and those in V (H) as H-vertices.
Figure 4 illustrates the construction.

Our construction, GΓ, is more complex than the construction used for trees, because our
hardness gadgets are more general than the corresponding structures in trees and because we
must deal with graphs H that are involution-free but still have non-trivial automorphisms.
To see the problem of non-trivial automorphisms, consider an involution-free cactus graph H
that contains a hardness gadget Γ that is moved by an automorphism π of H. We want to
pin one vertex to the s-vertex of Γ and another to the t-vertex. However, we can only pin
to the orbits of these vertices, which include π(s) and π(t), respectively. We must avoid
counting “inconsistent” homomorphisms that, for example, map the first vertex to s and the
second to π(t) because we do not know how many of these homomorphisms exist.

I Theorem 13. ⊕HomsToH is ⊕P-complete for every involution-free cactus graph H that
contains a hardness gadget.

Proof (sketch). Using Theorem 6, it suffices to reduce ⊕IS to ⊕r-PinnedHomsToH where
r = |V (H)|. Let G be the graph whose independent sets we wish to count and let Γ =
(β, s, t, O, i,K, k, w) be a hardness gadget in H. Let p be the pinning function that maps
every H-vertex v to OrbH(v) and every other vertex of GΓ to V (H) and let Φ be the set of

STACS’14

360 Counting Homomorphisms to Cactus Graphs Modulo 2

homomorphisms from GΓ to H that satisfy p. Let I(G) be the set of independent sets in G.
We claim that |Φ| ≡ |I(G)| (mod 2).

It can be shown that any φ ∈ Φ acts as an automorphism on the H-vertices. Let
Φπ ⊆ Φ be set of homomorphisms where this automorphism is π. Writing id for the trivial
automorphism, every φ ∈ Φid has φ(s) = s and, for all G-vertices v, φ(v) ∈ O ∪ {i} ∪K.
For each G-vertex v, |{φ ∈ Φid | φ(v) ∈ K}| is even because, when φ(v) ∈ K, Pv,w(φ(v)) can
map to an even number of k(φ(v))-walks in H. So, to compute |Φid| modulo 2, it suffices
to count the homomorphisms φ ∈ Φid where φ(v) ∈ O ∪ {i} for all G-vertices v. For such a
homomorphism, let Sφ be the set of G-vertices mapped to i. If S ∈ I(G), each G-vertex not
in S can map to any of the odd number of elements of O and, for each edge e, we must have
φ(ve) = s and Pt,e can map to an odd number of β-walks in H. If S /∈ I(G), there are an even
number of homomorphisms φ with Sφ = S because, if adjacent G-vertices x and y map to i,
there are an even number of ways to map the paths Pt,(x,y)x and Pt,(x,y)y to (1 + β)-walks
in H. Thus, |Φid| ≡ |I(G)| (mod 2). For any automorphism π of H, |Φπ| = |Φid|, so
|Φ| = |Φid| |AutH|. H is involution-free so, by Cauchy’s Group Theorem [16], |Aut(H)| is
odd, so |Φ| ≡ |Φid| ≡ |I(G)| (mod 2). J

We can now prove our main result.

I Theorem 5. Let H be a simple graph with every edge in at most one cycle. If the involution-
free reduction of H has at most one vertex, then ⊕HomsToH is solvable in polynomial time.
Otherwise, ⊕HomsToH is complete for ⊕P under polynomial-time Turing reductions.

Proof. Let H ′ be the involution-free reduction of H. If H ′ has at most one vertex then
⊕HomsToH ′ is trivially solvable in polynomial time. By Lemma 1, every graph G satisfies
|Hom(G,H)| ≡ |Hom(G,H ′)| (mod 2) so ⊕HomsToH is also solvable in polynomial time.

If H ′ has more than one vertex, then some component H1 of H ′ has more than one
vertex (since H ′ is involution-free). Also, H1 is involution-free. Since H1 is an induced
subgraph of H, it is a cactus graph. By Theorems 10 and 13, ⊕HomsToH1 is ⊕P-hard. By
Lemma 2, ⊕HomsToH ′ is ⊕P-hard. But Lemma 1 gives a reduction from ⊕HomsToH ′ to
⊕HomsToH, so ⊕HomsToH is also ⊕P-hard. J

References
1 B. Ben-Moshe, B. K. Bhattacharya, Q. Shi, and A. Tamir. Efficient algorithms for center

problems in cactus networks. Theor. Comput. Sci., 378(3):237–252, 2007.
2 B. Ben-Moshe, A. Dvir, M. Segal, and A. Tamir. Centdian computation in cactus graphs.

J. Graph Algorithms Appl., 16(2):199–224, 2012.
3 A. A. Bulatov and M. Grohe. The complexity of partition functions. Theor. Comput. Sci.,

348(2–3):148–186, 2005.
4 J.-Y. Cai, X. Chen, and P. Lu. Graph homomorphisms with complex values: A dichotomy

theorem. In Proc. ICALP (1), pages 275–286, 2010.
5 N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems.

Inform. Comput., 125(1):1–12, 1996.
6 M. E. Dyer, L. A. Goldberg, and M. Jerrum. The complexity of weighted Boolean #CSP.

SIAM J. Comput., 38(5):1970–1986, 2009.
7 M. E. Dyer and C. S. Greenhill. The complexity of counting graph homomorphisms. Ran-

dom Struct. Algorithms, 17(3–4):260–289, 2000.
8 J. Faben. The Complexity of Modular Counting in Constraint Satisfaction Problems. PhD

thesis, Queen Mary, University of London, 2012.

A. Göbel, L .A. Goldberg, and D. Richerby 361

9 J. Faben and M. Jerrum. The complexity of parity graph homomorphism: an initial
investigation. CoRR, abs/1309.4033, 2013.

10 Andreas Göbel, Leslie Ann Goldberg, and David Richerby. The complexity of counting
homomorphisms to cactus graphs modulo 2. CoRR, abs/1307.0556, 2013.

11 L. A. Goldberg, M. Grohe, M. Jerrum, and M. Thurley. A complexity dichotomy for
partition functions with mixed signs. SIAM J. Comput., 39(7):3336–3402, 2010.

12 L. M. Goldschlager and I. Parberry. On the construction of parallel computers from various
bases of Boolean functions. Theor. Comput. Sci., 43:43–58, 1986.

13 F. Harary and G. E. Uhlenbeck. On the number of Husimi trees. I. Proc. Nat. Acad. Sci.
U. S. A., 39:315–322, 1953.

14 P. Hell and J. Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B,
48(1):92–110, 1990.

15 L. Lovász. Operations with structures. Acta Math. Acad. Sci. Hungar., 18:321–328, 1967.
16 J. H. McKay. Another proof of Cauchy’s group theorem. The American Mathematical

Monthly, 66:119, 1959.
17 Christos H. Papadimitriou and Stathis Zachos. Two remarks on the power of counting.

In Proceedings of the 6th GI-Conference on Theoretical Computer Science, pages 269–276,
London, UK, UK, 1982. Springer-Verlag.

18 B. Paten, M. Diekhans, D. Earl, J. St. John, J. Ma, B. B. Suh, and D. Haussler. Cactus
graphs for genome comparisons. J. Comput. Biol., 18(3):469–481, 2011.

19 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991.

20 L. G. Valiant. Accidental algorithms. In Proc. FOCS, pages 509–517, 2006.

STACS’14

Irreversible computable functions
Mathieu Hoyrup

Inria, LORIA, Villers-lès-Nancy, France
mathieu.hoyrup@inria.fr

Abstract
The strong relationship between topology and computations has played a central role in the devel-
opment of several branches of theoretical computer science: foundations of functional program-
ming, computational geometry, computability theory, computable analysis. Often it happens
that a given function is not computable simply because it is not continuous. In many cases, the
function can moreover be proved to be non-computable in the stronger sense that it does not
preserve computability: it maps a computable input to a non-computable output. To date, there
is no connection between topology and this kind of non-computability, apart from Pour-El and
Richards “First Main Theorem”, applicable to linear operators on Banach spaces only.

In the present paper, we establish such a connection. We identify the discontinuity notion,
for the inverse of a computable function, that implies non-preservation of computability. Our
result is applicable to a wide range of functions, it unifies many existing ad hoc constructions
explaining at the same time what makes these constructions possible in particular contexts, sheds
light on the relationship between topology and computability and most importantly allows us
to solve open problems. In particular it enables us to answer the following open question in the
negative: if the sum of two shift-invariant ergodic measures is computable, must these measures
be computable as well? We also investigate how generic a point with computable image can be.
To this end we introduce a notion of genericity of a point w.r.t. a function, which enables us to
unify several finite injury constructions from computability theory.

1998 ACM Subject Classification F.1.1 Models of Computation/Computability theory,
F.4.1 Mathematical Logic/Computability theory

Keywords and phrases Computability theory, computable analysis, finite injury, generic set

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.362

1 Introduction

Many problems in classical computability theory [13] and computable analysis [12, 17] amount
to studying the computability of some function f defined on continuous spaces such as the
Cantor space or the space of real numbers. One is usually interested in three increasingly
stronger notions of computability for f :
(i) f(x) is computable for every computable x;
(ii) f(x) is computable relative to x for every x;
(iii) f(x) is computable relative to x for every x, uniformly in x.

In the first case we say that f is computably invariant (terminology introduced in [1]).
In the third case we simply say that f is computable. It happens that many interesting
functions are not computable and even not computably invariant. For instance Braverman
and Yampolsky proved that the function mapping a parameter to the corresponding Julia set
does not satisfy (ii); they later strengthened that result by proving that it does not satisfy
(i) either. By contrast, the function mapping a parameter to the corresponding filled Julia
set does satisfy condition (ii), while it does not satisfy (iii) because it is discontinuous [2].

© Mathieu Hoyrup;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 362–373

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.362
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Hoyrup 363

While functions that are not computable often fail to be computably invariant, the proof
of the former is usually much simpler than the proof of the latter. Indeed, it is often based
on the fundamental result that a computable function must be continuous. Hence proving
that a function is not computable is often a purely topological argument.

However proving that a function is not computably invariant is usually much more
challenging, as a counterexample must be constructed, by encoding the halting set or by
using more involved computability-theoretic arguments based on priority methods, e.g. Our
point is that topology is still at play in many computability-theoretic constructions1. Usually
the construction of a computable element whose image is not computable implicitly makes use
of the discontinuity of the function. Of course mere discontinuity is not sufficient in general
to carry out such a construction: there exist discontinuous functions that are computably
invariant, such as the floor function or the function that maps a real number to its binary
expansion. More is needed and our question is: what discontinuity property is needed to
make such a construction possible?

Such discontinuity properties have already been sought by several authors. Pour-El and
Richards “First Main Theorem” [12] shows that in the case of linear operators with c.e.
closed graph, if the operator is unbounded (i.e., discontinuous) then it is not computably
invariant (it is actually an equivalence). Their result subsumes many ad hoc constructions,
such as Myhill’s differentiable computable function whose derivative is not computable [10].
As part of their open problem no. 7, Pour-El and Richards ask whether their First Main
Theorem can be extended to nonlinear operators. A generalization of their theorem to certain
algebraic structures was proved by Brattka [1], applicable to operators on the set of compact
subsets of R.

In these results, the underlying algebraic structures enable the authors to provide
counterexamples via explicit expressions (such as linear combinations of basic elements
with well-chosen weights) by encoding the halting set, which contrasts with many situations
in computability theory where explicit constructions are rarely possible and priority meth-
ods are often needed to build counterexamples (Friedberg-Muchnik construction of Turing
incomparable c.e. sets, e.g.). This observation allows one to hope for stronger results whose
proofs involve more complicated, non-explicit constructions.

In this paper we present such a result, applicable to inverses of computable functions. We
work on effective topological spaces and effective Polish spaces without additional structure,
which makes our result applicable in many situations. We introduce a topological notion,
irreversibility of a function, whose effective version entails the existence of a non-computable
point whose image is computable. We think that this notion is rather simple to verify
on particular instances. The proof of the result implicitly uses the priority method with
finite injury. We think that our discontinuity notion is rather natural and, in concrete
situations, much easier to verify than constructing a computable element whose pre-image is
not computable. In other words, our result is not merely an abstract generalization of existing
constructions, but a powerful theorem that provides insight into computability theory, as
illustrated by the numerous examples we give.

This work was originally motivated by the following question, left open in [4]: are there
two non-computable shift-invariant ergodic measures whose sum is computable? As an
application of our main result, we positively answer this question.

1 for instance the role of Baire category in computability theory has been revealed by several authors
(see [9] e.g.)

STACS’14

364 Irreversible computable functions

We push our investigation further by studying the following question: how non-computable
can a point with a computable image be? We introduce a notion of genericity of a point w.r.t.
a function and prove that generic points with computable images exist. The construction
unifies several finite injury arguments.

The paper is organized as follows: in Section 2 we introduce basic notions of computable
analysis; in Section 3 we introduce a notion of continuous invertibility at a point and prove
that for “almost” every point, if a function is computably invertible at that point then it
is continuously invertible there (Theorem 7). In Section 4 we introduce the notion of an
irreversible function, which in substance expresses that a function is topologically hard to
inverse. In Section 5 we present our main result: a function that is topologically hard to
inverse is computably hard to inverse, in particular it maps a non-computable point to
a computable image. In Section 5.1 we present an application of our main result to the
non-computability of the ergodic decomposition. In Section 6 we introduce a notion of
genericity w.r.t. a function which unifies several finite injury constructions.

A complete version of the paper with all the proofs is available at http://hal.inria.
fr/hal-00915952. In the present version, we avoid some technical considerations that are
necessary for the proofs of the results but not for their understanding.

2 Background and notations

We assume familiarity with basic computability theory on the natural numbers. We implicitly
use Weihrauch’s notions of computability on effective topological spaces, based on the
standard representation (see [17] for more details), however we do not express them in terms
of representations.

2.1 Notations

In a metric space (X, d), if x ∈ X and r ∈ (0,+∞) then we denote the open ball with center
x and radius r by B(x, r) = {x′ ∈ X : d(x, x′) < r}. We denote the corresponding closed
ball by B(x, r) = {x′ ∈ X : d(x, x′) ≤ r}. The Cantor space of infinite binary sequences, or
equivalently subsets of N, is denoted by 2N. The halting set, denoted ∅′, is the set of numbers
of Turing machines that halt. It is a noncomputable set that is computably enumerable
(c.e.).

2.2 Effective topology

An effective topological space (X, τ,B) consists of a topological space (X, τ) together with
a countable basis B = {B0, B1, . . .} numbered in such a way that the finite intersection
operator is computable. An open subset U ⊆ X is effectively open if U =

⋃
k∈W Bk for some

c.e. set W ⊆ N.
To a point x ∈ X we associate N(x) = {n ∈ N : x ∈ Bn}. By an enumeration of N(x)

we mean a total function f : N→ N whose range is N(x). A point x is computable if N(x) is
c.e., i.e. if N(x) has a computable enumeration.

Given points x, y in effective topological spaces X,Y respectively, we say that y is
computable relative to x if there is an oracle Turing machine M that, given any enumeration
of N(x) as oracle, outputs an enumeration of N(y). We denote it by Mx = y. In other
words, y is computable relative to x if N(y) is enumeration reducible to N(x). As proved
by Selman [14] and pointed out by Miller [8], y is computable relative to x if and only if

http://hal.inria.fr/hal-00915952
http://hal.inria.fr/hal-00915952

M. Hoyrup 365

every enumeration of N(x) computes an enumeration of N(y) (uniformity is not explicitly
required, but is a consequence).

A (possibly partial) function f : X → Y is computable if there is a machine M such that
for every x ∈ dom(f), Mx = f(x). A computable function is always continuous.

2.3 Effective Polish spaces

An effective Polish space is a topological space such that there exists a dense sequence
s0, s1, . . . of points, called simple points and a complete metric d inducing the topology,
such that all the reals numbers d(si, sj) are computable uniformly in (i, j). Every effective
Polish space can be made an effective topological space, taking as canonical basis the open
balls B(s, r) with s simple point and r positive rational together with a standard effective
numbering.

In an effective Polish space, a point x is computable if and only if for every ε > 0 a simple
point s can be computed, uniformly in ε, such that d(s, x) < ε.

We will be concerned with computability and Baire category, so we will naturally meet
the notion of a 1-generic point: a point that does not belong to any “effectively meager set”
in the following sense.

I Definition 1. x ∈ X is 1-generic if x does not belong to the boundary of any effective
open set. In other words, for every effective open set U , either x ∈ U or there exists a
neighborhood B of x disjoint from U .

By the Baire category theorem, every Polish space is a Baire space so 1-generic points
exist and form a co-meager set.

3 A non-uniform result

Let X be an effective Polish space, Y an effective topological space and f : X → Y a (total)
computable function.

To introduce informally the results of this section, assume temporarily that f is one-to-one.
If f−1 is computable, i.e. if every x is computable relative to f(x) uniformly in x, then f−1

is continuous. As mentioned earlier uniformity is crucial here: that some x is computable
relative to f(x) does not imply in general that f−1 is continuous at f(x). Theorem 7 below
surprisingly shows that a non-uniform version can still be obtained, valid at most points.

Let us now make it precise and formal. We do not assume anymore that f is one-to-one.
When focusing on the problem of inverting a function, one comes naturally to the following

basic notions:
f is invertible at x if x is the only pre-image of f(x),
f is locally invertible at x if x is isolated in the pre-image of f(x).

If one has access to x via its image only, then x is determined unambiguously in the
first case, with the help of a discrete advice (a basic open set isolating x) in the second
case. However, “being uniquely determined” is not sufficient in practice: physically or
computationally, one cannot know entirely f(x) in one step, but progressively as a limit of
finite approximations. We need to consider stronger, topological versions of the two basic
notions of invertibility, expressing that x can be recovered from the knowledge of its image
given by finer and finer neighborhoods.

STACS’14

366 Irreversible computable functions

I Definition 2. Let f : X → Y be a function. We say that f is continuously invertible at x
if the pre-images of the neighborhoods of f(x) form a neighborhood basis of x, i.e. for every
neighborhood U of x there exists a neighborhood V of f(x) such that f−1(V) ⊆ U .

We say that f is locally continuously invertible at x if there exists a neighborhood B of x
such that the restriction of f to B is continuously invertible at x, i.e. for every neighborhood
U of x there exists a neighborhood V of f(x) such that B ∩ f−1(V) ⊆ U .

Observe that these notions are very natural when investigating the problem of inverting
a function: we think that they are not technical ad hoc conditions.

Every effective topological space Y has a countable basis hence is sequential, i.e. continuity
notions can be expressed in terms of sequences, which may be more intuitive. We will be
particularly interested in the negations of these notions, which we characterize now.

I Proposition 3.1. f is not continuously invertible at x if and only if there exist δ > 0 and a
sequence xn such that d(x, xn) > δ and f(xn) converges to f(x).

f is not locally continuously invertible at x if and only if for every ε > 0 there exist δ > 0
and a sequence xn such that ε > d(x, xn) > δ and f(xn) converges to f(x).

Let us illustrate these notions on a few examples.

I Example 3. If f is one-to-one then f is continuously invertible at x if and only if f−1 is
continuous at f(x).

I Example 4. The real function f(x) = x2 is continuously invertible exactly at 0, and locally
continuously invertible everywhere (for x 6= 0 take for B an open interval avoiding 0).

I Example 5. The projection π1 : 2N → 2N which maps A1⊕A2 = {2n : n ∈ A1} ∪ {2n+ 1 :
n ∈ A2} to A1 is not locally continuously invertible anywhere. Indeed, given A1, A2 ∈ 2N,
A1 ⊕A2 is not isolated in the pre-image by π1 of A1 = π1(A1 ⊕A2).

I Example 6. Let X be the Cantor space 2N with the product topology τ generated by the
cylinders [u], u ∈ 2∗, Y be the Cantor space with the positive topology τScott generated by
the sets {A ⊆ N : F ⊆ A} where F varies among the finite subsets of N. The computable
elements of the two effective topological spaces are the computable sets and the c.e. sets
respectively. Consider the enumeration operator Enum := id : X → Y . Enum is computable
and one-to-one but its inverse is discontinuous. More precisely, (i) it is continuously invertible
exactly at N, (ii) it is locally continuously invertible exactly at the co-finite sets: if A is
co-finite then let B be a cylinder specifying all the 0’s in A, every cylinder containing A is
the intersection of a Scott open set with B.

In general continuous invertibility at a point is strictly stronger than local continuous
invertibility. This is not the case for linear operators, where a dichotomy appears. Following
Pour-El and Richards [12], by a linear operator T : X → Y between Banach spaces we mean
a linear function T : D(T)→ Y where D(T) is a subspace of X.

I Proposition 3.2. Let X,Y be Banach spaces and T : X → Y a one-to-one linear operator.
If T−1 is bounded then T is continuously invertible everywhere.
If T−1 is unbounded then T is nowhere locally continuously invertible.

Proof. The first point simply follows from the fact that T−1 is continuous. Assume that
T−1 is unbounded. There exists a sequence an ∈ X such that ‖an‖ = 1 and ‖T (an)‖ → 0.
Let x ∈ X and ε > 0. Take δ = ε/3 and define xn = x+ 2δan: T (xn) converges to T (x) and
ε > ‖x− xn‖ > δ for all n. J

M. Hoyrup 367

Observe that in the case when T is not one-to-one, T is also nowhere locally continuously
invertible, with exactly the same proof (one can take an = a for some a with ‖a‖ = 1 and
‖T (a)‖ = 0).

We now come to our first result.

I Theorem 7. Let f : X → Y be a computable function and x ∈ X a 1-generic point.
If x is computable relative to f(x) then f is locally continuously invertible at x.

Proof idea. Assume that f is not locally continuously invertible at x and that there is a
Turing machine M that computes x on oracle f(x). We show that x belongs to the boundary
of an effective open set U , i.e. that x is not 1-generic.

Given a point y, there are two possible ways in which a machine may fail to compute y
from f(y): either it diverges, or it outputs something that is incompatible with y. The latter
can be recognized in finite time: we then say that Mf(y) positively fails to compute y. Our
effective open set U is the set of points y such that Mf(y) positively fails to compute y.

First, if f is not continuously invertible at x, there exists δ > 0 and a sequence xn
such that d(xn, x) > δ and f(xn) converges to f(x). If n is sufficiently large then f(xn) is
arbitrarily close to f(x) so Mf(xn) computes an arbitrarily refined approximation of x. If we
take n so large that Mf(xn) computes x at precision < δ/2, then Mf(xn) positively fails to
compute xn so xn belongs to U .

Now, if f is not locally continuously invertible at x then xn can be taken arbitrarily close
to x, so x belongs to the closure of U . J

In the sequel we introduce a condition on f which roughly means that f is “almost
nowhere” locally continuously invertible and that entails (i) the existence of an x that is not
computable relative to f(x) (Theorem 13) and, better, (ii) the existence of a non-computable
x such that f(x) is computable (Theorem 20).

4 Reversibility

We define two dual notions for a function: reversibility (Section 4.1) and irreversibility
(Section 4.2). In the sense of Baire category, a reversible function is continuously invertible
almost everywhere; an irreversible function is almost nowhere locally continuously invertible.

4.1 Reversible functions
Let X,Y be T0 topological spaces. For a continuous function f : X → Y , the following are
equivalent:

f is one-to-one and f−1 : f(X)→ X is continuous,
the initial topology of f is the topology of X, i.e. for every open set U ⊆ X there exists
an open set V ⊆ Y such that U = f−1(V).

A function satisfying these conditions can be reversed in the sense that x can be recovered
from f(x) for every x: x is not only uniquely determined by f(x), but a neighborhood basis
of x can be progressively constructed from a neighborhood basis of f(x).

We first consider a slight weakening of this notion.

I Definition 8. We say that f is reversible if for every non-empty open set U ⊆ X there is
an open set V ⊆ Y such that ∅ 6= f−1(V) ⊆ U .

We say that f is effectively reversible if V = VU can moreover be computed from U (basic
open set).

STACS’14

368 Irreversible computable functions

I Proposition 4.1. If f is continuous and reversible then it is continuously invertible at every
point in a dense Gδ-set.

If f is computable and effectively reversible then there is a dense effective Gδ-set D such
that f|D is one-to-one and its inverse is computable on f(D), i.e. x is uniformly computable
from f(x) when x ∈ D.

In particular if x is 1-generic then x is computable relative to f(x).

4.2 Irreversible functions
We now consider the dual notion: an irreversible function is a function that is not reversible,
not even locally.

I Definition 9. f is irreversible if for every open set B ⊆ X the restriction f|B : B → f(B)
is not reversible.

Formally, f is irreversible if for every non-empty open set B there exists a non-empty
open set UB ⊆ B such that there is no open set V satisfying ∅ 6= f−1(V) ∩B ⊆ UB .

In other words, each pre-image of an open set that intersects B does so outside UB. If
x ∈ UB then we will never know it from f(x), even with the help of the advice x ∈ B.

Observe that one can assume w.l.o.g. that f−1(V) ∩B * UB. Indeed, one can replace
UB by some ball B(s, r) such that B(s, r) ⊆ UB .

An application of an irreversible function f to x comes with a loss of information about
x, that can hardly be recovered. Being irreversible is orthogonal to not being one-to-one: the
function x 7→ x2 is not one-to-one but not irreversible: x can be (continuously or computably)
recovered from x2; a one-to-one function can be irreversible if its inverse is dramatically
discontinuous (examples of such functions will be encountered in the sequel).

In terms of sequences, f is irreversible if and only if for every B there exists a non-empty
open set UB ⊆ B such that for every x ∈ UB there is a sequence xn ∈ B \ UB such that
f(xn) converges to f(x).

As announced, the set of points at which an irreversible function is locally continuously
invertible is small in the sense of Baire category.
I Proposition 4.2. Let f be irreversible. There is a dense Gδ-set D such that f is not locally
continuously invertible at any x ∈ D.

In other words, for almost every x the application of f to x comes with a “topological
information” loss.

The preceding proposition does not rule out the possibility that the restriction of f to a
“large” set be continuously invertible (for instance, the characteristic function of the rational
numbers is nowhere continuous, but its restriction to the co-meager set of irrational numbers
is continuous). The next assertion shows that this is not possible.
I Proposition 4.3. Let f be irreversible and C ⊆ X be such that f|C : C → f(C) is an
homeomorphism. Then C is nowhere dense.

Proof. Assume the closure of C contains a ball B. UB ∩ C is non-empty. Let x ∈ UB ∩ C.
There exists a sequence xn ∈ B \ UB such that f(xn) converges to f(x). By density of C
in B, xn can be taken in C. As f|C is an homeomorphism and f(xn) converges to f(x), xn
should converges to x and eventually enter UB , which gives a contradiction. J

I Example 10. Let f be a constant function defined on the Polish space X. f is irreversible
if and only if X is perfect, i.e. has no isolated point.

M. Hoyrup 369

I Example 11. The first projection π1 : 2N → 2N from Example 5 is irreversible. Indeed, to
B = [w], associate UB = [w00]. The intersection with [w] of the pre-image of any cylinder
cannot be contained in [w00]: knowing arbitrarily many bits of π1(A) and the first |w| bits
of A does not give any information about the next odd bit of A, so it does not enable one to
guess that A belongs to [w00].

In the definition of an irreversible function (Definition 9), B and UB can be assumed
w.l.o.g. to be basic balls.

I Definition 12. f is effectively irreversible if UB can be computed from B.

The following result is the effective version of Proposition 4.3.

I Theorem 13. If f is effectively irreversible then for every 1-generic x, x is not computable
relative to f(x).

Proof. The dense Gδ-set provided by Proposition 4.2 is effective when f is effectively
irreversible so it contains every 1-generic point. Hence for every 1-generic x, f is not locally
continuously invertible at x. We now apply Theorem 7. J

In other words, if x is 1-generic then the application of f to x comes with an “algorithmic
information” loss. So if f is effectively irreversible then there exists some x that is not
computable relative to f(x).

4.3 Examples
Several well-known results in computability theory can be interpreted using Theorem 13 as
consequences of the effective irreversibility of some computable function.

I Example 14. Consider the enumeration operator of Example 6. Enum is effectively
irreversible: to each cylinder B = [w] associate UB = [w0].

Applying Theorem 13 then gives: if A is 1-generic then A and N \A have incomparable
enumeration degrees. Such an A was first proved to exist by Selman [14].

I Example 15. The projection π1 : 2N → 2N from Examples 5 and 11 is effectively irreversible.
Applying Theorem 13 to π1 and symmetrically to the second projection π2 gives Jockush and
Posner’s result [6] that if A = A1 ⊕A2 is 1-generic then A1 and A2 are Turing incomparable,
which implies Kleene-Post theorem, taking a ∅′-computable 1-generic set.

I Example 16. Jockush [7] proved that every 1-generic A ∈ 2N is c.e.a., i.e. A computes
some B such that A is c.e. relative to B but not computable relative to B. The proof goes as
follows: let f(A) = {〈i, j〉 : i ∈ A ∧ 〈i, j〉 /∈ A} (where 〈〉 is a computable one-to-one pairing
function such that 〈i, j〉 > i). f is computable, if A is 1-generic then A is c.e. in f(A) as
i ∈ A ⇐⇒ ∃j, 〈i, j〉 ∈ f(A). We show that f is effectively irreversible, which by Theorem
13 implies that if A is 1-generic then A �T f(A).

First observe that f is not one-to-one: given A and i such that i /∈ A and 〈i, 0〉 /∈ A,
there exists Â 6= A such that f(Â) = f(A). Add 〈i, 0〉 to A, and each time some k is added,
add all the pairs 〈k, j〉 that are not already in. One easily checks that f(Â) = f(A). As a
result, given a cylinder B = [u], let UB = [u] ∩ {A : i /∈ A and 〈i, 0〉 /∈ A}. For every A ∈ UB
there is Â ∈ B \ UB such that f(Â) = f(A), so f−1f(A) intersects B \ UB: knowing f(A)
and that A ∈ B does not enable one to know that A ∈ UB .

STACS’14

370 Irreversible computable functions

Again, linear operators provide a large class of examples. An effective Banach space
is a Banach space which is an effective Polish space with the metric induced by the norm,
such that 0 is a computable point and the vector space operations are computable functions.
Many classical Banach spaces R, C[0, 1] (with the uniform norm) or L1[0, 1] are effective
Banach spaces.

I Proposition 4.4. Let X,Y be effective Banach spaces and T : X → Y a computable linear
operator. Assume that either T is not one-to-one or T is one-to-one and T−1 is unbounded.
Then T is effectively irreversible.

I Example 17. Applying Proposition 4.4 and Theorem 13 to the integration operator that
maps f ∈ C[0, 1] to F : x 7→

∫ x
0 f(t) dt gives that if f ∈ C[0, 1] is 1-generic then f is not

computable relative to its primitive F that vanishes at 0.

I Example 18. Applying Proposition 4.4 and Theorem 13 to the canonical injection from
C[0, 1] to L1[0, 1] gives that if f ∈ C[0, 1] is 1-generic then it is not computable relative to
itself, as an element of L1[0, 1]. In other words, the description of f as an element of L1[0, 1]
contains strictly less algorithmic information than the description of f as an element of
C[0, 1].

I Example 19. A function f : N → N can be described by enumerating its graph or by
enumerating the complement of its graph. The former alternative gives in general strictly
more information about the function than the latter. Let us make it precise.

Every function F with finite domain induces the cylinder [F] of functions f : N → N
extending F . The product topology on the Baire space B is generated by the cylinders. The
negative topology is generated by the complements of the cylinders, as a subbasis. The
identity id : (B, τ)→ (B, τneg) is computable: from f one can enumerate the cylinders that
are incompatible with f , but the converse cannot be done. id is effectively irreversible: to a
cylinder B = [F], associate UB = [F] ∪ {n 7→ 0}] where n is fresh, i.e. not in the domain of
F .

By Theorem 13, if f : N → N is 1-generic then it is not computable relative to every
co-enumeration of its graph.

5 The constructive result

We now present the main result of the paper. It is the constructive version of Theorem 13 as
it makes f(x) computable. The construction uses a priority argument with finite injury.

I Theorem 20. If f is effectively irreversible then there exists a non-computable x such that
f(x) is computable.

The proof is given in the appendix. The proof uses the priority method with finite
injury, which can be seen as a game between a player, computing f(x), and infinitely many
opponents (all the Turing machines) trying to compute x.

5.1 Application to the ergodic decomposition
We now present an application of Theorem 20. Let P be a Borel probability measure P over
the Cantor space. P is computable if the real numbers P [w] are uniformly computable. P is
shift-invariant if P [w] = P [0w] + P [1w] for each finite string w. P is ergodic if it cannot be
written as P = 1

2 (P1 + P2) with P1 6= P2 both shift-invariant.

M. Hoyrup 371

The ergodic decomposition theorem says that every shift-invariant measure can be uniquely
decomposed into a convex combination (possible uncountable) of ergodic measures. Our
question is: given a computable shift-invariant measure, can we compute in a sense its ergodic
decomposition? This question was implicitly addressed by V’yugin [16] who constructed a
counter example: a countably infinite combination of ergodic measures which is computable
but not effectively decomposable. In [4] we raised the following question: does the ergodic
decomposition become computable when restricting to finite combinations? As an application
of Theorem 20, we solve the problem and prove that it is already non-effective in the finite
case:

I Theorem 21. There exist two ergodic shift-invariant measures P and Q such that neither
P nor Q is computable but P +Q is computable.

The strategy is as follows: the mapping (P,Q) 7→ P +Q is computable, two-to-one on
the space E × E of pairs of ergodic measures and we prove

I Theorem 22. The function (P,Q) 7→ P +Q defined on E × E is effectively irreversible.

which implies the result applying Theorem 20.

6 Genericity

Given an effectively irreversible function f ,
Theorem 13 tells us that if x is 1-generic then x is not computable relative to f(x),
Theorem 20 tells us that there exist non-computable x such that f(x) is computable.

The two results are “disjoint” in the sense that in general a single x cannot at the same
time be 1-generic and have a computable image, except for some particular functions like
constant functions. We raise the following question: is it possible to bring the two results
closer together? How far can x be from being computable, given that f(x) is computable?
How generic can x be?

We now give an answer to that question. We recall that a topological space always comes
with an order called the specialization order : x ≤ y iff every neighborhood of x is also a
neighborhood of y. x ≤ y means that if one describes x by listing its basic neighborhoods
then one can never distinguish x from y. When the space is Hausdorff, the specialization
order is trivial. Here ≤ denotes the specialization order on the target space Y of f .

I Definition 23. x is f -generic if x is 1-generic in the subspace ↑f x := {x′ : f(x) ≤ f(x′)}.
In other words, x is f -generic if for every effective open set U , either x ∈ U or there exists a
neighborhood B of x such that B ∩ U ∩ ↑f x = ∅.

For instance, taking the first projection π1 : 2N → 2N of Example 15, A = A1 ⊕ A2 is
π1-generic iff A1 is 1-generic relative to A2.

Here we focus on a few particular instances of this notion, when f is the identity from a
space to itself with two different topologies. We will consider

1. the enumeration operator Enum = id : (2N, τprod)→ (2N, τScott) (Examples 6 and 14),
2. id : (2N, τprod)→ (2N, τlex) where τlex is generated by the sets {y ∈ 2N : x <lex y} and
3. id : (CL(2N), τhit-or-miss)→ (CL(2N), τmiss). Here, CL(2N) is the set of non-empty closed

subsets of the Cantor space. τmiss is generated by the sets Uu = {P ∈ CL(2N) : P∩[u] = ∅}
where u ∈ 2∗. τhit-or-miss is generated by the sets Uu together with their complements.

Definition 23 is instantiated as follows:

STACS’14

372 Irreversible computable functions

I Definition 24. 1. A generic c.e. set x is a c.e. set that is 1-generic in the subspace {y ∈
2N : x ⊆ y}.

2. A generic left-c.e. real x is a left-c.e. real that is 1-generic in the subspace {y ∈ 2N :
x ≤lex y}.

3. A generic Π0
1-class P is a Π0

1-class that is 1-generic in the subspace {Q ∈ CL(2N) : P ⊇ Q}.

A generic element belongs to every effective open set that is dense above it, for the
corresponding specialization order (while a 1-generic elements belongs to every effective open
set that is dense along it). The next result is the sought combination of Theorems 13 and 20.

I Theorem 25. There exists a co-infinite generic c.e. set, a co-infinite generic left-c.e. real
and a generic Π0

1-class without isolated points.

Proof idea. Kurtz built a left-c.e. weakly 1-generic real (see [11]). The construction even
gives a generic left-c.e. real. The construction of a generic c.e. set and of a generic Π0

1-class are
exactly the same, replacing the lexicographic order by inclusion ⊆ of sets and reverse inclusion
of classes respectively, which are the specialization orders of the underlying topologies. J

Theorem 25 is indeed a strengthening of Theorem 20: in Theorem 7, the 1-genericity
assumption can actually be weakened to f -genericity (at least for the particular functions
under consideration).
I Proposition 6.1. In each one of the three cases, if x is generic inside ↑f x and f is not
locally continuously invertible at x then x is not computable.

Proof. Using compactness of the space, one can show that f is not locally continuously
invertible at x iff x is not isolated in ↑f x, i.e. x belongs to the closure of ↑f x \ {x}. If x
is computable then the complement of {x} is an effective open set, so x cannot be generic
inside ↑f x. J

Theorem 25 embodies many simple finite injury arguments as Friedberg-Muchnik theorem.
I Proposition 6.2. Let A be a co-infinite generic c.e. set. A is hypersimple, A = A1 ⊕ A2
where A1 and A2 are Turing incomparable, A is not autoreducible.

Proof. Same argument as for 1-generic sets, observing that the involved open set is not only
dense along A, but even above A. For instance, to prove that A2 �T A1, given a Turing
functional φ, let U = {A1 ⊕A2 : ∃n, φA1(n) = 0 ∧A2(n) = 1}. If φA1 = A2 then replacing a
0 in A2 by a 1 arbitrarily far gives an element of U arbitrarily close to A1 ⊕A2 that is above
(i.e. is a superset of) A1 ⊕A2. J

It happens that the co-infinite generic c.e. sets are exactly the p-generic sets defined by
Ingrassia [5].

Downey and LaForte [3] proved the existence of non-computable left-c.e. reals x all
of whose presentations are computable: each prefix-free c.e. set A of finite binary strings
satisfying

∑
w∈A 2−|w| = x is actually a computable set. Stephan and Wu [15] proved that

any such real is strongly Kurtz-random. It must even be a generic left-c.e. real.
I Proposition 6.3. If x is a non-computable left-c.e. real all of whose presentations are
computable then x is a generic left-c.e. real.

Proof. Let U be an effective open set that does not contain x: we must find y > x such that
[x, y) is disjoint from U . First replace U by V = U ∪ [0, x). Let A be a prefix-free c.e. set
such that V =

⋃
w∈A[w]. The set A<x = {w ∈ A : w <lex x} is a presentation of x hence it

M. Hoyrup 373

is computable, so A>x = {w ∈ A : w >lex x} = A \A<x is c.e. hence y := inf
⋃
w∈A>x

[w] is
right-c.e. As x is not computable and x ≤ y, one has x < y and we get the result as [x, y) is
disjoint from U . J

I Proposition 6.4. A generic Π0
1-class without isolated point has no computable member.

Proof. Let x be computable. Consider the collection U = {P : x /∈ P}. U is an effective
open set in the space (CL(2N), τhit-or-miss) (and even in the topology τmiss). U is dense and
better: for every P without isolated point, there exist Q ⊆ P in U arbitrarily close to P , so
U is dense below P (here the specialization order is the reverse inclusion). As a result, if P
is a generic Π0

1-class without isolated point then P belongs to U , i.e. x /∈ P . J

Acknowledgements. The author wishes to thank Peter Gács, Emmanuel Jeandel and
Cristóbal Rojas for discussions on the subject and helpful comments on a draft of the paper,
Christopher Porter for suggesting Example 16 and the anonymous referees for their useful
comments.

References
1 V. Brattka. Computable invariance. Theor. Comput. Sci., 210(1):3–20, 1999.
2 M. Braverman and M. Yampolsky. Computability of Julia Sets. Springer, 2008.
3 R. G. Downey and G. LaForte. Presentations of computably enumerable reals. Theor.

Comput. Sci., 284(2):539–555, 2002.
4 M. Hoyrup. Randomness and the ergodic decomposition. In CiE, volume 6735 of LNCS,

pages 122–131. Springer, 2011.
5 M. Ingrassia. P-genericity for Recursively Enumerable Sets. PhD thesis, University of

Illinois at Urbana-Champaign, 1981.
6 J. Jockusch, Carl G. and D. B. Posner. Double jumps of minimal degrees. J. Symb. Log.,

43(4):715–724, 1978.
7 C. G. Jockush. Degrees of generic sets. In Recursion Theory: its Generalisations and

Applications, pages 110–139. Cambridge University Press, 1980.
8 J. S. Miller. Degrees of unsolvability of continuous functions. J. Symb. Log., 69(2):555–584,

2004.
9 J. Myhill. Category methods in recursion theory. Pac. J. Math., 11:1479–1486, 1961.
10 J. Myhill. A recursive function, defined on a compact interval and having a continuous

derivative that is not recursive. Michigan Math. J., 18(2):97–98, 1971.
11 A. Nies. Computability and randomness. Oxford logic guides. Oxford University Press,

2009.
12 M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Perspectives in

Mathematical Logic. Springer, Berlin, 1989.
13 H. J. Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,

Cambridge, MA, USA, 1987.
14 A. L. Selman. Arithmetical reducibilities I. Math. Log. Quart., 17(1):335–350, 1971.
15 F. Stephan and G. Wu. Presentations of K-trivial reals and Kolmogorov complexity. In

CiE, volume 3526 of LNCS, pages 461–469. Springer, 2005.
16 V. V. V’yugin. Effective convergence in probability and an ergodic theorem for individual

random sequences. SIAM Theory of Probability and Its Applications, 42(1):39–50, 1997.
17 K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

STACS’14

Ehrenfeucht-Fraïssé Games on Omega-Terms
Martin Huschenbett1 and Manfred Kufleitner2

1 Institut für Theoretische Informatik
Technische Universität Ilmenau, Germany
martin.huschenbett@tu-ilmenau.de

2 Institut für Formale Methoden in der Informatik∗

Universität Stuttgart, Germany
kufleitner@fmi.uni-stuttgart.de

Abstract
Fragments of first-order logic over words can often be characterized in terms of finite monoids or
finite semigroups. Usually these algebraic descriptions yield decidability of the question whether
a given regular language is definable in a particular fragment. An effective algebraic characteri-
zation can be obtained from identities of so-called omega-terms. In order to show that a given
fragment satisfies some identity of omega-terms, one can use Ehrenfeucht-Fraïssé games on word
instances of the omega-terms. The resulting proofs often require a significant amount of book-
keeping with respect to the constants involved. In this paper we introduce Ehrenfeucht-Fraïssé
games on omega-terms. To this end we assign a labeled linear order to every omega-term. Our
main theorem shows that a given fragment satisfies some identity of omega-terms if and only if
Duplicator has a winning strategy for the game on the resulting linear orders. This allows to
avoid the book-keeping.

As an application of our main result, we show that one can decide in exponential time whether
all aperiodic monoids satisfy some given identity of omega-terms, thereby improving a result of
McCammond (Int. J. Algebra Comput., 2001).

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases regular language, first-order logic, finite monoid, Ehrenfeucht-Fraïssé
games, pseudoidentity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.374

1 Introduction

By combining a result of McNaughton and Papert [12] with Schützenberger’s characterization
of star-free languages [16], a given language over finite words is definable in first-order logic
if and only if its syntactic monoid is finite and aperiodic. The implication from left to right
can be shown using Ehrenfeucht-Fraïssé games, see e.g. [17]. A similar result for two-variable
first-order logic FO2 was obtained by Thérien and Wilke [19]: A language is definable in FO2

if and only if its syntactic monoid belongs to the variety DA. Both the variety DA and the
class of finite aperiodic monoids can be defined using identities of omega-terms. Roughly
speaking, omega-terms are words equipped with an additional operation, the ω-power. IfM is
a finite monoid, then there exists a positive integer ωM such that uωM = (uωM)2 for all u ∈M .
We call uωM the idempotent generated by u. Every mapping h : Λ→M uniquely extends to
omega-terms over the alphabet Λ by setting h(uv) = h(u)h(v) and h(uω) = h(u)ωM . Now,

∗ The second author was supported by the German Research Foundation (DFG) under grant DI 435/5-1
and by the Technische Universität München, Germany.

© Martin Huschenbett and Manfred Kufleitner;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 374–385

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.huschenbett@tu-ilmenau.de
mailto:manfred.kufleitner@fmi.uni-stuttgart.de
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.374
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Huschenbett and M. Kufleitner 375

the monoid M satisfies an identity u = v of omega-terms u and v over Λ if for every mapping
h : Λ → M we have h(u) = h(v). A finite monoid is aperiodic if and only if it satisfies
aω = aωa, and it is in DA if and only if it satisfies (abc)ωb(abc)ω = (abc)ω, see e.g. [15].
Showing that some first-order fragment F satisfies an identity u = v of omega-terms u, v
usually works as follows. Suppose F does not satisfy u = v. Then there exists a formula
ϕ ∈ F such that the syntactic monoid of L(ϕ) does not satisfy u = v. The depth n of the
formula ϕ defines an n-round Ehrenfeucht-Fraïssé game on instances of u and v (i.e., on finite
words which are obtained by replacing the ω-powers by fixed positive integers depending
on n). Giving a winning strategy for Duplicator yields a contradiction, thereby showing
that F satisfies u = v. Usually, playing the game on u and v involves some non-trivial
book-keeping since one has to formalize intuitive notions such as positions being near to one
another or being close to some border. For first-order logic and for FO2 the book-keeping is
still feasible [17, 5] whereas for other fragments such as the quantifier alternation inside FO2

this task becomes much more involved (and therefore other techniques are applied [10, 18]).
Instead of defining new instances of a given omega-term depending on the fragment and

the number of rounds in the Ehrenfeucht-Fraïssé game, we give a single instance which works
for all fragments of first-order logic and any number of rounds. In addition, we allow an
infinite number of rounds. The fragments we consider in this paper rely on an abstract notion
of logical fragments as introduced in [9]. We show that a fragment F satisfies an identity of
omega-terms if and only if Duplicator has a winning strategy for the Ehrenfeucht-Fraïssé
game for F on the instances of the omega-terms. These instances are labeled linear orders
which, in general, are not finite words.

An obvious application of our main result is the simplification of proofs showing that
some fragment F satisfies a given identity of omega-terms. The main reason is that with
this new approach one can avoid the book-keeping. It is slightly less straightforward that
one can use this approach for solving word problems for omega-terms over varieties of finite
monoids. Let V be a variety of finite monoids. Then the word problem for omega-terms
over V is the following: Given two omega-terms u and v, does every monoid in V satisfy the
identity u = v? This problem was solved for various varieties, see e.g. [2, 11, 13]. Using our
main result, one approach to solving such word problems is as follows. First, find a logical
fragment for V. Second, find a winning strategy for Duplicator on omega-terms satisfied by
this fragment. Third, use this winning strategy for finding the desired decision algorithm. In
the case of aperiodic monoids, we use this scheme for improving the decidability result of
McCammond [11] by showing that the word problem for omega-terms over aperiodic monoids
is solvable in exponential time.

Historically, the greek letter ω is used for two different things which are frequently used
thoughout this paper: First, the idempotent power of an element and second, the smallest
infinite ordinal. In order to avoid confusion in our presentation, we chose to follow the
approach of Perrin and Pin [14] by using π instead of ω to denote idempotent powers. In
particular, we will use the exponent π in omega-terms which is why we will call them π-terms
in the remainder of this paper.

2 Preliminaries

As mentioned above, one of the central notions in this paper are so called π-terms. In order
to make their interpretation by several semantics possible in a uniform way, we follow an
algebraic approach. A π-algebra is a structure (U, · , π) comprised of an associative binary
operation · and a unary operation π on a carrier set U . The application of · is usually written

STACS’14

376 Ehrenfeucht-Fraïssé Games on Omega-Terms

as juxtaposition, i.e., uv = u · v, and the application of π as uπ. A π-term is an arbitrary
element of the free π-algebra TΛ generated by Λ, where Λ is a countably infinite set which is
fixed for the rest of this paper. We also use this set as a universe for letters (of alphabets).

Monoids as π-Algebras. Let M be a monoid. For any k ≥ 1 we extend M to a π-algebra,
called k-power algebra on M , by defining uπ = uk for u ∈ M . Suppose that M is finite.
An element u ∈ M is idempotent if u2 = u. We extend M to another π-algebra, called
idempotency algebra on M , by defining uπ for u ∈M to be the unique idempotent element in
the set {uk | k ≥ 1 }. In fact, there are infinitely many k ≥ 1, called idempotency exponents
of M , such that for each u ∈ M the element uk is idempotent, i.e., the k-power algebra
and the idempotency algebra on M coincide. An identity s = t of π-terms s, t ∈ TΛ holds
in M if every π-algebra morphism h from TΛ into the idempotency algebra on M satisfies
h(s) = h(t).

The set of all finite words over an alphabet A ⊆ Λ is A∗. Let L ⊆ A∗ be a language
over a finite alphabet A ⊆ Λ. The syntactic congruence of L is the equivalence relation
≡L on A∗ defined by u ≡L v if xuy ∈ L is equivalent to xvy ∈ L for all x, y ∈ A∗. In fact,
≡L is a monoid congruence on A∗. The quotient monoid ML = A∗/≡L is called syntactic
monoid of L. It is finite precisely if L is regular. Suppose that L is regular and let k ≥ 1
be an idempotency exponent of ML. Then the map sending each w ∈ A∗ to its ≡L-class is
a π-algebra morphism from the k-power algebra on A∗ onto the idempotency algebra on
ML. Thus, any identity s = t of π-terms s, t ∈ TΛ holds in ML if and only if every π-algebra
morphism h from TΛ into the k-power algebra on A∗ satisfies h(s) ≡L h(t).

Generalized Words. The third semantic domain we consider is the class of generalized
words. A generalized word (over Λ) is a triple u = (Pu,≤u, `u) comprised of a (possibly
empty) linear ordering (Pu,≤u) being labeled by a map `u : Pu → Λ. The set dom(u) = Pu
is the domain of u, its elements are called positions of u. We write u(p) instead of `u(p) for
p ∈ Pu. The order type of u is the isomorphism type of (Pu,≤u). We regard any finite word
w = a1 . . . an ∈ Λ∗ as a generalized word by defining dom(w) = [1, n], ≤w as the natural
order on [1, n] and w(k) = ak for k ∈ [1, n]. On that view, generalized words indeed generalize
finite words. As of now, we mean “generalized word” when writing just “word”. Two words u
and v are isomorphic if there exists an isomorphism f of linear orderings from (dom(u),≤u)
to (dom(v),≤v) such that u(p) = v(f(p)) for all p ∈ dom(u). We identify isomorphic words.
We denote the set of all (isomorphism classes of) countable words by ΛLO. The exponent LO
is for linear order. We regard Λ∗ as a subset of ΛLO.

Let u, v ∈ ΛLO be two words. Their concatenation is the word uv ∈ ΛLO defined by
dom(uv) = dom(u)] dom(v), ≤uv makes all positions of u smaller than those of v and
retains the respective orders inside u and inside v, and (uv)(p) is u(p) if p ∈ dom(u) and
v(p) if p ∈ dom(v). The set ΛLO with concatenation forms a monoid. On finite words this
concatenation coincides with the usual definition and hence Λ∗ is a submonoid of ΛLO.

It is customary to regard n ∈ N also as the order type of the natural linear ordering on
[1, n]. We extend the notion of the n-power algebra on ΛLO to arbitrary countable order
types τ as follows. Let (T,≤T) be a linear ordering of isomorphism type τ . The τ -power of
any word u ∈ ΛLO is the word uτ ∈ ΛLO defined by dom(uτ) = dom(u)× T , (p, t) ≤uτ (p′, t′)
if t <T t′ or if t = t′ and p ≤u p′, and (uτ)(p, t) = u(p). We extend the monoid ΛLO to
a π-algebra, called τ -power algebra on ΛLO, by defining uπ = uτ for u ∈ ΛLO. We denote
by J · Kτ the unique π-algebra morphism from TΛ into this π-algebra mapping each a ∈ Λ to
the word consisting of a single position which is labeled by a. Finally, notice that there are
two definitions of the n-power algebra on ΛLO around, but actually they coincide.

M. Huschenbett and M. Kufleitner 377

Logic over Words. For the rest of this paper, we fix a countably infinite set V of (first-order)
variables x, y, z, The syntax of first-order logic over words is given by

ϕ ::= > | ⊥ | empty | x = y | λ(x) = a | x < y | x ≤ y | suc(x, y) | min(x) | max(x) |
¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ∃xϕ | ∀xϕ ,

where x, y ∈ V and a ∈ Λ. The set of all formulae is denoted by FO. Brackets can be omitted
when originating no ambiguity. The free variables FV(ϕ) of a formula ϕ ∈ FO are defined as
usual. A sentence is a formula ϕ with FV(ϕ) = ∅.

We only give a brief sketch of the semantics of formulae. Let X ⊆ V be a finite set of
variables. An X-valuation on u is a pair 〈u, α〉 consisting of a word u ∈ ΛLO and a map
α : X→ dom(u). It is a model of a formula ϕ ∈ FO with FV(ϕ) ⊆ X, in symbols 〈u, α〉 |= ϕ,
if u satisfies the formula ϕ under the following assumptions:

variables range over positions of u and free variables are interpreted according to α,
> is always satisfied, ⊥ never, and empty only in case dom(u) = ∅,
the function symbol λ is interpreted by the labeling map `u : dom(u)→ Λ and
the predicates <, ≤, suc, min and max are evaluated in the linear ordering (dom(u),≤u),
where suc(x, y) means that y is the immediate successor of x.

We identify any word u ∈ ΛLO with the only ∅-valuation on u, namely 〈u, ∅〉 with ∅ also
denoting the empty map. Thus, for sentences ϕ the meaning of u |= ϕ is well-defined. Let
A ⊆ Λ be a finite alphabet and ϕ ∈ FO a sentence. Due to the result of Büchi, Elgot, and
Trakhtenbrot [4, 7, 20], the language over A defined by ϕ, namely LA(ϕ) = {w ∈ A∗ | w |= ϕ },
is regular. A language L ⊆ A∗ is definable in a class F ⊆ FO of formulae if there exists a
sentence ϕ ∈ F such that L = LA(ϕ).

Fragments. We reintroduce (a slight variation of) the notion of a fragment as a class of
formulae obeying natural syntactic closure properties [9]. A context is a formula µ with a
unique occurrence of an additional constant predicate ◦ which is intended to be a placeholder
for another formula ϕ ∈ FO. The result of replacing ◦ in µ by ϕ is denoted by µ(ϕ).
Unfortunately, the notion of a fragment as defined in [9, Definition 1] is slightly too weak for
our purposes. We require one more natural syntactic closure property, namely condition 4.
in Definition 2.1 below. Condition 6. is missing in the exposition in [9]. Nevertheless, since
we only add requirements, every fragment in our sense is still a fragment in the sense of [9].

I Definition 2.1. A fragment is a non-empty set of formulae F ⊆ FO such that for all
contexts µ, formulae ϕ,ψ ∈ FO, a ∈ Λ and x, y ∈ V the following conditions are satisfied:
1. If µ(ϕ) ∈ F , then µ(>) ∈ F , µ(⊥) ∈ F , and µ(λ(x) = a) ∈ F .
2. µ(ϕ ∨ ψ) ∈ F if and only if µ(ϕ) ∈ F and µ(ψ) ∈ F .
3. µ(ϕ ∧ ψ) ∈ F if and only if µ(ϕ) ∈ F and µ(ψ) ∈ F .
4. If µ(¬¬ϕ) ∈ F , then µ(ϕ) ∈ F .
5. If µ(∃xϕ) ∈ F and x 6∈ FV(ϕ), then µ(ϕ) ∈ F .
6. If µ(∀xϕ) ∈ F and x 6∈ FV(ϕ), then µ(ϕ) ∈ F .

It is closed under negation if the following condition is satisfied:
7. If ϕ ∈ F , then ¬ϕ ∈ F .

It is order-stable if the following condition is satisfied:
8. µ(x < y) ∈ F if and only if µ(x ≤ y) ∈ F .

It is suc-stable if the following two conditions are satisfied:
9. If µ(suc(x, y)) ∈ F , then µ(x = y) ∈ F , µ(max(x)) ∈ F and µ(min(y)) ∈ F .
10. If µ(min(x)) ∈ F or µ(max(x)) ∈ F , then µ(empty) ∈ F .

STACS’14

378 Ehrenfeucht-Fraïssé Games on Omega-Terms

Table 1 A single round of the F-game in configuration S = (G, 〈u, α〉, 〈v, β〉).

1. Spoiler 2. Spoiler 3. Duplicator 4. resulting configuration
chooses Qx chooses q in chooses r in S[Qx, q, r]

Qx = ∃x dom(u) dom(v) (G/∃x, 〈u, α[x/q]〉, 〈v, β[x/r]〉)
Qx = ∀x dom(v) dom(u) (G/∀x, 〈u, α[x/r]〉, 〈v, β[x/q]〉)

Qx = ¬∃x dom(v) dom(u) (G/¬∃x, 〈v, β[x/q]〉, 〈u, α[x/r]〉)
Qx = ¬∀x dom(u) dom(v) (G/¬∀x, 〈v, β[x/r]〉, 〈u, α[x/q]〉)

Examples for fragments in this sense include all classes of formulae which are obtained from
full first-order logic FO by limiting the quantifier depth (e.g., FOn), the number of quantifier
alternations (e.g., Σn and Πn), the number of quantified variables (e.g., FOm), the available
predicates (e.g., first-order logic FO[<] without min, max, suc) or combinations of those.

The quantifier depth qd(ϕ) of a formula ϕ ∈ FO is defined as usual. A fragment F has
bounded quantifier depth if there is an n ∈ N such that qd(ϕ) ≤ n for all ϕ ∈ F . For any
n ∈ N and every fragment F the set Fn = {ϕ ∈ F | qd(ϕ) ≤ n } is a fragment of bounded
quantifier depth. Moreover, the fragment Fn is order-stable (respectively suc-stable) in
case F has the according property.

3 Ehrenfeucht-Fraïssé Games for Arbitrary Fragments

In this section, we introduce an Ehrenfeucht-Fraïssé game for arbitrary fragments of first-order
logic on generalized words and develop its basic theory. Before we can describe this game,
we need to define some notation. In the following, we call the “negated quantifiers” ¬∃ and
¬∀ also quantifiers. The set of all quantifiers (in this sense) is Q = {∃,∀,¬∃,¬∀}. For a
quantifier Q ∈ Q and a variable x ∈ V, the reduct of F by Qx is the set

F/Qx = {ϕ ∈ FO | Qxϕ ∈ F } .

Whenever this set is not empty, it is a fragment as well.
Now, let F be a fragment and u, v two words over Λ. We are about to describe the

F-game on (u, v). A configuration of this game is a triple S = (G, 〈u, α〉, 〈v, β〉) comprised
of a non-empty, iterated reduct G of F and X-valuations 〈u, α〉 and 〈v, β〉 on u and v

for the same arbitrary finite subset X ⊆ V. To emphasize the set X, we also speak of
an X-configuration. The game starts in the ∅-configuration (F , u, v) and goes on for an
arbitrary—possibly infinite—number of rounds. Assuming that the game is currently in
configuration S = (G, 〈u, α〉, 〈v, β〉), a single round proceeds as follows (see Table 1 for a
summary of this procedure):
1. Spoiler chooses a quantifier Q ∈ Q and a variable x ∈ V such that G/Qx 6= ∅.
2. Spoiler chooses a position q (like “quest”) in the domain of u if Q ∈ {∃,¬∀} or in the

domain of v if Q ∈ {∀,¬∃}.
3. Duplicator chooses a position r (like “reply”) in the domain of the other word.
4. The resulting configuration S[Qx, q, r] consists of the reduct G/Qx and the extension of the

valuations 〈u, α〉 and 〈v, β〉 by variable x at positions q and r, accordingly. Whenever Q is
a negated quantifier, the role of the two extended valuations is additionally interchanged
(see the last column of Table 1 for a formal definition of S[Qx, q, r]).

Whenever a player cannot perform a choice because G contains no more quantified
formulae or the domain of the according word is empty, the game immediately stops and

M. Huschenbett and M. Kufleitner 379

the other player wins. Besides the inability of Duplicator to move, the winning condition
for Spoiler is to reach an X-configuration (G, 〈u, α〉, 〈v, β〉) such that there exists a literal
ϕ ∈ G with FV(ϕ) ⊆ X and 〈u, α〉 |= ϕ but 〈v, β〉 6|= ϕ; in this case the game immediately
stops. Duplicator’s goal is simply to prevent Spoiler from winning. In particular, Duplicator
wins all games that go on forever. Due to this circumstance, the F -game is determined, i.e.,
either Spoiler or Duplicator has a winning strategy on (u, v).
I Remark. The F -game is quite asymmetric since Spoiler is not allowed to choose before his
first move whether he wants to play on (u, v) or on (v, u). This may lead to the situation
that he has a winning strategy on (u, v) but not on (v, u) or vice versa. This asymmetry
is owed to the circumstance that F might not be closed under negation. As soon as F is
assumed to be closed under negation this phenomenon disappears and Spoiler has a winning
strategy on (u, v) if and only if he has a winning strategy on (v, u). We also note that, in
general, the winning condition for Spoiler can be asymmetric since it does not rely on any
notion of isomorphism. J

If the quantifier depth of a fragment F is bounded by n ∈ N, the F-game lasts at most n
rounds. In particular, for any fragment F the Fn-game can be regarded as an n-round version
of the F-game. For instance, the FOn-game resembles the classical n-round Ehrenfeucht-
Fraïssé game. The following result is an adaption of the Ehrenfeucht-Fraïssé Theorem to
the F-game for fragments of bounded quantifier depth.

I Theorem 3.1. Let F be a fragment of bounded quantifier depth. For all words u, v ∈ ΛLO

the following are equivalent:
1. u |= ϕ implies v |= ϕ for all sentences ϕ ∈ F and
2. Duplicator has a winning strategy in the F-game on (u, v).

A proof of this theorem can easily be achieved along the lines of a proof of the classical
version, cf. [8]. In fact, such a proof reveals that the implication “2. ⇒ 1.” even holds if the
quantifier depth of F is not bounded. In contrast, the implication “1. ⇒ 2.” substantially
relies the boundedness of the quantifier depth of F . If ζ denotes the order type of the
integers Z, then Duplicator has a winning strategy in the FOn-game on (aζ , aζ+ζ) for each
n ∈ N and hence aζ |= ϕ implies aζ+ζ |= ϕ for all sentences ϕ ∈ FO, but Spoiler has a
winning strategy in the infinite FO-game on (aζ , aζ+ζ).

The objective of the remainder of this section is to identify additional requirements on F
and/or u, v such that the boundedness of the quantifier depth can be omitted. It turns out
that the property introduced in Definition 3.2 below in combination with suc-stability of the
fragment is sufficient for this purpose and still allows for the applications in Section 4. The
order types of the sets N, Z, Q and Z<0 ordered naturally are denoted by ω, ζ, η and ω∗,
respectively. Then ω + ζ · η + ω∗ is the order type of the word aω

(
aζ

)
ηaω

∗ , where a ∈ Λ.

I Definition 3.2. Let % = ω+ζ ·η+ω∗. A word u ∈ ΛLO is %-rational if it can be constructed
from the finite words in ΛLO using the operations of concatenation and %-power only or,
equivalently, if u = JtK% for some π-term t ∈ TΛ.

I Theorem 3.3. Let F be a suc-stable fragment. For all %-rational words u, v ∈ ΛLO the
following are equivalent:
1. u |= ϕ implies v |= ϕ for all sentences ϕ ∈ F and
2. Duplicator has a winning strategy in the F-game on (u, v).

As already mentioned, the implication “2. ⇒ 1.” can be shown using the very same proof as
for the according implication of Theorem 3.1. The key idea behind proving the implication

STACS’14

380 Ehrenfeucht-Fraïssé Games on Omega-Terms

“1. ⇒ 2.” is as follows: Theorem 3.1 provides us for each n ∈ N with a winning strategy
for Duplicator in the Fn-game on (u, v). A winning strategy in the F-game is obtained by
defining a limit of all those strategies. This limit process relies on the %-rationality of the
underlying words and is formalized by Lemma 3.6 below. A major ingredient of its proof is
Proposition 3.4.

In order to keep notation concise, we abbreviate the circumstance that Duplicator has
a winning strategy in a configuration S = (F , 〈u, α〉, 〈v, β〉) by 〈u, α〉 .F 〈v, β〉. Since the
F -game is determined, 〈u, α〉 6.F 〈v, β〉 hence means that Spoiler has a winning strategy in S.
The relation .F is reflexive and transitive, i.e., a preorder on the set of all configurations. It
induces an equivalence ≈F defined by 〈u, α〉 ≈F 〈v, β〉 if 〈u, α〉 .F 〈v, β〉 and 〈v, β〉 .F 〈u, α〉.

I Proposition 3.4. Let F be a suc-stable fragment, k ∈ N and 〈ui, αi〉, 〈vi, βi〉 Xi-valuations
with mutually disjoint Xi for i ∈ [1, k]. If 〈ui, αi〉 .F 〈vi, βi〉 for each i ∈ [1, k], then
〈u1 · · ·uk, α1 ∪ · · · ∪ αk〉 .F 〈v1 · · · vk, β1 ∪ · · · ∪ βk〉. J

I Lemma 3.5. Let F be a suc-stable fragment with quantifier depth bounded by n ∈ N and
u, v ∈ ΛLO. If u .F v, then um .F v% and u% .F vm for all m ≥ 2n+1 − 1. J

The following lemma formalizes the limit process mentioned above.

I Lemma 3.6. Let F be a suc-stable fragment, x ∈ V and 〈u, α〉 an X-valuation on a
%-rational word u ∈ ΛLO. For every infinite sequence (qi)i∈N ∈ dom(u)N there exists
a position q ∈ dom(u) such that for all n ∈ N there are arbitrarily large i ∈ N with
〈u, α[x/qi]〉 .Fn 〈u, α[x/q]〉.

Proof. To simplify notation, we call a position q with the property above a 〈u, α〉-limit point
of the sequence (qi)i∈N (w.r.t. to F and x). Using this terminology, we have to show that
every sequence (qi)i∈N ∈ dom(u)N possesses a 〈u, α〉-limit point. Since neither α[x/qi] nor
α[x/q] would depend on α(x), we may simply assume that x 6∈ X. We proceed by induction
on the %-rational construction of u.

Base case: u is finite. Since dom(u) is finite, there exists a q ∈ dom(u) such that q = qi
for infinitely many i ∈ N. Thus, q is a 〈u, α〉-limit point of (qi)i∈N.

Inductive step 1: u = v1v2 with %-rational words v1, v2. The valuation 〈u, α〉 splits
into valuations 〈v1, β1〉 and 〈v2, β2〉 such that α = β1 ∪ β2. For either ` = 1 or ` = 2
we have qi ∈ dom(v`) for infinitely many i ∈ N. Let I be the set of these i. By the
induction hypothesis, there is a 〈v`, β`〉-limit point q ∈ dom(v`) of the subsequence (qi)i∈I .
Proposition 3.4 implies that q is also a 〈u, α〉-limit point of (qi)i∈N.

We split the inductive step for %-powers in two parts, one for X = ∅ and another for X 6= ∅.

Inductive step 2: u = v% with a %-rational v and X = ∅. Let (P,≤P) be a linear ordering
of isomorphism type % such that dom(u) = dom(v)×P . For each i ∈ N we write qi = (si, pi).
For every p ∈ P let �τ p and �τ p be the order types of the suborders of (P,≤P) induced by the
open intervals (−∞, p) and (p,+∞), respectively. Then % = �τ p + 1 + �τ p. Due to the nature
of %, each of �τ p and �τ p is either finite or equals %. However, the case that �τ p and �τ p both
are finite at the same time cannot occur. Accordingly, we distinguish three cases:

Case 1: �τ pi = �τ pi = % for infinitely many i ∈ N. Let I be the set of these i. By the
induction hypothesis, there exists a 〈v, ∅〉-limit point s ∈ dom(v) of the subsequence (si)i∈I .
We pick some j ∈ I. Proposition 3.4 reveals that q = (s, pj) is a 〈u, α〉-limit point of (qi)i∈N.

Case 2: �τ pi is finite and �τ pi = % for infinitely many i ∈ N. Let I be the set of these i.
If there is an order type which occurs infinitely often among the �τ pi with i ∈ I, the same

M. Huschenbett and M. Kufleitner 381

argumentation as in Case 1 applies. Henceforth, we assume that such an order type does
not exist. By the induction hypothesis, the subsequence (si)i∈I possesses a 〈v, ∅〉-limit point
s ∈ dom(v). Let p ∈ P be arbitrary with �τ p = �τ p = %. We show that q = (s, p) is a
〈u, α〉-limit point of (qi)i∈N.

Let n ∈ N. Due to the choice of I and s, there are arbitrarily large i ∈ I such that
�τ pi is of size at least 2n+1 − 1 and 〈v, ∅[x/si]〉 .Fn 〈v, ∅[x/s]〉. Lemma 3.5 then implies
v

�τ pi .Fn v
%. Since also v

�τ pi .Fn v
%, Proposition 3.4 yields 〈u, ∅[x/qi]〉 .Fn 〈u, ∅[x/q]〉.

Case 3: �τ pi = % and �τ pi is finite for infinitely many i ∈ N. Symmetric to Case 2.

Inductive step 3: u = v% with a %-rational v and X 6= ∅. Let (P,≤P) be as above. Recall
that X is supposed to be finite. Let p̃1 <P · · · <P p̃k be an enumeration of all positions
p ∈ P for which there exists a variable y ∈ X with α(y) ∈ dom(v) × {p}. We consider
the open intervals P0 = (−∞, p̃1), P` = (p̃`, p̃`+1) for ` ∈ [1, k − 1], and Pk = (p̃k,+∞) in
(P,≤P). For ` ∈ [0, k] we let τ` be the order type of the suborder induced by P`. Then
% = τ0 + 1 + τ1 + 1 + · · ·+ 1 + τk and hence u = vτ0vvτ1v · · · vvτk . Due to the nature of %,
each τ` is either finite or equals %. Since for every finite τ` the word vτ` is the concatenation
of τ` copies of v, the factorization of u above is an alternative %-rational construction of u.
This construction has the additional property that α does not map into the %-powers v%
but only in the individual intermediate copies of v. Thus, the induction hypothesis and the
inductive steps 1 and 2 above yield the claim. J

Now, we are prepared to prove the remaining implication of Theorem 3.3.

Proof of Theorem 3.3, “1. ⇒ 2.”. We show that Duplicator can maintain the invariant
of staying in configurations which are good for her. A configuration (G, 〈u, α〉, 〈v, β〉) of
the F-game on (u, v) is considered to be good for Duplicator if 〈u, α〉 .Gn 〈v, β〉 for every
n ∈ N. Statement 1. and Theorem 3.1 imply that the initial configuration (F , u, v) is good.
Moreover, good configurations do not meet Spoiler’s winning condition as they particularly
satisfy 〈u, α〉 .G0 〈v, β〉. Consequently, it suffices to provide a strategy for Duplicator which
never leaves the set of good configurations since such a strategy is a winning strategy.

Suppose Spoiler chooses the quantifier Qx and the quest q in a good configura-
tion (G, 〈u, α〉, 〈v, β〉). We only demonstrate the case Q = ∃, where q ∈ dom(u).
For every i ∈ N we have 〈u, α〉 .Gi+1 〈v, β〉 and hence there exists ri ∈ dom(v)
such that 〈u, α[x/q]〉 .Gi+1/∃x 〈v, β[x/ri]〉. Since Gi+1/∃x = (G/∃x)i, this is the
same as 〈u, α[x/q]〉 .(G/∃x)i 〈v, β[x/ri]〉. Due to Lemma 3.6 applied to the sequence
(ri)i∈N, there exists r ∈ dom(v) such that, for every n ∈ N, there are arbitrarily
large i ∈ N with 〈v, β[x/ri]〉 .(G/∃x)n 〈v, β[x/r]〉. We show that the configuration
S[∃x, q, r] = (G/∃x, 〈u, α[x/q]〉, 〈v, β[x/r]〉) is good again.

Let n ∈ N. Due to the choice of r, there is an i ≥ n with 〈v, β[x/ri]〉 .(G/∃x)n 〈v, β[x/r]〉.
Above, the position ri was chosen such that 〈u, α[x/q]〉 .(G/∃x)i 〈v, β[x/ri]〉. Since n ≤ i,
this implies 〈u, α[x/q]〉 .(G/∃x)n 〈v, β[x/ri]〉 and in turn 〈u, α[x/q]〉 .(G/∃x)n 〈v, β[x/r]〉. J

4 Ehrenfeucht-Fraïssé Games on Identities

Identities play an important role in the study of the expressive power of first-order fragments.
A recurring problem is to show that a certain identity of π-terms holds in the syntactic
monoid/semigroup of every language definable in the fragment under consideration. Theo-
rems 4.1 and 4.2 below can remarkably simplify this task, as demonstrated at the end of
this section. In fact, the two theorems are just slight variations of one another and the sole

STACS’14

382 Ehrenfeucht-Fraïssé Games on Omega-Terms

reason for having two theorems is that the suc-predicate does not play well with syntactic
monoids but only with syntactic semigroups.

I Theorem 4.1. Let F be an order-stable fragment not containing the predicates suc, min,
max and empty. For all π-terms s, t ∈ TΛ the following are equivalent:
1. The identity s = t holds in the syntactic monoid of every language definable in F .
2. Duplicator has winning strategies in the F-games on (JsK%, JtK%) and (JtK%, JsK%).

I Theorem 4.2. Let F be a suc-stable and order-stable fragment. For all π-terms s, t ∈ TΛ
the following are equivalent:
1. The identity s = t holds in the syntactic semigroup of every language definable in F over

non-empty words.
2. Duplicator has winning strategies in the F-games on (JsK%, JtK%) and (JtK%, JsK%). J

The main ingredients of the proofs of both theorems are Theorem 3.3 and [9, Proposition 2]
which is restated as Proposition 4.3 below.

I Proposition 4.3. Let F be a fragment, A,B ⊆ Λ finite alphabets and h a monoid morphism
from A∗ into B∗. Suppose the following:
1. If F contains the predicate ≤ or <, then F is order-stable or h(A) ⊆ B ∪ {ε}.
2. If F contains the predicate suc, min, max or empty, then ε 6∈ h(A).
Then h−1(L) is F-definable whenever L ⊆ B∗ is F-definable.

Applying this proposition to F-games yields that monoid morphisms satisfying the two
conditions above preserve the existence of winning strategies for Duplicator.

I Corollary 4.4. Let F , A, B and h be as in Proposition 4.3 satisfying conditions 1. and 2..
Moreover, let F be a suc-stable. Then u .F v implies h(u) .F h(v) for all u, v ∈ A∗.

Proof. Let u, v ∈ A∗ with u .F v. Since finite words are %-rational and due to Theorem 3.3,
it suffices to show that h(u) |= ϕ implies h(v) |= ϕ for all sentences ϕ ∈ F . Consider a sentence
ϕ ∈ F . By Proposition 4.3, there is a sentence ψ ∈ F such that LA(ψ) = h−1(

LB(ϕ)
)
.

Altogether, h(u) |= ϕ implies u |= ψ and since u .F v this implies v |= ψ which in turn
implies h(v) |= ϕ. J

The following corollary is an immediate consequence of Proposition 3.4 and Lemma 3.5.

I Corollary 4.5. Let F be a suc-stable fragment whose quantifier depth is bounded by n ∈ N
and let t ∈ TΛ be a π-term. Then JtK% ≈F JtKm for all m ≥ 2n+1 − 1. J

The previous results allow us to show Theorems 4.1 and 4.2. However, since their proofs are
as similar as their statements, we only demonstrate the first one.

Proof of Theorem 4.1. Let A ⊆ Λ be the finite set containing all a ∈ Λ appearing in s or t.
We show both implications separately.

“1. ⇒ 2.”. By Theorem 3.3, it suffices to show for every sentence ϕ ∈ F that JsK% |= ϕ if
and only if JtK% |= ϕ. Consider a sentence ϕ ∈ F and put n = qd(ϕ). We put L = LA(ϕ) and
let k ≥ 2n+1 − 1 be an idempotency exponent of ML. We consider an arbitrary π-algebra
morphism h from TA into the k-power algebra on A∗ with h(a) = a for each a ∈ A. Because
s = t holds in ML, we have h(s) ≡L h(t). Since h(s) = JsKk as well as h(t) = JtKk and by
Corollary 4.5, we obtain h(s) ≈Fn JsK% and h(t) ≈Fn JtK%. Altogether, we conclude that
JsK% |= ϕ if and only if h(s) |= ϕ if and only if h(t) |= ϕ if and only if JtK% |= ϕ.

M. Huschenbett and M. Kufleitner 383

“2. ⇒ 1.”. Let B ⊆ Λ be a finite alphabet and L ⊆ B∗ a language defined by a sentence
ϕ ∈ F . Let n = qd(ϕ) and k ≥ 2n+1 − 1 be an idempotency exponent of ML. We have to
show that every π-algebra morphism g from TA into the k-power algebra on B∗ satisfies
g(s) ≡L g(t). Consider such a morphism g and let h be the unique monoid morphism from
A∗ into B∗ defined by h(a) = g(a) for each a ∈ A. Then g(s) = h(JsKk) and g(t) = h(JtKk).
Corollary 4.5 and the assumption JsK% ≈F JtK% yield JsKk ≈Fn JsK% ≈Fn JtK% ≈Fn JtKk. We
conclude g(s) ≈Fn g(t) by Corollary 4.4. By Proposition 3.4, we obtain ug(s)v ≈Fn ug(t)v
for all u, v ∈ B∗. Since ϕ ∈ Fn, this finally implies g(s) ≡L g(t). J

In the remainder of this section, we demonstrate two applications of Theorem 4.1 by providing
quite short proofs of two well-known results. The following corollary can be obtained by
combining a result of McNaughton and Papert [12] with Schützenberger’s characterization
of star-free languages [16]. A more direct proof can, for instance, be found in [17]. A finite
monoid M is called aperiodic if the identity aπa = aπ holds in M .

I Corollary 4.6. The syntactic monoid of every first-order definable language is aperiodic.

Proof. The predicates suc, min, max and empty can be expressed in FO[<]. By Theorem 4.1,
it suffices to show JaπaK% ≈FO[<] JaπK%. The property %+ 1 = % of the order type % implies
JaπaK% = JaπK% and the claim follows. J

The second application relates definability in FO2[<] to the class DA. The fragment FO2[<]
consists of all formulae not containing the predicates suc, min, max and empty which quantify
over two fixed variables x1, x2 ∈ V only. The class DA consists of all finite monoids in which
the identity (abc)πb(abc)π = (abc)π holds. A significant amount of book-keeping is involved
when showing that the syntactic monoid of every FO2[<]-definable language is in DA by
applying the classical Ehrenfeucht-Fraïssé game approach, see e.g. [5]1. On the other hand,
the abstract idea of this proof is very simple: Duplicator copies every move near the left and
near the right border, and he does not need to care in the center. We now show that this
idea can easily be formalized when using Theorem 4.1.

I Corollary 4.7. The syntactic monoid of any language definable in FO2[<] is in DA.

Proof. Let s = (abc)πb(abc)π and t = (abc)π. Again by Theorem 4.1, it suffices to show
JsK% ≈FO2[<] JtK%. With u = (abc)ω(abc)ζ·η and v = (abc)ζ·η(abc)ω∗ we obtain

JsK% = u(abc)ω
∗
b(abc)ω v and JtK% = u(abc)ω

∗
(abc)ω v .

Since FO2[<] is closed under negation and due to Proposition 3.4, it further suffices to show
that Duplicator has a winning strategy in the FO2[<]-game on(

(abc)ω
∗
b(abc)ω, (abc)ω

∗
(abc)ω

)
.

The strategy is to choose a reply that is labeled by the same letter as the request and such
that the positions corresponding to x1 and x2 are in the same order in both words. This is
always possible, since in both words there are always infinitely many positions to the left
(respectively to the right) of any position which are labeled by a given letter from a, b, c. J

1 Actually, the proof given in [5] does not use the language of Ehrenfeucht-Fraïssé games, but it can easily
be restated this way.

STACS’14

384 Ehrenfeucht-Fraïssé Games on Omega-Terms

5 The Word Problem for π-Terms over Aperiodic Monoids

The word problem for π-terms over aperiodic monoids was solved by McCammond [11] by
computing normal forms. In the process of computing these normal forms the intermediate
terms can grow and, to the best of our knowledge, neither the worst-case running time nor
the maximal size of the intermediate terms has been estimated (and it seems to be difficult
to obtain such results). In this section we give an exponential algorithm for solving the word
problem for π-terms over aperiodic monoids. Our algorithm does not compute normal forms
as π-terms; instead we show that the evaluation under J · K% can be used as a normal form
for π-terms.

I Theorem 5.1. Given two π-terms s, t ∈ TΛ, one can decide whether the identity s = t

holds in every aperiodic monoid in time exponential in the size of s and t.

The proof is a reduction to the isomorphism problem for regular words, cf. [3]. These
generalized words particularly include all %-rational words and can be described by expressions
similar to π-terms but using ω-power, ω∗-power and dense shuffle instead of the π-power.
Due to [3, Theorem 79], one can decide in polynomial time whether two such expressions
describe isomorphic words. The characterization underlying the reduction is as follows:

I Proposition 5.2. For all π-terms s, t ∈ TΛ the following conditions are equivalent:
1. The identity s = t holds in every aperiodic finite monoid.
2. JsK% = JtK%.

Proof. “1. ⇒ 2.”. The results in [11] imply that the identity s = t can be deduced from
the following list of axioms, where n ≥ 1:

(uv)w = u(vw) (uπ)π = uπ (un)π = uπ

uπuπ = uπ uπu = uuπ = uπ (uv)πu = u(vu)π .

As a matter of fact, the %-power algebra on ΛLO satisfies these axioms as well. Consequently,
JsK% = JtK% can be proved along a deduction of the identity s = t from the axioms.

“2. ⇒ 1.”. Due to Eilenberg’s Variety Theorem [6], the pseudovariety of aperiodic monoids
is generated by the class of syntactic aperiodic monoids. The latter are precisely the syntactic
monoids of first-order definable languages [12, 16]. By Theorem 4.1 the identity s = t holds
in the syntactic monoid of every such language. J

Proof of Theorem 5.1. In order to apply the decision procedure from [3, Theorem 79], we
have to translate s and t into expressions generating the same words and which do not
use %-power but ω-power, ω∗-power and dense shuffle instead. Such a translation can be
based on the identity u% = uω

(
uω

∗
uω

)η
uω

∗ which holds for all words u ∈ ΛLO. Therein, the
η-power is a special case of the dense shuffle. Since this translation leads to a blow-up which
is exponential in the number of nested applications of π-powers within s and t, we can decide
JsK% = JtK% in time at most exponential in the size of s and t. J

6 Summary

For every π-term t we define a labeled linear order JtK%, and every first-order fragment F
over finite words naturally yields a (possibly infinite) Ehrenfeucht-Fraïssé game on labeled
linear orders. The important property of these constructions is that F satisfies an identity

M. Huschenbett and M. Kufleitner 385

s = t of π-terms s and t if and only if Duplicator has a winning strategy in the F-game on
JsK% and JtK%. We note that JtK% does not depend on F . Usually showing that a fragment F
satisfies an identity s = t requires a significant amount of book-keeping which in most cases
is not part of the actual proof idea. Our main results Theorem 4.1 and Theorem 4.2 allow to
formalize such proof ideas without further book-keeping, see e.g. Corollary 4.7. A probably
less obvious application of our main result are word problems for π-terms over varieties of
finite monoids. We show that the word problem for π-terms over aperiodic finite monoids is
solvable in exponential time (Theorem 5.1), thereby improving a result of McCammond [11].

Several possible extensions of our result come to mind: Other implicit operations (see [1]
for further details on implicit operations), logical fragments beyond classical first-order logic,
and other structures such as infinite words, trees or Mazurkiewicz traces.

References
1 J. Almeida. Finite Semigroups and Universal Algebra. World Scientific, 1994.
2 J. Almeida and M. Zeitoun. An automata-theoretic approach to the word problem for

ω-terms over R. Theoret. Comput. Sci., 370(1–3):131–169, 2007.
3 S. L. Bloom and Z. Ésik. The equational theory of regular words. Information and Com-

putation, 197(1–2):55–89, 2005.
4 J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen

Math., 6:66–92, 1960.
5 V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic

over finite words. Int. J. Found. Comput. Sci., 19(3):513–548, 2008.
6 S. Eilenberg. Automata, Languages, and Machines, vol. B. Academic Press, 1976.
7 C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.

Amer. Math. Soc., 98:21–51, 1961.
8 N. Immerman and D. Kozen. Definability with bounded number of bound variables. Infor-

mation and Computation, 83(2):121–139, Nov. 1989.
9 M. Kufleitner and A. Lauser. Lattices of logical fragments over words. In ICALP 2012,

Proceedings Part II, volume 7392 of LNCS, pp. 275–286. Springer, 2012.
10 M. Kufleitner and A. Lauser. Quantifier alternation in two-variable first-order logic with

successor is decidable. In STACS 2013, Proceedings, vol. 20 of LIPIcs, pages 305–316.
Dagstuhl Publishing, 2013.

11 J. P. McCammond. Normal forms for free aperiodic semigroups. Int. J. Algebra Comput.,
11(5):581–625, 2001.

12 R. McNaughton and S. Papert. Counter-Free Automata. The MIT Press, 1971.
13 A. Moura. The word problem for ω-terms over DA. Theoret. Comput. Sci., 412(46):6556–

6569, 2011.
14 D. Perrin and J.-É. Pin. Infinite words, volume 141 of Pure and Applied Mathematics.

Elsevier, 2004.
15 J.-É. Pin. Varieties of Formal Languages. North Oxford Academic, 1986.
16 M. P. Schützenberger. On finite monoids having only trivial subgroups. Inf. Control,

8:190–194, 1965.
17 H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.
18 H. Straubing. Algebraic characterization of the alternation hierarchy in FO2[<] on finite

words. In CSL 2011, Proc., vol. 12 of LIPIcs, pp. 525–537. Dagstuhl Publishing, 2011.
19 D. Thérien and Th. Wilke. Over words, two variables are as powerful as one quantifier

alternation. In STOC 1998, Proceedings, pp. 234–240. ACM Press, 1998.
20 B. A. Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian). Dokl.

Akad. Nauk SSSR, 140:326–329, 1961.

STACS’14

Faster Sparse Suffix Sorting
Tomohiro I1, Juha Kärkkäinen2, and Dominik Kempa3

1 Kyushu University, Japan
tomohiro.i@inf.kyushu-u.ac.jp

2 University of Helsinki, Finland
juha.karkkainen@cs.helsinki.fi

3 University of Helsinki, Finland
dominik.kempa@cs.helsinki.fi

Abstract
The sparse suffix sorting problem is to sort b = o(n) arbitrary suffixes of a string of length n using
o(n) words of space in addition to the string. We present an O(n) time Monte Carlo algorithm
using O(b log b) space and an O(n log b) time Las Vegas algorithm using O(b) space. This is a
significant improvement over the best prior solutions by Bille et al. (ICALP 2013): a Monte Carlo
algorithm running in O(n log b) time and O(b1+ε) space or O(n log2 b) time and O(b) space, and
a Las Vegas algorithm running in O(n log2 b+b2 log b) time and O(b) space. All the above results
are obtained with high probability not just in expectation.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases string algorithms, sparse suffix sorting, sparse suffix trees, Karp–Rabin
fingerprints, space–time tradeoffs

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.386

1 Introduction

Given a string T of length n and a set of b positions in T , the sparse suffix sorting problem is
to sort the set of suffixes of T starting at those positions. The problem can be easily solved in
O(n) time and space by constructing the suffix array, i.e., by sorting the set of all suffixes of
T [8]. However, if the space is restricted to O(b) words in addition to the string the problem
becomes more difficult. A straightforward solution is to use plain string sorting without
taking advantage of the overlaps between the suffixes, but this requires at least Ω(nb) time
in the worst case since the total length of the suffixes as separate strings is Ω(nb). More
generally, we are interested in space–time tradeoffs, i.e., solutions using O(s) words of extra
space for s ∈ [b..n].

An efficient sparse suffix sorting algorithm has many potential applications. In the
space-efficient Burrows–Wheeler transform algorithm in [9], sparse suffix sorting is used
for two purposes: to sort a random sample of suffixes in order to partition the suffix array
into approximately equal parts, and then to sort each of those parts separately. A similar
approach might be useful for external memory and distributed suffix array construction.
A sorted random sample of suffixes might be useful for estimating various measures and
statistics on the string, but this direction has not been studied much because, until recently,
there was no efficient algorithm for sorting a random sample. The full suffix array has
numerous applications in text indexing and mining [1]. If application specific information
allows us to focus on a smaller set of text positions, a full text index can be replaced with a
much smaller sparse text index [2], the construction of which requires sparse suffix sorting.

© Tomohiro I, Juha Kärkkäinen, and Dominik Kempa;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 386–396

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.386
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. I, J. Kärkkäinen, and D. Kempa 387

There are many results for efficiently sorting certain special types of sets of suffixes
(see [2]), but the general case of sorting an arbitrary set of suffixes has proved to be much
harder. We are aware of two previous results improving on the naive bounds mentioned
above. One uses the technique of difference cover sampling [4, 8] for sorting the suffixes in
O(n2/s) time and O(s) extra space for any s ∈ [b..n] [8, Sect. 8]. The other result, by Bille et
al. [2], is a Monte Carlo algorithm running in O(n log2 b/ log(1 + s/b)) time and O(s) extra
space. In particular, it runs in O(n log2 b) time when using O(b) space and in O(n log b) time
when using O(b1+ε) space for any constant ε > 0. Bille et al. also describe a deterministic
verification algorithm to obtain a Las Vegas algorithm running in O(n log2 n+ b2 log b) time
using O(b) words of extra space.

In this paper, we improve on the results of Bille et al. by presenting a randomized Monte
Carlo algorithm that runs in O(n+ (nb/s) log s) time using O(s) words of extra space for
any s ∈ [b..n]. In particular, the time is O(n log b) when using O(b) space and O(n) when
using O(b log b) space. As with the algorithm of Bille et al., our algorithm may produce an
incorrect answer but the probability of this happening can be made smaller than n−c for any
constant c. In addition, we obtain a faster Las Vegas algorithm by describing a deterministic
verification algorithm running in O(n log b) time using O(b) words of extra space.

Our algorithms use some of the same basic tools and techniques as those of Bille et al.,
but in a quite different way. Karp–Rabin fingerprints have a key role in both Monte Carlo
algorithms, but our underlying sorting algorithm is the optimal radix sorting of Paige and
Tarjan [11] rather than the quicksort of Bille et al. Similarly to Bille et al., our verification
algorithm utilizes the transitivity of equality by finding cycles in graphs connecting substrings
that are supposed be equal, but our algorithms for processing the graphs are entirely different.

2 Problem and Model of Computation

Let T = T [1..n] be a string of length n. To simplify algorithms, we assume that T [n] is a
unique character, ensuring that the set of suffixes is prefix-free. For i ∈ [1..n], let Ti = T [i..n]
denote the suffix of length n− i+ 1 and let lcp(i, j) denote the length of the longest common
prefix between the suffixes Ti and Tj . Let S ⊆ [1..n] be a set of b positions in T . The problem
we want to solve is to sort the set of suffixes TS = {Ti : i ∈ S} lexicographically.

The sparse suffix array SSA[1..b] is the array containing the positions in S in the
lexicographical order of the suffixes. The associated LCP array LCP[2..b] contains the
longest common prefix lengths for adjacent suffixes in the sorted set, that is, LCP[i] =
lcp(SSA[i],SSA[i − 1]) for all i ∈ [2..b]. Given the arrays SSA and LCP, we can easily
compute the sparse suffix tree SST for TS in O(b) time [2] (see Section 4 for a definition of
SST). Conversely, SSA and LCP can be constructed in O(b) time by a depth first traversal
of SST . If we are given SSA but not LCP, we can easily compute the LCP in O(n log b)
time and O(b) extra space using the techniques of Bille et al. [2] or the ones in this paper.
Thus sorting the suffixes is the key problem. The Monte Carlo sorting algorithm of Section 4
outputs SST and the deterministic verification algorithm of Section 5 takes SSA and LCP
as input.

The model of computation is the word RAM with word size Ω(logn). For the most part,
our algorithms operate in the comparison model, i.e., we only assume that characters can
be compared in constant time. However, for fingerprint computation in the Monte Carlo
algorithm, we need the stronger assumption that, for any character a, we can in constant
time compute an integer representation ρ(a) such that ρ(a) = ρ(b) if and only if a = b. Note
that we do not assume that the integer representation can be used for order comparison.

STACS’14

388 Faster Sparse Suffix Sorting

3 Basic Techniques

3.1 Karp–Rabin fingerprints
Let q be a prime and choose r ∈ [0..q − 1] uniformly at random.1 The fingerprint for a
substring of T [i..j] is defined as

FP [i..j] =
j∑
k=i

ρ(T [k]) · rj−k mod q .

Clearly, if T [i..i + `] = T [j..j + `] then FP [i..i + `] = FP [j..j + `]. On the other hand, if
T [i..i+ `] 6= T [j..j + `] then FP [i..i+ `] 6= FP [j..j + `] with a probability at least 1− `/q [6].
Since we are comparing only substrings of equal length, the number of different possible
substring comparisons is less than n3. Thus, for any positive constant c, we can set q to be a
prime larger than nc+4 (but still small enough to fit in O(1) words) to make the fingerprint
function perfect with probability at least 1− n−c.

The fingerprint of a string of length ` can obviously be computed in O(`) time, but for
Karp–Rabin fingerprints [10], we can additionally use the following equations to compute
fingerprints more efficiently from existing fingerprints. For all i ≤ j ≤ k,

FP [i..j + 1] = FP [i..j] · r + ρ(T [j + 1]) mod q
FP [i..k] = FP [i..j] · rk−j + FP [j + 1..k] mod q

FP [j + 1..k] = FP [i..k]− FP [i..j] · rk−j mod q
(1)

3.2 Grouping
By grouping, we mean the task of ordering a multiset so that equal elements are grouped
together but the groups can be in arbitrary order. Suppose we have a zero-initialized array
A of s words. Given k = o(s) integers from a universe of size s, we can group but not sort
the integers in O(k) time by a simple distribute-and-collect procedure while leaving A in
the zero-initialized state ready to be reused. Thus d such grouping tasks can be executed
in O(s+ kd) time. Sorting could be done in O(s+ kd) time offline (as a single batch) but
online sorting would require O(sd) time. The online setting occurs in radix sorting. Thus,
grouping k integers from a universe of size u > s by a modified LSD radix sort with radix s
can be done in O(s+ k logs u) time while sorting would need O(s logs u) time. A prominent
example of this technique is the string sorting algorithm of Paige and Tarjan [11]. It uses a
similar modification of MSD radix sorting into a grouping algorithm to construct an unsorted
compact trie of the strings, and then sorts the child edges of all nodes in one batch. Our
suffix sorting algorithm has the same structure, though the unsorted trie construction is
different and not based on MSD radix grouping (but does involve LSD radix grouping).
Grouping and unsorted compact tries have a key role in our algorithm because fingerprints
cannot be used for order comparisons.

3.3 String periodicity
An integer p ∈ [0..m−1] is a period of a string X[1..m] if X[i] = X[i+p] for all i ∈ [1..m−p].
A basic result on periods is the following:

1 The choice of r is the only random operation in the algorithm.

T. I, J. Kärkkäinen, and D. Kempa 389

I Lemma 1 (Weak Periodicity Lemma [7]). If p1 and p2 are periods of a string X[1..m] and
p1 + p2 ≤ m, then gcd(p1, p2) is a period of X too.

Our verification algorithm uses this in the form of the following generalization to multiple
periods:

I Corollary 2. Integers p1, p2, . . . , pk ∈ [0..dm/2e] are periods of a string X[1..m] if and only
if gcd(p1, p2, . . . , pk) is a period of X.

The value gcd(p1, p2, . . . , pk) can be computed in O(k + logm) time using the Euclidean
algorithm [3]. Note that zero is a period of all nonempty strings, and all of the above holds
for 0-periods too if we define gcd(p, 0) = p for all p.

4 Monte Carlo Algorithm

In this section, we describe a Monte Carlo algorithm for sparse suffix sorting. The output
is actually the sparse suffix tree SST of the b suffixes in TS , but this is equivalent to suffix
sorting as explained above. The construction of SST uses a novel technique of gradual
refinement.

We start by defining a relaxed form of compact tries. An `-strict compact trie is a rooted
tree, where each internal node has at least two children. The edges are labelled by strings,
and induced by the edge labelling, each node v is labelled by the concatenation of the edge
labels from the root to v. For any two edges with the same parent node, their labels must be
different, one label cannot be a prefix of the other, and the labels cannot share a common
prefix of length ` (`-strictness). The trie is ordered if the child edges of each node are
lexicographically ordered by their labels. The standard compact trie is the (unique) ordered
1-strict compact trie.

An `-strict sparse suffix tree `-SST for the set TS is an `-strict compact trie with b leaves
representing exactly the suffixes in TS . The edge labels are substrings of T and can be
represented in constant space by pointers to T . Thus the size of an `-SST is O(b) words.
The standard sparse suffix tree SST (the desired output of the algorithm) is the ordered
1-SST .

The algorithm begins by constructing `-SST for ` = 2dlogne, which is just the root and b
leaves with the edges labelled by the suffixes. Then, in each round of the computation, the
algorithm halves the value of ` and computes an `-SST from the 2`-SST until ` = 1. Given
the 1-SST , we can sort the child edges of all nodes using O(b log b) character comparisons to
obtain SST .

To compute `-SST from 2`-SST , we perform the following steps:
1. For each edge with a label of length at least `, compute the fingerprint FP [i..i+ `− 1],

where i is the starting position of the edge label in T .
2. Use LSD radix grouping to group all edges from Step 1 using the key (u, f), where u is

the parent node of the edge and f is the fingerprint from Step 1.
3. For each group of at least two edges with the same key (u, f), add a new node v and an

edge (u, v) to the tree. The new node v becomes the parent node of the edges in the
group. The label of (u, v) has length ` and the starting position is taken from one of
the old edges. The labels of the old edges are shortened by ` by moving the starting
positions forward by ` positions. If v is the only child of u after the stage, we remove u
by concatenating its parent and child edges.

STACS’14

390 Faster Sparse Suffix Sorting

It is easy to check that the tree resulting from the above steps (i) is still a valid compact trie,
(ii) retains the labels of all nodes inherited from 2`-SST , and (iii) satisfies the `-strictness
condition. It is thus a valid `-SST .

The remaining detail is how to compute the fingerprints. We assume that we can use
O(s) words of extra space for some s ∈ [b..n]. We divide the string T into blocks of size
h = n/s. For all i ∈ [1..n/h], we compute and store the values FP [1..ih] and rih mod q. We
can then compute the fingerprint of any substring of T of length ` in O(min(`, n/s)) time
using Equations (1).

I Theorem 3. Any set of b suffixes of a string of length n can be sorted correctly with high
probability in O(n+ (bn/s) log s) time using O(s) words of space in addition to the string for
any s ∈ [b..n].

Proof. With high probability, there are no fingerprint collisions, which is enough to ensure
the correctness of the algorithm by the above discussion.

Most of the data structures including the tree fit in O(b) space during the whole compu-
tation. We need O(s) space for the precomputed fingerprints and powers of r, as well as for
the bucket array in LSD radix grouping. Thus the total space requirement is O(s) words in
addition to the string T .

The time complexity is dominated by the fingerprint computation. The initialization of
the precomputed fingerprints needs O(n) time. In the first log(s) rounds (i.e., while ` ≥ n/s),
each fingerprint computation in Step 1 takes O(n/s) time, and in the later rounds O(`) time.
Thus the total time for fingerprint computation is O(n + (bn/s) log s). In Step 2 of each
round, we are grouping O(b) integers of O(logn)-bits each using a bucket array of size s,
which takes O(b logs n) time. The total grouping time is O(b log2 n/ log s) = O((bn/s) log s).
Everything else can be done in O(b logn) = O((bn/s) log s) time. J

By choosing s = b and s = b log b, we obtain the following results.

I Corollary 4. Any set of b suffixes of a string of length n can be sorted correctly with high
probability in O(n log b) time using O(b) words of space in addition to the string.

I Corollary 5. Any set of b = O(n/ logn) suffixes of a string of length n can be sorted
correctly with high probability in O(n) time using O(b log b) words of space in addition to the
string.

Note that if b log b = ω(n), we can use a full suffix array construction algorithm to sort
TS in O(n) time and space (assuming a proper integer alphabet where strings can be radix
sorted).

5 Las Vegas Algorithm

In this section we describe a deterministic algorithm to check if the arrays SSA and LCP are
correct. Assuming SSA contains a permutation of set S and besides the trivial sanity checks
of LCP, we need to verify if the conditions

T [ai..ai + `i − 1] = T [bi..bi + `i − 1]
T [ai + `i] < T [bi + `i]

(2)

are satisfied for i ∈ [2..b], where ai = SSA[i− 1], bi = SSA[i] and `i = LCP[i].
Checking the second condition takes only O(b) time. A naive verification of the first one,

however, requires O(bn) operations in the worst-case. We now describe a faster algorithm.

T. I, J. Kärkkäinen, and D. Kempa 391

The first version runs in O(n log2 b) time. A refinement yielding O(n log b) time is presented
next.

5.1 O(n log2 b) time algorithm
Let m0 = 3 · 2blog(n/3)c and mh = m0/2h for h > 0. A substring of T of length mh for some
h is called a segment. Any substring can be covered by at most two (possibly overlapping)
segments. Thus we can replace the b substring equalities with at most 2b segment equalities.
A pair of segments whose equality we need to verify is called a twin pair. A twin pair of
segments of length mh is called an h-pair and its two segments are called h-segments.

The algorithm maintains two lists of segments, L and R. Initially, both lists contain
all twin pair segments, with L sorted by the left endpoint (i.e., the starting position of the
substring in T) and R sorted by right endpoint. Each segment is linked to its twin in the
same list. We sort the lists once in O(b log b) time in the beginning and maintain the sorted
order afterwards. During the algorithm the size of each list never grows beyond the initial
size of at most 4b. The lists L and R are processed symmetrically (left–right symmetry) and
completely independently of each other. We focus on describing the algorithm for L.

5.1.1 Overview
The algorithm operates in log b rounds. In the h-th round, h ∈ [0..blog bc], we process all
h-pairs in L. The set of all h-pairs is partitioned into two subsets, fully checked pairs and
partially checked pairs. The former, relatively small subset is verified by a direct brute-force
comparison of the substrings. If a mismatch is detected, the verifier exits with a negative
answer. Otherwise, we use the knowledge gained during these naive checks to indirectly
verify the equality of the middle third of every partially checked pair. All fully checked pairs
are removed from L and each partially checked h-pair is replaced by its left half (i.e., the
(h+ 1)-pair with the same left endpoints), to obtain the list for the next round. After log b
rounds, all segments on the list have length O(n/b) and can be checked by brute-force in
O(n) total time.

Consider an initial twin pair that is partially checked and replaced by its first half, which
in turn is partially checked and replaced etc., until eventually a pair is fully checked. The
verified middle thirds of these pairs together with the final, fully checked pair completely cover
the leftmost two thirds of the initial pair. Therefore, if the verifier did not exit prematurely
due to a mismatch, the leftmost two thirds of each segment is confirmed to be equal to the
leftmost two thirds of its twin. The symmetric processing of the list R will similarly verify
all rightmost two thirds resulting in a complete verification.

5.1.2 A single round in detail
Suppose we are at round h and denote m = mh. We start by constructing an undirected
multigraph G = Gh from the list L. Consider a partition of T into blocks of size B = Bh =
m/d6 log b+18e. Each block corresponds to one vertex in G. We associate every h-segment in
L with the block containing the left endpoint. For any h-pair in L we create an edge between
the vertices associated with the two segments of the pair. Isolated vertices are omitted during
the construction, thus the resulting graph has |V (G)| = O(min(b, (n/m) log b)) vertices and
|E(G)| ≤ 2b edges. This graph is essentially the same as the one in [2].

We start a breadth-first search from an arbitrary vertex v of G. The search continues
as long as each new BFS layer (the subset of vertices with the same shortest distance to v)

STACS’14

392 Faster Sparse Suffix Sorting

at least doubles the total size of the BFS tree. Denote the constructed tree as F and the
subgraph of G containing all edges inspected during the BFS as G′. Note that F and G′
contain the vertices of the last layer but no edges with both ends in the last layer. The
h-pairs associated with the tree edges E(F) are chosen as fully checked pairs and the brute
force comparisons are performed. The h-pairs associated with non-tree edges E(G′) \E(F)
become partially checked pairs. We will next describe how to indirectly verify the equality
for the middle m/3 positions of those pairs.

Let A be an arbitrary h-segment associated with the root v of F . By M we denote the
substring of A of length 2m/3 centered exactly in the middle of A.

I Lemma 6. Suppose all h-pairs corresponding to edges of F were successfully verified. Then
every h-segment associated with some vertex of G′ contains M as a substring.

Proof. First note that the height of F is at most log b+ 2. Let U be an arbitrary segment
associated with a vertex u ∈ V (G′). Consider the sequence of segments starting with A,
containing all twin pairs associated with the edges on the path from v to u in F , and ending
with U . Each adjacent pair of segments in this sequence is either a fully checked pair or is
associated with the same vertex. In the former case, the segments are verified to be identical.
In the latter case, the segments overlap by more than m−B and the relative position of M
inside the segments differ by less than B. Over the whole sequence, the relative position of
M changes by less than B(log b+ 3) ≤ m/6. Since M starts at a distance of m/6 from both
ends of A, all segments in the sequence including U must contain M . J

We exploit this fact as follows. Let {ui, uj} ∈ E(G′)\E(F) be an arbitrary edge associated
with a twin pair {Ui, Uj}. Let di (dj) be the relative position of M inside Ui (Uj).

I Lemma 7. If M has period p = |di − dj |, then a substring of length m/3 centered in the
middle of Ui matches the corresponding substring in Uj. Otherwise Ui 6= Uj.

Proof. If we align Ui and Uj , the occurrences of M inside the segments overlap by k =
|M |−p ≥ m/3. M has period p if and only if that overlapping part is equal in both segments.
The lemma follows from the facts that the overlapping parts contain the middle thirds and
are contained in the whole segments. J

Each non-tree edge of G′ generates one periodicity query for M . In order to efficiently
answer all queries we observe that p cannot exceed m/3 = |M |/2, thus all queries can
be reduced to a single one using Corollary 2 (in Section 3). If the reduced periodicity
query returns true, we obtain the equality of middle third for all h-pairs associated with
E(G′) \ E(F). Otherwise, Lemma 7 implies that there must be a mismatch in some pair,
and hence the verifier returns a negative answer and exits.

After processing G′, the edges E(G′) are deleted from G along with the vertices that
become isolated. The procedure is then repeated for the remaining part of the graph and
this continues until the graph is empty.

I Lemma 8. Round h of verification takes O(b+ |V (Gh)|mh) time and O(b) extra space.

Proof. The list L is sorted, thus building G takes O(b) time and space. All BFS searches
require O(|V (G)| + |E(G)|) = O(b) time in total. The stopping criterion for the BFS
implies that deleting the set E(G′) along with the introduced isolated vertices removes at
least |V (G′)|/2 vertices from G, thus the BFS trees have altogether O(|V (G)|) edges. The
brute-force checking of all twin pairs associated with such edges therefore takes O(|V (G)|m)
time.

T. I, J. Kärkkäinen, and D. Kempa 393

The relative position of M can be easily tracked during the BFS, hence the generation of
the periodicity queries of Lemma 7 for all non-tree edges can be done in O(b) time. Reducing
the number of periodicity queries using Corollary 2 consumes O(b+ g logm) time in total,
where g ≤ |V (G)| is the number of subgraphs G′ processed during the round, and the reduced
periodicity queries can be executed in O(gm) time. Thus total time for all partial checks is
O(b+ gm) = O(b+ |V (G)|m). J

Note that O(b+ |V (Gh)|mh) = O(n log b) for all h. We perform O(log b) rounds, after
which we verify the remaining segments in O(n) time, hence we obtain the following result.

I Theorem 9. The correctness of a sparse suffix tree constructed for a set of b suffixes of
a string of length n can be deterministically verified in O(n log2 b) time and O(b) words of
space in addition to the string.

5.2 O(n log b) time algorithm
The time complexity of the verification algorithm is dominated by the O(|V (Gh)|mh) time
spent in each round h for brute force comparisons and partial checks. The number of vertices
is bounded by O(n log b/mh) but can be smaller. In this section we show how to modify
the algorithm to reduce the number of vertices in the graphs, which decreases the overall
verification time to O(n log b). The reduction is accomplished by moving segments in a way
that concentrates them on certain areas while other areas become empty. The empty areas
contribute no vertices to the graphs.

The movement of segments happens at the end of each round. Consider the end of round h
when all h-pairs on the list L have been removed or replaced. Let i and j be the left endpoints
of the segments in some h-pair that was fully checked during the round, i.e., we know that
T [i..i + mh − 1] = T [j..j + mh − 1]. If an h′-segment in L for some h′ > h is completely
inside T [i..i + mh − 1] it can be moved to the corresponding position in T [j..j + mh − 1]
without affecting the correctness of the verification. If we move all segments in L that are
inside T [i..i+mh − 1], there are no left endpoints in the region [i..i+mh/2− 1] anymore
and we say that the region [i..i+mh/2− 1] has been cleared.

However, a region that has been cleared may not stay cleared as other moves in the same
round or later rounds may reintroduce left endpoints to the region. In the case of the moves
in the same round, this is easy to avoid by doing all moves either leftwards or rightwards. As
shown later, we cannot fix the direction in advance but have to choose the better direction
separately for each round. However, in a single round, all moves are made in the same
direction, and it is easy to see that by processing the fully checked pairs in the appropriate
order, all cleared regions will stay cleared. Moves in later rounds are more problematic. The
cleared region [i..i+mh/2− 1] may be almost completely overlapped by a (h+ 1)-segment
with the left endpoint at i− 1 and moves to this (h+ 1)-segment can undo the clearance. To
avoid this, we will be more selective with the moves.

Let hlast = blog bc be the last round in the algorithm, and recall that Bh = mh/d6 log b+
18e. Define dh = (hlast−h+2)Bh/2 for all h ∈ [0..hlast]. If we are moving from T [i..i+mh−1]
to T [j..j +mh − 1], we will move segments if and only if their left endpoint is in the source
region [i..i+ dh], i.e., only the source region will be cleared. The left endpoints are moved to
the target region [j..j+dh]. Source and target regions are both called move regions. The next
two lemmas establish the key properties of move regions. The first lemma shows that the
source region is a subregion of [i..i+mh/2− 1] and thus can indeed be cleared. The second
one shows that a sufficiently large part of a cleared source region is permanently cleared.

STACS’14

394 Faster Sparse Suffix Sorting

I Lemma 10. dh < mh/12 for all h ∈ [0..hlast].

Proof. We just need to note that hlast − h+ 2 < log b+ 3 and Bh ≤ mh/(6(log b+ 3)). J

I Lemma 11. If a source region [i..i+ dh] is cleared in round h, then the region [i+ dh −
Bh..i+ dh] cannot be uncleared in later rounds.

Proof. Consider the worst case scenario with regard to unclearing [i..i+ dh]. Assume there
is an (h+ 1)-segment with left endpoint at i− 1 and a target region extending to i− 1 +dh+1.
An (h + 2)-segment moved to the end of the target region has a target region extending
to i − 1 + dh+1 + dh+2, an (h + 3)-segment moved to the end of that target region has
a target region extending to i − 1 + dh+1 + dh+2 + dh+3 and so on. Thus no more than
Dh =

∑hlast
h′=h+1 dh′ leftmost positions of [i..i + dh] can be uncleared. We will show by

induction that Dh = dh −Bh, which proves the lemma.
Clearly, Dhlast = 0 = dhlast − Bhlast . Assume then that Dh+1 = dh+1 − Bh+1 and note

that Bh = 2Bh+1. Thus, Dh = Dh+1 + dh+1 = 2dh+1 −Bh+1 = (hlast − (h+ 1) + 1)Bh+1 =
(hlast − h)Bh/2 = dh −Bh. J

In order to perform the segment moves efficiently, we will implement the list L as a list
of sets, each of which contains segments with the same left endpoint and is implemented as a
linked list. This representation supports all the operations we need in the basic algorithm,
but additionally we can now remove a full set from the list, insert the set in a different
place in the list or merge the set with a different set, all in constant time. When a segment
belonging to a fully checked pair is removed from L, we remove it from the corresponding set
but add a special node to L in front of the set and store a pointer to the special node in the
corresponding move region. If a set contains multiple fully checked segments, they share a
single special node. By moving the sets (but not the special nodes) we can execute all the
moves from one source region in O(dh) = O(mh) time. Thus the cost of the move operations
is no higher than the cost of the brute force checks.

Due to possibly overlapping move regions, the order in which the moves are made has to
be chosen with some care, but it is still possible to completely clear all the source regions in
one round as long as all moves are made in the same direction. The direction, leftwards or
rightwards, is chosen in each round so that the total area of the permanently cleared regions
is maximized.

Finally, we need a minor modification to the way the algorithm deals with the special
case, where the subgraph G′ consists of a single vertex and one or more selfloop edges. In
this case, one of the pairs associated with the edges is fully checked while others are partially
checked. This does not affect the time complexity of the round, but ensures that every vertex
is adjacent to at least one fully checked edge.

I Theorem 12. The correctness of a sparse suffix tree constructed for a set of b suffixes of
a string of length n can be deterministically verified in O(n log b) time and O(b) words of
space in addition to the string.

Proof. Except for the segment moves, the algorithm operates as before and, as explained
above, the segment moves do not compromise the correctness of the verification. Thus the
algorithm is correct. The space complexity is clearly still O(b).

To prove the time complexity, we will show that the total area covered by the permanently
cleared regions in round h is Θ(|V (Gh)|mh/ log b). The costs of the form O(|V (Gh)|mh) are
distributed over the positions in the permanently cleared regions. Then every position gets
charged for at most O(log b) over the whole algorithm, and thus the total cost is O(n log b).

T. I, J. Kärkkäinen, and D. Kempa 395

Every vertex in the graph Gh is associated with a fully checked segment and each such
segment contains a potential permanently cleared region (PPCR) of size Bh. The direction
of moves decides whether a PPCR becomes a PCR. Two PPCRs can overlap only if they
are associated with the same vertex or two vertices representing adjacent blocks. Thus
there are at least |V (Gh)|/2 non-overlapping PPCRs and their total coverage is at least
Bh|V (Gh)|/2 = Θ(|V (Gh)|mh/ log b). The total coverage of the actual PCRs is at least half
of that since we choose the direction to maximize the coverage. Note also that computing
the coverage resulting from each direction can be done in O(b) time. J

I Corollary 13. Any set of b suffixes of a string of length n can be sorted correctly using
O(b) words of space in addition to the string in time that is O(n log b) with high probability.

6 Concluding Remarks

The time–space complexity of sparse suffix sorting has been a major open problem for a
long time. Our new algorithms achieving the time–space product of O(nb log b) are a major
step towards a solution but open problems remain. Perhaps the main open problem is the
deterministic time–space complexity: the best deterministic algorithms have a time–space
product of O(n2). Can our algorithms be made deterministic? Perhaps the use of fingerprints
in the Monte Carlo algorithm can be replaced with a deterministic technique. Or perhaps
the deterministic verification algorithm can be transformed into a sorting algorithm.

Some of the techniques developed in this paper, such as the `-strict compact tries and
their incremental construction, may have applications outside sparse suffix sorting. The
concepts behind the verification algorithm could be useful not only as algorithmic tools but
as analysis tools. For example, a major open problem is the size of the smallest grammar of
a string particularly in comparison to the size of the Lempel–Ziv factorization of the same
string [5]. This problem too involves pairs of identical substrings that overlap each other.
The basic overlap graph was introduced in [2] but our algorithms reveal new combinatorial
properties of this graph.

Acknowledgements. This work was supported by the Academy of Finland grant 118653
(ALGODAN) and by the Japan Society for the Promotion of Science.

References
1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. J. Discrete Algoritms, 2(1):53–86, 2004.
2 Philip Bille, Johannes Fischer, Inge Li Gørtz, Tsvi Kopelowitz, Benjamin Sach, and

Hjalte Wedel Vildhøj. Sparse suffix tree construction in small space. In Proc. ICALP,
volume 7965 of LNCS, pages 148–159, 2013.

3 Gordon H. Bradley. Algorithm and bound for the greatest common divisor of n integers.
Commun. ACM, 13(7):433–436, 1970.

4 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and
checking. In Proc. CPM, volume 2676 of LNCS, pages 55–69, 2003.

5 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, April
Rasala, Amit Sahai, and abhi shelat. Approximating the smallest grammar: Kolmogorov
complexity in natural models. In Proc. STOC, pages 792–801. ACM, 2002.

6 Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger. Polynomial hash
functions are reliable. In Proc. ICALP, volume 623 of LNCS, pages 235–246, 1992.

STACS’14

396 Faster Sparse Suffix Sorting

7 Nathan J Fine and Herbert S Wilf. Uniqueness theorems for periodic functions. Proc.
Amer. Math. Soc., 16(1):109–114, 1965.

8 J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. J.
ACM, 53(6):918–936, 2006.

9 Juha Kärkkäinen. Fast BWT in small space by blockwise suffix sorting. Theor. Comput.
Sci., 387(3):249–257, 2007.

10 Richard M Karp and Michael O Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Develop., 31(2):249–260, 1987.

11 Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM J.
Comput., 16(6):973–989, 1987.

Generalized Wong sequences and their
applications to Edmonds’ problems
Gábor Ivanyos1, Marek Karpinski2, Youming Qiao3, and
Miklos Santha4

1 Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary
Gabor.Ivanyos@sztaki.mta.hu

2 Department of Computer Science, University of Bonn, Bonn, Germany
marek@cs.uni-bonn.de

3 Centre for Quantum Technologies, National University of Singapore,
Singapore 117543.
cqtqy@nus.edu.sg

4 LIAFA, Univ. Paris 7, CNRS, Paris, France / Centre for Quantum
Technologies, National University of Singapore, Singapore
miklos.santha@liafa.jussieu.fr

Abstract
We design two deterministic polynomial time algorithms for variants of a problem introduced
by Edmonds in 1967: determine the rank of a matrix M whose entries are homogeneous linear
polynomials over the integers. Given a linear subspace B of the n×n matrices over some field F,
we consider the following problems: symbolic matrix rank (SMR) is the problem to determine the
maximum rank among matrices in B, while symbolic determinant identity testing (SDIT) is the
question to decide whether there exists a nonsingular matrix in B. The constructive versions of
these problems are asking to find a matrix of maximum rank, respectively a nonsingular matrix,
if there exists one.

Our first algorithm solves the constructive SMR when B is spanned by unknown rank one
matrices, answering an open question of Gurvits. Our second algorithm solves the constructive
SDIT when B is spanned by triangularizable matrices, but the triangularization is not given
explicitly. Both algorithms work over finite fields of size at least n + 1 and over the rational
numbers, and the first algorithm actually solves (the non-constructive) SMR independent of the
field size. Our main tool to obtain these results is to generalize Wong sequences, a classical
method to deal with pairs of matrices, to the case of pairs of matrix spaces.

1998 ACM Subject Classification I.1.2 Algebraic algorithms

Keywords and phrases symbolic determinantal identity testing, Edmonds’ problem, maximum
rank matrix completion, derandomization, Wong sequences

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.397

1 Introduction

In [8] Edmonds introduced the following problem: Given a matrix M whose entries are
homogeneous linear polynomials over the integers, determine the rank of M . The problem is
the same as determining the maximum rank of a matrix in a linear space of matrices over
the rationals. In this paper we consider the same question and certain of its variants over
more general fields.

© Gábor Ivanyos, Marek Karpinski, Youming Qiao, and Miklos Santha;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 397–408

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.397
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

398 Generalized Wong sequences and their applications to Edmonds’ problems

Let us denote by M(n,F) the linear space of n × n matrices over a field F. We call a
linear subspace B ≤M(n,F) a matrix space. We define the symbolic matrix rank problem
(SMR) over F as follows: given {B1, . . . , Bm} ⊆ M(n,F), determine the maximum rank
among matrices in B = 〈B1, . . . , Bm〉, the matrix space spanned by Bi’s. The constructive
version of SMR is to find a matrix of maximum rank in B (this is called the maximum rank
matrix completion problem in [12] and in [19]). We refer to the weakening of SMR, when
the question is to decide whether there exists a nonsingular matrix in B, as the symbolic
determinant identity testing problem (SDIT), the name used by [20] (in [15] this variant is
called Edmonds’ problem). The constructive version in that case is to find a nonsingular
matrix, if there is one in B. We will occasionally refer to any of the above problems as
Edmonds’ problem.

The complexity of the SDIT depends crucially on the size of the underlying field F. When
|F| is a constant then it is NP-hard [5], on the other hand if the field size is large enough
(say ≥ 2n) then by the Schwartz-Zippel lemma [25, 30] it admits an efficient randomized
algorithm [21]. Obtaining a deterministic polynomial-time algorithm for the SDIT would
be of fundamental importance, since Kabanets and Impagliazzo [20] showed that such an
algorithm would imply strong circuit lower bounds which seem beyond current techniques.

Previous works on Edmonds’ problems mostly dealt with the case when the given matrices
B1, . . . , Bm satisfy certain property. For example, Lovász [22] considered several cases of
SMR, including when the Bi’s are of rank 1, and when they are skew symmetric matrices of
rank 2. These classes were then shown to have deterministic polynomial-time algorithms
[12, 23, 16, 13, 11, 19], see Section 1.1 for more details.

Another direction also studied is when instead of the given matrices, the generated matrix
space B = 〈B1, . . . , Bm〉 satisfies certain property. Since such a property is just a subset of all
matrix spaces, we also call it a class of matrix spaces. Gurvits [15] has presented an efficient
deterministic algorithm for the SDIT over Q, when the matrix space satisfies the so called
Edmonds-Rado property, whose definition we shall review in Section 1.1. For now we only
note that this class includes R1, the class of rank-1 spanned matrix spaces, where a matrix
space B is in R1 if and only if B has a basis consisting of rank-1 matrices. This fact was first
shown by Lovász [22] via a theorem of Rado and Edmonds [24, 9, 28]. Gurvits stated as an
open question the complexity of the SMR for R1 over finite fields [15, page 456].

The difference between properties of matrices and properties of matrix spaces is critical
for Edmonds’ problems. For example, given matrices B1, . . . , Bm, it is presumably hard1 to
determine whether B = 〈B1, . . . , Bm〉 is in R1, and to find generating rank-1 matrices for B.
Thus the existence of algorithms for SMR when the Bi’s are rank-1 does not immediately
imply algorithms for matrix spaces in R1.

Our results are in line with Gurvits’ work, namely we present algorithms for two classes
of matrix spaces. To be specific, we consider R1, the class of rank-1 spanned matrix spaces,
and the class of (upper-)triangularizable matrix spaces, where a matrix space B ≤M(n,F) is
triangularizable if there exist nonsingular C,D ∈M(n,F′), where F′ is some extension field
of F, such that for all B ∈ B, the matrix DBC−1 is upper-triangular.

To ease the description of our results, we make a few definitions and notations. We denote
by rank(B) the rank of a matrix B, and we set corank(B) = n− rank(B). For a matrix space
B we set rank(B) = max{rank(B) | B ∈ B} and corank(B) = n− rank(B). We say that B is
singular if rank(B) < n, that is if B does not contain a nonsingular element, and nonsingular

1 At present, we are not aware of the deterministic complexity of computing a rank-1 basis for matrix
spaces in R1. Gurvits made a similar comment in [14].

G. Ivanyos, M. Karpinski, Y. Qiao, and M. Santha 399

otherwise. For a subspace U ≤ Fn, we set B(U) = 〈B(u) | B ∈ B, u ∈ U〉. Let c be a
nonnegative integer. We say that U is a c-singularity witness of B, if dim(U)−dim(B(U)) ≥ c,
and U is a singularity witness of B if for some c > 0, it is a c-singularity witness.

Note that if there exists a singularity witness of B then B can only be singular. Let us
define the discrepancy of B as disc(B) = max{c ∈ N | ∃ c-singularity witness of B}. Then it
is also clear that corank(B) ≥ disc(B). We now state our main theorems.

I Theorem 1. Let F be either Q or a finite field. There is a deterministic polynomial-time
algorithm which solves the SMR if B is spanned by rank-1 matrices. If the size of the
field F is at least n + 1, the algorithm solves the constructive SMR, and it also outputs a
corank(B)-singularity witness.

I Theorem 2. Let F be either Q or a finite field of size at least n+ 1. There is a determin-
istic polynomial-time algorithm which solves the constructive SDIT if B is triangularizable.
Furthermore, over finite fields, when B is singular it also outputs a singularity witness.

We remark that Theorem 1 remains true if we weaken the assumptions by only requiring
that B is rank-1 spanned over some extension field of F rather than over F. Also, instead of
assuming that the whole space B is rank-1 spanned it is sufficient to suppose that a subspace
of B of co-dimension one is spanned by rank-1 matrices. While the first extension can be
achieved easily, the second extension requires some more work (though mostly technical).

1.1 Comparison with previous works
The idea of singularity witnesses was already present in Lovász’s work [22]. Among other
things, Lovász showed that for the rank-1 spanned case, the equality corank(B) = disc(B)
holds, by reducing it to Edmonds’ Matroid Intersection theorem [9], which in turn can be
deduced from Rado’s matroidal generalization of Hall’s theorem [24] (see also [28]). Inspired
by this fact, Gurvits defined the Edmonds-Rado property as the class of matrix spaces
which are either nonsingular, or have a singularity witness. He listed several subclasses
of the Edmonds-Rado class, including R1 (by the aforementioned result of Lovász) and
triangularizable matrices. A well-known example of a matrix space without the Edmonds-
Rado property is the linear space of skew symmetric matrices of size 3 [22].

As we stated already, Gurvits has presented a polynomial-time deterministic algorithm
for the SDIT over Q for matrix spaces with the Edmonds-Rado property. Therefore over Q,
his algorithm covers the SDIT for R1 and for triangularizable matrices. Our algorithms are
valid not only over Q but also over finite fields. In the triangularizable case we also deal with
the SDIT, but for R1 we solve the more general SMR. In fact, it is not hard to reduce SMR
for the general to SMR for the triangularizable case (see Lemma 26 in [18]), so solving SMR
for the triangularizable case is as hard as the general case. In both cases the algorithms
solve the constructive version of the problems, and they also construct singularity witnesses,
except for the SDIT over the rationals. Finally, they work in polynomial time when the field
size is at least n+ 1. Moreover, for R1 the algorithm solves the non constructive SMR in
polynomial time regardless of the field size, settling the open problem of Gurvits.

Over fields of constant size, the SMR has certain practical implications [16, 17], but is
shown to be NP-hard [5] in general. Some special cases have been studied, mostly in the
form of the mixed matrices, that is linear matrices where each entry is either a variable or
a field element. Then by restricting the way variables appear in the matrices some cases
turn out to have efficient deterministic algorithms, including when every variable appears
at most once ([16], building on [12, 23]), and when the mixed matrix is skew-symmetric

STACS’14

400 Generalized Wong sequences and their applications to Edmonds’ problems

and every variable appears at most twice ([13, 11]). Finally in [19], Ivanyos, Karpinski and
Saxena present a deterministic polynomial-time algorithm for the case when among the input
matrices B1, . . . , Bm all but B1 are of rank 1.

As a computational model of polynomials, determinants with affine polynomial entries
turn out to be equivalent to algebraic branching programs (ABPs) [27, 4] up to a polynomial
overhead. Thus the identity test for ABPs is the same as SDIT. For restricted classes of
ABPs, (quasi)polynomial-time deterministic identity test algorithms have been devised (cf.
[10] and the references therein). Note that identity test results for SDIT and ABPs are in
general incomparable. For an application of SDIT to quantum information processing see [6].

Let us comment briefly on the main technical tool we use in our algorithms. We generalize
the first and second Wong sequences for matrix pencils (essentially two-dimensional matrix
spaces) which have turned out to be useful among others in the area of linear differential-
algebraic equations (see the recent survey [26]). These were originally defined in [29] for a
pair of matrices (A,B), and were recently used to compute the Kronecker normal form in a
numerical stable way [2, 3]. We generalize Wong sequences to the case (A,B) where A and
B are matrix spaces, and show that they have analogous basic properties to the original ones.
We relate the generalized Wong sequences to Edmonds’ problems via singularity witnesses.
Essentially this connection allows us to design the algorithm for R1 using the second Wong
sequence, and the algorithm for triangularizable matrix spaces using the first Wong sequence.
We remark that techniques similar to the second Wong sequence were already used in [19].

Organization. In Section 2 we define Wong sequences of a pair of matrix spaces, and present
their basic properties. In Section 3 the connection between the second Wong sequence and
singularity witnesses is shown. Based on this connection we introduce the power overflow
problem, and reduce the SMR to it. We also prove here Theorem 1 under the hypothesis
that there is a polynomial time algorithm for the power overflow problem. In Section 4 we
show an algorithm for the power overflow problem that works in polynomial time for rank-1
spanned matrix spaces. In Section 5 the algorithm for Theorem 2 is outlined, which works
for triangularizable matrix spaces. The readers are referred to the full version [18] for certain
missing details, and some discussion on the Edmonds-Rado class and some subclasses.

2 Wong sequences for pairs of matrix spaces

For n ∈ N, we set [n] = {1, . . . , n}. We use 0 to denote the zero vector space. In this
section we generalize the classical Wong sequences of matrix pencils to the situation of
pairs of matrix subspaces. This is the main technical tool in this work. Let V and V ′ be
finite dimensional vector spaces over a field F, and let Lin(V, V ′) be the vector space of
linear maps from V to V ′. We set n = dim(V) and n′ = dim(V ′). For A ∈ Lin(V, V ′), and
linear subspaces A ≤ Lin(V, V ′), U ≤ V and W ≤ V ′, we define A(U) = {A(u) | u ∈ U},
A(U) = 〈{A(u) | A ∈ A, u ∈ U}〉, A−1(W) = {v ∈ V | A(v) ∈W}, and A−1(W) = {v ∈ V |
∀A ∈ A, A(v) ∈W}. Observe that A(U), A(U) are linear subspaces of V ′, whereas A−1(W)
and A−1(W) are subspaces of V . Also note that A(U) = 〈∪A∈AA(U)〉 and A−1(W) =
∩A∈AA−1(W). Moreover, if A is spanned by {A1, . . . , Am}, then A(U) = 〈∪i∈[m]Ai(U)〉,
and A−1(W) = ∩i∈[m]A

−1
i (W). Some easy and useful facts are the following.

I Fact 3. For A,B ≤ Lin(V, V ′), and U, S ≤ V , W,T ≤ V ′, we have:
1. If U ⊆ S and W ⊆ T , then A(U) ⊆ A(S) and A−1(W) ⊆ A−1(T);
2. If B(U) ⊆ A(U) and B(S) ⊆ A(S), then B(〈U ∪ S〉) ⊆ A(〈U ∪ S〉);
3. If B−1(W) ⊇ A−1(W) and B−1(T) ⊇ A−1(T), then B−1(W ∩ T) ⊇ A−1(W ∩ T);
4. A−1(A(U)) ⊇ U , and A(A−1(W)) ⊆W .

G. Ivanyos, M. Karpinski, Y. Qiao, and M. Santha 401

We now define the two Wong sequences for a pair of matrix subspaces.

I Definition 4. Let A,B ≤ Lin(V, V ′). The sequence of subspaces (Ui)i∈N of V is called the
first Wong sequence of (A,B), where U0 = V , and Ui+1 = B−1(A(Ui)). The sequence of
subspaces (Wi)i∈N of V ′ is called the second Wong sequences of (A,B), where W0 = 0, and
Wi+1 = B(A−1(Wi)).

When A = 〈A〉 and B = 〈B〉 are one dimensional matrix spaces, the Wong sequences for
(A,B) coincide with the classical Wong sequences for the matrix pencil Ax−B [29, 2]. The
following properties are straightforward generalizations of those for classical Wong sequences.
We start by considering the first Wong sequence.
I Proposition 5. Let (Ui)i∈N be the first Wong sequence of (A,B). Then for all i ∈ N, we
have Ui+1 ⊆ Ui. Furthermore, Ui+1 = Ui if and only if B(Ui) ⊆ A(Ui).

Proof. Firstly we show that Ui+1 ⊆ Ui, for every i ∈ N. For i = 0, this holds trivially. For
i > 0, by Fact 3 (1) we get Ui+1 = B−1(A(Ui)) ⊆ B−1(A(Ui−1)) = Ui, since Ui ⊆ Ui−1.

Suppose now that B(Ui) ⊆ A(Ui), for some i. Then Ui ⊆ B−1(B(Ui)) ⊆ B−1(A(Ui))
respectively by Fact 3 (4) and (1), which gives Ui+1 = Ui. If B(Ui) 6⊆ A(Ui) then there
exist B ∈ B and v ∈ Ui such that B(v) 6∈ A(Ui). Thus v 6∈ B−1(A(Ui)) = Ui+1, which gives
Ui+1 ⊂ Ui. J

Given Proposition 5, we see that the first Wong sequence stabilizes after at most n
steps at some subspace. That is, for any (A,B), there exists ` ∈ {0, . . . , n}, such that
U0 ⊃ U1 ⊃ · · · ⊃ U` = U`+1 = In this case we call the subspace U` the limit of (Ui)i∈N,
and we denote it by U∗.
I Proposition 6. U∗ is the largest subspace T ≤ V such that B(T) ⊆ A(T).

Proof. By Proposition 5 we know that U∗ satisfies B(U∗) ⊆ A(U∗). Consider an arbitrary
T ≤ V such that B(T) ⊆ A(T), we show by induction that T ⊆ Ui, for all i. When i = 0 this
trivially holds. Suppose that T ⊆ Ui, for some i. Then by repeated applications of Fact 3 we
have T ⊆ B−1(B(T)) ⊆ B−1(A(T)) ⊆ B−1(A(Ui)) = Ui+1. J

Analogous properties hold for the second Wong sequence (Wi)i∈N. In particular the
sequence stabilizes after at most n′ steps, and there exists a limit subspace W ∗ of (Wi)i∈N.
We summarize them in the following proposition.
I Proposition 7. Let (Wi)i∈N be the second Wong sequence of (A,B). Then
1. Wi+1 ⊇Wi, for all i ∈ N. Furthermore, Wi+1 = Wi if and only if B−1(Wi) ⊇ A−1(Wi).
2. The limit subspace W ∗ is the smallest subspace T ≤ V ′ s.t. B−1(T) ⊇ A−1(T).

It is worth noting that the second Wong sequence can be viewed as the dual of the first
one in the following sense. Assume that V and V ′ are equipped with nonsingular symmetric
bilinear forms, both denoted by 〈, 〉. For a linear map A : V → V ′ let AT : V ′ → V

stand for the transpose of A with respect to 〈, 〉. This is the unique map with the property
〈AT(u), v〉 = 〈u,A(v)〉, for all u ∈ V ′ and v ∈ V . For a matrix space A, let AT be the space
{AT|A ∈ A}. For U ≤ V , the orthogonal subspace of U is defined as U⊥ = {v ∈ V | 〈v, u〉 = 0
for all u ∈ U}. Similarly we define W⊥ for W ≤ V ′. Then we have ((AT)−1(U)))⊥ = A(U⊥),
and (AT(V))⊥ = A−1(V ⊥). It can be verified that if (Wi)i∈N is the second Wong sequence
of (A,B) and (Ui)i∈N the first Wong sequence of (AT,BT), then Wi = U⊥i . We note that
the duality of Wong sequences was, already derived in [2] for pairs of matrices.

For a matrix space A and a subspace U ≤ V given in terms of a basis we can compute
A(U) by applying the basis elements for A to those of U and then selecting a maximal set of

STACS’14

402 Generalized Wong sequences and their applications to Edmonds’ problems

linearly independent vectors. A possible way of computing A−1(U) for U ≤ V ′ is to compute
first U⊥, then AT(U⊥) and finally A−1(U) = (AT(U⊥))⊥. Therefore we have
I Proposition 8. Wong sequences can be computed using (n+ n′)O(1) arithmetic operations.

Unfortunately, we are unable to prove that over the rationals the bit length of the entries
of the bases describing the Wong sequences remain polynomially bounded in the length
of the data for A and B. However, in Section 3.1 we show that if A = 〈A〉, then the first
few members of the second Wong sequence which happen to be contained in im(A) can be
computed in polynomial time using an iteration of multiplying vectors by matrices from a
basis for B and by a pseudo-inverse of A.

We also observe that if we consider the bases for A and B as matrices over an extension
field F′ of F then the members of the Wong sequences over F′ are just the F′-linear spaces
spanned by the corresponding members of the Wong sequences over F. In particular, the
limit of the first Wong sequence over F is nontrivial if and only if the limit of the first Wong
sequence over F′ is nontrivial.

3 The second Wong sequence and singularity witnesses

3.1 The connection
As in Section 2, let V and V ′ be finite dimensional vector spaces over a field F, of respective
dimensions n and n′. For A ∈ Lin(V, V ′) we set corank(A) = dim(ker(A)). For B ≤
Lin(V, V ′), the concepts of c-singularity witnesses, disc(B) and corank(B), defined for the
case when n = n′, can be generalized naturally to B. We also have that corank(B) ≥ disc(B),
and that a corank(B)-singularity witness of B does not exist necessarily. Let A ∈ B, and
consider (Wi)i∈N, the second Wong sequence of (A,B). The next lemma states that the limit
W ∗ is basically such a witness under the condition that it is contained in the image of A.
Moreover, in this specific case the limit can be computed efficiently.

I Lemma 9. Let A ∈ B ≤ Lin(V, V ′), and let W ∗ be the limit of the second Wong sequence
of (A,B). There exists a corank(A)-singularity witness of B if and only if W ∗ ⊆ im(A). If
this is the case, then A is of maximum rank and A−1(W ∗) is a corank(B)-singularity witness.

Proof. We prove the equivalence. Firstly suppose thatW ∗ ⊆ im(A). Then dim(A−1(W ∗)) =
dim(W ∗) + dim(ker(A)). Since W ∗ = B(A−1(W ∗)) and dim(ker(A)) = corank(A), it follows
that A−1(W ∗) is a corank(A)-singularity witness of B.

Let us now suppose that some U ≤ V is a corank(A)-singularity witness, that is
dim(U) − dim(B(U)) ≥ corank(A). Then dim(U) − dim(A(U)) ≥ corank(A) because
A ∈ B. Since the reverse inequality always holds without any condition on U , we have
dim(U) − dim(A(U)) = corank(A). Similarly we have dim(U) − dim(B(U)) = corank(A)
which implies that dim(A(U)) = dim(B(U)), and therefore A(U) = B(U). For a subspace
S ≤ V the equality dim(S) − dim(A(S)) = corank(S) is equivalent to ker(A) ⊆ S, thus
we have ker(A) ⊆ U from which it follows that U = A−1(A(U)). But then B−1(A(U)) =
B−1(B(U)) ⊇ U = A−1(A(U)). Since W ∗ is the smallest subspace T ≤ V ′ satisfying
B−1(T) ⊇ A−1(T), we can conclude that W ∗ ⊆ A(U).

The existence of a corank(A)-singularity witness obviously implies that A is of maximum
rank, and when W ∗ ⊆ im(A) we have already seen that A−1(W ∗) is a corank(A)-singularity
witness of B. Since corank(A) = corank(B), it is also a corank(B)-singularity witness. J

We would like to find an efficient way of testing whether W ∗ ⊆ im(A) for a given
A ∈ B. In the computation of the limit W ∗ of the second Wong sequence of (A,B) the

G. Ivanyos, M. Karpinski, Y. Qiao, and M. Santha 403

computationally hard step is applying iteratively A−1. We overcome this difficulty by
introducing a pseudo-inverse of A in the computation. We describe now this method.

Let n = dim(V) and n′ = dim(V ′). First of all we assume without loss of generality that
n = n′. Indeed, if n < n′ we can add as a direct complement a suitable space to V on which
B acts as zero, and if n > n′, we can embed V ′ into a larger space. In terms of matrices, this
means augmenting the elements of B by zero columns or zero rows to obtain square matrices.
This procedure affects neither the ranks of the matrices in B nor the singularity witnesses.

We say that a nonsingular linear map A′ : V ′ → V is a pseudo-inverse of A if the
restriction of A′ to im(A) is the inverse of the restriction of A to a direct complement of
ker(A). Such a map can be efficiently constructed as follows. Choose a direct complement
U of ker(A) in V as well as a direct complement U ′ of im(A) in V ′. Then take the map
A′0 : im(A)→ U such that AA′0 is the identity of im(A) and take an arbitrary nonsingular
linear map A′1 : U ′ → ker(A). Finally let A′ be the direct sum of A′0 and A′1.

I Lemma 10. Let A ∈ B ≤ Lin(V, V ′) and let A′ be a pseudo-inverse of A. There exists a
corank(A)-singularity witness of B if and only if (BA′)i(ker(AA′)) ⊆ im(A), for all i ∈ [n].
This can be tested in polynomial time, and if the condition holds then A is of maximum rank
and A′(W ∗) is a corank(B)-singularity witness which also can be computed deterministically
in polynomial time.

Proof. It follows from Lemma 9 that a corank(A)-singularity witness exists if and only if
Wi ⊆ im(A), for i = 1, . . . , n. Observing that (BA′)i(ker(AA′)) ⊆ Wi for i = 1, . . . , n, to
prove the equivalence it is sufficient to show that if (BA′)i(ker(AA′)) ⊆ im(A) for i = 1, . . . , n
then Wi = (BA′)i(ker(AA′)) for i = 1, . . . , n. The proof is by induction. For i = 1 the
claim W1 = BA′(ker(AA′)) holds since ker(AA′) = A′−1(ker(A)). For i > 1, by definition
Wi = BA−1(Wi−1). Since every subspace W ≤ im(A) satisfies A−1W = A′W + ker(A),
where + denotes the direct sum, we get Wi ⊆ BA′(Wi−1) + B(ker(A)). Observe that
B(ker(A)) = W1. We will show that W1 ⊆ BA′(Wi−1) and then we conclude by the inductive
hypothesis. We know that W1 ⊆Wi−1 from the properties of the Wong sequence, therefore
it is sufficient to show that Wi−1 ⊆ BA′(Wi−1). But Wi−1 = AA′(Wi−1) since Wi ⊆ im(A)
and A′ is the inverse of A on im(A).

Based on this equivalence, testing the existence of a corank(A)-singularity witness can be
accomplished by a simple algorithm, [18, Lemma 10] for details.

If we find that the condition holds then A′(W ∗) by Lemma 9 is a corank(B)-singularity
witness, and it can be easily computed from W ∗. J

3.2 The power overflow problem
For A ∈ B ≤ Lin(V, V ′), we would like to know whether A is of maximum rank in B. With
the help of the limit W ∗ of the second Wong sequence of (A,B) we have established a
sufficient condition: we know that if W ∗ ⊆ im(A) then A is indeed of maximum rank. Our
results until now do not give a necessary condition for the maximum rank. Now we show that
the second Wong sequence actually allows to translate this question to the power overflow
problem (PO) which we define below. As a consequence an efficient solution of the PO
guarantees an efficient solution for the SMR. The reduction is mainly based on a theorem of
Atkinson and Stephens [1] which essentially says that over big enough fields, in 2-dimensional
matrix spaces B, the equality corank(B) = disc(B) holds.

I Proposition 11 ([1]). Assume that |F| > n, and let A,B ∈ Lin(V, V ′). If A is a maximum
rank element of 〈A,B〉 then there exists a corank(A)-singularity witness of 〈A,B〉.

STACS’14

404 Generalized Wong sequences and their applications to Edmonds’ problems

Combining Lemma 10 and Proposition 11 we get also an equivalent condition for A being
of maximum rank.

I Lemma 12. Assume that |F| > n. Let A ∈ B ≤ Lin(V, V ′), and let A′ be a pseudo-inverse
of A. Then A is of maximum rank in B if and only if for every B ∈ B and for all i ∈ [n], we
have

(BA′)i(ker(AA′)) ⊆ im(A).

Proof. First observe that A is of maximum rank in B if and only if for every B ∈ B, it is of
maximum rank in 〈A,B〉. For a fixed B, by Proposition 11 and Lemma 10, A is of maximum
rank in 〈A,B〉 exactly when (〈B,A〉A′)i(ker(AA′)) ⊆ im(A), for all i ∈ [n]. From that we
can conclude since A′ is the inverse of A on im(A). J

This lemma leads us to reduce the problems of deciding if A is of the maximum rank, and
finding a matrix of rank larger than A when this is not the case, to the following question.
I Problem 13 (The power overflow problem). Given D ≤ M(n,F), U ≤ Fn and U ′ ≤ Fn,
output D ∈ D and ` ∈ [n] s.t. D`(U) 6⊆ U ′, if there exists such (D, `). Otherwise say no.

The power overflow problem admits an efficient randomized algorithm when |F| = Ω(n).
For the rank-1 spanned case we show a deterministic solution regardless of the field size.

I Theorem 14. Let D ≤M(n,F) be spanned by rank-1 matrices. Then there exists D ∈ D
and ` ∈ [n] such that D`(U) 6⊆ U ′ if and only if there exists ` ∈ [n] such that D`(U) 6⊆ U ′.
The power overflow problem for D can be solved deterministically in polynomial time.

Using this result whose proof is given in Section 4 we are now ready to prove Theorem 1.
Proof of Theorem 1. First we suppose that |F| ≥ n+ 1. Let A be an arbitrary matrix in
B. The algorithm iterates the following process until A becomes of maximum rank.

We run the algorithm of Lemma 10 to test whether (BA′)i(ker(AA′)) ⊆ im(A) for i ∈ [n].
If this condition holds then A is of maximum rank, and the algorithm also gives a corank(B)-
singularity witness. Otherwise we know by Theorem 14 that there exists B ∈ B and i ∈ [n]
such that (BA′)i(ker(AA′)) 6⊆ im(A). We apply the algorithm of Theorem 14 with input
BA′, ker(AA′) and im(A), which finds such a couple (B, i). Lemma 12 applied to 〈A,B〉
implies that A is not of maximum rank in 〈A,B〉. If A has rank r ≤ n − 1 which is not
maximal in 〈A,B〉, then the determinant of an appropriate (r + 1) × (r + 1) minor is a
nonzero polynomial of degree at most r+ 1 which has at most r+ 1 ≤ n roots. We then pick
n + 1 arbitrary field elements λ1, . . . , λn+1, and we know that for some 1 ≤ j ≤ n + 1 we
have rank(A+ λjB) > rank(A). We replace A by A+ λjB and restart the process.

At the end of each iteration, by a reduction procedure described in [7] we can achieve
that the matrix A, written as a linear combination of B1, . . . , Bm has coefficients from a
fixed subset K ⊆ F of size n+ 1. In fact, if A = α1B1 + α2B2 . . .+ αmBm has rank r then
for at least one κ1 ∈ K the matrix κ1B1 + α2B2 . . .+ αmBm has rank at least r. This way
all the coefficients αj can be replaced with an appropriate element from K.

As in each iteration we either stop (and conclude with A being of maxiaml rank), or
increase the rank of A by at least 1, the number of iterations is at most n. Also, each
iteration takes polynomial many steps since the processes of Lemma 10 and Theorem 14 are
polynomial. Therefore the overall running time is also polynomial. J

We can compute the maximum rank over a field of size less than n+ 1 by running the
above procedure over a sufficiently large extension field. The maximum rank will not grow if
we go over an extension. This follows from the fact that the equality corank(B) = disc(B)
holds over any field if B is spanned by an arbitrary matrix and by rank one matrices, see [19].

G. Ivanyos, M. Karpinski, Y. Qiao, and M. Santha 405

4 The power overflow problem for rank-1 spanned matrix spaces

In this section we prove Theorem 14. Given subspaces U,U ′ of Fn as well as a basis
{D1, . . . , Dm} for a matrix space D ≤M(n,F), we will show is that in polynomial time we
can decide if D`(U) 6⊆ U ′ for some `, and if this holds then find D ∈ D s.t. D`(U) 6⊆ U ′.

Formally let ` = `(D) be the smallest integer j s.t. Dj(U) 6⊆ U ′ if such an integer exists,
and n otherwise. We start by computing ` and for 1 ≤ j ≤ `, bases Tj for Dj . Set T1 =
{D1, . . . , Dm}. If Dj(U) 6⊆ U ′ then we set ` = j and stop constructing further bases. If j = n

and Dn(U) ⊆ U ′ then we stop the algorithm and output no. Otherwise we compute Tj+1 by
selecting a maximal linearly independent set form the products of elements in Tj and T1.

We are now looking for D such that D`(U) 6⊆ U ′. For i ∈ [`], we define subspaces Hi of
D, which play a crucial role in the algorithm:

Hi = {X ∈ D | D`−jXDj−1(U) ⊆ U ′, j = 1, . . . , i− 1, i+ 1, . . . , `}.
That is, X ∈ Hi if and only if whenever X appears in a place other than the ith in a product
P of ` elements from D then P (U) ⊆ U ′. The subspaces Hi can be computed as follows.
Let x1, . . . , xm be formal variables, an element in D can be written as X =

∑
k∈[m] xkDk.

The condition D`−jXDj−1(U) ⊆ U ′ is equivalent to the set of the following homogeneous
linear equations in the variables xk: 〈Z(

∑
k∈[m] xkDk)Z ′u, v〉 = 0, where Z is from T`−j , Z ′

is from Tj−1, u is from a basis for U and v is from a basis for U ′⊥. Thus Hi can be computed
by solving a system of polynomially many homogeneous linear equations. Note that the
coefficients of the equations are scalar products of vectors from a basis for U ′⊥ by vectors
obtained as applying products of ` matrices from {D1, . . . , Dm} to basis elements for U . The
definition of Hi implies the following.

I Lemma 15. For a matrix X = X1 + . . .+X` with Xi ∈ Hi, we have X`(U) ⊆ U ′ if and
only if X` · · ·X2X1(U) ⊆ U ′.

Proof. We haveXm =
∑
σXσ(`) · · ·Xσ(1), where the summation is over the maps σ : [`]→ [`].

When σ is not the identity map then there exists an index j such that σ(j) 6= j. Then
Xσ(`) · · ·Xσ(1)(U) ⊆ U ′ by the definition of Hσ(j). J

In general, Hi can be 0. In our setting, due to the existence of rank one generators,
fortunately this is far from the case. Recall that ` is the smallest integer such that D`(U) 6⊆ U ′.

I Lemma 16. We have H` · · ·H1(U) 6⊆ U ′.

Proof. Assume that D is spanned by the rank one matrices C1, . . . , Cm. Then there exist
indices k1, . . . , k` such Ck`

· · ·Ck1(U) 6⊆ U ′. We show that Cki
∈ Hi, for i ∈ [`], this

implies immediately H` · · ·H1(U) 6⊆ U ′. Assume by contradiction that Cki
6∈ Hi, for some

i ∈ [`]. Then D`−jCkiDj−1(U) 6⊆ U ′, for some j 6= i. On the other hand Cki satisfies
D`−iCki

Di−1(U) 6⊆ U ′. Since Cki
is of rank 1 we have Cki

Dj−1(U) = Cki
Di−1(U), which

yields that neither D`−iCkiDj−1(U) nor D`−jCkiDi−1(U) is contained in U ′. However one
of these products is shorter than `, contradicting the minimality of `. J

To finish the algorithm, we compute bases for products Hi · · ·H1, for i ∈ [n], in a way
similar to computing bases for Di. Then we search the basis of H` for an element Z such
that ZH`−1 · · ·H1(U) 6⊆ U ′. We put X` = Z and continue searching the basis of H`−1 for
an element Z such that X`ZH`−2 · · ·H1(U) 6⊆ U ′. Continuing the iteration, Lemma 16
ensures that eventually we find Xi ∈ Hi, for i ∈ [`], such that X` · · ·X1(U) 6⊆ U ′. We set
D = X1 + . . .+X`, then by Lemma 15 we have D`(U) 6⊆ U ′. We return D and `. 2

STACS’14

406 Generalized Wong sequences and their applications to Edmonds’ problems

5 The first Wong sequence and triangularizable matrix spaces

Here we only give a proof outline of Theorem 2, and the reader is referred to the full version
[18, Section 5] for details. Our task is to determine whether there exists a nonsingular
matrix in a triangularizable matrix space, and finding such a matrix if exists. Let F′ be an
extension field of F, and recall that B ≤M(n,F) is triangularizable if there exist nonsingular
C,D ∈ M(n,F′), s.t. ∀B ∈ B, DBC−1 is upper triangular. Our starting point is the
following lemma, which connects first Wong sequences with singularity witnesses.

I Lemma 17. Let A ∈ B ≤ M(n,F), and let U∗ be the limit of the first Wong sequence
of (A,B). Set d = dim(U∗). Then either U∗ is a singularity witness of B, or there exist

nonsingular matrices P,Q ∈M(n,F), such that ∀B ∈ B, QBP−1 is of the form
[

X Y

0 Z

]
,

where X is of size d× d, and B is nonsingular in the X-block.

Lemma 17 suggests a recursive algorithm: take an arbitrary A ∈ B and compute U∗,
the limit of the first Wong sequence of (A,B). If we get a singularity witness, we are done.
Otherwise, if U∗ 6= 0, as the X-block is already nonsingular, we only need to focus on the
nonsingularity of Z-block which is of smaller size. To make this idea work, we have to satisfy
essentially two conditions. We must find some A such that U∗ 6= 0, and to allow for recursion
the specific property of the matrix space B we are concerned with has to be inherited by the
subspace corresponding to the Z-block. It turns out that in the triangularizable case these
two problems can be taken care of by the following Lemma.

I Lemma 18. Let B ≤ F be given by a basis {B1, . . . , Bm}, and suppose that there exist
nonsingular matrices C,D ∈M(n,F′) such that Bi = DB′iC

−1 and B′i ∈M(n,F′) is upper
triangular for every i ∈ [m]. Then we have the following.
1. Either ∩i∈[m] ker(Bi) 6= 0, or there exists j ∈ [m] and 0 6= U ≤ Fn s.t. Bj(U) = B(U).
2. Suppose there exist j ∈ [m] and 0 6= U ≤ Fn s.t. Bj(U) = B(U), and dim(U) =

dim(Bj(U)). Let B∗i : Fn/U → Fn/B(U) be the linear map induced by Bi, for i ∈ [m].
Then B∗ = 〈B∗1 , . . . , B∗m〉 is triangularizable over F′.

Proof. 1. Let {ei | i ∈ [n]} be the standard basis of F′n, and ci = C(ei) and di = D(ei) for
i ∈ [n]. If B′i(1, 1) = 0 for all i ∈ [m] then c1 is in the kernel of every Bi’s. If there exists j
such that B′j(1, 1) 6= 0, we set U ′ = 〈c1〉 ≤ F′n. Then it is clear that 〈d1〉 = Bj(U ′) = B(U ′).
It follows that the first Wong sequence of (Bj ,B) over F′ has nonzero limit, and therefore
the same holds over F. We can choose for U this limit.

2. First we recall that for a vector space V of dimension n, a complete flag of V is
a nested sequence of subspaces 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V . For A ≤ Lin(V, V ′) with
dim(V) = dim(V ′) = n, the matrix space A is triangularizable if and only if ∃ complete flags
0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V and 0 = V ′0 ⊂ V ′1 ⊂ · · · ⊂ V ′n = V ′ s.t. A(Vi) ⊆ V ′i for i ∈ [n].

For U ≤ Fn, let F′U be the linear span of U in F′n. We think of Bi’s and B∗i ’s as linear
maps over F′ in a natural way. Let ` = dim(F′n/F′U). For 0 ≤ i ≤ n set Si = 〈c1, . . . , ci〉 and
Ti = 〈d1, . . . , di〉. Obviously B(Si) ⊆ Ti for 0 ≤ i ≤ n. Let S∗i = Si/F′U and T ∗i = Ti/B(F′U),
and consider S∗0 ⊆ · · · ⊆ S∗n and T ∗0 ⊆ · · · ⊆ T ∗n . We claim that ∀i ∈ [n], dim(S∗i) ≥ dim(T ∗i).
This is because as Ti ∩ B(F′U) ⊇ Bj(Si ∩ F′U), by dim(F′U) = dim(Bj(F′U)), dim(Bj(Si ∩
F′U)) ≥ dim(Si ∩ F′U). Thus dim(Si ∩ F′U) ≤ dim(Ti ∩ B(F′U)), and dim(S∗i) ≥ dim(T ∗i).
As B∗(S∗i) ⊆ T ∗i , dim(S∗i+1) − dim(S∗i) ≤ 1, and dim(T ∗i+1) − dim(T ∗i) ≤ 1, there exist
two nested sequences S∗0 ⊂ S∗j1

⊂ · · · ⊂ S∗j`
= S∗n and T ∗0 ⊂ T ∗k1

⊂ · · · ⊂ T ∗k`
= T ∗n ,

s.t. dim(Sjh
) = dim(Tkh

) = h. Furthermore, by dim(S∗i) ≥ dim(T ∗i), jh ≤ kh, thus

G. Ivanyos, M. Karpinski, Y. Qiao, and M. Santha 407

B∗(S∗jh
) ⊆ B∗(S∗kh

) ⊆ T ∗kh
, ∀h ∈ [`]. That is, the two nested sequences are complete flags,

and B∗ is triangularizable over F′. J

Given the above preparation, we can now outline the algorithm for Theorem 2.
Proof of Theorem 2. First we consider finite fields. The algorithm recurses on the size
of the matrices, with the base case being the size one. It checks at the beginning whether
∩i∈[m] ker(Bi) = 0. If this is the case then it returns ∩i∈[m] ker(Bi) which is a singularity
witness. Otherwise, for all i ∈ [m], it computes the limit U∗i of the first Wong sequence for
(Bi,B). By Lemma 18 (1) there exists j ∈ [m] such that U∗j 6= 0 and Bj(U∗j) = B(U∗j). The
algorithm then recurses on the induced actions B∗i ’s of Bi’s, which are also triangularizable
by Lemma 18 (2). When B is nonsingular the algorithm should return a nonsingular matrix.
This nonsingular matrix is built step by step by the recursive calls, at each step we have to
construct a nonsingular linear combination of Bj and the matrix returned by the call. For
this we need n+ 1 field elements.

The case of the rational numbers can be reduced to the case of finite fields. Let b be a
bound on the absolute values of entries in Bi’s. It can be shown that there exists a prime
number p of value polynomially bounded by log b and n s.t. the following holds: let B′i
be the matrix Bi modulo p. When B is triangularizable and nonsingular then the matrix
space spanned by B′i is triangularizable over an extension field of Fp and nonsingular. If
B is singular, modulo any prime the matrix space is singular. So we enumerate all prime
numbers up to the given polynomial bound, and for each prime use the algorithm over finite
fields. J

Acknowledgements. We would like to thank the anonymous reviewers for careful reading
and pointing out some gaps in an earlier version of the paper. Most of this work was
conducted when G. I., Y. Q. and M. S. were at the Centre for Quantum Technologies (CQT)
in Singapore, and partially funded by the Singapore Ministry of Education and the National
Research Foundation, also through the Tier 3 Grant “Random numbers from quantum
processes”. Research partially supported by the European Commission IST STREP project
Quantum Algorithms (QALGO) 600700, by the French ANR Blanc program under contract
ANR-12-BS02-005 (RDAM project), by the Hungarian Scientific Research Fund (OTKA),
Grants NK105645 and K77476, and by the Hausdorff grant EXC59-1/2.

References
1 M. D. Atkinson and N. M. Stephens. Spaces of matrices of bounded rank. The Quarterly

Journal of Mathematics, 29(2):221–223, 1978.
2 T. Berger and S. Trenn. The quasi-Kronecker form for matrix pencils. SIAM Journal on

Matrix Analysis and Applications, 33(2):336–368, 2012.
3 Thomas Berger and Stephan Trenn. Addition to “the quasi-Kronecker form for matrix

pencils”. SIAM Journal on Matrix Analysis and Applications, 34(1):94–101, 2013.
4 Stuart J. Berkowitz. On computing the determinant in small parallel time using a small

number of processors. Information Processing Letters, 18(3):147–150, 1984.
5 Jonathan F. Buss, Gudmund S. Frandsen, and Jeffrey O. Shallit. The computational

complexity of some problems of linear algebra. J. Comput. Syst. Sci., 58(3):572–596, 1999.
6 Eric Chitambar, Runyao Duan, and Yaoyun Shi. Multipartite-to-bipartite entanglement

transformations and polynomial identity testing. Physical Reveiw A, 81(5):052310, 2010.
7 Willem A. de Graaf, Gábor Ivanyos, and Lajos Rónyai. Computing Cartan subalgebras of

Lie algebras. Applicable Algebra in Engineering, Communication and Computing, 7(5):339–
349, 1996.

STACS’14

408 Generalized Wong sequences and their applications to Edmonds’ problems

8 Jack Edmonds. Systems of distinct representatives and linear algebra. J. Res. Nat. Bur.
Standards Sect. B, 71:241–245, 1967.

9 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In N. Sauer
R. K. Guy, H. Hanani and J. Schönheim, editors, Combinatorial Structures and their Appl.,
pages 69–87, New York, 1970. Gordon and Breach.

10 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In FOCS, 2013.

11 James Geelen and Satoru Iwata. Matroid matching via mixed skew-symmetric matrices.
Combinatorica, 25(2):187–215, 2005.

12 James F. Geelen. Maximum rank matrix completion. Linear Algebra and its Applications,
288:211–217, 1999.

13 James F. Geelen, Satoru Iwata, and Kazuo Murota. The linear delta-matroid parity prob-
lem. Journal of Combinatorial Theory, Series B, 88(2):377–398, 2003.

14 Leonid Gurvits. Quantum matching theory (with new complexity theoretic, combinatorial
and topological insights on the nature of the quantum entanglement), 2002.

15 Leonid Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sci.,
69(3):448–484, 2004.

16 Nicholas J. A. Harvey, David R. Karger, and Kazuo Murota. Deterministic network coding
by matrix completion. In Proceedings of SODA, pages 489–498. ACM-SIAM, 2005.

17 Nicholas J. A. Harvey, David R. Karger, and Sergey Yekhanin. The complexity of matrix
completion. In Proceedings of SODA, pages 1103–1111. ACM-SIAM, 2006.

18 Gábor Ivanyos, Marek Karpinski, Youming Qiao, and Miklos Santha. Generalized wong
sequences and their applications to edmonds’ problems. Electronic Colloquium on Compu-
tational Complexity (ECCC), 20:103, 2013.

19 Gábor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polynomial time al-
gorithms for matrix completion problems. SIAM J. Comput., 39(8):3736–3751, 2010.

20 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

21 László Lovász. On determinants, matchings, and random algorithms. In FCT, pages 565–
574, 1979.

22 László Lovász. Singular spaces of matrices and their application in combinatorics. Boletim
da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 20(1):87–
99, 1989.

23 Kazuo Murota. Matrices and matroids for systems analysis. Springer, 2000.
24 Richard Rado. A theorem on independence relations. The Quarterly Journal of Mathem-

atics, Oxford Ser., 13(1):83–89, 1942.
25 Jacob T. Schwartz. Probabilistic algorithms for verification of polynomial identities. In

Edward W. Ng, editor, Symbolic and Algebraic Computation, volume 72 of Lecture Notes
in Computer Science, pages 200–215. Springer Berlin Heidelberg, 1979.

26 Stephan Trenn. Solution concepts for linear DAEs: A survey. In Achim Ilchmann and
Timo Reis, editors, Surveys in Differential-Algebraic Equations I, Differential-Algebraic
Equations Forum, pages 137–172. Springer Berlin Heidelberg, 2013.

27 Leslie G. Valiant. Completeness classes in algebra. In STOC, pages 249–261, 1979.
28 D. J. A. Welsh. On matroid theorems of Edmonds and Rado. Journal of the London

Mathematical Society, 2(2):251–256, 1970.
29 Kai-Tak Wong. The eigenvalue problem λTx + Sx. Journal of Differential Equations,

16(2):270 – 280, 1974.
30 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward W. Ng, editor,

Symbolic and Algebraic Computation, volume 72 of LNCS, pages 216–226. Springer, 1979.

Read-Once Branching Programs for Tree
Evaluation Problems
Kazuo Iwama1 and Atsuki Nagao2

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan
iwama@kuis.kyoto-u.ac.jp

2 Graduate School of Informatics, Kyoto University, Kyoto, Japan
a-nagao@kuis.kyoto-u.ac.jp

Abstract
Toward the ultimate goal of separating L and P, Cook, McKenzie, Wehr, Braverman and
Santhanam introduced the tree evaluation problem (TEP). For fixed h, k > 0, FTh(k) is given
as a complete, rooted binary tree of height h, in which each internal node is associated with a
function from [k]2 to [k], and each leaf node with a number in [k]. The value of an internal node
v is defined naturally, i.e., if it has a function f and the values of its two child nodes are a and b,
then the value of v is f(a, b). Our task is to compute the value of the root node by sequentially
executing this function evaluation in a bottom-up fashion. The problem is obviously in P and
if we could prove that any branching program solving FTh(k) needs at least kr(h) states for any
unbounded function r, then this problem is not in L, thus achieving our goal. The above authors
introduced a restriction called thrifty against the structure of BP’s (i,e., against the algorithm
for solving the problem) and proved that any thrifty BP needs Ω(kh) states. This paper proves a
similar lower bound for read-once branching programs, which allows us to get rid of the restriction
on the order of nodes read by the BP that is the nature of the thrifty restriction.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Lower bounds, Branching Programs, Read-Once Branching Programs,
Space Complexity, Combinatorics

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.409

1 Introduction

Settling the P vs. NP question is obviously the biggest goal of theoretical computer science,
but the fact is that almost nothing is known for separation of other complexity classes, either.
For example, separation of L (= Log space) and P, which has been much less popular than P
vs. NP, should be equally important to make clear the whole view of complexity classes. To
this end, Cook, McKenzie, Wehr, Braverman and Santhanam introduced a simple but very
general problem called the tree evaluation problem (TEP) [3]. For fixed h, k > 0, FTh(k) is
given as a complete, rooted binary tree of height h in which each internal node is associated
with a function from [k]2 to [k], and each leaf node with a number in [k]. The value of an
internal node v is defined naturally, i.e., if it has a function f and the values of its two child
nodes are a and b, then the value of v is f(a, b). Our task is to compute the value of the
root node by sequentially executing this function evaluation in a bottom-up fashion. Note
that the original definition in [3] is based on a d-ary tree. In this paper, we only consider a
binary tree for our TEP.

Our computation model is branching programs (BP’s) that are sometimes more useful
to discuss complexity bounds rather than Turing machines (TM’s) especially for problems

© Kazuo Iwama and Atsuki Nagao;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 409–420

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.409
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

410 Read-Once Branching Programs for Tree Evaluation Problems

having relatively low complexities like TEP. It is known that the size of a branching program
(the number of its states) and the space of a TM are closely related, namely a lower bound
s(n) for BP’s size implies a lower bound Θ(log(s(n))) for TM’s space. It then turns out that
if we can prove that any BP solving FTh(k) needs at least kr(h) states for any unbounded
function r, then this problem is not in L. Since it is obviously in P, we would be able to
separate L and P. For details of these observations, see [3].

It is not hard to construct a branching program that computes FTh(k) of size O(kh)
(see Fig. 3 given later) and this construction strongly seems optimal. As mentioned above,
we only need a much more moderate bound, kr(h), and that is the natural reason why we
think this problem would fit our goal. In fact, [3] proves, by using the black pebbling game
[10][2], that if our BP’s satisfy a certain property, called the thrifty restriction, then we do
need Ω(kh) states. The thrifty restriction roughly means that when the BP reads an internal
node v (actually reads its associated function), it has already read all the values of the v’s
subtree. Thus this algorithmic restriction strongly restricts the order of tree nodes that are
read by the BP. (The thrifty restriction also applies to nondeterministic BP’s, in which case
its meaning is more subtle.) The authors claim that this restriction is “natural,” but we
can of course think of different kind of BP’s that guess (read) function values first and then
check the leaf values if they actually realize the function values. In fact our lower bound
proof gets messy in this case.

Recall that we have another popular restriction type of BP’s, namely the read-once
restriction, where a read-once BP reads each input value at most once in any computation
path. In fact the above O(kh) construction is not only thrifty but also read-once and [14]
proves that if our BP is both thrifty and read-once, then this explicit construction with
(k + 1)h − k states is absolutely optimum. Now the natural question is what if we impose
only the read-once restriction.

Our contribution. It is shown that if a read-once BP B solves FTh(k), then B needs Ω(kh)
states, thus proving a lower bound on the size of read-once BP’s similar to that of thrifty
BP’s. Actually B needs to be read-once only for states reading leaf values, i.e., the result
holds for even less restricted BP’s such that in every computation path, if the last leaf-reading
state s reads a leaf node v, any state appearing before s on the path does not read v. Note
that there is no restriction at all on states reading internal nodes (associated with functions).
Furthermore, since our main lemma bounds the number of only leaf-reading states, we do
not have to care about the number of these non-leaf-reading states.

Since there are no restrictions on the order of nodes visited by the BP any longer, there is
no obvious way of directly using the pebbling game for lower bound proof. Instead, we use a
similar notion from a slightly different angle, namely we use what we call a cut configuration,
a set of the values of h− 1 nodes that "cut" paths between leaf nodes and the root of the
given FTh(k). The key lemma (Lemma 5) is that if a last leaf-reading state accepts two
or more inputs having different cut configurations, then the function part in the inputs is
severely restricted, which means the number of different inputs whose paths go through this
state is very small. Thus there must be a lot of inputs whose function part does not have
this restriction, and we can imply that those inputs have only one cut configuration for any
of the last leaf-reading states. For such a fixed function part, the number of inputs having
that cut configuration for the last leaf-reading state is easily bounded from above. Thus
follows the lower bound for the number of such states. Of course there should still exist a
big gap between this class of BP’s and general ones, but at least we can get rid of the issue
of node orders visited by BP’s, which was quite annoying for the attempt of generalising our
lower bound proofs.

K. Iwama and A. Nagao 411

Our proof depends on another important lemma (Lemma 3) that relates the number of
leaf-reading states and the number of states reading second-leaves (the leaves located at
height h − 1). This lemma holds for general BP’s and gives us a by-product. Namely, as
shown in Section 4, we can obtain a k3 lower bound for general BP’s for the height-3 TEP,
which is the same as [3] but with a simpler proof.

Related Work. Other than the lower bounds for thrifty BP’s, [3] includes several important
results, for instance, it gives a lower bound, k3, for unrestricted BP’s solving FT3(k), which is
tight up to the constant factor. This is still the best lower bound for general BP’s solving TEP.
[7] studies mainly nondeterministic BP’s for TEP. Its main result is that "bitwise-independent"
thrifty nondeterministic BP’s for TEP have at least 1

2k
h/2 states, which is tight against the

upper bounds shown in [3]. Their main technique is so-called the entropy method developed
in [6]. See [3] for several other attempts trying to separate relatively low complexity classes.
For instance [4] studies the complexity of BP’s solving GEN (known to be P-complete) that
asks a certain kind of reachability to a target element repeatedly using a binary operation.

Studies on branching programs have been quite popular since their introduction by Masek
[8], and there is a large literature if it is restricted to studies on their size lower bounds
(the following is only a small fraction): The best general deterministic lower bound is still
Ω(n2/(logn)2), which was proved almost half a century ago by Nečiporuk [9]. Note that
the above lower bound for FT3(k) is Ω(n3/2/(logn)5/2) in terms of the binary input length.
(For a general d-ary TEP, [3] obtains a stronger Ω(n2/(log(n))2) lower bound applying the
Nečiporuk method.) Against read-once branching programs, we have much better lower
bounds. In 1984, Žák [15] first obtained a super-polynomial lower bound, Ω(2

√
n−logn), for

the half-clique function, which was improved to more than 2n/3−o(n) by Wegener [13]. For
the triangle parity function, Ajtai [1] gave a 2cn lower bound and the value of c was later
improved by Simon(1993) [12]. Jukna [5] relaxed the read-once restriction to the k-read-once
restriction (i.e., all variables except k ones are read-once). He obtained a lower bound of
2Ω((n

k)1/2) for k = O(n/ logn) and this is extended by Žak [11] into a hierarchy theorem
based on this value k.

2 Preliminaries

For the Tree Evaluation Problem (TEP), FTh(k), we are given a complete binary tree Th of
height h with nodes 1 through 2h−1 (see Fig. 1 for h = 3). Each internal node 1 ≤ i ≤ 2h−1−1
is associated with some explicit function fi : [k]2 7→ [k], where [k] = {1, 2, . . . , k}. Each leaf
node j (2h−1 ≤ j ≤ 2h − 1) is associated with a number in [k]. Our task is to compute the
value of the function f1 at the root node in the natural way: Suppose that we have inputs
f1, f2, f3, a4, a5, a6, a7 for the tree of Fig. 1. Then the value we want to obtain is

f1(f2(a4, a5), f3(a6, a7)).

Note that each fi is given as an explicit sequence of values, e.g., fi(1, 1), fi(1, 2), fi(1, 3),
fi(2, 1), fi(2, 2), fi(2, 3), fi(3, 1), fi(3, 2), fi(3, 3) for k = 3. In some cases, it is convenient
to use a k × k matrix instead of the above sequence. For instance Fig. 2 shows an example
of f1,f2,f3 for h = 3. Now if (a4, a5, a6, a7)=(3, 3, 1, 2), then the solution for this inputs is
f1(f2(3, 3), f3(1, 2))= f1(3, 2)= 1. In our lower bound proof, the nodes located at height
h− 1 (parents of leaves) play an important role. We call them second-leaves.

Our computation model is a (deterministic) branching program (BP) B, which is a directed,
rooted, acyclic graph. Its vertices are called states including a unique initial state and k sink

STACS’14

412 Read-Once Branching Programs for Tree Evaluation Problems

32 1
54 76

Figure 1 F T3(3).

1 2 3123
1 2 3123

1 2 31233 1 22 2 13 3 3 2 1 23 2 11 2 3 2 1 32 2 31 1 1
Figure 2 Example of f1, f2, f3.

states. Each non-sink state (or simply a state if no confusion would arise) has k outgoing
edges labelled by 1 through k, while each sink state has no outgoing edges. Each state has a
label of the form (i1, i2, i3) or j, where 1 ≤ i1 ≤ 2h−1−1, 1 ≤ i2, i3 ≤ k and 2h−1 ≤ j ≤ 2h−1.
Each sink state has a label l where 1 ≤ l ≤ k. A BP B computes the solution of TEP
in the following way. Suppose that our input is I = (f1(1, 1), f1(1, 2), . . . , f2h−1−1(k, k),
a2h−1 , . . . , a2h−1). Then its computation path, P , for input I is defined as follows. P starts
from the initial state. If P is now at a state with label (i1, i2, i3), then P is extended by the
edge labelled by fii(i2, i3). If P is at a state with label j, then it is extended by the edge
labelled by aj . We often say that B "reads" the input attached to the node i1 (a non-leaf
node) or j (a leaf) and branches due to its value between 1 and k. P ends with some sink
state; if its label is l, then the outcome of the computation is l. If this outcome is equal to
the correct solution for all possible inputs I, then we say B solves FTh(k).

Fig. 3 shows an example of a BP that solves FT3(3). The computation path for the input
previously given (f1, f2, f3 in Fig. 2, and (a4, a5, a6, a7) =(3, 3, 1, 2)) is given by a thick line.
A BP is called read-once if all paths from the root to sinks do not have two or more same
labels. The BP in Fig. 3 is read-once.

Our lower bound proof is based on the following simple idea: Suppose that A (|A| = m1)
is a carefully selected subset of all the possible inputs for FTh(k). Let B be any (read-once)
BP that solves FTh(k). Then our proof says that we can always select a set S of states such
that each computation path corresponding to each input in A goes through some state in S
and any state in S accepts computation paths of at most m2 inputs in A, concluding that
|S| is at least m1/m2. To introduce such an input set A, we consider the following constraint
for functions fi: Suppose that

X =

α11 α12 · · · α1k

α21
. . . · · · α2k

...
...

. . .
...

αk1 α12 · · · αkk

is the matrix representation of fi. Then it has to satisfy the following three constraints:
(i) α11 . . . α1k (= the first row) is a permutation of (1, . . . , k) (ii) α11 . . . αk1 (= the first
column) is a permutation of (1, . . . , k) (iii) For ∀j ≥ 2, αj1 . . . αjk is a permutation that can
be written as δl(α11 . . . α1k) for some 1 ≤ l ≤ k where δ is the cyclic permutation

δ =
(

1 2 · · · k − 1 k

2 3 · · · k 1

)
and δl is a composition of l δ’s. Thus each row is a permutation, and it is not hard to see
that each column is also a permutation. X is fixed by determining its first row and the
first column, and hence there are k!(k − 1)! different fi’s. Let F be the class of functions
satisfying these constraints. In this paper, we assume that our function fi is always selected

K. Iwama and A. Nagao 413

4

5

(2,1,1)

(2,1,2)

(2,1,3)

5

(2,2,1)

(2,2,2)

(2,1,3)

5

(2,3,1)

(2,3,2)

(2,3,3)

6

7

(3,1,1)

(3,1,2)

(3,1,3)

7

(3,2,1)

(3,2,2)

(3,2,3)

7

(3,3,1)

(3,3,2)

(3,3,3)

7

6

(3,1,1)

(3,2,1)

(3,3,1)

6

(3,1,2)

(3,2,2)

(3,3,2)

6

(3,1,3)

(3,2,3)

(3,3,3)

6

7

(3,1,1)

(3,1,2)

(3,1,3)

7

(3,2,1)

(3,2,2)

(3,2,3)

7

(3,3,1)

(3,3,2)

(3,3,3)

(1,1,1)

(1,1,2)

(1,1,3)

(1,2,1)

(1,2,2)

(1,1,3)

(1,3,1)

(1,3,2)

(1,3,3)

1

2

3

Figure 3 An example of a read-once branching program solving F T3(3).

from F unless otherwise stated (but of course, our BP’s must give correct solutions for all
inputs). Now here are easy but important lemmas.

I Lemma 1. Suppose that two inputs I and I ′ (their function parts satisfy the constraint)
are exactly the same except only one leaf value at node j. Then the final value of FTh(k) is
different between I and I ′.

Proof. Suppose that the final value is the same and consider the path from the root to
j. Since the root value is the same and the leaf value is different, there must be a node i
on the path such that the value of i is the same but the value of i’s next node i′ on the
path is different, say, a in I and a′ in I ′. Let i′′ be the sibling of i′ (both i′ and i′′ have i
as their parent). Then the value of i′′ is the same, say b, in both I and I ′. Thus we have
fi(a, b) = fi(a′, b) for a 6= a′, which contradicts that fi ∈ F . J

I Lemma 2. Suppose that a BP B solves FTh(k). Then (1) for any internal node i of
FTh(k) and for any a, b ∈ [k], there must be a state whose label is (i, a, b) in B. (2) If P is
a legal computation path, then for any leaf node j, P includes a state that reads j.

Proof. For (2), suppose that P corresponds to input I and it does not read j. Then consider
another input I ′ which is different from I only in j. Then B obviously outputs the same
value for I and I ′, contradicting the previous lemma. (1) is proved similarly by considering
two inputs I and I ′ that differ only in fi(a, b) and such that both inputs actually use fi(a, b)
(meaning the values of i’s two children are a and b under I and I ′). Note that if I satisfies

STACS’14

414 Read-Once Branching Programs for Tree Evaluation Problems

(i,a,b) i

(i,a’,b’)

Figure 4 Modification rules(i), (ii) and (iii).

the restriction, then I ′ does not. Now one can see, exactly as in the proof of the previous
lemma, that the final value is different between I and I ′, but B outputs the same value, a
contradiction. J

The next lemma (hinted by Th. 5.8 and Th. 5.9 of [3]) relates the number of states
reading leaf nodes and the number of state reading second-leaf nodes. By this lemma, we
can increase the degree of k by one in the lower bound given in the next section. Note that
this lemma holds for general BP’s (and see Sec. 4 for its by-product).

I Lemma 3. For h ≥ 1, if there is a BP Bh+1 solving FTh+1(k) such that the number of
states that read second-leaf nodes is n, then there is a BP Bh solving FTh(k) such that the
number of states that read leaf nodes is at most n/k2. Furthermore, if Bh+1 is read-once, so
is Bh, also.

Proof. we construct Bh from the given Bh+1 as follows. Let i be a second-leaf node of
FTh+1(k) and (a, b) is a pair of inputs to fi such that the number of states in Bh+1 that
read fi(a, b) is less than or equal to the number of states reading fi(a′, b′) for any (a′, b′).
Let m be the number of such state s reading fi(a, b). By Lemma 2, there is at least one state
that reads fi(a, b) for any (a, b) ∈ [k]× [k]. So, m is at most (1/k2)×(the number of states
that read fi). Now we make the following modification against Bh+1 (see Fig. 4). The basic
idea is that we fix the values of the two child (leaf) nodes of i to a and b. Then i looks like a
leaf node of FTh(k) and among the states in Bh+1 that read i, only 1/k2 ones survive by the
following construction. This holds for any i and hence the lemma holds. (i) Change the label
of the above m states from (i, a, b) to i. (Namely this state reads a leaf node of FTh(k).)
(ii) Suppose that j1 and j2 are the two leaf nodes whose parent is i. Then we remove all
the states q of Bh+1 that read j1 (j2, respectively) by connecting q’s incoming edges to the
state to which the edge from q labelled by a (b, respectively) goes. (iii) We remove all the
state q of Bh+1 that read fi(a′, b′), ((a′, b′) 6= (a, b)), by connecting q’s incoming edges to
the state to which the edge from q labelled by 1 goes (this “1” is not important or it may be
any number in [k]).

We repeat this change for all second-leaf nodes of FTh+1(k), obtaining Bh. We omit the
proof that this construction is correct, since it is almost obvious from the construction. J

K. Iwama and A. Nagao 415

Figure 5 Involved nodes in CC(I, j).

3 Lower Bounds

In this section we obtain a lower bound for the number of states that read leaf nodes of
FTh(k). Then combining it with Lemma 3, we obtain a better lower bound for the number
of states that read second-leaf nodes of FTh(k). Recall that our input satisfies the constraint
(its functions belong to F) and all BPs in this section are read-once. Let B be a BP that
solves FTh(k) and P be its arbitrary computation path. (To avoid confusion, we sometimes
say that P is a legal computation path to emphasise that P is based on an input whose
function part satisfies the constraint.) Then by Lemma 2, P reads all leaf values (for any
leaf j, there is a state in P that reads j). Let q be the last state on P that reads a leaf value,
i.e., there is no state after q on P that reads a leaf. Since B is read-once, q is also the last
leaf-reading state on any other legal computation path that includes q. Thus, as far as we
are looking at only legal computation paths, we can define a last leaf-reading state without
specifying a computation path.

Now we define our key tool in the proof in this section. Suppose that I = (f1, . . . , f2h−1−1,
a2h−1 , . . . , a2h−1) is currently associated with FTh(k) and let j be a leaf. Then the cut
configuration (CC) for I with respect j, denoted as CC(I, j), is defined as follows.

CC(I, j) = (a1, a2, . . . , ah−1)

where, (i) a1 is the value of j’s sibling and (ii) if ai, 1 ≤ i ≤ h− 2, is the value of node x,
ai+1 is the value of the sibling of x’s parent (see Fig. 5). Suppose that we know functions f1
to f2h−1−1. Then if we further know these h− 1 values as well as the value of j, then we can
compute the solution (= the value of node 1). In fact, it is well-known that we can compute
the solution in such a way that we need at most (h− 1)dlog ke memory space at any stage of
its computation (by recursively obtaining the values of a1, a2, and so on, in this order first,
then the associated function values from bottom to top). What will be done in the rest of
this section is to count the number of legal inputs with a certain restriction on its CC that
go through a last leaf-reading node. Our first lemma is an upper bound on the number of
inputs having a single CC.

I Lemma 4. Fix functions f1, . . . , f2h−1−1, an arbitrary leaf node, j, and an arbitrary
(a1, . . . , ah−1), ai ∈ [k]. Then the number of leaf values whose CC with respect to j is
(a1, . . . , ah−1) is at most k2h−1−h+1

Proof. Let Tv be a subtree of FTh(k) whose root is a node v at height i of FTh(k). Let
v1, . . . , v2i−1 (we used a simplified numbering) be the leaf nodes of Tv, and g(v1, . . . , v2i−1)
be the value of v. We first calculate the number of different leaf values (b1, . . . , b2i−1) such

STACS’14

416 Read-Once Branching Programs for Tree Evaluation Problems

that g(b1, . . . , b2i−1) = a for a fixed a ∈ [k]. For fixed b1, . . . , b2i−1−1, g(b1, . . . , b2i−1−1, x) is
a function from [k] to [k] (denoted by g′(x)). By lemma 1, g′(x1) 6= g′(x2) if x1 6= x2, in
other words, g′ is a bijection. Hence, for any a ∈ [k], value b ∈ [k] such that g′(b) = a is
fixed. Since this holds for any b1, . . . , b2i−1−1, the number of leaf values b1, . . . , b2i−1 such
that g(b1, . . . , b2i−1) = a is k2i−1−1.

Now we calculate the number N of leaf values such that their CC with respect to leaf j is
(a1, . . . , ah−1). Let the node taking value ai be vi. See Fig. 5 again. First, note that node j
can take any of the k values. Next, the value of node v1 is fixed to a1; it takes only one value.
Since node v2 is a top node of a subtree with height 2, its leaf nodes can take k22−1−1 = k

different values by the above fact. Similarly, v3’s leaf nodes can take k23−1−1 = k3 different
values and so on. Therefore,

N = k · 1 · k · k3 · · · · · k2h−2−1

= k · k21+22+···+2h−2−(h−2)

= k · k2h−1−2−(h−2) = k2h−1−(h−1)
J

Now we are ready to prove our main lemma. We divide an input (f1, . . . , f2h−1−1, a1,
. . . , a2h−1) into two parts, the function part (f-part) f = (f1, . . . , f2h−1−1) and the leaf value
part (l-part) l = (a1, . . . , a2h−1). Let B be any (read-once) BP solving FTh(k) and s be any
last leaf-reading state, reading a leaf j. Let c1 and c2 be two different CC’s with respect
to j whose inputs have the same f-part, and G(c1, c2, s) be the set of such f-parts (i.e., if
f ∈ G(c1, c2, s), then there are two l-parts a1 and a2 such that (f ,a1) and (f ,a2) have CC’s
c1 and c2, respectively). Note that there are (k!(k − 1)!)2h−1−1 different f-parts in total and
we denote this number by N0.

I Lemma 5. Suppose that k is a prime number. Then for any c1, c2, s, |G(c1, c2, s)| ≤ N0
k
k!

Proof. Let c1 = (a1, . . . , ah−1), c2 = (b1, . . . , bh−1), and let v1, . . . , vh−1 be the nodes
providing these two CC values. Also let g1,gh−1 be the functions associated with
v1, . . . , vh−1 producing both c1 and c2 (for different leaf values). Recall that s is a last
leaf-reading state (reading node j) and our BP is read-once. Hence, the value of j is first
read at s, which means two computation paths realizing c1 and c2 are not affected by the
value of j until the state s. Furthermore, these paths must go to the same sink-node for each
fixed value a of the node j, because after the state s our BP reads only function values being
the same for c1 and c2.

g1(a1, g2(a2, . . . , gh−1(ah−1, a) . . .)) = g1(b1, g2(b2, . . . , gh−1(bh−1, a) . . .)) (1)

Note that for a fixed ah−1, gh−1(ah−1, a) is a bijection form [k] to [k] and can be
represented as a permutation

δh−1 =
(

1 2 · · · k

α1 α2 · · · αk

)
where α1 . . . αk are the (ah−1)th row of the matrix of gh−1. Using similar representations for
g1 to gh−2, (1) can be written as

δ1δ2 . . . δh−1 = δ′1δ
′
2 . . . δ

′
h−1 (2)

K. Iwama and A. Nagao 417

where δi is the (ai)th row of (the matrix of) gi and δ′i is the (bi)th row of gi. Due to our
constraint for gi, we can write δ′i = δliδi for some 0 ≤ li ≤ k − 1 (recall that δ is the cyclic
permutation).

Now (2) can be rewritten as

δ1δ2 . . . δh−1 = δl1δ1δ
l2δ2 . . . δ

lh−1δh−1

Suppose that ai and bi are the first different values in the two CC’s (i,e., a1 = b1, . . . ai−1 =
bi−1). Then l1 = l2 = · · · = li−1 = 0 and hence

δ1δ2 . . . δh−2δh−1 = δl1δ1δ
l2δ2 . . . δh−2δ

lh−1δh−1

⇔ δiδi+1 . . . δh−2 = δliδiδ
li+1δi+1 . . . δ

lh−1

⇔ δi = δliδiδ
li+1δi+1 . . . δ

lh−1δ−1
h−2 . . . δ

−1
i+1

⇔ δ∗ = δ−1
i δcδi (3)

where δ∗ = (δli+1 . . . δ−1
i+1)−1 and δc = δli .

Now let

δi =
(
α1 α2 · · · αk
1 2 · · · k

)
and δ∗ =

(
1 2 · · · k

β1 β2 · · · βk

)
,

Then (3) can be written as(
1 2 · · · k

β1 β2 · · · βk

)
=
(

1 2 · · · k

α1 α2 · · · αk

)(
1 2 · · · k

1 + c 2 + c · · · k + c

)(
α1 α2 · · · αk
1 2 · · · k

)
=
(
α1 α2 · · · αk
α1+c α2+c · · · αk+c

)
where 1 + c, . . . , k + c are all MOD k. Note that δ∗ and δc are conjugate and therefore their
cycle structures are the same. Since δ is the cyclic permutation, δc has a single cycle and
therefore δ∗ also has a single cycle.

It then turns out that if we fix α1 to d ∈ [k], then by the left hand side, d should be
mapped to βd, meaning α1+c = βd. Then again by the left hand side, βd should be mapped
to ββd

, meaning α1+2c = ββd
, and so on. Namely once α1 is fixed, all the other αi’s are

sequentially fixed one after another or δi itself is fixed. Since k is prime, this sequence of
value transfer does not end in the middle. Thus we have at most k different possibilities
for δi (due to k different values for α1). Recall that δi can take k! different permutation in
general. (The whole matrix is determined by fixing the first row and the first column, but it
should be noted that it is also determined by fixing any row and then any column). But now
there are only k possibilities as shown above. So the number of different gi is at most N0

k
k!

for each combination of other h − 2 functions. Note that s may have another CC, say c3,
other than c1 and c2. Then we have another restriction for functions, which results in even a
smaller number of possible functions. Thus it is enough to consider only the case that the
state s has two different CC’s, for the upper bound of the lemma. J

Now we imply a contradiction if the number of leaf-reading states is less than kh−1,
through the following two lemmas.

STACS’14

418 Read-Once Branching Programs for Tree Evaluation Problems

I Lemma 6. Suppose that s1, s2, . . . , skh−1−1 are kh−1 − 1 different last leaf-reading states
of the BP B. Then there is an f-part f0 such that for any si (1 ≤ i ≤ kh−1 − 1), if inputs
(f0,a1) and (f0,a2) go through si, their CC’s are the same.

Proof. We count the number of f-parts f that do not satisfy the condition of the lemma. By
Lemma 5, there are N0 · kk! such f for each combination of state si, CC c1 and CC c2. Note
that we have kh−1 − 1 si’s and there are at most kh−1 different CC’s in general. Therefore
the number of such f ’s is at most

N0 ·
k

k! · (k
h−1 − 1) · (kh−1)2 ≤ N0k

3h−2/k!,

which is strictly less than N0 for a large (prime) k. Thus an f0 of the lemma must exists. J

I Lemma 7. B needs at least kh−1 last leaf-reading states.

Proof. Suppose B has at most kh−1 − 1 last leaf-reading states. Then by Lemma 6, there is
an f-part f0 such that inputs having this f0 as their f-part show at most one CC for any of
these last leaf-reading states. However, Lemma 4 shows each state accepts at most k2h−1−h+1

l-parts, meaning these kh−1− 1 states accept at most k2h−1−h+1 · (kh−1− 1) < k2h−1 l-values
in total. Since each of the all k2h−1 l-values must be accepted by some last leaf-reading state,
this is a contradiction. J

I Theorem 8. Any read-once BP Bh solving FTh(k) needs at least kh states.

Proof. The contraposition of Lemma 4 claims that if the number of leaf-reading states of Bh
is at least m, then the number of second-leaf-reading states of Bh+1 is at least k2m. Now
the theorem is immediate from Lemma 7. J

4 General Branching Programs for Height-3 TEP

Recall that Lemma 3 holds for general BPs. Also it turns out that the TEP of height two is
somewhat special. Thus we can obtain the following general lower bound for BPs for the
height-3 TEP with a simpler proof than that of [3].

I Theorem 9. Any (general) BP solving FT3(k) needs at least k3 states.

Proof. Due to Lemma 3, it suffices to show that any BP solving FT2(k) needs at least k
leaf-reading states. In the following, we show it needs at least k+ 1 leaf-reading states, which
is optimal by a construction similar to that of Fig. 3. Recall that FT2(k) has three nodes,
1, 2 and 3, where node 1 is associated with a function f1 and nodes 2 and 3 are leaf nodes.
Suppose that we have a BP B that solves FT2(k) and that has at most k leaf-reading states.
We fix f1 to an arbitrary function in F and then B can be modified to the BP that reads
only leaf nodes; we also denote this BP by B.

We give a new label (in addition to the original label of B), a set of pairs (a,b), 1 ≤ a, b ≤ k,
to each state and each edge of B by the following rule: (i) The initial node of B has label
{(a, b) | 1 ≤ a, b ≤ k}, i.e., the set of all possible pairs. (ii) Suppose that a state s has a
label S and an edge e from s reads node 2 to get value i. Then the label to the edge e is
{(i, b) | 1 ≤ b ≤ k} ∩ S, namely the (possibly empty) set of pairs in S whose first element is i.
Similarly for the case that s reads node 3 (we do the same thing with the second element
of the pair). (iii) Suppose that all the edges entering state s already have labels. Then the
label of s is the union of the labels of those incoming edges. Now it is easy to see that such
labels “describe” an execution of B in the following sense: Suppose that the label of an edge

K. Iwama and A. Nagao 419

e includes a pair (a, b). Then the computation path of B goes through this edge e if and only
if the values of nodes 2 and 3 are a and b, respectively (and f1 is the current fixed function).

Now suppose for contradiction that B has at most k states other than k sink states and
we look at edges that go to these sink states. Note that the number of all edges is k2 since
each of the k states has k edges. Also note that B has to read both of the two leaf states in
its computation path, so at least one edge goes to non-sink states. Consequently the number
of the above (going to sink states) edges is at most k2 − 1. Since the total number of pairs is
k2, it is impossible to map all those pairs to the edges in a one-to-one fashion, or one of the
following two cases must happen:
1. Some pair (a, b) does not appear in any label of these edges. B obviously does not do a

correct computation when the values of nodes 2 and 3 are a and b, respectively.
2. Some edge has two (or more) pairs, say (a, b) and (a′, b′). Notice that if the state this

edge outgoes from reads node 2, then we have a = a′. Then the computation of B is not
correct again since the output would be the same if the values of node 2 is the same and
the values of node 3 are different (recall that our f1 is in F). Similarly for the case that
the state reads node 3 (then b = b′).

Thus we can conclude that such B is not a correct BP. J

5 Concluding Remarks

The obvious future work is to remove the read-once restriction. Since our main lemma
(Lemma 5) heavily depends on the read-once restriction, we do not have any specific
approaches to this ultimate goal at this moment. There are a couple of more reasonable
sub-goals: One is to prove that if a BP B is thrifty, then B can be converted to a read-once
BP without increasing the number of leaf-reading states drastically, or equivalently, to prove
that reading a same leaf node twice or more do not help much in thrifty BP’s. Another
possibility is to attack the case for h = 4. This seems more tractable since we can restrict
ourselves to the number of leaf-reading states of BP’s for FT3(k) that have several specific
properties as shown in [3]. Also this lower bound will outperform the longstanding one by
Nečiporuk [9].

References
1 M. Ajtai, L. Babai, P. Hajnal, J. Komlós, P. Pudlák, V. R odl, E. Szemerédi, and G. Turán.

Two lower bounds for branching programs. In Proceedings of the eighteenth annual ACM
symposium on Theory of computing, pages 30–38. ACM, 1986.

2 S. Cook. An observation on time-storage trade off. Journal of Computer and System
Sciences, 9(3):308–316, 1974.

3 S. Cook, P. McKenzie, D. Wehr, M. Braverman, and R. Santhanam. Pebbles and branching
programs for tree evaluation. ACM Transactions on Computation Theory (TOCT), 3(2):4,
2012.

4 A. Gál and P. McKenzie M. Koucký and. Incremental branching programs. Theory of
Computing Systems, 43(2):159–184, 2008.

5 S. Jukna and A. Razborov. Neither reading few bits twice nor reading illegally helps much.
Discrete Applied Mathematics, 85(3):223–238, 1998.

6 S. Jukna and S. Žák. On uncertainty versus size in branching programs. Theoretical
computer science, 290(3):1851–1867, 2003.

7 B. Komarath and J. Sarma. Pebbling, entropy and branching program size lower bounds.
In 30th International Symposium on Theoretical Aspects of Computer Science (STACS),
page 622, 2013.

STACS’14

420 Read-Once Branching Programs for Tree Evaluation Problems

8 W. Masek. A fast algorithm for the string editing problem and decision graph complexity.
PhD thesis, Massachusetts Institute of Technology, 1976.

9 È. Nečiporuk. A boolean function. In Doklady of the Academy of the USSR, volume 169,
pages 765–766, 1998. English translation in Soviet Mathematics Doklady 7:4, pp.999–1000.

10 M. Paterson and C. Hewitt. Comparative schematology. In Record of the Project MAC
Conference on Concurrent Systems and Parallel Computation, pages 119–127. ACM, 1970.

11 P. Savický and S. Žák. A read-once lower bound and a (1,+ k)-hierarchy for branching
programs. Theoretical Computer Science, 238(1):347–362, 2000.

12 J. Simon and M. Szegedy. A new lower bound theorem for read-only-once branching pro-
grams and its applications. Advances in Computational Complexity Theory, 13:183–193,
1993.

13 I. Wegener. On the complexity of branching programs and decision trees for clique functions.
Journal of the ACM (JACM), 35(2):461–471, 1988.

14 D. Wehr. Exact size of smallest minimum-depth deterministic bps solving the tree evalu-
ation problem. Unpublished. http://www.cs.toronto.edu/˜wehr/.

15 S. Žák. An exponential lower bound for one-time-only branching programs. InMathematical
Foundations of Computer Science 1984, pages 562–566. Springer, 1984.

Computability of the entropy of one-tape Turing
machines
Emmanuel Jeandel

LORIA, UMR 7503 – Campus Scientifique, Vandoeuvre-lès-Nancy Cedex, France
emmanuel.jeandel@loria.fr

Abstract
We prove that the maximum speed and the entropy of a one-tape Turing machine are computable,
in the sense that we can approximate them to any given precision ε. This is counterintuitive, as
all dynamical properties are usually undecidable for Turing machines. The result is quite specific
to one-tape Turing machines, as it is not true anymore for two-tape Turing machines by the
results of Blondel et al., and uses the approach of crossing sequences introduced by Hennie.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Turing Machines, Dynamical Systems, Entropy, Crossing Sequences,
Automata

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.421

1 Introduction

The Turing machine is probably the most well known of all models of computation. This
particular model has many variations, that all lead to the same notion of computability.
The simplest model is the Turing machine with just one tape and one head, that we will
consider in this paper.

From the point of view of computability, this model is equivalent to all others. From the
point of view of complexity, however, the situation is very different. Indeed, it is well known
[6, 5, 19] that a language (of finite words) accepted by such a Turing machine in linear time
is always regular. More precisely, it can be proven that if such a Turing machine is in time
O(n) on all inputs, then there is a constant k so that, on any input, the machine passes at
most k times in any given position.

We will consider in this paper the Turing machine as a dynamical system: The execution
is starting from any given configuration c, i.e. any initial state, and any initial tape, and
we will observe the evolution. While the Turing machine is a model of computation, it
is however quite important in the study of dynamical systems. It was intensively studied
by Kurka [11], and Moore [14, 15] proved that they can be embedded in various “classical”
dynamical systems. As an example, the uncomputability of the entropy of a Turing machine,
by Blondel et al. [2] can be used to deduce the uncomputability of the entropy of piecewise-
affine maps, proven by Koiran [10] in a different way.

However, these undecidability results are usually obtained for Turing machines with two
tapes; The basic idea is to use one tape to simulate a given Turing machineM and to control
the other tape, that will only move its head without doing any computation or reading any
symbol. The computational complexity of the new Turing machine will come from the first
tape, but the dynamical complexity will come from the second tape.

There is a reason why these results use Turing machines with two tapes. We will prove
that some dynamical quantities for one-tape Turing machines are actually computable, in

© Emmanuel Jeandel;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 421–432

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.421
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

422 Computability of the entropy of one-tape Turing machines

the sense that there is an algorithm that, given any ε > 0, produces an approximation of the
quantity up to ε. The two quantities we consider are the speed and the entropy of a Turing
machine. While the most theoretically important quantity is the entropy, we will focus our
discussion in the introduction to the speed, which is easier to conceive.

The speed of a Turing machine measures how fast the head goes to infinity. Informally,
the speed is greater than α if we can find a configuration c for which the Turing machine is
roughly in position αn after n units of time. Note that if α is nonzero, this means that it
takes a time n/α = O(n) to be in position n. Now, if we recall a previous result, one-tape
Turing machines with running time O(n) on all inputs recognize only regular languages.
We will prove, using the same techniques, that this also applies to the maximum speed:
If the maximum speed is nonzero, hence the running time on some infinite configuration
is (asymptotically) linear, then there is a regular (ultimately periodic) configuration that
achieves this maximum speed.

This paper is organized as follows. In the first section, we introduce the formal definitions
of the speed and entropy of a Turing machine. In the next section, we proceed to prove the
three main theorems: The speed and the entropy are computable, and the speed is actually
a rational number, achieved by a ultimately periodic configuration.

2 Definitions

We assume the reader is familiar with Turing machines. A (one-tape) Turing machine M
is a (total) map δM : Q × Σ 7→ Q × Σ × {−1, 0, 1} where Q is a finite set called the set of
states, and Σ a finite alphabet.

Now, the best way to see it as a dynamical system might seem unorthodox at first. The
idea is to consider the Turing Machine as having a moving tape rather than a moving head:
A configuration is then an element of C = Q×ΣZ, and the mapM on C is defined as follows:
M((q, c)) = (q′, c′) where δM (q, c(0)) = (q′, a, v), c′(−v) = a and c′(i) = c(i + v) for all
i 6= −v. This distinction is particularly important for the definition of the entropy to be
technically correct. However it is more convenient to consider the Turing machines as we
are used to, and we will say “the Turing machine is in position i” rather than “the tape has
moved i positions to the right”.

The speed
Given a configuration c ∈ C, the speed ofM on c is the average number of cells that are read
per unit of time. Formally, let sn(c) be the number of different cells read during the first
n steps of the evolution of the Turing Machine M on input c. Note that sn is subadditive:
sn+m(c) ≤ sn(c) + sm(Mn(c)).

I Definition 2.1.

s(c) = lim sup sn(c)
n

, s(c) = lim inf sn(c)
n

.

We give two examples.
Consider a Turing machine with two states q1, q2. On q1, the Turing machine goes to
q2 without changing the position of the head. On q2 the Turing machine goes right and
changes back to q1. Then s(c) = s(c) = 1/2 for all c.
Consider a Turing machine with two states {L,R} (for Left and Right) and two symbols
{a, b}. In state q, when the machine reads a symbol a, it goes in the direction q. When
the machine reads a symbol b, it writes a symbol a instead and changes direction. On

E. Jeandel 423

t

n0 n
n

t

0 n
n(2n− 1)

t

02n−2 2n2n−1
3.2n − 2

9.2n−2 − 2

Figure 1 Three different behaviors of the same Turing machine on three different inputs. In the
first one, the speed is 1. In the second one the speed is 0. In the third one, the speed is between
1/3 and 1/2. Time goes bottom-up.

input c = (R,w) where w contains only the symbol a, the Turing machine will only go
to the right, and s(c) = s(c) = 1. On input c = (R,w) where w contains only the symbol
b, the Turing machine will zigzag, and will reach the n-th symbol to the right in time
O(n2), hence will see only O(

√
(n)) symbols in time n, hence s(c) = s(c) = 0. On input

c = (R,w) where w contains b only at all positions (−2)i, the Turing machine will have
read (for n even) 2n + 2n−1 symbols at time 2n+1 + 2n − 2 and s(c) = 1/2, but only
2n−1 + 2n−2 at time 2n+1 + 2n−2 − 2, and s(c) = 1/3. This is illustrated on Figure 1.

Now we define the speed of a Turing machine as the maximum of its average speed on
all configurations:

I Definition 2.2.

S(M) = max
c∈C

s(c) = max
c∈C

s(c) = lim
n

sup
c

sn(c)
n

= inf
n

sup
c

sn(c)
n

.

The fact that all these definitions are equivalent, and that the maximum speed is indeed
a maximum (it is reached by some configuration), is a consequence of the subadditivity of
(sn)n∈N, see [4, Theorem 1.1] or [13] for a more combinatorial proof.

The entropy
The (topological) entropy of a Turing machine is a quantity that measures the complexity
of the trajectories. It represents roughly the average number of bits needed to represent the
trajectories.

For a configuration c, the trace of c is the word u ∈ (Σ×Q)N where ui contains the letter
in position 0 of the tape and the state at the i-th step during the execution of M on input
c. We note T (c) the trace of c and T (c)|n the first n letters of the trace. Finally, we denote
by Tn = {T (c)|n, c ∈ C}

Then the entropy can be defined by

I Definition 2.3.

H(M) = lim
n

1
n

log |Tn| = inf
n

1
n

log |Tn| .

The limit indeed exists and is equal to the infimum as (log |Tn|)n∈N is subadditive. This
definition is a specialized version for (moving tape) Turing machines of the general definition
of entropy, and was proven equivalent in [16].

STACS’14

424 Computability of the entropy of one-tape Turing machines

We now look again at the examples. In the first case, T (c)|n can take roughly |Σ|n/2

different values, and H(M) = 1/2 log |Σ|. In the second case, the first n letters of T (c) can
contain at most

√
n symbols (b, L) or (b, R) (the maximum is obtained for a configuration

with only b). As a consequence, Tn is of size at most
∑

i≤
√

n

(
n

i

)
≤
√
n

(
n√
n

)
so that

H(M) = 0.
It is possible to give a definition for the entropy that is very similar to the speed. For

this, we use Kolmogorov complexity. The (prefix-free) Kolmogorov complexity K(x) of a
finite word x is roughly speaking the length of the shortest program that outputs x.

A precise definition of Kolmogorov complexity can be found in [3]. Here we just recall a
couple of its properties:

For any alphabet Σ, there exists constants c and c′ so that for all words u over Σ,
K(u) ≤ |u| log |Σ|+ 2 log |u|+ c and for all words u, v, K(uv) ≤ K(u) +K(v) + c′.
For any computable function f , there exists a constant c so that K(f(w)) ≤ K(w) + c

whenever f(w) is defined.

For a trace t, define the lower and upper complexity of t by K(t) = lim inf K(t|n)
n and

K(t) = lim sup K(t|n)
n .

I Theorem 2.4 ([1, 18]). H(M) = max
c∈C

K(T (c)) = max
c∈C

K(T (c)).

From this definition, it will not be surprising that we can obtain results on both speed
and entropy using the same arguments.

3 Computability of the speed and the entropy

We will prove in this section that the speed and the entropy of a TM are computable. The
proof goes as follows. By the definition of the speed as an infimum, we can compute a
sequence sn so that S(M) = inf sn. So it is sufficient to find a (computable) sequence s′n so
that S(M) = sup s′n to be able to approximate the speed to any given precision ε.

To find such a sequence s′n, it is sufficient to find configurations cn of near maximal
speed. To do that, we need to better understand configurations of maximal speed.

First, we will establish (Propositions 3.1 and 3.2) that a configuration of maximal speed
(entropy) cannot do too many zigzags, and must be only finitely many times at any given
position. The idea is that revisiting cells that were already visited is a loss of time (and
complexity), so the machine should avoid doing it. In the same vein, we can prove that the
zigzags must not be too large (Proposition 3.3): the time of the first and last visit of a given
cell must be roughly equivalent (ln(c) ∼ fn(c) in the notation of this proposition).

All this work allows us to redefine the problem as a graph problem: given a weighted
(infinite) graph, find the path of minimum average weight (Proposition 3.5). Using the
graph approach, we will then prove (Theorem 3.6) that this average minimum weight can
be well approximated by considering only finite graphs. Finally, the speed and entropy for
finite graphs are easy to compute (Theorems 3.7 and 3.9), which ends the proof.

In each section, the proofs will always be done first for the speed, then for the entropy.
We deliberately choose to have similar proofs in both cases, to help to understand the proof
for the entropy, which is more complex. In particular, some statements about the speed are
probably a bit more elaborate than they need to be.

E. Jeandel 425

3.1 Biinfinite tapes are no better
The first step in the proof is to simplify the model: we will prove that to achieve the
maximum speed (resp. maximum complexity), we only need to consider configurations that
never cross the origin, i.e., that stay always on the same side of the tape. This seems quite
natural, as changing from a position i > 0 to a position j < 0 costs at least i+ (−j) steps,
and might greatly reduce the average speed of the TM on this configuration.

I Proposition 3.1. Let c be a configuration for which S(M) = limn
sn(c)

n and suppose S(M) >
0. Then, during the computation on input c, the head of M is only finitely many times in
any given position i.

Proof. We prove only the result for i = 0, the result for all i follows by considering M t(c)
for some suitable t. We suppose by contradiction that the head of M is infinitely often in
position 0.

Let k be an integer. As S(M) > 0, there must exist a time t for which the head is in
position ±k. Let t be the first time when this happens. We may suppose w.l.o.g that at
time t the head is in position +k. Now let t′k be the next time the head was in position 0,
and finally let tk be the time at which the head was at its rightmost position in the first t′k
steps.

First, by definition stk
(c) = st′

k
(c). Furthermore, t′k ≥ tk +stk

(c)/2. Indeed by definition
of t, the leftmost position in the first tk steps is at most −(k − 1) so the TM went further
to the right than to the left in the first tk steps, so that the rightmost position is at least in
position stk

(c)/2. Remark also that tk ≥ k (by definition).
From this we obtain

st′
k

t′k
≤ stk

tk + stk
/2 ≤

stk

tk

1 + stk

2tk

.

By taking a limsup on both sides we obtain

S(M) ≤ S(M)
1 + S(M)

2

.

A contradiction. J

I Proposition 3.2. Let c be a configuration for which H(M) = limn
K(T (c)|n)

n and suppose
H(M) > 0. Then for any position i, the head of M is only finitely many times in position i.

Proof. It’s exactly the same proof. Note that K(T (c)t′
k
) ≤ K(T (c)tk

) +O(log t′k) (The first
t′k bits of T (c) can be recovered if we know only the first tk bits, and the number of bits
we want to recover), and t′k ≥ tk + K(T (c)tk

)/(2 log |Σ|) + O(log tk) (Indeed K(T (c)tk
) ≤

n log |Σ| + O(log tk) where n = stk
(c) is the number of bits read during times t ≤ tk, and

t′k ≥ tk + n/2), from which we get the same contradiction. J

These two propositions state that we only have to deal with configurations that never
reach the position i = 0 once they leave it at t = 0 (replace c by Mp(c) for a suitable p).

If we deal with the disjoint union of the Turing machine M and its mirror (exchange left
and right) M̃ , we may now assume, and we do in the rest of this section, that the maximum
speed and complexity is reached with a configuration that never goes to negative positions
i < 0 and, if S(M) > 0 (resp. H(M) > 0), that passes only finitely many times to any given
position.

STACS’14

426 Computability of the entropy of one-tape Turing machines

3.2 A reformulation
Recall that we suppose in the following sections that the maximum speed is obtained for a
configuration that never goes to negative positions.

Let us call fn(c) (f for first) the first time the TM reaches position n. Then the average
speed on a configuration c (for which the Turing machine never goes in negative positions)
can be defined equivalently as limn

n
fn(c) . We prove now a stronger statement.

Let us call ln(c) the last time the TM reaches position n. If the TM does not reach
position ±n, or if it reaches it infinitely often, let ln(c) =∞.

I Proposition 3.3.

S(M) = max
c

lim sup n

ln(c) = max
c

lim inf n

ln(c) ,

H(M) = max
c

lim sup
K(c|n)
ln(c) = max

c
lim inf

K(c|n)
ln(c) .

If the speed (resp. entropy) is nonzero, the maximum is reached for some configuration
c for which ln(c) is never infinite. In particular, for this configuration, ln(c) ∼ fn(c)

Proof. It is clear that S(M) and H(M) are upper bounds, as n ≤ sfn(c)(c) and K(c|n) ≤
K(T (c)|fn(c)) +O(logn). In particular the result is true if S(M) = 0 (resp. H(M) = 0).

We first deal with the speed. Let c be a configuration of maximum speed. By the
previous subsection, we may suppose that c never reaches negative positions.

Let tn = ln(c). Let p be the rightmost position the head reaches before tn and t′n the
first time this position is reached. Note that stn

(c) = st′
n
(c) = p (no negative position is

ever reached)
From this we get lim tn

t′
n

= lim tn

stn (c)
st′

n
(c)

t′
n

= 1.
Note also that t′n ≥ n and tn ≥ t′n + stn

− n. (The TM is at position st′
n

= stn
at time

t′n and at position n at time tn.)
Hence

n

tn
≥ t′n − tn

tn
+ stn

tn
.

From which the result follows.
For the entropy, the proof is almost the same. From K(T (c)tn) = K(T (c)t′

n
) +O(log tn),

we get again that limn
t′

n

tn
= 1.

Now K(T (c)tn
) ≤ K(cn) + (tn − t′n) log |Σ| + O(log tn) (the first tn bits of T (c) can be

recovered if we know tn and the first p bits of c, hence if we know the first n bits of c and
the p− n ≥ tn − t′n next bits), from which the result follows again. J

3.3 Crossing sequences
First denote by C+ the set of configurations c on which:

The Turing machine never reaches any positions i < 0.
The Turing machine never reaches the position 0 again once it leaves it at t = 0.
For any i > 0, the head of the Turing is only finitely many times in position i.

In the previous section we proved that we only have to deal with configurations in C+.
The core of the proof is based on crossing sequences, introduced by Hennie [6] to obtain

complexity lower bounds for one-tape TM.

E. Jeandel 427

Let c be a configuration in C+. The crossing sequence at boundary i is the sequence of
states of the machine when its head crosses the boundary between the i-th cell and the i+1-
th cell. We denote by Ci(c) the crossing sequence at boundary i. Note that C0(c) consists
of a single state, which is the initial state of c (the machine never reaches the position 0
anymore) and Ci(c) is finite for i > 0.

Crossing sequences have the following property: Ci(c) represents all the exchange of
information between the positions j ≤ i and the positions j > i of the tape. In particular,
if Ci(c) = Cj(c′) for two configurations c, c′, and if we consider the configuration c̃ that is
equal to c up to i then equal to c′ (shifted by i− j so that the j+ 1-th cell of c′ becomes the
i + 1-th cell of c̃), then the Turing machine on c̃ will behave exactly like c on all positions
before i, and as c′ (shifted) on positions after i. Hence the crossing sequences capture exactly
the behavior of the Turing machine.

The main idea is now that the computation of a Turing machine can be seen as a path
on a graph of crossing sequences, where vertices represent crossing sequences and edges link
consecutive crossing sequences.

To do this, we now consider the following labeled graph (automaton) G: The vertices
of G are all finite words over the alphabet Q (all possible crossing sequences), and there
is an edge from w to w′ labeled by a ∈ Σ if w and w′ are compatible, in the sense that it
seems possible to find a configuration and a position i so that Ci(c) = w, Ci+1(c) = w′ and
a is the letter at position i + 1 in c (said otherwise, w and w′ are two consecutive crossing
sequences for some configuration c). The exact definition is as follows. We define recursively
two subsets L and R of Q∗ ×Q∗ × Σ as follows:

(ε, ε, a) ∈ L, (ε, ε, a) ∈ R
If δ(q1, a) = (q2, b,−1) then (q1q2w,w

′, a) ∈ L iff (w,w′, b) ∈ L
If δ(q1, a) = (q2, b,+1) then (q1w, q2w

′, a) ∈ L iff (w,w′, b) ∈ R
If δ(q1, a) = (q2, b,−1) then (q2w, q1w

′, a) ∈ R iff (w,w′, b) ∈ L
If δ(q1, a) = (q2, b,+1) then (w, q1q2w

′, a) ∈ R iff (w,w′, b) ∈ R
Then there is an edge from w to w′ labeled a if and only if (w,w′, a) ∈ L.

Note that this echoes a similar definition for two-way finite automata given in [7, 2.6]
where (w,w′, a) ∈ L is called “w left-matches w′” (The note in Example 2.15 is particularly
relevant). The exact definition above is also hinted at in [17].

Let us explain briefly these conditions. Suppose δ(q1, a) = (q2, b,+1), and suppose that
the Turing machine at some point arrives in some cell i from the left, in the state q1 and
sees a. Then by definition, the first symbol from Ci(c) must be q1. By definition of the
local rule δ, the Turing machine will enter state q2 and go right so that the first symbol in
Ci+1(c) will be q2. Now, the next time the Turing machine will come into the cell i, it must
be coming from the right, and when it does it will see the symbol b. This explains the rule
(q1w, q2w

′, a) ∈ L iff (w,w′, b) ∈ R, where w and w′ represent the crossing sequences after
the second time the Turing machine comes to the cell i.

Now it is clear that a configuration c defines a path in this graph G, and that we can
recover the speed of the configuration from the graph, as explained in the following.

A path in the graph G is a sequence p = {(wi, ui)}i<N where wi is a vertex of G and ui

a letter from Σ so that (wi, wi+1, ui) ∈ L for all i < N − 1. A valid path is an infinite path
(N =∞) so that w0 consists of one single letter (state). We denote by P(G) the set of valid
paths of a graph G.

The following facts are obvious:

I Fact 3.4. For any c ∈ C+, {(Ci(c), ci)}i≥0 is a valid path in G.

STACS’14

428 Computability of the entropy of one-tape Turing machines

Furthermore, for any valid path p = {(wi, ui)}i≥0, there exists a configuration c ∈ C+ so
that ui = ci and Ci(c) is a prefix of wi.
Note that it is indeed possible for wi to be strictly larger than Ci(c).

We are now able to redefine the speed and the complexity based on the graph G. If p is a
finite path (N is finite), the length of p is |p| = N , the weight of p is weight(p) =

∑
i<N |wi|,

and the complexity of p is K(p) = K(u0 . . . uN−1)
If p = (ui, wi)i≥0 is an infinite path, and p|n = (ui, wi)i≤n, the average speed of p is

s(p) = lim inf |p|n|
weight(p|n) and the average complexity of p is K(p) = lim inf K(p|n)

weight(p|n) . We
define similarly s(p) and K(p).

Now note that
∑

i<n |Ci(c)| is bounded from below by the first time the TM goes to the
position n, and from above by the last time the TM goes to position n. So by the previous
section
I Proposition 3.5.

S(M) = max
p∈P(G)

s(p) = max
p∈P(G)

s(p) ,

H(M) = max
p∈P(G)

K(p) = max
p∈P(G)

K(p) .

Now to obtain the main theorems, let Gk be the subgraph of G obtained by taking only
the vertices of size |wi| ≤ k.

I Theorem 3.6.

S(M) = sup
k

sup
p∈P(Gk)

s(p) ,

H(M) = sup
k

sup
p∈P(Gk)

K(p) .

This means we only have to consider finite graphs to compute the speed (resp. entropy).
We will prove in the next section that the speed and the entropy are computable for finite
graphs, which will give the result.

Before going to the proof, some intuition. Let p be a path of maximum speed S(M) > 0.
For the speed to be nonzero, vertices of large weight cannot be too frequent in p. Now the
idea is to bypass these vertices (by using other paths in the graph G) to obtain a new path
p′ with almost the same average speed. For the speed, it’s actually possible to obtain a path
p′ of the same speed (this will be done in the next section). However, for the entropy, it
is likely that these paths were actually of great complexity so that their removal gives us a
path of smaller (yet very near) average complexity.

Proof. First, the speed. One direction is obvious by definition. We suppose that S(M) > 0,
otherwise the result is trivial. Let p be a path of maximum speed.

Let k be any integer so that 1/k < S(M). For any vertex w and w′ of size less or equal
to k so that p goes through w and w′ in that order, choose some finite path P (w,w′) from
w to w′. Now let K be an upper bound on the weights of all those paths.

The idea is now simple: we will change p so that it will not go through any vertices w
of size |w| > K: Whenever there is a vertex w̃ of size greater than K, we will look at the
last vertex w before it of size less or equal to k, and to the first vertex w′ after it of size
less or equal to k, and we will replace the portion of this path by P (w,w′). Let’s call p′ this
new path. Note that there must exist such a vertex w′, otherwise all vertices will be of size
greater than k after some time, which means the speed on p is less than 1/k, a contradiction.

E. Jeandel 429

Now we prove this construction works. First, p is of average speed S(M), hence there
exists an integer n so that for all m ≥ n

m

weight(p|m) ≥ S(M)/2 .

Now let m so that the vertex wm of p is of size less than k. We will look at how the m
first positions of p were changed into p′. Let m′ be the position of the vertex wm in p′ (wm

still appears in p′ as we only change vertices of size greater than k).
By the above inequality, it is clear that in the m first position of the path p, there is

at most 2m/(kS(M)) vertices of size greater than k. All other vertices still appear in p′,
so that m′ ≥ m − 2m/(kS(M)). Furthermore, at each time, we replace a finite path by a
path of smaller weight (each path was of weight at least K, and each new one is of weight
at most K).

As a consequence, for this new path p′ we have

m′

weight(p′|m′)
≥ m− 2m/(kS(M))

weight(p|m) .

Hence

s(p′) ≥ S(M)− 2/k .

We have proven that some path in GK is at least 2/k to the optimal speed, which proves
the result.
The proof for the entropy is, as always, very similar. We start from 1/k < H(M)/(log |Σ|)),
which guarantees that infinitely many vertices are of weight less than k. As before, we will
choose K greater than all weights, but now also greater than k|Q|k+1.

First, K(p|n) ≤ n log |Σ|+ O(logn), so K(p) ≤ s(p) log |Σ|, so we may choose n so that
for all m ≥ n

m

weight(p|m) ≥ H(M)/(2 log |Σ|) .

Let α = 2 log |Σ|/H(M). With this notation, this implies that for every m ≥ n, there
are at most mα/k (resp. mα/K) vertices of size at least k (resp K) in the first m positions
of p.

We now have to evaluate K(p′|m′). p|m can be recovered from p′|m′ by deleting some
letters and inserting new ones.

First remark that there are at most mα/K vertices of size at least K in pm, so we did at
most mα/K cuts. In each cut, we inserted at most |Q|k+1 letters (the maximal length of a
path P (w,w′)), so we deleted at most |Q|k+1mα/K ≤ mα/k letters from p′|m′ . In particular
m′ ≤ m(1 + α/k)

We only cut vertices of size at least k, and there are at most mα/k such vertices, so we
added at most mα/k letters to p′|m′ . In particular m′ ≥ m(1− α/k).

Now the letters we deleted from p′|m′ can be encoded into a word over {0, 1} (specifying
which letters we deleted) with at most mα/k symbols “1”. For each size l ≤ mα/k, there are

at most
(

m′

mα/k

)
words with l symbols “1”, so each such word has complexity at most

the logarithm of this number (up to a logarithmic factor to specify l), that is m′E(α/(k −
α)) + o(m) where E(p) = −p log p− (1− p) log(1− p).

We do the same for the letters we add to p′, but we also need to know which letters we
had, which can be described by a word of size mα/k and we obtain

STACS’14

430 Computability of the entropy of one-tape Turing machines

K(p′|m′) ≥ K(pm)− 2m′E(α/(k − α))− dmα/ke dlog |Σ|e+ o(m) .

Now weight(p′|m′) ≤ weight(p|m) and weight(p′|m′) ≥ m′ ≥ m(1− α/k):

K(p′|m′)
weight(p′|m′)

≥ K(pm)
weight(pm) − 2E(α/(k − α))− α

k − α
dlog |Σ|e+ o(1) .

Now take the limit (superior) as m tends to infinity:

K(p′) ≥ H(M)− 2E(α/(k − α))− α

k − α
dlog |Σ|e .

Now the quantity to the right tends to H(M) when k tends to infinity, which proves the
result. J

3.4 The main theorems
Now we can explain how to use the last result to prove the main theorems. As hinted above,
we only have to be able to compute the speed (and the entropy) from below.

I Theorem 3.7. There exists an algorithm that, given a Turing machine M and a precision
ε, computes S(M) to a precision ε.

Proof. We only have to explain how to compute the maximum speed for a finite graph G.
First, we may trim G so that all vertices are reachable from a vertex of size 1. It is then
obvious that the maximum speed is obtained by a path that goes to then follow a cycle
of minimum average weight, so the maximum speed is exactly the inverse of the minimum
average weight. This is easily computable, see [9] for an efficient algorithm. J

We can say a bit more

I Theorem 3.8. The maximum speed of a Turing machine S(M) is a rational number. It
is reached by a configuration which is ultimately periodic.

Proof. We suppose that S(M) > 0 otherwise the result is clear. We will prove that the
sequence supp∈Gk

s(p) is stationary. Let k = 1 + d1/S(M)e. Let K = k(k + 1)|Q|k+1.
Now we look at supp∈GK′ s(p) for some K ′ ≥ K. The maximum is reached for some path

that reach some cycle of minimum average weight.
Note that this cycle cannot be of length greater than (k + 1)|Q|k+1. Indeed, denote by

m the length of this cycle. As there are at most |Q|k+1 vertices in this cycle of length at
most k, the average speed on this cycle is less than

m

(k + 1)(m− |Q|k+1) ≤ 1/k < S(M) .

Now, there cannot be any vertices in this cycle of length at least k(k+1)|Q|k+1. otherwise
the average speed would be less than

(k + 1)|Q|k+1

k(k + 1)|Q|k+1 ≤ 1/k < S(M) .

Hence this cycle is already in GK .
Now if we look at the cycle of minimal average weight in GK that can be reached in G,

hence in GP from some P , then it is clear that S(M) is exactly the inverse of the average
weight of this cycle, and it is reached for some path p in GP that reaches then follows this
cycle. J

E. Jeandel 431

Note that, while the maximum speed is a rational number, there is no algorithm that actually
computes this rational number (we are only able to approximate it up to any given precision).
This can be proven by an adaptation of the proof of the undecidability of the existence of a
periodic configuration in a Turing machine [8].

Now we do the same for the entropy:

I Theorem 3.9. There exists an algorithm that, given a Turing machine M and a precision
ε, computes H(M) to a precision ε.

Proof. We only have to explain how to compute the maximum complexity for a finite graph
G. However, we do not know how to do this in the whole generality. We will only prove how
to do it for the graphs Gk, that have an additional property, the diamond property: given
two vertices w,w′ and a word u, there is at most one path from w to w′ labeled by u.

First we trim Gk so that any vertex of Gk is reachable from a vertex of size 1.
For a given k, we consider a set Bk of infinite words over the alphabet (Q × Σ) ∪ Q

defined as follows: A word is in Bk if and only if it does not contain more than k − 1
consecutive letters in Q, more than 1 consecutive letters in Q × Σ, and all factors of the
form (a, q)w(b, q′)w′(c, q′) satisfy than there is a edge from qw to q′w′ labeled by b.

Now it it clear that if p = {(ui, qiwi)}i≥0 is an infinite path in Gk, then the word
(u0, q0)w0(u1, q1)w1 . . . is a word of Bk. Conversely, any word of Bk, up to the deletion of
at most k + 1 letters at its beginning, represents a path in Gk.

Moreover, K((u0, q0)w0 . . . (un, qn)wn) = K(u0 . . . un) +O(1) = K(p|n) +O(1). Indeed,
we can recover all the states knowing only w0 and wn, as the graph has no diamond.
Furthermore, the length of (u0, q0)w0 . . . (un, qn)wn is exactly weight(p|n).

This means that the maximum complexity on the graph Gk can be computed as:

sup
w∈Bk

lim sup K(w0 . . . wn)
n

.

And we know how to compute this. Indeed, Bk is what is called a subshift of finite type
(it is defined by a finite set of forbidden words), for which the above quantity is exactly the
entropy (!) of Bk [1, 18], which is easy to compute, see e.g., [12].

To better understand what we did in this theorem, the intuition is as follows: Computing
the entropy of the trace is difficult, but the trace can be approximated by taking into
account only configurations for which we cross at most k times the frontier between any two
consecutive cells. For this approximation Tk of the trace, we can reorder the letters inside
the trace so that transitions corresponding to the same position are consecutive, and this
does not change the entropy. However, it makes it easier to compute. J

Open Problems

From the point of view of dynamical systems, the entropy and the speed (called the maximal
Lyapunov exponent) are among the few well known invariants, and thus the result is quite
important in this context. However, from the point of view of computer science, it also makes
sense to look at the average speed, and we are currently trying to compute this number.

An important open problem is to strengthen the last theorem, and actually character-
ize the exact numbers that can arise as entropies of Turing machines. It cannot be all
nonnegative computable numbers, as an enumeration of Turing machines would give us an
enumeration of these numbers, which is impossible by an easy diagonalization argument.
We have examples showing that the supremum in the theorem is not always reached, which

STACS’14

432 Computability of the entropy of one-tape Turing machines

means it might be possible to obtain different numbers with Turing machines than with
finite graphs (which are well known), but the main question remain open.

Finally, the situation for Turing machines with two tapes is not clear. Of course, we
know that the speed (resp. entropy) is not computable [2] (there is no algorithm that given
a Turing machine and a precision ε computes the speed up to ε), but we know of no example
where the speed (resp. the entropy) is not a computable number.

Acknowledgements. The author thanks the anonymous referees for various comments that
led to noticeable improvements to the quality of this article.

References
1 A. A. Brudno. Entropy and the complexity of the trajectories of a dynamical system.

Transactions of the Moscow Mathematical Society, 44(2):127–151, 1983.
2 Jean-Charles Delvenne and Vincent D. Blondel. Quasi-periodic configurations and unde-

cidable dynamics for tilings, infinite words and Turing machines. Theoretical Computer
Science, 319:127–143, 2004.

3 Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity.
Theory and Applications of Computability. Springer, 2010.

4 De-Jun Feng and Weng Hang. Lyapunov Spectrum of Asymptotically Sub-additive Poten-
tials. Communications in Mathematical Physics, 297(1):1–43, 2010.

5 J. Hartmanis. Computational Complexity of One-Tape Turing Machine Computations.
Journal of the ACM (JACM), 15(2):325–339, 1968.

6 F.C. Hennie. One-Tape, Off-Line Turing Machine Computations. Information and Control,
8:553–578, 1965.

7 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

8 Jarkko Kari and Nicolas Ollinger. Periodicity and Immortality in Reversible Computing.
In MFCS 2008, LNCS 5162, pages 419–430, 2008.

9 Richard M. Karp. A Characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23(3):309–311, 1978.

10 Pascal Koiran. The Topological Entropy of Iterated Piecewise Affine Maps is Uncomput-
able. Discrete Mathematics and Theoretical Computer Science, 4(2):351–356, 2001.

11 Petr Kurka. On topological dynamics of Turing machines. Theoretical Computer Science,
174:203–216, 1997.

12 Douglas A. Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, New York, NY, USA, 1995.

13 László Máté. On infinite composition of affine mappings. Fundamenta Mathematicae,
159:85–90, 1999.

14 Cristopher Moore. Generalized one-sided shifts and maps of the interval. Nonlinearity,
4(3):727–745, 1991.

15 Cristopher Moore. Generalized shifts: unpredictability and undecidability in dynamical
systems. Nonlinearity, 4(2):199–230, 1991.

16 Piotr Oprocha. On entropy and Turing machine with moving tape dynamical model. Non-
linearity, 19(10):2475–2487, 2006.

17 Giovanni Pighizzini. Nondeterministic one-tape off-line Turing machines and their time
complexity. Journal of Automata, Languages and Combinatorics, 14(1):107–124, 2009.

18 Stephen G. Simpson. Symbolic Dynamics: Entropy = Dimension = Complexity. accepted
for publication in Theory of Computung Systems.

19 B. A. Trakhtenbrot. Turing Computations with Logarithmic Delay. Algebra i Logika,
3(4):33–48, 1964. (In russian).

Computing Optimal Tolls with Arc Restrictions
and Heterogeneous Players
Tomas Jelinek1, Marcus Klaas2, and Guido Schäfer3

1 VU University Amsterdam, The Netherlands
t.jelinek@student.vu.nl

2 University of Amsterdam, The Netherlands
mail@marcusklaas.nl

3 CWI and VU University Amsterdam, The Netherlands
g.schaefer@cwi.nl

Abstract
The problem of computing optimal network tolls that induce a Nash equilibrium of minimum
total cost has been studied intensively in the literature, but mostly under the assumption that
these tolls are unrestricted. Here we consider this problem under the more realistic assumption
that the tolls have to respect some given upper bound restrictions on the arcs. The problem of
taxing subnetworks optimally constitutes an important special case of this problem. We study
the restricted network toll problem for both non-atomic and atomic (unweighted and weighted)
players; our studies are the first that also incorporate heterogeneous players, i.e., players with
different sensitivities to tolls.

For non-atomic and heterogeneous players, we prove that the problem is NP-hard even for
single-commodity networks and affine latency functions. We therefore focus on parallel-arc net-
works and give an algorithm for optimally taxing subnetworks with affine latency functions. For
weighted atomic players, the problem is NP-hard already for parallel-arc networks and linear
latency functions, even if players are homogeneous. In contrast, for unweighted atomic and
homogeneous players, we develop an algorithm to compute optimal restricted tolls for parallel-
arc networks and arbitrary (standard) latency functions. Similarly, for unweighted atomic and
heterogeneous players, we derive an algorithm for optimally taxing subnetworks for parallel-arc
networks and arbitrary (standard) latency functions.

The key to most of our results is to derive (combinatorial) characterizations of flows that are
inducible by restricted tolls. These characterizations might be of independent interest.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Network routing games, coordination mechanisms, network tolls, taxing
subnetworks, heterogeneous players

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.433

1 Introduction

Motivation and Background. It is a well-known fact that selfish route choices in network
routing applications result in outcomes that are undesirable for the society as a whole. In
urban road traffic, for example, selfish route choices lead to unnecessary traffic jams, thereby
causing environmental pollution, waste of natural resources, time and money. The Texas
A&M Transportation Institute states in its 2012 Urban Mobility Report [13, page 1]: “The
2011 data are consistent with one past trend, congestion will not go away by itself – action is
needed! [...] The problem is very large. In 2011, congestion caused urban Americans to travel

© Tomas Jelinek, Marcus Klaas, and Guido Schäfer;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 433–444

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.433
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

434 Computing Optimal Tolls with Arc Restrictions and Heterogeneous Players

5.5 billion hours more and to purchase an extra 2.9 billion gallons of fuel for a congestion
cost of $121 billion.”

Road pricing is recognized to be one of the most effective means to reduce congestion in
networks. The idea is to let the users pay for the usage of certain segments of the network by
imposing tolls. Typically, such tolls incite the users to change their commuting behavior, e.g.,
by opting for alternative, possibly slightly longer routes, avoiding certain parts of the network
at peak hours, etc. As a result, the network becomes less congested because the traffic is
better distributed through the network. Currently, road pricing systems are implemented
successfully in several large cities across the world (like in Singapore, Kopenhagen, Tel Aviv,
London, Dubai, etc.). A fundamental problem in this context is to determine tolls such that
the overall congestion of the underlying network is reduced.

In this paper, we study the problem of computing optimal tolls for the arcs of a given
network that induce a Nash equilibrium of minimum total cost. This problem has been
studied intensively in the literature for decades. One of the earliest articles addressing this
problem is due to Beckman, McGuire and Winsten [1], where they show that marginal
cost tolls induce an optimal flow as Nash equilibrium in non-atomic network routing games.
However, most previous studies were conducted under the assumption that the tolls are
unrestricted. This assumption is too simplistic in many situations and significantly limits
the applicability of such tolls in practice. For example, by using marginal cost tolls we lose
the ability to control which arcs of the network are tolled and by how much. Clearly, this is
undesirable in real-world applications where one can impose tolls only on certain arcs of the
network and wants to ensure that they do not exceed predefined amounts.

Only recently, researchers have started to investigate more refined network toll problems
like the taxing subnetworks problem [8, 10], in which only a subset of the arcs can be tolled,
or the restricted network toll problem [2], in which tolls have to respect some upper bound
restrictions on the arcs. All three studies [2, 8, 10] focus on the case of non-atomic players
that are homogeneous, i.e., all players are assumed to have equal sensitivities to tolls. Here
we further advance these investigations.

Our Contributions. We study the restricted network toll problem [2] both for non-atomic
and atomic (unweighted and weighted) players. In our studies we consider for the first time
also the case of heterogenous players, i.e., players may have different sensitivities to tolls.
Capturing heterogenous players is particularly important if it comes to applications where
users experience different disutilities of travel time and monetary cost (due to the tolls). As
it turns out, the heterogenous player case gives rise to several new challenges in devising
algorithms for the computation of optimal restricted tolls.

The main contributions presented in this paper are as follows:
In Section 3 we consider the case of non-atomic, heterogeneous players. We prove that
the problem of computing optimal restricted tolls is NP-hard even for single-commodity
networks with affine latency functions. In light of this negative result, we then focus
on parallel-arc networks and derive a combinatorial characterization of flows that are
inducible by restricted tolls. Exploiting this characterization, we derive an optimal
algorithm for taxing subnetworks with affine latency functions.
In Section 4 we consider atomic players. We first observe that for weighted players the
problem of computing optimal restricted tolls is NP-hard already for parallel-arc networks
with linear latency functions (even if the players are homogeneous). We therefore focus
on unweighted players and parallel-arc networks with standard latency functions and
derive an optimal algorithm to compute restricted tolls for homogeneous players. Further,
we obtain an optimal algorithm for taxing subnetworks for heterogeneous players.

T. Jelinek, M. Klaas, and G. Schäfer 435

As in previous works [2, 8, 10], most of our exact algorithms work only for parallel-arc
networks. However, our studies also reveal that this is basically unavoidable, unless one
is willing to resort to approximation algorithms (assuming that P 6= NP). Moreover, from
a practical point of view the restricted network toll problem for parallel-arc networks is
still very well motivated: for example, it captures the problem of pricing fast-lanes (or
priority-lanes) of highways that can be used to bypass heavy traffic (like in Tel-Aviv).

Our Techniques. The main difficulty that we face here in designing algorithms to compute
optimal restricted tolls is that the underlying problem is a bi-level optimization problem:
the feasible tolls constitute a compact set over which we wish to optimize the cost of the
corresponding Nash equilibria (which in turn are determined by the tolls). Typically, such
bi-level optimization problems are hard to tackle.

The key to most of our algorithmic results is to derive characterizations of flows that are
inducible by restricted tolls. For the unrestricted case, several such characterizations can be
found in the literature (see, e.g., [4, 6, 9, 15]). Moreover, some of them can be adapted to also
incorporate upper bound restrictions on tolls. For example, Fleischer et al. [6] characterize
the inducibility of a flow for non-atomic, heterogeneous players by the existence of an optimal
solution satisfying certain minimality conditions for a cleverly chosen linear program. The
upper bound restrictions can easily be added to this LP formulation such that the same
characterization continues to hold. However, the crux is that we cannot simply use this
characterization here because it reveals very little about the structure of the flows that are
inducible by these restricted tolls. In contrast, we derive characterizations that reveal some
structural properties of the inducible flows which we then exploit to design our algorithms.

Related Work. Beckman, McGuire and Winsten [1] proved that for non-atomic, homo-
geneous players marginal cost tolls induce an optimal flow as a Nash equilibrium. The
existence of such tolls for non-atomic, heterogeneous players has first been established for
single-commodity networks by Cole, Dodis and Roughgarden [4] and then extended to
multi-commodity networks by Yang and Huang [15] (see also the independent works by
Fleischer, Jain and Mahdian [6] and Karakostas and Kolliopoulos [9]). Fleischer [5] shows
that for single-commodity networks linear tolls (in terms of the maximum latency of the
optimal flow) are sufficient to enforce an optimal flow as Nash equilibrium.

In the literature one distinguishes between tolls that are weakly-optimal, i.e., at least one
induced Nash equilibrium is an optimal flow, and strongly-optimal, i.e., every induced Nash
equilibrium is an optimal flow. Swamy [14] proved the existence of weakly-optimal tolls for
atomic, heterogeneous players and splittable flow. For atomic, homogeneous players and
unsplittable flow, Caragiannis, Kaklamanis and Kanellopoulos [3] show that for linear latency
functions strongly-optimal tolls do not exist for multi-commodity networks or if the players
are weighted. They also show that strongly-optimal tolls exist for parallel-arc networks
with linear latency functions and unweighted players. Subsequently, Fotakis and Spirakis [7]
proved that weakly-optimal tolls can be computed efficiently for single-commodity networks
and that these tolls are strongly-optimal for series-parallel networks.

In this paper, we focus on the computation of weakly optimal tolls. Most related to our
work are the recent articles [2, 8, 10]. As already mentioned, these studies concentrate on the
case of non-atomic players that are homogeneous. Hoefer, Olbrich and Skopalik [8] study the
problem of optimally taxing subnetworks. They show that this problem is NP-hard for two-
commodity networks and affine latency functions by a non-trivial reduction from partition.
We borrow several insights of their proof to establish NP-hardness for single-commodity

STACS’14

436 Computing Optimal Tolls with Arc Restrictions and Heterogeneous Players

networks and affine latency functions in the case of heterogeneous, non-atomic players here.
They also derive an algorithm to compute optimal tolls for parallel-arc networks and affine
latency functions. Recently, Kleinert et al. [10] extended the algorithm in [8] for optimally
taxing subnetworks for parallel-arc networks to more general latency functions. The algorithm
guarantees polynomial running time for instances satisfying the inverse concavity property
(see [10] for details). The restricted network toll problem considered here was introduced
by Bonifaci, Salek and Schäfer [2]. The authors show that optimal restricted tolls can be
computed efficiently for parallel-arc networks and affine latency functions and also derive
bounds on the efficiency of restricted tolls for multi-commodity networks and polynomial
latency functions.

2 Preliminaries

We provide formal definitions of the concepts introduced in the Introduction. Suppose
we are given an instance I = (G = (V,A), (`a)a∈A, (si, ti)i∈[k], (ri)i∈[k]) of the non-atomic
network routing game, where G is a directed graph with latency functions (`a)a∈A and k
commodities (si, ti)i∈[k] of demand (ri)i∈[k]. The goal of every player is to send his flow
along a shortest latency path from its source si to its destination ti. Let Pi denote the set of
all simple directed si, ti-paths in G and define P := ∪i∈[k]Pi. An outcome of the game is a
flow f : [k]× P → R+ that is feasible, i.e.,

∑
P∈Pi

f iP = ri for every i ∈ [k]. Given a flow f ,
the total flow on arc a ∈ A is defined as fa :=

∑
i∈[k]

∑
P∈P:a∈P f

i
P . The set of arcs used by

commodity i is denoted by A+
i and we define A+ = ∪i∈[k]A

+
i . We define the latency of a

path P ∈ P with respect to f as `P (f) :=
∑
a∈P `a(fa). The total cost C(f) of f is given

by its average latency, i.e., C(f) :=
∑
P∈P fP `P (f). A flow that minimizes C(·) is called

optimal and denoted by f∗. A feasible flow f is called a Nash flow (or Wardrop flow) with
respect to ` := (`a)a∈A if

∀i ∈ [k], ∀P ∈ Pi, f iP > 0 : `P (f) ≤ `P ′(f) ∀P ′ ∈ Pi. (1)

Atomic network routing games are very similar. The only difference to the non-atomic
setting is that the flow for each commodity has to be routed along a single path, i.e.,
∀i ∈ [k], ∃!P ∈ Pi such that f iP = ri. What is refered to as commodity i ∈ [k] in the
non-atomic setting, is considered a player of weight ri in the atomic setting. (Note that
we do not assume that the commodities are distinct. Thus, different players might have
the same source and destination.) A flow can be regarded as a mapping from [k] into P.
On parallel arc networks, a(i) may be used to denote the arc player i uses in a given flow.
Players are said to be unweighted if ri = 1 for all i ∈ [k]. In the atomic setting, a feasible
flow is a Nash flow when

∀i ∈ [k], ∀P ∈ Pi, fP > 0 :
∑
a∈P

`a(fa) ≤
∑
a∈P ′

`a(fa + ri) ∀P ′ ∈ Pi. (2)

Throughout this paper, we assume that the latency functions are non-negative, non-
decreasing, differentiable and semi-convex, i.e., x · `a(x) is convex for every arc a ∈ A; such
latency functions are also called standard [11]. In the non-atomic setting, the cost of a Nash
flow is unique if the latency functions are standard; this property is not guaranteed to hold
for atomic players.

We study the restricted network toll problem as introduced in [2]: We are given an instance
I of the network routing game and threshold values θ := (θa)a∈A on the arcs. The goal is to
determine non-negative tolls τ := (τa)a∈A for the arcs of the network that obey the bounds

T. Jelinek, M. Klaas, and G. Schäfer 437

defined by the threshold functions (θa)a∈A. More formally, a toll vector τ = (τa)a∈A is called
θ-restricted if for every arc a ∈ A, 0 ≤ τa ≤ θa. Additionally, we are given a non-negative
vector of player sensitivities (also called types) α := (αi)i∈[k]. αi represents the fraction
of how a player of type i values the cost of one unit of time (latency) compared to one
unit of money (toll).1 Without loss of generality, we assume that 0 < α1 ≤ α2 ≤ · · · ≤ αk
throughout this paper. When αi = αj for all i, j ∈ [k], we say the players are homogeneous
with respect to their sensitivity to toll; otherwise, we call them heterogeneous. In the former
case, we can assume without loss of generality that α is normalized to 1.

Given a feasible flow f , we define the combined cost that a player of type i experiences
by traversing arc a ∈ A as φia(fa) = `a(fa) + αiτa(fa). The goal of a player of type i is to
choose a path P that minimizes the combined cost `P (f) + αiτP , where τP :=

∑
a∈P τa. For

θ-restricted tolls τ , let fτ denote a Nash flow that is induced by τ , i.e., fτ is a Nash flow
with respect to the combined costs (φi)i∈[k]. Given the restrictions θ = (θa)a∈A on the arcs, a
θ-restricted toll vector τ is optimal if there exists a Nash flow fτ that is inducible by τ whose
cost satisfies C(fτ) ≤ C(f τ̄) for all Nash flows f τ̄ that are inducible by θ-restricted tolls τ̄ .
The optimization problem that we are considering in this paper is to compute θ-restricted
tolls that are optimal.

An important special case of the θ-restricted network toll problem is the so-called taxing
subnetworks problem [8]. Here we are given a set T ⊆ A of arcs that are taxable arbitrarily
while the arcs in N := A \ T are non-taxable. This problem is equivalent to setting θa =∞
for every a ∈ T and θa = 0 for every a ∈ N .

3 Non-Atomic Players

We focus on the non-atomic, heterogeneous player case in this section. We first prove that the
problem of computing optimal θ-restricted tolls is NP-hard for single-commodity networks.

I Theorem 1. The problem of deciding whether there exist θ-restricted tolls that induce a
flow of social cost at most K is NP-complete, even for single-commodity networks and affine
latency functions with non-atomic and heterogeneous players.

Our proof is an adaptation of the NP-hardness result for taxing subnetworks for two-
commodity instance, affine latency functions and homogeneous players presented in [8]. The
idea is to ‘mimic’ the behavior of their two-commodity instance by a single-commodity
instance. To this aim, we have to overcome several difficulties. The proof is involved and
due to lack of space deferred to the full version of the paper.

In light of Theorem 1, we subsequently restrict our attention to parallel-arc networks.
We first establish a combinatorial characterization of inducible flows which we then use to
derive an optimal algorithm for taxing subnetworks.

3.1 Characterization for Parallel-Arc Networks
We present a characterization of flows that are inducible by θ-restricted tolls in parallel-arc
networks. Our approach is algorithmic: We first derive an algorithm for computing tolls
that induce a given flow without any restrictions. We then show that the computed tolls
are component-wise minimal and use this insight to derive our final characterization. Our
characterization holds for arbitrary latency functions.

1 Note that players having the same source and destination might still have different sensitivities in our
setting because we do not assume that the commodities are distinct.

STACS’14

438 Computing Optimal Tolls with Arc Restrictions and Heterogeneous Players

Algorithm 1: Computation of flow-inducing tolls
Input: flow f =

∑
i∈[k] f

i

Output: tolls τ = (τa)a∈A inducing f
1 τ ← 0
2 for a = 2→ m+ do
3 ∆a ← `a−`a−1

α̂min(a)

4 for ā = 1→ (a− 1) do τā ← τā + ∆a

5 end
6 return τ

We assume that we have k different player types. Let f = (f i)i∈[k] be a given flow, where
f i is the flow of player type i. Note that if f is fixed then all latencies of the arcs become
constants. For notational convenience, we will therefore omit the reference to f and write
`a to refer to `a(fa). Throughout this section we assume that A = [m] and that the arcs
are ordered such that `1 ≤ `2 ≤ · · · ≤ `m. This is without loss of generality because we can
always relabel the arcs accordingly.

Let m+ = max{a ∈ A+} be the arc of largest latency that is used under f . For every
arc a ∈ A we define L(a) := {a′ ∈ A | a′ ≥ a} as the set of arcs that succeed a in the
order above (including a). Note that the latency of every arc in L(a) is at least `a. We
use α̂min(a) to refer to the minimal sensitivity of a player that uses an arc in L(a), i.e.,
α̂min(a) = min{αi | A+

i ∩ L(a) 6= ∅}; we adopt the convention that α̂min(a) =∞ if no such
player exists.

Algorithm 1 describes the computation of a toll vector τ inducing f . We first establish
some properties of this algorithm. It will turn to be convenient to view the algorithm as
operating in phases, where a phase corresponds to the execution of the outer for-loop (Lines
2–5) for a fixed a ∈ {2, . . . ,m+}.

I Lemma 2. Let τ be the toll vector computed by Algorithm 1. Then for every two arcs
â, ǎ ∈ A with â ≥ ǎ it holds τǎ − τâ =

∑â
a=ǎ+1

`a−`a−1
α̂min(a) .

Proof. Note that τǎ and τâ remain zero during phases a = 2, . . . , ǎ and are increased by the
same amount ∆a in phases a = â+ 1, . . . ,m+. In phase a ∈ {ǎ+ 1, . . . , â}, τǎ is increased
by ∆a, while τâ remains zero. The claim follows from the definition of ∆a = `a−`a−1

α̂min(a) . J

The following theorem gives a characterization of flows that are inducible by unrestricted
tolls.

I Theorem 3. A flow f = (f i)i∈[k] of non-atomic, heterogeneous players with sensitivities
0 < α1 ≤ α2 ≤ · · · ≤ αm is inducible by unrestricted tolls if and only if

∀i, j ∈ [k] with αi > αj , ∀a ∈ A+
i , ∀ā ∈ A

+
j : `a ≥ `ā. (3)

Intuitively, the above condition states that a flow is inducible if more sensitive players
are routed on arcs with larger latencies.

Proof. Assume for the sake of contradiction that f is inducible and (3) does not hold, i.e.,
there exist i, j ∈ [k] with αi > αj and arcs a ∈ A+

i , ā ∈ A
+
j such that `a < `ā. Note that f

is a Nash flow with respect to the combined costs because it is inducible. Since a ∈ A+
i and

ā ∈ A+
j , we have

`a + αiτa ≤ `ā + αiτā or, equivalently, `ā − `a ≥ αi (τa − τā) . (4)

T. Jelinek, M. Klaas, and G. Schäfer 439

`ā + αjτā ≤ `a + αjτa or, equivalently, `ā − `a ≤ αj (τa − τā) . (5)

Note that `ā − `a > 0 by assumption and αj > 0. Inequality (5) therefore implies that
τa − τā > 0. Combining (4) and (5), we obtain αj (τa − τā) ≥ αi (τa − τā) . Dividing both
sides by τa − τā > 0 leads to a contradiction because αj < αi by assumption.

Now suppose that (3) holds. We show that f is inducible by the tolls τ computed by
Algorithm 1. Assume for the sake of contradiction that f is not a Nash flow with respect to
the combined cost. Then for some player i there exist arcs a ∈ A+

i and ā ∈ A satisfying

`a + αiτa > `ā + αiτā or, equivalently, `a − `ā > αi(τā − τa). (6)

Let ǎ = min{a, ā} and â = max{a, ā}. By Lemma 2, the difference in toll is

τǎ − τâ =
â∑

a′=ǎ+1

`a′ − `a′−1

α̂min(a′) . (7)

Recall that α̂min(a′) = min{αj | A+
j ∩ L(a′) 6= ∅}. We distinguish two cases:

Case 1: ā ≤ a. We have â = a ∈ A+
i and thus a ∈ L(a′) for every a′ ∈ {ǎ + 1, . . . , â}.

As a consequence, α̂min(a′) ≤ αi. Now (7) implies that αi(τā − τa) ≥ `a − `ā, which is a
contradiction to (6).

Case 2: ā > a. We have ǎ = a ∈ A+
i . Note that by assumption all arcs in A+

j ∩ L(a′)
satisfy αj ≥ αi for every a′ ∈ {ǎ + 1, . . . , â}. Thus, α̂min(a′) ≥ αi and (7) implies that
αi(τa − τā) ≤ `ā − `a, which is a contradiction to (6). J

The following lemma is crucial in order to obtain our characterization of flows that are
inducible by θ-restricted tolls.

I Lemma 4. Let f be an inducible flow. Then the tolls τ computed by Algorithm 1 are
component-wise minimal tolls that induce f .

Proof. Assume for the sake of contradiction that τ is not component-wise minimal, i.e., there
exists a toll vector τ ′ which induces f and τ ′a < τa for some arc a ∈ A. Choose ā ∈ A as the
arc with largest latency such that τ ′ā < τā. Note that the toll that Algorithm 1 imposes on
arc m+ ∈ A+ is τm+ = 0. Because τā > 0 there must exist at least one arc in A+ whose
latency is strictly larger than `ā. Let â ∈ A+ be an arc which has minimal latency among
such arcs, i.e.,

â = arg min{`a | a ∈ A+, `a > `ā}.

Let i be the least toll sensitive player that uses arc â. By Lemma 2, τā − τâ = `â−`ā

αi
. Note

that for player i the combined costs of â and ā are equal because

φiâ(τ) = `â + αiτâ = `ā + αiτâ + αi

(
`â − `ā
αi

)
= `ā + αiτā = φiā(τ).

Further, φiā(τ ′) < φiā(τ) because τ ′ā < τā. Because f is a Nash flow with respect to τ ′ it
follows that φiâ(τ ′) ≤ φiā(τ ′). Therefore, φiâ(τ ′) ≤ φiā(τ ′) < φiā(τ) = φiâ(τ). This implies that
τ ′â < τâ which is a contradiction to the choice of ā. J

I Theorem 5. A flow f = (f i)i∈[k] for non-atomic, heterogeneous players with sensitivities
0 < α1 ≤ α2 ≤ · · · ≤ αm is inducible by θ-restricted tolls if and only if
1. ∀i, j ∈ [k] with αi > αj, ∀a ∈ A+

i , ∀ā ∈ A
+
j : `a ≥ `ā.

2. ∀a ∈ A: θa ≥ τa, where τ is the toll vector computed by Algorithm 1 for f .

STACS’14

440 Computing Optimal Tolls with Arc Restrictions and Heterogeneous Players

Proof. Let f be inducible by θ-restricted tolls τ ′. Clearly, f is also inducible by unrestricted
tolls and the first condition therefore follows by Theorem 3. Let τ be the toll vector computed
by Algorithm 1. Then f is also inducible by τ . By Lemma 4, we have τa ≤ τ ′a for every
arc a ∈ A because τ is component-wise minimal. Since τ ′ is θ-restricted we conclude that
τa ≤ τ ′a ≤ θa for every arc a ∈ A, which proves the second condition.

Next, suppose that Conditions 1 and 2 hold. Then f is inducible by unrestricted tolls
by Theorem 3. In particular, the proof of Theorem 3 shows that the tolls τ computed by
Algorithm 1 induce f . Condition 2 now establishes that τ is θ-restricted, which concludes
the proof. J

3.2 Taxing Subnetworks

Bonifaci, Salek and Schäfer [2] derive a polynomial-time algorithm for computing optimal
θ-restricted tolls for homogeneous, non-atomic players on parallel-arc networks with affine
latency functions. We show that this algorithm can be used to determine optimal tolls for
taxing subnetworks in the presence of heterogeneous players.

Suppose we are given an instance of the taxing subnetworks problem with affine latency
functions and k player classes with sensitivities (αi)i∈[k] and demands (ri)i∈[k]. Let T ⊆ A
and N := A \ T be the sets taxable and non-taxable arcs, respectively. Set r :=

∑
i∈[k] ri

and L = maxa∈A `a(r)−mina∈A `a(0). Note that for homogeneous players and parallel-arc
networks the maximum toll needed to induce a given flow is at most L. We can therefore
define an instance of the θ-restricted toll problem with θa = L for every a ∈ T and θa = 0 for
every a ∈ N . Now, compute an optimal θ-restricted toll vector τ for demand r by running
the algorithm in [2]. Let fτ = (fτa)a∈A be the resulting Nash flow. The idea now is to
turn the arc flow fτ = (fτa)a∈A into a player flow f = (f i)i∈[k] such that the properties of
Theorem 5 are satisfied. To this aim, we decompose fτ into k player flows f = (f i)i∈[k] in
such a way that more sensitive players are assigned flow from higher latency arcs. We call
this the canonical decomposition of fτ .

I Theorem 6. Let f = (f i)i∈[k] be the canonical decomposition of the flow fτ as described
above. Then f is an optimal θ-restricted flow.

Proof. Because fτ is inducible by θ-restricted tolls for homogeneous players, it holds that
for every a ∈ N and ā ∈ A+, `a(fa) ≥ `ā(fā). In particular, all the arcs in N+ := N ∩ A+

have equal latencies and the latencies of arcs in N \ N+ are at least as large. Now, the
canonical decomposition guarantees that the resulting flow f satisfies (3) of Theorem 3. We
can thus use Algorithm 1 to generate tolls which induce f for heterogenous players (as in
the proof of Theorem 3). Further, these tolls will not impose any tolls on N because there
is no flow-carrying arc with a latency larger than the one in N+. Since fτa =

∑
i∈[k] f

i
a for

every a ∈ A, the total cost is not altered by this decomposition.
We next prove optimality. Let f = (fi)i∈[k] be an optimal flow inducible by θ-restricted

tolls for the game with heterogenous players. Consider the arc flow defined as fa :=
∑
i∈[k] f

i
a.

As before, we know that for every a ∈ N and ā ∈ A+, `a(fa) ≥ `ā(fā). If N ∩A+ 6= ∅ then
the maximum latency arc that is used must be in N and all arcs in N have latencies at least
as large as this arc. Otherwise, N ∩A+ = ∅. In either case, we do not need to impose any
toll on the arcs in N to induce f . We conclude that f is also inducible by θ-restricted tolls
for homogeneous players. Thus, the total cost of an optimal flow inducible by θ-restricted
tolls for homogenous players is at most the cost of one for heterogeneous players. J

T. Jelinek, M. Klaas, and G. Schäfer 441

4 Atomic Players

We turn to the problem of computing optimal θ-restricted tolls for parallel-arc networks
with atomic players. Roughgarden [12] proved that it is NP-hard to compute an optimal
flow for weighted atomic players in parallel-arc networks with linear latency functions. As
a consequence, computing optimal tolls is NP-hard in this setting, even for homogeneous
players and without restrictions on the tolls. We therefore assume that the players are
homogeneous and unweighted.

4.1 Characterization of flows inducible by θrestricted tolls
We first derive a characterization of inducible flows for unweighted homogeneous players on
parallel arc networks.

I Lemma 7. A flow f of unweighted homomogeneous players on a parallel arc network
({s, t}, A) is inducible by θ-restricted tolls if and only if

`a(fa + 1) + θa ≥ `â(fâ) ∀a ∈ A, (8)

where â := arg maxa∈A+ `a(fa).

Proof. Suppose that the restriction in Equation (8) holds. Then the tolls τ defined by
τa = max{0, `â(fâ)− `a(fa + 1)} are clearly non-negative and θ-restricted. Furthermore, for
any a ∈ A+ and ā ∈ A,

`a(fa) + τa ≤ max{`a(fa), `a(fa) + `â(fâ)− `a(fa + 1)}
≤ max{`a(fa), `â(fâ)} = `â(fâ) ≤ `ā(fā + 1) + τā.

This means no player has an incentive to change its choice. Suppose Equation (8) is not
satisfied. Then there is an arc a ∈ A such that `a(fa + 1) + θa < `â(fâ). Then for any
θ-restricted toll vector τ , `a(fa + 1) + τa < `â(fâ) + τâ. A player on arc â will therefore want
to switch to arc a, which means that the flow is not inducible by θ-restricted tolls. J

4.2 Optimal θRestricted Tolls on Parallel-Arc Networks
We exploit the above characterization to obtain an optimal algorithm to compute θ-restricted
tolls for unweighted homogeneous players. The idea of the algorithm is to first guess the arc
â ∈ A which is the maximum latency flow-carrying arc in a optimal solution and then the
amount i ∈ [k] of flow on it. We then compute for every other arc a ∈ A \ {â} the minimum
required flow such that Equation (8) is satisfied; call this flow the inducible basis f0. Every
flow that contains the inducible basis f0 is guaranteed to be inducible by θ-restricted tolls.
We can thus disregard the restrictions and complete f0 in the optimal way (as described in
Algorithm 2).

I Lemma 8. Algorithm 2 returns a flow which is cost minimal among all flows which contain
the inducible basis f0, ship d extra units and for which the latencies of used arcs do not
exceed L, if such a flow exists.

Proof. Suppose such a flow exists. We show that throughout the algorithm there exists
an optimal solution f∗ which has at least as much flow on each arc as the current flow f .
Consider the ith iteration of the algorithm. In this iteration the algorithm increases the flow
on ā by one. (Note that because an optimal solution exists, such an arc always exists.) By

STACS’14

442 Computing Optimal Tolls with Arc Restrictions and Heterogeneous Players

Algorithm 2: Algorithm for optimal completion of inducible basis f0

Input: network ({s, t}, A, `), flow f0, demand d and latency cap L
Output: optimal flow f ≥ f0 such that `a(fa) ≤ L, if it exists
1 f ← f0

2 while d > 0 do
3 Ā← {a ∈ A | `a(fa + 1) ≤ L}
4 if Ā = ∅ then return failure
5 ā← arg mina∈Ā(fa + 1)`a(fa + 1)− fa`a(fa)
6 fā ← fā + 1
7 d← d− 1
8 end

Algorithm 3: Algorithm for finding an optimal flow inducible by θ-restricted tolls
Input: network ({s, t}, A, `, θ) and player count k
Output: optimal flow f∗ inducible by θ-restricted tolls
1 f∗ ← (k, . . . , k)
2 for â ∈ A do
3 for i ∈ [k] do
4 f0

â ← i

5 d← k − i
6 for a ∈ A \ {â} do
7 f0

a ← min{n ∈ [k] | `a(n+ 1) + θa ≥ `â(i)}
8 d← d− f0

a

9 end
10 if d ≥ 0 and maxa∈A+ `a(f0

a) ≤ `â(i) then
11 L← `â(i)
12 f ← optimal completion of f0 (using Algorithm 2)
13 if flow completion succeeded and C(f) < C(f∗) then f∗ ← f

14 end
15 end
16 end

our definition of Ā, the resulting latency is at most L. Now suppose there is no optimal
solution f∗ such that f∗ā ≥ fā. Then after iteration i− 1, there exists an optimal solution f∗
which ‘agreed’ with the algorithm’s flow and an arc a such that f∗a > fa. Then in this flow
f∗, if we move one unit of flow from a to ā, the change in social cost would be

(f∗ā + 1)`ā(f∗ā + 1)− f∗ā `ā(f∗ā) + (f∗a − 1)`a(f∗a − 1)− f∗a `a(f∗a). (9)

By the choice of ā and the convexity of x · `a(x),

(f∗ā + 1)`ā(f∗ā + 1)− f∗ā `ā(f∗ā) ≤ (f∗ā + 2)`ā(f∗ā + 2)− (f∗ā + 1)`ā(f∗ā + 1)
= (fā + 1)fā(fā + 1)− fā`ā(fā)
≤ (fa + 1)fa(fa + 1)− fa`a(fa)
≤ f∗a `a(f∗a)− (f∗a − 1)`a(f∗a − 1).

So the change in the social cost (9) is non-positive. Therefore the optimal solution f∗ can be
altered without increasing the social cost so that it ‘agrees’ again with f , a contradiction. J

We summarize the algorithm for finding an optimal flow inducible by θ-restricted tolls in
Algorithm 3.

T. Jelinek, M. Klaas, and G. Schäfer 443

I Theorem 9. Algorithm 3 finds in polynomial time a flow of minimum total cost which is
inducible by θ-restricted tolls.

Proof. Atomic network routing games with unweighted atomic players admit at least one
Nash equilibrium. Since the number of feasible flows is finite, there exists an optimal solution
f∗. Let â be its maximum latency arc and i the flow on this arc. Consider the iteration of the
algorithm with the same choice of â and i. The algorithm then puts as much flow on every
arc to ensure that it can stand its toll. Because f∗ is inducible under θ-restrictions, it must
ship at least as much flow on every arc. After this, the algorithm finds a cost-minimal flow of
d units on the arcs A \ {â} with the added restriction that â remains the maximum-latency
arc. Because of this restriction, the resulting flow remains inducible under θ-restrictions.
It does this by increasing flow on the arc in such a way that the increase in social cost is
minimized. This produces an optimal solution by Lemma 8. It is not hard to see that the
algorithm never outputs a flow which is not inducible by θ-restricted tolls. It puts as much
flow on every arc a such that it can stand its toll `â(fâ)− `a(fa + 1). If this requires more
flow than there is demand, the flow is discarded and will never be returned. J

I Remark. Note that once an optimal flow inducible by θ-restricted tolls is found we can
extract the respective tolls as described in the proof of Lemma 7.

4.3 Optimally Taxing Subnetworks with Heterogeneous Players
With the help of Algorithm 3, we can also compute an optimal solution to the taxing
subnetworks problem on parallel-arc networks with heterogeneous players. We compute this
optimal flow in polynomial time by the following steps: Run Algorithm 3 on the given network
with k players and θ-restrictions as given. This returns a flow (fa)a∈A. We decompose this
arc flow into a player flow (f i)i∈[k] by assigning the most sensitive players to the arcs in N
arbitrarily and the remaining players to the arcs in T using the canonical decomposition
described in Section 3.2.

I Theorem 10. The process described above generates an optimal θ-restricted flow.

Proof. First we show that the flow is inducible by tolls on T . Run Algorithm 3 on the network
({s, t}, T) to define tolls on arcs T . Since the canonical decomposition decomposes the flow
on T , these tolls discourage players on T to change to a different arc in T . Furthermore, the
maximum latency arc â in T+ has a zero toll. Now note that for the flow f to be inducible in
the homogeneous case, for every a ∈ N, ā ∈ A+ it must hold that `a(fa + 1) ≥ `ā(fā). Since
players on T have no incentive to switch to â, they surely do not have any incentive to switch
to an arc in N . Now consider the players on N . They would not change to another arc in
N , or f would not be in equilibrium. Let a′ be the maximum latency arc in A+. Suppose
a′ ∈ N . We impose an additional toll to all arcs in T of max{`a′(fa′)− `â(fâ)/ᾱ, 0}, where
ᾱ := mini:a(i)∈N αi denotes the minimum sensitivity amongst players on N . Then the cost
that a player on N sees on â is at least

`â(fâ) + ᾱ · `a
′(fa′)− `â(fâ)

ᾱ
= `a′(fa′).

Since the players on â have no incentive to change to other arcs in T , neither do players in
N , as their sensitivity to toll is at least as high. Because this extra toll is added to all arcs
in T , the players on T are still in equilibrium. Consider an arbitrary user i that uses an arc
in T . Then on arc â it sees cost of at most

αi ·
`a′(fa′)− `â(fâ)

ᾱ
+ `â(fâ) ≤ `a′(fa′)− `â(fâ) + `â(fâ) = `a′(fa′),

STACS’14

444 Computing Optimal Tolls with Arc Restrictions and Heterogeneous Players

so no player on T has an incentive to switch to N . Now let the maximum latency arc a′ ∈ T .
Then â = a′. Because the players on T cannot gain by deviating to a different arc in T , for
some player i ∈ [k] such that a(i) = â,

αi · τa + `a(fa) ≥ `â(fâ) ∀a ∈ T.

Since ᾱ > αi, for every user on some ā ∈ N

ᾱ · τa + `a(fa) ≥ αi · τa + `a(fa) ≥ `â(fâ) ≥ `ā(fā) ∀a ∈ T.

So the decomposed flow is inducible by tolls.
It remains to prove optimality. Take an optimal solution to the heterogeneous variant of the

problem. Again we know that for every a ∈ N, ā ∈ A+ it must hold that `a(fa+1) ≥ `ā(fā), or
it can never be induced by tolls which are zero on N . For arc flow f ′ defined by f ′a :=

∑k
i=1 f

i
a,

the component-wise minimal tolls that induce these are equal to max{0, `â(fâ)− `a(fa + 1)}
for a ∈ A. Then for a ∈ N , τa = 0. So the minimum cost solution to the heterogeneous
problem is at most that of the homogeneous variant, which proves optimality. J

References
1 M. Beckmann, B. McGuire, and C. Winsten. Studies in the Economics of Transportation.

Yale University Press, New Haven, 1956.
2 V. Bonifaci, M. Salek, and G. Schäfer. Efficiency of restricted tolls in non-atomic network

routing games. In Proc. 4th Symp. on Algorithmic Game Theory, pages 302–313, 2011.
3 I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Taxes for linear atomic congestion

games. ACM Transactions on Algorithms, 7(1):1–31, 2010.
4 R. Cole, Y. Dodis, and T. Roughgarden. Pricing network edges for heterogeneous selfish

users. In Proc. 35th Symp. on Theory of Computing, pages 521–530, 2003.
5 L. Fleischer. Linear tolls suffice: New bounds and algorithms for tolls in single source

networks. Theoretical Computer Science, 348(2-3):217–225, 2005.
6 L. Fleischer, K. Jain, and M. Mahdian. Tolls for heterogeneous selfish users in multicom-

modity networks and generalized congestion games. In Proc. 45th Symp. on Foundations
of Computer Science, pages 277–285, 2004.

7 D. Fotakis and P. Spirakis. Cost-balancing tolls for atomic network congestion games. In
Proc. 3rd Workshop on Internet and Network Economics, pages 179–190, 2007.

8 M. Hoefer, L. Olbrich, and A. Skopalik. Taxing subnetworks. In Proc. 4th Workshop on
Internet and Network Economics, pages 286–294, 2008.

9 G. Karakostas and S. G. Kolliopoulos. Edge pricing of multicommodity networks for het-
erogeneous selfish users. In Proc. 45th Symp. on Foundations of Computer Science, pages
268–276, 2004.

10 I. Kleinert, M. Klimm, T. Harks, and R. H. Möhring. Computing network tolls with support
constraints. Networks, to appear.

11 T. Roughgarden. The price of anarchy is independent of the network topology. Computer
and Systems Sciences, 67(2):341–364, 2003.

12 T. Roughgarden. On the severity of Braess’s paradox: Designing networks for selfish users
is hard. Computer and Systems Sciences, 72(5):922–953, 2006.

13 D. Schrank, B. Eisele, and T. Lomax. TTI’s 2012 urban mobility report, 2012.
http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-report-2012.pdf.

14 C. Swamy. The effectiveness of stackelberg strategies and tolls for network congestion
games. ACM Transactions on Algorithms, 8(4):1–19, 2012.

15 H. Yang and H.-J. Huang. The multi-class, multi-criteria traffic network equilibrium and
systems optimum problem. Transportation Research B, 38(1):1 – 15, 2004.

Approximation of smallest linear tree grammar∗

Artur Jeż†1 and Markus Lohrey2

1 MPI Informatik, Saarbrücken, Germany / University of Wrocław, Poland
2 University of Siegen, Germany

Abstract
A simple linear-time algorithm for constructing a linear context-free tree grammar of size
O(r2g logn) for a given input tree T of size n is presented, where g is the size of a minimal
linear context-free tree grammar for T , and r is the maximal rank of symbols in T (which is a
constant in many applications). This is the first example of a grammar-based tree compression
algorithm with an approximation ratio polynomial in g. The analysis of the algorithm uses an ex-
tension of the recompression technique (used in the context of grammar-based string compression)
from strings to trees.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Grammar-based compression, Tree compression, Tree-grammars

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.445

1 Introduction

Grammar-based compression has emerged to an active field in string compression during
the last 10 years. The principle idea is to represent a given string s by a small context-
free grammar that generates only s; such a grammar is also called a straight-line program
(SLP). For instance, the word (ab)1024 can be represented by the SLP with the productions
A0 → ab and Ai → Ai−1Ai−1 for 1 ≤ i ≤ 10 (A10 is the start symbol). The size of this
grammar is much smaller than the size (length) of the string (ab)1024. In general, an SLP
of size n (the size of an SLP is usually defined as the total length of all right-hand sides
of productions) can produce a string of length 2Ω(n). Hence, an SLP can be seen indeed
as a succinct representation of the generated word. The principle task of grammar-based
string compression is to construct from a given input string s a small SLP that produces s.
Unfortunately, finding a size-minimal SLP for a given input string is hard: Unless P = NP
there is no polynomial time grammar-based compressor, whose output SLP has size less
than 8569/8568 times the size of a minimal SLP for the input string [4], and so there is
no polynomial time grammar-based compressor G with an approximation ratio of less than
8569/8568. In general the approximation ratio for G is defined as the function αG with

αG(n) = max size of the SLP produced by G with input x
size of a minimal SLP for x ,

where the max is taken over all strings of length n (over an arbitrary alphabet). The best
known polynomial time grammar-based compressors [4, 9, 17, 18] have an approximation
ratio of O(log(n/g)), where g is the size of a smallest SLP for the input string (each of them
works in linear time).

∗ The full version of this paper can be found at http://arxiv.org/abs/1309.4958.
† A. Jeż was partially supported by Polish National Science Centre (NCN) grant 2011/01/D/ST6/07164,
2011–2014.

© Artur Jeż Markus Lohrey;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 445–457

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.445
http://arxiv.org/abs/1309.4958
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

446 Approximation of smallest linear tree grammar

At this point, the reader might ask, what makes grammar-based compression so attractive.
There are actually several reasons: The output of a grammar-based compressor (an SLP) is
a clean and simple object, which may simplify the analysis of a compressor or the analysis
of algorithms that work on compressed data (see [13] for a survey). Moreover, there are
grammar-based compressors which achieve very good compression ratios. For example
RePair [12] performs very well in practice and was for instance used for the compression of
web graphs [5]. Finally, the idea of grammar-based string compression can be generalized to
other data types as long as suitable grammar formalisms are known for them. The last point
is the most important one for this work. In [3], grammar-based compression was generalized
from strings to trees (a tree in this paper is always a rooted ordered tree over a ranked
alphabet, i.e., every node is labelled with a symbol and the rank of this symbol is equal
to the number of children of the node). For this, context-free tree grammars were used.
Context free tree grammars that produce only a single tree are also known as straight-line
context-free tree grammars (SLCF tree grammars). Several papers deal with algorithmic
problems on trees that are succinctly represented by SLCF tree grammars, see [13] for a
survey. In [14], RePair was generalized from strings to trees, and the resulting algorithm
TreeRePair achieved excellent results on real XML data trees. Other grammar-based tree
compressors were developed in [15]. But none of these compressors has an approximation
ratio polynomial in g: For instance, in [14] a series of trees is constructed, where the n-th tree
tn has size Θ(n), there exists an SLCF tree grammar for tn of size O(logn), but the grammar
produced by TreeRePair for tn has size Ω(n) (similar examples can be constructed for the
compressors in [3, 15]).

In this paper, we give the first example of a grammar-based tree compressor, called
TtoG, with an approximation ratio of O(logn) assuming the maximal rank r of symbols
is bounded; otherwise the approximation ratio becomes O(r2 logn). TtoG is based on the
work [9] of the first author, where grammar-based string compressor with an approximation
ratio of O(logn) is presented. The crucial fact about this compressor is that in contrast
to [4, 17, 18] it does not use the LZ77 factorization of a string (which makes the compressors
from [4, 17, 18] not suitable for a generalization to trees, since LZ77 ignores the tree structure
and no analogue of LZ77 for trees is known), but is based on the recompression technique.
This technique was introduced in [7] and successfully applied for a variety of algorithmic
problems for SLP-compressed strings [7, 8] and word equations [11, 10]. The basic idea is to
compress a string using two operations: (i) block compressions, which replaces every maximal
substring of the form a` for a letter a by a new symbol a`, and (ii) pair compression, which for
a given partition Σ`]Σr of the alphabet replaces every substring ab ∈ Σ`Σr by a new symbol
c. It can be shown that the composition of block compression followed by pair compression
(for a suitably chosen partition of the input letters) reduces the length of the string by a
constant factor. Hence, the iteration of block compression followed by pair compression
yields a string of length one after a logarithmic number of phases. By reversing the single
compression steps, one obtains an SLP for the initial string. The term “recompression” refers
to the fact, that for a given SLP G, block compression and pair compression can be simulated
on the SLP G. More precisely, one can compute from G a new grammar G′, which is not
much larger than G such that G′ produces the result of block compression (respectively, pair
compression) applied to the string produced by G. In [9], the recompression technique is
used to bound the approximation ratio of the above compression algorithm based on block
and pair compression.

In this work we generalize the recompression technique from strings to trees. The
operations of block compression and pair compression can be directly applied to chains of

A. Jeż and M. Lohrey 447

unary nodes (nodes having only a single child) in a tree. But clearly, these two operations
alone cannot reduce the size of the initial tree by a constant factor. Hence we need a third
compression operation that we call leaf compression. It merges all children of node that are
leafs into the node; the new label of the node determines the old label, the sequence of labels
of the children that are leaves, and their positions in the sequence of all children of the node.
Then, one can show that a single phase, consisting of block compression (that we call chain
compression), followed by pair compression (that we call unary pair compression), followed
by leaf compression reduces the size of the initial tree by a constant factor. As for strings,
we obtain an SLCF tree grammar for the input tree by basically reversing the sequence of
compression operations. The recompression approach again yield an approximation ratio of
O(logn) for our compression algorithm, but the analysis is technically more subtle.

Related work on grammar-based tree compression. We already mentioned that grammar-
based tree compressors were developed in [3, 14, 15], but none of these compressors has a
good approximation ratio. Another grammar-based tree compressors was presented in [1].
It is based on the BISECTION algorithm for strings and has an approximation ratio of
O(n5/6). But this algorithm used a different form of grammars (elementary ordered tree
grammars) and it is not clear whether the results from [1] can be extended to SLCF tree
grammars, or whether the good algorithmic results for SLCF-compressed trees [13] can be
extended to elementary ordered tree grammars. Let us finally mention [2], where trees are
compressed by so called top trees. These are another hierarchical representation of trees.
Upper bounds on the size of top trees are derived and compared with the size of the minimal
dag (directed acyclic graph). More precisely, it is shown in [2] that the size of the top tree is
larger than the size of the minimal dag by a factor of O(logn). Since dags can be seen as a
special case of SLCF tree grammars, our main result is stronger.

Computational model. To achieve a linear running time we employ RadixSort, see [6,
Section 8.3], to obtain a linear-time grouping of symbols. To this end some assumption on
the computational model and form of the input are needed: we assume that numbers of
O(logn) bits (where n is the size of the input tree) can be manipulated in time O(1) and
that the labels of the input tree come from an interval [1, . . , nc], where c is some constant.

1.1 Trees and SLCF tree grammars
Let us fix for every i ≥ 0 a countably infinite set Fi of letters of rank i and let F =

⋃
i≥0 Fi

be their disjoint union. Symbols in F0 are called constants, while symbols in F1 are called
unary letters. We also write rank(a) = i if a ∈ Fi. A ranked alphabet F is a finite subset of
F. We also write Fi for F ∩ Fi and F≥i for

⋃
j≥i Fi. An F -labelled tree is a rooted, ordered

tree whose nodes are labelled with elements from F , satisfying the condition that if a node v
is labelled with a then it has exactly rank(a) children, which are linearly ordered (by the
usual left-to-right order). We denote by T (F) the set of F -labelled trees. In the following
we shall simply speak about trees when the ranked alphabet is clear from the context or
unimportant. When useful, we identify an F -labelled tree with a term over F in the usual
way. The size |t| of the tree t is its number of nodes.

Fix a countable set Y with Y ∩ F = ∅ of (formal) parameters, which are denoted by
y, y1, y2, For the purposes of building trees with parameters, we treat all parameters as
constants, and so F -labelled trees with parameters from Y ⊆ Y (where Y is finite) are simply
(F ∪ Y)-labelled trees, where the rank of every y ∈ Y is 0. However to stress the special role
of parameters we write T (F, Y) for the set of F -labelled trees with parameters from Y . We

STACS’14

448 Approximation of smallest linear tree grammar

identify T (F) with T (F, ∅). In the following we talk about trees with parameters (or even
trees) when the ranked alphabet and parameter set is clear from the context or unimportant.
The idea of parameters is best understood when we represent trees as terms: For instance
f(y1, a, y2, y1) with parameters y1 and y2 can be seen as a term with variables y1, y2 and we
can instantiate those variables later on. A pattern (or linear tree) is a tree t ∈ T (F, Y), that
contains for every y ∈ Y at most one y-labelled node. Clearly, a tree without parameters is
a pattern. All trees in this paper will be patterns, and we will not mention this assumption
explicitly in the following.

When we talk of a subtree u of a tree t, we always mean a full subtree in the sense that
for every node of u all descendents of that node in t belong to u as well. In contrast, a
subpattern v of t is obtained from a subtree u of t by replacing some of the subtrees of u by
pairwise different parameters. In this way we obtain a pattern p(y1, . . . , yn) and we say that
(i) the subpattern v is an occurrence of the pattern p(y1, . . . , yn) in t and (ii) p(y1, . . . , yn)
is the pattern corresponding to the subpattern v (this pattern is unique up to renaming of
parameters). This later terminology applies also to subtrees, since a subtree is a subpattern
as well. To make this notions clear, consider for instance the tree f(a(b(c)), a(b(d))) with
f ∈ F2, a, b ∈ F1 and c, d ∈ F0. It contains one occurrence of the pattern a(b(c)) and two
occurrences of the pattern a(b(y)).

A chain pattern is a pattern of the form a1(a2(. . . (ak(y)) . . .)) with a1, a2, . . . , ak ∈ F1.
We write a1a2 · · · ak for this pattern and treat it as a string (even though this string still
needs an argument on its right to form a proper term). In particular, we write a` for the
chain pattern consisting of ` many a-labelled nodes and we write vw (for chain patterns v
and w) for what should be v(w(y)). A chain in a tree t is an occurrence of a chain pattern
in t. A chain s in t is maximal if there is no chain s′ in t with s (s′. A 2-chain is a chain
consisting of only two nodes (which, most of the time, will be labelled with different letters).
For a ∈ F1, an a-maximal chain is a chain such that (i) all nodes are labelled with a and (ii)
there is no chain s′ in t such that s (s′ and all nodes of s′ are labelled with a too. Note
that an a-maximal chain is not necessarily a maximal chain. Consider for instance the tree
baa(c). The unique occurrence of the chain pattern aa is an a-maximal chain, but is not
maximal. The only maximal chain is the unique occurrence of the chain pattern baa.

For the further consideration, fix a countable infinite set Ni of symbols of rank i with
Ni ∩ Nj = ∅ for i 6= j. Let N =

⋃
i≥0 Ni. Furthermore, assume that F ∩ N = ∅. Hence,

every finite subset N ⊆ N is a ranked alphabet. A linear context-free tree grammar (there
exist also non-linear CF tree grammars, which we do not need for our purpose) or short
linear CF tree grammar is a tuple G = (N,F, P, S) such that N ⊆ N (resp., F ⊆ F) is
a finite set of nonterminals (resp., terminals), S ∈ N is the start nonterminal of rank 0,
and P (the set of productions) is a finite set of pairs (A, t) (for which we write A → t),
where A ∈ N and t ∈ T (F ∪N, {y1, . . . , yrank(A)}) is a pattern, which contains exactly one
yi-labelled node for each 1 ≤ i ≤ rank(A). To stress the dependency of A on its parameters
we sometimes write A(y1, . . . , yrank(A)) → t instead of A → t. Without loss of generality
we assume that every nonterminal B ∈ N \ {S} occurs in the right-hand side t of some
production (A→ t) ∈ P , see [16, Theorem 5]. The derivation relation ⇒G on T (F ∪N,Y)
is defined as follows: s ⇒G s′ if and only if there is a production (A(y1, . . . , y`) → t) ∈ P
such that s′ is obtained from s by replacing some subtree A(t1, . . . , t`) of s by t with each yi

replaced by ti. Intuitively, we replace an A-labelled node by the pattern t(y1 . . . , yrank(A))
and thereby identify the j-th child of A with the unique yj-labelled node of the pattern.
Then L(G) = {t ∈ T (F) | S ⇒∗G t}.

A straight-line context-free tree grammar (or SLCF grammar for short) is a linear CF
tree grammar G = (N,F, P, S), where (i) for every A ∈ N there is exactly one production

A. Jeż and M. Lohrey 449

(A→ t) ∈ P with left-hand side A, (ii) if (A→ t) ∈ P and B occurs in t then B < A, where
< is a linear order on N , and (iii) S is the maximal nonterminal with respect to <. By
(i) and (ii), every A ∈ N derives exactly one tree from T (F, {y1, . . . , yrank(A)}); we denote
this tree by val(A) (like value). Moreover, we define val(G) = val(S), which is a tree from
T (F). For an SLCF grammar G = (N,F, P, S) we can assume without loss of generality
that for every production (A→ t) ∈ P the parameters y1, . . . , yrank(A) occur in t in the order
y1, y2, . . . , yrank(A) from left to right. This can be ensured by a simple bottom-up rearranging
procedure.

There is a subtle point, when defining the size |G| of the SLCF grammar G: One possible
definition could be |G| =

∑
(A→t)∈P |t|, i.e., the sum of all sizes of right-hand sides. However,

consider for instance the rule A(y1, . . . , y`)→ f(y1, . . . , yi−1, a, yi, . . . , y`). It is in fact enough
to describe the right-hand side as (f, (i, a)), as we have a as the i-th child of f . On the
remaining positions we just list the parameters, whose order is known; see the above remark.
In general, each right-hand side can be specified by listing for each node its children that
are not parameters together with their positions in the list of all children. These positions
are numbers between 1 and r (it is easy to show that our algorithm TtoG creates only
nonterminals of rank at most r, see Lemma 1, and hence every node in a right-hand side has
at most r children) and therefore fit into O(1) machine words. For this reason we define the
size |G| as the total number of non-parameter nodes in all right-hand sides. If the size of a
grammar is defined as the total number of all nodes (including parameters) in all right-hand
sides, then the approximation ratio of TtoG is multiplied by an additional factor r.

Notational conventions. Our compression algorithm TtoG takes a tree T and applies to
it local compression operations, which shrink the size of the tree. With T we always denote
the current tree stored by TtoG, whereas n denotes the size of the initial input tree. The
algorithm TtoG adds fresh letters to the tree. With F we always denote the set of letters
occurring in the current tree T . The ranks of the fresh letters do not exceed the maximal
rank of the original letters. To be more precise, if we add a letter a to Fi, then F≥i was
non-empty before this addition. By r we denote the maximal rank of the letters occurring in
the input tree. By the above remark, TtoG never introduces letters of rank larger than r.

2 Compression operations

Our compression algorithm TtoG is based on three local replacement rules applied to trees:
(i) a-maximal chain compression: For a unary letter a replace every a-maximal chain

consisting of ` > 1 nodes with a fresh unary letter a` (for all ` > 1).
(ii) (a, b)-pair compression: For two unary letters a 6= b replace every occurrence of ab by a

single node labelled with a fresh unary letter c (which identifies the pair (a, b)).
(iii) (f, i1, a1 . . . , i`, a`)-leaf compression: For f ∈ F≥1, ` ≥ 1, a1, . . . , a` ∈ F0 and 0 <

i1 < i2 < · · · < i` ≤ rank(f) =: m replace every occurrence of f(t1, . . . , tm),
where tij

= aj for 1 ≤ j ≤ ` and ti is a non-constant for i 6∈ {i1, . . . , i`}, by
f ′(t1, . . . , ti1−1, ti1+1, . . . , ti`−1, ti`+1, . . . , tm), where f ′ is a fresh letter of rank rank(f)−
` (which identifies (f, i1, a1 . . . , i`, a`)).

Note that each of these operations shrinks the size of the current tree. Operations (i) and
(ii) apply only to unary letters and are direct translations of the operations used in the
recompression-based algorithm for constructing a grammar for a given string [9]. On the
other hand, (iii) is a new and designed specifically to deal with trees.

STACS’14

450 Approximation of smallest linear tree grammar

Every application of one of our compression operations can be seen as the ‘backtracking’ of
a production of the grammar that we construct: When we replace a` by a`, we introduce the
new nonterminal a`(y) with the production a`(y)→ a`(y). When we replace all occurrences
of the chain ab by c, the new production is c(y)→ a(b(y)). Finally, for (f, i1, a1 . . . , i`, a`)-leaf
compression the production is f ′(y1, . . . , yrank(f)−`)→ f(t1, . . . , trank(f)), where tij

= aj for
1 ≤ j ≤ ` and every ti with i 6∈ {i1, . . . , i`} is a parameter (and the left-to-right order of
the parameters in the right-hand side is y1, . . . , yrank(f)−`). All these productions are for
nonterminals of rank at most r, which implies:

I Lemma 1. The rank of nonterminals defined by TtoG is at most r.

During the analysis of the approximation ratio of TtoG we also consider the nonterminals
of a smallest grammar generating the given input tree. To avoid confusion between these
nonterminals and the nonterminals of the grammar produced by TtoG, we insist on calling
the fresh symbols introduced by TtoG (a`, c, and f ′ above) letters and add them to the
set F of current letters, so that F always denotes the set of letters in the current tree T . In
particular, whenever we talk about nonterminals, productions, etc. we mean the ones of the
smallest grammar we consider. Nevertheless, the above productions for the new letters form
the grammar returned by our algorithm TtoG and we need to estimate their size. In order not
to mix the notation, we shall call the size of the rule for a new letter a the representation cost
for a and say that a represents the subpattern it replaces in T . For instance, the representation
cost of a` with a`(y) → a`(y) is `, the representation cost of c with c(y) → a(b(y)) is 2,
and the representation cost of f ′ with f ′(y1, . . . , yrank(f)−`)→ f(t1, . . . , trank(f)) is `+ 1. A
crucial part of the analysis of TtoG is the reduction of the representation cost for letters
a`: Note that instead of representing a`(y) directly by a`(y) → a`(y), we can introduce
new unary letters representing some shorter chains in a` and build longer chains using
the smaller ones as building blocks. For instance, the rule a8(y) → a8(y) can be replaced
by the rules a8(y) → a4(a4(y)), a4(y) → a2(a2(y)) and a2(y) → a(a(y)). This yields a
total representation cost of 6 instead of 8. Our algorithm employs a particular strategy for
representing a-maximal chains, which yields the total cost stated in the following lemma:

I Lemma 2 (cf. [9, Lemma 2]). Given a list `1 < `2 < · · · < `k we can represent the
letters a`1 , a`2 , . . . , a`k

that replace the chain patterns a`1 , a`2 , . . . , a`k with a total cost of
O(k +

∑k
i=1 log(`i − `i−1)), where `0 = 0.

The important property of the compression operations is that we can perform many of
them independently in an arbitrary order without influencing the outcome. Since different
a-maximal chains and b-maximal chains do not overlap (regardless of whether a = b or not)
we can perform a-maximal chain compression for all unary letters a occurring in T in an
arbitrary order (assuming that the new letters do not occur in T). We call the resulting tree
ChainCmp(T), and denote the corresponding procedure also chain compression.

A similar observation applies to leaf compressions: We can perform (f, i1, a1 . . . , i`, a`)-leaf
compression for all f ∈ F≥1, 0 < i1 < i2 < · · · < i` ≤ rank(f) =: m, and (a1, a2, . . . , a`) ∈ F `

0
in an arbitrary order (again assuming that the fresh letters do not occur in the T). We
denote the resulting tree with LeafCmp(T) and call the corresponding procedure also leaf
compression.

The situation is more subtle for unary pair compression: observe that in a chain abc we
can compress ab or bc but we cannot do both in parallel (and the outcome depends on the
order of the operations). However, as in the case of string compression [9], independent (or
parallel) (a, b)-pair compressions are possible when we take a and b from disjoint subalphabets

A. Jeż and M. Lohrey 451

F up
1 and F down

1 , respectively. In this case for each unary letter we can tell whether it should
be the parent node or the child node in the compression step and the result does not depend
on the order of the considered 2-chains, as long as new letters are outside F up

1 ∪ F down
1 .

Hence, we denote with UnaryCmp(F up
1 , F down

1 , T) the result of doing (a, b)-pair compression
for all a ∈ F up

1 and b ∈ F down
1 (in an arbitrary order). The corresponding procedure is also

called (F up
1 , F down

1)-compression.

3 The algorithm TtoG

In a single phase of the algorithm TtoG, chain compression, (F up
1 , F down

1)-compression
and leaf compression are executed in this order (for an appropriate choice of the partition
F up

1 , F down
1).

Algorithm 1 TtoG: Creating an SLCF tree grammar
for the input tree T
1: while |T | > 1 do
2: T ← ChainCmp(T)
3: compute a partition F1 = F up

1] F down
1 .

Lemma 3
4: T ← UnaryCmp(F up

1 , F down
1 , T)

5: T ← LeafCmp(T)
6: return constructed grammar

The intuition behind this ap-
proach is as follows: If the tree t
in question does not have any unary
letters, then leaf compression on its
own reduces the size of t by half,
as it effectively reduces all constant
nodes, i.e. leaves of the tree, and
more than half of nodes are leaves.
On the other end of the spectrum
is the situation in which all nodes
(except for the unique leaf) are labelled with unary letters. In this case our instance is in
fact a string. Chain compression and unary pair compression correspond to the operations
of block compression and pair compression, respectively, from the earlier work of the first
author on string compression [9], where it is shown that block compression followed by pair
compression reduces the size of the string by a constant factor 3/4 (for an appropriate choice
of the partition F up

1 , F down
1 of the letters occurring in the string). The in-between cases are a

mix of those two extreme scenarios and for each of them the size of the instance drops by a
constant factor in one phase as well, see Lemma 4. We need the following lemma, which is a
modification of [9, Lemma 4]. Recall that F always denotes the set of letters occurring in T .

I Lemma 3. Assume that (i) T does not contain an occurrence of a chain pattern aa for
some a ∈ F1 and (ii) the symbols in T form an interval of numbers. Then, in time O(|T |)
one can find a partition F1 = F up

1] F down
1 such that the number of occurrences of chain

patterns from F up
1 F down

1 in T is at least (n1 − 3c+ 2)/4, where n1 is the number of nodes in
T with a unary label and c is the number of maximal chains in T . In the same running time
we can provide for each ab ∈ F up

1 F down
1 occurring in T a lists of pointers to all occurrences

of ab in T .

A single iteration of the main loop of TtoG is called a phase. A single phase can be
implemented in time linear to the size of the current T . The main idea is that RadixSort
is used for effective grouping in linear time and finding a partition is a simple modification
of [9, Lemma 4]. The main property of a single phase is:

I Lemma 4. In each phase, |T | is reduced by a constant factor.

Since each phase needs linear time, the contributions of all phase give a geometric series and
we get:

I Theorem 5. TtoG runs in linear time.

STACS’14

452 Approximation of smallest linear tree grammar

4 Size of the grammar produced by TtoG: recompression

4.1 Normal form
We want to compare the size of the grammar produced by TtoG with the size of a smallest
SLCF grammar for the input tree T . For this, we first transform the minimal grammar into
a so called handle grammar and show that this increases the grammar size by a factor of
O(r), where r is the maximal rank of symbols from F occurring in T . Then, we compare the
size of a minimal handle grammar for T with the size of the output of TtoG.

A handle is a pattern t(y) = f(w1(γ1), w2(γ2), . . . , wi−1(γi−1), y, wi+1(γi+1), . . . , w`(γ`)),
where rank(f) = `, every γj is either a constant symbol or a nonterminal of rank 0, every
wj is a chain pattern, and y is a parameter. Note that a(y) for a unary letter a is a handle.
Since handles have one parameter only, for handles h1, h2, . . . , h` we write h1h2 · · ·h` for the
tree h1(h2(. . . (h`(y)))) and treat it as a string, similarly to chains patterns. We say that an
SLCF grammar G is a handle grammar (or simply “G is handle”) if the following conditions
hold:

(H1) N ⊆ N0 ∪ N1
(H2) For A ∈ N ∩ N1 the unique rule for A is of the form A(y) → u(B(v(C(w(y))))) or

A(y)→ u(B(v(y))) or A(y)→ u(y), where u, v, and w are (perhaps empty) sequences
of handles and B,C ∈ N1. We call B the first and C the second nonterminal in the
rule for A.

(H3) For A ∈ N ∩ N0 the rule for A is of the (similar) form A → u(B(v(C))) or A →
u(B(v(c))) or A→ u(C) or A→ u(c), where u and v are (perhaps empty) sequences
of handles, c is a constant, B ∈ N1, C ∈ N0, and j, k < i. Again we speak of the first
and second nonterminal in the rule for A.

Note that the representation of the rules for nonterminals from N0 is not unique. Take
for instance the rule A → f(B,C), which can be written as A → a(C) for the handle
a(y) = f(B, y) or as A → b(B) for the handle b(y) = f(y, C). For nonterminals from N1
this problem does not occur, since there is a unique occurrence of the parameter y in the
right-hand side. For a given SLCF grammar we can find an equivalent handle grammar of
similar size:

I Lemma 6. Let G be an SLCF grammar. Then there exists a handle grammar G′ such that
val(G′) = val(G) and |G′| = O(r|G|), where r is the maximal rank of the letters used in G.

For the proof one first applies the main result of [16] to make G monadic (i.e., N ⊆ N0 ∪N1).
The resulting grammar can be easily transformed into a handle grammar by considering
for each nonterminal A ∈ N ∩ N1 the path from the root to the unique occurrence of the
parameter in the right-hand side of A.

4.2 Intuition and invariants
For a given input tree T we start with a smallest handle grammar G generating T . In the
following, by g we always denote the size of this initial minimal handle grammar. With
each occurrence of a letter from F in G’s rules we associate 2 credits. During the run of
TtoG we appropriately modify G, so that val(G) = T (where T always denotes the current
tree in TtoG). In other words, we perform the compression steps of TtoG also on G. We
always maintain the invariant that every occurrence of a letter from F in G’s rules has two
credits. To this end, we issue some new credits during the modifications, and we have to
do a precise bookkeeping on the amount of issued credit. On the other hand, if we do a

A. Jeż and M. Lohrey 453

compression step in G, then we remove some occurrences of letters. The credit associated
with these occurrences is then released and can be used to pay for the representation cost
of the new letters introduced by the compression step. For unary pair compression and
leaf compression, the released credit indeed suffices to pay the representation cost for the
fresh letters, but for chain compression the released credit does not suffice. Here we need
some extra amount that will be estimated separately. At the end, we bound the size of the
grammar produced by TtoG as the sum of the initial credit assigned to G (at most 2g) plus
the total amount of issued credit plus the extra cost estimated in Section 4.6. We emphasize
that the modification of G is not performed by TtoG, but is only a mental experiment done
for the purpose of analyzing TtoG.

An important difference between our algorithm and the string compression algorithm
from the earlier paper of the first author [9] is that we add new nonterminals to G during
its modification. All such nonterminals will have rank 0 and we shall denote the set of
such currently used nonterminals by Ñ0. To simplify notation, we denote with m always
the number of nonterminals of the current grammar G, and we denote its nonterminals by
A1, . . . , Am. We assume that i < j if Ai occurs in the right-hand side of Aj , and that Am is
the start nonterminal. With αi we always denote the current right-hand side of Ai, i.e., the
productions of G are Ai → αi for 1 ≤ i ≤ m.

Suppose a compression step, for simplicity say an (a, b)-pair compression, is applied to
T . We should also reflect it in G. The simplest solution would be to perform the same
compression on each of the rules of G, hoping that in this way all occurrences of ab in val(G)
will be replaced by c. However, this is not always the case. For instance, the 2-chain ab

may occur ‘between’ a nonterminal and a unary letter: consider a grammar A1(y)→ a(y)
and A2 → A1(b(c)) and a 2-chain ab. Then it it occurs in val(A2) but this occurrence is
‘between’ A1 and b in the rule for A2. This intuitions are made precise in Section 4.3. To
deal with this problem, we modify the grammar, so that such bad cases no longer occur.
Similar problems occur also when we want to replace an a-maximal chain or perform leaf
compression. Solutions to those problems are similar and are given in Section 4.4 and
Section 4.5, respectively.

To ensure that G is handle and to estimate the amount of issued credit, we show that
the grammar preserves the following invariants, where n0 (resp. n1) is the initial number of
nonterminals from N0 (resp., N1) in G and g is the initial size of G.

(I1) G is handle.
(I2) G has nonterminals N0 ∪ N1 ∪ Ñ0, where Ñ0, N0 ⊆ N0, |N0| ≤ n0 and N1 ⊆ N1,

|N1| ≤ n1.
(I3) The number of occurrences of nonterminals from N0, N1 and Ñ0 in G are at most g,

n0 + 2n1 and (n0 + 2n1)(r − 1), respectively
(I4) The rules for Ai ∈ Ñ0 are of the form Ai → wAj or Ai → wc, where w is a string of

unary symbols, Aj ∈ N0 ∪ Ñ0 and c is a constant.

It is easy to show that (I1)–(I4) hold for the initial handle grammar G when we set Ñ0 = ∅.
The only non-trivial condition is that the number of occurrences of nonterminals from N1
is at most n0 + 2n1. However, in a rule for Ai ∈ N0 there is at most one occurrence of a
nonterminal from N1, namely the first nonterminal in this rule (all other nonterminals are
parts of handles and so they are from N0). Similarly in a rule for Ai ∈ N1 there are at most
two occurrences of nonterminals from N1.

STACS’14

454 Approximation of smallest linear tree grammar

4.3 (F up
1 , F down

1)-compression

We begin with some definitions that help to classify which 2-chains are easy and which hard
to compress.

For a non-empty tree or pattern t its first letter is the letter that labels the root of t. For
a pattern t(y) which is not a parameter its last letter is the label of the node above the one
labelled with y. A chain pattern ab has a crossing occurrence in a nonterminal Ai if one of
the following holds:

(C1) a(Aj) is a subpattern of αi and the first letter of val(Aj) is b
(C2) Aj(b) is a subpattern of αi and the last letter of val(Aj) is a
(C3) Aj(Ak) is a subpattern of αi, the last letter of val(Aj) is a and the first letter of val(Ak)

is b.
A chain pattern ab is crossing if it has a crossing occurrence in any nonterminal and
non-crossing otherwise. Unless explicitly written, we use this notion only in case a 6= b.

When every chain pattern ab ∈ F up
1 F down

1 is noncrossing, simulating (F up
1 , F down

1)-
compression on G is easy: It is enough to apply (F up

1 , F down
1)-compression to each right-hand

side of G. We denote the resulting grammar with UnaryCmp(G).

Algorithm 2 Pop(F up
1 , F down

1 ,G)
1: for i← 1 . .m− 1 do
2: if the first symbol of αi is b ∈ F down

1
then

3: if αi = b then
4: replace each Ai G rules by b
5: else remove this leading b from αi

6: replace each Ai in G rules by bAi

7: do symmetric actions for the last symbol

To distinguish between the nontermin-
als, grammar, etc. before and after the ap-
plication of UnaryCmp (or, in general, any
procedure) we use ‘primed’ symbols, i.e.
A′i, G′, T ′ for the nonterminals, grammar
and tree, respectively, after the compression
step and ‘unprimed’ symbols (i.e. Ai, G, T)
for the ones before.

It is left to assure that indeed all oc-
currences of chain patterns from F up

1 F down
1

are noncrossing. Consider for instance the grammar with the rules A1(y) → a(y) and
A2 → A1(b(c)). The pattern ab has a crossing occurrence. To deal with crossing occurrences
we change the grammar. In our example, we replace A1 with a, leaving only A2 → ab(c),
which does not contain a crossing occurrence of ab.

In general, suppose that some ab ∈ F up
1 F down

1 is crossing because of (C1). Let a(Ai) be a
subpattern of some right-hand side and let val(Ai) = b(t′). Then it is enough to modify the
rule for Ai so that val(Ai) = t′ and replace each occurrence of Ai in a right-hand side by
b(Ai). We call this action popping-up b from Ai. The similar operation of popping down a
letter a from Ai ∈ N ∩ N1 is symmetrically defined (note that both pop operations apply
only to unary letters). By Lemma 7 below, popping up and down removes all crossing
occurrences of ab. Note that the popping up and popping down can be performed for
many letters in parallel: The procedure Pop (Algorithm 2) ‘uncrosses’ all occurrences of
patterns from the set F up

1 F down
1 , assuming that F up

1 and F down
1 are disjoint subsets of F1.

Then, (F up
1 , F down

1)-compression can be simulated on G by first uncrossing all 2-chains from
F up

1 F down
1 followed by (F up

1 , F down
1)-compression.

I Lemma 7. Let G satisfy (I1)–(I4) and G′ = UnaryCmp(F up
1 , F down

1 ,Pop(F up
1 , F down

1 ,G)).
Then val(G′) = UnaryCmp(F up

1 , F down
1 , val(G)) and G′ satisfies (I1)–(I4). O(g+(n0 +n1)r)

credits are issued in the construction of G′, where r is the maximal rank of letters in G. The
issued credits and the credits released by UnaryCmp cover the representation cost of fresh
letters as well as their credits.

A. Jeż and M. Lohrey 455

Since by Lemma 4 we apply O(logn) many (F up
1 , F down

1)-compressions (for different sets
F up

1 and F down
1) to G, we obtain:

I Corollary 8. (F up
1 , F down

1)-compression issues in total O((g + (n0 + n1)r) logn) credits
during all modifications of G.

4.4 Chain compression
Our notations and analysis for chain compression is similar to those for (F up

1 , F down
1)-

compression. In order to simulate chain compression on G we want to apply chain compression
to the right-hand sides of G. This works as long as there are no crossing chains: A unary
letter a has a crossing chain in a rule Ai → αi if aa has a crossing occurrence in αi, otherwise
it has no crossing chain. As for (F up

1 , F down
1)-compression, when there are no crossing chains,

we apply chain compression to the right-hand sides of G. We denote with ChainCmp(G)
the resulting grammar.

Crossing chains are eliminated by a procedure similar to Pop: Suppose for instance that
a has a crossing chain because a(Ai) is a subpattern in a right-hand side and val(Ai) begins
with a. Popping up a does not solve the problem, since after popping, val(Ai) might still
begin with a. Thus, we keep on popping up until the first letter of val(Ai) is not a. In order
to do this in one step we need some notation: We say that a` is an a-prefix of a tree (or
pattern) t if t = a`(t′) and the first letter of t′ is not a (here t′ might be the trivial pattern
y). Similarly, we say that a` is an a-suffix of a pattern t(y) if t = t′(a`(y)) for a pattern t′(y)
and the last letter of t′ is not a (again, t′ might be the trivial pattern y). In this terminology,
we have to pop-up (resp. pop-down) the whole a-prefix (resp., a-suffix) of val(Ai) from of Ai

in one step. This is achieved by a procedure RemCrChs, which is similar to Pop. So chain
compression is done by first running RemCrChs and then ChainCmp on the right-hand
sides of G. We obtain:

I Lemma 9. Let G satisfy (I1)–(I4) and G′ = ChainCmp(RemCrChs(G)). Then val(G′) =
ChainCmp(val(G)) and G′ satisfies (I1)–(I4). O(g + (n0 + n1)r) credits are issued in the
construction of G′ and these credits are used to pay the credits for the fresh letters introduced
by ChainCmp (but not their representation cost).

Since by Lemma 4 we apply O(logn) many chain compressions to G, we get:

I Corollary 10. Chain compression issues in total O((g + (n0 + n1)r) logn) credits during
all modifications of G.

The representation cost for the new letters a` introduced by chain compression is addressed
in Section 4.6.

4.5 Leaf compression
In order to simulate leaf compression on G we perform similar operations as for (F up

1 , F down
1)-

compression: Ideally we would like to apply leaf compression to each right-hand side of G.
However, in some cases this does not return the appropriate result. We say that the pair
(f, a) is a crossing parent-leaf pair in G, if f ∈ F≥1, a ∈ F0, and one of the following holds:

(L1) f(t1, . . . , t`) is a subtree of some right-hand side of G, where for some j we have tj = Ak

and val(Ak) = a.
(L2) For some Ai ∈ N1, Ai(a) is a subtree of some right-hand side of G and the last letter

of val(Ai) is f .
(L3) For some Ai ∈ N1 and Ak ∈ N0 ∪ Ñ0, Ai(Ak) is a subtree of some right-hand side of

G, the last letter of val(Ai) is f , and val(Ak) = a.

STACS’14

456 Approximation of smallest linear tree grammar

When there is no crossing parent-leaf pair, we can apply leaf compression to each right-hand
side of a rule; denote the resulting grammar with LeafCmp(G). If there is a crossing
parent-leaf pair, we uncross them all by a generalisation of Pop, called GenPop, which pops
up letters from F0 and pops down letters from F≥1. The latter requires some generalisation:
If we want to pop down a letter of rank > 1, we need to pop a whole handle. This adds
new nonterminals to G as well as a large number of new letters and hence a large amount of
credit, so we need to be careful. There are two crucial details:

When we pop down a whole handle h = f(t1, . . . , tk, y, tk+1, . . . , t`), we add to the set Ñ0
fresh nonterminals for all trees ti that are non-constants, replace these ti in h by their
corresponding nonterminals and then pop down the resulting handle. In this way the
issued credit is reduced and no new occurrence of nonterminals from N0 ∪N1 is created.
We do not pop down a handle from every nonterminal, but do it only when it is needed,
i.e., if for Ai ∈ N1 one of the cases (L2) or (L3) holds. This allows preserving (I5). Note
that when the last symbol in the rule for Ai is not a handle but another nonterminal,
this might cause a need for recursive popping. So we perform the whole popping down in
a depth-first-search style.

So, for leaf compression we can proceed as in the case of (F up
1 , F down

1)-compression and chain
compression: We first uncross all parent-leaf pairs and then compress each right-hand side
independently.

I Lemma 11. Let G satisfy (I1)–(I4) and G′ = LeafCmp(GenPop(G)). Then val(G′) =
LeafCmp(val(G)) and G′ satisfies (I1)–(I4). O(g+ (n0 +n1)r) credits are issued in the con-
struction of G′. The issued credit and the credit released by LeafCmp cover the representation
cost of fresh letters as well as their credit.

Since by Lemma 4 we apply O(logn) many leaf compressions to G, we obtain:

I Corollary 12. Leaf compression issues in total O(((n0 + n1)r + g) logn) credits during all
modifications of G.

4.6 Calculating the total cost of representing letters
The issued credit of (which is O(((n0 +n1)r+g) logn) by Corollaries 8, 10, and 12) is enough
to pay the 2 credits for every letter introduced during popping, whereas the released credit
covers the representation cost for the new letters introduced by (F up

1 , F down
1)-compression

and leaf compression. However, the released credit does not cover the representation cost
for letters created during chain compression. The appropriate analysis is similar to [9]. The
idea is as follows: Firstly, we define a scheme of representing letters introduced by chain
compression based on the grammar G and the way G is changed by chain compression (the
G-based representation). Then, we show that for this scheme the representation cost is
bounded by O((g + (n0 + n1)r) logn). Lastly, it is proved that the actual representation
cost of letters introduced by chain compression during the run of TtoG (the TtoG-based
representation, whose cost is given by Lemma 2) is smaller than the G-based one. Hence, it
is bounded by O((g + (n0 + n1)r) logn), too. Adding this to the issued credit, we obtain the
main result of the paper:

I Corollary 13. The total representation cost of the letters introduced by TtoG (and hence
the size of the grammar produced by TtoG) is O((g + (n0 + n1)r) logn) ≤ O(g · r · logn),
where g is the size of a minimal handle grammar for the input tree T and r the maximal
rank of symbols in T .

A. Jeż and M. Lohrey 457

Together with Lemma 6 we get:

I Corollary 14. The size of the grammar produced by TtoG is O(g r2 logn), where g is the
size of a minimal SLCF grammar for the input tree T and r is the maximal rank of symbols
in T .

Acknowledgements. The first author would like to thank P. Gawrychowski for introducing
him to the topic of compressed data and discussions, as well as S. Maneth and S. Böttcher
for the question of applicability of the recompression-based approach to the tree case.

References
1 T. Akutsu. A bisection algorithm for grammar-based compression of ordered trees. Inf.

Process. Lett., 110(18-19):815–820, 2010.
2 P. Bille, I. Gørtz, G. Landau, and O. Weimann. Tree compression with top trees. In

Proc. ICALP 2013 (1), LNCS 7965, pp.160–171. Springer, 2013.
3 G.Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document

trees. Information Systems, 33(4–5):456–474, 2008.
4 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.

The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.
5 F. Claude and G. Navarro. Fast and compact web graph representations. ACM Trans. Web,

4(4), 2010.
6 T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms (3. ed.). MIT

Press, 2009.
7 A. Jeż. Compressed membership for NFA (DFA) with compressed labels is in NP (P). In

Proc. STACS 2012, vol. 14 of LIPIcs, pp.136–147, Leibniz-Zentrum für Informatik, 2012.
8 A. Jeż. Faster fully compressed pattern matching by recompression. In Proc. ICALP 2012

(1), LNCS 7391, pp.533–544. Springer, 2012.
9 A. Jeż. Approximation of grammar-based compression via recompression. In

Proc. CPM 2013, LNCS 7922, pp.165–176. Springer, 2013. full version at
http://arxiv.org/abs/1301.5842.

10 A. Jeż. One-variable word equations in linear time. In Proc. ICALP 2013 (2), LNCS 7966,
pp.324–335. Springer, 2013.

11 A. Jeż. Recompression: a simple and powerful technique for word equations. In
Proc. STACS 2013, volume 20 of LIPIcs, pp.233–244, Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2013.

12 N. Jesper Larsson and A. Moffat. Offline dictionary-based compression. In Proc. DCC
1999, pp.296–305. IEEE Computer Society Press, 1999.

13 M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Crypto-
logy, 4(2):241–299, 2012.

14 M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.
Inf. Syst., 38(8):1150–1167, 2013.

15 M. Lohrey, S. Maneth, and E. Nöth. XML compression via DAGs. In Proc. ICDT 2013,
pp.69-80, ACM, 2013.

16 M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata eval-
uation for grammar-compressed trees. J. Comput. Syst. Sci., 78(5):1651–1669, 2012.

17 W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

18 H. Sakamoto. A fully linear-time approximation algorithm for grammar-based compression.
J. Discrete Algorithms, 3(2-4):416–430, 2005.

STACS’14

Coloring 3-colorable graphs with o(n1/5) colors

Ken-ichi Kawarabayashi∗1 and Mikkel Thorup†2

1 National Institute of Informatics, Tokyo Japan / JST ERATO Kawarabayashi
Project, Tokyo, Japan
k_keniti@nii.ac.jp

2 University of Copenhagen, Copenhagen, Denmark
mikkel2thorup@gmail.com

Abstract
Recognizing 3-colorable graphs is one of the most famous NP-complete problems [Garey, John-
son, and Stockmeyer STOC’74]. The problem of coloring 3-colorable graphs in polynomial time
with as few colors as possible has been intensively studied: O(n1/2) colors [Wigderson STOC’82],
Õ(n2/5) colors [Blum STOC’89], Õ(n3/8) colors [Blum FOCS’90], O(n1/4) colors [Karger, Mot-
wani, Sudan FOCS’94], Õ(n3/14) = O(n0.2142) colors [Blum and Karger IPL’97], O(n0.2111)
colors [Arora, Chlamtac, and Charikar STOC’06], and O(n0.2072) colors [Chlamtac FOCS’07].
Recently the authors got down to O(n0.2049) colors [FOCS’12]. In this paper we get down to
O(n0.19996) = o(n1/5) colors.

Since 1994, the best bounds have all been obtained balancing between combinatorial and
semi-definite approaches. We present a new combinatorial recursion that only makes sense in
collaboration with semi-definite programming. We specifically target the worst-case for semi-
definite programming: high degrees. By focusing on the interplay, we obtained the biggest
improvement in the exponent since 1997.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Computa-
tions on discrete structures, G.2.2 Graph Theory – Graph algorithms

Keywords and phrases Approximation Algorithms, Graph Coloring

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.458

1 Introduction

If ever you want to illustrate the difference between what we consider hard and easy to
someone not from computer science, use the example of 2-coloring versus 3-coloring: suppose
there is too much fighting in a class, and you want to split it so that no enemies end up in the
same group. First you try with a red and a blue group. Put someone in the red group, and
everyone he dislikes in the blue group, everyone they dislike in the red group, and so forth.
This is an easy systematic approach. Digging a bit deeper, if something goes wrong, you
have an odd cycle, and it is easy to see that if you have a necklace with an odd number of
red and blue beads, then the colors cannot alternate perfectly. This illustrates both efficient
algorithms and the concept of a witness. Knowing that red and blue do not suffice, we might
try introducing green, but this is already beyond what we believe computers can do.

∗ Research partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific
Research and by Mitsubishi Foundation.
† Research partly supported by an Advanced Grant from the Danish Council for Independent Research
under the Sapere Aude research carrier programme.

© Ken-ichi Kawarabayashi and Mikkel Thorup;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 458–469

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.458
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Kawarabayashi and M. Thorup 459

Formally a k-coloring of an undirected graph assigns k colors to the vertices. The coloring
is only valid if no two adjacent vertices get the same color. The validity of coloring is trivially
checked in linear time so the deciding if a graph is k-colorable is in NP.

Three-coloring is a classic NP-hard problem. It was proved hard by Garey, Johnson,
and Stockmeyer at STOC’74 [9], and was the prime example of NP-hardness mentioned by
Karp in 1975 [13]. Bipartite or 2-colorable graphs are very well-understood. How about
tripartite or 3-colorable graphs? How can we reason about them if we cannot recognize them?
Three-colorable graphs are obvious targets for any approach to NP-hard problems. With
the approximation approach, given a 3-colorable graph, that is a graph with an unknown
3-coloring, we try to color it in polynomial time using as few colors as possible. The algorithm
is allowed to fail or give up if the input graph was not 3-colorable. If a coloring is produced,
we can always check that it is valid even if the input graph is not 3-colorable. This challenge
has engaged many researchers. At STOC’82, Wigderson [17] got down to O(n1/2) colors for
a graph with n vertices. Berger and Rompel [3] improved this to O((n/(logn))1/2). Blum [4]
came with the first polynomial improvements, first to Õ(n2/5) colors at STOC’89, and then
to Õ(n3/8) colors at FOCS’90.

The next big step at FOCS’94 was by Karger, Motwani, Sudan [12] using semi-definite
programming (SDP). This came in the wake of Goemans and Williamson’s seminal use of
SDP for max-cut at STOC’94 [10]. For a graph with maximum degree ∆max, Karger et
al. got down to O(∆1/3

max) colors. Combining this with Wigderson’s algorithm, they got down
to O(n1/4) colors. Later Blum and Karger [5] combined the SDP from [12] with Blum’s [4]
algorithm, yielding an improved bound of Õ(n3/14) = Õ(n0.2142). Later improvements on
semi-definite programming have also been combined with Blum’s algorithm. At STOC’06,
Arora, Chlamtac, and Charikar [1] got down to O(n0.2111) colors. The proof in [1] is based
on the seminal result of Arora, Rao and Vazirani [2] which gives an O(

√
logn) algorithm for

the sparsest cut problem. At FOCS’07 Chlamtac [6] got down to O(n0.2072) colors. Recently,
at FOCS’12 [14], we presented a purely combinatorial approach (for the first time since Blum
[4]), getting down to Õ(n4/11) colors. Combining it with Chlamtac’s SDP [6], we got down
to O(n0.2049) colors.

Only a few lower bounds are known for the coloring of 3-colorable graphs. We know
that it is NP-hard to get down to 5 colors [11, 15]. Recently, Dinur, Mossel and Regev [7]
showed that it’s hard to color with any constant number of colors (i.e., O(1) colors) based
on a variant of the Unique Games Conjecture.

Integrality gap results [8, 12, 16] indicates that our understanding of SDP coloring
[2, 6, 12] is close to optimal, and it is therefore natural to go back and see if we can improve
things combinatorially.

In this paper we show how to color any 3-colorable n vertex graph in polynomial time
using only O(n0.19996) colors. This is the biggest single improvement in the exponent since
1997 [5], and in particular, we pass the n1/5 milestone. Our approach is combinatorial, but
aiming at a better combination with SDP, we specifically target the worst-case for SDP: high
degrees.

Technical perspective. To appreciate our result, we have to consider the interplay between
combinatorial and semi-definite methods in the above mentioned papers. A parameter ∆
is picked. Using Blum’s notion of progress, it suffices to work with graphs that either have
minimum degree ∆ or maximum degree ∆. A high minimum degree is good for combinatorial
approaches while a low maximum degree is good for semi-definite approaches. The best
bounds are obtained choosing ∆ to balance between the best semi-definite and combinatorial
approaches.

STACS’14

460 Coloring 3-colorable graphs with o(n1/5) colors

On the combinatorial side, the coloring bounds have followed, for i = 1, 2, 3, 4, the
sequence Õ((n/∆)i/(2i−1)). Here i = 1 is from Wigderson at STOC’82 [17], i = 2 is from
Blum at STOC’89 [4], i = 3 is from Blum at FOCS’90 [4]1, and i = 4 is from Kawarabayashi
and Thorup at FOCS’12 [14]. For i→∞, the sequence approaches its limit Õ((n/∆)1/2).
Each of the above steps is based on a new combinatorial coloring idea. It is rather curious
(1) that the resulting bounds have all been of the form Õ((n/∆)i/(2i−1)), and (2) that none
of these STOC/FOCS papers skipped a step in this sequence of bounds.

For a purely combinatorial algorithm, we balance the above bounds with the trivial
∆-coloring that takes out any vertex v with < ∆ neighbors, colors the rest of the graph
inductively, and give v the first color not used in its neighborhood.

The first semi-definite solution of Karger et al. from FOCS’94 [12], got O(∆1/3) colors.
Balancing this with yet to be found Õ((n/∆)1/2) coloring, would yield Õ(n1/5) colors, which
have thus been a natural milestone. Later semi-definite approaches of Arora, Chlamtac, and
Charikar at STOC’06 [1] and Chlamtac at FOCS’07 [6], have gotten down to O(∆1/3−ε(n,∆))
colors where ε(n,∆) > 0 is a small value that decreases as complicated function of ∆. The
integrality gap from [8] implies that ε(n,∆) = o(1) for ∆ = no(1).

Chlamtac [personal communication] stated that we would pass the n1/5 milestone if the
combinatorial side could get down around Õ((n/∆)12/23) colors. This, however, is 8 steps
away in the current sequence where the first 4 steps have taken 20 years, each introducing a
new combinatorial idea.

Our goal is to improve the overall coloring bound in terms of n, and we will indeed get
down to o(n1/5) colors. Using our previous combinatorial algorithm [14] as a subroutine, we
present a novel recursion that gets us down to Õ((n/∆)12/23) colors, but only for the large
values of ∆ needed for an optimal combination with SDP. In combination with Chlamtac’s
SDP [6], we get a polynomial time algorithm that colors any 3-colorable graph on n vertices
with O(n0.19996) colors.

We note that for smaller values of ∆, our new recursion does not offer any improvement
over our previous combinatorial bound Õ((n/∆)4/7) from [14]. Instead of adding another
independent dot, we connect the dots, improving the combinatorial side only in the parameter
range of relevance for combination with SDP.

Contents. The paper is organized as follows. In a preliminary Section 2, we present
notations and basic results needed from [4]. In Section 3, we review our previous algorithm
from [14] which we shall use here as a subroutine. In Section 4 we present our novel recursion
around this subroutine. This completes the description of our new algorithm. Switching to
the analysis, in Section 5 we identify the properties of the subroutine from [14] that we need
for our recursion. This properties follow from the analysis from [14], as will be verified in a
combined journal version. In Section 6 we use these properties for an inductive analysis of
our new recursion.

2 Preliminaries

We hide logn factors, so we use the notation that Õ(x) ≤ x logO(1)(n), Ω̃(x) ≥ x/ logO(1)(n),
õ(x)) ≤ x/ logω(1)(n), and ω̃(x) ≥ x logω(1)(n).

We are given a 3-colorable graph G = (V,E) with |V | = n = ω(1) vertices. The (unknown)
3-colorings are with red, green, and blue. For a vertex v, we let N(v) denote its set of

1 The reference is to the joint journal paper

K. Kawarabayashi and M. Thorup 461

neighbors. For a vertex set X ⊆ V , let N(X) =
⋃
v∈X N(v) be the neighborhood of X.

If Y is a vertex set, we use NY to denote neighbors in Y , so NY (v) = N(v) ∩ Y and
NY (X) = N(X) ∩ Y . We let dY (v) = |N(v) ∩ Y | and dY (X) = {dY (v) | v ∈ Y }. Then
min dY (X), max dY (X), and avg dY (X), denotes the minimum, maximum, and average
degree from X to Y .

For some color target k depending on n, we wish to find an Õ(k) coloring of G in
polynomial time. We reuse several ideas and techniques from Blum’s approach [4].

Progress

Blum has a general notion of progress towards an Õ(k) coloring (or progress for short if k is
understood). The basic idea is that such progress eventually leads to a full Õ(k) coloring of
a graph. Blum presents three types of progress towards Õ(k) coloring:
Type 0: Same color. Finding vertices u and v that have the same color in every 3-coloring.
Type 1: Large independent set. Finding an independent or 2-colorable vertex set X of size
Ω̃(n/k).
Type 2: Small neighborhood. Finding a non-empty independent or 2-colorable vertex set X
such that |N(X)| = Õ(k|X|).

In order to get from progress to actual coloring, we want k to be bounded by a near-
polynomial function f of n where near-polynomial means that f is non-decreasing and that
there are constants c, c′ > 1 such that cf(n) ≤ f(2n) ≤ c′f(n) for all n. As described in [4],
this includes any function of the form f(n) = nα logβ n for constants α > 0 and β.

I Lemma 1 ([4, Lemma 1]). Let f be near-polynomial. If we in time polynomial in n can
make progress towards Õ(f(n)) coloring of either Type 0, 1, or 2, on any 3-colorable graph
on n vertices, then in time polynomial in n, we can Õ(f(n)) color any 3-colorable graph on
n vertices.

The general strategy is to identify a small parameter k for which we can guarantee progress.
To apply Lemma 1 and get a coloring, we need a bound f on k where f is near-polynomial
in n. As soon as we find one progress of the above types, we are done, so generally, whenever
we see a condition that implies progress, we assume that the condition is not satisfied.

Our focus is to find a vertex set X, |X| > 1, that is guaranteed to be monochromatic in
every 3-coloring. This will happen assuming that we do not get other progress on the way.
When we have the vertex set X, we get same-color progress for any pair of vertices in X.
We refer to this as monochromatic progress.

Most of our progress will be made via results of Blum presented below using a common
parameter

Ψ = n/k2. (1)

A very useful tool we get from Blum is the following multichromatic (more than one color)
test:

I Lemma 2 ([4, Corollary 4]). Given a vertex set X ⊆ V of size at least Ψ = n/k2, in
polynomial time, we can either make progress towards an Õ(k)-coloring of G, or else guarantee
that under every legal 3-coloring of G, the set X is multichromatic.

The following lemma is implicit in [4] and explicit in [14].

I Lemma 3 ([14, Lemma 6]). If the vertices in a set Z on the average have d neighbors in
U , then the whole set Z has at least min{d/Ψ, |Z|} d/2 distinct neighbors in U (otherwise
some progress is made).

STACS’14

462 Coloring 3-colorable graphs with o(n1/5) colors

Large minimum degree

Our algorithms will exploit a lower bound ∆ on the minimum degree in the graph. It is
easily seen that if a vertex v has d neighbors, then we can make progress towards Õ(d)
coloring since this is a small neighborhood for Type 2 progress. For our color target k, we
may therefore assume:

k ≤ ∆/ loga n for any constant a. (2)

However, combining with semi-definite programming (SDP) as in [5], we can assume a much
larger minimum degree. The combination is captured by the following lemma, which is
proved in [14, §VIII]:

I Lemma 4 ([5, 14]). Suppose that for some near-polynomial functions d and f , we for any
n can make progress towards Õ(f(n)) coloring for

any 3-colorable graph on n vertices with minimum degree ≥ d(n).
any 3-colorable graph on n vertices with maximum degree ≤ d(n).

Then we can make progress towards Õ(f(n))-coloring on any 3-colorable graph on n vertices.

Using the SDP from [12], we can make progress towards d(n)1/3 for graphs with degrees
below d(n), so by Lemma 4, we may assume

k ≤ ∆1/3. (3)

We can do even better using the strongest SDP result of Chlamtac from [6, Theorem 15]:

I Theorem 5 ([6]). For any τ > 6
11 there is a c > 0 such that there is a polynomial time

algorithm that for any 3-colorable graph G with n vertices and all degrees below ∆ = nτ finds
an independent set of size Ω̃

(
n/∆1/(3+3c)). Hence we can make Type 2 progress towards an

Õ
(
∆1/(3+3c)) = Õ

(
nτ/(3+3c))-coloring.

The requirement on τ and c is that c < 1/2 and λc,τ (α) = 7/3 + c+ α2/(1− α2)− (1 +
c)/τ − (

√
(1 + α)/2 +

√
c(1− α)/2)2 is positive for all α ∈ [0, c

1+c].

I Corollary 6. In polynomial time, for any 3-colorable graph with n vertices, and all degrees
below ∆ = n0.61674333, we can make progress towards an Õ(n0.19996)-coloring.

Proof. We apply Theorem 5 with τ = 0.6167433 and c = 0.02811113. Then For α ∈ [0, c
1+c],

it is easily verified that λc,τ (α) is minimized and positive with α = 0.0273425. Then
τ/(3 + 3c) = 0.19996. J

By Lemma 4, we may thus assume

k = n0.19996 and ∆ = n0.61674333. (4)

With this setting k is slightly smaller than (n/∆)12/23. Our original algorithm from [14] only
assumes the combinatorial bound (2), to make progress towards Õ((n/∆)4/7) coloring. It is
only in our new developments that we need the higher degrees that can be assumed via SDP.

Two-level neighborhood structure

The most complex ingredient we get from Blum [4] is a certain regular second neighborhood
structure. Let ∆ be the smallest degree in the graph G. In fact, we shall use the slightly
modified version described in [14].

Unless other progress is made, for some ∆1 = Ω̃(∆), in polynomial time [4, 14] identifies
a 2-level neighborhood structure H1 = (r1, S1, T1) in G consisting of:

K. Kawarabayashi and M. Thorup 463

A root vertex r1. We assume r1 is colored red in any 3-coloring.
A first neighborhood S1 ⊆ N(r1) of size at least ∆1.
A second neighborhood T1 ⊆ N(S1) of size at most n/k. The sets S1 and T1 may overlap.
The edges between vertices in H1 are the same as those in G.
The vertices in S1 all have degrees at least ∆1 into T1.
For some δ1 the degrees from T1 to S1 are all between δ1 and 5δ1.

3 Review of our FOCS’12 coloring

Our algorithm makes internal use of the coloring algorithm from [14], which we review below.
It uses the above 2-level neighborhood structure H1 = (r1, S1, T1), and works on induced
subproblems (S, T) ⊆ (S1, T1) defined in terms of a subsets S ⊆ S1 and T ⊆ T1. The edges
considered in the subproblem are exactly those between S and T in G. This edge set is
denoted E(S, T).

With r1 red in any 3-coloring, we know that all vertices in S ⊆ S1 ⊆ N(r1) are blue or
green. We say that a vertex in T has high S-degree if its degree to S is bigger than δ1/4,
and we will make sure that any subproblem (S, T) considered satisfies:
(i) We have more than Ψ vertices of high S-degree in T .
In [14, §IV] we implemented a subroutine cut-or-color(t, S, T) which for a problem (S, T) ⊆
(S1, T1) starts with an arbitrary high S-degree vertex t ∈ T . It has one of the following
outcomes:

Some progress toward a Õ(k)-coloring. Then we are done, so we assume that this does
not happen.
A guarantee that if r1 and t have different colors in a 3-coloring C3 of G, then S is
monochromatic in C3.
Reporting a “sparse cut around a subproblem (X,Y) ⊆ (S, T)” satisfying the following
conditions:
(i) The original high S-degree vertex t has all its neighbors from S in X, that is,

NS(t) ⊆ X.
(ii) All edges from X to T go to Y , so there are no edges between X and T \ Y .
(iii) Each vertex s′ ∈ S \X has |NY (s′)| < Ψ.
(iv) Each vertex t′ ∈ T \ Y has |NY (NS(t′))| < Ψ.

Assuming cut-or-color, we now review the main recursive algorithm, monochromatic,
from [14]. It takes as input a subproblem (S, T). The pseudo-code is presented in Algorithm 1.

Algorithm 1: monochromatic(S, T)
let U be the set of high S-degree vertices in T ;
check that U is multichromatic in G with Lemma 2; // if not, progress found and we are
done
if there is a t ∈ U such that cut-or-color(S, T, t) returns “sparse cut around (X,Y)” then

recursively call monochromatic(X,Y)
else

return “S is monochromatic in every 3-coloring”

Let U be the set of high S-degree vertices in T . By 1 we have |U | ≥ Ψ, so we can apply
Blum’s multichromatic test from Lemma 2 to U in G. Assuming we did not make progress,

STACS’14

464 Coloring 3-colorable graphs with o(n1/5) colors

we know that U is multichromatic in every valid 3-coloring. We now apply cut-or-color to
each t ∈ U , stopping only if a sparse cut is found or progress is made. If we make progress,
we are done, so assume that this does not happen. If a sparse cut around a subproblem
(X,Y) is found, we recurse on (X,Y).

The most interesting case is when we get neither progress nor a sparse cut.

I Lemma 7. If cut-or-color does not find progress nor a sparse cut for any high S-degree
t ∈ U , then S is monochromatic in every 3-coloring of G.

Proof. Consider any 3-coloring C3 of G. With Lemma 2 we checked that U is multichromatic
in every 3-coloring of G including C3, so there is some t ∈ U that has a different color than r1
in C3. With this t, cut-or-color(S, T, t) guarantees that S is monochromatic in C3. Note
that different 3-colorings may use a different vertex t for the guarantee, and our algorithm
does not need to know which t are used. J

Thus, unless other progress is made, monochromatic ends up with a set S that is monochro-
matic in every 3-coloring, and then monochromatic progress can be made. However, the
correctness demands that we respect 1 and never apply monochromatic to a subproblem
(S, T) where T has less than Ψ high S-degree vertices (otherwise Lemma 2 cannot be applied
to U).

In [14] it is proved that 1 is respected when the recursion monochromatic(S1, T1) starts
in the initial two-level structure (S1, T1) from Section 2. In each recursive step, we take the
subproblem (X,Y) returned by cut-or-color, and recurse on (S, T) = (X,Y). The analysis
from [14] has the following points:

If the average degree from Y to X is at least δ1/2, then (S, T) = (X,Y) satisfies 1.
The set Y is of size at least ∆2

1k
2/(2n) and has at least δ1|Y | ≥ δ1∆2

1k
2/(2n) edges to S1.

The set Y has at most (40δ1n2)/(∆2
1k

4) · |T1| edges to T1 \X (this is the hard part).
We pick k = Θ((n/∆1)4/7) such that

40δ1n2

∆2
1k

4 |T1| = δ1∆2
1k

2/(4n) ≤ δ1|Y |/2.

Then the average degree from Y to X is at least δ1/2, implying 1 for (S, T) = (X,Y).

4 A novel outer loop for high degree graphs

As described above, the first call to Algorithm 1 is with the initial problem (S1, T1) that
is regular in the sense that the degrees from T1 to S1 are all between δ1 and 5δ1 for some
δ1. However, with a color target k below Θ((n/∆1)4/7), we can no longer guarantee that
the average degree from Y to X remains above δ1/2. To preserve the correctness, we will
stop our recursive Algorithm 1 if we get to a subproblems (X,Y) where the average degree
from Y to X is less than δ1/2. Inside (X,Y) we find a new regular subproblem (S2, T2)
where the degrees are between δ2 and 5δ2 for some δ2. Again we apply Algorithm 1 until the
average drops below δ2/2. We continue this new outer loop, generating a sequence of regular
subproblems (S1, T1) ⊃ (S2, T2) ⊃ (S3, T3) ⊃ · · · , until we somehow end up either making
progress, or some error event happens. In combination with SDP, our analysis will show that
this outer loop can be used to give error-free progress towards Õ(n0.19996) coloring.

The regularization is described in Algorithm 2, and it is, in itself, fairly standard. Blum
[4] used several similar regularizations.

K. Kawarabayashi and M. Thorup 465

Algorithm 2: regularize(S, T)
Let d` = (4/3)`;
Partition the vertices of T into sets U` = {v ∈ T | dS(v) ∈ [d`, d`+1)};
Subject to d` ≥ avg dS(T)/2 let ` maximize |E(U`, S)|;
δ r ← d`/4; ∆r ← avg dU`

(S)/4;
Repeatedly remove vertices v ∈ S with dU`

(v) ≤ ∆ r and w ∈ U` with dS(w) ≤ δ r;
S r ← S; T r ← U`;
return (S r, T r,∆ r, δ r)

I Lemma 8. When regularize(S, T) in Algorithm 2 returns (S r, T r,∆ r, δ r) then ∆r ≥
avg dT (S)/(30 lgn) and δ r ≥ avg dS(T)/8. The sets S r and T r are both non-empty. The
degrees from S r to T r are at least ∆ r and the degrees from T r to S r are between δ r and
5δ r.

Proof. Below S and U` refers to the sets before vertices are removed. We have S r and T r

denoting the sets after the vertices have been removed.
To prove ∆r ≥ avg dT (S)/(30 lgn), we first note that the sets U` with d` < avg dS(T)/2

only contain vertices of degree below (4/3)avg dS(T)/2 = (2/3)avg dS(T), so at least 1/3 of
the edges from E(S, T) leave vertices from sets U` satisfying the condition d` ≤ avg dS(T)/2.
There are only log4/3 n < (5/2) lgn possible values of `, and subject to the condition,
we picked ` maximizing E(S,U`). Therefore |E(S,U`)| > (1/3)|E(S, T)|/((5/2) lgn) =
(2/15)|E(S, T)|/ lgn. It follows that ∆r ≥ avg dU`

(S)/4 > avg dT (S)/(30 lgn).
The only other slightly non-trivial statement is that the sets S r and T r do not end up

empty. When we remove vertices from S, we remove at most |S|avg dU`
(S)/4 ≤ |E(S,U`)|/4

edges, and likewise for the vertices removed from U`, so these removals take away at most
half the edges. It follows that some edges remain hence that S r, T r 6= ∅. J

Our new coloring is described in Algorithm 3. Except for the possible regularization,
each round j is an iterative version of the recursive Algorithm 1. Moreover, we have made
it self-checking in the sense that we report an error if the set U of high degree vertices is
too small for 1 (“Error B” below). Also, we report an error if the set S is too small for
monochromatic progress which requires at least two same-color vertices (“Error A” below).
With k = Θ((n/∆)4/7), the analysis from [14] shows that we never get an error and that we
never get |E(S, T)| ≤ δ1|T |/2, so the regularization never happens.

The outer loop in Algorithm 3 continues until it either makes an error, or makes progress.
The progress can either be explicit with a monochromatic set, or it can happen implicitly
as part of the multichromatic test from Lemma 2. Ensuring that we make progress and no
errors happen will require a very careful choice of parameters, and we will only gain over
[14] when large minimum degree vertices are guaranteed from SDP as in (3) or (4).

5 A good round

When we start round j of Algorithm 3 with a problem (Sj , Tj ,∆j , δj), it follows directly
from Lemma 8 that the degrees from Tj to Sj are between δj and 5δj , and that the degrees
from Sj to Tj are all at least ∆j .

The journal version of this conference paper will also cover [14] and there we will make
a simple generalization of the analysis from [14] so that it applies to an arbitrary round j

STACS’14

466 Coloring 3-colorable graphs with o(n1/5) colors

Algorithm 3: Seeking progress towards Õ(k) coloring
let (S1, T1,∆1, δ1) be the initial two-level structure from Section 2;
for j ← 1, 2, ... do // outer loop, round j

(S, T)← (Sj , Tj);
repeat // iterative version of recursive monochromatic(Sj , Tj)

if |S| ≤ 1 then return “Error A”;
U ← {v ∈ T | dS(v) ≥ δj/4};
if |U | < Ψ then return “Error B”;
check U multichromatic with Lemma 2; // if not, progress was found and we are
done
if ∃t ∈ U such that cut-or-color(S, T, t) returns “sparse cut around (X,Y)” then

(S, T)← (X,Y)
else return “S is monochromatic in every 3-coloring, so monochromatic progress
found”

until |E(S, T)| < δj |T |/2;
(Sj , Tj ,∆j , δj) = regularize(S, T);

of the outer loop in Algorithm 3—not just round 1. Below we describe the outcome of the
analysis.

The basic requirements for the analysis is that the following pre-conditions are satisfied:

∆j = ω(Ψ) (5)
δj ≥ 4∆j/Ψ (6)

Based on the pre-conditions, it will follow that no error is made in the round. Also, for any
subproblem (X,Y) considered, it will follow that

min dY (X) ≥ ∆j (7)
|X| ≥ δj/4 (8)
|Y | ≥ ∆2

j/(2Ψ) (9)

If no progress is made in the round, we will get to a subproblem (X,Y) where the average
degree from Y to X is smaller than δj/2. This is where we terminate the round and regularize.
Let (Xj , Yj) denote this final subproblem of round j. The most interesting part of the analysis
is to argue

|Yj | ≤ |Tj |(80n2)/(∆2
jk

4). (10)

Note here that if the upper bound from (10) is smaller than the lower bound in (9), then we
can conclude that we never get to the last subproblem (Xj , Yj), hence progress must have
be made in round j. With the parameters from [14], we get this contradiction already for
the first round j = 1. However, with a smaller k, the upper bound is higher, and then more
rounds may happen.

We say round j is good if
the pre-conditions (5) and (6) are satisfied at the beginning of the round.
No error is made during the round.
(7)–(10) are satisfied as long as no progress is made.

A simple generalization of the analysis from [14] implies

I Lemma 9 ([14]). Round j is good if and only if pre-conditions (5) and (6) are satisfied.

K. Kawarabayashi and M. Thorup 467

6 Analysis of outer loop

Using Lemma 9 we will prove

I Theorem 10. Suppose for some integer c = O(1) that

k = ω̃
(

(n/∆)
2c+2
4c+3

)
. (11)

and for all j = 1, ..., c− 1,

(∆/k)(∆k/n)j(∆k2/n)j(j+1) = ∆j2+2j+1k 2j2+3j−1/n j
2+2j = ω̃(1). (12)

Then Algorithm 3 will make only good rounds, and make progress towards an Õ(k) coloring
no later than round c.

If we did not have the j-bound (12), we would just make c very large, with (11) converging
to (n/∆)1/2. The j-bound (12) is rather unattractive, but we need it to make sure that no
errors are made when c > 1. As an example, our previous bound k = Õ((n/∆)4/7) from [14]
corresponds to the case c = 1 in (11). To improve this bound, we need c > 1. In particular,
we need to satisfy (12) for j = 1 which becomes ∆4k4/n3 = ω̃(1). Now k ≤ (n/∆)4/7

implies ∆4(n/∆)4/7·4/n3 = ∆12/7/n5/7 = ω̃(1) ⇐⇒ ∆ = ω̃(n5/12). Thus we can only make
improvements over [14] if we restrict ourselves to sufficiently high degrees, e.g., relying on
SDP for lower degrees.

Note that if
√
n/∆ < k < n/∆, then (12) must be minimized for some unique j ∈ R.

However, since c = O(1), we can easily check (12) for all j = 1, .., c− 1 with a computer.
In the rest of this section, we will prove Theorem 10 by induction assuming (11) and

(12). Also, from Lemma 9, we know that round j is good if the pre-conditions (5) and (6)
are satisfied. First, for the base case, we will show (a) that the pre-conditions are satisfied
for round 1, and hence that round 1 is good. Next, assuming the first j rounds are good, but
no progress is made, we will show (b) that j < c and (c) that the pre-conditions of round
j + 1 are satisfied. By induction, (a), (b), and (c) imply Theorem 10.

First round

For the pre-conditions of the first round, we need

I Lemma 11. Ψ = n/k2 = ∆/nΩ(1)

Proof. Since c is constant, (11) implies k > (n/∆)1/2+Ω(1), hence Ψ = n/k2 = ∆/(n/∆)Ω(1).
Finally we need to argue (n/∆) = nΩ(1). This follows because the neighborhood of any
vertex is 2-colorable, hence we always make Type 2 progress towards Õ(n/∆) coloring. We
are only aiming for k = nΩ(1) coloring, so we would be done if (n/∆) = no(1). J

Since ∆1 = Ω̃(∆), we get Ψ = o(∆1). Pre-condition (5) for round 1 thus follows Lemma 11.
For pre-condition (6), we note that ∆1/Ψ = ∆1k

2/n and 5δ1 ≥ ∆1|S1|/[T1| = Ω̃(∆1∆k/n).
Moreover, by (3) we have k ≤ ∆1/3. Hence δ1 � 4∆1/Ψ, so pre-condition (6) is also satisfied
for round 1. Thus we conclude that both pre-conditions are satisfied for round 1, hence by
Lemma 9, round 1 is good.

STACS’14

468 Coloring 3-colorable graphs with o(n1/5) colors

General rounds

Now for j ≤ c, we assume that the first j rounds are good but that no progress is made. We
want to prove that j < c and that the pre-conditions of round j + 1 are satisfied.

Since no progress is made, round j ends up regularizing. As in Section 5, we let Xj and
Yj denote the last values of X and Y . Then

(Sj+1, Tj+1,∆j+1, δj+1) = regularize(Xj , Yj).

We will derive inductive bounds on |Tj+1|, ∆j+1, and δj+1. From (7) and Lemma 8 with
(S, T) = (Xj , Yj), we get

∆j+1 ≥ avg dYj
(Xj)/(30 lgn) ≥ ∆j/(30 lgn) ≥ ∆1/(30 lgn)j = Ω̃(∆). (13)

From (10) we also have

|Tj+1| ≤ |Yj | ≤ |Tj | (80n2)/(∆2
jk

4) = Õ(|Tj |n2/(∆2k4))

= Õ

(
|T1|

(
n2

∆2k4

)j)
= Õ

(
(n/k)

(
n2

∆2k4

)j)
.

From (9), we know that any Y considered, including Yj , is of size at least ∆2
j/(2Ψ) =

Ω̃(∆2/Ψ) = Ω̃(∆2k2/n), so we must have

∆2k2/n = Õ

(
(n/k)

(
n2

∆2k4

)j)
⇐⇒ k = Õ

(
(n/∆)

2j+2
4j+3

)
.

By (11) this implies that j < c.
Next we need to argue that preconditions (5) and (6) are satisfied for round j + 1. By

(13), we get that (5) follows from Lemma 11.
The critical issue is to make sure that pre-condition (6) is satisfied with δj+1 ≥ 4∆j/Ψ.

Using (7)–(10), we get that

avg dXj
(Yj) ≥ ∆j |Xj |/|Yj | = ∆j(δj/4)/Õ

(
(n/k)

(
n2

∆2k4

)j)
= Ω̃

(
∆jδj(k/n)

(
∆2k4/n2)j) .

By Lemma 8, δj+1 ≥ avg dXj
(Yj)/8, so δj+1 = δj Ω̃

(
∆j(k/n)

(
∆2k4/n2)j). Inductively,

since j = O(1) and ∆h = Ω̃(∆) for all h ≤ j, it follows that

δj = Ω̃
(
δ1(∆k/n)j−1 (∆2k4/n2)j(j−1)/2

)
.

Therefore δj+1 = Ω̃
(
δ1(∆jk/n)(∆k/n)j−1 (∆2k4/n2)j(j+1)/2

)
. Here 5δ1 ≥ |S1|∆1/|T1| =

Ω̃(∆2k/n), so we get

δj+1 = Ω̃
(

∆j(∆k/n)j+1 (∆k2/n
)j(j+1)

)
By (12) we have (∆/k)(∆k/n)j(∆k2/n)j(j+1) = ω̃(1), so

(∆k/n)j+1 (∆k2/n
)j(j+1) = ω̃(k2/n) = ω̃(1/Ψ).

Thus δj+1 = ω̃(∆j/Ψ) > 4∆j/Ψ, so pre-condition (6) is indeed satisfied for round j+ 1. This
completes our proof of Theorem 10. Our main coloring result follows.

K. Kawarabayashi and M. Thorup 469

I Theorem 12. In polynomial time, we can color any 3-colorable n vertex graph using
Õ(n0.19996) colors.

Proof. We use Chlamtac’s SDP [6] for low degrees, so as stated in (4), for progress towards
an k = Õ(n0.19996) coloring, we may assume the minimum degree is at least ∆ = n0.61674333.
Then (n/∆)14/27 < k < (n/∆)12/23, so to satisfy (11) in Theorem 10, we set c = 6. It is
easily verified that (12) is satisfied for j = 1, ..., 5. By Theorem 10, we conclude that progress
is made within the first c = 6 rounds.

Incidentally, with our particular values of k and ∆, for an integer j, (12) reaches its
minimum with j = 5. This implies that our bounds also hold with any larger c. J

References
1 S. Arora, E. Chlamtac, and M. Charikar. New approximation guarantee for chromatic

number. In Proc. 38th STOC, pages 215–224, 2006.
2 S. Arora, S. Rao, and U. Vazirani. Expanders, geometric embeddings and graph partition-

ing. J. ACM, 56(2):1–37, 2009. Announced at STOC’04.
3 B. Berger and J. Rompel. A better performance guarantee for approximate graph coloring.

Algorithmica, 5(3):459–466, 1990.
4 A. Blum. New approximation algorithms for graph coloring. J. ACM, 41(3):470–516, 1994.

Announced at STOC’89 and FOCS’90.
5 A. Blum and D.R. Karger. An Õ(n3/14)-coloring algorithm for 3-colorable graphs. Inf.

Process. Lett., 61(1):49–53, 1997.
6 E. Chlamtac. Approximation algorithms using hierarchies of semidefinite programming

relaxations. In Proc. 48th FOCS, pages 691–701, 2007.
7 I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring. SIAM

J. Comput., 39(3):843–873, 2009. Announced at STOC’06.
8 U. Feige, M. Langberg, and G. Schechtman. Graphs with tiny vector chromatic numbers

and huge chromatic numbers. SIAM J. Comput., 33(6):1338–1368, 2004. Announced at
FOCS’02.

9 M.R. Garey, D.S. Johnson, and L.J. Stockmeyer. Some simplified np-complete graph prob-
lems. Theor. Comput. Sci., 1(3):237–267, 1976. Announced at STOC’74.

10 M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145,
1995. Announced at STOC’94.

11 V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM
Journal on Discrete Mathematics, 18(1):30–40, 2004.

12 D.R. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite
programming. J. ACM, 45(2):246–265, 1998. Announced at FOCS’94.

13 R. Karp. On the computational complexity of combinatorial problems. Networks, 5:45–68,
1975.

14 K. Kawarabayashi and M. Thorup. Combinatorial coloring of 3-colorable graphs. In Proc.
53rd FOCS, pages 68–75, 2012.

15 S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic
number. Combinatorica, 20(3):393–415, 2000.

16 M. Szegedy. A note on the θ number of Lovász and the generalized Delsarte bound. In
Proc. 35th FOCS, pages 36–39, 1994.

17 A. Wigderson. Improving the performance guarantee for approximate graph coloring. J.
ACM, 30(4):729–735, 1983. Announced at STOC’82.

STACS’14

Randomized Online Algorithms with High
Probability Guarantees∗

Dennis Komm1, Rastislav Královič2, Richard Královič1,3, and
Tobias Mömke4

1 ETH Zurich, Switzerland, dennis.komm@inf.ethz.ch
2 Comenius University, Bratislava, Slovakia, kralovic@dcs.fmph.uniba.sk
3 Google Inc., Zurich, Switzerland, richard.kralovic@dcs.fmph.uniba.sk
4 Saarland University, Germany, moemke@cs.uni-saarland.de

Abstract
We study the relationship between the competitive ratio and the tail distribution of randomized
online problems. To this end, we define a broad class of online problems that includes some of
the well-studied problems like paging, k-server and metrical task systems on finite metrics, and
show that for these problems it is possible to obtain, given an algorithm with constant expected
competitive ratio, another algorithm that achieves the same solution quality up to an arbitrarily
small constant error with high probability; the “high probability” statement is in terms of the
optimal cost. Furthermore, we show that our assumptions are tight in the sense that removing
any of them allows for a counterexample to the theorem.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.2.2 Nonnumerical Algorithms
and Problems

Keywords and phrases Online Algorithms, Randomization, High Probability

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.470

1 Introduction

In online computation, we face the challenge of designing algorithms that work in environments
where parts of the input are not known while parts of the output are already needed. The
standard way of evaluating the quality of online algorithms is by means of competitive
analysis, where one compares the outcome of an online algorithm to the optimal solution
constructed by a hypothetical optimal offline algorithm. Since deterministic strategies are
often proven to fail for the most prominent problems, randomization is used as a powerful
tool to construct high-quality algorithms that outperform their deterministic counterparts
against an oblivious adversary. These algorithms base their computations on the outcome of
a random source; for a detailed introduction to online problems we refer the reader to the
literature [5].

The most common way to measure the performance of randomized algorithms is to
analyze the worst-case expected outcome and to compare it to the optimal solution. With
offline algorithms, a statement about the expected outcome is also a statement about the
outcome with high probability due to Markov’s inequality and the fact that the algorithm may
be executed many times to amplify the probability of success [11]. However, this amplification
is not possible in online settings. As online algorithms only have one attempt to compute a

∗ The research is partially funded by the SNF grant 200021–146372, Deutsche Forschungsgemeinschaft
grant BL511/10-1, and the VEGA 1/0671/11 grant.

© Dennis Komm, Rastislav Královič, Richard Královič, and Tobias Mömke;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 470–481

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.470
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Komm, R. Královič, R. Královič, and T. Mömke 471

reasonably good result, a statement with respect to the expected value of their competitive
ratio may be rather unsatisfying. As a matter of fact, for a fixed input, it might be the case
that such an algorithm produces results of a very high quality in very few cases (i. e., for a
rather small number of random choices), but is unacceptably bad for the majority of random
computations; still, the expected competitive ratio might suggest a better performance. Thus,
if we want to have a certain guarantee that some randomized online algorithm obtains a
particular quality, we must have a closer look at its analysis. In such a setting, we would like
to state that the algorithm does not only perform well on average, but “almost always.”

Besides a theoretical formalization of the above statement, the main contribution of this
paper is to show that, for a broad class of problems, the existence of a randomized online
algorithm that performs well in expectation immediately implies the existence of a randomized
online algorithm that is virtually as good with high probability. Our investigations, however,
need to be detailed in order to face the particularities of the framework. First, we show
that it is not possible to measure the probability of success with respect to the input size,
which might be considered the straightforward approach. Many of the known randomized
online algorithms are naturally divided into some kind of phases (e. g., the algorithm for
metrical task systems from Borodin et al. [6], the marking algorithm for paging from Fiat
et al. [8], etc.) where each phase is processed and analyzed separately. Since the phases
are independent, a high probability result (i. e., with a probability converging to 1 with an
increasing number of phases) can be obtained. However, the definition of these phases is
specific to each problem and algorithm. Also, there are other algorithms (e. g., the optimal
paging algorithm from Achlioptas et al. [2] and many workfunction-based algorithms) that
use other constructions and that are not divided into phases. As we want to establish results
with high probability that are independent of the concrete algorithms, we thus have to
measure this probability with respect to another parameter; we show that the cost of an
optimal solution is a very reasonable quantity for this purpose. Then again it turns out that,
if we consider general online problems, the notions of the expected outcome and an outcome
with high probability are still not related in any way, i. e., we define problems for which
these two measures are incomparable. Hence, we carefully examine both to which parameter
the probability should relate and which properties we need the studied problem to fulfill to
again allow a division into independent phases; finally, this allows us to construct randomized
online algorithms that perform well with a probability tending to 1 with a growing size of the
optimal cost. We show that this technique is applicable for a wide range of online problems.

Classically, results concerning randomized online algorithms commonly analyze their
expected behavior; there are, however, a few exceptions, e. g., Leonardi et al. [14] analyze the
tail distribution of algorithms for call control problems, and Maggs et al. [15] deal with online
distributed data management strategies that minimize the congestion in certain network
topologies.

Overview
In Section 2, we define the class of symmetric online problems and present the main result
(Theorem 8). The theorem states that, for any symmetric problem that fulfills certain natural
conditions, it is possible to transform an algorithm with constant expected competitive ratio
r to an algorithm having a competitive ratio of (1 + ε)r with high probability (with respect
to the cost of an optimal solution). Section 3 is devoted to proving Theorem 8. We partition
the run of the algorithm into phases such that the loss incurred by the phase changes can be
amortized; however, to control the variance within one phase, we need to further subdivide
the phases. Modelling the cost of single phases as dependent random variables, we obtain a

STACS’14

472 Randomized Online Algorithms with High Probability Guarantees

supermartingale that enables us to apply the Azuma-Hoeffding inequality and thus to obtain
the result. After these investigations, we provide applications of the theorem in Section 4
where we show that our result is applicable for task systems. For the k-server problem on
unbounded metric spaces and for makespan scheduling, we show that no comparable result
can be obtained. We further elaborate the necessity of the conditions in Section 5. The
outcome is that, even though the conditions may appear strong, a weakening prohibits a
result of the same generality.

Due to space restrictions, many of the proofs are omitted and can be found in the technical
report [12].

2 Preliminaries

In this section, we fix the notation for online algorithms that we use throughout the paper.
Before we start, we need to briefly discuss the way in which online problems and instances are
formally defined. For our investigations, we have to be very careful about these definitions.
In particular, in the literature one often refers to “an online problem” when really a class
of online problems is meant, which is parameterized by some problem-specific parameters.
Let us give a few examples of problems that we study later in the paper. When speaking
about the paging problem, we really mean the class of paging problems for, e. g., different
cache sizes k. Note that there is some inconsistency in the literature as this problem is
usually referred to as “paging” (and not “k-paging”) while we speak of the “k-server problem.”
Here, k denotes the number of servers that are moved in a metric space. However, k alone
is neither sufficient to specify a member from the class of paging problems nor of k-server
problems. For paging, we also need the number of pages that may be requested in total, say
N ; for k-server the metric space (M,d) must be known, where M is a set of points and d is
a distance function.

To define the above problems entirely, we still need to give even more information by
speaking about how problem instances are initialized according to the parameters. For
example, we need to specify how the cache is initialized for the paging problem or where
the servers are located at the beginning when dealing with the k-server problem. We call
this initialization the initial situation; for paging, the initial situation is a k-tupel of distinct
integers between 1 and N , which formalizes which pages are in the cache at the beginning.
Formally, we thus have to speak of an instance of the ((k,N), (s1, . . . , sk))-paging problem.
In general, such a parameterized online problem is given by (C, I)-P where C is a sequence
of problem-specific parameters, I is a set of valid initial situations, and P is the name of the
union of all of theses problems. Formally, I is a set of valid assignments I to some of the
parameters in C and the competitiveness guarantees of any algorithm for P must be satisfied
for any I ∈ I; note that, sometimes, I is also considered a part of the input instance. To end
this discussion, note that in the literature, the initial situation is at times called the initial
configuration; in this paper, we choose another name to distinguish it from the configuration
of an algorithm (Turing machine). In the following, we will use the notation as used in the
literature and omit C; however, the initial situation I plays an important role for us and it is
given together with the actual input sequence x. Let us emphasize that, if we say that some
algorithm has some specific performance for a problem P , this means that this performance
must be guaranteed for all feasible choices of C, I, and x.

We are now ready to define online algorithms on initial situations and input instances. To
keep the presentation concise, we focus on minimization problems. The same ideas translate
to maximization problems by changing the point of view: we show that any optimal solution

D. Komm, R. Královič, R. Královič, and T. Mömke 473

has a low profit instead of showing that the algorithmic solution has low cost. An online
algorithm A computes the output sequence A(I, x) = y = (y1, . . . , yn), where I is an initial
situation, x = (x1, . . . , xn) is an input sequence, and yi = f(I, x1, . . . , xi) for some function
f . The cost of the solution A(I, x) is denoted by Cost(I, x, y) = Cost(I, x, A(I, x)). For the
ease of presentation, we refer to the tuple that consists of the initial situation and the input
sequence, i. e., (I, x), as the input of the problem; also, we abbreviate Cost(I, x, A(I, x)) by
Cost(A(I, x)). As already mentioned, the notion of an initial situation plays an important role
in the relationship between different variants of the competitive ratio; although it is usually
omitted, our definition imposes no restriction on the studied problems and algorithms.

A randomized online algorithm R computes the output sequence Rφ(I, x) = y = (y1, . . . , yn)
such that yi is computed from φ, I, x1, . . . , xi, where φ is the content of a random tape.
By Cost(R(I, x)) we denote the random variable (over the probability space defined by φ)
expressing the cost of the solution Rφ(I, x). When dealing with randomized online algorithms
we compare the expected outcome to the one of an optimal algorithm. Note that, as usual
in such a setting, we only consider computable problems. In the context of this paper
we assume an oblivious adversary and say that a randomized algorithm is r-competitive
if there exists a constant α such that, for every initial situation I and input sequence x,
E[Cost(R(I, x))] ≤ r · Cost(Opt(I, x)) + α. For formal reasons, we define the competitive
ratio of any (randomized) online algorithm to be 1 if both x and y are empty.

In the sequel, we analyze the notion of competitive ratio with high probability. Using
paging, it can be shown that it does not make sense to measure the probability with respect
to the input length [12]. Then again, for the practical use of paging algorithms, the instances
where also the optimal algorithm makes faults are of interest. Hence, it seems reasonable to
define the term high probability with respect to the cost of an optimal solution. In this paper,
we use a strong notion of high probability requiring the error probability to be subpolynomial.

I Definition 1 (Competitive Ratio w.h.p.). A randomized online algorithm R is r-competitive
with high probability (w.h.p. for short) if, for any β ≥ 1, there exists a constant α such that
for all initial situations and input sequences (I, x) it holds that

Pr[Cost(R(I, x)) ≥ r · Cost(Opt(I, x)) + α] ≤ (2 + Cost(Opt(I, x)))−β .

First, note that the purpose of the constant 2 on the right-hand side of the formula is to
properly handle inputs with a small (possibly zero) optimum. The choice of the particular
constant is somewhat arbitrary (however, it should be greater than 1) since the α term
on the left-hand side hides the effects. However, the two notions of the expected and the
high-probability competitiveness are incomparable [12]. Nevertheless, many real-world online
problems share additional properties that guarantee a close relationship between the expected
and high-probability behavior. We now focus on the cost of a solution.

I Definition 2 (Partition Function). A partition function of an online problem is a non-
negative function P such that, for any initial situation I, the sequence of requests x1, . . . , xn,
and the corresponding solutions y1, . . . , yn, we have

Cost(I, (x1, . . . , xn), (y1, . . . , yn)) =
∑n
i=1P(I, x1, . . . , xi; y1, . . . , yi).

In other words, for a problem with a partition function, the cost of a solution is the sum
of the costs of particular answers, and the cost of each answer is independent of the future
input and output. The partition function allows us to speak of the cost of a subsequence of
the outputs. Note that any online problem for which the input instance may stop after each
request has either a unique partition function or none, because the overall cost is fixed after

STACS’14

474 Randomized Online Algorithms with High Probability Guarantees

each answer. In what follows, we further restrict the behavior, and it will be convenient to
think in terms of the “cost of a particular answer.” We may think of online problems that
have a partition function as a separate class of problems. However, all further properties
depend on specific partition functions and thus requiring a “partitionability” property would
be redundant.

I Definition 3 (Request-Boundedness). An online problem P is called request-bounded if, for
some constant F , it has a partition function P such that

∀I, x, y, i : P(I, x1, . . . , xi; y1, . . . , yi) ≤ F or P(I, x1, . . . , xi; y1, . . . , yi) =∞.

We say that P is request-bounded according to P.

Note that for any problem with a partition function there is a natural notion of a state; for
instance, it is the content of the memory for the paging problem, the position of the servers
for the k-server problem, etc. Now we provide a general definition of this notion. By a · b,
we denote the concatenation of two sequences a and b; λ denotes the empty sequence. An
input (I, x = (x1, x2, . . . , xn)) is feasible with a solution y = (y1, y2, . . . , yn) if starting from
I, x is a request sequence that is in accord with the problem definition and for each i, yi is a
feasible answer to the request xi with respect to I, (x1, x2, . . . , xi−1), and (y1, y2, . . . , yi−1).

I Definition 4 (State). Consider a partition function P , two initial situations I and I ′, two
sequences of requests x = (x1, . . . , xn) and x′ = (x′1, . . . , x′m), and two sequences of outputs
y = (y1, . . . , yn) and y′ = (y′1, . . . , y′m). The triples (I, x, y) and (I ′, x′, y′) are equivalent if,
for any sequence of requests x′′ = (x′′1 , . . . , x′′p) and a sequence of outputs y′′ = (y′′1 , . . . , y′′p),
the input (I, x · x′′) is feasible with a solution y · y′′ if and only if the input (I ′, x′ · x′′)
is feasible with a solution y′ · y′′, and the cost of y′′ according to P is the same for both
solutions. A state s of the problem is an equivalence class over the triples (I, x, y).

Let (I, x, y) be some triple in a state s. By Opts(x′) we denote an output sequence y′ such
that y·y′ is a feasible solution for the input (I, x·x′) and Cost(I, x·x′, y·y′) ≤ Cost(I, x·x′, y·y′′)
for any feasible solution y · y′′. Note that due to the partition function, the definition of
Opts(x′) is independent of the chosen triple (I, x, y). We sometimes simplify notation and
write Cost(Opts(x′)) instead of Cost(I, x · x′, y · Opts(x′)) − Cost(I, x, y), as it is sufficient
to know the state s and x′ in order to determine the value of the function and the other
parameters are clear from the context.

I Definition 5 (Initial State). A state s is called an initial state if and only if it contains
some triple (I, λ, λ).

We chose this definition of states as it covers best the properties of online computations
as we need them in our main theorem. An alternative definition could use task systems with
infinitely many states, but the description would become less intuitive; we will return to task
systems in Section 4.1.

Intuitively, a state from Definition 4 encapsulates all information about the ongoing
computation of the algorithm that is relevant for evaluating the efficiency of the future
processing. Usually, the state is naturally described in the problem-specific domain (content
of cache, current position of servers, set of jobs accepted so far, etc.). Similar to our
discussion on initial situations, we want to emphasize that a state is independent of the
concrete algorithm. The internal state of an algorithm (Turing machine), which is a part of
its configuration, is a different notion since it may, e. g., behave differently if the starting
request had some particular value. The following properties are crucial for our approach to
probability amplification.

D. Komm, R. Královič, R. Královič, and T. Mömke 475

I Definition 6 (Opt-Boundedness). An online problem is called opt-bounded if there exists a
constant B and a partition function such that ∀s, s′, x : |Cost(Opts(x))−Cost(Opts′(x))| ≤ B.

I Definition 7 (Symmetric Problem). An online problem is called symmetric if it is has a
partition function for which every state is initial.

Note that for symmetric problems, it follows that every sequence of requests is a feasible
input sequence. In particular, the input may end after any time step. Formally, any problem
with a partition function may be transformed into a symmetric one simply by redefining the
set of initial states. However, this transformation may significantly change the properties of
the problem. Now we are going to state the main result of this paper, namely that, under
certain conditions, the expected competitive ratio of symmetric problems can be achieved
w.h.p.

I Theorem 8. Consider an online problem P that is opt-bounded and symmetric according
to a common partition function. Suppose there is a randomized online algorithm A for P with
constant expected competitive ratio r. Then, for any constant ε > 0, there is a randomized
online algorithm A′ with competitive ratio (1 + ε)r w.h.p. (with respect to the optimal cost).

3 Proof Sketch of Theorem 8

For the ease of presentation, we first provide a proof for a restricted setting where the online
problem at hand is also request-bounded.

The algorithm A′ simulates A and, on some specific places, performs a reset operation: if
a part x′ of the input has been read so far, and a corresponding output y′ has been produced,
(I, x′, y′) belongs to the same state as (I ′, λ, λ), for some initial situation I ′, because we are
dealing with a symmetric problem; hence, A can be restarted by A′ from I ′.

The general idea to boost the probability of acquiring a low cost is to perform a reset
each time the algorithm incurs too much cost and to use Markov’s inequality to bound the
probability of such an event. However, the exact value of how much is “too much” depends
on the optimal cost of the input which is not known in advance. Therefore, the input is first
partitioned into phases of a fixed optimal cost, and then each phase is cut into subphases
based on the cost incurred so far. A reset may cause an additional expected cost of r ·B for
the subsequent phase compared to an optimal strategy starting from another state, where
B is the constant of the opt-boundedness (Definition 6), i. e., B bounds the different costs
between two optimal solutions for a fixed input for different states. We therefore have to
ensure that the phases are long enough so as to amortize this overhead.

From now on let us consider ε, r, B, F , and α to be fixed constants; recall that F originates
from the request-boundedness property of the online problem at hand (Definition 3) and α is
the constant from the definition of competitiveness. The algorithm A′ is parameterized by
two parameters C and D that depend on ε, r, B, F , and α. These parameters control the
lengths of the phases and subphases, respectively, such that C + F delimits the optimal cost
of one phase and D + F delimits the cost of the solution computed by A′ on one subphase;
we require that D > r(C + F +B + α).

Consider an input sequence x = (x1, . . . , xn), an initial situation I, and let the optimal cost
of the input (I, x) be between (k−1)C and kC for some integer k. Then x can be partitioned
into k phases x̃1 = (x1, . . . , xn2−1), x̃2 = (xn2 , . . . , xn3−1), . . . , x̃k = (xnk

, . . . , xn) in such a
way that ni is the minimal index for which the optimal cost of the input (I, (x1, . . . , xni

)) is
at least (i− 1)C. It follows that the optimal cost for one phase is at least C −F and at most
C + F , with the exception of the last phase which may be cheaper. Note that this partition

STACS’14

476 Randomized Online Algorithms with High Probability Guarantees

can be generated by the online algorithm itself, i. e., A′ can determine when a next phase
starts. There are only two reasons for A′ to perform a reset: at the beginning of each phase
and after incurring a cost exceeding D since the last reset. Hence, A′ starts each phase with a
reset, and the processing of each phase is partitioned into a number of subphases each of cost
at least D (with the exception of the possibly cheaper last subphase) and at most D + F .

Now we are going to discuss the cost of A′ on a particular input. Let us fix the input (I, x)
which subsequently also fixes the indices 1 = n1, n2, . . . , nk. Let Si be a random variable
denoting the state of the problem (according to Definition 4) just before processing request
xi, and let W (i, j), i ≤ j, be a random variable denoting the cost of A′ incurred on the input
xi, . . . , xj . The following claim is obvious.
I Claim 9. If A′ performs a reset just before processing xi, then Si captures all the information
from the past W (i, j) depends on. In particular, if we fix Si = s, W (i, j) does not depend on
W (l1, l2), for any l1 ≤ l2 ≤ i and any state s.

The overall structure of the proof is as follows. We first show in Lemma 11 that the
expected cost incurred during a phase (conditioned by the state in which the phase was entered)
is at most µ := r(C +F +B+α)/(1− p), where p := r(C +F +B+α)/D < 1. We can then
consider random variables Z0, Z1, . . . , Zk such that Z0 := kµ and Zi := (k − i)µ+

∑i
j=1 W j

for i > 0, where W i is the cost of the ith phase, clipped from above by some logarithmic
bound, i. e., W i := min{W (ni, ni+1 − 1), c log k}, for some suitable constant c. We show in
Lemma 12 that Z0, Z1, . . . , Zk form a bounded supermartingale, and then use the Azuma-
Hoeffding inequality to conclude that Zk is unlikely to be much larger than Z0. By a suitable
choice of the free parameters, this implies that Zk is unlikely to be much larger than the
expected cost of A. Finally, we show that w.h.p. Zk is the cost of the algorithm A′. In order
to argue about the expected cost of a given phase in Lemma 11, let us first show that a
phase is unlikely to have many subphases. For the rest of the proof, let Xj be the random
variable denoting the number of subphases of phase j.

I Lemma 10. For any i, s, and any δ ∈ N we have Pr[Xi ≥ δ | Sni
= s] ≤ pδ−1.

Now we can argue about the expected cost of a phase.

I Lemma 11. For any i and s it holds that E[W (ni, ni+1 − 1) | Si = s] ≤ µ.

Once the expected cost of a phase is established, we can construct the supermartingale
as follows.

I Lemma 12. For any constant c > 0, the sequence Z0, . . . , Zk is a supermartingale.

Proof. Consider a fixed c. We have to show that for each i, E[Zi+1 | Z0, . . . , Zi] ≤ Zi. From
the definition of the Zi’s it follows that Zi+1 − Zi = W i+1 − µ. Consider any elementary
event ξ from the probability space, and let Zi(ξ) = zi, for i = 0, . . . , k, be the values of the
corresponding random variables. We have

E[Zi+1 | Z0, . . . , Zi](ξ) = E[Zi+1 | Z0 = z0, . . . , Zi = zi]
= E[Zi +W i+1 − µ | Z0 = z0, . . . , Zi = zi]
= zi − µ+ E[W i+1 | Z0 = z0, . . . , Zi = zi]
= zi − µ+

∑
s E[W i+1 | Z0 = z0, . . . , Zi = zi, Sni+1 = s]

· Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi]
≤ zi − µ+

∑
s E[W (ni+1, ni+2 − 1) | Sni+1 = s] · Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi]

≤ zi − µ+ µ
∑
s Pr[Sni+1 = s | Z0 = z0, . . . , Zi = zi] = zi = Zi(ξ),

where the last inequality is a consequence of Lemma 11. J

D. Komm, R. Královič, R. Královič, and T. Mömke 477

Now we use the following special case of the Azuma-Hoeffding inequality [1, 10].

I Lemma 13 (Azuma, Hoeffding). Let Z0, Z1, . . . be a supermartingale, such that |Zi+1−Zi| <
γ. Then for any positive real t, Pr[Zk − Z0 ≥ t] ≤ exp

(
−t2/(2kγ2)

)
.

In order to apply Lemma 13, we need the following bound.
I Claim 14. Let k be such that c log k > µ. For any i it holds that |Zi+1 − Zi| < c log k.

We are now ready to prove the subsequent lemma.

I Lemma 15. Let k be such that c log k > µ. There is a constant C (depending on F , B, ε,
r, α) such that Pr[Zk ≥ (1 + ε)rkC] ≤ exp

(
−(k ((1 + ε)rC − µ)2)/(2c2 log2 k)

)
.

Proof. Applying Lemma 13 for any positive t, we get

Pr[Zk − Z0 ≥ t] ≤ exp
(
− t2

2kc2 log2 k

)
.

Noting that Z0 = kµ and choosing t := k((1 + ε)rC − µ) the statement follows. The only
remaining task is to verify that t > 0, which can be shown by some simple calculations
[12]. J

To prove the claim of the main theorem, we show the following bound.

I Lemma 16. For any c and β > 1 there is a k0 such that for any k > k0

exp
(
−k ((1 + ε)rC − µ)2

2c2 log2 k

)
≤ 1

2(2 + kC)β .

Proof. Note that the left-hand side is of the form exp(−ηk/ log2 k) for some positive constant
η. Clearly, for any β > 1 and large enough k, it holds that exp(ηk/ log2 k) ≥ 2(2 + kC)β . J

Combining Lemmata 15 and 16, we get the following result.

I Corollary 17. There is a constant C (depending on F , B, ε, r, α) such that for any β > 1
there is a k0 such that for any k > k0 we have

Pr[Zk ≥ (1 + ε)rkC] ≤ 1/(2(2 + kC)β).

To finish the proof of the theorem we show that w.h.p. Zk is actually the cost of the
algorithm A′.

I Lemma 18. For any β > 1 there is a c and a k1 such that for any k > k1 Pr[Zk 6=
Cost(A′(I, x))] ≤ 1/(2(2 + kC)β).

Proof. Since Zk =
∑k
j=1 min{W (nj , nj+1 − 1), c log k} the event that Zk 6= Cost(A′(I, x))

happens exactly when there is some j such thatW (nj , nj+1−1) > c log k. Consider any fixed
j. Since the cost of a subphase is at most D+F , it holds that W (nj , nj+1− 1) ≤ Xj(F +D).
From Lemma 10 it follows that for any c,

Pr[W (nj , nj+1 − 1) > c log k] ≤ Pr
[
Xj ≥

⌈
c log k
F +D

⌉]
≤ p

c log k
F +D −1.

Consider the function

g(k) :=
log
(

2k
p (2 + kC)β

)
log k .

STACS’14

478 Randomized Online Algorithms with High Probability Guarantees

It is decreasing, and limk 7→∞ g(k) = 1 + β. Hence, it is possible to find a constant c and a k1
such that for any k > k1 it holds that

c ≥ F +D

log(1/p) · g(k).

From that we obtain

(1/p)
c log k
F +D −1 ≥ 2k(2 + kC)β .

Thus, for this choice of c and k1, it holds that Pr[W (nj , nj+1 − 1) > c log k] ≤ p
c log k
F +D −1 ≤

1/(2k(2 + kC)β). Using the union bound, we conclude that the probability that the cost of
any phase exceeds c log k is at most 1/(2(2 + kC)β). J

Using the union bound, combining Lemma 18 and Corollary 17, and noting that the cost
of the optimum is at most kC, we get the following statement.

I Corollary 19. There is a constant C such that for any β > 1 there is a k2 such that for
any k > k2 we have

Pr[Cost(A′(I, x)) ≥ (1 + ε)rCost(Opt(I, x))] ≤ (2 + kC)−β .

To conclude the proof by showing that for any β > 1 there is some α′ such that

Pr[Cost(A′(I, x)) > (1 + ε)rCost(Opt(I, x)) + α′] ≤ (2 + kC)−β

holds for all k, we have to choose α′ large enough to cover the cases of k < k2. For these
cases, Cost(Opt(I, x)) < k2C, and hence the expected cost of A is at most rk2C, and due to
Lemma 11, the expected cost of A′ is constant. The right-hand side (2 + kC)−β is decreasing
in k, so it is at least (2 + k2C)−β , which is again a constant. From Markov’s inequality
it follows that there exists a constant α′ such that Pr[Cost(A′(I, x)) > α′] < (2 + k2C)−β
finishing the proof of the restricted setting.

3.1 Avoiding Request-Boundedness
All that is left to do is to show how to handle problems that are not request-bounded [12].
The main idea is to apply the restricted Theorem 8 to a modified request-bounded version
of the given problem. We show that there is a modified version of the algorithm such that
the computed solution has an expected competitive ratio matching the original one for the
modified problem. By ensuring that any solution to the modified problem translates to a
solution of the original problem with at most the same competitive ratio, it is enough to
apply our theorem to the modified problem to obtain an analogous result for the original
problem.

4 Applications and Lower Bounds

We now discuss the impact of Theorem 8 on task systems, the k-server problem, and paging.
Despite being related, these problems have different flavors when analyzing them in the
context of high probability results. We show that makespan scheduling does not allow for
similar results.

D. Komm, R. Královič, R. Královič, and T. Mömke 479

4.1 Task Systems

The properties of online problems needed for Theorem 8 are related to the definition of task
systems. There are, however, some important differences.

To analyze the relation, let us recall the definition of task systems as introduced by
Borodin et al. [6]. We are given a finite state space S and a function d : S × S → R+ that
specifies the (finite) cost to move from one state to another. The requests given as input to
a task system are a sequence of |S|-vectors that specify, for each state, the cost to process
the current task if the system resides in that state. An online algorithm for task systems
aims to find a schedule such that the overall cost for transitions and processing is minimized.
From now on we will call states in S system states to distinguish them from the states of
Definition 4. The main difference between states of Definition 4 and system states is that
states depend on the sequence of requests and answers; this way there may be infinitely many
states. States are also more general than system states in that specific state transitions may
be impossible.

I Theorem 20. Let A be a randomized online algorithm with expected competitive ratio r
for task systems. Then, for any ε > 0, there is a randomized online algorithm A′ for task
systems with competitive ratio (1 + ε)r w.h.p. (with respect to the optimal cost).

4.2 The k-Server Problem

The k-server problem, introduced by Manasse et al. [16], is concerned with the movement
of k servers in a metric space. Each request is a location and the algorithm has to move
one of the servers to that location. If the metric space is finite, this problem is well known
to be a special metrical task system. Recent progress by Bansal et al. [3] suggests that
randomization might lead to an expected competitive ratio exponentially better than the
deterministic lower bound.

Theorem 20 directly implies that all algorithms with a constant expected competitive
ratio for the k-server problem in a finite metric space can be transformed into algorithms
that have almost the same competitive ratio w.h.p.

If the metric space is infinite, an analogous result is still valid except that we have to
bound the maximum transition cost by a constant. This is the case, because the proof of
Theorem 20 uses the finiteness of the state space only to ensure bounded transition costs.
Without the restriction to bounded distances, in general we cannot obtain a competitive
ratio much better than the deterministic one w.h.p.

I Theorem 21. Let (M,d) be a metric space with |M | = N constant, s ∈M be the initial
position of all servers, ` a constant and let r be the infimum over the competitive ratios of
all deterministic online algorithms for the k-server problem in (M,d) for instances with at
most ` requests. For every ε > 0, there is a metric space (M ′, d′) where for any randomized
online algorithm R for the k-server problem there is an oblivious adversary against which the
solution of R has a competitive ratio of at least r − ε with constant probability.

I Corollary 22. If we allow the metric to be infinite, then there is no (k − ε)-competitive
online algorithm w.h.p. for the k-server problem for any constant ε.

We simply use that the lower bound of Manesse et al. [16] satisfies the properties of
Theorem 21.

STACS’14

480 Randomized Online Algorithms with High Probability Guarantees

4.3 Paging

Analogous to the k-server problem also the paging problem allows for the application of
Theorem 8. Thus for any paging algorithm with expected competitive ratio r there is an
algorithm with competitive ratio r(1 + ε) w.h.p.

Note that the marking algorithm is analyzed based on phases that correspond to k + 1
distinct requests, and hence the analysis of the expected competitive ratio immediately
gives the 2Hk − 1 competitive ratio also w.h.p. However, e. g., the optimal algorithm with
competitive ratio Hk due to Achlioptas et al. [2] is a distribution-based algorithm where the
high probability analysis is not immediate; Theorem 8 gives an algorithm with competitive
ratio Hk(1 + ε) w.h.p. also in this case.

4.4 Makespan Scheduling

Let us consider the classical online makespan scheduling problem P||Cmax where jobs arrive
one by one. It is well known that there is a tight deterministic bound 2− 1/m for m ∈ {2, 3}
on the competitive ratio, where m is the number of machines [9, 7]. Similar to Theorem 21,
we can show the following.

I Theorem 23. For any m, let `, k be constants depending on α and let r be the infimum
over the competitive ratios of all deterministic online algorithms for the online makespan
scheduling problem with m machines for instances with at most ` requests such that each
request is a job with an integer processing time at most k. Then for any constant ε > 0, the
lower bound on the competitive ratio w.h.p. is at least r − ε.

The restriction to integers does not weaken the result, as we may choose a suitable scaling
factor of the processing costs that allows to hide the deviation in the ε. In particular, for
m = 2 we already obtain the tight bound on the competitive ratio for ` = 3 [7] and thus
there is no (3/2− ε)-competitive algorithm w.h.p. for m = 2 and any constant ε whereas
there is an online algorithm with an expected competitive ratio of 4/3 [4].

5 Necessity of Requirements

As mentioned above, our result holds with large generality as many well-studied online
problems meet the requirements we imposed. However, the assumptions of Theorem 8 require
that for the problem at hand (1) every state is initial, and (2) ∀s, s′, x : |Cost(Opts(x)) −
Cost(Opts′(x))| ≤ B. We can show that removing any of the conditions (1) and (2) allows
for counterexamples to the theorem [12].

We would like to emphasize that the applicability of Theorem 8 is a property of problems
and not of algorithms. There are problems that do not fit the assumptions of the theorem
and still can be solved almost optimally by specific randomized online algorithms with high
probability; for instance, albeit using a weaker notion of high probability than in the previous
sections, online flow shop scheduling with unit-length tasks, F|pij = 1|Cmax, allows for such
algorithms with respect to the number of machines [12].

Acknowledgment. The authors want to express their deepest thanks to Georg Schnitger
who gave some very important impulses that contributed to the results of this paper.

D. Komm, R. Královič, R. Královič, and T. Mömke 481

References
1 K. Azuma. Weighted sums of certain dependent random variables. Tôhoku Mathematical

Journal, 19(3):357–367, 1967.
2 D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized paging

algorithms. Theoretical Computer Science, 234(1-2):203–218, 2000.
3 N. Bansal, N. Buchbinder, A. Mądry, and J. Naor. A polylogarithmic-competitive algorithm

for the k-server problem (extended abstract). In Proc. of FOCS 2011, pages 267–276, 2011.
4 Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New Algorithms for an Ancient Scheduling

Problem. J. Comput. Syst. Sci., 51(3):359–366, 1995.
5 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.
6 A. Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm for metrical task

system. Journal of the ACM, 39(4):745–763, 1992.
7 U. Faigle, W. Kern, and G. Turán. On the performance of on-line problems for partition

problems. Acta Cybern., 9(2):107–119, 1989.
8 A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young. Competitive

paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.
9 R. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech. J., 45:1563–

1581, 1966.
10 W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Association, 58(301):13–30, 1963.
11 J. Hromkovič. Design and analysis of randomized algorithms. Springer-Verlag, Berlin, 2005.
12 D. Komm, R. Královič, R. Královič, and T. Mömke: Randomized online computation with

high probability guarantees. CoRR abs/1302.2805, 2013.
13 E. Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.
14 S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Rosén. On-line randomized

call control revisited. SIAM Journal on Computing, 31(1):86–112, 2001.
15 B. M. Maggs, F. Meyer auf der Heide, B. Voecking, and M. Westermann. Exploiting locality

for networks of limited bandwidth. In Proc. of FOCS 1997, pages 284–293, 1997.
16 M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive Algorithms for On-line

Problems. Journal of Algorithms, 11(2):208–230, 1990.
17 D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, 1985.

STACS’14

An optimal quantum algorithm for the oracle
identification problem
Robin Kothari

David R. Cheriton School of Computer Science and Institute for Quantum
Computing, University of Waterloo, Waterloo, Canada
rkothari@cs.uwaterloo.ca

Abstract
In the oracle identification problem, we are given oracle access to an unknown N -bit string
x promised to belong to a known set C of size M and our task is to identify x. We present
a quantum algorithm for the problem that is optimal in its dependence on N and M . Our
algorithm considerably simplifies and improves the previous best algorithm due to Ambainis
et al. Our algorithm also has applications in quantum learning theory, where it improves the
complexity of exact learning with membership queries, resolving a conjecture of Hunziker et al.

The algorithm is based on ideas from classical learning theory and a new composition the-
orem for solutions of the filtered γ2-norm semidefinite program, which characterizes quantum
query complexity. Our composition theorem is quite general and allows us to compose quantum
algorithms with input-dependent query complexities without incurring a logarithmic overhead
for error reduction. As an application of the composition theorem, we remove all log factors from
the best known quantum algorithm for Boolean matrix multiplication.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases quantum algorithms, quantum query complexity, oracle identification

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.482

1 Introduction

Query complexity is a model of computation where quantum computers are provably better
than classical computers. Some of the great breakthroughs of quantum algorithms have
been conceived in this model (e.g., Grover’s algorithm [11]). In this paper we study the
query complexity of the oracle identification problem, the very basic problem of completely
determining a string given oracle access to it.

In the oracle identification problem, we are given an oracle for an unknown N -bit string
x, promised to belong to a known set C ⊆ {0, 1}N , and our task is to identify x while
minimizing the number of oracle queries. For a set C, we denote this problem oip(C). As
usual, classical algorithms have access to an oracle that outputs xi on input i, while quantum
algorithms have access to a unitary Ox that maps |i, b〉 to |i, b ⊕ xi〉 for b ∈ {0, 1}. For a
function f : D → E, where D ⊆ {0, 1}N , let Q(f) denote the bounded-error quantum query
complexity of computing f(x). Then oip(C) corresponds to computing the identity function
f(x) = x with D = E = C.

For example, let CN := {0, 1}N . Then the classical query complexity of oip(CN) is N ,
since every bit needs to be queried to learn x, even with bounded error. A surprising result
of van Dam shows that Q(oip(CN)) = N/2 +O(

√
N) [19]. As another example, consider the

set CH1 = {x : |x| = 1}, where |x| is the Hamming weight of x. This is the search problem
with 1 marked item and thus Q(oip(CH1)) = Θ(

√
N) [6, 11].

© Robin Kothari;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 482–493

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.482
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Kothari 483

Due to the generality of the problem, it has been studied in contexts such as quantum
query complexity [1, 2], quantum machine learning [18, 5, 13] and post-quantum crypto-
graphy [8]. Several well-known problems are special cases of oracle identification, e.g., the
search problem with one marked item [11], the Bernstein-Vazirani problem [7], the oracle
interrogation problem [19] and hidden shift problems [20]. For some applications, generic
oracle identification algorithms are almost as good as algorithms tailored to the specific
application [9]. Consequently, this result improves some of the upper bounds stated in [9].

Ambainis et al. [1, 2] studied the oracle identification problem in terms of N andM := |C|.
They exhibited algorithms whose query complexity is close to optimal in its dependence on
N and M . For a given N and M , we say an oracle identification algorithm is optimal in
terms of N and M if it solves all N -bit oracle identification problems with |C| = M making
at most Q queries and there exists some N -bit oracle identification problem with |C| = M

that requires Ω(Q) queries. This does not, however, mean that the algorithm is optimal for
each set C individually, since these two parameters do not completely determine the query
complexity of the problem. For example, all oracle identification problems with M = N

can be solved with O(
√
N) queries, and this is optimal since this class includes the search

problem with 1 marked item (CH1 above). However there exists a set C of size M = N with
query complexity Θ(logN), such as the set of all strings with arbitrary entries in the first
logN bits and zeroes elsewhere.

Let oip(M,N) denote the set of oracle identification problems with C ⊆ {0, 1}N and
|C| = M . Let the query complexity of oip(M,N) be the maximum query complexity of any
problem in that set. Then the classical query complexity of oip(M,N) is easy to characterize:
I Proposition 1. The classical (bounded-error) query complexity of oip(M, N) is Θ(min{M, N}).

For M ≤ N , the upper bound follows from the observation that we can always eliminate
at least one potential string in C with one query. For the lower bound, consider any subset
of CH1 of size M . For M > N , the lower bound follows from any set C ⊇ CH1 and the upper
bound is trivial since any query problem can be solved with N queries.

Now that the classical query complexity is settled, we can move to quantum query
complexity. When quantum queries are permitted, the M ≤ N case is fully understood.
For a lower bound, we consider (as before) any subset of CH1 of size M , which is as hard
as the search problem on M bits and requires Ω(

√
M) queries. For an upper bound, we

can reduce this to the case of M = N by selecting M bits such that the strings in C are
distinct when restricted to these bits. (A proof of this fact appears in [9, Theorem 11].) Thus
Q(oip(M,N)) ≤ Q(oip(M,M)), which is O(

√
M) [1, Theorem 3].

I Proposition 2. For M ≤ N , Q(oip(M,N)) = Θ(
√
M).

For the hard regime, where M > N , the best known lower and upper bounds are the
following, from [1, Theorem 2] and [2, Theorem 2] respectively.

I Theorem 1 ([1, 2]). If N < M ≤ 2Nd for some constant d < 1, then Q(oip(M,N)) =
O(
√
N logM/logN) and for all M > N , Q(oip(M,N)) = Ω(

√
N logM/logN).

When M gets closer to 2N , their algorithm no longer gives nontrivial upper bounds. For
example, if M ≥ 2N/ logN , their algorithm makes O(N) queries. While not stated explicitly,
an improved algorithm follows from the techniques of [3, Theorem 6], but the improved
algorithm also does not yield a nontrivial upper bound when M ≥ 2N/ logN . Ambainis et al.
[2] left open two problems, in increasing order of difficulty: to determine whether it is always
possible to solve the oracle identification problem for M = 2o(N) using o(N) queries and to
design a single algorithm that is optimal in the entire range of M .

STACS’14

484 An optimal quantum algorithm for the oracle identification problem

In this paper we resolve both open problems by completely characterizing the quantum
query complexity of the oracle identification problem in the full range N < M ≤ 2N .

I Theorem 2. For N < M ≤ 2N , Q(oip(M,N)) = Θ
(√

N logM
log(N/logM)+1

)
.

The lower bound follows from the ideas in [1], but needs additional calculation. We
provide a proof in the full version of this paper [15]. The lower bound also appears in an
unpublished manuscript [3, Remark 1]. The +1 term in the denominator is relevant only
when M gets close to 2N ; it ensures that the complexity is Θ(N) in that regime.

Our main result is the algorithm, which is quite different from and simpler than that of
[2]. It is also optimal in the full range of M as it makes O

(√
N logM

log(N/logM)+1

)
queries when

M ≥ N and O(
√
M) queries when M ≤ N . Our algorithm has two main ingredients:

First, we use ideas from classical learning theory, where the oracle identification problem
is studied as the problem of exact learning with membership queries [4]. In particular,
our quantum algorithm is based on Hegedűs’ implementation of the halving algorithm [12].
Hegedűs characterizes the number of queries needed to solve the classical oracle identification
problem in terms of the “extended teaching dimension” of C. While we do not use that
notion, we borrow some of the main ideas. This is further explained in Section 2.

We now present a high-level overview of the algorithm. Say we know that the string
in the black box, x, belongs to a set S. We can construct from S a string s, known as the
“majority string,” which is 1 at position i if at least half the strings in S are 1 at position i.
Importantly, for any i, the set of strings in S that disagree with s at position i is at most half
the size of S. Now we search for a disagreement between x and s using Grover’s algorithm.
If the algorithm finds no disagreement, then x = s. If it does, we have reduced the size of S
by a factor of 2. This gives a suboptimal algorithm with query complexity O(

√
N logM).

We improve the algorithm by taking advantage of two facts: first, that Grover’s algorithm
can find a disagreement faster if there are many disagreements to be found, and second, that
there exists an order in which to find disagreements that reduces the size of S as much as
possible in each iteration. The existence of such an order was shown by Hegedűs [12].

The second ingredient of our upper bound is a composition theorem for solutions of the
filtered γ2-norm semidefinite program (SDP) introduced by Lee et al. [16] that preserves
input-dependent query complexities. We need such a result to resolve the following problem:
Our algorithm consists of k bounded-error quantum algorithms that must be run sequentially
because each algorithm requires as input the output of the previous algorithm. Let the
query complexities of the algorithms be Q1(x), Q2(x), . . . , Qk(x) on input x. If these were
exact algorithms, we could merely run them one after the other, giving one algorithm’s
output to the next as input, to obtain an algorithm with worst-case query complexity
O(maxx

∑
iQi(x)). However, since these are bounded-error algorithms, we cannot guarantee

that all k algorithms will give the correct output with high probability. One option is to apply
standard error reduction, but this would yield an algorithm making O(maxx

∑
iQi(x) log k)

queries. Instead, we prove a general composition theorem for the filtered γ2-norm SDP that
gives an algorithm making O(maxx

∑
iQi(x)) queries, as if the algorithms had no error. A

similar result is known for worst-case query complexity, but that gives a suboptimal upper
bound of O(

∑
i maxxQi(x)) queries. We prove this result in Section 3.

The oracle identification problem was also studied by Atıcı and Servedio [5], who studied
algorithms that are optimal for a given set C. The query complexity of their algorithm
depends on a combinatorial parameter of C, γ̂C , which satisfies 2 ≤ 1/γ̂C ≤ N+1. They prove
Q(oip(C)) = O(

√
1/γ̂C logM log logM). Our algorithm for oracle identification, without

modification, makes fewer queries than this. Our algorithm makes O
(√

1/γ̂C

log 1/γ̂C logM
)

R. Kothari 485

queries, which resolves a conjecture of Hunziker et al. [13]. We show this in Section 4.1. Our
composition theorem can also be used to remove unneeded log factors from existing quantum
query algorithms. As an example, we show how to improve the almost optimal Boolean
matrix multiplication algorithm that makes O(n

√
l poly(logn)) queries [14], where n is the

size of the matrices and l is the output sparsity, to an algorithm with query complexity
O(n
√
l). We show this in Section 4.2. We conclude with open questions in Section 5. Proofs

omitted due to space constraints appear in the full version of this paper [15].

2 Oracle identification algorithm

In this section we explain the ideas that go into our algorithm and prove its correctness.
We also prove the query upper bound assuming we can compose bounded-error quantum
algorithms without incurring log factors, which we justify in Section 3.

Throughout this section, let x ∈ C be the string we are trying to identify. For any set
S ∈ {0, 1}N , let maj(S) be an N -bit string such that maj(S)i is 1 if |{y ∈ S : yi = 1}| ≥
|{y ∈ S : yi = 0}| and 0 otherwise. In words, maj(S)i is b if the majority of strings in S have
bit i equal to b. Note that the string maj(S) need not be a member of S. In this paper, all
logarithms are base 2 and for any positive integer k, we define [k] := {1, 2, . . . , k}.

2.1 Basic halving algorithm
We begin by describing a general learning strategy called the halving algorithm, attributed
to Littlestone [17]. Say we currently know that the oracle contains a string x ∈ S ⊆ C. The
halving algorithm tests if the oracle string x is equal to maj(S). If it is equal, we have
identified x; if not, we look for a bit at which they disagree. Having found such a bit i, we
know that xi 6= maj(S)i, and we may delete all strings in S that are inconsistent with this.
Since at most half the strings in S disagree with maj(S) at any position, we have at least
halved the number of potential strings.

To convert this into a quantum algorithm, we need a subroutine that tests if a given
string maj(S) is equal to the oracle string x and finds a disagreement otherwise. This can
be done by running Grover’s algorithm on the bitwise xor of x and maj(S).

Algorithm 1 Basic halving algorithm

1: S ← C
2: repeat
3: Search for a disagreement between x and maj(S). If we find a disagreement, delete

all inconsistent strings from S. If not, let S ← {maj(S)}.
4: until |S| = 1

This algorithm always finds the unknown string x, since S always contains x. The loop
can run at most logM times, since each iteration cuts down the size of S by a factor of 2.
Grover’s algorithm needs O(

√
N) queries, but it is a bounded-error algorithm. For this

section, let us assume that bounded-error algorithms can be treated like exact algorithms
and need no error reduction. Assuming this, Algorithm 1 makes O(

√
N logM) queries.

2.2 Improved halving algorithm
Even assuming free error reduction, Algorithm 1 is not optimal. Primarily, this is because
Grover’s algorithm can find an index i such that xi 6= maj(S)i faster if there are many such

STACS’14

486 An optimal quantum algorithm for the oracle identification problem

indices to be found, and Algorithm 1 does not exploit this fact. Given an N -bit binary string,
we can find a 1 with O(

√
N/K) queries in expectation, where K > 0 is the number of 1s in

the string. Alternately, there is a variant of Grover’s algorithm that finds the first 1 (from
left to right, say) in the string in O(√p) queries in expectation where p is the position of the
first 1. This follows from the known O(

√
N) algorithm for finding the first 1 in a string of

size N [10], by running that algorithm on the first 2k bits, for k = 1, 2, . . . , logN . We can
now modify the previous algorithm to look for the first disagreement between x and maj(S)
instead of any disagreement.

Algorithm 2 Improved halving algorithm

1: S ← C
2: repeat
3: Search for the first disagreement between x and maj(S). If we find a disagreement,

delete all inconsistent strings from S. If not, let S ← {maj(S)}.
4: until |S| = 1

As before, the algorithm always finds the unknown string. Let r be the number of times
the loop repeats and p1, p2, . . . , pr be the positions of disagreement found. After the first
run of the loop, since a disagreement is found at position p1, we have learned the first p1
bits of x; the first p1 − 1 bits agree with maj(S), while bit p1 disagrees with maj(S). Thus
we are left with a set S in which all strings agree on these p1 bits. For convenience, we can
treat S as a set of strings of length N − p1 (instead of length N). Each iteration reduces the
effective length of strings in S by pi, which gives

∑
i pi ≤ N , since there are at most N bits

to be learned. As before, the loop can run at most logM times, thus r ≤ logM . Finally,
if we assume again that these bounded-error search subroutines are exact, this algorithm
requires O(

∑
i

√
pi) queries, which is O(

√
N logM), by the Cauchy–Schwarz inequality.

2.3 Final algorithm
While Algorithm 2 is an improvement over Algorithm 1, it is still not optimal. One reason is
that sometimes a disagreement between the majority string and x may eliminate more than
half the possible strings. This observation can be exploited by finding disagreements in such
a way as to maximize the reduction in size when a disagreement is found. This idea is due
to Hegedűs [12].

To understand the basic idea, consider searching for a disagreement between x and maj(S)
classically. The most obvious strategy is to check if x1 = maj(S)1, x2 = maj(S)2, and so on
until a disagreement is found. This strategy makes more queries if the disagreement is found
at a later position. However, we could have chosen to examine the bits in any order. We
would like the order to be such that if a disagreement is found at a later position, it cuts
down the size of S by a larger factor. Such an ordering would ensure that either we spend
very few queries and achieve a factor-2 reduction right away, or we spend more queries but
the size of S goes down significantly. Hegedűs shows that there is always a reordering of the
bits that achieves this. The following lemma is similar to [12, Lemma 3.2], but we provide a
proof for completeness.

I Lemma 3. For any S ⊆ {0, 1}N , there exists a string s ∈ {0, 1}N and a permutation σ on
N , such that for any p ∈ [N], |Sp| ≤ |S|

max{2,p} , where Sp = {y ∈ S : yσ(i) = sσ(i) for 1 ≤ i ≤
p− 1 and yσ(p) 6= sσ(p)}, the set of strings in S that agree with s at σ(1), . . . , σ(p− 1) and
disagree with it at σ(p).

R. Kothari 487

Proof. We will construct the permutation σ and string s greedily, starting with the first
position, σ(1). We choose this bit to be one that intuitively contains the most information,
i.e., a bit for which the fraction of strings that agree with the majority is closest to 1/2. This
choice will make |S1| as large as possible. More precisely, we choose σ(1) to be any j that
maximizes |{y ∈ S : yj 6= maj(S)j}|. Then let sσ(1) be maj(S)σ(1).

In general, after having chosen σ(1), . . . , σ(k − 1) and having defined s on those bits, we
choose σ(k) to be the most informative bit assuming all previous bits have agreed with string
s on positions σ(1), . . . , σ(k− 1). This choice makes |Sk| as large as possible. More precisely,
define S̄p = {y ∈ S : yσ(i) = sσ(i) for all 1 ≤ i ≤ p}. We choose σ(k) to be any bit j that
maximizes |{y ∈ S̄k−1 : yj 6= maj(S̄k−1)j}|. Then let sσ(k) be maj(S̄k−1)σ(k).

This construction ensures that |S1| ≥ |S2| ≥ . . . ≥ |SN |. Since σ(k) was chosen
to maximize |{y ∈ S̄k−1 : yj 6= maj(S̄k−1)j}|, we have |Sk| = |{y ∈ S̄k−1 : yσ(k) 6=
maj(S̄k−1)σ(k)}| ≥ |{y ∈ S̄k−1 : yσ(k+1) 6= maj(S̄k−1)σ(k+1)}|. The size of this set is at least
|{y ∈ S̄k : yσ(k+1) 6= maj(S̄k−1)σ(k+1)}|, since S̄k ⊆ S̄k−1. We do not know the value of
maj(S̄k−1)σ(k+1) (e.g., it need not be equal to sσ(k+1)), but we do know that it is either 0 or 1.
So this term is at least min{|{y ∈ S̄k : yσ(k+1) 6= 0}|, |{y ∈ S̄k : yσ(k+1) 6= 1}|} = min{|{y ∈
S̄k : yσ(k+1) 6= sσ(k+1)}|, |{y ∈ S̄k : yσ(k+1) = sσ(k+1)}|} = min{|Sk+1|, |S̄k+1|} = |Sk+1|,
where the last equality uses |Sk| ≤ |S̄k| for all k. Finally, combining |S1|+ . . .+ |Sp| ≤ |S|
with |S1| ≥ |S2| ≥ . . . ≥ |Sp| gives |Sp| ≤ |S|/p. Combining this with |S1| ≤ |S|/2, which
follows from the definition of S1, yields the result. J

We can now state our final oracle identification algorithm.

Algorithm 3 Final algorithm

1: S ← C
2: repeat
3: Let σ and s be as in Lemma 3. Search for the first (according to σ) disagreement

between x and s. If we find a disagreement, delete all inconsistent strings from S. If not,
let S ← {s}.

4: until |S| = 1

As before, it is clear that this algorithm solves the problem. Let us analyze the query
complexity. To compute the query complexity, let r be the number of times the loop repeats.
Let p1, p2, . . . , pr be the positions of disagreement. We have

∑r
i=1 pi ≤ N , as in Algorithm 2.

Unlike the previous analysis, the bound r ≤ logM can be loose, since the size of S may
reduce by a larger factor due to Lemma 3. Instead, we know that each iteration reduces the set
S by a factor of max{2, pi}, which gives us

∏r
i=1 max{2, pi} ≤M . As before, we will assume

the search subroutine is exact, which gives us a query upper bound of O(
∑r
i=1
√
pi), subject

to the constraints
∑r
i=1 pi ≤ N and

∏r
i=1 max{2, pi} ≤ M . We solve this optimization

problem in the full version [15] to obtain the following lemma.

I Lemma 4. Let C(M,N) be the maximum value attained by
∑r
i=1
√
pi, subject to the

constraints
∑r
i=1 pi ≤ N,

∏r
i=1 max{2, pi} ≤M, r ∈ [N] and pi ∈ [N] for all i ∈ [r]. Then

C(M,N) = O
(√

N logM
log(N/logM)+1

)
and C(M,N) = O(

√
M).

Thus Algorithm 3 achieves the upper bound claimed in Theorem 2, under our assumption
that the search subroutine is exact. Since it is not exact, we could reduce the error with
logarithmic overhead, but it is usually unnecessary to incur this loss in quantum query
algorithms. In the next section we prove this and establish the complexity of Algorithm 3.

STACS’14

488 An optimal quantum algorithm for the oracle identification problem

3 Composition theorem for input-dependent query complexity

The primary aim of this section is to rigorously establish the query complexity of Algorithm 3.
Along the way, we will develop techniques that can be used more generally. Let us begin by
describing what we would like to prove. Algorithm 3 essentially consists of a loop repeated
r(x) times. We write r(x) to make explicit its dependence on the input x. The loop itself
consists of running a variant of Grover’s algorithm on x, based on information we have
collected thus far about x. Call these algorithms A1, A2, . . . , Ar(x). To be clear, A1 is the
algorithm that is run the first time the loop is executed, i.e., it looks for a disagreement
under the assumption that S = C. It produces an output p1(x), which is then used by A2.
A2 looks for a disagreement assuming a modified set S, which is smaller than C. Let us
say that in addition to p2(x), A2 also outputs p1(x). This ensures that the output of Ai
completely describes all the information we have collected about x. Thus algorithm Ai+1
now only needs the output of Ai to work correctly.

We can now view Algorithm 3 as a composition of r(x) algorithms, A1, A2, . . . , Ar(x). It
is a composition in the sense that the output of one is required as the input of the next
algorithm. We know that the expected query complexity of Ai is O(

√
pi(x)). If these

algorithms were exact, then running them one after the other would yield an algorithm with
expected query complexity O(

∑
i

√
pi(x)). But since they are bounded error, this does not

work. However, if we consider their worst-case complexities, we can achieve this complexity.
If we have r algorithms A1, A2, . . . , Ar with worst-case query complexities Qi, then there is
a quantum algorithm that solves the composed problem with O(

∑
iQi) queries. This is a

remarkable property of quantum algorithms, which follows from the work of Lee et al. [16].
We first discuss this simpler result before moving on to input-dependent complexities.

3.1 Composition theorem for worst-case query complexity
We now show a composition theorem for solutions of the filtered γ2-norm SDP, which implies
a similar result for worst-case quantum query complexity. This follows from the work of
Lee et al. [16], which we generalize in the next section. As discussed in the introduction, let
D ⊆ {0, 1}N , and consider functions that map D to E. For any matrix A indexed by D, we
define a quantity γ(A). (To readers familiar with the notation of [16], this is their γ2(A|∆).)

I Definition 5. Let A be a square matrix indexed by D. We define γ(A) as the following:

γ(A) := min
{|uxj〉,|vyj〉}

max
x∈D

c(x) (1)

subject to: ∀x ∈ D, c(x) = max
{∑

j

‖|uxj〉‖2,
∑
j

‖|vxj〉‖2
}

(2)

∀x, y ∈ D,
∑

j:xj 6=yj

〈uxj |vyj〉 = Axy (3)

We use γ(A) to refer to both the SDP above and its optimum value. For a function
f : D → E, let F be its Gram matrix, defined as Fxy = 1 if f(x) 6= f(y) and Fxy = 0
otherwise. Lee et al. showed that Q(f) = Θ(γ(J − F)), where J is the all-ones matrix.

More generally, they showed that this SDP also upper bounds the quantum query
complexity of state conversion. In the state conversion problem, we have to convert a given
state |sx〉 to |tx〉. An explicit description of the states |sx〉 and |tx〉 is known for all x ∈ D,
but we do not know the value of x. Since the query complexity of this task depends only
on the Gram matrices of the starting and target states, define S and T by Sxy = 〈sx|sy〉
and Txy = 〈tx|ty〉 for all x, y ∈ D. Let S 7→ T denote the problem of converting states with

R. Kothari 489

Gram matrix S to those with Gram matrix T . If F is the Gram matrix of a function f , then
J 7→ F is the function evaluation problem. Lee et al. showed that Q(S 7→ T) = O(γ(S − T)),
which generalizes Q(f) = O(γ(J − F)).

We now have the tools to prove the composition theorem for the filtered γ2-norm SDP.

I Theorem 6 ([16]). Let f0, f1, . . . , fk be functions with Gram matrices F0, F1, . . . , Fk.
Let C1, C2, . . . , Ck be the optimum value of the SDPs for the state conversion problems
F0 7→ F1, . . . , Fk−1 7→ Fk, i.e., for i ∈ [k], Ci = γ(Fi−1 − Fi). Then, γ(F0 − Fk) ≤

∑k
i=1 Ci.

This does not appear explicitly in [16], but simply follows from the triangle inequality
γ(A+B) ≤ γ(A) +γ(B) [16, Lemma A.2]. From this we can also show an analogous theorem
for quantum query complexity, which states Q(F0 7→ Fk) = O(

∑k
i=1 Q(Fi−1 7→ Fi)). We do

not prove this claim as we do not need it in this paper.
For our application, we require a composition theorem similar to Theorem 6, but for

input-dependent query complexity. However, it is not even clear what this means a priori,
since the value γ(J − F) does not contain information about input-dependent complexities.
Indeed, the value is a single number and cannot contain such information. However, the
SDP does contain this information and we modify this framework to be able to access this.

For example, let f be the find-first-one function, which outputs the smallest i such that
xi = 1 and outputs N + 1 if x = 0N . There is a quantum algorithm that solves this with
O(
√
f(x)) queries in expectation. Furthermore, there is a feasible solution for the γ(J − F)

SDP with c(x) = O(
√
f(x)), where c(x) is the function that appears in (2). This suggests

that c(x) gives us information about the x-dependent query complexity. The same situation
occurs when we consider the search problem with multiple marked items. There is a feasible
solution with c(x) = O(

√
N/K) for inputs with K ones. This function c(x) will serve as our

input-dependent cost measure.

3.2 Cost functions
I Definition 7 (Cost function). Let A be a square matrix indexed by D. We say c : D → R
is a feasible cost function for γ(A) if there is a feasible solution of γ(A) with values c(x) in
eq. (2). Let the set of all feasible cost functions for γ(A) be denoted Γ(A).

Note that if c is a feasible cost function for γ(J − F), then maxx c(x) is an upper bound
on the worst-case cost, γ(J − F), which is exactly what we expect from an input-dependent
cost. We can now prove an input-dependent analogue of Theorem 6 with c(x) playing the
role of γ(J − F).

I Theorem 8. Let f0, f1, . . . , fk be functions with Gram matrices F0, F1, . . . , Fk. Let
c1, . . . , ck be feasible cost functions for γ(F0 − F1), . . . , γ(Fk−1 − Fk), i.e., for i ∈ [k],
ci ∈ Γ(Fi−1 − Fi). Then there is a c ∈ Γ(F0 − Fk) satisfying c(x) ≤

∑
i ci(x) for all

x ∈ D.

As in the case of Theorem 6, this follows from an analogous triangle inequality.

I Lemma 9. Let A and B be square matrices indexed by D. If cA ∈ Γ(A) and cB ∈ Γ(B),
there exists a c ∈ Γ(A+B) satisfying c(x) ≤ cA(x) + cB(x) for all x ∈ D.

This is shown by constructing a feasible solution for γ(A+B) by taking the direct sum
of vectors in a solution of γ(A) and γ(B). A proof appears in the full version [15].

In our applications, we will encounter algorithms that also output their input, i.e.,
accept as input f(x) and output (f(x), g(x)). Note that the Gram matrix of the function
h(x) = (f(x), g(x)) is merely H = F ◦G, defined as Hxy = FxyGxy.

STACS’14

490 An optimal quantum algorithm for the oracle identification problem

Such an algorithm can either be thought of as a single quantum algorithm that accepts
f(x) ∈ E as input and outputs (f(x), g(x)) or as a collection of algorithms Ae for each e ∈ E,
such that algorithm Af(x) requires no input and outputs (f(x), g(x)) on oracle input x. These
are equivalent viewpoints, since in one direction you can construct the algorithms Ae from A

by hardcoding the value of e and in the other direction, we can read the input e and call the
appropriate Ae as a subroutine and output (e,Ae(x)). Additionally, if the algorithm Af(x)
makes q(x) queries on oracle input x, the algorithm A we constructed accepts f(x) as input,
outputs (f(x), g(x)), and makes q(x) queries on oracle input x. While intuitive for quantum
algorithms, we establish this rigorously for cost functions in the full version [15]:

I Theorem 10. Let f, g : D → E be functions with Gram matrices F and G. For any e ∈ E,
let f−1(e) = {x : f(x) = e}. For every e ∈ E, let ce : f−1(e)→ R be a feasible cost function
for γ(J − Ge), where Ge denotes the matrix G restricted to those x that satisfy f(x) = e.
Then there exists a c ∈ Γ(F − F ◦G), such that c(x) = cf(x)(x).

3.3 Algorithm analysis
We can now return to computing the query complexity of Algorithm 3. Using the same
notation as in the beginning of this section, for any x ∈ C, we define r(x) to be the number
of times the repeat loop is run in Algorithm 3 for oracle input x assuming all subroutines
have no error. Similarly, let p1(x), p2(x), . . . pr(x)(x) be the first positions of disagreement
found in each run of the loop. Note that p1(x), p2(x), . . . pr(x)(x) together uniquely specify x.
Let r = maxx r(x).

We now define r functions f1, . . . , fr as f1(x) = p1(x), f2(x) = (p1(x), p2(x)), . . . , fr(x) =
(p1(x), . . . , pr(x)), where pk(x) = 0 if k > r(x). Thus if Pi are the Gram matrices of the
functions pi, then F1 = P1, F2 = P1 ◦ P2, . . . , Fr = P1 ◦ P2 ◦ · · · ◦ Pr.

We will now construct a solution for γ(J − Fr), using solutions for the intermediate
functions fi. From Theorem 8 we know that we only need to construct solutions for γ(J −
F1), γ(F1 −F2), . . . , γ(Fr−1 −Fr). From Theorem 10 we know that instead of constructing a
solution for γ(Fk − Fk+1), which is γ(Fk − Fk ◦ Pk+1), we can construct several solutions,
one for each value of fk(x). More precisely, let fk : D → Ek; then we can construct solutions
for γ(J − P ek+1) for all e ∈ Ek, where P ek+1 is the matrix Pk+1 restricted to x that satisfy
fk(x) = e.

For any k, the problem corresponding to γ(J−P ek+1) is just the problem of finding the first
disagreement between x and a known string, which is the essentially the find-first-one function.
This has a solution with cost function O(

√
f(x)), which in this case is O(

√
pk+1(x)).

I Theorem 11. Let f be the function that outputs the smallest i such that xi = 1 and
outputs N + 1 if x = 0N and let F be its Gram matrix. Then there is a c ∈ Γ(J − F) such
that c(x) = O(

√
f(x)).

Proof. Let ak = k−1/4 and bk = 1/ak = k1/4. Define |uxj〉 = |vxj〉 as the following.

|uxj〉 = |vxj〉 =

aj , if j < f(x)
bf(x), if j = f(x)
0, if j > f(x).

This is a feasible solution for γ(J −F). Since the constraints are symmetric in x and y, there
are two cases: either f(x) < f(y) or f(x) = f(y). In the first case,

∑
j:xj 6=yj

〈uxj |vyj〉 =∑
j=f(x)〈uxj |vyj〉 = af(x)bf(x) = 1, since x and y agree on all positions before f(x). In the

R. Kothari 491

second case,
∑
j:xj 6=yj

〈uxj |vyj〉 = 0, since x and y only disagree after position f(x) = f(y).
To compute the cost function, note that c(0N) =

∑N
k=1 a

2
k = O(

√
N) = O(

√
f(0N)). For

x 6= 0N , c(x) =
∑f(x)−1
k=1 a2

k + b2
f(x) =

∑f(x)−1
k=1 k−1/2 +

√
f(x) = O(

√
f(x)). J

Our function is different from this one in two ways. First, we wish to find the first
disagreement with a fixed string s instead of the first 1. This change does not affect the
Gram matrix or the SDP. Second, we are looking for a disagreement according to an order σ,
not from left to right. This is easy to fix, since we can replace j with σ(j) in the definition
of the vectors in the proof above.

This shows that for any k, there is a feasible cost function for γ(J − P ek+1) with cost
c(x) = O(

√
pk+1(x)) for any x that satisfies fk(x) = e. Using Theorem 10, we get that for any

k there is a ck ∈ Γ(Fk − Fk ◦ Pk+1) with ck(x) = O(
√
pk+1(x)) for all x ∈ D. Finally, using

Theorem 8, we have a c ∈ Γ(J − Fr) with cost c(x) = O(
∑r
i=1
√
pi(x)) = O(

∑r(x)
i=1

√
pi(x)).

Since the function fr(x) uniquely determines x, we have a feasible cost function for oracle
identification with cost O(

∑r(x)
i=1

√
pi(x)), subject to the constraints of Lemma 4, which we

have already solved. Along with the lower bound, this yields the main result.

I Theorem 2. For N < M ≤ 2N , Q(oip(M,N)) = Θ
(√

N logM
log(N/logM)+1

)
.

4 Other applications

4.1 Quantum learning theory
The oracle identification problem has also been studied in quantum learning theory with the
aim of characterizing Q(oip(C)). The algorithms and lower bounds studied apply to arbitrary
sets C, not just to the class of sets of a certain size, as in the rest of the paper. We show that
Algorithm 3 also performs well for any set C, outperforming the best known algorithm. The
known upper and lower bounds for this problem are in terms of a combinatorial parameter γ̂C ,
defined by Servedio and Gortler. They showed that for any C, Q(oip(C)) = Ω(

√
1/γ̂C+ logM

logN)
[18]. Later, Atıcı and Servedio showed that Q(oip(C)) = O(

√
1/γ̂C logM log logM) [5].

While we do not define γ̂C, we can informally describe it as follows: γ̂C is the largest
α < 1, such that for any set S ⊆ C, if we know that x belongs to S, there is a bit of x that
can be queried such that size of the set of strings consistent with the answer to this query
is at most (1 − α)|S|, no matter what the oracle responds. This ensures that if we query
the oracle with the permutation of Lemma 3, which was chosen to maximize the number of
strings eliminated with a query, each query reduces the size of S by a factor of (1− γ̂C).

This adds an extra constraint to Lemma 4 of the form M
∏r
i (1− γ̂C)pi ≥ 1, since learning

pi bits will reduce the size of the remaining set by a factor of (1− γ̂C)pi . From this constraint
we get (

∑
i pi) log(1− γ̂C) ≥ − logM . Using log(1− γ̂C) ≤ −γ̂C gives

∑
i pi ≤

logM
γ̂C .

We may now replace the constraint
∑
i pi ≤ N with

∑
i pi ≤

logM
γ̂C in the optimization

problem of Lemma 4. This inequality also implies pi ≤ logM
γ̂C and r ≤ logM

γ̂C . Thus we may
simply replace all occurrences of N by logM

γ̂C in Lemma 4. This yields the following theorem,
which resolves a conjecture of Hunziker et al. [13, Conjecture 2].

I Theorem 12. Algorithm 3 solves oip(C) with O
(√

1/γ̂C

log 1/γ̂C logM
)
queries.

Since Q(oip(C)) = Ω(
√

1/γ̂C + logM
logN), we see that Algorithm 3 makes O(Q(oip(C))2√

logQ(oip(C))
logN)

queries, which means it can be at most about quadratically worse than the optimal algorithm
for oip(C).

STACS’14

492 An optimal quantum algorithm for the oracle identification problem

4.2 Boolean matrix multiplication

In this section we show how to improve the upper bound on Boolean matrix multiplication
(BMM) from O(n

√
l poly(logn)) [14] to O(n

√
l), where n is the size of the matrices and l is

the output sparsity. Like in the analysis in Section 3, we will break up the BMM algorithm
of [14] into a sequence of algorithms Ai such that the output of Ai is the input of Ai+1, and
convert each algorithm into a feasible solution for the corresponding SDP.

The BMM algorithm is almost of this form: It uses two subroutines for graph collision,
one for the decision problem and another to find all collisions. The first subroutine solves
the problem on a bipartite graph with 2n vertices and m nonedges in O(

√
n+
√
m) queries.

Since this query complexity is not input dependent, there is a feasible SDP solution for this
problem with c(x) = O(

√
n+
√
m) using the known characterization of Lee et al. [16].

The second subroutine finds all graph collisions in an instance with λ collisions using
O(
√
nλ+

√
m) queries. This upper bound is input dependent, since λ is a function of the input.

In this subroutine, the only input-dependent algorithm is the variant of Grover’s algorithm
that uses O(

√
nk) queries to find all k ones in an n-bit string with k ones. It is easy to show

that there is a feasible cost function for this with c(x) = O(
√
nk). For example, we may

compose the SDP solution for the find-first-one function (Theorem 11) with itself repeatedly
to find all ones. The cost function of the resultant SDP will satisfy c(x) = O(

∑
i

√
pi), where

pis are the locations of the ones. By the Cauchy-Schwarz inequality this is O(
√
nk). Thus

the second subroutine has a feasible cost function c(x) = O(
√
nλ+

√
m).

The BMM algorithm breaks up the problem into n instances of graph collision. The
algorithm repeatedly searches for indices i such that the ith graph collision instance has a
collision. Then it finds all graph collisions of this instance and repeats. Instead of searching
for any i, we can search for the first i. The problem of searching for the first i that has a
graph collision is the composition of the find-first-one function (Theorem 11) and the graph
collision function. It is a composition in the sense that each input bit of the first problem
is the output bit of another problem. It is known that the optimal value of the γ SDP for
f ◦ gn is at most γ(J − F)γ(J −G). Similarly, it can be shown that there is a feasible cost
function for f ◦ g that is at most the product of the cost functions. This is similar to [16,
Lemma 5.1] or Lemma 9, but we take the tensor product instead of taking the direct sum.

Finally, let p1, . . . , pt be the positions of indices found in the algorithm. The search problem
requires O(√pi(

√
n+
√
m)) queries for each i, since it is the composition of the two above-

mentioned algorithms. The algorithm that finds all graph collisions has a feasible cost function
O(
√
nλi +

√
m), where λi is the number of graph collisions in the ith graph collision instance.

This gives a feasible cost function for BMM with cost O(
∑
i(
√
pi(
√
n+
√
m) +

√
nλi +

√
m)),

which is the same optimization problem solved in [14], without log factors. This is O(n
√
l).

5 Open questions

Our composition theorem only works for solutions of the filtered γ2-norm SDP, not for
quantum query complexity itself. While this is sufficient for our application, it would
be interesting to know if bounded-error quantum algorithms with input-dependent query
complexities can be composed in general without incurring log factors.

While the query complexity of oracle identification in terms of M and N has been fully
characterized, finding an optimal quantum algorithm for oip(C) remains open, even classically.
It would also be interesting to study time-efficient oracle identification algorithms for specific
sets C, since none of the known algorithms is known to be time efficient.

R. Kothari 493

Acknowledgments. I thank Andrew Childs and Ben Reichardt for helpful discussions,
Seiichiro Tani for pointing me to Ref. [3], and Andrew Childs and Ansis Rosmanis for
comments on a preliminary draft. This work was supported in part by NSERC, the Ontario
Ministry of Research and Innovation, and the US ARO.

References
1 Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Hiroyuki Masuda, Raymond H. Putra,

and Shigeru Yamashita. Quantum Identification of Boolean Oracles. In STACS 2004,
volume 2996 of LNCS, pages 105–116. Springer, 2004.

2 Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Rudy Raymond, and Shigeru Yamashita.
Improved algorithms for quantum identification of Boolean oracles. Theor. Comput. Sci.,
378(1):41 – 53, 2007.

3 Andris Ambainis, Kazuo Iwama, Masaki Nakanishi, Harumichi Nishimura, Rudy Raymond,
Seiichiro Tani, and Shigeru Yamashita. Average/worst-case gap of quantum query complex-
ities by on-set size. arXiv preprint arXiv:0908.2468, 2009.

4 Dana Angluin. Queries and Concept Learning. Machine Learning, 2:319–342, 1988.
5 Alp Atıcı and Rocco Servedio. Improved Bounds on Quantum Learning Algorithms.

Quantum Information Processing, 4:355–386, 2005.
6 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and

Weaknesses of Quantum Computing. SIAM J. Comput., 26(5):1510–1523, 1997.
7 Ethan Bernstein and Umesh Vazirani. Quantum Complexity Theory. SIAM J. Comput.,

26(5):1411–1473, 1997.
8 Dan Boneh and Mark Zhandry. Quantum-Secure Message Authentication Codes. In Ad-

vances in Cryptology – EUROCRYPT 2013, volume 7881 of LNCS, pages 592–608. Springer,
2013.

9 Andrew M. Childs, Robin Kothari, Maris Ozols, and Martin Roetteler. Easy and Hard
Functions for the Boolean Hidden Shift Problem. In TQC 2013, volume 22 of LIPIcs,
pages 50–79, 2013.

10 Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query com-
plexity of some graph problems. SIAM J. Comput., 35(6):1310–1328, 2006.

11 Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC 1996,
pages 212–219, 1996.

12 Tibor Hegedűs. Generalized teaching dimensions and the query complexity of learning. In
COLT 1995, pages 108–117, 1995.

13 Markus Hunziker, David A. Meyer, Jihun Park, James Pommersheim, and Mitch Rothstein.
The geometry of quantum learning. Quantum Information Processing, 9(3):321–341, 2010.

14 Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Improving Quantum Query Com-
plexity of Boolean Matrix Multiplication Using Graph Collision. In ICALP 2012, volume
7391 of LNCS, pages 522–532. Springer, 2012.

15 Robin Kothari. An optimal quantum algorithm for the oracle identification problem. arXiv
preprint arXiv:1311.7685, 2013.

16 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
Query Complexity of State Conversion. In FOCS 2011, pages 344–353, 2011.

17 Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4):285–318, 1988.

18 Rocco A. Servedio and Steven J. Gortler. Equivalences and Separations Between Quantum
and Classical Learnability. SIAM J. Comput., 33(5):1067–1092, 2004.

19 Wim van Dam. Quantum Oracle Interrogation: Getting All Information for Almost Half
the Price. In FOCS 1998, page 362, 1998.

20 Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum Algorithms for Some Hidden
Shift Problems. SIAM J. Comput., 36(3):763–778, 2006.

STACS’14

A Solution to Wiehagen’s Thesis∗

Timo Kötzing

Friedrich-Schiller-Universität Jena, Jena, Germany
timo.koetzing@uni-jena.de

Abstract
Wiehagen’s Thesis in Inductive Inference (1991) essentially states that, for each learning criterion,
learning can be done in a normalized, enumerative way. The thesis was not a formal statement
and thus did not allow for a formal proof, but support was given by examples of a number of
different learning criteria that can be learned enumeratively.

Building on recent formalizations of learning criteria, we are now able to formalize Wiehagen’s
Thesis. We prove the thesis for a wide range of learning criteria, including many popular criteria
from the literature. We also show the limitations of the thesis by giving four learning criteria for
which the thesis does not hold (and, in two cases, was probably not meant to hold). Beyond the
original formulation of the thesis, we also prove stronger versions which allow for many corollaries
relating to strongly decisive and conservative learning.

1998 ACM Subject Classification I.2.6 Learning

Keywords and phrases Algorithmic Learning Theory, Wiehagen’s Thesis, Enumeration Learning

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.494

1 Introduction

In Gold-style learning [10] (also known as inductive inference) a learner tries to learn
an infinite sequence, given more and more finite information about this sequence. For
example, a learner h might be presented longer and longer initial segments of the sequence
g = 1, 4, 9, 16, After each new datum of g, h may output a description of a function (for
example a Turing machine program computing that function) as its conjecture. h might
output a program for the constantly-1 function after seeing the first element of this sequence
g, and then, as soon as more data is available, a program for the squaring function. Many
criteria for saying whether h is successful on g have been proposed in the literature. Gold, in
his seminal paper [10], gave a first, simple learning criterion, later called Ex-learning1, where
a learner is successful iff it eventually stops changing its conjectures, and its final conjecture
is a correct program (computing the input sequence).

Trivially, each single, describable sequence g has a suitable constant function as an
Ex-learner (this learner constantly outputs a description for g). Thus, we are interested
in sets of total computable functions S for which there is a single learner h learning each
member of S (those sets S are then called Ex-learnable).

Gold [10] showed an important class of sets of functions to be Ex-learnable:2 each

∗ We would like to thank Sandra Zilles for bringing Wiehagen’s Thesis in connection with the approach
of abstractly defining learning criteria, as well as the anonymous reviewers for their friendly and helpful
suggestions.

1 “Ex” stands for explanatory.
2 We let N = {0, 1, 2, . . .} be the set of natural numbers and we fix a coding for programs based on Turing

machines letting, for any program (code) p ∈ N, ϕp be the function computed by the Turing machine
coded to p.

© Timo Kötzing;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 494–505

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.494
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Kötzing 495

uniformly computable set of total functions is Ex-learnable; a set of functions S is uniformly
computable iff there is a computable function e such that S = {ϕe(n) | n ∈ N}. The
corresponding learner learns by enumeration: in every iteration, it finds the first index n
such that ϕe(n) is consistent with all known data, and outputs e(n) as the conjecture.

However, it is well-known that there are sets which are not uniformly computable, yet
Ex-learnable. Blum and Blum [6] gave the following example. Let e be a total computable
listing of programs such that the predicate ϕe(n)(x) = y is decidable in n, x and y. Crucially,
some of the ϕe(n) may be undefined on some arguments; these functions are not required
to be learned, but the set of all the total functions enumerated is Ex-learnable. This uses
the same strategy as for uniformly computable sets of functions, but this learning already
goes beyond enumeration of all and only the learned functions, as there are sets which are so
learnable, but not uniformly computable. The price is that the learner may give intermediate
conjectures e(n) which are programs for partial functions; this is necessarily so, as noted
in [9].

As already shown by Wiehagen [16], there are Ex-learnable sets of functions that cannot
be learned while always having a hypothesis that is consistent with the known data. Thus,
the above strategy for learning employed by Blum and Blum [6] is not applicable for all
learning tasks. In [17, 18] Wiehagen was looking for whether there is a more general strategy
which also enumerates a list of candidate conjectures and is applicable to all Ex-learnable sets.
He showed that this is indeed possible, giving an insightful characterization of Ex-learning.

A main focus of the research in inductive inference defines learning criteria that are
different from (but usually similar in flavor to) Ex-learning. For example, consistent learning
requires that each conjecture is consistent with the known data; monotone learning requires
the sequence of conjectures to be monotone with respect to inclusion of the graphs of the
computed functions. Wiehagen also gives characterizations for these learning criteria and
more. Other researchers give similar characterizations; recent work in this area includes, for
example, [1]. For any learning criterion I we are again interested in sets of total computable
functions S for which there is a single learner h which learns every function in S in the sense
specified by I; we call such S I-learnable.

Wiehagen was inspired by his work to conjecture a general structure of learning, as stated
in his Thesis in Inductive Inference [18], which we rephrase in the language of this paper:

Let I be any learning criterion. Then for any I-learnable class S, an enumeration
of programs e can be constructed such that S is I-learnable with respect to e
by an enumerative learner.

Note that [18] called a learning criterion an “inference type” and a learner an “inference
strategy”. About his thesis, Wiehagen [18] wrote that “We do not exclude that one nice day
a formal proof of this thesis will be presented. This would require ‘only’ to formalize the
notions of ‘inference type’ and ‘enumerative inference strategy’ which does not seem to be
hopeless. But up to this moment we prefer ‘verifying’ our thesis analogously as it has been
done with ‘verifying’ Church’s thesis, namely by formally proving it for ‘real’, reasonable,
distinct inference types.”

Recently, the notion of a learning criterion was formalized in [13] (see Section 2.1 for the
formal notions relevant to this paper). Our first contribution in this paper is a formalization
of “enumeration learner” in Definition 2. It is in the nature of the very general thesis that any
formalization may be too broad in some respects and too narrow in other. For example, our
formalizations exclude some learning criteria, such as finite learning, learning by non-total

STACS’14

496 A Solution to Wiehagen’s Thesis

learners, and criteria featuring global restrictions on the learner. However, for the scope of
our definitions, we already get very strong and insightful results in this paper.

In Theorem 3 we discuss four different learning criteria in which the thesis does not hold.
The first one is prediction, which attaches a totally different meaning to the “conjectures”
than Ex-learning (the thesis was probably never meant to hold for such learning criteria).
The second criterion involves mandatory oscillation between (correct) conjectures, which is in
immediate contradiction to enumerative learning. The third learning criterion is transductive
learning, where the learner has very little information in each iteration. The fourth is
learning in a non-standard hypothesis space. The last two learning criteria do not contradict
enumerative learning directly, but still demand too much for learning by enumeration.

In Section 4 we show that there is a broad core of learning criteria for which Wiehagen’s
Thesis holds. For this we introduce the notion of a pseudo-semantic restriction, where only
the semantics of conjectures and possibly the occurrence of mind changes matter, but not
other parts of their syntax. Theorem 10 shows that Wiehagen’s Thesis holds in the case of
full information learning (like in Ex-learning given above, where the learner only gets more
information in each iteration) when all restrictions are pseudo-semantic, and in Theorem 16
we see that the same holds in the case of iterative learning (a learning model in which a
learner has a restricted memory). Note that these two theorems already cover a very wide
range of learning criteria from the literature, including all given by Wiehagen [18].

Finally, going beyond the scope of Wiehagen’s Thesis, we show that we can assume the
enumeration e of programs to be semantically 1-1 (each e(n) codes for a different function)
if we assume a little bit more about the learning criteria, namely that their restrictions allow
for patching and erasing (see Definition 11). This is formally shown in Theorem 13 (for
the case of full information learning) and in Theorem 17 (for the case of iterative learning).
Example criteria to which these theorems apply include Ex-learning, as well as consistent
and monotone learning. Wiehagen [18] already pointed out in special cases that one can get
such semantically 1-1 enumerations. From these results on learning with a semantically 1-1
enumeration we can derive corollaries to conclude that the learning criteria, to which the
theorems apply, allow for strongly decisive and conservative learning (see Definition 1); for
example, for plain Ex-learning, this proves (a stronger version of) a result from [15] (which
showed that Ex-learning can be done decisively). Note that all positive results are sufficient
conditions for enumerative learnability; except for the (weak) condition given in Remark 9,
we could not find interesting necessary conditions.

The benefits of this work are threefold. First, we address a long-open problem in its
essential parts. Second, we derive results about (strongly) decisive and conservative learning
in many different settings. Finally, we further develop general techniques to derive powerful
theorems applicable to many different learning criteria, thanks to general notions such as
“pseudo-semantic restriction”.

Note that we omit a number of nontrivial proofs due to space constraints.

2 Mathematical Preliminaries

We fix any computable 1-1 and onto pairing function 〈·, ·〉 : N × N → N; Whenever we
consider tuples of natural numbers as input to a function, it is understood that the general
coding function 〈·, ·〉 is used to code the tuples into a single natural number. We similarly fix
a coding for finite sets and sequences, so that we can use those as input as well. We use ∅ to
denote the empty sequence; for every non-empty sequence σ we let σ− denote the sequence
derived from σ by dropping the last listed element.

T. Kötzing 497

If a function f is not defined for some argument x, then we denote this fact by f(x)↑,
and we say that f on x diverges; the opposite is denoted by f(x)↓, and we say that f on x
converges. If f on x converges to p, then we denote this fact by f(x)↓ = p. For any total
computable predicate P , we use µx P (x) to denote the minimal x such that P (x) (undefined,
if no such x exists). The special symbol ? is used as a possible hypothesis (meaning “no
change of hypothesis”).

Unintroduced notation for computability theory follows [14]. P andR denote, respectively,
the set of all partial computable and the set of all computable functions (mapping N→ N).
For any function f : N→ N and all i, we use f [i] to denote the sequence f(0), . . . , f(i− 1)
(undefined, if any one of these values is undefined).

We will use a number of basic computability-theoretic results in this paper. First, we
fix a padding function, a 1-1 function pad ∈ R such that ∀p, n, x : ϕpad(p,n)(x) = ϕp(x).
Intuitively, pad generates infinitely many syntactically different copies of the semantically
same program. We require that pad is monotone increasing in both arguments. The S-m-n
Theorem states that there is a 1-1 function s ∈ R such that ∀p, n, x : ϕs(p,n)(x) = ϕp(n, x).
Intuitively, s-m-n allows for “hard-coding” arguments to a program.

2.1 Learning Criteria
In this section we formally introduce our setting of learning in the limit and associated
learning criteria. We follow [13] in its “building-blocks” approach for defining learning criteria.
A learner is a partial computable function from N to N∪{?}. A sequence generating operator
is a function β taking as arguments a function h (the learner) and a function g (the learnee)
and that outputs a function p. We call p the conjecture sequence of h given g. Intuitively, β
defines how a learner can interact with a given learnee to produce a sequence of conjectures.

The most important sequence generating operator is G (which stands for “Gold”, who
first studied it [10]), which gives the learner full information about the learning process so
far; this corresponds to the examples of learning criteria given in the introduction. Formally,
G is defined such that

∀h, g, i : G(h, g)(i) = h(g[i]).

We define two additional sequence generating operators It (iterative learning, [16]) and Td
(transductive learning, [8]) as follows. For all learners h, learnees g and all i,

It(h, g)(i) =
{
h(∅), if i = 0; 3

h(It(h, g)(i− 1), i− 1, g(i− 1)), otherwise;

Td(h, g)(i) =

h(∅), if i = 0;
Td(h, g)(i− 1), else, if h(i− 1, g(i− 1)) = ?;
h(i− 1, g(i− 1)), otherwise.

For both of iterative and transductive learning, the learner is presented with a new datum
each turn (argument/value pair from the learnee in complete and argument-increasing order).
Furthermore, in iterative learning, the learner has access to the previous conjecture, but not
so in transductive learning; however, in transductive learning, the learner can implicitly take
over the previous conjecture by outputting “?”.

Successful learning requires the learner to observe certain restrictions, for example
convergence to a correct index. These restrictions are formalized in our next definition. A

3 h(∅) denotes the initial conjecture (based on no data) made by h.

STACS’14

498 A Solution to Wiehagen’s Thesis

sequence acceptance criterion is a predicate δ on a learning sequence and a learnee. The most
important sequence acceptance criterion is denoted Ex (which stands for “Explanatory”),
already studied by Gold [10]. The requirement is that the conjecture sequence converges (in
the limit) to a correct hypothesis for the learnee (we met this requirement already in the
introduction). Formally, for any programming system4 ψ, we define Exψ as a predicate such
that

Exψ = {(p, g) ∈ R2 | ∃n0, q : ∀n ≥ n0 : p(n) = q ∧ ψq = g}.

Standardly we use Ex = Exϕ. We will meet many more sequence acceptance criteria below.
We combine any two sequence acceptance criteria δ and δ′ by intersecting them; we denote
this by juxtaposition (for example, the sequence acceptance criteria given below are meant
to be always used together with Ex).

For any set C ⊆ P of possible learners, any sequence generating operator β and any
sequence acceptance criterion δ, (C, β, δ) (or, for short, Cβδ) is a learning criterion. A
learner h ∈ C Cβδ-learns the set Cβδ(h) = {g ∈ R | δ(β(h, g), g)}. A set S ⊆ R of possible
learnees is called Cβδ-learnable iff there is a function h ∈ C which Cβδ-learns all elements of
S (possibly more). Abusing notation, we also use Cβδ to denote the set of all Cβδ-learnable
sets (learnable by some learner).

Next we define a number of further sequence acceptance criteria which are of interest for
this paper.

I Definition 1. With Cons we denote the restriction of consistent learning [4, 6] (being
correct on all known data); with Conf the restriction of conformal learning [17] (being
correct or divergent on known data); with Conv we denote the restriction of conservative
learning [2] (never abandoning a conjecture which is correct on all known data); with Mon
we denote the restriction of monotone learning [12] (conjectures make all the outputs that
previous conjectures made – monotonicity in the graphs); finally, with PMon we denote the
restriction of pseudo-monotone learning [18] (conjectures make all the correct outputs that
previous conjectures made). The following definitions formalize these restrictions.

Conf = {(p, g) ∈ R2 | ∀n∀x < n : ϕp(n)(x)↓ ⇒ ϕp(n)(x) = g(x)};
Cons = {(p, g) ∈ R2 | ∀n∀x < n : ϕp(n)(x) = g(x)};
Conv = {(p, g) ∈ R2 | ∀n : p(n) 6= p(n+ 1)⇒ ∃x < n+ 1 : ϕp(n)(x) 6= g(x)};
Mon = {(p, g) ∈ R2 | ∀i ≤ j ∀x : ϕp(i)(x)↓ ⇒ ϕp(j)(x)↓ = ϕp(i)(x)};

PMon = {(p, g) ∈ R2 | ∀i ≤ j ∀x : ϕp(i)(x)↓ = g(x)⇒ ϕp(j)(x)↓ = ϕp(i)(x)}.

An example of a well-studied learning criterion is RGConsEx, requiring convergence of the
learner to a correct conjecture, as well as consistent conjectures along the way.

Furthermore, we are interested in a number of restrictions which disallow certain kinds
of returning to abandoned conjectures. We say that a learner exhibits a U-shape when it
first outputs a correct conjecture, abandons this, and then returns to a correct conjecture.
We distinguish between syntactic U-shapes (returning to the syntactically same conjecture),
semantic U-shapes (returning to the semantically same conjecture, after semantically aban-
doning it; note that we drop the qualifier “semantic” in this case) and strong U-shapes
(outputting a semantically same conjecture after syntactically abandoning it; this is called
strong, because it leads to the stronger restriction). Forbidding these kinds of U-shapes leads

4 We call ψ a programming system iff, for all p, ψp is a computable function, and the function mapping
any p and x to ψp(x) is also (partial) computable.

T. Kötzing 499

to the respective non-U-shapedness restrictions SynNU, NU and SNU. If we consider
forbidding returning to abandoned conjectures more generally, we get three corresponding
restrictions of decisiveness. We give the formal definitions here.

SynNU = {(p, g) ∈ R2 | ∀i ≤ j ≤ k : (ϕp(i) = g ∧ p(i) = p(k))⇒ p(j) = p(i)};
NU = {(p, g) ∈ R2 | ∀i ≤ j ≤ k : ϕp(i) = g = ϕp(k) ⇒ ϕp(j) = ϕp(i)};

SNU = {(p, g) ∈ R2 | ∀i ≤ j ≤ k : ϕp(i) = g = ϕp(k) ⇒ p(j) = p(i)};
SynDec = {(p, g) ∈ R2 | ∀i ≤ j ≤ k : p(i) = p(k)⇒ p(j) = p(i)};

Dec = {(p, g) ∈ R2 | ∀i ≤ j ≤ k : ϕp(i) = ϕp(k) ⇒ ϕp(j) = ϕp(i)};
SDec = {(p, g) ∈ R2 | ∀i ≤ j ≤ k : ϕp(i) = ϕp(k) ⇒ p(j) = p(i)}.

Of these variations of disallowing returning to abandoned conjectures, mostly NU [3] and
Dec [15] are well-studied, but also SNU [5, 18] drew some attention; however, almost all of
this work was done for the case of learning of languages (with the exception of [15]).

Note that the literature knows many more learning criteria than those constructible from
the parts given in this section (see the text book [11] or the survey [19] for an overview).

3 Learning by Enumeration

In this section we formally introduce our notions of learning by enumeration and derive some
easy statements from these definitions. We start with the general definition of learning by
enumeration.

I Definition 2. Let I be a learning criterion and let S ⊆ R be I-learnable by some learner
h ∈ R. We say that h learns by enumeration iff there is a 1-1 enumeration e ∈ R of possible
conjectures such that, for each g ∈ R, there is a monotonically non-decreasing function r
such that e ◦ r is the conjecture sequence of h on g. We say that a learning criterion I allows
for learning by enumeration iff each I-learnable set is I-learnable by a learner learning by
enumeration. We call e the enumeration of conjectures.

Note that, since e is required to be 1-1 and r non-decreasing, in any learning sequence of
an enumeration learner h, no once abandoned hypothesis will be returned to; such abandoned
hypotheses we call refuted. This immediately gives the following remark.
I Remark. Let h learn by enumeration. Then h learns syntactically decisively. In particular,
for any learning criterion I allowing for learning by enumeration, every I-learnable set is
I-learnable by a syntactically decisive learner.

From the wealth of (theoretically possible) learning criteria we quickly see that there are
learning criteria which do not allow for learning by enumeration. For example, the task of
prediction is typically modeled by using the sequence acceptance criterion M (for matching)
defined as {(p, g) | ∃n0∀n ≥ n0 : p(n) = g(n)}; in this case, the output of the learner is
interpreted as the prediction for the next element in the sequence, instead of as a program
(we consider the learning criterion RGM). A relaxation of the strict convergence required by
Ex is given by Fex≤k (k > 0), where a learner may oscillate between at most k different (but
correct!) hypotheses in the limit; as a somewhat unnatural variant, we let Fex=k require
oscillation between exactly k different (and correct) hypotheses. With these definitions, we
get the follwing theorem.

STACS’14

500 A Solution to Wiehagen’s Thesis

I Theorem 3. The following learning criteria do not allow for learning by enumeration.
1. RGM.
2. RGFex=2.
3. RTdEx.
4. For some programming systems ψ, RGExψ.
In fact, all these learning criteria do not even allow for syntactically decisive learning; in the
case of all items except (3) not even for syntactically non-U-shaped learning.

At the side we remark that Theorem 3, (3) cannot be strengthened in the same way as
the other items: RTdEx-learning does allow for strongly non-U-shaped learning, as the next
theorem shows.

I Theorem 4. We have that every RTdEx-learnable set is so learnable by a strongly
non-U-shaped learner, i.e.

RTdSNUEx = RTdEx.

We will see in Theorem 10 that many learning criteria allow for learning by enumeration
because of a simple padding trick, by semantically (but not syntactically) repeating any
relevant conjecture infinitely in the enumeration (see below for details). In the following defi-
nition we strengthen the definition of learning by enumeration by requiring the enumeration
of hypothesis to never semantically repeat a hypothesis.

I Definition 5. A function e ∈ R is called semantically 1-1 iff, for all i, j, ϕe(i) = ϕe(j)
implies i = j. That is (by taking the contrapositive), different pre-images under e not only
give different images, but even semantically different images.

A learner h which learns by enumeration using some e ∈ R as the enumeration of
conjectures is said to learn by semantically 1-1 enumeration iff e is semantically 1-1. For I a
learning criterion, a set S ⊆ R is said to be I-learnable by semantically 1-1 enumeration
iff there is an I-learner h for S learning by semantically 1-1 enumeration. We say that a
learning criterion I allows for learning by semantically 1-1 enumeration iff each I-learnable
set S is I-learnable by semantically 1-1 enumeration.

Some of the power of learning by semantically 1-1 enumeration is shown in the following
remark, strengthening the conclusion of Remark 3.
I Remark. Let h learn by semantically 1-1 enumeration. Then h learns strongly decisively. In
particular, for any learning criterion I allowing for learning by semantically 1-1 enumeration,
every I-learnable set is I-learnable by a strongly decisive learner.

4 The Power of Enumeration Learning

In this section we give our theorems confirming Wiehagen’s Thesis for a wide range of learning
criteria. First we look at the very important family of learning criteria which use G as their
sequence generating operator (full information learning). Note that all examples given in
[18] were from this family (but did not require total learners).

We start by giving a definition for enumerative learning in the G-setting (Definition 6)
and that of pseudo-semantic restrictions (Definition 8). After this we are ready for the first
main theorem of the paper, Theorem 10, which shows that Wiehagen’s Thesis holds for
many learning criteria using G as their sequence generating operator. With Definition 11 we
introduce patching and erasing, which will allow for us to give the second main theorem of
the paper, Theorem 13, which shows that many learning criteria with G as their sequence
generating operator even allow for semantically 1-1 enumeration.

T. Kötzing 501

At the end of this section, with Theorems 16 and 17 and Corollary 18 we show that all
results carry over to It as sequence generating operator.

I Definition 6. A pair (R, e) where R is a total computable predicate over pairs of numbers
and (finite) data sequences and e ∈ R is a 1-1 computable function, is called a G-style
enumeration by refutation pair iff, for all i, σ, y, R(i, σ) implies R(i, σy) (i.e., R is monotone
in the second argument, any conjecture, once refuted, stays refuted) and, for all σ, there is i
such that R(i, σ). The associated enumeration learner h(R,e) is defined such that

∀σ : h(R,e)(σ) = e(µi ¬R(i, σ)).

The following theorem is straightforward to verify.

I Theorem 7. For every δ, if h is a learner RGδ-learning by enumeration according to
Definition 2 with some enumeration of hypotheses e, then there is some R such that h = h(R,e).

In order to exclude the examples given in Theorem 3 we now make some definitions for
learning criteria which allow for learning by enumeration. Intuitively, we focus our attention
on learning criteria which consider all conjectures as ϕ-conjectures, and are only interested
in syntactic properties as far as mind changes are concerned.

I Definition 8. For all p ∈ R, we let

Sem(p) = {p′ ∈ R | ∀i : ϕp(i) = ϕp′(i)};
Mc(p) = {p′ ∈ R | ∀i : (p(i) = p(i+ 1)⇒ p′(i) = p′(i+ 1))}.

A sequence acceptance criterion δ is said to be a semantic restriction iff, for all (p, g) ∈ δ
and p′ ∈ Sem(p), (p′, g) ∈ δ. A sequence acceptance criterion δ is said to be a pseudo-semantic
restriction iff, for all (p, g) ∈ δ and p′ ∈ Sem(p) ∩Mc(p), (p′, g) ∈ δ.

Intuitively, semantic restrictions allow for arbitrarily changing the syntax of the conjec-
tures, as long as the semantics stay the same. Pseudo-semantic restrictions further require
that no additional mind changes are introduced this way.

I Example 9. Any intersection of two (pseudo-) semantic restrictions is a (pseudo-) semantic
restriction. Example semantic restrictions include Conf , Cons, Mon, PMon, NU, Dec;
pseudo-semantic restrictions include Ex, Conv, SNU and SDec. Many more learning
criteria from the literature could be added to these lists.

Example sequence acceptance criteria which are not pseudo-semantic restrictions include
M (prediction), SynNU, SynDec and several more from the literature.

With these definitions we can now formulate the first main theorem of the paper, con-
firming Wiehagen’s Thesis for a large family of G-style learning criteria.

I Theorem 10. Let δ be a pseudo-semantic restriction. Then RGδ allows for learning by
enumeration.

Proof. The proof is based on a “padding trick”: we can safely refute any hypothesis as
long as we make sure that a (syntactically different) copy of the refuted hypothesis is still
available. Formally, let S ∈ RGδ, as witnessed by a learner h ∈ R. We define a computable
predicate R and c, e ∈ R such that

c(∅) = 0;
∀σ 6= ∅ : c(σ) = µn 〈h(σ−), c(σ−)〉 ≤ 〈h(σ), n〉;
∀m,n : e(m,n) = pad(m,n); 5

∀i, σ : R(i, σ) ⇔ 〈h(σ), c(σ)〉 > i.

STACS’14

502 A Solution to Wiehagen’s Thesis

Clearly, e is 1-1 and R is monotone in the second component (as c is monotone). Let
g ∈ S. Let p = G(h, g) be the conjecture sequence of h on g and p′ = G(h(R,e), g) the
conjecture sequence of h(R,e) on g. It remains to show that p′ ∈ Sem(p) ∩Mc(p). We start
with p′ ∈ Sem(p). For all j, x we have6

ϕ(p′(j), x) = ϕ(h(R,e)(g[j]), x)
= ϕ(e(µi ¬R(i, g[j])), x)
= ϕ(e(µi 〈h(g[j]), c(g[j])〉 ≤ i), x)
= ϕ(e(〈h(g[j]), c(g[j])〉), x)
= ϕ(pad(h(g[j]), c(g[j])), x)
= ϕ(h(g[j]), x)
= ϕ(p(j), x).

Hence, p′ ∈ Sem(p).
Suppose j ∈ N such that h(g[j]) = h(g[j + 1]). Then, c(g[j + 1]) = c(g[j]); hence,

for all i, R(i, g[j]) ⇔ R(i, g[j + 1]) (there are no new hypotheses rejected). Therefore,
h(R,e)(g[j]) = h(R,e)(g[j + 1]). This shows p′ ∈ Mc(p). J

We are now interested in strengthening the conclusion of Theorem 10 by restricting the
family of learning criteria under consideration. For this we introduce variations on the notion
of a pseudo-semantic restriction.

I Definition 11. Let δ be a sequence acceptance criterion. We say that δ allows for patching
iff, for all (p, g) ∈ δ and p′ ∈ Mc(p) such that all conjectures of p′ are just as the corresponding
conjectures of p, only possibly corrected for some arguments (these corrections are called
patches); we say δ allows for monotone patching if this holds for all p′ ∈ Mc(p) which patch
later conjectures in all the places that earlier conjectures are patched at. Formally, δ allows
for monotone patching iff, for all (p, g) ∈ δ and all p′ ∈ Mc(p) where there is (An)n∈N such
that

∀n < m : An ⊆ Am;

∀n, x : ϕp′(n)(x) =
{
ϕp(n)(x), if x 6∈ An;
g(x), if x ∈ An.

we have (p′, g) ∈ δ. If we drop the first requirement of monotonicity of (An)n∈N, we get the
formal definition for δ allowing for patching.

We say that δ allows for erasing iff, for all (p, g) ∈ δ and p′ ∈ Mc(p) such that all
conjectures of p′ are just as the corresponding conjectures of p, only possibly made divergent
for some arguments for which no data is known (the arguments set to diverge are called
erased); we say δ allows for monotone erasing if this holds for all p′ ∈ Mc(p) which erase in
later conjectures at at most the places that earlier conjectures were erased at (and only on
unknown data). Finally, we say δ allows for almost-monotone erasing iff monotone erasing
is violated only when the new conjecture corrects an earlier mistake; formally: δ allows for
almost-monotone erasing iff for all (p, g) ∈ δ and p′ ∈ Mc(p) we have (p′, g) ∈ δ if there is a

5 The function pad was defined in Section 2.
6 For convenience we write, for all a, z, ϕ(a, z) instead of ϕa(z).

T. Kötzing 503

sequence (An)n∈N of subsets of N such that the following hold.

∀n : An ∩ {0, . . . n− 1} = ∅;
∀n,m : n ≤ m⇒ (Am ⊆ An ∨ ∃x : ϕp(m)(x) = g(x) 6= ϕp(n)(x)↓);

∀n, x : ϕp′(n)(x) =
{
ϕp(n)(x), if x 6∈ An;
↑, if x ∈ An.

Intuitively, an almost-monotone erasing erases less and less except when the new conjecture
corrects a convergent mistake, and only erases where no data is available.

For example, if some δ allows for (monotone) patching, then a RGδ-learner can always
patch all known data into the conjecture (up to the last mind change – otherwise p′ ∈ Mc(p)
will be violated). We use almost-monotone erasing in Theorem 13, where we need something
more than just monotone erasing, and do not require full erasing power for the sake of
generality. Note that any δ allowing for (monotone) patching or erasing is a pseudo-semantic
restriction.

I Example 12. Any intersection of two sequence acceptance criteria allowing for (monotone)
patching or erasing again allows for (monotone) patching or erasing, respectively; the same
holds for almost-monotone erasing. Examples of sequence acceptance criteria allowing for
patching and erasing are Conf , Cons and Ex; Mon and PMon allow for monotone patching
and monotone erasing. Mon, but not PMon, allows for almost-monotone erasing.

With the definition of a patching and erasing we can now give another main theorem of
the paper. The proof uses ideas from proofs in [18] (where, implicitly, special cases of this
theorem have been proven), as well as from [7], which gives a general technique for avoiding
U-shapes in language learning.

I Theorem 13. Let δ allow for monotone patching and almost-monotone erasing. Then RGδ

allows for learning by semantically 1-1 enumeration. Furthermore, there is an enumeration
learner which learns conservatively.

Proof. Let S ∈ RGδ as witnessed by some learner h ∈ R. As δ allows for monotone patching,
we can assume, without loss of generality, that h patches each new conjecture with the known
data at every mind change.

Let M be the set of all finite sequences σ such that either σ = ∅ or h(σ−) 6= h(σ). Note
that M is a decidable set. We can assume, without loss of generality, that M is infinite; as
otherwise we can introduce dummy members into M which will not invalidate the proof.
Thus, there is a 1-1 total computable enumeration (τi)i∈N of all and only the elements in M
respecting the order on finite sequences (i.e., for all i, j, if τi ⊆ τj , then i ≤ j; in particular,
τ0 = ∅). For all i, we let z(i) = h(τi) be the conjecture after the ith listed sequence and
n(i) = len(τi) the length of the ith sequence. We define e with s-m-n such that, for all i
and x,

ϕe(i)(x) =

ϕz(i)(x), if x < n(i) or, for all y with n(i) < y < x :

ϕz(i)(y)↓ and h(ϕz(i)[y + 1]) = z(i);
↑, otherwise.

Note that, for all i, ϕz(i)[n(i)]↓ = τi, as we assumed that h patches all known data into the
new conjecture at each mind change. In particular, this shows that e is semantically 1-1. We
define R as follows.

R(i, σ)⇔ τi and σ are ⊆-incomparable or τi ⊂ σ and ∃σ′ : τi ⊆ σ′ ⊆ σ ∧ h(σ′) 6= h(τi).

STACS’14

504 A Solution to Wiehagen’s Thesis

Note that R is total computable and monotone in its second argument. Intuitively, we
always use the conjecture that h would have used, modified appropriately to ensure that the
enumeration is semantically 1-1. Clearly, (R, e) is an G-style enumeration by refutation pair.
We show that h(R,e) RGδ-learns S.

Let g ∈ S. Let p = G(h, g) be the conjecture sequence of h on g and p′ = G(h(R,e), g)
the conjecture sequence of h(R,e) on g. From the order of listing of the τi and the definition
of R we get that, for all n, p′(n) = e(i) for i such that τi is the ⊆-maximal element of M
with τi ⊆ g[n]; this also gives that h made no mind change between τi and g[n]. Thus,
we get p′ ∈ Mc(p) and, for all n, p(n) and p′(n) are semantically equivalent apart from
possibly erased arguments; let (An)n∈N be the corresponding sequence of erased sets of
arguments (which are thus exactly the arguments on which the corresponding conjecture
p′(n) is undefined). Let now n < m be such that Am 6⊆ An. Without loss of generality, n = 0
or p(n) 6= p(n− 1) and p(m) 6= p(m− 1). Thus, p′(n) = e(i) with τi = g[n] and p′(m) = e(j)
with τj = g[m]. Then we get from patching that ϕp(m)(m − 1) = g(m − 1). Furthermore,
Am contains only numbers ≥ m, and since An is closed upwards and Am 6⊆ An, we get
m− 1 6∈ An. This shows that ϕp′(n)(m− 1) = ϕe(i)(m− 1) converges; thus, it converges to
the same value as ϕp(n) on m− 1. However, this value cannot equal g(n), as this value leads
to a mind change (this we get from τj ∈M), and any value leading to a mind change would
be erased by the definition of e. J

We can see the deep power and versatility of Theorem 13 in connection with Remark 3 and
the various examples of sequence acceptance criteria fulfilling the prerequisites of Theorem 13,
which leads, for example, to the following corollary.

I Corollary 14. The following learning criteria allow for learning strongly decisively and
conservatively. RGEx; RGConfEx; RGConsEx; RGMonEx; RGConsMonEx.

At the side we remark that Theorem 13 cannot be improved to apply also to pseudo-monotone
learning, as the following Theorem shows.

I Theorem 15. There is a RGPMonEx-learnable set of functions which cannot be so
learned strongly non-U-shapedly.

Finally, we show that analogous theorems can also be derived for iterative learning.
Theorem 16 is analogous to Theorem 10, and Theorem 17 is analogous to Theorem 13; both
proofs are also analogous, but different in some details.

I Theorem 16. Let δ be a pseudo-semantic restriction. Then RItδ allows for learning by
enumeration.

I Theorem 17. Let δ allow for monotone patching and almost-monotone erasing. Then RItδ
allows for learning by semantically 1-1 enumeration. Furthermore, there is an enumeration
learner which learns conservatively.

Just as in the case of G-style learning, were we got a powerful corollary (Corollary 14),
we get the analogous corollary also for It-style learning.

I Corollary 18. The following learning criteria allow for learning strongly decisively and
conservatively. RItEx; RItConfEx; RItConsEx; RItMonEx; RItConsMonEx.

T. Kötzing 505

References
1 Y. Akama and T. Zeugmann. Consistent and coherent learning with δ-delay. Information

and Computation, 206:1362–1374, 2008.
2 D. Angluin. Inductive inference of formal languages from positive data. Information and

Control, 45:117–135, 1980.
3 G. Baliga, J. Case, W. Merkle, F. Stephan, and W. Wiehagen. When unlearning helps.

Information and Computation, 206:694–709, 2008.
4 J. Bārzdiņš. Inductive inference of automata, functions and programs. In Proc. of the

International Congress of Mathematicians, pages 455–560, 1974. English translation in,
American Mathematical Society Translations: Series 2 109 (1977), pp. 107-112.

5 H.R. Beick. Induktive Inferenz mit Höchster Inferenzgeschwindigkeit. PhD thesis, Humboldt
University of Berlin, 1984.

6 L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

7 J. Case and T. Kötzing. Strongly non-U-shaped learning results by general techniques. In
Proc. of COLT (Conference on Learning Theory), pages 181–193, 2010.

8 J. Case and T. Kötzing. Learning secrets interactively. Dynamic modeling in inductive
inference. Information and Computation, 220:60–73, 2012.

9 J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193–220, 1983.

10 E. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.
11 S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An Introduction to

Learning Theory. MIT Press, Cambridge, Massachusetts, second edition, 1999.
12 K. Jantke. Monotonic and non-monotonic inductive inference of functions and patterns. In

J. Dix, K. Jantke, and P. Schmitt, editors, Nonmonotonic and Inductive Logic, volume 543
of Lecture Notes in Computer Science, pages 161–177. 1991.

13 T. Kötzing. Abstraction and Complexity in Computational Learning in the Limit. PhD
thesis, University of Delaware, 2009. Available online at
http://pqdtopen.proquest.com/#viewpdf?dispub=3373055.

14 H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New
York, 1967. Reprinted by MIT Press, Cambridge, Massachusetts, 1987.

15 G. Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. PhD
thesis, RWTH Aachen, 1984.

16 R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Elektro-
nische Informationverarbeitung und Kybernetik, 12:93–99, 1976.

17 R.Wiehagen. Zur Theorie der Algorithmischen Erkennung, 1978. Dissertation B, Humboldt
University of Berlin.

18 R. Wiehagen. A thesis in inductive inference. In Proc. of the Workshop on Nonmonotonic
and Inductive Logic, pages 184–207, 1991.

19 Thomas Zeugmann and Sandra Zilles. Learning recursive functions: A survey. Theoretical
Computer Science, 397:4–56, 2008.

STACS’14

Space-Efficient String Indexing for Wildcard
Pattern Matching

Moshe Lewenstein1, Yakov Nekrich∗2, and Jeffrey Scott Vitter2

1 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel

2 Department of Electrical Engineering and Computer Science, University of

Kansas, Lawrence, US

Abstract

In this paper we describe compressed indexes that support pattern matching queries for strings

with wildcards. For a constant size alphabet our data structure uses O(n logε n) bits for any

ε > 0 and reports all occ occurrences of a wildcard string in O(m + σg · µ(n) + occ) time,

where µ(n) = o(log log logn), σ is the alphabet size, m is the number of alphabet symbols

and g is the number of wildcard symbols in the query string. We also present an O(n)-
bit index with O((m + σg + occ) logε n) query time and an O(n(log logn)2)-bit index with

O((m+ σg + occ) log logn) query time. These are the first non-trivial data structures for this

problem that need o(n logn) bits of space.

1998 ACM Subject Classification F2.2.Nonnumerical Algorithms and Problems

Keywords and phrases compressed data structures, compressed indexes, pattern matching

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.506

1 Introduction

In the string indexing problem, we pre-process a source string T , so that all occurrences of a

query string P in T can be reported. This is one of the most fundamental data structure

problems. While handbook data structures, suffix arrays and suffix trees, can answer string

matching queries efficiently, they store the source string T in Θ(logn) bits of space per

symbol. In situations when massive amounts of data must be indexed, the space usage can

become an issue. Compressed indexes that use o(logn) or even H0 bits per symbol, where

H0 denotes the zero-order entropy, were studied extensively. We refer the reader to [12] for a

survey of results on compressed indexing.

In many scenarios we are interested in reporting all occurrences of strings that resemble

the query string P̃ but do not have to be identical to P̃ . The problem of approximate

pattern matching is important for biological applications and information retrieval and has

received considerable attention [3, 9, 14, 19, 1, 2]. In this paper we consider a variant of the

approximate pattern matching when the query string P̃ may contain wildcards (don’t care

symbols), and the wildcard symbol matches any alphabet symbol.

The standard indexing data structures can be used to answer wildcard pattern matching

queries. A pattern P̃ with g wildcard symbols matches σg different patterns, where σ denotes

the size of the alphabet. We can generate all patterns that match P̃ and report all occ
occurrences of these patterns (and hence all occurrence of P̃) in O(m ·σg+occ) time, where m

is the number of alphabet symbols. If the maximal number of wildcards in a query is bounded

∗ The work of this author is partially supported by NSERC of Canada.

© Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 506–517

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.506
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Lewenstein, Y. Nekrich, and J. S. Vitter 507

Table 1 Previous and new results on unbounded wildcard indexing; m and g denote the number

of alphabet symbols and wildcards in the query pattern.

Ref. Space Usage Query Time

[3] O(n logn) words O(m+ σg log logn+ occ)
[1] O(n) words O(m+ σg log logn+ occ)
New O(n logε n) bits O(m+ σg

√
log(3) n+ occ)

New O(n(log logn)2) bits O((m+ σg + occ) log logn)
New O(n) bits O((m+ σg + occ) logε n)

by k (k-bounded indexing), we can store a compressed trie with all possible combinations of

k wildcard symbols for every suffix. Then a query can be answered in O(|P̃ |+ occ) time, but

the total space usage is O(nk+1) words of Θ(logn) bits.

Cole et al. [3] presented an elegant data structure for k-bounded indexing. Their solution

needs O(n logk n) words of space and answers wildcard queries in O(m+ 2g log logn+ occ)
time. Very recently this has been improved in [10] to O(n logk+ε n) bits of space with the

same query time as Cole et al. [3]. Bille et al. [1] obtained another trade-off: for any pre-

defined k and β, their k-bounded index uses O(n logn logk−1
β n) words and answers queries

in O(m+βg log logn+ occ) time. These indexes can provide fast answers to wildcard queries

when the number of wildcards is small. However the space usage of the above data structures

is high even when k is a constant. For super-constant values of k (for instance, when the

maximal number of wildcards is bounded by log logn) the cost of storing the data structure

may become prohibitive.

Another line of research is the design of data structures that use linear or almost-linear

space and support queries with an arbitrarily large number of wildcards. Cole et al. [3] describe

a data structure that uses O(n logn) words and answers queries in O(m+ σg log logn+ occ)
time. Iliopoulos and Rahman [14] and Lam et al. [9] describe linear-space indexes; however,

their data structures need Θ(n) worst-case time to answer a query. Recently, Bille et al. [1]

described an O(n)-words data structure that answers queries in O(m + σg log logn + occ)
time.

When the amount of stored data is very large, even linear space usage can be undesirable.

While numerous compressed indexes for exact pattern matching are known, there are no

previously described data structures for wildcard indexing that use o(n logn) bits. In this

paper we present sublinear space indexes for wildcard pattern matching. Our results are

especially conspicuous when the alphabet size is constant. Our first data structure uses

O(n logε n) bits and reports occurrences of a wildcard pattern in O(m+ σg
√

log(3) n+ occ)
time1; henceforth ε denotes an arbitrarily small positive constant. Thus we improve both the

space usage and the query time of the previous best data structure [1]. The space usage can be

further decreased at cost of slightly increasing the query time. We describe two indexes that

use O(n) and O(n(log logn)2) bits of space; queries are supported in O((m+σg +occ) logε n)
and O((m+ σg + occ) log logn) time respectively. Previous and new results with worst-case

efficient query times are listed in Table 1.

In this paper we assume, unless specified otherwise, that the alphabet size is a constant.

But our techniques are also relevant for the case when the alphabet size is arbitrarily large. We

can obtain an O(n log σ)-bit data structure that answers queries in O((m+ σg + occ) logεσ n)

1 log(3) n = log log logn.

S TAC S ’ 1 4

508 Space-Efficient String Indexing for Wildcard Pattern Matching

time. We can also obtain an O(n logn)-bit data structure that supports queries in O(m+
σg + occ) time if σ ≥ log logn. Other interesting trade-offs are possible and will be described

in the full version of this paper.

In Section 2, we recall some results related to compressed suffix trees and suffix arrays and

compressed data structures for a set of integers. We also define the unrooted LCP queries,

introduced in Cole et al. [3], that are the main tool in all currently known efficient structures

for wildcard indexing. In Section 3 we describe data structures that answer unrooted LCP

queries on a small subtree of the suffix tree. Our data structures need only a small number of

additional bits if the (compressed) suffix tree and suffix array of the source text are available.

In Section 4, we describe compact data structures that answer LCP queries and wildcard

pattern matching queries on an arbitrarily large suffix tree. These data structures are based

on a subdivision of suffix tree nodes into small subtrees. In Sections 5, 9, and 7 we show

how we can speed-up the data structures from [3], [1] and retain o(n logn) space usage. The

main component of our improvement is a method for processing batches of unrooted LCP

queries. In previous works [3, 1] LCP queries were answered one-by-one.

2 Preliminaries

Unrooted LCP Queries. In this paper s1 ◦ s2 denotes the concatenation of strings s1
and s2 and T denotes the suffix tree of the source text. A string str(v, u) is obtained by

concatenating labels of all edges on the path from v to u and str(u) = str(vr, u) for the

root node vr of T . A location on a suffix tree T is an arbitrary position on an edge of T ; a

location on an edge (v, u) can be uniquely identified by specifying the edge (u, v) and the

offset from the upper node of (u, v). We can straightforwardly extend the definitions of

str(ṽ, ũ) and str(ũ) to arbitrary locations ũ and ṽ. The unrooted LCP query (v, P), defined

in [3], asks for the lowest descendant location ũ of a node v, such that str(v, ũ) is a prefix

of a string P . Thus an unrooted LCP query provides the answer to the following question:

if we were to search for a pattern P in a subtree with root v, where would the search end?

While we can obviously answer this question in O(|P |) time by traversing the trie starting at

v, faster solutions are also possible.

As in the previous works [3, 1], we consider the following two-stage scenario for answering

queries: during the first stage an arbitrary string P is pre-processed in O(|P |) time; during

the second stage, we answer queries (u, Pj) for any suffix Pj of P and any u ∈ T . Cole

et al. [3] described an O(n log2 n)-bit data structure that answers unrooted LCP queries in

O(log logn) time. Bille et al. [1] improved the space usage to linear (O(n logn) bits).

Compressed Suffix Arrays and Suffix Trees. The suffix array SA for a text T contains

starting positions of T ’s suffixes sorted in lexicographic order: SA[i] = k if the suffix T [k..n]
is the k-th smallest suffix of the text T . We will say that i is the rank of the suffix T [k..n].
An inverse suffix array stores information about lexicographic order of suffixes: SA−1[k] = i

iff SA[i] = k. We will say that a data structure provides a suffix array functionality in time

tSA if it enables us to compute SA[i] and SA−1[k] for any 1 ≤ i, k ≤ n in O(tSA) time. A

number of compressed data structures provide suffix array functionality in little time.

I Lemma 1. If the alphabet size σ = O(1), the following trade-offs for space usage s(n) and

tSA are possible: (a) s(n) = O((1/ε)n) and tSA(n) = O(logε n), or (b) s(n) = O(n log logn)
and tSA(n) = O(log logn), or (c) s(n) = O(n logε n) and tSA(n) = O(1) for any constant

ε > 0

Proof. Result (a) is shown in [17] and results (b), (c) are from [15] J

M. Lewenstein, Y. Nekrich, and J. S. Vitter 509

If SA[t] = f the function Ψi(t) computes the position of the suffix T [f + i..n] in the suffix

array. This function can be computed in O(tSA) time as SA−1[SA[t] + i]. Let the string

depth of a node v ∈ T be the length str(v). If the suffix array functionality is available, we

can store the suffix tree in O(n) additional bits, so that the string depth of any node v can

be computed in O(tSA) time [18, 4, 16].

Using O(n) additional bits, we can process a string P in O(|P |tSA) time and find for any

suffix P j = P [j..|P |] of P : (i) the rank rj of P j in T and (ii) the longest common prefix

(LCP) of P j and the suffixes SA[rj], SA[rj + 1] of T . We can obtain this information in

O(|P |tSA) time by following the suffix links in a compressed suffix tree. For completeness,

we provide a description of this procedure in [11].

Heavy Path Decomposition. Let T be an arbitrary tree. We can decompose T into disjoint

root-to-leaf paths, called heavy paths. If an internal node u ∈ T is on a heavy path p, then

its heaviest child ui (that is, the child with the greatest number of leaf descendants) is also

on p. If the child uj of u is not on p, then u has at least twice as many leaf descendants as u.

Therefore the heavy-path decomposition of T guarantees that any root-to-leaf path in T
intersects with at most logn heavy paths; we refer to [8] for details.

Searching in a Small Set. We can search in a set with a poly-logarithmic number of

elements using the data structure called an atomic heap [5]. An atomic heap on a set of

integers S, |S| = logO(1) n, uses linear space and enables us to find for any integer q the

largest e ∈ S such that e ≤ q (respectively, the smallest e ∈ S such that e ≥ q) in O(1) time.

Using the result of Grossi et al. [6], we can search in a small set using small additional space

and only one access to elements of S.

I Lemma 2 ([6], Lemma 3.3). Suppose that |S| = logO(1) n and e ≤ n for any e ∈ S. There

exists a data structure D that uses O(|S| log logn) additional bits and answers predecessor

and successor queries on S in O(1) time. When a query is answered, only one element e′ ∈ S
needs to be accessed.

3 Unrooted LCP Queries on Small Sets

In this section we describe compact data structures that answer LCP queries on a small

set of suffixes. We consider a set S that contains a poly-logarithmic number of consecutive

suffixes from the suffix array of S. Our data structure supports queries of the form (u0, P)
where u0 ∈ T0 and T0 is a subtree of the suffix tree T induced by suffixes from S; the query

answer is the lowest location ṽ ∈ T0 below ũ, such that str(u0, ṽ0) is a prefix of P . These

data structures are an important building block of data structures that will be constructed

in the following sections and a key to space-saving solution: we will show in section 4 how a

suffix tree can be divided into small subtrees. In this section we show how unrooted LCP

queries can be supported on such small subtrees. The main idea is to keep the (ranks of)

suffixes in succinct predecessor data structures that need O(log logn) additional bits per

element; we do not have to store the ranks in these data structures because they can be

retrieved in O(tSA) time using the (compressed) suffix tree and the (compressed) suffix array.

Thus we can answer unrooted LCP queries on T0 using O((log logn)2) bits per suffix. We

assume in the rest of this section that S contains f = O(log3 n) consecutive suffixes and T0
is a subtree of the suffix tree induced by suffixes from S.

I Lemma 3. There exists a data structure that uses O(f(log logn)2) additional bits of space

and answers unrooted LCP queries on T0 in O(1) time. We assume that our data structure

S TAC S ’ 1 4

510 Space-Efficient String Indexing for Wildcard Pattern Matching

can access the suffix tree of T , the suffix array of T , the inverse suffix array of T , and a

universal look-up table of size O(ng) for an arbitrarily small positive constant g.

Proof. Let T0 denote the part of the suffix tree induced by suffixes in S. We apply the heavy

path decomposition to nodes of T0. Let S(u) denote the set that contains all strings str(w, vl)
for the parent w of u and all leaf descendants vl of u. We remark that all elements of S(u)
are suffixes of T . The global rank of a suffix Suf is its position in the suffix array of T . Let

R(u) denote the set of global ranks of all suffixes in S(u). For every node u ∈ T0 and each of

its children ui that are not on the same heavy path as u, we store a data structure D(ui).
D(ui) answers predecessor queries on R(ui). It is not necessary to store the set R(u) itself:

an arbitrary element of R(u) can be accessed using the functionality provided by the suffix

array. Suppose that the global rank of the suffix corresponding to str(w, vp), where vp is the

p-th leaf descendant of S(u), should be computed. Since we can access the suffix tree, we

can find the rank r1 of the suffix that ends in the leaf vp. Then the suffix corresponding to

str(w, vp) has rank SA[SA−1[r1] + depth(w)] where depth(w) is the string depth of the node

w in the global suffix tree. By Lemma 2, D(ui) can be stored in O(|S(ui)| log logn) bits

and answer predecessor queries in O(1) time. The total number of elements in all D(u) is

O(f log f) = O(f log logn). Thus all D(u) need O(f(log logn)2) bits or o(f) words of logn
bits. For every heavy path hj on T0 we keep a data structure Hj that contains the depths of

all nodes. Hj is also implemented as described in Lemma 2 and uses O(log logn) bits per

node.

The search for an LCP in T0 is organized in the same way as in [3]. To answer a query

(u, Pj), u ∈ T0, we start by finding l0 = lcp(Pj , SA[r]), where r is the rank of the suffix that

starts at u and ends in the leaf vh, such that u and vh are on the same heavy path. Let u′

denote the lowest node of depth d1 ≤ depth(u) + l0 that is on the same heavy path h0 in T0
as u. If d1 6= depth(u) + l0, then u′ is the answer to our query. If d1 = depth(u) + l0 and u′

is a leaf, then again u′ is the answer to our query. If d1 = depth(u) + l0 and u′ is not a leaf,

we identify the child uj of u′ that is labelled with Pj [d1 + 1]. If such a child does not exist,

then again u′ is the answer. Otherwise, we find the rank r′ of P ′j = Pj [d1 + 1..|Pj |]. Using

D(uj), we find the predecessor and the successor of r′ in S(uj).
Let Sl and Sr denote the corresponding suffixes of D(uj). We can compute ll = lcp(P ′j , Sl)

and lr = lcp(P ′j , Sr). Suppose that ll ≥ lr. Let ul be the node of depth at most depth(uj)+ lj
on the path from uj to the leaf ll containing Sl. The node ul, that can be found by answering

an appropriate level ancestor query for ll, is the answer to the original LCP query. The case

when lr > ll is handled in the same way. J

In the following two Lemmas we extend the result of Lemma 3 to the situation when

the data structure is stored in compressed form. We assume that we can compute SA[i],
SA−1[i] for any i, 1 ≤ i ≤ n, in O(tSA) time; we also assume that compressed suffix tree with

functionality described in Section 2 is available. Only additional bits necessary to support

queries on T0 are counted.

I Lemma 4. There exists a data structure that uses O(f(log logn)3) additional bits of space

and answers unrooted LCP queries on T0 in O(tSA) time. Our data structure uses a universal

look-up table of size O(ng) for an arbitrarily small positive constant g.

Proof. We use the same data structure as in the proof of Lemma 4, but SA[SA−1[r1] +
depth(w)] and depth(u) are computed in O(tSA) time. It is not necessary to store T .

Information about the heavy path decomposition of T0 can be stored in O(f) bits. We

show how this can be done in [11]. Data structures Hi need O(log logn) bits per node.

M. Lewenstein, Y. Nekrich, and J. S. Vitter 511

Since queries on Hj and D(u) are answered in O(tSA) time, an unrooted LCP query is also

answered in O(tSA) time. J

The following Lemma is proved in [11].

I Lemma 5. There exists a data structure that uses O(f) additional bits of space and

answers unrooted LCP queries on T0 in O((tSA(log log logn)) time. Our data structure uses

a universal look-up table of size O(ng) for an arbitrarily small positive constant g.

4 Wildcard Pattern Queries in Less Space

Now we are ready to describe the compact data structure for wildcard indexing. Our

approach is as follows. We divide the suffix tree T into subtrees, so that each subtree has a

poly-logarithmic number of nodes and results of Section 3 can be applied to each subtree. We

also keep a tree Tm that has one representative node for each subtree and stores information

about positions of small subtrees in T . Unrooted LCP queries are answered in two steps.

First, we identify the small subtree that contains the answer using data structures on Tm.

Then we search in the small subtree using the data structure of Section 3. We select the size

of subtrees so that Tm and data structures for Tm use O(n) bits. A detailed description of

our data structure is given below.

Data Structure. Let τ = σ log2 n. We visit all leaves of the suffix tree T in left-to-right

order and mark every τ -th leaf. We visit all internal nodes of T in bottom-to-top order and

mark each node u such that at least two children of u have marked descendants. Finally the

root node is also marked.

We divide the nodes of the suffix tree into groups as follows. Let u be a marked internal

node, such that all its non-leaf descendants are unmarked. Each child ui of u contains at

most one marked leaf (because otherwise the subtree rooted at ui would contain marked

internal nodes). The subtrees rooted at children ui, . . . , ud of u are distributed among groups

Gj(u). We select indices i1 = 1, i2, . . ., it = m such that exactly one node among uij , . . .,

uij+1−1 has a marked leaf descendant. For each j, 1 ≤ j < t, all nodes in the subtrees

of uij , . . . , uij+1−1 are assigned to group Gj(u). Every Gj(u) contains O(τ) nodes. Now

suppose that a marked node u has marked descendants. We divide the children of u into

groups G(u, v) such that exactly one child ui of u in each G(u, v) has exactly one direct

marked descendant. That is, in every G(u, v) there is exactly one child ui of u satisfying one

of the following two conditions: (i) ui is marked (in this case ui is assigned to the group

G(u, ui)) or (ii) ui has exactly one marked descendant v such that there are no other marked

nodes between ui and v. The group G(u, v) also contains all nodes that are descendants of

ui but are not proper descendants of v. To make nodes of G(u, v) a subtree, we also include

u into G(u, v). The number of nodes in G(u, v) is also bounded by O(τ).
Each node w ∈ T belongs to some group Gj(u) or G(v, u). The total number of groups

is O(n/τ) because each group can be associated with one marked node. Since every Gj(u)
is a subtree, we can answer unrooted LCP queries on the nodes (and locations) of Gj(u)
implemented according to Lemma 4. Furthermore we divide every G(v, u) into two overlapping

subgroups: Gl(v, u) contains all nodes of G(v, u) that are on the path from v to u or to the

left of this path; Gr(v, u) contains all nodes of G(v, u) that are on the path from v to u or to

the right of this path. We also add the leftmost and rightmost leaf descendants of the node

u, where u is the marked node in G(v, u), to Gl(v, u) and Gr(v, u) respectively. The leaves

in each group Gl(v, u) and Gr(v, u) correspond to τ consecutive suffixes. Therefore we can

S TAC S ’ 1 4

512 Space-Efficient String Indexing for Wildcard Pattern Matching

answer unrooted LCP queries on Gl(u, v) and Gr(u, v) using Lemmas 4 or 5. The answer

to an unrooted LCP query on G(u, v) can be obtained from answers to the same query on

Gl(u, v) and Gr(u, v). The data structures for unrooted LCP queries on Gj(u), Gl(u, v) and

Gr(u, v) will be denoted Dj(u), Dl(u, v) and Dr(u, v) respectively. Each node belongs to at

most two groups; therefore all group data structures need O(n) bits of space.

The nodes of the suffix tree are stored in compressed form described in Section 2. The

depth and the string depth of any node can be computed in O(tSA) time. We can also

pre-process an arbitrary pattern in O(|P |tSA) time, so that the LCP of any suffixes P [j..|P |]
and T [i..n] can be found in O(tSA) time.

Moreover, we keep all suffixes that are stored in marked leaves of the suffix tree in a

compressed trie Tm. Nodes of Tm correspond to marked nodes of T . Unrooted LCP queries

on Tm can be answered in O(log logn) time using O((n/τ) log2 n) = O(n/σ) bits; see Lemma

11 in [11].

In every node of Tm we store a pointer to the corresponding marked node of T . We also

keep a bit vector B that keeps data about marked and unmarked nodes of T ; the order of

nodes is determined by a pre-order traversal of T . The i-th entry B[i] is set to 1 if the i-th

node (in pre-order traversal) is marked, otherwise B[i] is set to 0. Using o(n) additional bits,

we can compute the number of preceding 1’s for any position in B in O(1) time [13]. Hence

for any node u ∈ T , we can find the number of marked nodes that precede u in the pre-order

traversal of T . We also store an array Am; the i-th entry of Am contains a pointer to the

node of Tm that corresponds to the i-th marked node in T . Using B and Am, we can find the

node of Tm that corresponds to a given marked node of T in O(1) time. We will also need

another data structure to facilitate the navigation between marked nodes and its children.

For every marked node u with marked internal descendants and for all groups G(u, v), we

store the first character on the label of the edge from u to its leftmost child ui ∈ G(u, v) in a

predecessor data structure.

Queries. Consider an unrooted LCP query (u, P). If u is marked, we find the lowest marked

descendant u′ of u, such that str(u, u′) is a prefix of P . We find the child ui of u′ such that the

edge from u′ to ui is labelled with a string si and str(u, u′) ◦ si is a prefix of P . Then we use

the data structure Dj(u) (respectively Dl(u,w) and Dr(u,w)) for the subtree that contains

ui and answer an unrooted LCP query (ui, P ′) for P ′ satisfying str(u, u′) ◦ si ◦ P ′ = P . The

answer to the latter query provides the answer to the original query (u, P). If u is unmarked,

we start by answering the query (u, P) using the data structure for the group that contains

u. If the answer is an unmarked node u1 (or a location ũ1 on an edge that starts in an

unmarked node), then u1 (respectively ũ1) is the answer to our query. If u1 is marked, we

answer the query (u1, P1), where P1 is the remaining suffix of P , as described above. Again

we obtain the answer to the original query (u, P).
We can report all occurrences of P̃ = φP1φP2 . . . φPd by answering at most σd unrooted

LCP queries and σd accesses to the compressed suffix tree. For all alphabet symbols a we

find the location of the pattern aP1 by answering a wildcard LCP query. For each symbol a,

such that the location ũa of aP in T was found, we continue as follows. If ũa is a position

on an edge (ua, u′a), we check whether the remaining part of the edge label equals aP ′2 for

some symbol a and a prefix P ′2 of P2. If this is the case, we answer a query (u′a, P ′′2) where

P ′′2 satisfies P2 = P ′2 ◦ P ′′2 . If ũa is a node, we find the loci of patterns str(ũa) ◦ xP2, where

x denotes any alphabet symbol, as described above. We proceed in the same way until

the loci of all x1P1 . . . xmPm for any alphabet symbol xi are found. This approach can

be straightforwardly extended to reporting occurrences of a general wildcard expression

M. Lewenstein, Y. Nekrich, and J. S. Vitter 513

P̃ = φk1P1φ
k2P2 . . . φ

kdPd, where φki denotes an arbitrary sequence of ki alphabet symbols

and ki ≥ 0 for 1 ≤ i ≤ d.

I Theorem 6. There exists an O(n+ ssmalln)-bit data structure that reports all occ occur-

rences of a wildcard pattern φk1P1φ
k2P2 . . . φ

kdPd in O(
∑d
i=1 |Pi|tSA+σgtsmall(n)+occ ·tSA)

time, where g =
∑m
i=1 ki; ssmall and tsmall denote the average space usage and query time of

the data structures described in Lemmas 3 or 4.

Two interesting corollaries of this result are the following indexes. We use the same

notation as in Theorem 6. If we combine Lemma 1, (a) with Lemma 5 we get tsmall = O(logε n)
and ssmall = O(1) (the query time O(logε n log(3) n) can be simplified to O(logε n) by

replacing ε with some ε′ < ε). If we plug in this result into Theorem 6, we obtain our first

main data structure.

I Corollary 7. There exists an O(n)-bit data structure that answers wildcard pattern matching

queries in O((
∑d
i=1 |Pi|+ σg + occ) logε n) time.

We remark that the result of Corollary 7 can be also extended to the case of an arbitrarily

large alphabet. In this case the index uses O(n log σ) bits and queries are answered in

(
∑d
i=1 |Pi|+ σg + occ) logεσ n) time. This variant can be obtained by using the suffix array of

Grossi et al. [7]; the compressed suffix tree uses O(n log σ) bits in this case.

If we combine Lemma 1, (b) with Lemma 5 and plug in the result into Theorem 6, we

obtain our second main data structure.

I Corollary 8. There exists an O(n(log logn)2)-bit data structure that answers wildcard

pattern matching queries in O((
∑d
i=1 |Pi|+ σg + occ) log logn) time.

5 LCP Queries for Patterns with Wildcards, σ = log log n

In the remaining part of this paper we describe faster solutions that use linear or sublinear

space. In sections 5 and 6 we describe an O(n logn)-bit data structure for σ ≥ log logn. In

section 7 we use a more technically involved variant of the same approach to obtain fast

solutions for σ < log logn.

In this section we will show how to answer a batch of LCP queries called wildcard LCP

queries. A wildcard LCP query (u, φP) returns the loci of str(u) ◦ aP in the suffix tree of a

source text T for all a ∈ Σ such that str(u) ◦ aP occurs in T . As before, we assume that we

can preprocess some pattern P in O(P) time; then, queries (u, P) where P is a suffix of P

are answered. The pre-processing is the same as in Section 3.

A leaf descendant vl of a node u is a light descendant of u if vl and u are not on the same

heavy path. A wildcard tree Tu for a node u is a compressed trie that contains all strings s

satisfying a ◦ s = str(u, vl) for some symbol a and some light leaf descendant vl of u. The

main idea of our approach is to augment the suffix tree T with wilcard trees in order to

accelerate the search. To avoid logarithmic increase in space usage, only selected nodes of

wilcard trees will be stored. We explain our method for the case σ = log logn.

Let τ = σ log2 n. We mark the nodes of the suffix tree in the same way as described in

Section 4. Every τ -th leaf of T , each internal node with at least two children that have marked

descendants, and the root of T are marked. The nodes of T will be called the alphabet nodes.

We also store selected nodes from wildcard trees, further called wildcard nodes. A truncated

wildcard tree Tu is a compressed trie containing all strings s, such that a ◦ s = str(u, vl) for

some marked light leaf descendant vl of u. Each leaf-to-root path intersects O(logn) heavy

paths. Therefore each marked leaf occurs in O(logn) truncated wildcard trees. Hence the

S TAC S ’ 1 4

514 Space-Efficient String Indexing for Wildcard Pattern Matching

total number of wildcard nodes is O((n/τ) logn). Every node in each truncated wildcard

tree contains pointers to some alphabet nodes or locations on edges between alphabet nodes.

Suppose that a node v is in a wildcard subtree Tw, the parent of Tw is some node w, and the

label of v in Tw is s. For every symbol a such that sa = str(w) ◦ a ◦ s occurs in the source

text, we store a pointer from u to the location ua of sa. The total number of pointers is

equal to O(n logn(σ/τ)). We distribute alphabet nodes into groups Gj(u) and G(v, u) as

described in Section 4; data structures Dj(u), Dl(v, u), and Dr(v, u) are also defined in the

same way as in Section 4. Every pointer from a wildcard node to an alphabet node w (or

edge (u,w)) contains a reference to the group that contains w. Moreover, both alphabet

and wildcard nodes of our extended suffix tree are kept in the data structure, described in

Lemma 11 in [11], that answers unrooted LCP queries in O(log logn) time.

Queries. Suppose that a wildcard LCP query (u, φP) must be answered. Let ah be the

first symbol in str(u, uh), where uh is the child of u that is on the same heavy path. We

answer a query ah ◦ P in O(log logn) time using the result of [1]. Next, we must find the

locus nodes of all patterns aj ◦ P , aj 6= ah. We answer an LCP query P in the truncated

wildcard tree Tu of the node u. Let w denote the node where the search for P in Tu ends

and let wr denote the root node of Tu. The node w can also be found in O(log logn) time.

1. Suppose that str(wr, w) = P . We follow pointers from w to alphabet nodes w1, . . .,

wσ marked with alphabet symbols a1,. . ., aσ. For each 1 ≤ j ≤ σ we find the group

Gr(uj) (or G(uj , vj)) that contains wj and answer an LCP query (wj , Pj) on the tree

induced by G(uj) (respectively G(uj , vj)). The string Pj is a suffix of P that satisfies

str(u, uj) ◦ Pj = aj ◦ P . Using information in the pointer from w to uj , we can find Pj
in O(1) time.

2. The pattern P can be also located between two nodes w′ and w of Tu such that str(wr, w′)
is prefix of P and P is a prefix of str(wr, w). For every j, we follow the pointers marked

with alphabet symbol aj . Suppose that pointers from w′ and w lead to locations w̃′j and

w̃j respectively. Let w′j be the lower node on the edge of w̃′j and let wj be the upper

node on the edge of w̃j . There are no marked nodes between w′j and wj . Therefore we

only need to search in the group that contains wj to complete the LCP query.

The total search time is O(log logn + σ · tsmall) where tsmall is the time needed to answer

an LCP query on a subtree of τ nodes. We use Lemma 3; hence tsmall = O(1). Since

σ = log logn, a wildcard LCP query is answered in O(log logn) = O(σ) time.

6 Wildcard Pattern Matching Queries for σ ≥ log log n

Wildcard LCP Queries. We can modify the data structure of Section 5 for the case when

the alphabet size σ ≥ log logn. We divide the alphabet Σ into groups such that every group,

except the last one, contains log logn elements. The last group contains at most log logn
elements. We will denote these groups Σ1, . . ., Σg for g = dσ/ log logn e. Instead of one

wildcard tree Tu, we will store g modified wildcard trees T 1
u , . . . , T gu in every node u ∈ T .

A wildcard tree T iu for a node u is a compressed trie that contains all strings s satisfying

a ◦ s = str(u, vl) for some symbol a ∈ Σi and some marked light leaf descendant vl of u. We

keep the same data structure for every T iu as in Section 5. Thus we answer LCP queries

for each group of log logn alphabet symbols in O(log logn) time. The total time needed to

answer a wildcard LCP query is O(dσ/ log logn e log logn) = O(σ).

M. Lewenstein, Y. Nekrich, and J. S. Vitter 515

Indexing. Consider a query P̃ = φP1φP2 . . . φPd. If σ ≥ log logn, then our data structure

for wildcard LCP queries enables us to find all occurrences of P̃ by answering wildcard LCP

queries. We find the loci of all aiP1 for every aiP1 that occurs in the source text T . This

is achieved by answering a wildcard LCP query (ur, φP1). For every found location u1
i we

proceed as follows. If u1
i is in a middle of an edge e, we move one symbol down and then

check whether the remaining symbols of an e are labelled with a prefix of P2. If this is the

case and the remaining part of e is labelled with P ′2, we answer a regular LCP query (w1
i , P

′′
2)

such that w1
i is the node at the lower end of e and P2 = P ′2 ◦P ′′2 . Using the data structure of

Bille et al. [1], an LCP query can be answered in O(log logn) time. If u1
i is a node in the

suffix tree, then we answer a wildcard LCP query (u1
i , φP2). We continue in the same manner

until the loci of all xP1 . . . xPm, where x denotes an arbitrary symbol in Σ, are found. A

general wildcard pattern φk1P1 . . . φ
kdPd is processed in the same way.

Since the maximum number of wildcard LCP queries and standard LCP queries does not

exceed σg, the total query time is O(σg). Preprocessing stage for all wildcard LCP queries

takes O(Σdi=1|Pi|) time.

I Lemma 9. Suppose that the alphabet size σ ≥ log logn. Using an O(n logn)-bit data struc-

ture, we can report all occurrences of a pattern P̃ = φk1P1φ
k2P2 . . . φ

kdPd in O(
∑d
i=1 |Pi|+

σg + occ) time, where occ is the number of times P̃ occurs in the text and g =
∑d
i=1 ki.

7 Wildcard Pattern Matching Queries for Small Alphabets

In this section we consider the case when the alphabet size σ < log logn. We use the approach

of Sections 5 and 6, but the notion of wildcard LCP queries is generalized. A t-wildcard

LCP query (u, P̃) for a wildcard string P̃ = φk1P1φ
k2P2 . . . φ

kdPd such that
∑
ki = t, finds

locations of all patterns str(u) ◦ P , where P = s1s2 . . . sk1P1sk1+1 . . . sk2P2 . . . st−1stPd and

si, 1 ≤ i ≤ t, are arbitrary alphabet symbols, in the suffix tree. A 1-wildcard LCP query, used

in the previous sections, takes O(log logn) time and can replace up to σ standard wildcard

queries. Hence, when the alphabet size σ is small, we cannot achieve noteworthy speed-up

in this way. A t-wildcard LCP query can replace up to σt regular LCP queries and lead to

more significant speed-up even when σ is very small. We will use iterated wildcard subtrees

in order to support s-wildcard LCP queries efficiently. Our construction consists of two parts.

We mark selected nodes in the suffix tree T and divide it into subtrees Ti of size O(τ1); we

keep a data structure that supports t1-wildcard LCP queries on the subtree T m induced by

marked nodes of T . We also mark selected nodes, further called secondary marked nodes,

in each subtree Ti and divide Ti into Ti,j of size O(τ2). Let T mi be the subtree induced by

secondary marked node of Ti; we keep a data structure that answers standard wildcard LCP

queries on T mi . Details of our data structure and parameter values can be found below.

Trees Ti and T m. Let t1 = logσ/2 log logn and τ1 = σt1 logt1+1 n. We use the same scheme

as in Section 4 to mark every τ1-th leaf and selected internal nodes, so that the suffix tree T
is divided into subtrees Ti of size O(τ1) and the number of marked nodes is O(n/τ1). Trees

Ti correspond to groups Gj(u) and G(u, v) defined in section 4.

Let T m be the tree induced by marked nodes. We iteratively augment T m with wildcard

subtrees. For any marked internal node u, the (level-1) wildcard subtree Tu is a compressed

trie containing all strings s, such that a ◦ s = str(u, vl) for some marked light leaf descendant

vl of u. We also keep a level-(i+ 1) wildcard subtree Tw for every node w in a level-i wildcard

subtree Tu. Tw contains all strings s such that a ◦ s = str(u, vl) for some alphabet symbol a

and a light leaf descendants vl of w. We construct level-i wildcard subtrees for 1 ≤ i ≤ t1.

S TAC S ’ 1 4

516 Space-Efficient String Indexing for Wildcard Pattern Matching

The parameter t1 is chosen in such way that σt1 = 2t1 log logn and t = logσ log logn. Every

node in all level-i wildcard trees has pointers to the corresponding locations in the alphabet

tree T . Each pointer also contains information about the subtree Ti
The total number of nodes and pointers in wildcard subtrees is (n/τ1)σt1 logt1 n. Level-

t wildcard subtrees can be used to answer unrooted t-wildcard LCP queries on Tm in

O(2t log logn) time; our method is quite similar to the procedure for answering wildcard

queries in [3]. Consider a query (ũ, P̃), where ũ is a location in the alphabet tree or in some

i-wilcard subtree. We distinguish between the following four cases. (i) If ũ is on a tree edge

and the next symbol is a wildcard, we simply move down by one symbol along that edge.

(ii) Suppose that ũ is on a tree edge e and the next symbols are a string Pn of alphabet

symbols. Let l denote the string label of the part of e below ũ, l = str(ũ, u′) where u′ is

the lower node on e. We compute o = LCP (Pn, l). and move down by min(|l|, o) symbols

along e. (iii) If ũ is a node and the next unprocessed symbol in P̃ is a wildcard, our procedure

branches and visits two locations: we move down by one symbol along the edge to the heavy

child of ũ and visit the root of the wildcard tree Tũ (if ũ is on a level-i wildcard tree, we visit

the root of the (i+ 1)-subtree Tũ). (iv) If ũ is a node and the next symbols are a string Pn of

alphabet symbols, we answer a standard LCP query (ũ, Pn). The procedure is finished when

we cannot move down from any location that is currently visited. The number of branching

points is 2t and we answer 2t standard LCP queries. We need O(σt) time to return from

locations in wildcard trees to the corresponding locations in the alphabet tree. Thus the total

time is O(2t log logn+ σt) = O(σt). When the search in T m is completed we can continue

searching in subtrees Tj . Data structures for subtrees Ti are described in [11], where we show

that an unrooted LCP query on Ti can be answered in O((log(3) n)1/2) time.

Wildcard String Matching. It follows from the above description that we can answer t1-

wildcard LCP queries in O(σt1
√

log(3) n) time. Consider now an arbitrary pattern P̃ =
φk1P1φ

k2P2 . . . φ
kdPd. We divide it into chunks P̃ [1], P̃ [2], . . ., P̃ [r], such that each chunk

P̃ [i], i ≥ 2, contains exactly t1 wildcard symbols. The chunk P [1] contains v ≤ t1 wildcard

symbols.

We start at the root and find locations of all P̃ [1] = φk1P1 . . . φ
kfPfφ

r where r ≤ kf+1. If∑f
i=1 |Pf | > (log logn) · σt, we answer at most σt standard LCP queries in O(σt log logn) =

O(
∑f
i=1 |Pi|) time. If

∑f
i=1 |Pi| ≤ (log logn) · σt, then the total length of P̃ [1] is at most

` = (log logn) · σt + t. Since σ < log logn, there are O((log logn)`) different patterns and

each of this patterns fits into one machine word. Hence, all string patterns Ps that match

P̃ [1] can be generated in O(σv) time. We keep a look-up table with locations of all strings

P , such that |P | ≤ ` in T . Using this table we find locations of all Ps that match P̃ [1] and

occur in the source text. For every such location ũ, we answer queries (ũ1, P̃ [2]), (ũ2, P̃ [3]),
. . ., where ũ1 = ũ and ũi for i > 1 is an answer to some query (ũi−1, P̃ [i]). It is easy to show

that the total query time is O(
∑d
i=1 |Pi|+ σg

√
log(3) n+ occ).

I Theorem 10. If the alphabet size σ = O(1) and σ > 2, then there exists an O(n logε n)-bit

data structure that reports all occ occurrences of a wildcard pattern φk1P1φ
k2P2 . . . φ

kdPd in

O(
∑d
i=1 |Pi|+ σg

√
log(3) n+ occ) time.

We remark that the same query time as in Theorem 10 can be also achieved for a non-constant

σ; the space usage would grow to O(n logn) bits, however. To obtain this result, we would

need to use standard (uncompressed) suffix tree and suffix array for the source data.

Acknowledgement. The second author wishes to thank Gonzalo Navarro for pointing him

to [15].

M. Lewenstein, Y. Nekrich, and J. S. Vitter 517

References

1 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String indexing

for patterns with wildcards. In Proc. 13th Scandinavian Symposium and Workshops on

Algorithm Theory (SWAT 2012), pages 283–294, 2012.

2 Ho-Leung Chan, Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam, and Swee-Seong Wong.

A linear size index for approximate pattern matching. J. Discrete Algorithms, 9(4):358–

364, 2011.

3 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and index-

ing with errors and don’t cares. In Proc. 36th Annual ACM Symposium on Theory of

Computing (STOC 2004), pages 91–100, 2004.

4 Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-bounded com-

pressed suffix trees. Theor. Comput. Sci., 410(51):5354–5364, 2009.

5 Michael L. Fredman and Dan E. Wilard. Trans-dichotomous algorithms for minimum

spanning trees and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

6 Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. More haste, less

waste: Lowering the redundancy in fully indexable dictionaries. In Proc. 26th Int’l Symp.

on Theoretical Aspects of Computer Science (STACS 2009), pages 517–528, 2009.

7 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with

applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407,

2005.

8 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ances-

tors. SIAM J. Comput., 13(2):338–355, 1984.

9 Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam, and Siu-Ming Yiu. Space efficient in-

dexes for string matching with don’t cares. In Proc. 18th International Symposium on

Algorithms and Computation (ISAAC 2007), pages 846–857, 2007.

10 Moshe Lewenstein, J. Ian Munro, Venkatesh Raman, and Sharma V. Thankachan. Less

space: Indexing for queries with wildcards. In Proc. 24th International Symposium on

Algorithms and Computation (ISAAC 2013), pages 89–99, 2013.

11 Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter. Space-efficient string index-

ing for wildcard pattern matching. CoRR, abs/1401.0625, 2014.

12 Veli Mäkinen and Gonzalo Navarro. Compressed text indexing. In Ming-Yang Kao,

editor, Encyclopedia of Algorithms. Springer, 2008.

13 J. Ian Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology

and Theoretical Computer Science (FSTTCS 1996), pages 37–42, 1996.

14 M. Sohel Rahman and Costas S. Iliopoulos. Pattern matching algorithms with don’t

cares. In Proc. 33rd Conference on Current Trends in Theory and Practice of Computer

Science (SOFSEM 2007), pages 116–126, 2007.

15 S. Srinivasa Rao. Time-space trade-offs for compressed suffix arrays. Inf. Process. Lett.,

82(6):307–311, 2002.

16 Lúıs M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully compressed suffix

trees. ACM Transactions on Algorithms, 7(4):53, 2011.

17 Kunihiko Sadakane. Compressed text databases with efficient query algorithms based on

the compressed suffix array. In Proc. 11th International Conference on Algorithms and

Computation (ISAAC 2000), pages 410–421, 2000.

18 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput.

Syst., 41(4):589–607, 2007.

19 Alan Tam, Edward Wu, Tak Wah Lam, and Siu-Ming Yiu. Succinct text indexing with

wildcards. In Proc. 16th International Symposium on String Processing and Information

Retrieval (SPIRE 2009), pages 39–50, 2009.

S TAC S ’ 1 4

Synchronizing Relations on Words
Diego Figueira and Leonid Libkin

University of Edinburgh, UK

Abstract
While the theory of languages of words is very mature, our understanding of relations on words
is still lagging behind. And yet such relations appear in many new applications such as veri-
fication of parameterized systems, querying graph-structured data, and information extraction,
for instance. Classes of well-behaved relations typically used in such applications are obtained
by adapting some of the equivalent definitions of regularity of words for relations, leading to
non-equivalent notions of recognizable, regular, and rational relations.

The goal of this paper is to propose a systematic way of defining classes of relations on
words, of which these three classes are just natural examples, and to demonstrate its advantages
compared to some of the standard techniques for studying word relations. The key idea is that
of a synchronization of a pair of words, which is a word over an extended alphabet. Using it,
we define classes of relations via classes of regular languages over a fixed alphabet, just {1, 2}
for binary relations. We characterize some of the standard classes of relations on words via
finiteness of parameters of synchronization languages, called shift, lag, and shiftlag. We describe
these conditions in terms of the structure of cycles of graphs underlying automata, thereby
showing their decidability. We show that for these classes there exist canonical synchronization
languages, and every class of relations can be effectively re-synchronized using those canonical
representatives. We also give sufficient conditions on synchronization languages, defined in terms
of injectivity and surjectivity of their Parikh images, that guarantee closure under intersection
and complement of the classes of relations they define.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Word Relations, Regular, Rational, Recognizable

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.518

1 Introduction

Foundations of formal language theory have been largely developed in the 1960s and 1970s,
and used heavily in practically all areas of computer science. The field itself stayed somewhat
dormant for a while, but that changed over the past 10–15 years due to new application
areas requiring techniques that could not have been foreseen 30 or 40 years earlier. Among
consumers of results in formal language theory are verification (for instance, automata-based
approaches to model-checking are now part of standard industrial verification tools [7, 22])
and data management (standards for describing and querying XML documents, for instance,
are rooted in both word and tree automata [24, 28], and emerging graph data models are
borrowing many formal language concepts [3]).

Of interest to us in this paper are relations on words. That is, for a given finite alphabet
A, we deal with binary relations R ⊆ A∗ ×A∗. Their study goes back to Elgot, Mezei, Nivat
in the 1960s [15, 25] with much subsequent work done later (see, e.g., surveys [8, 13]). The
standard notions of regularity that generate the same class of languages —recognizability by
finite monoids, definability by automata, or by regular expressions— give rise to different
classes of relations, called recognizable, regular, and rational relations. Their properties may
differ significantly from properties of regular languages: for instance, rational relations are

© Diego Figueira and Leonid Libkin;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 518–529

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.518
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Figueira and L. Libkin 519

not closed under intersection and it is even undecidable whether the intersection of two
such languages is non-empty. Recognizable relations are just unions of products of regular
languages; examples of regular relations are prefix, equality, or equal length of words; and
examples of rational relations are suffix, subword (for instance, bb is a subword of aabbaa),
and subsequence (bb is a subsequence of abaaba: letters need not be consecutive).

There has been renewed interest in relations on words as of late. One motivation comes
from verification of safety and liveness properties of parameterized systems, where such
relations describe transitions [1, 10, 20, 29]. Another comes from graph databases, which
are actively studied as a suitable model for RDF data, social networks data, and others
[3]. Paths in graph databases are described by their labels, and need to be compared, for
instance, for their degree of similarity, e.g., their edit distance [4, 6, 23]. Yet another example
is the study of formal models underlying IBM’s tools for information extraction [16].

Many of the basic questions that arise in these new applications, however, are not the kind
of questions that had been addressed previously. Just to give an example, it is well known
that checking nonemptiness of the intersection of a rational relation and a regular relation
is an undecidable problem. But what about really used rational relations such as subword,
suffix, subsequence (as opposed to artificial codings of the halting problem) – can we test if
their intersection with regular relations is nonempty? However natural these questions are,
they were answered only recently [5].

An even more basic question relates to the very choice and structure of the main classes
of relations: recognizable, regular, and rational. They appeared in a somewhat ad hoc way,
just as analogs of different ways of defining regularity of languages, but is there another way
to explain these, and perhaps other classes as well? This is the main point of our paper: we
argue that there is a natural way to study relations on words, and we do it by explaining
how positions in words are synchronized.

As an example of synchronization, consider words w1 = ababb and w2 = baaaba. We can
represent this pair as a single word over {a, b}, by shuffling w1 and w2, i.e., interspersing
letters of w1 among letters of w2. For each position in the shuffle, we remember which word
it came from – this is indicated by the symbols 1 or 2 above the letters in the figure.

w1

w2

a b a b a a b b b
1 2 2 1 2 1 1 2 1a b a b b

b a a a b a �
��

�

a a
2 2

When we read the letters marked i, for i = 1, 2 we get the word wi. The word over {1, 2}
provides a synchronization of the pair (w1, w2) – in our example, 12212112212. We show
that the commonly occurring classes of relations over words follow the same principle:
1. to decide whether (w1, w2) is in the relation, one runs an automaton over the shuffle;
2. classes of relations are then determined by the classes of allowed synchronizations.

For instance, recognizable relations are given by synchronizations from 1∗2∗, length-
preserving regular relations by synchronizations from (12)∗, arbitrary regular relations by
synchronizations from (12)∗(1∗|2∗), and rational relations by synchronizations from (1|2)∗.

For relations, we have proper inclusions recognizable (regular (rational [8], making them
very different from languages. This immediately raises the question: since every recognizable
language is regular, and yet 1∗2∗ is not contained in (12)∗(1∗|2∗), there must be multiple
ways of synchronizing relations to obtain even known classes. What are these ways, and how
can they be characterized? And will those characterizations lead to new naturally appearing
classes?

STACS’14

520 Synchronizing Relations on Words

These are the questions we answer. We define three parameters of regular languages
in (1|2)∗: the shift says how often we switch between 1s and 2s, the lag says how big the
difference between the numbers of 1 and 2 is allowed to get, and shiftlag combines the two in
a certain way. Then finite shift characterizes recognizability, while finite shiftlag characterizes
regularity of relations. Finite lag, which appears to be a natural measure then, captures
another known class of relations.

We provide automata characterizations of classes of synchronization languages in terms
of the structure of cycles in the graph representations of automata. All these turn out
to be decidable. This shows one advantage of dealing with relations in terms of their
synchronizations. For instance, it is known that checking whether a given rational relation is
regular, is an undecidable problem (assuming the input is a transducer, i.e., an automaton
with output [8]). However, if the input to the problem is a synchronization language, then it
is decidable whether the relations it describes are all regular.

Another advantage of describing relations by their synchronizations is the ability to find
classes closed under intersection or complementation (rational relations, for instance, are not).
We do it by imposing decidable conditions on Parikh images of synchronization languages to
guarantee closure properties of classes of relations they give rise to.

We also look at re-synchronization of relations. For each class of relations, there may
be many different regular synchronizing languages over {1, 2}. We show that in the stand-
ard cases, there exist canonical synchronizing languages, and relations can be effectively
resynchronized using those canonical languages.

2 Recognizable, regular, and rational relations

We start with some basic notations. Throughout the paper, A stands for a finite alphabet,
N = {1, 2, . . . } for the set of positive natural numbers, and N0 for N ∪ {0}. The set of all
words over A is denoted by A∗, and the length of w in A∗ is denoted by |w|. If w = a1 . . . an,
then w[i, j] stands for the subword ai . . . aj ; in particular, w[i] is the letter ai.

Recall that there are three standard ways of defining regular languages:

Recognizability by finite monoids: the set A∗, equipped with the concatenation operation
(denoted by ‘·’, whose unit is the empty word ‘ε’) is a monoid. A set L ⊆ A∗ is recognizable
if there is a finite monoid M and a homomorphism 〈A∗, ·, ε〉 →M so that L = f−1(M0)
for some M0 ⊆M .
Definability by finite automata, say NFAs.
Definability by regular (sometimes called rational) expressions, i.e., those built from the
empty word and alphabet letters using union, concatenation, and the Kleene star.

Classical formal language theory tells us that these definitions generate the same class of
languages, known as regular languages. We now adapt them to binary relations on words.

Recognizable relations Since 〈A∗, ·, ε〉 is a monoid, A∗ × A∗ has the structure of a monoid
too. We can thus define recognizable relations as sets R ⊆ A∗ × A∗ for which there is a
finite monoid M and a morphism f : A∗ × A∗ → M such that R = f−1(M0) for some
M0 ⊆M . This class will be denoted by REC.

Regular relations Let ⊥ 6∈ A be a new alphabet letter. A pair (w1, w2) of words from A∗
can be encoded by a single word of length max(|w1|, |w2|) over the alphabet (A ∪ {⊥})×
(A∪{⊥}): its ith letter is the pair containing the ith letter of w1 and the ith letter of w2,
with ⊥ used when i is greater than the length of w1 or w2. For example, the encoding for
the words of the figure of page 519 is (a, b)(b, a)(a, a)(b, a)(b, b)(⊥, a). A regular relation

D. Figueira and L. Libkin 521

R is given by an automaton over this alphabet: it contains pairs (w1, w2) whose encodings
are accepted by the automaton. The class of regular relations is denoted by REG.

Rational relations There are two equivalent ways of defining them. One uses regular expres-
sions, which are now built from pairs in (A ∪ {ε})× (A ∪ {ε}) using the same operations
of union, concatenation, and Kleene star. Alternatively, rational relations can be defined
by means of 2-tape automata, that have 2 heads for the tapes and one additional control;
at every step, based on the state and the letters it is reading, the automaton can enter a
new state and move some (not necessarily all) tape heads. The class of rational relations
is denoted by RAT.

Relations in REC are exactly the finite unions of products of regular languages over A
[8, 15]. Examples of relations in REG \ REC are prefix, equality, or equal length. Examples
of relations in RAT \ REG are suffix, given by

(⋃
a∈A(ε, a)

)∗ · (⋃a∈A(a, a)
)∗; subword:(⋃

a∈A(ε, a)
)∗ · (⋃a∈A(a, a)

)∗ · (⋃a∈A(ε, a)
)∗, and subsequence:

(⋃
a∈A(ε, a) ∪ (a, a)

)∗.
Note that unlike in the case of languages, where the three notions coincide, we have

REC (REG (RAT. The classes REC and REG are closed under intersection; however the
class of rational relations is not. In fact, one can find R ∈ REG and S ∈ RAT so that
R ∩ S 6∈ RAT. However, if R ∈ REC and S ∈ RAT, then R ∩ S ∈ RAT.

Relations in REC and REG inherit all the closure/decidability properties of regular
languages. If R ∈ RAT, then each of its projections is a regular language, and can be
effectively constructed. Hence, the nonemptiness problem is decidable for RAT. However,
testing nonemptiness of the intersection of two rational relations is undecidable. We refer to
[8, 12, 27] for basic information on these relations and their decision problems.

3 Synchronizations of relations

We now formalize the idea of synchronizations informally described in the introduction. We
write k for the set {1, . . . , k}. A synchronization of a pair (w1, w2) of words in A∗ is a word
over 2×A so that the projection on A of positions labeled i is exactly wi, for i = 1, 2 (see the
figure on page 519). Every word w in (2×A)∗ is a synchronization of a uniquely determined
pair (w1, w2), where wi is the sequence of A-letters corresponding to the symbol i in the first
position of 2× A. We denote such (w1, w2) by [[w]] and extend it to languages S ⊆ (2× A)∗
by [[S]] = {[[w]] | w ∈ S}.

For two words u = a1 · · · an ∈ A∗ and v = b1 · · · bn ∈ B∗, we write u⊗ v for the word
(a1, b1) · · · (an, bn) ∈ (A× B)∗. The main idea of our approach to relations on words comes
from two different ways of viewing words in (2× A)∗.

Every word w ∈ (2× A)∗ is a synchronization of a pair [[w]] = (w1, w2).
Every word w ∈ (2× A)∗ is of the form u⊗ v with u ∈ 2∗ and v ∈ A∗.

This makes it possible to define relations consisting of pairs [[w]] with restricted synchron-
izations, i.e., w = u⊗ v and u belongs to a given language L ⊆ 2∗.

Formally, if L ⊆ 2∗, we say that u⊗ v is L-controlled if u ∈ L; a language is L-controlled
if all its words are. We now look at relations given by L-controlled synchronizations, i.e., for
a regular language L ⊆ 2∗, let

Rel(L) = {[[S]] | S is a regular L-controlled language} (1)

If C is a class of relations over A∗, then L ⊆ 2∗ is a synchronization for C if Rel(L) ⊆ C,
that is, all relations given by L-controlled synchronizations belong to C. We remark that a

STACS’14

522 Synchronizing Relations on Words

similar approach to defining relations was used in [18], although the questions considered
were completely different.

Procedurally, each relation in Rel(L) is obtained as follows:1. Choose an automaton over 2× A;
2. consider words u⊗ v it accepts so that u ∈ L,
3. view v as a synchronization of (w1, w2) and add the pair to the relation.

This view suggests natural candidates for capturing classes REC,REG, and RAT. For
REC, relations are unions of products of regular languages, so synchronizations are of the
form 1∗2∗: one starts by going over the first word, and then over the second. For REG, they
are from (12)∗(1∗|2∗): we first go over two words letter-by-letter, and then write out the rest
of the longer word. For RAT, there are no restrictions. Indeed, we can show the following.
I Proposition 1.
(I) Rel(1∗2∗) = REC.
(II) Rel((12)∗ · (1∗|2∗)) = REG.
(III) Rel((1|2)∗) = RAT.

It is easy to see that Rel(L) is closed under union, alphabetic morphisms, and inverse
alphabetic morphisms, and that L1 ⊆ L2 implies Rel(L1) ⊆ Rel(L2).
I Remark. One may ask why we need to take both S and L regular in the definition (1)
of Rel(L). The reason why S needs to be regular is that even with regular L (e.g., 1∗),
Rel(L) would otherwise contain non-rational relations (e.g., {(anbn, ε) | n ∈ N}). If, on the
other hand, L is not regular, strange things may happen. For instance, it could be that all
relations in Rel(L) are finite, although L is infinite. Indeed, take L as the set of all words
1p for prime p. Note that there is no infinite regular L-controlled language, since it would
imply that an infinite number of distinct primes is semi-linear. Thus, all regular L-controlled
languages are finite, and Rel(L) is the set of all finite relations on A∗ × {ε} so that the first
component is of prime length.

4 Synchronizations for recognizable, regular, and rational relations

We have seen examples of languages characterizing the classes of recognizable, regular, and
rational relations, but those are not unique. There are trivial examples such as Rel(1∗2∗) =
Rel(2∗1∗) = REC, and Rel((12)∗(1∗|2∗)) = Rel((21)∗(1∗|2∗)) = REG, but others as well,
e.g., Rel(1∗2∗1∗2∗) equals REC, and Rel(((12)∗1(12)∗2)∗(1∗|2∗)) = REG.

What kind of parameters guarantee that L ⊆ 2∗ synchronizes relations in a class C, for
the classes we study here? That is, what parameters guarantee that with the synchronization
language L, we are guaranteed that the resulting relations are in C?

We now answer this question, but first we need some definitions. Given a word w over
some finite alphabet, and a letter a in the alphabet, we define #a(w) as the number of
occurrences of a in w. Given a word w ∈ 2∗, a position i ≤ |w|, and δ ∈ N, we say i is

δ-lagged if |#1(w[1, i])−#2(w[1, i])| = δ;
≥δ-lagged if |#1(w[1, i])−#2(w[1, i])| ≥ δ;
≤δ-lagged if |#1(w[1, i])−#2(w[1, i])| ≤ δ.

That is, these parameters show by how much the numbers of 1s and 2s in w ∈ 2∗ differ.
A shift of w is a position i ∈ {1, . . . , |w| − 1} so that w[i] 6= w[i+ 1]. Two shifts i < j are

consecutive if there is no shift l so that i < l < j.
Let shift(w) be the number of shifts of w, let lag(w) be the maximum lag of a position

in w, and let shiftlag(w) be the maximum n ∈ N so that w contains n consecutive shifts

D. Figueira and L. Libkin 523

which are >n-lagged. We lift these notions to languages by taking maxima, e.g., shift(L) =
maxw∈L shift(w), and likewise for lag(L) and shiftlag(L). If words of arbitrarily large lag
(shift, or shiftlag) occur in L, we write shift(L) =∞ (and likewise for the other parameters).

Observe that finite shift and finite lag imply that shiftlag is finite, but the converse is not
true: for L = (12)∗1∗ we have shiftlag(L) <∞ and yet lag(L) = shift(L) =∞.

It turns out that finiteness of the shiftlag parameter corresponds to synchronizing regular
languages, and finiteness of shift corresponds to synchronizing recognizable languages. An
arbitrary regular L ⊆ 2∗ is guaranteed to synchronize rational languages.

As for the finite lag, it corresponds to a class of languages that is known as well. The
class REGbld of bounded length discrepancy relations [17, 27] is defined as follows. Recall the
definition of rational relations using two-tape automata. For a rational relation to be in
REGbld it is required that there be δ ≥ 0 so that in accepting runs of such automata, the heads
for the two tapes are never more than δ positions apart. It also follows from [17, 27] that
REGbld is the class

⋃
k∈N0

Rel(Lk), for Lk = (12)∗(1k|2k). Note that Rel(L0) is the class of
length preserving relations. A closely related class R≤ = {(w1, w2) ∈ A∗ × A∗ | |w1| ≤ |w2|}
[21] can be equally defined by Rel((12|2)∗).

Now we can state the characterization result.

I Theorem 1. Let L ⊆ 2∗ be a regular language. Then:
(I) L synchronizes regular relations iff shiftlag(L) <∞,
(II) L synchronizes recognizable relations iff shift(L) <∞,
(III) L synchronizes relations in REGbld iff lag(L) <∞,
(IV) L synchronizes rational relations.

Proof idea. For the ‘if’ direction of (1), one can easily show that for any regular language L
with shiftlag(L) < n there is some δ so that L ⊆ L′ for L′ = L≤δ-lag · (1∗|2∗)n, where L≤δ-lag
is the (regular) language of all words with ≤δ-lagged positions. On the other hand, it is
easy to show that Rel(L′) = REG. Since L ⊆ L′, by applying monotonicity, we then have
Rel(L) ⊆ REG.

For the ‘only if’ direction of (1), suppose that shiftlag(L) = ∞. Note that this means
that for every s, δ ∈ N there is some w ∈ L that has s consecutive shifts >δ-lagged. Let
S ⊆ (2 × {a, b})∗ consist of all words u⊗ v ∈ (2 × {a, b})∗ so that u ∈ L, and for every
i ∈ {1, . . . , |v|}, we have v[i] = a if i is a shift of u, and v[i] = b otherwise. One can show
that S is an L-controlled relation so that [[S]] ∈ RAT \ REG. J

We conclude the section with a couple of examples of applications of the main result. First,
we show that Rel((112)∗) 6⊆ REG. Indeed, note that for every s, δ, the word w = (112)δ+s is
in (112)∗ and the last s shifts of w are ≥δ-lagged. Hence, there must be some L-controlled
regular language S ⊆ (2× A)∗ so that [[S]] is not a regular relation.

As another example, we get more ways of synchronizing regular relations: given L1 =
(1k ·2k)∗, L2 = (1∗ ·2∗)k for some fixed k, we have Rel(Li) ⊆ REG (in fact, Rel(L2) ⊆ REC).

Finally, we consider the (r/s)-synchronized relations [27, p.660] studied in [11]. This class
can be defined as Rel(Lr/s), where

Lr/s = (1r2s)∗
(⋃
r′<r

(1r
′
2∗) |

⋃
s′<s

(1∗2s
′
)
)
. (2)

It is easy to see that shiftlag(Lr/s) =∞ whenever r 6= s, and hence that (r/s)-synchronized
relations (with r 6= s) are not in REG.

STACS’14

524 Synchronizing Relations on Words

4.1 Automata theoretic characterizations
We characterized classes of relations via conditions imposed on their synchronization languages:
finite shift, lag, or shiftlag. Now we show that these conditions themselves can be characterized
using automata, or more precisely, the underlying labeled graphs of automata. It turns out
that the structure of the cycles provides the desired characterizations.

Since in this section we deal with synchronization languages, we consider automata over
the alphabet {1, 2}. For a given NFA A, we consider the transition graph GA of A as the
usual representation of the transition relation, where GA is a directed graph where states
are vertices and edges are labeled by transitions. Given a cycle C of GA, we define #a(C)
as the number of edges in C labeled with transitions reading letter a. In a heterogeneous
cycle C we have #1(C) > 0 and #2(C) > 0; otherwise a cycle is homogeneous. A cycle C is
balanced if #1(C) = #2(C), otherwise it is unbalanced (these definitions are closely related
to the notions of balanced/unbalanced oriented cycles in digraphs, cf. [19]). Note that all
balanced cycles are also heterogeneous.

Recall that the trim automaton is the result of removing all states which are not reachable
from the initial state, and all states from which no final state is reachable.

I Theorem 2. For any trim NFA A over the alphabet 2, and its transition graph GA,
(I) shiftlag(L(A)) =∞ iff

GA contains a heterogeneous unbalanced cycle, or
GA contains a path from a homogeneous to a heterogeneous cycle,

(II) shift(L(A)) =∞ iff GA has a heterogeneous cycle,
(III) lag(L(A)) =∞ iff GA has an unbalanced cycle.

Proof idea. The ‘if’ directions of all items are straightforward. For the ‘only if’ direction
of item (1), it can be shown that for n = 2|Q| + 1 (where |Q| is the number of states of
A), any accepting run of A on w ∈ L(A) so that shiftlag(w) ≥ n must induce a path on
the transition graph GA of A containing either a heterogeneous unbalanced cycle, or a
homogeneous cycle followed by a heterogeneous cycle. Once this is verified, the statement
follows. Note that since shiftlag(w) ≥ n, w must contain n consecutive >n-lagged shifts
1 ≤ a1 < a2 < · · · < an ≤ |w| in w. Since a1 is >n-lagged, there must be an unbalanced
cycle C1 contained in the path induced by the run ρ restricted to w[1, a1]. Since there is a
sufficiently large number of shifts, there must be some heterogeneous cycle C2 contained in
the path induced by the run ρ restricted to w[a1, |w|]. Of course, we have that there is a
path from C1 to C2 in GA, showing (1). J

I Corollary 3. Checking whether Rel(L(A)) ⊆ REG, Rel(L(A)) ⊆ REC or Rel(L(A)) ⊆
REGbld

2 can be done in polynomial time in the size of A.

Note that Corollary 3 does not mean that it is decidable whether a relation R ∈ RAT is
in REG (in fact, this problem is undecidable [8, Theorem 8.4-(vi)]). What one can check is
whether it has a “safe” control, in the sense that it synchronizes regular relations. Hence,
for any relation R controlled by L(A), if Rel(L(A)) ⊆ REG then R ∈ REG, but the opposite
does not necessarily hold. For example, if we take L′ = (1|2)∗, we have that Rel(L′) 6⊆ REG
but the universal relation A∗ × A∗ is obviously in REG.

5 Resynchronizing relations

We saw that different languages in 2∗ can generate the same class relations, and yet for the
commonly used classes, we have synchronization languages that somehow look canonical:

D. Figueira and L. Libkin 525

for instance, (12)∗(1∗|2∗) for REG. Thus, we now address the question whether we can
resynchronize relations using those canonical synchronization languages, and if so, can we do
it effectively?

To pose this formally, suppose two different languages S, S′ ⊆ (2 × A)∗ controlled by
L,L′ ⊆ 2∗ respectively represent the same relation, i.e., [[S]] = [[S′]]. Then we say that S
is an L-resynchronization of S′. Given a class C of regular languages over 2, we say that
L0 ∈ C is a canonical representative of C if for every L ∈ C and every L-controlled language S
there exists an L0-resynchronization of S. In other words, for every L ∈ C and R ∈ Rel(L),
there is an L0-controlled S′ ∈ (2× A)∗ so that [[S′]] = R. If, in addition, there is a recursive
procedure that constructs such an L0-resynchronization of S, then we say that L0 is an
effective canonical representative of C.

Let RLall be the class of all regular languages over 2, and let RLfinparam stand for class
of regular languages L ⊆ 2∗ with finite parameter param, where param is lag, or shift, or
shiftlag. We also let RLlag≤δ denote the class of all regular languages L ⊆ 2∗ with lag(L) ≤ δ.

I Example 4. Take, for example, L1 = (1122)∗1∗2∗ and L2 = (12)∗(1∗|2∗), and a L1-
controlled relation S1. Since shiftlag(L1) < ∞, [[S1]] ∈ REG by Theorem 1. Further, since
by Proposition 1-(2) Rel(L2) = REG, there must be some L2-controlled relation S2 so that
[[S2]] = [[S1]]. In other words S2 is the L2-resynchronization of S1. Since Rel(L2) = REG in
fact L2 is a canonical representative of RLfinshiftlag.

I Theorem 5 (Resynchronization theorem).
(I) (12)∗(1∗|2∗) is an effective canonical representative of RLfinshiftlag;
(II) 1∗2∗ is an effective canonical representative of RLfinshift;
(III) there is no canonical representative of RLfinlag;
(IV) (12)∗(1≤δ|2≤δ) is an effective canonical representative of RLlag≤δ;
(V) 2∗ is an effective canonical representative of RLall.
If the relations are given as NFA, the synchronization procedures are in exponential time.

Proof idea. We only give the proof sketch for (1), the other items being easier.
The strongly connected components (henceforth SCC) of GA are its maximal strongly

connected subgraphs. An SCC is heterogeneous if it contains a heterogeneous cycle; an SCC
is homogeneous if it contains a cycle and all the cycles it contains are homogeneous; otherwise,
an SCC without cycles (that is, a single vertex) is an edgeless SCC. The condensation of GA
(written con(GA)) is the labeled directed acyclic graph (henceforth labeled DAG) induced
by the SCC’s of GA. This is the labeled DAG whose nodes are the SCC’s of GA, and there
is an edge labeled (q, (i, a), q′) from vertex v to vertex v′ iff v 6= v′, q belongs to the SCC v

in GA, q′ belongs to the SCC v′ in GA, and there is an edge labeled (q, (i, a), q′) from q to q′
in GA (in other words, (q, (i, a), q′) is a transition of A).

Let S ⊆ (2×A)∗ be an L-controlled regular language with shiftlag(L) <∞. Let A be an
NFA recognizing S with statespace Q, initial state q0 and set of final states QF .

Note that since the projection of S onto 2 is inside L, we can apply Theorem 2-(1) to
A, obtaining that there are no paths from homogeneous SCC’s to heterogeneous SCC’s in
GA (and there are no heterogeneous cycles C with #1(C) 6= #2(C)). Let Qhom be the set
of all vertices of GA that are reachable from a vertex of a homogeneous SCC. Note that
Qhom includes all vertices in homogeneous SCC’s, plus some vertices from edgeless SCC’s.
Also, note that the subgraph of GA induced by Qhom has no heterogeneous cycles. Let
Qhet = Q \Qhom. Hence, Qhet includes all vertices in heterogeneous SCC’s and some vertices
in edgeless SCC’s. Also, by the property before, the subgraph of GA induced by Qhet is

STACS’14

526 Synchronizing Relations on Words

hom hom hom

hethet

edgeless

2

1

2

2

2

1

2

1

2
1

1

1

2

1

1 2

Qhet

Qhom2

1

2

2

2

1

2

1

2
1

1

1

2

1

1 2

Figure 1 Example of GA with the subgraphs induced by Qhom and Qhet. For simplicity we assume
that A = {a} and we hence omit the letter a when depicting edges labeled by (i, a).

connected. Figure 1 contains an example. Further, any path P in GA is of the form (1)
P · (q, τ, q′) · P ′, (2) P , or (3) P ′, where

P is a (possibly empty) path of the subgraph of GA induced by Qhet,
P ′ is a (possibly empty) path of the subgraph of GA induced by Qhom,
q ∈ Qhet, q′ ∈ Qhom, and τ is a transition of A.

Let Ahet be A restricted to Qhet, and let Ahom be A restricted to Qhom. For every pair
of states qhet ∈ Qhet and qhom ∈ Qhom, let Lqhet,qhom be the union of all

L(Ahet[q0, qhet]) · {(i, a)} · L(Ahom[qhom, qf])

for every qf ∈ QF and (i, a) ∈ 2 × A so that (qhet, (i, a), qhom) is a transition of A. Let
Lhom =

⋃
qf∈QF

L(Ahom[q0, qf]) and Lhet =
⋃
qf∈QF

L(Ahet[q0, qf]). It follows that

S = Lhom ∪ Lhet ∪
⋃

qhet∈Qhet,qhom∈Qhom

Lqhet,qhom .

We show that we can build, in exponential time, a (12)∗(1∗|2∗)-controlled automaton for
each of these languages. Since the case of Lqhet,qhom is more general than Lhom and Lhet, we
will only prove this case.

Note that by definition of Ahet and Ahom, and since GA has no unbalanced heterogeneous
cycles, for every qhet ∈ Qhet, qhom ∈ Qhom, qf ∈ QF we have that lag(L(Ahet[q0, qhet])) <
∞ and shift(L(Ahom[qhom, qf])) < ∞. This implies that lag(L(Ahet[q0, qhet])) ≤ n, and
shift(L(Ahom[qhom, qf])) ≤ n, for n = |A|.

By the already shown item (2), there exists a (1∗2∗)-controlled automaton Ahom
qhom,qf

so that
[[L(Ahom[q0, qhom])]] = [[L(Ahom

q0,qhom
)]]. By item (4), there exists a (12)∗(1≤n|2≤n)-controlled

automaton Ahet
q0,qhet

so that [[L(Ahet[q0, qhet])]] = [[L(Ahet
q0,qhet

)]]. These automata can be built
in exponential time.

Indeed, a (12)∗(1∗|2∗)-controlled automaton for Lqhet,qhom can be built from Ahet
q0,qhet

and
all the Ahom

qhom,qf
’s for all qf ∈ QF in polynomial time, and thus the statement follows. This is

shown by a variant of (2), showing that from any (1∗2∗)-controlled automaton one can build,
in polynomial time, an equivalent automaton (in the sense of the relation it represents) that
is (12)∗(1∗|2∗)-controlled. J

6 Closure via Parikh images

It is well known that the class REG is effectively closed under Boolean operations. Although
RAT is a natural generalization of REG, it is not a Boolean algebra (let alone an effective one),
not being closed under intersection or complement [8]. Even testing whether a rational relation
is regular, or whether it has an empty intersection with a regular relation is undecidable [8].

D. Figueira and L. Libkin 527

Since regular relations are characterized via finite shiftlag, it is natural to ask whether infinite
shiftlag somehow describes “dangerous” classes of relations. That is, does this mean for
example that for any L ⊆ 2∗ with shiftlag(L) =∞ the intersection problem is undecidable
for Rel(L)? The answer to this question is negative: take for instance L = (122)∗ with
shiftlag(L) = ∞. However, it is not hard to see that Rel(L) is effectively closed under
intersection.

This raises the question of whether there are classes C ⊆ RAT that are natural, expressive,
and well-behaved, that is, so that

REC (C,
C is effectively closed under union, intersection and complementation (i.e., is an effective
Boolean algebra); and
C corresponds to a natural condition on the language.

Note that REG is one such example. Here we address the question from our perspective
in terms of control languages. The idea is to show sufficient conditions of synchronization
languages L so that Rel(L) is effectively closed under intersection, or an effective boolean
algebra. We state those in terms of Parikh images of languages.

Recall that the Parikh image of a word w ∈ k∗, written Π(w), is the vector of Nk0 whose
ith component contains #i(w), the number of occurrences of i in w. The Parikh image of a
language L is Π(L) = {Π(w) | w ∈ L}. It is well known that for regular and context-free
languages L, sets Π(L) are exactly the semi-linear sets in Nk0 , see [26].

A language L ⊆ k∗ is
Parikh-injective if the function Π : L→ Nk0 is injective, and
Parikh-surjective if the function Π : L→ Nk0 is surjective.

I Example 6.
(12)∗(1∗|2∗) and 1∗2∗ are Parikh-injective, while (1|2)∗ is not.
It can easily be shown that L = w∗1 · w∗2 · · ·w∗` ⊆ k∗ is Parikh-injective if ` ≤ k and
{Π(w1), . . . ,Π(w`)} generate a linear subspace of (N0)k of dimension `. For example,
(122)∗(112)∗ is Parikh-injective.
(12)∗(1∗|2∗), 1∗2∗, and (1|2)∗ are Parikh-surjective, but (122)∗(112)∗ is not Parikh-
surjective.
It is easy to see that Lr/s as defined in (2) is Parikh-injective and Parikh-surjective for
any choice of r, s. For example, if r = 2, s = 1, we have Lr/s = (122)∗(22∗|1∗2|1∗), which
is Parikh-injective and Parikh-surjective, since every element of (N0)2 is covered, and
there is only one way to reach any element of (N0)2.

We now analyze the (effective) closure of classes Rel(L) under Boolean operations. It
turns out that closure under union is free, but for closure under intersection and complement,
the newly introduced criteria serve as sufficient conditions.

I Theorem 7. Let L ⊆ 2∗ be a regular language. Then
(I) Rel(L) is effectively closed under union, alphabetic morphisms, and inverse alphabetic

morphisms;
(II) If L is Parikh-injective, then Rel(L) is effectively closed under intersection;
(III) if L is both Parikh-injective and Parikh-surjective, then Rel(L) is effectively closed

under complement.

Proof idea. We prove only item (3). Let S ⊆ (2×A)∗ be an L-controlled relation. We show
that [[S]]c = [[Sc ∩ (L⊗A∗)]], where Sc, [[S]]c denote the complement of S, [[S]] respectively,
and L⊗A∗ denotes the set of all words u⊗ v where |u| = |v|, u ∈ L and v ∈ A∗.

STACS’14

528 Synchronizing Relations on Words

[⊆] Suppose (u, v) 6∈ [[S]]. We show that there must be some w ∈ Sc ∩ (L⊗A∗) so that
(u, v) = [[w]]. By Parikh surjectivity and injectivity, there is exactly one word w′ ∈ L so
that Π(w′) = (|u|, |v|). Let w = u′⊗ v′ ∈ (2 × A)∗ be the only word so that u′ = w′ and
[[w]] = (u, v). Note that w 6∈ S and that its projection onto the first component (i.e., w′) is
in L. Therefore, w ∈ Sc ∩ (L⊗A∗).

[⊇] Assume w ∈ Sc ∩ (L⊗A∗) and suppose that [[w]] ∈ [[S]]. Then, there is some
w′ ∈ S so that [[w′]] = [[w]]. It cannot be that w′ = w, as it would be in contradiction
with w ∈ Sc ∩ (L⊗A∗). Since L is Parikh-injective, and w,w′ are L-controlled, w = w′,
as otherwise [[w′]] 6= [[w]]. This contradicts w ∈ Sc ∩ (L⊗A∗). Thus, [[w]] 6∈ [[S]] and
[[S]]c ⊇ [[Sc ∩ (L⊗A∗)]]. J

I Corollary 8. If L ⊆ 2∗ is Parikh-injective and Parikh-surjective, then Rel(L) is an effective
boolean algebra, closed under alphabetic morphisms and inverse alphabetic morphisms.

Observe that in this context, REG and REC are simply two examples of the (infinitely)
many such well-behaved classes.

I Example 9.
REC and REG are effective boolean algebras because they correspond to Rel(1∗2∗) and
Rel((12)∗(1∗|2∗)), where 1∗2∗, (12)∗(1∗|2∗) are Parikh-injective and Parikh-surjective.
Rel((122)∗(112)∗) is effectively closed under intersection.
It was shown in [11] that the class of (r/s)-synchronized relations is an effective Boolean
algebra. Our results provide an alternative proof, since Lr/s is Parikh-injective and
Parikh-surjective.

Observation. Note that Theorem 7 cannot be generalized to finite unions of Parikh-injective
languages, since for example Rel(L) for L = ((12)∗1∗)|(1∗(12)∗) is not closed under intersec-
tion. In fact, its intersection problem is undecidable. This follows from the fact that Rel(L)
contains the suffix relation and all regular relations (where the first component is longer than
the second). By [5, Theorem V.1], this problem is undecidable.

7 Future work

We presented a new way of looking at relations on words, and this new perspective opens
up several directions. An obvious one is to extend results to k-ary relations, for k > 2. We
know that exact analogs of Proposition 1, Theorem 1, and Theorem 2 continue to hold.

Another natural extension is to look for other classes of relations, say analogs of context-
free languages. In particular, one can look at a generalization of rational relations, the
pushdown relations of [14], which are those recognized by multi-tape automata with a stack or,
equivalently, by a context-free grammar. We have some preliminary results in this direction
but more work is needed.

We also would like to use the structural approach to look for better behaved classes of
relational word transducers for verification purposes, and for classes of relations that can be
effectively used in querying graph data. Finally, we would like to use it to identify classes of
well behaved relations over data words [9] and study logics over them, extending the approach
of [5, 6] with data.

Acknowledgment. Work partially supported by EPSRC grants G049165 and J015377.

D. Figueira and L. Libkin 529

References
1 P.A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model checking.

In CONCUR’03, pages 35–48.
2 R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC’04, pages 202–211.
3 R. Angles and C. Gutiérrez. Survey of graph database models. ACM Comput. Surv., 40(1),

2008.
4 K. Anyanwu and A.P. Sheth. ρ-queries: enabling querying for semantic associations on the

semantic web. In WWW’03, pages 690–699.
5 P. Barceló, D. Figueira, and L. Libkin. Graph logics with rational relations. LMCS, 9(3:1),

2013.
6 P. Barceló, L. Libkin, A. W. Lin, and P. Wood. Expressive languages for path queries over

graph-structured data. ACM Trans. Database Syst., 37(4):31, 2012.
7 M. Ben-Ari. Principles of the Spin model checker. Springer, 2008.
8 J. Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.
9 M. Bojańczyk. Automata for data words and data trees. In RTA’10, pages 1–4.

10 A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In CAV’00,
pages 403–418.

11 O. Carton. The growth ratio of synchronous rational relations is unique. TCS, 376(1-2):52–
59, 2007.

12 O. Carton, C. Choffrut, and S. Grigorieff. Decision problems among the main subfamilies
of rational relations. RAIRO Theor. Inf. and Appl., 40(2):255–275, 2006.

13 C. Choffrut. Relations over words and logic: A chronology. Bull. of the EATCS, 89:159–163,
2006.

14 C. Choffrut and K. Culik II. Properties of finite and pushdown transducers. SIAM J.
Comput., 12(2):300–315, 1983.

15 C. C. Elgot and J. E. Mezei. On relations defined by generalized finite automata. IBM J.
Res. Dev., 9(1):47–68, January 1965.

16 R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. A formal framework for information
extraction. In PODS’13, pages 37–48.

17 C. Frougny and J. Sakarovitch. Synchronized rational relations of finite and infinite words.
TCS, 108(1):45–82, 1993.

18 T. Harju, A. Mateescu, A. Salomaa. shuffle on trajectories: the Schützenberger product
and related operations. MFCS’98, pages 503–511.

19 P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press, 2004.
20 B. Jonsson and M. Nilsson. Transitive closures of regular relations for verifying infinite-state

systems. In TACAS’00, pages 220–234.
21 J. Leguy. Transductions rationnelles décroissantes. ITA, 15(2):141–148, 1981.
22 K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
23 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:

simple building blocks of complex networks. Science, 298(5594):824–827, 2002.
24 F. Neven. Automata, Logic, and XML. In CSL’02, pages 2–26.
25 M. Nivat. Transduction des langages de Chomsky. Ann. Inst. Fourier, 18:339–455, 1968.
26 R. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
27 J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
28 T. Schwentick. Automata for XML – a survey. JCSS, 73(3):289–315, 2007.
29 A. W. To and L. Libkin. Algorithmic metatheorems for decidable LTL model checking over

infinite systems. In FOSSACS’10, pages 221–236.

STACS’14

On Boolean closed full trios and rational Kripke
frames
Markus Lohrey1 and Georg Zetzsche2

1 Department für Elektrotechnik und Informatik, Universität Siegen, Germany
lohrey@eti.uni-siegen.de

2 Fachbereich Informatik, Technische Universität Kaiserslautern, Germany
zetzsche@cs.uni-kl.de

Abstract
A Boolean closed full trio is a class of languages that is closed under the Boolean operations
(union, intersection, and complementation) and rational transductions. It is well-known that the
regular languages constitute such a Boolean closed full trio. It is shown here that every such
language class that contains any non-regular language already includes the whole arithmetical
hierarchy (and even the one relative to this language).

A consequence of this result is that aside from the regular languages, no full trio generated
by one language is closed under complementation.

Our construction also shows that there is a fixed rational Kripke frame such that assigning
an arbitrary non-regular language to some variable allows the definition of any language from
the arithmetical hierarchy in the corresponding Kripke structure using multimodal logic.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases rational transductions, full trios, arithmetical hierarchy, Boolean opera-
tions

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.530

1 Introduction

The study of closure properties of language classes has a long tradition, it can be traced back
to the introduction of regular languages [10]. Among other applications, they provide insights
about whether languages belong to certain classes and, as far as they are effective, allow
the computation of representations of languages. They also often serve as a way to describe
language classes without reference to concrete generating or accepting devices: In many
cases, a language class can be described as the smallest class of languages that possesses a
given collection of closure properties and contains certain generating languages.

Here, we are concerned with Boolean closed full trios, i.e., classes closed under the
Boolean operations (union, intersection, and complementation) and rational transductions.
It is well-known that the class of regular languages constitutes a Boolean closed full trio.

This combination of closure properties is interesting for several reasons. First, in the
case of regular languages, this particular collection is exploited, for example, in the theory of
automatic structures [9], since it implies that in such structures, every first-order definable
relation can be represented by a regular language. Since emptiness is decidable for regular
languages, one can therefore decide the first-order theory of these structures.

Second, the languages definable by multimodal logic in a rational Kripke frame, i.e., a
Kripke frame in which the worlds are words and the visibility relations are given by rational
transductions, are always confined to the Boolean closed full trio generated by the values

© Markus Lohrey and Georg Zetzsche;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 530–541

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.530
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Lohrey and G. Zetzsche 531

(that is, languages) assigned to the variables. This was observed by Bekker and Goranko [2]
and then used to show that the model checking problem for multimodal logic and rational
Kripke frames is decidable if all variables are assigned regular languages.

Third, a wide range of interesting language classes are principal full trios, i.e., full trios
that are generated by one language. Since these are always union closed, their closure
under complementation is equivalent to the class being a Boolean closed full trio. Examples
of principal full trios are the context-free languages, languages accepted by multicounter
automata (for a bounded number of counters and blind, partially blind, or with zero test [7]),
and the languages accepted by valence automata over a finitely generated monoid [6].

Hence, the question arises whether there are language classes beyond the regular languages
that enjoy these closure properties and still admit decision procedures for simple properties
such as emptiness. Our first main result (Theorem 9) states that every Boolean closed
full trio that contains any non-regular language already includes the whole arithmetical
hierarchy (and even the arithmetical hierarchy relative to this language) and thus loses
virtually all decidability properties. This is a remarkable fact, because it means that these
closure properties are so extremely powerful that even the simplest non-regular languages
allow the construction of a very large class of languages.

A large number of grammar and automata models is easily seen to exceed the regular
languages but stay within the recursively enumerable languages. Hence, Theorem 9 also
implies that the corresponding language classes are never Boolean closed full trios. We can
also conclude that other than the regular languages, no principal full trio is closed under
complementation.

It should be noted that Theorem 9 does not mean that there is no way of developing a
theory of automatic structures beyond regular languages. It might well be that some smaller
collection of closure properties suffices to obtain all first-order definable relations and still
admits a decision procedure for the emptiness problem.

Actually, it turns out that three fixed rational transductions, together with the Boolean
operations, suffice to construct all arithmetical languages from any non-regular language.
Therefore, our second main result (Theorem 14) states that there is a fixed rational Kripke
frame with three modalities such that assigning any non-regular language to a variable allows
the definition of every arithmetical language using multimodal logic.

Other results of a similar spirit on closure properties of language classes have been known
for a long time. For example, Hartmanis and Hopcroft [8] have proved that every intersection
closed full AFL containing {anbn | n ∈ N} includes the recursively enumerable languages.
Here, a full AFL is a full trio that is closed under union and the Kleene star. Furthermore,
Book [4] has shown that the arithmetical languages constitute the smallest Boolean closed full
trio that is closed under homomorphic replication, the latter of which is a generalization of
homomorphisms. Hence, our result means in Book’s result one can replace the homomorphic
replication by containment of any non-regular language. However, to the best of the authors’
knowledge, to date there is no known combination of natural closure properties that are
enjoyed by the regular languages but that yield all the recursively enumerable languages (let
alone the arithmetical hierarchy) when applied to any non-regular language.

2 Preliminaries

Let Σ be a fixed countable set of abstract symbols, the finite subsets of which are called
alphabets. Given an alphabet X, the set of words over X is denoted by X∗ and the empty
word by λ. Subsets of X∗ for alphabets X are called languages. For a language L, the

STACS’14

532 On Boolean closed full trios and rational Kripke frames

smallest alphabet X with L ⊆ X∗ is denoted by α(L). The complement of L is defined as
L = α(L)∗ \ L. A transduction is a subset of X∗ × Y ∗ for alphabets X, Y .

Let M be a monoid with neutral element 1. An automaton over M is a tuple A =
(Q,M,E, q0, F), in which Q is a finite set of states, E is a finite subset of Q×M ×Q called
the set of edges, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The step
relation ⇒A of A is a binary relation on Q ×M , for which (p, a) ⇒A (q, b) if and only if
there is an edge (p, c, q) such that b = ac. The set generated by A is then

S(A) = {a ∈M | ∃q ∈ F : (q0, 1)⇒∗A (q, a)}.

A set R ⊆M is called rational if it can be written as R = S(A) for some automaton A over
M . A rational language is also called regular. We use REG to denote the class of regular
languages.

A valence automaton over M is an automaton A over the monoid X∗ ×M , where X is
an alphabet. The language accepted by A is defined as L(A) = {w ∈ X∗ | (w, 1) ∈ S(A)}.
The class of languages accepted by valence automata over M is denoted by VA(M).

Given alphabets X and Y , a rational transduction is a rational subset of the monoid
X∗ × Y ∗. For a language L ⊆ Y ∗ and a rational transduction R, we write RL for {x ∈ X∗ |
∃y ∈ L : (x, y) ∈ R}.

A language class is a set of languages that contains at least one non-empty language. A
language class C is called a full trio (or cone) if it is closed under (arbitrary) homomorphisms,
inverse homomorphisms, and intersection with regular languages. It is well-known [3] that
a class C is a full trio if and only if it is closed under rational transductions, i.e., for every
L ∈ C and every rational transduction R, we have RL ∈ C. We call a language class Boolean
closed if it is closed under all Boolean operations (union, intersection, and complementation).
By the full trio generated by the language L we mean the smallest full trio that contains L.
A full trio is called a principal full trio if it is generated by some language.

For any language class C, we write RE(C) for the class of languages accepted by some
Turing machine with an oracle L ∈ C. Similarly, let REC(C) be the class of languages
accepted by some Turing machine that halts on every input and has access to an oracle
L ∈ C. Furthermore, let REC denote the class of recursive languages. We also write REC(L)
and RE(L) for REC({L}) and RE({L}), respectively. Then the arithmetical hierarchy (see,
for example, [11]) is defined as

Σ0 = REC, Σn+1 = RE(Σn) for n ≥ 0, AH =
⋃

n≥0
Σn.

Languages in AH are called arithmetical. The arithmetical hierarchy relative to L is defined
as

Σ0(L) = REC(L), Σn+1(L) = RE(Σn(L)) for n ≥ 0, AH(L) =
⋃

n≥0
Σn(L).

We will often encode words from an alphabet X, |X| ≥ 2, by words in {0, 1}∗. If
X = {a1, . . . , an}, then a homomorphism g : X∗ → {0, 1}∗ with g(ai) = 10i will be called a
standard encoding. For each subset Y ⊆ X, the homomorphism πY : X∗ → Y ∗ is defined by
πY (x) = x for x ∈ Y and πY (x) = λ for x ∈ X \ Y .

Let X be an alphabet. For languages L ⊆ X∗ and words u, v ∈ X∗, we write u ≡L v if
for each w ∈ X∗, we have uw ∈ L if and only if vw ∈ L. The equivalence relation ≡L is
called the Myhill-Nerode equivalence. The well-known Myhill-Nerode Theorem states that L
is regular if and only if ≡L has a finite index.

M. Lohrey and G. Zetzsche 533

I Remark. In the following, we will make statements about certain languages in {0, 1}∗ being
obtainable from other languages in {0, 1}∗ either by using a finite set of transductions or by
using a finite set of transductions and Boolean operations. It will then always be possible
to use larger alphabets with auxiliary symbols for the following reason. Suppose there is
a finite set S of transductions, each over the alphabet X = {a1, . . . , an}, where {0, 1} ⊆ X.
Let h : X∗ → {0, 1}∗ be a standard encoding. Then we have

h(L ∩K) = h(L) ∩ h(K), h(L ∪K) = h(L) ∪ h(K),

h(L) = h(L) ∩ h(α(L))∗, h(RL) = hRh−1(h(L)).

By induction, it follows that for every language K ⊆ X∗ that can be obtained from L ⊆ X∗
using transductions in S (and Boolean operations), we can obtain h(K) from h(L) by using
transductions in

S′ = {ρY | Y ⊆ X} ∪ {hRh−1 | R ∈ S}

(and Boolean operations), where ρY is the rational transduction in {0, 1}∗ × {0, 1}∗ that
maps M to M ∩ h(Y)∗. In particular, if K ⊆ {0, 1}∗ can be obtained from L ⊆ {0, 1}∗ using
transductions in S (and Boolean operations), we can obtain K from L by using transductions
in S′′ = S′ ∪ {h |{0,1}∗ , ρ{0,1} ◦ h−1} (and Boolean operations) by producing h(L), then h(K)
using S′ (and Boolean operations), and then ρ{0,1}(h−1(h(K))) = K. J

3 Boolean closed full trios

I Lemma 1. Let X = {0, 1}. There is a finite set F of rational transductions in X∗ ×X∗
such that each regular language K ⊆ X∗ can be obtained from any non-empty L ⊆ X∗ using
transductions in F .

Proof. It suffices to prove the lemma for K ⊆ X∗ with λ /∈ K: If λ ∈ K, K \ {λ} 6= ∅, we
can use the rational transduction Λ = {(w,w) | w ∈ X∗} ∪ {λ} ×X∗, which maps w ∈ X∗
to {w, λ}, to obtain K from K \ {λ}. If K = {λ}, we can use Λ′ = {λ} ×X∗, which maps
every w ∈ {0, 1}∗ to λ, to obtain K directly from L. We may therefore assume that K is
accepted by an automaton A = (Q,X,E, q,Qf), where Q = {0, . . . , k}, q = 0, Qf = {1},
and E ⊆ Q×X ×Q.

Our goal is to produce the language TA of all words 10i01x110i1 · · ·xn10in , such that
i0 = 0, in = 1, and xj ∈ {0, 1} and (ij , xj+1, ij+1) ∈ E for 0 ≤ j < n. Then, clearly, the
rational transduction P that outputs only the xj will satisfy PTA = K. By the above remark,
it suffices to provide transductions over the extended alphabet Y = {0, 1,#1,#2}. The
additional symbols #1,#2 are called markers.

First we use the initial transduction I = 1(1{0, 1}10∗)∗1{0, 1}10 × {0, 1}∗ to produce
the set 1(1{0, 1}10∗)∗1{0, 1}10 from L. In the following, a word 10i01x110i1 · · ·xn10in is
called an encoding. Its factors 0ij are called state blocks and its factors 0ij 1x10ij+1 are called
transition blocks. The transduction I already guarantees that the leftmost and the rightmost
state block correspond to the initial and the final state, respectively. We now wish to remove
all words that contain a state block of length greater than k. In order to do this, we use
the transduction S1, which inserts the marker #1 in the beginning of every state block.
Furthermore, we have the transduction M1, which moves each occurrence of the marker one
position to the right (i.e. outputs 0#1 on input #10) if its right neighbor is a 0, and drops
the occurrence otherwise. We also have the transduction R, which rejects all inputs that
have a factor #10. All other words are accepted by R but stripped of their occurrences of

STACS’14

534 On Boolean closed full trios and rational Kripke frames

#1 in the output. Then applying RMk
1 S1 yields the set of encodings with state blocks of

length at most k.
In the next step, we wish to remove from the language all encodings that contain a

transition block 10`x10m with x ∈ {0, 1}, 0 ≤ `,m ≤ k, and (`, x,m) /∈ E. To this end,
we have the transductions S2 and M2, which behave analogously to S1 and M1 by using
#2 instead of #1. We assume that S1 and S2 are defined so as to add their marker and
leave the other marker in place. We assume further that M1 and M2 move their marker
so as to overtake the other marker if necessary. Finally, we have for each x ∈ {0, 1} the
transition Rx, which rejects every word containing a transition block in which #1 is on the
right end of the left state block, #2 is on the right end of the right state block, and the
input letter is x. All other words are accepted by Rx but stripped of all occurrences of
markers. Applying RxM

m
2 S2M

`
1S1 clearly yields the set of encodings that do not contain

the transition block 10`1x10m. Therefore, we apply this sequence of transductions for each
triple (`, x,m) with 0 ≤ `,m ≤ k, x ∈ {0, 1}, and (`, x,m) /∈ E. This clearly produces
the language TA and hence K = PTA is obtained. Since we only used transductions in
{Λ,Λ′, P, I, S1, S2,M1,M2, R,R0, R1}, the lemma is proven. J

I Lemma 2. Let X be an alphabet with |X| ≥ 2. For each finite set F of rational transductions
in X∗×X∗, there are rational transductions R,S, T in X∗×X∗ such that every composition
of transductions from F can be written in the form TnSmR with m,n ∈ N.

Proof. Let 0, 1 ∈ X be distinct letters and for x ∈ {0, 1}, let Ax be the transduction
that appends x to each input word, hence Ax = {(wx,w) | w ∈ X∗}. Furthermore, let
F = {U0, . . . , Uk−1}, b = k + 1, and let U ′i be the rational transduction

U ′i = {(u10m, v10bm+i) | (u, v) ∈ Ui,m ∈ N}, U ′k = {(w,w10k) | w ∈ X∗}

for each 0 ≤ i < k. We shall prove that R = A1, S = A0, and T =
⋃

0≤i≤k U
′
i have the

desired property. Let Uin · · ·Ui0 be a composition of elements of F and let in+1 = k. We
claim that

Uin
· · ·Ui0 = Tn+2SmR for m =

n+1∑
j=0

ijb
j .

Applying SmR appends 10m to each input word. Then, each application of T to a word w10`

chooses some U ′j , but this choice will only lead to a valid computation of the transducer if `
is congruent to j modulo b. Hence, applying Tn+1 to w10m has the same effect as applying
U ′in
· · ·U ′i0

. Since the most significant digit in the b-ary representation of m is in+1 = k,
applying T once more means applying U ′k and hence removing the 10k suffix of the input
word. In the end, we applied Uin

· · ·Ui0 . J

Lemmas 1 and 2 together immediately imply the following byproduct, which might be of
independent interest.

I Corollary 3. Let X = {0, 1}. There are rational transductions R,S, T over X∗ such that
every regular language K ⊆ X∗ can be written as TnSmRX∗ for some m,n ∈ N.

We define the alphabet ∆ = {+,−, z}, whose elements will represent the operations
increment, decrement, and zero test, respectively.

I Definition 4. Let C ⊆ ∆∗ be the set of words δ1 · · · δm, δ1, . . . , δm ∈ ∆ for which there
are numbers x0, . . . , xm ∈ N such that for 1 ≤ i ≤ m:

M. Lohrey and G. Zetzsche 535

1. if δi = +, then xi = xi−1 + 1,
2. if δi = −, then xi = xi−1 − 1, and
3. if δi = z, then xi = xi−1 = 0.

We shall prove that from L we can construct the following language ĈL using a fixed
finite set of rational transductions and Boolean operations.

I Definition 5. Suppose the alphabets X, ∆, and {#} are pairwise disjoint. Let ĈL ⊆
(∆ ∪X ∪ {#})∗ be the set of all words

v0δ1v1 · · · δmvm#u0# · · ·un#

with δi ∈ ∆, vi ∈ X∗, uj ∈ X∗, such that uk 6≡L u` for k 6= ` and for each 1 ≤ i ≤ m there
is a 1 ≤ j ≤ n with
1. if δi = +, then vi−1 ≡L uj−1, vi ≡L uj ,
2. if δi = −, then vi−1 ≡L uj , vi ≡L uj−1, and
3. if δi = z, then j = 1 and vi−1 ≡L vi ≡L u0 = uj−1.

I Lemma 6. If L is not regular, then π∆(ĈL) = C.

Proof. In order to prove the inclusion “⊇”, let x0, . . . , xm ∈ N be numbers as in Definition 4
and suppose {x0, . . . , xm} ⊆ {0, . . . , n}. Since L is not regular, we can find words u0, . . . , un ∈
X∗ such that uk 6≡L u` for k 6= `. Now for each 0 ≤ i ≤ m, let vi = uxi . Then it can be checked
straightforwardly that v0δ1v1 · · · δmvm#u0# · · ·un# ∈ ĈL and hence δ1 · · · δm ∈ π∆(ĈL).

For the inclusion “⊆”, let δ1 · · · δm ∈ π∆(ĈL). Then there are words v0, . . . , vm ∈ X∗,
u0, . . . , un ∈ X∗ with v0δ1v1 · · · δmvm#u0# · · ·un# ∈ ĈL. By the definition of ĈL, this
means for each 1 ≤ i ≤ m, there is a 1 ≤ j ≤ n such that 1–3 of Definition 5 hold. Hence,
we can pick for each 1 ≤ i ≤ m an xi ∈ {1, . . . , n} such that 1–3 of Definition 5 hold with
j = xi. Note that since this implies vi−1 ≡L uj−1 for δi ∈ {+, z} and vi−1 ≡L uj for δi = −
and the uk are pairwise incongruent w.r.t. ≡L, this choice of xi is unique. It can now be
verified by induction on i that the conditions 1–3 of Definition 4 are satisfied. J

The following lemma is the central ingredient in our proof. The idea is to construct ĈL,
which by Lemma 6 allows us to obtain C.

I Lemma 7. Let X = {0, 1}. There is a finite set F of rational transductions such that for
any non-regular L ⊆ X∗, the language C can be obtained from L using transductions in F
and Boolean operations.

Proof. We will use the alphabet Y = X ∪ {#} ∪∆. We prove the lemma by constructing C
from L using a sequence of Boolean operations and transductions T1, . . . , T19 over Y ∗ for
which it will be clear that they do not depend on L.

There are clearly rational transductions T1 and T2 with

W1 = {u#v#w | u, v, w ∈ X∗, uw ∈ L} = T1L,

W2 = {u#v#w | u, v, w ∈ X∗, vw ∈ L} = T2L,

which means we can construct W1 and W2. Hence,

W ′ = {u#v#w | u, v, w ∈ X∗, (uw ∈ L, vw /∈ L) or (uw /∈ L, vw ∈ L)}
= (W1 ∩W2) ∪ (W1 ∩W2)

STACS’14

536 On Boolean closed full trios and rational Kripke frames

can also be constructed. We can clearly find a rational transduction T3 with

W = {u#v | u, v ∈ X∗, u 6≡L v} = {u#v | u#v#w ∈W ′ for some w ∈ X∗} = T3W
′.

This means P = {u#v | u ≡L v} = X∗#X∗ \W = T4W , for some T4, can be constructed.
With suitable rational transductions T5, T6, we have

S = {u0#u1# · · ·un# | ui 6≡L uj for all i 6= j}
= (X∗#)∗ \ {ru#sv#t | r, s, t ∈ (X∗#)∗, u#v ∈ P} = T6T5P ,

meaning that S can be constructed as well. Let M (matching) be the set of all words
v1δv2#u1#u2 where v1, v2, u1, u2 ∈ X∗ with

if δ = +, then v1 ≡L u1 and v2 ≡L u2,
if δ = −, then v1 ≡L u2 and v2 ≡L u1, and
if δ = z, then v1 ≡L v2 ≡L u1.

Since

M = {v1+v2#u1#u2 | v1#u1 ∈ P, v2#u2 ∈ P}
∪ {v1−v2#u1#u2 | v1#u2 ∈ P, v2#u1 ∈ P}
∪ {v1zv2#u1#u2 | v1#v2 ∈ P, v1#u1 ∈ P, u2 ∈ X∗}

= (T7P ∩ T8P) ∪ (T9P ∩ T10P) ∪ (T11P ∩ T12P)

for suitable rational transductions T7, . . . , T12, we can also construct M .
Let E (error) be the set of words v1δv2#u0# · · ·un# such that for every 1 ≤ j ≤ n, we

have v1δv2#uj−1#uj /∈M or we have δ = z and v1 6≡L u0. Since

E′ = {v1δv2#ru1#u2#s | v1δv2#u1#u2 ∈M, r, s ∈ (X∗#)∗} = T13M

for some rational transduction T13, we can construct E′. Furthermore, since

E = {v1zv2#u0r | v1 6≡L u0, r ∈ (X∗#)∗, v2 ∈ X∗} ∪ [(X∗∆X∗#(X∗#)∗ \ E′]
= T14P ∪ T15E′,

for some rational transductions T14, T15, we can construct E.
Let N (no error) be the set of words v0δ1v1 · · · δmvm#u0# · · ·un# such that for every

1 ≤ i ≤ m, there is a 1 ≤ j ≤ n with vi−1δivi#uj−1#uj ∈M and if δi = z, then vi−1 ≡L u0.
Since

N ′ = {w ∈ (X∗∆)∗v1δv2(∆X∗)∗#u0# · · ·un# | v1δv2#u0# · · ·un# ∈ E} = T16E,

N = (X∗∆)+X∗#(X∗#)∗ \N ′ = T17N ′

for some rational transductions T16, T17, we can construct N .
Now we have ĈL = N ∩ (X∗∆)∗X∗#S = N ∩ T18S for some rational transduction

T18, meaning we can construct ĈL. By Lemma 6, we have C = T19ĈL for some rational
transduction T19. This proves our claim and hence the lemma. J

I Lemma 8. Let X = {0, 1}. There is a finite set F of rational transductions in X∗ ×X∗
such that for any non-regular L ⊆ X∗, each K ∈ RE, K ⊆ X∗, can be obtained from L using
transductions in F and Boolean operations.

M. Lohrey and G. Zetzsche 537

Proof. Let F ′ contain the set of rational transductions provided by Lemma 1 and the one
provided by Lemma 7. We will use the alphabet Y = X ∪∆ ∪ {#} and a standard encoding
g : Y ∗ → X∗.

Suppose K ⊆ X∗ is recursively enumerable and let A = (Q,X,E, q0, Qf) be a 2-counter
machine, E ⊆ Q×X∗×∆×∆×Q, accepting K and with Q = {0, . . . , k} and Qf = {k}. Here,
we assume that the machine operates on both counters in each step. Let R be the regular
language of all words 0m0

∏n
i=1 #wi#δ(0)

i δ
(1)
i 0mi with (mi−1, wi, δ

(0)
i , δ

(1)
i ,mi) ∈ E for every

1 ≤ i ≤ n, m0 = 0, and mn = k. We can obtain g(R) from L using only transductions in
F ′. Thus, we can obtain R = g−1(g(R)). Clearly, there are rational transductions T1 and T2
such that

U =
{

100
n∏

i=1
#wi#δ(0)

i δ
(1)
i 10mi ∈ R

∣∣∣∣∣ δ(k)
1 · · · δ(k)

n ∈ C for k = 0, 1
}

= R ∩ T1C ∩ T2C,

meaning that we can also obtain U . Finally, applying to U the transduction T3 that outputs
all occurrences of X after odd occurrences of # up to the next occurrence of # clearly yields
K. If we let F consist of F ′ and g−1, T1, T2, T3, the lemma is proven. J

I Theorem 9. Let X = {0, 1}. There are rational transductions R,S, T over X∗ such that
for any non-regular L ⊆ X∗, each K ∈ AH(L), K ⊆ X∗, can be obtained from L using
R,S, T and Boolean operations.

Proof. We shall prove that there is a finite set F of rational transductions in X∗ ×X∗ such
that for any K ⊆ X∗, we can obtain each M ∈ RE(K), M ⊆ X∗, from K and L using
transductions in F and Boolean operations. This clearly implies that we can obtain all of
Σ1(L) = RE(L) from L and hence, by induction on i, all of Σi(L) from L. According to
Lemma 2 we can then find transductions R,S, T that have the desired property.

Let F ′ be the set of transductions provided by Lemma 8 and let K ⊆ X∗ be arbitrary
and M ∈ RE(K), M ⊆ X∗. This means there is an oracle Turing machine A such that M
is accepted by AK . We will use the extended alphabet Y = {0, 1,#1,#2} and a standard
encoding g : Y ∗ → {0, 1}∗. Let M ′ ⊆ Y ∗ be the set of words

u1#1 · · ·un#1v1#2 · · · vm#2w

such that there is an accepting computation in A with input w and in which oracle queries
about u1, . . . , un are made with a positive result and oracle queries about v1, . . . , vm are
made with a negative result. Note that this does not mean that ui ∈ K or vi /∈ K, we collect
all computations that A could make and what inputs would be accepted provided that an
oracle answered as specified. Then M ′ is clearly recursively enumerable. Therefore, g(M ′)
can be obtained from L by transductions in F ′ and Boolean operations.

Hence, we can obtain M ′ = g−1(g(M ′)) from L. Furthermore, since

(K#1)∗ = (X∗#1)∗K#1(X∗#1) = T1K, (K#2)∗ = (X∗#2)∗K#2(X∗#2) = T2K

for some rational transductions T1, T2, we can construct (K#1)∗ and (K#2)∗ from K.
Moreover, since

M ′′ = {u1#1 · · ·un#1v1#2 · · · vm#2w ∈M ′ | u1, . . . , un ∈ K, v1, . . . , vm ∈ K}
= M ′ ∩ (K#1)∗(X∗#2)∗X∗ ∩ (X∗#1)∗(K#2)∗X∗

= M ′ ∩ T3(K#1)∗ ∩ T4(K#2)∗

STACS’14

538 On Boolean closed full trios and rational Kripke frames

for suitable rational transductions T3, T4, we can construct M ′′ from K and L. If we now
apply a transduction T5 that for an input from Y ∗ outputs the longest suffix in X∗, we
obtain M from K and L. Since, apart from the transductions in F ′, we only used g−1 and
T1, . . . , T5, the lemma follows. J

I Corollary 10. Let L ⊆ X∗ be a non-regular language. Then AH(L) is the smallest Boolean
closed full trio containing L.

Proof. Let T be the smallest Boolean closed full trio containing L. If |X| ≤ 2, Theorem 9
implies that T includes AH(L). If |X| > 2, let g : X∗ → {0, 1}∗ be a standard encoding.
Then g(L) is non-regular as well and we have AH(L) = AH(g(L)). Hence, according to
Theorem 9, T includes AH(L) = AH(g(L)). The fact that AH(L) is a Boolean closed full trio
concludes the proof. J

The following corollary applies to a wide range of language classes. A full semi-AFL is a
union closed full trio. Although the authors are not aware of any particular full semi-AFL
for which it is not known whether complementation closure is available, the following fact is
interesting because of its generality.

I Corollary 11. Other than the regular languages, no full semi-AFL C ⊆ RE is closed under
complementation.

Proof. Suppose C were a complementation closed full semi-AFL that contains a non-regular
language. According to Theorem 9, it would already include AH and thus not be included in
RE. J

Note that the following corollary is not a special case of Corollary 11 as it is not restricted
to language classes below RE.

I Corollary 12. A principal full trio is closed under complementation if and only if it
coincides with the regular languages.

Proof. Let T be a principal full trio generated by the language L. If L is regular, T coincides
with the regular languages and is therefore closed under complementation.

Suppose L is not regular. T consists of all languages of the form RL, where R is a
rational transduction. Hence, T is contained in RE(L) and closed under union. If T were
closed under complementation, it would be closed under all Boolean operations and thus, by
Theorem 9, contain AH(L). Since RE(L) (AH(L), this is a contradiction. J

I Corollary 13. For finitely generated monoids M , the following are equivalent:
1. VA(M) is closed under complementation.
2. VA(M) = REG.
3. M has only finitely many right-invertible elements.

Proof. Let L be the identity language corresponding to some finite generating set ofM . Since
VA(M) is the principal full trio generated by L, Corollary 12 yields the equivalence between
3a and 3b. The equivalence between 3b and 3c has been shown in [14] (and independently
in [16]). J

M. Lohrey and G. Zetzsche 539

4 Rational Kripke frames

Theorem 9 can be also restated in terms of multimodal logic. A Kripke structure (or edge-
and node-labeled graph) is a tuple

K = (V, (Ea)a∈A, (Up)p∈P),

where V is a set of nodes (also called worlds), A and P are finite sets of actions and
propositions, respectively, for every a ∈ A, Ea ⊆ V × V , and for every p ∈ P , Up ⊆ V .
The tuple F = (V, (Ea)a∈A) is then also called a Kripke frame. We say that K (and F) is
word-based if V = X∗ for some finite alphabet X. Formulas of multimodal logic are defined
by the following grammar, where p ∈ P and a ∈ A:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �aϕ | ♦aϕ.

The semantics [[ϕ]]K ⊆ V of formulas ϕ in K is defined inductively as follows:

[[p]]K = Up,

[[¬ϕ]]K = V \ [[ϕ]]K,
[[ϕ ∧ ψ]]K = [[ϕ]]K ∩ [[ψ]]K,
[[ϕ ∨ ψ]]K = [[ϕ]]K ∪ [[ψ]]K,
[[�aϕ]]K = {v ∈ V | ∀u ∈ V : (v, u) ∈ Ea → u ∈ [[ϕ]]K},
[[♦aϕ]]K = {v ∈ V | ∃u ∈ V : (v, u) ∈ Ea ∧ u ∈ [[ϕ]]K}.

A word-based Kripke frame F = (X∗, (Ea)a∈A) is called rational if every Ea is a rational
transduction. Rational Kripke frames with a single relation are also known as rational
graphs and have been studied intensively [5, 12, 13]. A word-based Kripke structure K =
(X∗, (Ea)a∈A, (Up)p∈P) is called rational if every relation Ea is a rational transduction and
every Up is a regular language. The closure properties of regular languages imply that
for every rational Kripke structure K and every multimodal formula ϕ, the set [[ϕ]]K is
a regular language that can be effectively constructed from ϕ and (automata describing
the structure) K. Using this fact, Bekker and Goranko [2] proved that the model-checking
problem for rational Kripke structures and multimodal logic is decidable. This problem has
as input a rational Kripke structure K (given by a tuple of automata and transducers), a
word w ∈ X∗ (where X∗ is the node set of K), and a multimodal formula ϕ, and it is asked
whether w ∈ [[ϕ]]K holds. In contrast, there exist rational graphs (even acyclic ones) with
an undecidable first-order theory [5, 15], but every rational tree has a decidable first-order
theory [5]. Rational Kripke structures and frames were also considered in the context of
querying graph databases [1].

Our reformulation of Theorem 9 in terms of multimodal logic is:

I Theorem 14. Let X = {0, 1}. There are rational transductions Er, Es, Et in X∗ such
that the rational Kripke frame F = (X∗, Er, Es, Et) has the following property: For every
non-regular language Up ⊆ X∗ and every language K ∈ AH(Up), K ⊆ X∗, there exists a
multimodal formula ϕ such that K = [[ϕ]]K, where K = (X∗, Er, Es, Et, Up).

Proof. Take the rational transductions R,S, T provided by Theorem 9. Let Up ⊆ X∗ be a
non-regular language and take the Kripke structure K = (X∗, Er, Es, Et, Up), where Er = R,
Es = S, and Et = T . By induction, we can construct for every languageK obtainable from Up

by the transductions R,S, T and Boolean operations a multimodal formula ϕ with K = [[ϕ]]K.
For instance, if K = [[ψ]]K, then RK = [[♦rψ]]K. The theorem follows immediately. J

STACS’14

540 On Boolean closed full trios and rational Kripke frames

The question arises whether an analogous statement holds when we allow choosing
an arbitrary non-rational transduction instead of an arbitrary non-regular language. In
other words: Are there rational transductions R1, . . . , Rn and regular languages L1, . . . , Lm

over an alphabet X such that for any non-rational transduction T , the Kripke structure
(X∗, R1, . . . , Rn, T, L1, . . . , Lm) allows to define every arithmetical language in multimodal
logic? The answer is no, since there are non-rational transductions T that preserve regularity,
i.e., for which TL is regular whenever L is regular. Take, for example, the transduction
T = {(w,ww) | w ∈ X∗}. It is clearly not rational, since T−1X∗ = {ww | w ∈ X∗} is not
regular. However, it is not hard to see that TL is effectively regular for regular languages
L [17]. In particular, for every choice of R1, . . . , Rn and L1, . . . , Lm as above, every language
definable in (X∗, R1, . . . , Rn, T, L1, . . . , Lm) is regular and effectively constructible, implying
that the model-checking problem is decidable.

5 Open problems

An interesting open problem is whether in Theorem 9 one can replace the rational transduc-
tions by suitable synchronized rational relations. A relation R ⊆ X∗ ×X∗ is synchronized
rational if the set of all convolutions u⊗ v with (u, v) ∈ R is a rational language. The convo-
lution of two words u = a1a2 · · · an and v = b1b2 · · · bm is the word (a1, b1)(a2, b2) · · · (ak, bk)
where k = max{n,m}, ai = # for i > n, and bi = # for i > m. Here, # is a fresh symbol
not appearing in any pair from R. In other words, R can be recognized by an automaton on
two tapes where both heads move synchronously. Synchronized rational relations underlie
the definition of automatic structures [9]. Note that the rational transductions used in the
proof of Theorem 9 are not synchronized rational.

Another open question is whether the number of rational transductions in Theorem 9
can be reduced to 1 or 2.

References
1 Pablo Barceló, Diego Figueira, and Leonid Libkin. Graph logics with rational relations and

the generalized intersection problem. In LICS, pages 115–124. IEEE, 2012.
2 Wilmari Bekker and Valentin Goranko. Symbolic model checking of tense logics on ra-

tional Kripke models. In Margaret Archibald, Vasco Brattka, Valentin Goranko, and Be-
nedikt Löwe, editors, ILC, volume 5489 of Lecture Notes in Computer Science, pages 2–20.
Springer, 2007.

3 Jean Berstel. Transductions and context-free languages. Teubner, Stuttgart, 1979.
4 Ronald V. Book. Simple representations of certain classes of languages. Journal of the

ACM, 25(1):23–31, 1978.
5 Arnaud Carayol and Christophe Morvan. On rational trees. In Zoltán Ésik, editor, CSL,

volume 4207 of Lecture Notes in Computer Science, pages 225–239. Springer, 2006.
6 Henning Fernau and Ralf Stiebe. Sequential grammars and automata with valences. The-

oretical Computer Science, 276:377–405, 2002.
7 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.

Theoretical Computer Science, 7(3):311–324, 1978.
8 J. Hartmanis and J.E. Hopcroft. What makes some language theory problems undecidable.

Journal of Computer and System Sciences, 4(4):368–376, 1970.
9 Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In LCC:

International Workshop on Logic and Computational Complexity, volume 960 of Lecture
Notes in Computer Science, pages 367–392. Springer, 1995.

M. Lohrey and G. Zetzsche 541

10 Stephen Cole Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University
Press, Princeton, NJ, 1956.

11 Dexter C. Kozen. Automata and computability. Springer-Verlag, New York, 1997.
12 Christophe Morvan. On rational graphs. In Jerzy Tiuryn, editor, Proceedings of the 3rd

International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS 2000), Berlin (Germany), number 2303 in Lecture Notes in Computer Science,
pages 252–266. Springer, 2000.

13 Christophe Morvan and Colin Stirling. Rational graphs trace context-sensitive languages.
In Jiri Sgall, Ales Pultr, and Petr Kolman, editors, Proceedings of the 26th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2001), Marianske
Lazne (Czech Republic), number 2136 in Lecture Notes in Computer Science, pages 548–559.
Springer, 2001.

14 Elaine Render. Rational Monoid and Semigroup Automata. PhD thesis, University of
Manchester, 2010.

15 Wolfgang Thomas. A short introduction to infinite automata. In Werner Kuich, Grzegorz
Rozenberg, and Arto Salomaa, editors, Proceedings of the 5th International Conference on
Developments in Language Theory (DLT 2001), Vienna (Austria), number 2295 in Lecture
Notes in Computer Science, pages 130–144. Springer, 2001.

16 Georg Zetzsche. On the capabilities of grammars, automata, and transducers controlled by
monoids. In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, Automata, Languages
and Programming 38th International Colloquium, ICALP 2011, Zürich, Switzerland, July
4-8, 2011, Proceedings, Part II, volume 6756 of Lecture Notes in Computer Science, pages
222–233. Springer, 2011.

17 Guo-Qiang Zhang. Automata, boolean matrices, and ultimate periodicity. Information and
Computation, 152(1):138–154, 1999.

STACS’14

Everything you always wanted to know about the
parameterized complexity of Subgraph
Isomorphism (but were afraid to ask)

Dániel Marx∗1 and Michał Pilipczuk†2

1 Computer and Automation Research Institute, Hungarian Academy of
Sciences (MTA SZTAKI), Hungary
dmarx@cs.bme.hu

2 Department of Informatics, University of Bergen, Norway
michal.pilipczuk@ii.uib.no

Abstract
Given two graphs H and G, the Subgraph Isomorphism problem asks if H is isomorphic to
a subgraph of G. While NP-hard in general, algorithms exist for various parameterized versions
of the problem. However, the literature contains very little guidance on which combinations of
parameters can or cannot be exploited algorithmically. Our goal is to systematically investigate
the possible parameterized algorithms that can exist for Subgraph Isomorphism.

We develop a framework involving 10 relevant parameters for each of H and G (such as
treewidth, pathwidth, genus, maximum degree, number of vertices, number of components, etc.),
and ask if an algorithm with running time f1(p1, p2, . . . , p`) · nf2(p`+1,...,pk) exists, where each of
p1, . . . , pk is one of the 10 parameters depending only on H or G. We show that all the questions
arising in this framework are answered by a set of 11 maximal positive results (algorithms) and
a set of 17 maximal negative results (hardness proofs); some of these results already appear in
the literature, while others are new in this paper.

On the algorithmic side, our study reveals for example that an unexpected combination of
bounded degree, genus, and feedback vertex set number of G gives rise to a highly nontrivial
algorithm for Subgraph Isomorphism. On the hardness side, we present W[1]-hardness proofs
under extremely restricted conditions, such as when H is a bounded-degree tree of constant
pathwidth and G is a planar graph of bounded pathwidth.

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases parameterized complexity, subgraph isomorphism

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.542

1 Introduction

Subgraph Isomorphism is one of the most fundamental graph-theoretic problems: given two
graphs H and G, the question is whether H is isomorphic to a subgraph of G. It can be easily
seen that finding a k-clique, a k-path, a Hamiltonian cycle, a perfect matching, or a partition
of the vertices into triangles are all special cases of Subgraph Isomorphism. Therefore, the

∗ Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized
complexity and the search for tight complexity results,” reference 280152 and OTKA grant NK105645.
† Research supported by the European Research Council (ERC) grant “Rigorous Theory of Preprocessing”,
reference 267959.

© Dániel Marx and Michał Pilipczuk;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 542–553

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.542
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Marx and M. Pilipczuk 543

problem is clearly NP-complete in general. There are well-known polynomial-time solvable
special cases of the problem, for example, the special case of trees:

I Theorem 1 ([27]). Subgraph Isomorphism is P-time solvable if G and H are trees.

Theorem 1 suggests that one should look at cases of Subgraph Isomorphism involving
“tree like” graphs. The notion of treewidth measures, in some sense, how close a graph is to
being a tree [3]. Treewidth has very important combinatorial and algorithmic applications; in
particular, many algorithmic problems become easier on bounded-treewidth graphs. However,
Subgraph Isomorphism is NP-hard even if both H and G have treewidth at most 2 [26].

Parameterized algorithms try to cope with NP-hardness by allowing exponential depen-
dence of the running time on certain well-defined parameters of the input, but otherwise
the running time depends only polynomially on the input size. We say that a problem is
fixed-parameter tractable with a parameter k if it can be solved in time f(k) · nO(1) for some
computable function f depending only on k [13]. The definition can be easily extended to
multiple parameters k1, . . . , k`. The NP-hardness of Subgraph Isomorphism on graphs of
treewidth at most 2 shows that the problem is not fixed-parameter tractable parameterized
by treewidth (under standard complexity assumptions). However, there are tractability
results that involve other parameters besides treewidth. For example, the following theorem,
which follows easily from e.g. Courcelle’s Theorem [6], shows the fixed-parameter tractability
of Subgraph Isomorphism, jointly parameterized by the size of H and the treewidth of G:

I Theorem 2 (cf. [13]). Subgraph Isomorphism can be solved in time f(|V (H)|, tw(G)) ·n
for some computable function f .

Some of the results in the literature can be stated as algorithms where certain parameters
do appear in the exponent of the running time, but others influence only the multiplicative
factor. The classical color-coding algorithm of Alon, Yuster, and Zwick [1] is one such result:

I Theorem 3 ([1]). Subgraph Isomorphism can be solved in time 2O(|V (H)|) · nO(tw(H)).

One can interpret Theorem 3 as saying that if the treewidth of H is bounded by any fixed
constant, then the problem becomes fixed-parameter tractable when parameterized by |V (H)|.
Notice that treewidth appears in very different ways in Theorems 2 and 3: in the first result,
the treewidth of G appears in the multiplicative factor, while in the second result, it is the
treewidth of H that is relevant and it appears in the exponent. Yet another algorithm for
Subgraph Isomorphism on bounded-treewidth graphs is due to Matoušek and Thomas [26]:

I Theorem 4 ([26]). For connected H, Subgraph Isomorphism can be solved in time
f(∆(H)) · nO(tw(G)) for some computable function f .

Again, the dependence on treewidth takes a different form here: now it is the treewidth of G

that appears in the exponent. Note that the connectivity condition cannot be omitted: there
is an easy reduction from the NP-hard problem Bin Packing with unary sizes to the case
of Subgraph Isomorphism where H and G both consist of a set of disjoint paths, i.e., have
maximum degree 2 and treewidth 1. Therefore, as Theorem 4 shows, the complexity of the
problem depends nontrivially on the number of connected components of the graphs as well.

As the examples above show, even the apparently simple question of how treewidth
influences the complexity of Subgraph Isomorphism does not have a clear-cut answer: the
treewidth of H and G influences the complexity in different ways, they can appear in the
running time either as an exponent or as a multiplier, and the influence of treewidth can be
interpreted only in combination with other parameters (such as the number of vertices or

STACS’14

544 Parameterized complexity of Subgraph Isomorphism

maximum degree of H). The situation becomes even more complex if we consider further
parameters of the graphs as well. Cliquewidth, introduced by Courcelle and Olariu [8], is
a graph measure that can be always bounded by a function of treewidth, but treewidth
can be arbitrary large even for graphs of bounded cliquewidth (e.g., for cliques). Therefore,
algorithms for graphs of bounded cliquewidth are strictly more general than those for
graphs of bounded treewidth. By the results of Courcelle et al. [7], Theorem 2 can be
generalized by replacing treewidth with cliquewidth. However, no such generalization is
possible for Theorem 3: cliques have cliquewidth 2, thus replacing treewidth with cliquewidth
in Theorem 3 would imply that Clique (parameterized by the size of the clique to be found)
is fixed-parameter tractable, contrary to widely accepted complexity assumptions. In the case
of Theorem 4, it is not at all clear if treewidth can be replaced by cliquewidth: we are not
aware of any result in the literature on whether Subgraph Isomorphism is fixed-parameter
tractable parameterized by the maximum degree of H if G is a connected graph whose
cliquewidth is bounded by a fixed constant.

Theorem 2 can be generalized into a different direction using the concept of bounded local
treewidth. Model checking with a fixed first-order formula is known to be linear-time solvable
on graphs of bounded local treewidth [15], which implies that Subgraph Isomorphism can be
solved in time f(|V (H)|)·n if G is planar, or more generally, in time f(|V (H)|, genus(G))·n for
arbitrary G. Having an algorithm for bounded-genus graphs, one can try to further generalize
the results to graphs excluding a fixed minor or to graphs not containing the subdivision
of a fixed graph (that is, to graphs not containing a fixed graph as a topological minor).
Such a generalization is possible: a result of Dvořak et al. [10] states that model checking
with a fixed first-order formula is linear-time solvable on graphs of bounded expansion, and
it follows that Subgraph Isomorphism can be solved in time f(|V (H)|, hadw(G)) · n or
f(|V (H)|, hadwT(G)) · n, where hadw(G) (resp., hadwT(G)) is the maximum size of a
clique that is a minor (resp., topological minor) of G. These generalizations of Theorem 2
show that planarity, and more generally, topological restrictions on G can be helpful in
solving Subgraph Isomorphism, and therefore the study of parameterizations of Subgraph
Isomorphism should include these parameters as well.

Our goal is to perform a systematic study of the influence of the parameters: for all
possible combination of parameters in the exponent and in the multiplicative factor, we
would like to determine if there is an algorithm whose running time is of this form. The main
thesis of the paper is the following: (1) as the influence of the parameters on the complexity
is highly nontrivial and subtle, even small changes in the choice of parameters can have
substantial and counterintuitive consequences, and (2) the current literature gives very little
guidance on whether an algorithm with a particular combination of parameters exist.

2 Our framework

We present a framework in which the questions raised above can be systematically treated
and completely answer every question arising in the framework. Our setting is the following.
First, we define the following 10 graph parameters (we give a brief justification for each
parameter why it is relevant for the study of Subgraph Isomorphism):

Number of vertices |V (·)|. As Theorems 2 and 3 show, |V (H)| is a highly relevant
parameter for the problem. Note, however, that the problem becomes trivial if |V (G)|
can appear in the multiplier or in the exponent, or if |V (H)| can appear in the exponent.
Number of connected components cc(·). As Theorem 4 and the reduction from Bin
Packing show, it makes a difference if we restrict the problem to connected graphs (or,
more generally, if we allow the running time to depend on the number of components).

D. Marx and M. Pilipczuk 545

Maximum degree ∆(·). The maximum degree of H plays an important role in Theorem 4,
thus exploring the effect of this parameter is clearly motivated. In general, many
parameterized problems become easier on bounded-degree graphs, mainly because then
the distance-d neighborhood of each vertex has bounded size for bounded d.
Treewidth tw(·). Theorems 2–4 give classical algorithms where treewidth appears in
different ways; understanding how exactly treewidth can influence complexity is one of
the most important concrete goals of the paper.
Pathwidth pw(·). As pathwidth is always at least treewidth, but can be strictly larger,
algorithms parameterized by pathwidth can exist even if no algorithms parameterized by
treewidth are possible. Given the importance of treewidth, it is natural to explore the
possibility of algorithms in the more restricted setting of bounded-pathwidth graphs.
Feedback vertex set number fvs(·). A feedback vertex set is a set of vertices whose deletion
makes the graph a forest; the feedback vertex set number is the size of the smallest such
set. Similarly to graphs of bounded pathwidth, graphs of bounded feedback vertex set
number form a subclass of bounded-treewidth graphs, hence it is natural to explore what
algorithms we can obtain with this parameterization. Note that Graph Isomorphism
(not subgraph!) is fixed-parameter tractable parameterized by feedback vertex set number
[19], while only nO(tw(G)) time algorithms are known parameterized by treewidth [2, 29].
This shows that fvs(·) can be a useful parameter for problems involving isomorphisms.
Cliquewidth cw(·). As cliquewidth is bounded by a function of treewidth, parameterization
by cliquewidth leads to more general algorithms than parameterization by treewidth.
However, treewidth can be replaced by cliquewidth in Theorem 2, but not in Theorem 3.
Therefore, understanding the role of cliquewidth is a nontrivial and interesting challenge.
Genus genus(·). Understanding the complexity of Subgraph Isomorphism on planar
graphs (and more generally, on bounded-genus graphs) is a natural goal, especially in
light of the positive results that arise from the generalizations of Theorem 2.
Hadwiger number hadw(·). That is, the size of the largest clique that is the minor of the
graph. A graph containing a Kk-minor needs to have genus Ω(k2); therefore, algorithms
for graphs excluding a fixed clique as a minor generalize algorithms for bounded-genus
graphs. In many cases, such a generalization is possible, thanks to structure theorems
and algorithmic advances for H-minor free graphs [9, 17, 30].
Topological Hadwiger number hadwT(·). That is, the size of the largest clique whose
subdivision is a subgraph of the graph. A graph containing the subdivision of a Kk

contains Kk as a minor. Therefore, algorithms for graphs excluding a fixed topological
clique minor generalize algorithms for graphs excluding a fixed clique minor. Recent work
show that some algorithmic results for graphs excluding a fixed minor can be generalized
to excluded topological minors [14, 16, 18]. In particular, the structure theorem of Grohe
and Marx [18] states, in a precise technical sense, that graphs excluding a fixed topological
minor are composed from parts that are either “almost bounded-degree” or exclude a
fixed minor. Therefore, it is interesting to investigate in our setting how this parameter
interacts with the parameters smallest excluded clique minor and maximum degree.

Given this list of 10 parameters, we would like to understand if an algorithm with running
time of the form f1(p1, p2, . . . , p`) · nf2(p`+1,...,pk) exists, where each pi is one of these 10
parameters applied on either H and G, and f1, f2 are arbitrary computable functions of
these parameters. We call such a sequence of parameters a description, and we say that an
algorithm is compatible with the description if its running time is of this form. Observe that
Theorems 2 and 3 can be stated as the existence of algorithms compatible with particular
descriptions. However, Theorem 4 has the extra condition that H is connected (or in other

STACS’14

546 Parameterized complexity of Subgraph Isomorphism

words, the number of connected components of H is 1) and therefore it does not seem to fit
into this framework. In order to include such statements into our investigations, we extend
the definition of descriptions with some number of constraints that restrict the value of certain
parameters to particular constants. Specifically, we consider the following 5 constraints on
H and G, each of which corresponds to a particularly motivated special case of the problem:

Genus is 0. That is, the graph is planar. Any positive result on planar graphs is
clearly of interest, even if it does not generalize to arbitrary fixed genus. Conversely,
whenever possible, we would like to state hardness results for planar graphs, rather than
for bounded-genus with an unspecified bound on the genus.
Number of components is 1. Any positive result under this restriction is quite motivated,
and as the examples above show, the problem can become simpler on connected graphs.
Treewidth is at most 1. That is, the graph is a forest. Trees can behave very differently
than bounded-treewidth graphs (compare Theorem 1 with the fact the the problem is
NP-hard on graphs of treewidth 2), thus investigating the special case of forests might
turn up additional algorithmic results.
Maximum degree is at most 2. That is, the graph consists of disjoint paths and cycles.
Clearly, this class is very restricted, but as the NP-hardness of Hamiltonian Cycle
shows, this property of H does not guarantee tractability without further assumptions.
Maximum degree is at most 3. To provide contrast with the case of maximum degree at
most 2, we would like to state negative results for graphs of maximum degree at most 3.

We restrict our attention to these 5 specific constraints. For example, we do not specifically
investigate possible algorithms that work on, say, graphs of feedback vertex set size 1 or of
pathwidth 2: we can argue that such algorithms are interesting only if they can be generalized
to every fixed bound on the feedback vertex set size or on pathwidth (whereas an algorithm
for planar graphs is interesting even if it does not generalize to higher genera).

3 Results

Our formulation of the general framework includes an enormous number of concrete research
questions. Even without considering the 5 specific constraints, we have 19 parameters (10 for
H and 9 for G) and each parameter can be either in the exponent of the running time, in the
multiplier of the running time, or does not appear at all in the running time. Therefore, there
are at least 319 ≈ 109 descriptions and corresponding complexity questions in this framework.
The present paper answers all these questions (under standard complexity assumptions).

In order to reduce the number of questions we observe that there are some clear implica-
tions between them. Clearly, the f1(|V (H)|) ·nf2(tw(H)) time algorithm of Theorem 3 implies
the existence of, say, an f1(|V (H)|, genus(G)) · nf2(pw(H),∆(G)) time algorithm: pw(H) is
always at least tw(H) and the fact that the latter running time can depend on genus(G)
and ∆(G) can be ignored. The main claim of the paper is that every question arising in the
framework can be answered by a set of 11 positive and 17 negative results:

The positive and negative results presented in Table 1 imply a positive or negative
answer to every question arising in this framework. (*)

That is, either there is a positive result for a more restrictive description, or a negative result
for a less restrictive restriction. The following two examples show how one can deduce the
answer to specific questions from Table 1.

D. Marx and M. Pilipczuk 547

S
h

o
rt

D
e

sc
ri

p
ti

o
n

T
h

e
o

re
m

H
G

|V
(·

)|
cc

∆
fv

s
p

w
tw

cw
g

e
n

u
s

h
a

d
w

h
a

d
w

T
cc

∆
fv

s
p

w
tw

cw
g

e
n

u
s

h
a

d
w

h
a

d
w

T

T
h

eo
re

m
P

.1
M

M
F

O
m

o
d

el
ch

ec
k

in
g

T
h

eo
re

m
P

.2
M

M

C
ol

or
co

d
in

g
T

h
eo

re
m

P
.3

M
E

M
at

ou
še

k
-T

h
om

as
T

h
eo

re
m

P
.4

M
M

E

P
at

h
s&

C
y

cl
es
→

P
at

h
s&

C
y

cl
es

T
h

eo
re

m
P

.5
E

2

T
h

eo
re

m
P

.6
E

2
M

T
h

eo
re

m
P

.7
E

2
E

D
y

n
am

ic
P

ro
gr

am
m

in
g

T
h

eo
re

m
P

.8
?

M
1

T
h

eo
re

m
P

.9
?

M
2

M
M

T
h

eo
re

m
P

.1
0?

E
M

M
E

F
V

S
an

d
C

S
P

s

T
h

eo
re

m
P

.1
1?

E
E

M
M

E

T
h

eo
re

m
N

.1
M

2
1

T
h

eo
re

m
N

.2
1

1
E

E
0

B
in

P
ac

k
in

g

T
h

eo
re

m
N

.3
2

1
3

E
1

P
la

n
ar

cu
b

ic
H

am
P

at
h

T
h

eo
re

m
N

.4
1

2
1

3
0

C
li

q
u

e
T

h
eo

re
m

N
.5

M
1

E

H
am

P
at

h
in

b
ou

n
d

ed
cw

T
h

eo
re

m
N

.6
1

2
1

M

T
h

eo
re

m
N

.7
?

M
E

1
1

3
M

M
0

T
h

eo
re

m
N

.8
?

1
E

1
M

M
M

M
E

T
h

eo
re

m
N

.9
?

1
E

1
3

M
M

M
G

ri
d

T
il

in
g,

1-
in

-n
ga

d
ge

ts

T
h

eo
re

m
N

.1
0?

1
3

E
1

M
M

M
E

M

T
h

eo
re

m
N

.1
1?

1
3

E
1

M
M

0
G

ri
d

T
il

in
g,

m
ou

st
ac

h
e

ga
d

ge
ts

T
h

eo
re

m
N

.1
2?

1
E

1
3

M
0

S
m

al
l

p
la

n
ar

gr
ap

h
T

h
eo

re
m

N
.1

3?
M

1
3

0

T
h

eo
re

m
N

.1
4?

M
2

1
1

M
M

0

T
h

eo
re

m
N

.1
5?

M
2

1
1

3
M

0

T
h

eo
re

m
N

.1
6?

M
2

1
1

M
M

E
M

E
xa

ct
P

la
na

r
A

rc
Su

pp
ly

T
h

eo
re

m
N

.1
7?

M
2

1
1

M
M

E
M

Fi
gu

re
1
Po

sit
iv
e
(b
lu
e)

an
d
ne

ga
tiv

e
(r
os
a)

re
su
lts

in
th
e
pa

pe
r;

th
e
nu

m
be

rin
g
re
fe
rs

to
th
e
fu
ll
ve
rs
io
n.

A
st
er
isk

s
de

no
te

ne
w

fin
di
ng

s
no

t
kn

ow
n
be

fo
re
.

E
nt
ry

M
de

no
te
s
th
at

th
e
pa

ra
m
et
er

ap
pe

ar
s
in

th
e
m
ul
tip

lie
r,

en
tr
y

E
de

no
te
s
th
at

th
e
pa

ra
m
et
er

ap
pe

ar
s
in

th
e
ex
po

ne
nt
,w

hi
le

ex
pl
ic
it

in
te
ge
r
co
ns
ta
nt
s

de
no

te
co
ns
tr
ai
ni
ng

th
e
pa

ra
m
et
er

to
be

bo
un

de
d
by

th
e
re
sp
ec
tiv

e
co
ns
ta
nt

va
lu
e.

STACS’14

548 Parameterized complexity of Subgraph Isomorphism

I Example 5. Is there an algorithm for Subgraph Isomorphism with running time
nf(fvs(G)) when G is a planar graph of maximum degree 3 and H is connected? Looking at
Table 1, the line of Theorem P.10 shows the existence of an algorithm with running time
f1(fvs(G), ∆(G)) · nf2(genus(G),cc(H)). When restricted to the case when G is a planar graph
(i.e., genus(G) = 0) with ∆(G) ≤ 3 and H is connected (i.e., cc(H) = 1), then running
time of this algorithm can be expressed as f(fvs(G)) · nO(1). This is in fact better than the
running time nf(fvs(G)) we asked for, hence the answer is positive.

I Example 6. Is there an algorithm for Subgraph Isomorphism with running time
f(tw(G)) ·ng(∆(G)) when G is a connected planar graph? Looking at Table 1, the line of The-
orem N.7 gives a negative result for algorithms with running time f1(cc(H), pw(G), fvs(G)) ·
nf2(pw(H)) when restricted to instances where H is a forest and G is a connected planar
graph of maximum degree 3. Note that tw(G) ≤ pw(G), so an f(tw(G)) · ng(∆(G)) time
algorithm for connected planar graphs would give an f(pw(G)) · nO(1) time algorithm for
connected planar graphs of maximum degree 3, which is a better running time then the one
ruled out by Theorem N.7. Therefore, the answer is negative.

To make claim (*) formal and verifiable, we define an ordering relation between descriptions
in a way that guarantees that if description D1 is stronger than D2, then an algorithm
compatible with D1 implies the existence of an algorithm compatible with D2. Roughly
speaking, the definition of this ordering takes into account three immediate implications:

Removing a parameter makes the description stronger.
Moving a parameter from the exponent to the multiplier makes the description stronger.
We consider a list of combinatorial relations between the parameters and their implications
on the descriptions: for example, tw(H) ≤ pw(H) implies that replacing pw(H) with
tw(H) makes the description stronger. Our list of relations include some more complicated
and less obvious connections, such as tw(H) can be bounded by a function of cw(H)
and ∆(H), thus replacing cw(H) and ∆(H) with tw(H) makes the description stronger.

The precise definition of the ordering of the descriptions appears in the full version of the
paper. Given the ordering, we need to show the positive results only for the maximally strong
descriptions and the negative results for the minimally strong descriptions. Our main result
is that every question arising in the framework can be explained by a set of 11 maximally
strong positive results and a set of 17 minimally strong negative results listed in Table 1.

I Theorem 7. For every description D, either (a) Table 1 contains a positive result for a
description D′ such that D′ is stronger than D, or (b) Table 1 contains a negative result for
a description D′ such that D is stronger than D′.

At this point, the reader might wonder how it is possible to prove Theorem 7, that
is to verify that the positive and negative results on Table 1 indeed cover every possible
description. Interestingly, formulating the task of checking whether a set of positive and
negative results on an unbounded set of parameters explains every possible description leads
to an NP-hard problem (we omit the details). Therefore, we have implemented a simple
backtracking algorithm that checks if every description is explained by the set of positive
and negative results given in the input. We did not make a particular effort to optimize the
program, as it was sufficiently fast for our purposes on contemporary desktop computers.
The program indeed verifies that our set of positive and negative results is complete. We
have used this program extensively during our research to find descriptions that are not yet
explained by our current set of results. By focusing on one concrete unexplained description,

D. Marx and M. Pilipczuk 549

we could always either find a corresponding algorithm or prove a hardness result, which we
could add to our set of results. By iterating this process, we have eventually arrived at a
set of results that is complete. The program and the data files are available as electronic
supplementary material of the arxiv version of the present paper [25].

As the systematic study of our framework involves proving dozens of results that require
combination of many different tools, in this extended abstract we only survey our framework
and state the results, giving a short glimpse into the most important findings and techniques
used for proving them. For a full discussion of the results, including all the proofs, we refer
to the full version of the paper that can be found on arxiv [25].

4 Algorithms

Let us highlight some of the new algorithmic results discovered by the exhaustive analysis
of our framework. While the negative results suggest that the treewidth of G appearing in
the multiplicative factor of the running time helps very little if the size of H can be large,
we show that the more relaxed parameter feedback vertex set is useful on bounded-degree
planar graphs. Specifically, we prove the following result:

I Theorem 8. Subgraph Isomorphism can be solved in time f(∆(G), fvs(G)) · nO(1) if
H is connected and G is planar.

The proof of Theorem 8 turns the Subgraph Isomorphism problem into a Constraint
Satisfaction Problem (CSP) whose primal graph is planar. We observe that this CSP
instance has a special variable v that we call a projection sink: roughly speaking, it has
the property that v can be reached from every other variable via a sequence of constraints
that are projections. We prove the somewhat unexpected result that a planar CSP instance
having a projection sink is polynomial-time solvable, which allows us to solve the Subgraph
Isomorphism instance within the claimed time bound. This new property of having a
projection sink and the corresponding polynomial-time algorithm for CSPs with this property
can be interesting on its own and possibly useful in other contexts.

We generalize the result from planar graphs to bounded-genus graphs and to graphs
excluding a fixed minor in the following way:

I Theorem 9. Subgraph Isomorphism can be solved in time
1. f1(∆(G), fvs(G)) · nf2(genus(G),cc(H)), and
2. f1(∆(G), fvs(G)) · nf2(hadw(G),∆(H),cc(H)).

For (1), we need only well-known diameter-treewidth relations for bounded-genus graphs
[12], but (2) needs a nontrivial application of structure theorems for graphs excluding a fixed
minor and handling vortices in almost-embeddable graphs. Note that these two results are
incomparable: in (2), the exponent contains ∆(H) as well, thus it does not generalize (1).
Intuitively, the reason for this is that when lifting the algorithm from the bounded-genus
case to the minor-free case, high-degree apices turn out to be problematic. On the other
hand, Theorem N.8 shows that incorporating other parameters is (probably) unavoidable
when moving to the more general minor-free setting. We find it interesting that our study
revealed that the bounded-genus case and the minor-free case are provably different when
the parameterized complexity of Subgraph Isomorphism is concerned.

The reader might find it unmotivated to present algorithms that depend on so many
parameters in strange ways, but let us emphasize that these results are maximally strong
results in our framework. That is, no weakening of the description can lead to an algorithm

STACS’14

550 Parameterized complexity of Subgraph Isomorphism

(under standard complexity assumptions): for example, genus(H) or cc(H) cannot be moved
from the exponent to the multiplier, or ∆(H) cannot be omitted from the exponent in (2).
Therefore, these result show, in a well-defined sense, the limits of what can be achieved.
Finding such maximal results is precisely the goal of developing and analyzing our framework:
it seems unlikely that one would come up with results of the form of Theorem 9 without an
exhaustive investigation of all the possible combinations of parameters.

On the other hand, we generalize Theorem 1 from trees to forests, parameterized by the
number of connected components of H. This seemingly easy task turns out to be surprisingly
challenging. The dynamic programming algorithm of Theorem 1 relies on a step that involves
computing maximum matching in a bipartite graph. The complications arising from the
existence of multiple components of H makes this matching step more constrained and
significantly harder. In fact, the only way we were able to solve these matching problems
is by the randomized algebraic matching algorithm of Mulmuley et al. [28]. Therefore, our
result is a randomized algorithm for this problem:

I Theorem 10. Subgraph Isomorphism can be solved in randomized time f(cc(H)) ·nO(1)

with false negatives, if H and G are forests.

Again, we find it a success of our framework that it directed attention to this particularly
interesting special case of the problem. Obtaining a deterministic algorithm for this variant
is an interesting open problem.

5 Hardness proofs

Two different technologies are needed for proving negative results about algorithms satisfying
certain descriptions: NP-hardness and W[1]-hardness. Recall that a W[1]-hard problem is
unlikely to be fixed-parameter tractable and one can show that a problem is W[1]-hard by
presenting a parameterized reduction from a known W[1]-hard problem (such as Clique) to
it. The most important property of a parameterized reduction is that the parameter value
of the constructed instance can be bounded by a function of the parameter of the source
instance; see [13] for more details.

To give evidence that no nf(p1,...,pk) time algorithm for Subgraph Isomorphism exists,
one would like to show that Subgraph Isomorphism remains NP-hard on instances
where the value of the parameters p1, . . . , pk are bounded by some universal constant.
To give evidence that no f1(p1, p2, . . . , p`) · nf2(p`+1,...,pk) time algorithm for Subgraph
Isomorphism exists, one would like to show that Subgraph Isomorphism is W[1]-hard
parameterized by p1, . . . , p` on instances where the values of p`+1, . . . , pk are bounded
by some universal constant. That is, what is needed is a parameterized reduction from a
known W[1]-hard problem to Subgraph Isomorphism in such a way that parameters
p1, . . . , p` of the constructed instance are bounded by a function of the parameters of the
source instance, while the values of p`+1, . . . , pk are bounded by some universal constant.

Additionally, the reductions need to take into account the extra constraints (planarity,
treewidth 1, etc.) appearing in the description. The nontrivial results of this paper are
of the second type: we prove the W[1]-hardness of Subgraph Isomorphism with certain
parameters, under the assumption that certain other parameters are bounded by a universal
constant. Intuitively, a substantial difference between NP-hardness proofs and W[1]-hardness
proofs is that in a typical NP-hardness proof from, say, 3-SAT, one replaces each variable
and clause with a small gadget having a constant number of states, whereas in a typical
W[1]-hardness proof from, say, Clique, one creates a bounded number of large gadgets

D. Marx and M. Pilipczuk 551

having an unbounded number of states, e.g., the states correspond to the vertices of the
original graph. Therefore, usually the first goal in W[1]-hardness proofs is to construct
gadgets that are able to express a large number of states.

Most of our W[1]-hardness results are for planar graphs or for graphs close to planar. As
many parameterized problems become fixed-parameter tractable on planar graphs, there is
only a handful of planar W[1]-hardness proofs in the literature [4, 5, 11, 24]. These hardness
proofs need to construct gadgets that are both planar and able to express a large number
of states, which can be a challenging task. A canonical problem that can serve as a useful
starting point for W[1]-hardness proofs on planar graphs is Grid Tiling [23, 24]. Most of
our W[1]-hardness proofs indeed use Grid Tiling as the source problem. In some cases we
use a new problem, Exact Planar Arc Supply, which we prove to be W[1]-hard and
which is inspired by the problem Planar Arc Supply introduced by Bodlaender et al. [4].

Besides planarity (or near-planarity), our hardness proofs need to overcome other chal-
lenges as well: we bound combinations of maximum degree (of H or G), pathwidth,
cliquewidth etc. The following theorem demonstrates the type of restricted results we
are able to get. Note that the more parameters appear in the running time and the more
restrictions H and G have, the stronger the hardness result is.

I Theorem 11. Assuming FPT 6= W [1], there is no algorithm for Subgraph Isomorphism
with running time

f1(pw(G)) · nf2(pw(H)), even if both H and G are connected planar graphs of maximum
degree 3 and H is a tree, or
f1(∆(G), pw(G), fvs(G), genus(G))·nf2(pw(H),cw(G)), even if both H and G are connected
and H is a tree of maximum degree 3.

6 Conclusions

In this paper we have developed a framework for studying different parameterizations of
Subgraph Isomorphism and completely answered every question arising in this framework.
Systematic studies of parameterizations have been performed before for various problems
[20, 21, 22, 31], but never on such a massive scale as in the present paper. We have
demonstrated that even if the number of questions is on the order of billions, finding the
maximal set of positive results and the maximal set of negative results that explain every
specific question of the framework is a doable project and might involve only a few dozen
concrete results. At such a large scale, even verifying that a set of results explains every
possible question is a daunting task. We have resorted to the help of a computer program
that checks this efficiently; the program can be helpful for similar investigations in the future.

While developing the framework and showing that it can be completely explained by
a small set of results is the conceptually most novel part of the paper, we would like to
emphasize that some of the concrete positive and negative results are highly nontrivial and
technically novel. On the algorithmic side, we have discovered a simple, but unexpectedly
challenging case: packing a forest H into a forest G, parameterized by the number of
connected components of H. We presented a nontrivial randomized dynamic programming
algorithm for this problem using algebraic matching algorithms. Our investigations turned
up an unexpected combination of parameters that results in tractable cases: maximum
degree, feedback vertex set number, and genus of G. In a somewhat surprising manner,
tractability relies on the fact that a certain property, the existence of a projection sink, allows
us to dramatically reduce treewidth in bounded-genus CSP instances. This new result on
CSPs can be of independent interest. We have generalized the result to graphs excluding
a fixed minor (with a slightly different parameterization). The generalization is not just a

STACS’14

552 Parameterized complexity of Subgraph Isomorphism

straightforward application of known structure theorems: we had to use a fairly complicated
dynamic programming scheme on tree decompositions to exploit the existence of a projection
sink and we had to handle almost embeddable graphs including all the gory details of vortices.

On the hardness side, many of our W[1]-hardness proofs involve planar (or bounded-genus)
graphs. W[1]-hardness proofs are typically involved, as they require complicated gadget
constructions. Reducing from the Grid Tiling problem helps streamlining the reductions,
but the actual gadgets have to be constructed in a problem-specific way. In our case the
construction of gadgets is particularly challenging since we have to satisfy extreme restrictions.

It might not be apparent from the paper, but the authors did exercise some restraint when
defining the framework. Only those graph parameters were included in the framework that
already had some interesting nontrivial connection to the Subgraph Isomorphism problem.
One could extend the framework with further parameters, such as chromatic number, girth,
or (edge) connectivity, but it is not clear whether these parameters would influence the
complexity of the problem in an interesting way and whether these parameters would add
anything to the message of the results besides further complications. Moreover, recall that
for similar reasons we have constrained ourselves to 5 particularly interesting constraints
corresponding to small fixed values of certain parameters.

The reader might wonder: do the authors advocate this kind of massive investigation
for each and every problem? It seems that the Subgraph Isomorphism problem is
particularly suited for such treatment. First, previous results suggest that a wide range
of parameters influence the complexity of the problem in nontrivial ways. Second, the
Subgraph Isomorphism problem involves two graphs H and G and the same parameter for
H or G can play very different role. This effectively doubles the number of parameters that
need to be considered. Therefore, the problem has a very complicated ecology of parameters
that can be understood only with a large-scale formal investigation. For other problems,
say, Vertex Coloring, the complexity landscape is expected to be much simpler, and
probably fewer new results (if any) need to be invented to explain every combination of
parameters. Therefore, we suggest exploring problems using a detailed framework similar to
ours only if there is evidence for complex interaction of parameters. Variants of Subgraph
Isomorphism might be natural candidates for such investigations: for example, (i) the
homomorphism problem for graphs, (ii) colored versions of Subgraph Isomorphism, (iii)
extension versions of Subgraph Isomorphism (where we have to extend a partial subgraph
isomorphism given in the input), or (iv) the counting version of Subgraph Isomorphism
(this problem was suggested by Petteri Kaski).

References

1 N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
2 H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on

partial k-trees. J. Algorithms, 11(4):631–643, 1990.
3 H. L. Bodlaender and A. M. C. A. Koster. Combinatorial Optimization on Graphs of

Bounded Treewidth. The Computer Journal, 51(3):255–269, 2008.
4 H. L. Bodlaender, D. Lokshtanov, and E. Penninkx. Planar Capacitated Dominating Set

is W[1]-hard. In IWPEC, pages 50–60, 2009.
5 L. Cai, M. R. Fellows, D. W. Juedes, and F. A. Rosamond. The complexity of polynomial-

time approximation. Theory Comput. Syst., 41(3):459–477, 2007.
6 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.

Inf. Comput., 85(1):12–75, 1990.
7 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems

on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.

D. Marx and M. Pilipczuk 553

8 B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied
Mathematics, 101(1-3):77–114, 2000.

9 E. D. Demaine, M. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory:
Decomposition, approximation, and coloring. In FOCS, pages 637–646, 2005.

10 Z. Dvořak, D. Král, and R. Thomas. Deciding first-order properties for sparse graphs. In
FOCS, pages 133–142, 2010.

11 R. Enciso, M. R. Fellows, J. Guo, I. A. Kanj, F. A. Rosamond, and O. Suchý. What makes
equitable connected partition easy. In IWPEC, pages 122–133, 2009.

12 D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27:275–
291, 2000.

13 J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 1 edition, March 2006.

14 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Linear kernels for (connected)
dominating set on graphs with excluded topological subgraphs. In STACS, pages 92–103,
2013.

15 M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable struc-
tures. J. ACM, 48(6):1184–1206, 2001.

16 M. Grohe, K. Kawarabayashi, D. Marx, and P. Wollan. Finding topological subgraphs is
fixed-parameter tractable. In STOC, pages 479–488, 2011.

17 M. Grohe, K. Kawarabayashi, and B. A. Reed. A simple algorithm for the graph minor
decomposition - logic meets structural graph theory. In SODA, pages 414–431, 2013.

18 M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded
topological subgraphs. In STOC, pages 173–192, 2012.

19 S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex set
number. In SWAT, pages 81–92, 2010.

20 M. Kronegger, A. Pfandler, and R. Pichler. Parameterized complexity of optimal planning:
A detailed map. In IJCAI, 2013.

21 M. Lackner and A. Pfandler. Fixed-parameter algorithms for closed world reasoning. In
ECAI, pages 492–497, 2012.

22 M. Lackner and A. Pfandler. Fixed-parameter algorithms for finding minimal models. In
KR, 2012.

23 D. Marx. On the optimality of planar and geometric approximation schemes. In FOCS,
pages 338–348, 2007.

24 D. Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In
ICALP (1), pages 677–688, 2012.

25 D. Marx and M. Pilipczuk. Everything you always wanted to know about the parameterized
complexity of Subgraph Isomorphism (but were afraid to ask). CoRR, abs/1307.2187, 2013.

26 J. Matoušek and R. Thomas. On the complexity of finding iso- and other morphisms for
partial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992.

27 D. W. Matula. Subtree isomorphism in O(n5/2). In Algorithmic Aspects of Combinatorics,
volume 2 of Annals of Discrete Mathematics, pages 91–106. Elsevier, 1978.

28 K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

29 I. N. Ponomarenko. The isomorphism problem for classes of graphs that are invariant with
respect to contraction. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),
174(Teor. Slozhn. Vychisl. 3):147–177, 182, 1988. In Russian.

30 N. Robertson and P.D. Seymour. Graph minors XVI. Excluding a non-planar graph. Jour-
nal of Combinatorial Theory, Series B, 77:1–27, 1999.

31 M. Samer and S. Szeider. Constraint satisfaction with bounded treewidth revisited. J.
Comput. Syst. Sci., 76(2):103–114, 2010.

STACS’14

Data-Oblivious Data Structures
John C. Mitchell and Joe Zimmerman

Department of Computer Science, Stanford University, Stanford, US
{mitchell,jzim}@cs.stanford.edu

Abstract
An algorithm is called data-oblivious if its control flow and memory access pattern do not depend
on its input data. Data-oblivious algorithms play a significant role in secure cloud computing,
since programs that are run on secret data—as in fully homomorphic encryption or secure multi-
party computation—must be data-oblivious. In this paper, we formalize three definitions of
data-obliviousness that have appeared implicitly in the literature, explore their implications, and
show separations. We observe that data-oblivious algorithms often compose well when viewed
as data structures. Using this approach, we construct data-oblivious stacks, queues, and priority
queues that are considerably simpler than existing constructions, as well as improving constant
factors. We also establish a new upper bound for oblivious data compaction, and use this result to
show that an “offline” variant of the Oblivious RAM problem can be solved with O(logn log logn)
expected amortized time per operation— as compared with O(log2 n/ log logn), the best known
upper bound for the standard online formulation.

1998 ACM Subject Classification D.4.6 Security and Protection, E.1 Data Structures,
F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases Data-oblivious algorithms, Data-oblivious data structures, Oblivious
RAM, Secure multi-party computation, Secure cloud computing

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.554

1 Introduction

An algorithm is called data-oblivious, or just oblivious, if its control flow and memory access
pattern do not depend on its input data. Data-obliviousness has compelling applications in
cryptography and security. When an untrusted cloud server computes on encrypted data, the
computation must be oblivious, since by assumption the server cannot learn anything about
the data. Obliviousness also subsumes standard notions of security against side-channel
attacks. If an adversary cannot distinguish between different primitive operations, then by
making a program oblivious, we ensure that the adversary gains no information from any other
source—including standard side channels such as timing, cache performance, and termination
behavior. In addition, deterministic oblivious algorithms correspond directly to uniform
families of Boolean circuits, and so they are useful in designing hardware implementations
whose structure must be fixed before the input is known.

There has been a large body of work on the Oblivious RAM problem, which concerns
a general translation of RAM programs to versions that are data-oblivious in a certain
sense [7, 15, 10, 17, 6], as well as on other general data-oblivious simulations [9, 16]. In addition,
there has been some work on developing data-oblivious solutions to specific problems [4, 8],
but this class of questions has received relatively little attention in the past, particularly
with respect to the prospect of composable data-oblivious data structures. In this work:

We formalize three definitions of data-obliviousness—including formulations that apply
to modern cloud computing settings, in which algorithms need only be oblivious with
respect to part of the data.

© John C. Mitchell and Joe Zimmerman;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 554–565

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.554
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. C. Mitchell and J. Zimmerman 555

We give new results on data-oblivious algorithms and simple composable data structures,
including new bounds for data compaction and an “offline” variant of Oblivious RAM.
We give a number of refinements of existing results, including simpler and tighter
constructions for oblivious stacks, queues, and priority queues.

2 The formal computation model

We will consider algorithms executed on a word RAM, with a word size of Θ(logn), where n
is the size of the input (or the capacity of the data structure, as appropriate), and the entire
memory consists of poly(n) words.1 The RAM has a constant number of public and secret
registers, and can perform arbitrary operations (of circuit size poly(logn)) on a constant
number of registers in constant time. (Data-oblivious algorithms are sometimes also studied
in the external memory model. In the language of that model, our results assume a block
size of B = Θ(logn), and a cache of a constant number of blocks, M = O(B); this is the
traditional setting of Oblivious RAM [7].)

We will further assume that the machine’s memory is divided into public and secret
regions, and that an operation is prohibited if it could cause values originating from secret
regions to influence those in public regions. The formal mechanism for this restriction
depends on the machine specification, but in general, we assume standard techniques from
(branching-sensitive) static information flow control [14, 13]. For example, we may specify
that (i) a register is tagged as secret when its value is read from a secret memory location or
is updated based on another secret register; (ii) a register does not become public again until
it is directly overwritten by a constant or the contents of a public memory location; and (iii)
that no secret register may be involved in a write instruction to a public memory location.
The notion of obliviousness is then parameterized over which part of the input is secret: we
say that an algorithm is oblivious if it never executes any instruction that sets its program
counter or memory-address operands based on a secret register. Thus, if the entire memory
is designated as secret, we recover the standard definition of oblivious computation.

We will also assume that each of the registers and memory locations is labeled as determ-
inistic or nondeterministic, with the restriction that values labeled nondeterministic can
never influence those labeled deterministic.2 We assume that machines have a finite number
of registers of every type (public/deterministic, public/nondeterministic, secret/deterministic,
secret/nondeterministic), and we will measure memory usage of all types together. When
machines have access to randomness, we will say that they are provided with two read-only
one-way-infinite tapes of uniformly random bits, with one labeled public and one labeled
secret, and both labeled nondeterministic.

We can now state three definitions, in increasing order of computational power.
1. Deterministically data-independent: The RAM can only set its control flow based

on registers that are both public and deterministic. This definition corresponds directly
to uniform families of Boolean circuits.

2. Data-independent: The RAM can only set its control flow based on registers that are
public (though these registers may be either deterministic or nondeterministic). Even

1 Our choice of such a powerful machine model is motivated by the thin asymptotic complexity margins
inherent in the study of obliviousness. As we note in Section 2.1, any program can be made oblivious
with overhead linear in its time complexity, and thus it would not make sense to study a simpler model
such as the Turing machine, which may already incur linear overhead just by virtue of being limited to
sequential memory access.

2 As above, this restriction can be effected using standard static information-flow control rules.

STACS’14

556 Data-Oblivious Data Structures

though its structure varies based on random bits, the computation can still proceed
without seeing the secret data.

3. Data-oblivious: The RAM can only set its control flow based on public registers, but
it is equipped with an additional “declassification” operation that moves a value from
any secret register to any public register. However, the distribution of all declassified
values (along with the point during execution at which each declassification occurs) is
independent3 of all secret inputs. Here, the algorithm can see the secret data and branch
on it, but its control flow and memory access pattern still must not reveal any secret
values. This definition captures the setting of Oblivious RAM with constant client-side
storage [7, 10, 3]; the physical memory locations accessed by the Oblivious RAM protocol
must be independent of the logical memory locations requested.

Qualitatively, the fundamental difference between these definitions is that data-independent
machines must satisfy a purely static constraint on the kinds of operations that are permitted
on secret locations, while data-oblivious machines must only satisfy a dynamic condition,
describing the actual effects of declassification operations at runtime. This distinction is fairly
subtle. For instance, Beame and Machmouchi [1] give a lower bound for oblivious branching
programs that was originally believed to apply to Oblivious RAM; however, as indicated
by the authors in a supplementary note [2], their result applies only to data-independent
algorithms, not to data-oblivious algorithms such as Oblivious RAM.

We also remark that, in general, deterministic data-independence is a very strong condition.
For hardware implementations, it may be the case that the control flow of the algorithm is
fixed a priori and cannot depend on any random bits at runtime. In virtually all applications
in cryptography and security, however, no such restriction exists in practice. Even in the
case of fully homomorphic encryption, the server operating on ciphertexts may generate and
encrypt its own random bits.4 Thus, for the remainder of this paper, we will use the term
data-independent to refer to probabilistically data-independent algorithms, unless otherwise
indicated.

Finally, we will sometimes want to enable the machine to execute cryptographic operations,
such as evaluating a pseudorandom function (PRF), at unit cost. While this feature is
standard in the Oblivious RAM setting [7, 10], it introduces subtle difficulties. The largest
cryptographic key that will fit in the machine’s O(1) registers is of size Θ(logn)—which
cannot possibly provide security better than 2Θ(log n) = poly(n). So instead, whenever
cryptographic operations are relevant, we introduce an additional security parameter λ, and
assume that the adversary’s advantage is negligible in any relevant cryptographic game when
instantiated with λ as the security parameter.5 In such settings, when we write O(t(n)), it
should be taken to mean O(t(n) · (1+poly(λ/ logn))), i.e., O(t(n)) standard RAM operations
plus O(t(n)) cryptographic operations.

3 We extend this definition in the natural way to statistically data-oblivious, in which the distributions
for two different secret inputs are statistically close; or computationally data-oblivious, in which the
distributions are computationally indistinguishable. In this case, we refer to the original definition as
perfectly data-oblivious.

4 Indeed, even when the server must provide proof that it conducted the computation correctly, it can
still simulate the same effect by evaluating a pseudorandom function homomorphically.

5 In practical settings, this may require a superpolynomial hardness assumption, since we generally always
have λ < n. An alternate approach, suggested by Goldreich and Ostrovsky [7], is to give the machine
(but not the adversary) unit-cost access to a random oracle.

J. C. Mitchell and J. Zimmerman 557

2.1 General program transformations
We note that there is a general upper bound on the cost of making an arbitrary algorithm
data-independent:

I Theorem 1. Any RAM program whose running time is at most T (n), and refers to memory
addresses bounded by S(n), 6 may be translated to a deterministically data-independent RAM
program that uses Θ(S(n)) space and runs in time Θ(T (n)S(n)).

Proof. The translation is simply by brute force. At each time step, iterate over the entire
finite program, and for each possible pair 〈instruction, memory location〉, compute the
Boolean value b corresponding to whether (a) the program counter resides at the given
instruction and (b) the given memory location is requested by that instruction. Then
compute the result of executing the instruction, and set the resulting register and/or memory
location accordingly, by “arithmetizing” the branch: A` := (b ·new_value)+((1−b) ·A`). J

If the algorithm need only be data-oblivious, not necessarily data-independent, then the
upper bound is considerably better. A long line of work on the Oblivious RAM problem [7, 15,
10, 17, 6] has produced increasingly efficient data-oblivious simulations of RAMs, achieving
the following complexity bound [10]:

I Theorem 2 (Kushilevitz, Lu, and Ostrovsky, 2012). Assuming one-way functions exist, there
is an Oblivious RAM that requires O(log2 n/ log logn) amortized overhead per operation and
uses Θ(n) space.

2.2 Data-oblivious data structures
We extend the formal treatment above to data structures, by considering each operation on
a data structure as an algorithm taking its current internal state and a query as input, and
producing as output its result and subsequent internal state.7

As a simple example, we consider the case of the array: we must produce an algorithm
that takes a query tuple (read/write, index, value), along with some current memory state,
and returns a new memory state (and, if the operation was a read, the result of the query).
For simplicity, we restrict our attention to arrays that are operation-secret as well as data-
secret—i.e., the identity of the operation being performed (read or write), is labeled as secret,
in addition to the values in the array.8 (Of course, we also restrict our attention to arrays
that are index-secret—i.e., the index i is labeled as secret—since otherwise the solution is
trivial; an ordinary random-access array suffices.)

For general arrays, it is clear that we cannot hope for a nontrivial data-independent
construction:
I Proposition 3. Any data-independent array of size n requires Ω(n) space and Ω(n) time
per operation.

Proof. Immediate by an information-theoretic argument. J

6 Technically, we also require T and S to be time- and space-constructible by an oblivious machine, since
we must decide when to stop the simulation without inspecting the simulated data values.

7 Here we remark that our notion of data-oblivious data structures is also distinct from that of Miccian-
cio [12]: under our definition, the obliviousness criterion applies not to the physical representation of
the data structure, but rather to the algorithms that implement its operations. Data-obliviousness is
also distinct from cache-obliviousness (as in external memory models).

8 One could also weaken the requirements so that arrays may be operation-public, and describe the
complexity of reads and writes separately, but this does not change the situation up to constant factors,
since we can just execute both a read and a write whenever either is requested.

STACS’14

558 Data-Oblivious Data Structures

We may consider relaxing the requirements by specifying only that the array be data-
oblivious, rather than data-independent. In this case, the setting coincides with that of
Oblivious RAM, and Theorem 2 gives an efficient construction.

Alternatively, we can relax the requirements not by changing the model, but by restricting
the features of the data structure itself. Indeed, we now show that for many common uses of
arrays—notably, stacks, queues, and priority queues—it is possible to do considerably better
than the naive translation, even in the data-independent setting.

3 Stacks and queues, via composition

In some of the earliest work that considers obliviousness as an explicit goal, Pippenger and
Fischer give a simulation of a multitape Turing machine by a deterministic data-independent
two-tape Turing machine, running in time O(T (n) log T (n)), where T (n) bounds the running
time of the original machine [16]. Initially, constructions such as the Pippenger-Fischer
simulation were used to refine the time hierarchy theorem, as they permit a more efficient
universal Turing machine simulation than the naive Θ(T (n)2).

However, from the perspective of oblivious algorithms (even executed on a RAM), we
find that the Turing machine tape is a useful data structure in its own right. As above, we
will restrict our attention to the nontrivial case, that of operation-secret Turing machine
tapes: the identity of each operation (i.e., {read,write} × {left, right}), as well as each tape
symbol, is deemed secret for the purpose of obliviousness. We state the following results:

I Theorem 4. There exists a deterministic data-independent Turing machine tape with
(pre-specified, public) length n, using Θ(n) space and O(logn) amortized time per operation.
The tape may be taken to be either (a) toroidal, so that attempting to move off the right end
wraps around to the left end, and vice versa; or (b) bounded, so that attempting to move off
either end results in no head movement.

Proof. Follows directly from the Pippenger-Fischer simulation [16]. J

I Corollary 5. There exists a deterministic data-independent stack with (pre-specified, public)
capacity n, using Θ(n) space and Θ(logn) amortized time per operation.

Proof. Follows from Theorem 4, since a stack may be implemented by writing the elements
in sequence on a Turing machine tape, leaving the head at the end. J

Fischer et al. also showed that it is possible to simulate a Turing machine with multiple
heads using a Turing machine with multiple tapes (but only one head on each tape), with
only a constant factor slowdown [5]. This result enables a straightforward construction of
efficient oblivious queues, by composition with the stack of the previous section:

I Theorem 6. There exists a deterministic data-independent queue with (pre-specified, public)
capacity n, using Θ(n) space and Θ(logn) amortized time per operation.

Proof. Given a two-headed Turing machine tape, a queue can trivially be implemented with
overhead Θ(1) (and no extra space), by keeping the front of the queue at one head and the
back of the queue at the other. A two-headed Turing machine tape can be implemented
by a constant number of (non-oblivious) single-headed Turing machine tapes, also with
linear space and only a constant factor slowdown [5, 11]. Thus, if we use the oblivious
Turing machine tape of Pippenger and Fischer (Theorem 4) to implement each, the entire
construction uses only Θ(logn) amortized time per operation (and linear space). J

J. C. Mitchell and J. Zimmerman 559

4 Stacks and queues, directly

In the previous section, we illustrated the ability to build data-oblivious data structures
by composition of other data structures. We now show that one may also proceed from
first principles, sometimes obtaining constructions that are much simpler and have better
constant factors. Generally, efficient data-oblivious data structures share the following traits:

Data locality – the Turing machine tape, for example, can only visit a neighborhood of
size O(k) within k steps.
Self-similarity or isotropy – the “local context” at any point in the data structure must
appear the same, so that the structure can operate obliviously on local data, and can
obliviously shift data so that the new local context is correct.

Proceeding from these principles, we arrive at the following results:

I Theorem 7. There exists a deterministic data-independent stack with (pre-specified, public)
capacity n, requiring linear space and amortized time at most ∼ 8dlgne per operation.

I Theorem 8. There exists a deterministic data-independent queue with (pre-specified, public)
capacity n, requiring linear space and amortized time at most ∼ 11.5dlgne per operation.

At a high level, our constructions implement a “b-structure”, which operates on b-word
blocks, in terms of (i) a buffer of a constant number of b-word blocks, kept fairly close to
half-full; and (b) a “2b-structure”, defined inductively, into which blocks are pushed or pulled
as the local buffer becomes too imbalanced. We defer the details to the extended version
of this work. We note that the overhead of our oblivious stack is significantly better than
the 24dlgne of the Pippenger-Fischer simulation (Corollary 5), and even yields a tighter
oblivious Turing machine tape (16dlgne, by implementing the tape using two stacks). The
constant-factor improvement in the oblivious queue is even more significant, since Theorem 6
invokes not only the Pippenger-Fischer simulation but also a simulation of a two-headed
machine.

5 Priority queues

As another example of data structure composition, we now show how to build efficient
oblivious priority queues (both operation-secret and operation-public), using oblivious queues
as a key component. As above, we will be concerned only with data-secret priority queues,
since the data-public case is trivial. However, unlike the Turing machine tape, the oblivious
priority queue harbors a nontrivial distinction between operation-secret and operation-public
structures, and we will consider both. In what follows, we write a to denote the capacity of
the priority queue, n the number of items in the priority queue at any given time, and m the
total number of operations that have been performed.

First, we note that if the priority queue is operation-secret, then the time bounds must
depend only onm and a (since n depends on whether the operations performed were insertions
or deletions.) We also note that in general:

I Lemma 9. Given an operation-public priority queue such that remove-min and insert both
run in amortized time f(a, n,m) (where f is monotonically increasing and poly(a, n,m)),
there exists an operation-secret priority queue such that both operations run in amortized
time O(f(m,m,m)).

Proof. By performing dummy operations; we defer the details to the extended version. J

STACS’14

560 Data-Oblivious Data Structures

I Theorem 10. There exists a deterministic data-independent, operation-secret priority
queue, using Θ(min(a,m)) space and Θ(log2(min(a,m))) amortized time per operation.

Proof. For simplicity, we assume the capacity of the priority queue is a power of two,
a = 2k, and that all elements are distinct. We use a hierarchical series of k oblivious queues
(Section 8), as in standard Oblivious RAM constructions; the ith queue has capacity 2i+1.

We maintain the following invariant: at the beginning of any operation, queue i contains
up to 2i items in sorted order. The operations are then implemented as follows:9
1. To remove the minimum: first, find the minimum by examining the front of each queue.10

Then, for each queue, if its front is the minimum, pop it; otherwise, do nothing. (Since
all elements are distinct, only one of the queues will actually be popped.)

2. To insert an item: first, let l be the deepest level such that 2l divides m (where m, as
above, is the number of operations performed so far). Create a temporary buffer queue B
of size 2l+1, holding only the new element. Then, for each level i ∈ (0, . . . , l), merge the
contents of queue i into B. This can be done using the standard merge algorithm: pop
whichever of the two queues currently yields the smaller element, accumulating the results
in a new buffer B′, and finally replace B with B′.

By the properties of the oblivious queue, operation (1) takes amortized time Θ(log(2i)) on
level i, and thus the total running time is

∑l−1
i=0 Θ(i) = Θ(l2) = Θ(log2 min(a,m)) (where l is

the index of the largest occupied level). On the other hand, operation (2) merges a queue of
size Θ(2i) into its successor (taking time Θ(2i log 2i)) once after every 2i operations, and thus
the amortized cost of each operation is

∑l
i=0(1/2i)(Θ(2i log 2i)) = Θ(l2) = Θ(log2 min(a,m))

also. J

I Theorem 11. There exists a deterministic data-independent operation-public priority
queue, using Θ(n) space and Θ(log2 n) amortized time per operation, where n is the size of
the priority queue prior to each operation.

Proof. Similar to the proof of Theorem 10; we defer the details to the extended version. J

Theorems 10 and 11 establish efficient constructions of oblivious priority queues in both the
operation-secret and the operation-public models. Evidently, for series of operations in which
m = O(n) (e.g., inserting 2m/3 items followed by removing m/3 items), the performance
in the operation-secret case is no worse asymptotically than in the operation-public case;
since the operation-secret queue cannot reveal the pattern of operations, in a sense, this is
the best we can hope for, without also obtaining a faster operation-public queue. Thus, the
distinction between operation-public and operation-secret priority queues turns out not to
matter, at least in the context of our best known constructions.

The constructions above compare favorably with the generic solution in the data-oblivious
setting: i.e., representing the priority queues as min-heaps, and using Oblivious RAM to serve
as the underlying array. In this case, using the Oblivious RAM of Kushilevitz et al. [10], we
would spend Θ(log3 n/ log logn) time, and Θ(log2 n) sequential communication rounds, per
operation (and we would incur either a large constant factor, if the Oblivious RAM uses the
AKS sorting network; or a moderate constant factor, with some small probability of error, if
the Oblivious RAM uses Goodrich’s randomized Shellsort). In contrast, our constructions

9 In fact, since the priority queue is operation-secret, of course, we simulate both (1) and (2) when either
operation is requested.

10Strictly speaking, this is not an operation of the queue interface above, but it is a straightforward
extension since the pop operation is not destructive.

J. C. Mitchell and J. Zimmerman 561

are not just data-oblivious but data-independent; they operate deterministically, and costs
only Θ(log2 n) time per operation, with a very small constant factor.

We note that in recent independent work, Toft [18] has also described a data-oblivious
priority queue with the same asymptotic bounds, albeit by a different method. The construc-
tions of this section are much simpler, however, due to the composition of data-oblivious
primitives.

6 Data compaction and the partition problem

Goodrich [8] describes a problem called data compaction: given an array of length n in which
r of the elements are marked as “distinguished”, construct a new array of size O(r) containing
only the distinguished items. If the resulting array is required to be of size exactly r, the
compaction is said to be tight; otherwise it is loose. If the items are also required to be in
their original order, the compaction is additionally said to be order-preserving. Goodrich
proves the following:

I Theorem 12 (Goodrich, 2011). There exists a deterministically data-independent algorithm
for tight order-preserving data compaction running in time Θ(n logn).

I Theorem 13 (Goodrich, 2011). There is a data-oblivious algorithm that runs in time
O(n log∗ n) and achieves loose data compaction with high probability when r < n/4.

However, for the next section, we will need fast tight compaction. To that end, we first
rephrase the problem of tight compaction in terms of the partition problem: given an array
of n items each tagged with a single bit, separate the items so that all those tagged with a 0
appear to the left of those tagged with a 1.11

Now, we will show:

I Theorem 14. There is a data-independent algorithm that runs in time Θ(n log logn) and
achieves tight data compaction (i.e., solves the partition problem) with high probability.

Proof. First, we note that we can easily count which tag (0 or 1) constitutes a majority,
and obliviously decide whether to invert the tags (and reverse the array) based on that
information. Thus, it suffices to give an algorithm to extract a constant fraction of whichever
tag constitutes a majority (placing the extracted items at either the beginning or the end of
the array, as appropriate), since we may then recur on the rest of the array. At any stage in
this recursion, let n denote the size of the entire array, and n′ denote the size of the subarray
being partitioned at this point.

Now, without loss of generality, suppose the subarray contains more zeroes than ones.
Let A denote the leftmost n′/3 cells, and B the rightmost 2n′/3. Let s, the bucket size, be
(logn)k for an arbitrary constant k > 1. Then:
1. For each cell ai in A, pick c cells bi uniformly at random from B (for some constant c to

be determined), and, if bi contains a 0, swap ai with bi.
2. Divide A into n′/3s buckets of s cells each. Partition each bucket using any Θ(s log s)

algorithm (e.g., Theorem 12).

11To show the equivalence, we note that in order to solve the data compaction problem, we can simply
mark the distinguished cells with 0, run a partition algorithm, and return the appropriate prefix of the
original array. Conversely, to solve the partition problem, we run data compaction twice: once with
the 0 elements marked as distinguished, and once with the array in reverse order and the 1 elements
marked as distinguished. Then, iterate over the two resulting arrays in parallel, and at each index, copy
from whichever array has a distinguished item.

STACS’14

562 Data-Oblivious Data Structures

3. Extract and concatenate all of the first halves of the buckets (i.e., n′/3s half-buckets,
each of size s/2, for a total of n′/6 items).

Evidently, this procedure performs a total of cn′/3+(n′/3s)(s log s)+n′/6 = Θ(n′ log s) =
Θ(n′ log logn) operations, giving a running time of Θ(n′ log logn) for a subarray of size n′.
Since T (n′) = T (5n′/6) + Θ(n′ log logn) (and noting that we may stop the recursion at
n′ = O(s), solving the base case directly by the algorithm of Theorem 12 with T (s) =
O(s log s) = s log logn), we have an overall running time of T (n) = Θ(n log logn).

For correctness, we now claim that for any given subarray of size n′, after the final step
of the iteration, the first n′/6 cells of A are all 0 with high probability. To show this, we first
note that since zeroes constitute a majority of the array, B (the rightmost 2n′/3 cells) must
contain at least n′/6 zeroes at all times. Thus, in step 1, ai will become zero with probability
at least (n′/6)/(2n′/3) = 1/4 on every potential swap, independently of any other events.
Since c swaps are performed, the probability that ai will become zero after the entire step
is at least 1 − (3/4)c; we choose c so that this success probability is bounded away from
1/2. Thus, by Hoeffding’s inequality (and a union bound), the probability that there are
more than s/2 ones in any bucket (and, thus, the probability that we fail to extract n′/6
zeroes after partitioning and splitting) is at most (n′/3s)e−2(2/3−1/2)2s = (n′/6)e−Θ(s). Even
after executing this procedure at every level of the recursion (as n′ decreases from n down to
s), again by a union bound, the overall probability of error is at most

∑
n′(n′/6)e−Θ(s) =

ne−Θ(s) = n−Θ(lgk−1 n). J

Crucially, because this partitioning algorithm is based on swaps (and is data-independent,
not just data-oblivious), we can also use it to “un-partition”, or intersperse, items:

I Theorem 15. Given an array of r items and an array of r binary tags, there is a data-
independent algorithm that runs in time Θ(r log logn) and, with probability 1 − 1/nω(1),
produces a permutation of the array such that every element that was originally in the left
half now occupies a location that was tagged with 0. If one-way functions exist, this algorithm
can use O(n) words of memory; otherwise, it uses O(n log logn) words.

Proof. Run the algorithm of Theorem 14 on the tag array, and record a “trace” consisting of
each pair of indices that it decided to swap, accompanied by a (secret) bit indicating whether
those items were actually swapped. (These indices may also include empty scratch cells, not
initially containing either a 0 or a 1 item.) Then, run the trace in reverse on the array of
actual items.

The space used by the trace is O(r log logn) bits, which requires o(r) words; plus
O(r log logn) pairs of indices, which requires O(r log logn) words. However, assuming one-
way functions (and hence PRFs), the index pairs can be taken to be the output of a PRF on
a short seed and a time step, in which case the entire assembly requires only linear space. J

I Lemma 16. Given two arrays of size r, each permuted according to a distribution that is
computationally indistinguishable from uniform, there is a data-independent algorithm that
runs in time Θ(r log logn) and results in a permutation that is computationally indistinguish-
able from uniform on all 2r elements.

Proof. Follows from Theorem 15. J

7 Offline Oblivious RAM

We now show that the data compaction problem is closely related to the question of
data-oblivious arrays (i.e., Oblivious RAM). Intuitively, the hierarchical Oblivious RAM

J. C. Mitchell and J. Zimmerman 563

constructions of Goldreich and Ostrovsky [7] and of Kushilevitz et al. [10] must remember
(and hide from the adversary) two things: (i) the “level”, or epoch, in which each item resides;
and (ii) the permutation of the items within each epoch. As a result, they must use techniques
such as oblivious cuckoo hashing via sorting [10] or logarithmic-sized buckets [7] in order to
make accesses to a level look the same whether an item is present or not. However, we can
separate these two issues by considering a variant of the problem in which the RAM need
not remember when an item was last accessed—perhaps because the sequence of memory
addresses is known in advance, and can be preprocessed before the queries are made.

More precisely, we define a primed array to be a data structure that has the same interface
as an array, except that each request (read or write) is accompanied by the (logarithm of
the) time since the requested cell was last accessed. We note that a primed array generalizes
an “offline” array with preprocessed queries, since the preprocessor may annotate each query
with the preceding access time to that cell. Now, we can show:

I Theorem 17. Assuming one-way functions exist, there is a (computationally) data-oblivious
primed array with expected amortized overhead O((p(n)/n) logn) per operation, where p(n)
is the time required for oblivious partitioning (or data compaction) of n items.

Proof. As in other hierarchical Oblivious RAM constructions, we maintain a series of levels
of increasing power-of-two sizes, in which level i contains between zero and r = 2i items,
and is “shuffled” into the next larger level (in a sense specified below) and after every epoch
of length r. Here, level i consists of a dictionary Di of size Θ(r), mapping each of 2r keys
to a data item, where each key is either an element of {1, . . . , n} or one of the dummy
values {dummyti

1 , . . . ,dummyti
r }, where ti is the time of the most recent shuffle at level i

(superscripts elided below for clarity). (Di may be implemented by a cuckoo hash table, or
even a standard linked-list-based hash table, since we will not depend on its hiding the access
pattern—only on the fact that it implements a dictionary in expected amortized constant
time.) Further, during any fixed epoch, level i will have an associated injective PRF ψti

i

(again, we drop the time index for clarity, and just write ψi). For each logical address x
present at level i, Di(ψi(x)) is the item stored at x; while for each dummy index dummys,
the key ψi(dummys) is present in Di (and is mapped to a dummy item). Now, upon receiving
a query, we find out how long ago the cell was accessed. This tells us in which level it resides
(since, as in standard Oblivious RAM constructions, we will “promote” an item to the top
level whenever it is accessed). Suppose it resides at level i. We then access a real item in
that level only, by querying Di at ψi(x), and query for a unique dummy item in all other
levels (e.g., ψj(dummyt mod 2j)).

When it is time for a level to be merged into the next level down, we first extract (via
oblivious partitioning) the items from both levels that have not yet been accessed during this
epoch—possibly including some real items and some dummy items (which we overwrite with
new dummy indices appropriate to the new, merged level). Then, we randomly intersperse
these two lists of items (Section 6). Finally, we fill the resulting 2r items into the new level’s
hash table, keyed by the values of a new PRF (evaluated on either the items’ addresses, for
real items, or on their new dummy indices).

During this process, the adversary sees the values of the new PRF on all addresses
remaining in both levels, appearing in the order they were in after the partition operations.
Since these addresses are all distinct, their images under the PRF are indistinguishable from
an independently uniform set of size 2r. Hence the information obtained by the adversary is
completely described by the correspondence between these values and the PRF image value
queried on each level’s dictionary when an item is retrieved (recall that these can match
only once, since as soon as an item is found, it is promoted to the top level; while dummy

STACS’14

564 Data-Oblivious Data Structures

indices are used only once per epoch). This reveals only the order that an item had when it
was initially inserted into its current level during a merge. Thus, if we assume inductively
that the ordering of unvisited items in each of the higher levels was indistinguishable from a
uniform permutation (of their order of insertion), then it follows from Lemma 16 that the
resulting ordering in the current level is also indistinguishable from a uniform permutation,
and so is independent of the address request sequence, as desired. J

I Corollary 18. Assuming one-way functions exist, there is an offline Oblivious RAM with
expected amortized overhead O(logn log logn) per operation.

Proof. Immediate from Theorems 14 and 17. J

8 Lower bounds via communication complexity

For most problems, it seems very difficult to establish lower bounds on oblivious algorithms,
since any nontrivial slowdown due to obliviousness would imply nontrivial uniform circuit
lower bounds. For oblivious data structures, however, this is not the case. In fact, by viewing
the Oblivious RAM as an oblivious data structure, we immediately obtain a communication
complexity lower bound that generalizes both that of Pippenger and Fischer [16], for oblivious
Turing machine tapes, and that of Goldreich and Ostrovsky [7], for Oblivious RAMs (we
defer the proof to the extended version of this work):

I Theorem 19. Any data-oblivious Turing machine tape of length n requires Ω(logn) expected
amortized time per operation.

Now Theorem 19 immediately entails Ostrovsky’s lower bound for Oblivious RAM
(originally proven by a combinatorial argument [7]):

I Corollary 20. Any Oblivious RAM (i.e., any data-oblivious array) with n memory words
requires Ω(logn) expected amortized time per operation.

Proof. Use the array to implement a Turing machine tape and invoke Theorem 19. J

Acknowledgements. We thank Dan Boneh and Valeria Nikolaenko for helpful discussions,
and the anonymous reviewers for their comments. This work was supported by DARPA
PROCEED, under contract #N00014-11-1-0276-P00002, the National Science Foundation,
and the Air Force Office of Scientific Research. During this work, Joe Zimmerman has been
further supported by the Department of Defense (DoD) through the National Defense Science
& Engineering Graduate Fellowship (NDSEG) Program (2012-2013), and by the National
Science Foundation (NSF) through the National Science Foundation Graduate Research
Fellowship Program (GRFP) (2013-2014).

References
1 Paul Beame and Widad Machmouchi. Making branching programs oblivious requires su-

perlogarithmic overhead. In IEEE Conference on Computational Complexity, pages 12–22.
IEEE Computer Society, 2011.

2 Paul Beame and Widad Machmouchi. Making RAMs oblivious requires superlogarithmic
overhead. ECCC, 2011.

3 Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure Oblivious
RAM without random oracles. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes
in Computer Science, pages 144–163. Springer, 2011.

J. C. Mitchell and J. Zimmerman 565

4 David Eppstein, Michael T. Goodrich, and Roberto Tamassia. Privacy-preserving data-
oblivious geometric algorithms for geographic data. In Proceedings of the 18th SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS ’10, pages
13–22, New York, NY, USA, 2010. ACM.

5 Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Real-time simulation of
multihead tape units. J. ACM, 19(4):590–607, October 1972.

6 Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, and
Daniel Wichs. Optimizing ORAM and using it efficiently for secure computation. In
Emiliano De Cristofaro and Matthew Wright, editors, Privacy Enhancing Technologies,
volume 7981 of Lecture Notes in Computer Science, pages 1–18. Springer, 2013.

7 Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 43(3):431–473, May 1996.

8 Michael T. Goodrich. Data-oblivious external-memory algorithms for the compaction, se-
lection, and sorting of outsourced data. In Proceedings of the 23rd ACM symposium on
Parallelism in algorithms and architectures, SPAA ’11, pages 379–388, New York, NY, USA,
2011. ACM.

9 F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape turing machines. J.
ACM, 13(4):533–546, October 1966.

10 Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based obli-
vious RAM and a new balancing scheme. In Yuval Rabani, editor, SODA, pages 143–156.
SIAM, 2012.

11 Benton L. Leong and Joel I. Seiferas. New real-time simulations of multihead tape units.
J. ACM, 28(1):166–180, January 1981.

12 Daniele Micciancio. Oblivious data structures: applications to cryptography. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, STOC ’97, pages 456–
464, New York, NY, USA, 1997. ACM.

13 John C. Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman. Information-flow
control for programming on encrypted data. In Computer Security Foundations Symposium
(CSF), 2012 IEEE 25th, pages 45–60. IEEE, June 2012.

14 Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label
model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, October 2000.

15 Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In Proceedings of the
30th annual conference on Advances in cryptology, CRYPTO’10, pages 502–519, Berlin,
Heidelberg, 2010. Springer-Verlag.

16 Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, April 1979.

17 Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path oram: An extremely simple oblivious RAM protocol. IACR
Cryptology ePrint Archive, 2013:280, 2013.

18 Tomas Toft. Secure data structures based on multi-party computation. In Cyril Gavoille
and Pierre Fraigniaud, editors, PODC, pages 291–292. ACM, 2011.

STACS’14

Higher randomness and forcing with closed sets
Benoit Monin

Université Paris Diderot, LIAFA, Paris, France
benoit.monin@computability.fr

Abstract
Kechris showed in [8] that there exists a largest Π1

1 set of measure 0. An explicit construction of
this largest Π1

1 nullset has later been given in [6]. Due to its universal nature, it was conjectured
by many that this nullset has a high Borel rank (the question is explicitely mentioned in [3] and
[16]). In this paper, we refute this conjecture and show that this nullset is merely Σ0

3. Together
with a result of Liang Yu, our result also implies that the exact Borel complexity of this set is Σ0

3.
To do this proof, we develop the machinery of effective randomness and effective Solovay gen-

ericity, investigating the connections between those notions and effective domination properties.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Effective descriptive set theory, Higher computability, Effective random-
ness, Genericity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.566

1 Introduction

We will study in this paper the notion of forcing with closed sets of positive measure and
several variants of it. This forcing is generally attributed to Solovay, who used it in [15] to
produce a model of ZF +DC in which all sets of reals are Lebesgue measurable. Stronger and
stronger genericity for this forcing coincides with stronger and stronger notions of randomness.
It is actually possible to express most of the randomness definitions that have been made
over the years by forcing over closed sets of positive measure.

In the first section we give a brief overview of the part of algorithmic randomness that we
need in the paper. In the second section we make a modification to the usual definition of
effective Solovay genericity directly inspired by a notion introduced by Jockusch in [7] about
effective genericity for Cohen forcing. This new definition will reveal itself to be interesting
for its connections with effective domination properties. In the third section we will give a
quick description of what we need of higher computability theory and higher randomness
to approach the last section. Finally in the last section we give higher analogues of the
Solovay genericity notions studied in section two, and we show again their connections with
randomness and higher effective domination properties. This will allow us to conclude with
the Borel complexity of the largest Π1

1 nullset.

2 General Background

In this paper, we will work in the space of infinite sequences of 0’s and 1’s, called the
Cantor space, denoted by 2ω. We will call strings finite sequences of 0’s and 1’s, sequences
elements of the Cantor space and sets the sets of sequences. For a string σ, we will denote
the set of sequences extending σ by [σ].

The set of integers We will denote the domain of the computable function Φe, and [We]
will denote

⋃
σ∈We

[σ], where We is seen as a set of strings. We will denote by 〈, 〉 a fixed
© Benoit Monin;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 566–577

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.566
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Monin 567

computable pairing function from ω × ω to ω.
We will consider computable functionals (computable functions using sequences as oracles)

as functions from the Cantor space to the Baire space. Then a computable functional Φ is
considered define on X ∈ 2ω if ∀n ΦX(n) ↓ and we denote by dom Φ the set {X | ∀n ΦX(n) ↓}.
We say that a function f is computable relative to X or X-computable if there is a computable
functional defined on X such that ΦX = f .

The topology on Cantor space is generated by the basic intervals [σ] = {X ∈ 2ω | X � σ}
for σ a string. For A ⊆ 2ω Lebesgue-measurable, λ(A) will denote the Lebesgue measure of
A, which is the unique Borel measure such that λ([σ]) = 2−|σ| for all strings σ.

2.1 About the arithmetical complexity of sets
In the Cantor space, open sets can be described as countable unions of strings. We call an
open set effective if it can be described as the union of a computably enumerable set of
strings, i.e. if it is equal to [We] for some e. Such a set is said to be Σ0

1. On the other hand,
when it is open but not necessarily effectively open, the set is said to be Σ0

1. However, a
non-effective open set is always effective relatively to some oracle. If X is such an oracle, we
say that the set is Σ0

1(X). A closed set is called effective if its complement is an effective open
set, in which case we say that the closed set is a Π0

1 set. We can then continue to describe
the effective Borel sets through the arithmetical hierarchy as effective unions of effective
Borel set of lower complexity and as their complements. So a Σ0

n+1 set will be an effective
union of Π0

n sets, and a Π0
n+1 set will be the complement of a Σ0

n+1 set. For example, a set
A is Σ0

4 if we have an integer e such that A =
⋃

m1∈We

⋂
m2∈Wm1

⋃
m3∈Wm2

[Wm3]c.

We have a canonical surjection from integers to Σ0
1 sets (The one which associates to e

the computably enumerable set [We]), but also from integers to Σ0
n sets for a fixed n. In the

above example, with n = 4 the integer e is associated to the Σ0
4 set A. In this context e will

be called an index for the set A.
Also for a computably enumerable set of integers W , we denote by W [t] the enumeration

of W up to stage t. We extend this definition to effective open sets: if O = [W], then
O[t] = [W [t]]. Similarly, if F = Oc, F [t] = O[t]c.

2.2 About algorithmic randomness
In 1966, Martin-Löf gave in [10] a definition capturing elements of the Cantor space that can
be considered ‘random’. Many nice properties of the Martin-Löf random sequences make this
notion of randomness one of the most interesting and one of the most studied.

Intuitively a random sequence should not have any atypical property. A property is here
considered atypical if the set of sequences having it is of measure 0. It also makes sense to
consider only properties which can be described in some effective way (because any X has
the property of being in the set {X} and thus nothing would be random).

I Definition 1. An intersection of measurable sets
⋂
nAn is said to be effectively of

measure 0 if the function which to n associates the measure of An is bounded by a
decreasing computable function whose limit is 0. A Martin-Löf test is a Π0

2 set
⋂
nOn

effectively of measure 0. We say that X ∈ 2ω isMartin-Löf random if it is in no Martin-Löf
test.

One can iterate this idea by considering Π0
n sets effectively of measure 0 for any n ≥ 2.

Martin-Löf randomness is also called 1-randomness, the use of Π0
3 sets effectively of

STACS’14

568 Higher randomness and forcing with closed sets

measure 0 gives us 2-randomness, Π0
4 sets give us 3-randomness, and so on. The

requirement for a Martin-Löf test to be effectively of measure 0 is important and leads to very
nice properties. In particular there exists a universal Martin-Löf test, i.e. a test containing
all the others (see [10]). This is not the case anymore if we drop the ‘effectively of measure 0’
condition. Instead we get a notion known as weak-2-randomness.

I Definition 2. We say that X ∈ 2ω is weakly-2-random if it is in no Π0
2 nullset.

As a randomness notion, weak-2-randomness is a strictly stronger than 1-randomness,
but is strictly weaker than 2-randomness (see [13] section 3.6).

3 Solovay genericity and its variants

Cohen introduced in [4] the general technique of forcing by forcing with all dense open sets
of the Cantor space (with the usual topology) in a countable model of ZFC. The most basic
effective version of this would be to say that X is generic if it belongs to all dense Σ0

1 sets, a
notion introduced by Kurtz in [9]. Jockusch introduced and studied in [7] a slightly different
notion.

I Definition 3 (Kurtz, Jockusch). We say that X is weakly-1-generic if it belongs to all
dense Σ0

1 sets. We say that X is 1-generic if for any Σ0
1 set U , either X belongs to U or X

belongs to some other Σ0
1 set U ′ disjoint from U .

We will apply Jockusch’s idea behind 1-genericity to forcing with Π0
1 sets. First note that

by definition, the weakly-2-randoms are exactly the sequences which are in all Σ0
2 sets of

measure 1. If we consider the topology generated by Π0
1 sets of positive measure, because

Σ0
2 sets of measure 1 are then dense open sets for this topology, we also get in some sense a

genericity notion.

3.1 Forcing with Π0
1 sets

Adding a measure requirement to the definition of genericity will always link us to randomness.
We study what happens if we drop the measure requirement and if we consider instead the
Σ0

2 sets which are dense for the topology generated by the Π0
1 sets, i.e. the Σ0

2 sets which
intersect all non-empty Π0

1 set. It is clear that the Cantor space with this topology is a Baire
space, i.e. has the property that an intersection of dense open sets is dense. This directly
comes from the fact that a decreasing intersection of non-empty closed sets is non-empty.
This justifies the following definition:

I Definition 4. Let {Gi}i∈ω be the collection of all Σ0
2 sets which intersect all the Π0

1 sets.
We say that X is weakly-Π0

1-generic if it belongs to
⋂
iGi.

As the next proposition shows, weak-Π0
1-genericity has nothing to do with randomness.

I Proposition 5. No weakly-Π0
1-generic sequence is 2-random.

Proof. We construct uniformly in n a Σ0
2 set intersecting all Π0

1 sets and with measure
smaller than 2−n. Let {Fe}e∈ω be an enumeration of the Π0

1 sets. For each e we initialize σe
to the first string (using lexicographic order) of length n + e + 1. Our Σ0

2 set will consist
of a computably enumerable set A of indices of Π0

1 sets. We now describe the algorithm
to enumerate elements of A: At stage t, for each substage e < t in increasing order, if
the index of Fe ∩ [σe] has not been enumerated yet into A, then enumerate it. After that,

B. Monin 569

if (Fe ∩ [σe])[t] = ∅ then reset σe to be the string of length n + e + 1 following σe in the
lexicographic order. If σe is already the last such string, leave it unchanged.

Let us prove that the measure of the Σ0
2 set represented by A is smaller than 2−n. For

each e, if Fe ∩ [σe] = ∅ then by compactness (Fe ∩ [σe])[t] = ∅ for some t. Thus at most one
string σe of length n+ e+ 1 such that Fe ∩ [σe] 6= ∅ has been enumerated into A, and the
measure of A is bounded by

∑
e 2−n−e−1 ≤ 2−n. Now our Σ0

2 set is dense because if Fe is
not empty then there exists a string σe of length n+ e+ 1 such that Fe ∩ [σe] is not empty
and then A will intersect Fe.

From this we can then construct a Π0
3 set effectively of measure 0 and containing all the

weakly-Π0
1-generic sequences. J

Following Jockusch’s 1-genericity idea we now define Π0
1-genericity:

I Definition 6. A sequence X is Π0
1-generic if for all Σ0

2 sets G, either X is in G or there
is a Π0

1 set F disjoint from G such that X is in F .

We now establish a simple but surprising connection with computability theory, which
appears to be previously unknown. We say that a sequence X is computably dominated if
for every total function f : ω → ω, computable relative to X, there exists a total computable
function g such that g dominates f (i.e. ∀n f(n) ≤ g(n)).

I Proposition 7. A set X is Π0
1-generic iff it is computably dominated.

Proof. Suppose X is computably dominated and take any Σ0
2 set

⋃
n Fn. Suppose that

X belongs to its complement, a Π0
2 set

⋂
nOn. Let us define the X-computable function

f : ω → ω which to n associates the smallest t so that X ∈ On[t]. As X is computably
dominated, there is a computable function g which dominates f . Then X ∈

⋂
nOn[g(n)], an

effectively closed set disjoint from
⋃
n Fn.

Conversely suppose that X is Π0
1-generic and consider a functional Φ, defined on X. We

have that dom Φ = {X | ∀n ΦX(n) ↓} is a Π0
2 set containing X. But then as X is Π0

1-generic,
it is contained in a Π0

1 set F contained in the domain of Φ. Let us now build1 a computable
function f such that ∀X ∈ F ΦX < f . To compute the value of f(n) we find the smallest
pair 〈m, t〉 such that for all strings σ of size m with [σ] ⊆ F [t], the functional Φ halts on n
in less than t steps with σ as an oracle (considering that if Φ needs to use bits of the oracle
at positions bigger than |σ|, it does not halt). Then we set f(n) to the sum of all those
values plus one. All we need to show is that f is total. Fix n and let us prove there is a m
so that for all X ∈ F we have ΦX�m(n) ↓. Suppose not, then for all m there is X ∈ F with
Φσm(n) ↑ where σm = X �m. As {σm}m∈ω is infinite it has at least one limit sequence Y and
as F is closed we have Y ∈ F . Also as ΦY�m(n) ↑ for all m we have that Φ is not defined
on Y which contradicts the hypothesis. Thus for some t we have that F [t] is covered by a
finite union

⋃
i≤k[σi] such that Φσi(n) ↓. It follows that for some t and some m we have that

Φσ(n) halts in less than t steps for all strings σ of size m such that [σ] ⊆ F [t]. J

A direct computation shows that the set of computably dominated sequences is Π0
4. The

above proposition lowers down the Borel complexity to Π0
3: if for every set A we denote

by A◦ the interior of A for the topology generated by Π0
1 sets, i.e. the union of all Π0

1 sets
included in A, then the set of computably dominated sequences is the intersection over all

1 One can also directly deduce the existence of such a function f using the fact that the supremum of a
computable function, over an effectively compact set, is right-ce.

STACS’14

570 Higher randomness and forcing with closed sets

the Π0
2 sets P , of P ◦ ∪ P c. We now give a lower bound on the Borel complexity of the

computably dominated sequences, however we do not know if it can be Σ0
3.

I Proposition 8. The set of computably dominated sequences is neither Σ0
2 nor Π0

2.

Proof. Let us show that it is not Π0
2. First note that for any Π0

2 set A, if A is dense (for
the usual topology) in some [σ] then it contains a weakly-1-generic sequence as defined by
Kurtz. Indeed, the intersection of A ∩ [σ] with all dense Σ0

1 sets will not be empty and will
then contain weakly-1-generic sequences. But by a result of computability theory (see [9]),
no weakly-1-generic is computably dominated. Thus a Π0

2 set containing only computably
dominated sequences is nowhere dense. But as the set of computably dominated sequences is
dense, being closed under finite change of prefixes, such a Π0

2 set cannot contain all of them.

To show that it is not Σ0
2, we adapt a technique that Liang Yu exposed in [16]. Suppose

that the set of computably dominated sequences is described as
⋃
n Fn with each Fn closed.

For each n let Bn =
⋃
{T | T ∩Fn = ∅ and T is a Π0

1 set with no computable member}. Let
us prove that the set Bn intersects any non-empty Π0

1 set with no computable members. Take
any non-empty Π0

1 set G with no computable members. By a classical result of computability
theory (see [13] proposition 1.5.12 combined with fact 1.8.36) G contains a non-computably
dominated sequence. Thus G contains a sequence X which is not in Fn. Then as Fn is closed
there is a string σ such that X ∈ G ∩ [σ] but G ∩ [σ] ∩ Fn = ∅. Thus G ∩ [σ] is a non-empty
Π0

1 set with no computable sequence, intersecting G and disjoint from Fn. Consequently
we have Bn ∩ G 6= ∅ and then each Bn is dense for the topology generated by Π0

1 sets
with no computable member. It follows that

⋂
nBn is also dense for this topology. From

Proposition 7 the set of computably dominated sequences is also dense for this topology.
Then there is a computably dominated sequence in

⋂
nBn. But we also have by design of the

Bn that
⋂
nBn ∩

⋃
n Fn = ∅, which contradicts the fact that

⋃
n Fn contains all computably

dominated sequences. J

3.2 Forcing with Π0
1 sets of positive measure

We now introduce a notion of genericity which is a measure-theoretic variation of Π0
1-genericity

defined in the previous section. The notion will be interesting for its counterpart in Higher
computability. Let us now come back to the topology generated by Π0

1 sets of positive
measure. To obtain weak-2-randomness we consider only Σ0

2 sets of measure 1. We now
consider all Σ0

2 sets which intersect with positive measure every Π0
1 set of positive measure.

I Definition 9. Let {Gi}i∈ω be the collection of all Σ0
2 sets A such that for any Π0

1 set F of
positive measure we have λ(A∩F) > 0. Then we say that X is weakly-Π0

1-Solovay-generic
if it belongs to

⋂
iGi.

I Definition 10. We say that X is Π0
1-Solovay-generic if for any Σ0

2 set A, either X is in
it or there exists a Π0

1 set F of positive measure and disjoint from A such that X is in it.

I Proposition 11. A set X is Π0
1-Solovay-generic iff it is weakly-2-random and computably

dominated.

Proof. Suppose that X is weakly-2-random and computably dominated. Take any Σ0
2 set and

suppose that X does not belong to it. By Proposition 7, as X is computably dominated, we
have that X belongs to some Π0

1 set disjoint from the Σ0
2 set. Also as X is weakly-2-random

this Π0
1 set has positive measure.

Conversely, suppose that X is Π0
1-Solovay-generic. In particular it is weakly-2-random

and Π0
1-generic. Then by Proposition 7 we have that it is computably dominated. J

B. Monin 571

3.3 A separation for weak and non weak-genericity
We will now prove that weak-genericity is not enough to obtain computable domination. For
this we shall adapt a proof of a theorem in [1] saying that for any function f , there is a
weakly-2-random X and an X-computable function g not dominated by f . Here we want
weak-Π0

1-Solovay-genericity instead of weak-2-randomness.

I Proposition 12. For any function f : ω → ω there is an X weakly-Π0
1-Solovay-generic

computing a function g : ω → ω which is above f infinitely often.

The reader can see [12] for a proof of proposition 12, that we skip here, due to its length.
Using Proposition 12, we have some weakly-Π0

1-Solovay-generics which are not computably
dominated and so not Π0

1-Solovay-generic. One can prove that weakly-Π0
1-Solovay-genericity

implies weakly-Π0
1-genericity by showing that any Σ0

2 set intersecting all the Π0
1 sets also

intersects with positive measure all Π0
1 sets of positive measure. Take any Σ0

2 set intersecting
all the Π0

1 sets. Take now a set F of positive measure and consider the Σ0
2 set

⋃
n Fn of

Martin-Löf randoms (the complement of the universal Martin-Löf test). As it has measure
1, there is some Fn such that F ∩ Fn has positive measure. But by hypothesis our Σ0

2 set
intersects F ∩ Fn. The intersection contains only Martin-Löf random sequences and thus is
necessarily of positive measure. Thus there is also some weakly- Pi01-generics which are not
Π0

1-generics.

4 Background on higher computability and higher randomness

We now give a few definitions of higher computability and higher randomness. The Turing
reductions are replaced by hyperarithmetical reductions. One intuitive way to understand a
hyperarithmetical computation is to think of a standard Turing computation, but with an
infinite-time Turing machine. For those machines the computational time is not an integer
anymore, but an ordinal. Tapes are infinite and pre-filled with 0’s, at a successor stage
everything happens as in a regular Turing machine. At a limit stage, the machine changes to
a special ‘limit’ state, the head comes back to the first cell of the first tape and if the value
of a cell of a tape does not converge, it is reset to 0 (otherwise it is set to the limit of its
previous values). The rest works as usual.

For example, we can build the ordinal time Turing machine which on a tape, at finite
computation time t = 〈s, e〉 write 1 on the cell number e of this tape if the program number
e halts in less than s steps. At ordinal time ω we then have the halting problem on this tape.
Then stages ω+n can be used to compute what one could compute with the halting problem.
This can be iterated to compute anything that could be computed in a finite jump. But we
can even go beyond a finite jump and continue through the ordinal jumps. To formalize this
properly we need to fix the notion of notation for computable ordinals.

4.1 Computable ordinals
More details about this section can be found in [14]. An ordinal is defined as the order type
of a well-ordered set. When the ordinal is infinite and countable it can be the order-type of
a well-ordered set with domain ω. We say that a countable ordinal α is computable if we
have a relation R ⊆ ω × ω which is a well-founded linear order of a subset of ω of order-type
α and if there is some e such that (n,m) ∈ R ↔ 〈n,m〉 ∈ We. In this case we say that e
codes for α and we write |e| = α. Let us denote by W the set of integers which code for

STACS’14

572 Higher randomness and forcing with closed sets

computable ordinals and let us denote by Wα the set of integers which code for computable
ordinals strictly smaller than α.

As there are uncountably many countable ordinals, not all of them are computable.
Moreover it is known that they form a strict initial segment of the countable ordinals. We
denote by ωck1 the smallest non-computable ordinal. This notion can then be relativised.
We say that e is an X-code for the ordinal α if we have a relation R ⊆ ω × ω which is a
well-founded linear order of a subset of ω of order-type α and if (n,m) ∈ R↔ 〈n,m〉 ∈WX

e .
We then write |e|X = α. We denote by WX the set of X-codes for X-computable ordinals,
and we denote by WX

α the set of X-codes for X-computable ordinals strictly smaller than α.
Finally, we call ωX1 the smallest ordinal which is non-computable relatively to X. Note that
any countable ordinal is computable with a representation of itself as an oracle.

4.2 Second order definable sets
We say that a sequence X is hyperarithmetic if for some computable function f and some
computable ordinal α we have n ∈ X ↔ f(n) ∈ Wα. One can define the hyperarithmetic
sequences equivalently as the sequences we can Turing-compute with sufficiently many
successive effective joins and iterations of the jump, constructed by induction over the
computable ordinals. Also coming back to the analogy with infinite-time Turing machines we
have in [5] a theorem saying that a sequence X is hyperarithmetic iff it can be computed by
an infinite-time Turing-machine in a computable ordinal length of time. Similarly we define
what is hyperarithmetic for sets. We say that A ⊆ 2ω is hyperarithmetic if there exists e and
α computable such that X ∈ A↔ e ∈ WX

α .

We now define Π1
1 sequences. While hyperarithmetic sequences can be considered to be

the higher counterpart of computable sequences, Π1
1 sequences can be considered to be the

higher counterpart of computably enumerable sequences. They are the sequences one can
define with a formula of arithmetic containing arbitrary many first order quantifications and
only universal second order quantifications (with no negations in front of them). We have
another equivalent definition. A sequence X is Π1

1 if for some computable function f we
have n ∈ X ↔ ∃α < ωck1 f(n) ∈ Wα. Coming back to the analogy with infinite-time Turing
machines, the Π1

1 sequences also correspond to the sets of integers one can enumerate along
computable ordinal length of time with such a machine (when we interpret sequences as
sets of integers, considering that n in the set iff the n-th bit of the sequence is one). The
Σ1

1 sequences are their complements (again, when we see sequences as sets of integers), the
higher equivalent of co-recursively enumerable sequences. Finally a set A is Π1

1 if we have
an integer e so that X ∈ A↔ ∃α < ω1 e ∈ WX

α . We also have a canonical surjection from
integers to Π1

1 sets, so like the arithmetical sets, they can be indexed (in the above example,
e is an index for the Π1

1 set A).

A set is called ∆1
1 if it is both Σ1

1 and Π1
1. By a theorem of Kleene (see chapter 2 in [14])

they are exactly the hyperarithmetical sets. An index for a ∆1
1 set will consist of a pair of

two indices. One expressing it as a Π1
1 predicate and one expressing its complement as a Π1

1
predicate.

Note that for Π1
1 sets, the existential quantification over the ordinals goes up to ω1.

Indeed, if ωX1 > ωck1 it is possible that X ∈ A is witnessed by some X-code e for α ≥ ωck1 .
This leads us to a Π1

1 set of great importance for this paper, the set {X | ωX1 > ωck1 } (the
proof that this set if Π1

1 can be found in section 9.1 of [13]). We now state two theorems
that will be useful for the rest of the paper.

B. Monin 573

I Theorem 13 (Sacks [14]). Uniformly in ε and an index for a ∆1
1 set A, one can compute

an index for a Σ1
1 closed set F so that F ⊆ A and λ(A− F) ≤ ε. Also one can uniformly

from an index of a ∆1
1 set obtain an index for the ∆1

1 real being the measure of this set.

I Theorem 14 (Spector [14]). If f : ω → WX is a total Π1
1(X) functional predicate then

supn |f(n)| < ωX1 .

4.3 Higher randomness
We now introduce notions of randomness which are higher effective variations of the usual
randomness notions.

I Definition 15 (Sacks). We say that X ∈ 2ω is ∆1
1-random if it is in no ∆1

1 nullset.

Martin-Löf was actually the first to promote this notion (see [11]), suggesting that it was
the appropriate mathematical concept of randomness. Even if his first definition undoubtedly
became the most successful over the years, this other definition got a second wind recently
on the initiative of Hjorth and Nies who started to study the analogy between the usual
notions of randomness and their higher counterparts. In order to do so they created in [6] a
higher analogue of Martin-Löf randomness.

IDefinition 16 (Hjorth, Nies). A Π1
1-Martin-Löf test is given by an effectively null intersection

of open sets
⋂
nOn, each On being Π1

1 uniformly in n. A sequence X is Π1
1-ML-random if

it is in no Π1
1-Martin-Löf test.

This definition is strictly stronger than ∆1
1-randomness (see Corollary 9.3.5 in [13]). The

higher analogue of weak-2-randomness has also been studied (see [3]).

I Definition 17. We say that X is weakly-Π1
1-random if it belongs to no

⋂
nOn with each

On open set Π1
1 uniformly in n and with λ(

⋂
nOn) = 0.

Earlier, Sacks gave an even stronger definition, made possible by a theorem of Lusin
saying that even though Π1

1 sets are not necessarily Borel, they remain all measurable.

I Definition 18 (Sacks). We say that X ∈ 2ω is Π1
1-random if it is in no Π1

1 nullset.

This last definition is of great importance. Kechris proved that there is a universal
Π1

1 nullset, in the sense that it contains all the others (see [8]). Later, Hjorth and Nies
gave in [6] an explicit construction of this Π1

1 nullset. Chong and Yu proved in [3] that
weakly-Π1

1-randomness is strictly stronger than Π1
1-Martin-Löf-randomness, but it is still

unknown whether Π1
1-randomness coincides with weakly-Π1

1-randomness.
To separate the two notions, the idea of showing they have different Borel complexity

was promoted in [3]. In the next section we show that this will not be possible, by proving
that the biggest Π1

1 nullset has the surprisingly small Borel complexity of Σ0
3. Using results

of [17] we will conclude that the Borel complexity of both the weakly-2-randoms and the
Π1

1-randoms, is strictly Π0
3. We now give some important results about higher randomness,

that will be needed to achieve this:

I Theorem 19 (Sacks). The set {X | ωX1 > ωck1 } has measure 0.

Thus no X such that ωX1 > ωck1 is Π1
1-random. The following beautiful theorem of Chong,

Yu and Nies (see [2]) strengthens Sacks’ theorem:

I Theorem 20 (Chong, Yu, Nies). A sequence X is Π1
1-random iff it is ∆1

1-random and
ωX1 = ωck1 .

STACS’14

574 Higher randomness and forcing with closed sets

One could also define the randomness notion introduced by Σ1
1 nullsets, but this turns

out to be equivalent to ∆1
1-randomness.

I Theorem 21 (Sacks). A ∆1
1-random sequence is in no Σ1

1 nullset. Therefore Σ1
1-randomness

coincides with ∆1
1-randomness.

5 Higher Solovay genericity and its variants

I Definition 22. We say that X is weakly-Σ1
1-Solovay-generic if it belongs to all sets

of the form
⋃
n Fn which intersect with positive measure all the Σ1

1 closed sets of positive
measure, where each Fn is a Σ1

1 closed set uniformly in n.

I Definition 23. We say that X is Σ1
1-Solovay-generic if for any set of the form

⋃
n Fn

where each Fn is a Σ1
1 closed set uniformly in n, either X is in

⋃
n Fn or X is in some Σ1

1
closed set of positive measure F , disjoint from

⋃
n Fn.

As in the lower case, one could drop the measure requirement in the definition of Σ1
1-

Solovay-genericity and obtain interesting relations with domination properties. However we
will focus in this paper only on (weakly-)Σ1

1-Solovay-genericity.

Unlike in the lower case, we have that the set of weakly-Σ1
1-Solovay-generics is of measure

1. We can actually prove easily that they coincide with the weakly-Π1
1-randoms. Let

⋃
n Fn

be a uniform union of Σ1
1 closed sets with measure strictly smaller than 1. Let

⋂
nOn be its

complement. As it is a Π1
1 set, we have e such that X ∈

⋂
nOn ↔ ∃α < ω1 e ∈ WX

α . But
by Theorem 19 we have that {X | ∃α ≥ ωck1 e ∈ WX

α } ⊆ S is of measure 0. Thus for some
computable α we have that {X | e ∈ WX

α } has positive measure. As it is a ∆1
1 set, we can

find using Theorem 13 a Σ1
1 closed set of positive measure contained in it. Thus

⋃
n Fn does

not intersect all Σ1
1 closed sets of positive measure. Conversely a uniform union of Σ1

1 closed
sets of measure 1 intersects with positive measure any Σ1

1 closed set of positive measure.
Then the weakly-Σ1

1-Solovay-generics are exactly the weakly-Π1
1-randoms.

We will now prove that the notion of Σ1
1-Solovay-genericity is exactly the notion of

Π1
1-randomness. As explained at the end of the section (after Theorem 26), one can also

consider this equivalence as the higher counterpart of Proposition 11.
We already know from Theorem 20 that if X is weakly-Π1

1-random but not Π1
1-random,

then ωX1 > ωck1 . We will show that if X is Σ1
1-Solovay-generic then ωX1 = ωck1 which will

prove the difficult part of the equivalence.
In order to prove this, we use a technique developed by Sacks and simplified by Greenberg,

to show that the set of X with ωX1 > ωck1 has measure 0. First note that if ωX1 > ωck1 then
there is o ∈ WX such that |o|X = ωck1 . In particular for each n we can uniformly restrain
the relation coded by o to all elements smaller than n. If |o|X is a limit ordinal this gives a
set of X-codes for ordinals smaller than |o|X but cofinal (i.e. unbounded) in |o|X . Thus if
ωX1 > ωck1 , there is a function f : ω →WX computable in X such that supn |f(n)|X = ωck1 .
The idea is the following. Suppose that for some X we have a computable function Φe such
that:

∀n ∃α < ωck1 ΦXe (n) ∈ WX
α

Suppose also that X is Σ1
1-Solovay-generic. Then we will show that the supremum of |ΦXe (n)|

over n ∈ ω is strictly smaller than ωck1 . To show this we need an approximation lemma,
which can be seen as an extension of Theorem 13.

I Lemma 24. For a Σ1
1 predicate S(X)↔ ∀α < ωck1 e /∈ WX

α , uniformly in e and n one can
find a Σ1

1 closed set F ⊆ S with λ(S − F) ≤ 2−n.

B. Monin 575

Proof. One can equivalently write S(X) ↔ ∀o ∈ W e /∈ WX
|o|. Let So be the predicate

e /∈ WX
|o|. If o ∈ W one can uniformly in o and e obtain an index for the ∆1

1 predicate So.
The Π1

1 index for it corresponds to the property : "There exists no bijection from |e| to a
strict initial segment of |o|X", and a Π1

1 index for its complement is : "There exists no infinite
backward sequence in |e|, and there exists no bijection from |o|X to an initial segment of
|e|." Note that if o /∈ W, the index is still well defined but does not correspond to anything
specific.

Then uniformly in an index for So and in n we can find using Theorem 13 a Σ1
1 closed set

Fo such that Fo ⊆ So with λ(So−Fo) ≤ 2−o2−n. Now let us define F (X)↔ ∀o ∈ W X ∈ Fo.
As an intersection of closed sets, the set F is closed. And as W is Π1

1 and Fo is Σ1
1 uniformly

in o, we have that F is Σ1
1. To conclude we also we have that:

λ(S − F) = λ(
⋃
o∈W S − Fo)

≤ λ(
⋃
o∈W So − Fo)

≤
∑
o∈W λ(So − Fo) ≤ 2−n.

J

We can now prove the desired theorem:

I Theorem 25. If Y is Σ1
1-Solovay-generic then ωY1 = ωck1 .

Proof. Suppose that Y is Σ1
1-Solovay-generic. For any functionnal Φ, consider the set

P = {X | ∀n ∃α < ωck1 ΦX(n) ∈ WX
α }.

Let Pn = {X | ∃α < ωck1 ΦX(n) ∈ WX
α } and Pn,α = {X | ΦX(n) ∈ WX

α }, so P =
⋂
n Pn

and Pn =
⋃
α<ωck

1
Pn,α.

From Lemma 24 we can find uniformly in n a uniform union of Σ1
1 closed sets included in

P cn with the same measure as P cn. From this we can find a uniform union of Σ1
1 closed sets

included in P c with the same measure as P c. Suppose that Y is in P , as it is Σ1
1-Solovay-

generic we have a Σ1
1 closed set F of positive measure containing Y which is disjoint from

P c up to a set of measure 0, formally λ(F ∩ P c) = 0. In particular for each n we have
λ(F ∩ P cn) = 0 and then λ(F c ∪ Pn) = 1. Then let f be the total function which to each pair
〈n,m〉 associates the smallest code on,m ∈ W such that:

λ(F c|on,m| ∪ Pn,|on,m|) > 1− 2−m

where F cα is the ∆1
1 set of strings which are witnessed to be in F c via an ordinal smaller than

α. Using second part of Theorem 13 one can prove that f is Π1
1. Let α∗ = supn,m |f(n,m)|.

By Theorem 14 we have that α∗ < ωck1 . Then we have:

∀n λ(F cα∗ ∪
⋃
α<α∗ Pα,n) = 1

→ ∀n λ(Fα∗ ∩
⋂
α<α∗ P cα,n) = 0

→ ∀n λ(F −
⋃
α<α∗ Pα,n) = 0

→ λ(F −
⋂
n

⋃
α<α∗ Pα,n) = 0

As X is Σ1
1-Solovay-generic it is in particular weakly-Σ1

1-Solovay-generic and then weakly-
Π1

1-random. Thus by Theorem 21 it belongs to no Σ1
1 set of measure 0. Then as F −⋂

n

⋃
α<α∗ Pα,n is a Σ1

1 set of measure 0 we have that X belongs to
⋂
n

⋃
α<α∗ Pα,n and then

supn ΦX(n) ≤ α∗ < ωck1 . J

STACS’14

576 Higher randomness and forcing with closed sets

We can now prove the equivalence:

I Theorem 26. The set of Σ1
1-Solovay-generics is exactly the set of Π1

1-randoms.

Proof. Using Theorem 20 we have that the Σ1
1-Solovay-generics are included in the Π1

1-
randoms. We just have to prove the reverse inclusion.

Suppose Y is not Σ1
1-Solovay-generic. If ωY1 > ωck1 then Y is not Π1

1-random. Otherwise
ωY1 = ωck1 and in this case there is a sequence of Σ1

1 closed sets
⋃
n Fn of positive measure

such that X is not in
⋃
n Fn and such that any Σ1

1 closed set of positive measure which is
disjoint from

⋃
n Fn does not contain Y . The complement of

⋃
n Fn is a Π1

1 set P containing
Y . Let e be so that P (X) ↔ ∃α < ω1 e ∈ WX

α . As ωY1 = ωck1 and P (Y), we have that
∃α < ωck1 e ∈ WY

α . But then Y is in a ∆1
1 set that one can approximate using Theorem 13

by an effective union of Σ1
1 closed sets of the same measure. Thus as X can be in none of

them it is in a Π1
1 set of measure 0 and then not Π1

1-random. J

The previous theorem gives an interesting corollary, making a connection with another
domination property. We say that a sequence X is hyp-dominated if for every total function
f : ω → ω, ∆1

1 relative to X, there exists a total ∆1
1 function g such that g dominates f

(i.e. ∀n f(n) ≤ g(n)). Chong, Yu and Nies proved in [2] that all Π1
1-random sequences are

hyp-dominated. It follows from that and from the previous theorem that a sequence X is
Σ1

1-Solovay-generic iff it is weakly-2-random and hyp-dominated. This can be seen as the
higher counterpart of Proposition 11.

We have a second corollary, giving a higher bound on the Borel complexity of the
Π1

1-randoms, and then on the biggest Π1
1 nullset.

I Corollary 27. The set of Π1
1-randoms is Π0

3.

The Π0
3 set is obtained exactly the same way we obtain the Π0

3 set of computably
dominated sequences. The following result of Liang Yu (see [17]) can be used to prove that
the set of Π1

1-randoms is not Σ0
3.

I Theorem 28 (Liang Yu). Let
⋂
nOn be a Π0

2 sets contaning only weakly-Π1
1-randoms.

Then the set {F | F is a Σ1
1 closed set and

⋂
nOn ∩F = ∅} intersects with positive measure

any Σ1
1 closed sets of positive measure.

It follows that the set of weakly-Π1
1-randoms cannot be Σ0

3 but also that the set of Π1
1-

randoms cannot be Σ0
3. Indeed, suppose that the set of Π1

1-randoms is equal to
⋃
n

⋂
mOn,m

each On,m being open. For each n let An = {F | F is a Σ1
1 closed set and

⋂
mOn,m∩F = ∅}.

We have
⋂
nAn ∩

⋃
n

⋂
mOn,m = ∅, and from Theorem 28 we have that

⋂
nAn contains

some Solovay-Σ1
1-generic elements, which contradicts that

⋃
n

⋂
mOn,m contains all of them.

The question whether it is possible for X to be weakly-Solovay-Σ1
1-generic but not Solovay-

Σ1
1-generic (equivalently weakly-Π1

1-random but not Π1
1-random) is still open. The technique

that we use in the lower case to separate weak genericity from non weak genericity does not
seem to work here.

Acknowledgements. I would like to thank Laurent Bienvenu, Noam Greenberg, Paul Shafer
and Liang Yu for helpful comments and discussions.

B. Monin 577

References
1 George Barmpalias, Rod Downey, and Keng Meng Ng. Jump inversions inside effectively

closed sets and applications to randomness. Journal of Symbolic Logic, 76(2):491–518, 2011.
2 Chi Tat Chong, André Nies, and Liang Yu. Lowness of higher randomness notions. Israel

Journal of Mathematics, 166:39–60, 2008.
3 Chi Tat Chong and Liang Yu. Randomness in the higher setting. under refereeing, http:

//math.nju.edu.cn/~yuliang/cy1.pdf.
4 Paul J Cohen. Set theory and the continuum hypothesis. Dover Publications, 1966.
5 Joel David Hamkins and Andy Lewis. Infinite time Turing machines. Journal of Symbolic

Logic, pages 567–604, 2000.
6 Greg Hjorth and André Nies. Randomness via effective descriptive set theory. Journal of

the London Mathematical Society, 75(2):495–508, 2007.
7 Carl G Jockusch Jr. Simple proofs of some theorems on high degrees of unsolvability.

Canadian Journal of Mathematics, 29(5):1072–1080, 1977.
8 Alexander S Kechris. The theory of countable analytical sets. Transactions of the American

Mathematical Society, 202:259–297, 1975.
9 S Kurtz. Randomness and genericity in the degrees of unsolvability. phd diss., University

of Illinois. Urbana, 1981.
10 Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,

1966.
11 Per Martin-Löf. On the notion of randomness. Studies in Logic and the Foundations of

Mathematics, 60:73–78, 1970.
12 Benoit Monin. Higher randomness and forcing with closed sets, http://www.liafa.

univ-paris-diderot.fr/~benoitm/ressources/papers/paper_stacs_2014.pdf, 2014.
13 Andre Nies. Computability and Randomness. Oxford University Press, 2009.
14 Gerald E Sacks. Higher recursion theory. Springer, 2010.
15 Robert M Solovay. A model of set-theory in which every set of reals is Lebesgue measurable.

The Annals of Mathematics, 92(1):1–56, 1970.
16 Liang Yu. Descriptive set theoretical complexity of randomness notions. Fundamenta

Mathematicae, 215:219–231, 2011.
17 Liang Yu. LogicBlog2013, Higher randomness, http://dl.dropboxusercontent.com/u/

370127/Blog/Blog2013.pdf, 2013.

STACS’14

http://math.nju.edu.cn/~yuliang/cy1.pdf
http://math.nju.edu.cn/~yuliang/cy1.pdf
http://www.liafa.univ-paris-diderot.fr/~benoitm/ressources/papers/paper_stacs_2014.pdf
http://www.liafa.univ-paris-diderot.fr/~benoitm/ressources/papers/paper_stacs_2014.pdf
http://dl.dropboxusercontent.com/u/370127/Blog/Blog2013.pdf
http://dl.dropboxusercontent.com/u/370127/Blog/Blog2013.pdf

Near-Optimal Generalisations of a Theorem of
Macbeath
Nabil H. Mustafa1 and Saurabh Ray2

1 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Paris,
France
mustafan@esiee.fr

2 Department of Computer Science, New York University Abu Dhabi, Abu
Dhabi, United Arab Emirates
sr194@nyu.edu

Abstract
The existence of Macbeath regions is a classical theorem in convex geometry (“A Theorem on non-
homogeneous lattices”, Annals of Math, 1952). We refer the reader to the survey of I. Barany for
several applications [3]. Recently there have been some striking applications of Macbeath regions
in discrete and computational geometry.

In this paper, we study Macbeath’s problem in a more general setting, and not only for the
Lebesgue measure as is the case in the classical theorem. We prove near-optimal generalizations
for several basic geometric set systems. The problems and techniques used are closely linked to
the study of ε-nets for geometric set systems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Epsilon Nets, Cuttings, Union Complexity, Geometric Set systems, Con-
vex Geometry

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.578

1 Introduction

The goal of this paper is to study small, uniform-sized decompositions of geometric range
spaces which approximate the range space. This can be seen as a discrete analogue and
extension of the classical result of Macbeath [12] in convex geometry, as well as having several
basic connections to well-studied problems in discrete geometry.

Classical Macbeath Regions. Given a convex bodyK in Rd of unit volume, and a parameter
ε > 0, the theorem of Macbeath states the existence of disjoint convex bodies of K, each of
volume Θ(ε), called Macbeath regions, such that any halfspace containing at least ε volume of
K completely contains one of these convex objects. Formally, the following theorem follows
from their work:

I Theorem 1 (Macbeath Regions). Given a convex body K ⊂ Rd of unit volume, and a
parameter 0 < ε < 1/(2d)2d, there exists a set of convex objectsM, |M| = O((1/ε)1−2/(d+1)),
such that for any halfspace h with vol(h∩K) ≥ ε, there exists Ki ∈M such that Ki ⊂ h∩K
and

vol(Ki) ≥
1

(6d)3d vol(h ∩K) .

© Nabil H. Mustafa and Saurabh Ray;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 578–589

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.578
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N.H. Mustafa and S. Ray 579

The existence of Macbeath regions was first proven in the paper of Macbeath [12], with
several later applications to geometric problems. Edwald, Larmen and Rogers [9] used it
for cap coverings, which was later further extended by Barany and Larman [4] (also see
Barany [3] for a survey of this and several other results). It was used for lower-bounds on
range-searching by Bronniman, Chazelle and Pach [5]. And very recently, Macbeath regions
were used in an elegant way by Arya, Fonseca and Mount [2] for computing near-optimal
Hausdorff approximations to polytopes.

A fundamental and powerful result in computational geometry is the existence of small-
sized ε-nets: given a set system (X,R), and a parameter ε, an ε-net is a subset X ′ ⊂ X

such that X ′ ∩ R 6= ∅ for all R ∈ R where |R| ≥ ε|X|. The famous theorem of Haussler-
Welzl [10] shows that ε-nets of size O(d/ε log d/ε) exist for set systems (X,R), where d is the
VC-dimension of the set system (X,R). This bound was later improved in [11] to an optimal
bound of (1 + o(1))(dε log(1/ε)). By now ε-nets are an indispensable tool in combinatorics
and algorithms [20, 6, 8, 15, 1, 19, 17, 16, 18, 2, 11, 13, 7].

Note that Macbeath’s original theorem immediately implies an ε-net kind of a result: for
any convex body C in Rd of volume V , it is possible to pick O(1

ε) points in C which stab all
halfspaces containing an ε-th fraction of the volume of C. However, the statement itself is
much stronger than that: instead of just points, it gives us O(1

ε) regions of volume Θ(εV) so
that each halfspace containing an ε fraction of the volume of C contains one of the regions.
The same kind of result is not true in general in a discrete setting (with counting measure
instead of Lebesgue measure) for halfspaces in Rd. However, it is true for halfspaces in R3.
Given n points in R3, one can find O(1

ε) groups containing Θ(εn) points each so that any
halfspace containing εn points contains one of the groups. This is much stronger than just
the existence of ε-nets of size O(1

ε).
This raises the intriguing question: of the large number of results known for ε-nets, which

can be optimally strengthened like above?

Combinatorial Macbeath Regions. Given the existence of decomposition of a convex set
K into roughly equal-volume subsets with respect to halfspaces, the natural question is to
prove the existence of a small-sized set of Macbeath regions for the counting measure (instead
of the Lebesgue measure).

So the problem is: given a set P of n points in Rd and a parameter ε > 0, one would like
to construct sets P = {P1, . . . , Pm}, Pi ⊂ P , such that each set Pi has size Ω(εn), and any
halfspace containing at least εn points contains a set in P.

It turns out that this is implied by a classical result in discrete geometry, called shallow
cuttings, which states the following [13, 7]. Given a set of n regions S in Rd and two
parameters r, l, a (1/r, l)-shallow cutting w.r.t. S is a partition of Rd into cells (of constant
descriptive complexity) such that i) each cell is intersected by the boundary of at most n/r
regions of S, and ii) the number of cells containing points of depth smaller than l is at most
O((rl/n + 1)d · n/l · φ(n/l)). A set of regions is said to have union complexity φ(·) if the
combinatorial complexity of the union of any r of the regions is at most rφ(r).

It can be observed that this statement implies a Macbeath-type statement for halfspaces,
and more generally, for the following problem for regions of small union complexity: given a
set of regions S of union complexity φ(·), the objective is to compute a family U of subsets
of S, each of size Ω(εn), such that any point contained in at least εn objects of S hits all
elements of some set in U .

To construct the Macbeath sets U for regions in S, fix l = 2εn, r = 2/ε, and construct
a (1/r, l)-shallow cutting for S. For a cell C in the shallow cutting, let r(C) be the set
of regions in S that completely contain C, i.e., si ∈ r(C) iff C ⊂ si. Now, for all cells C

STACS’14

580 Near-Optimal Generalisations of a Theorem of Macbeath

that contain a point of depth at most 2εn (called shallow cells), add r(C) to U . By the
shallow-cutting theorem, the number of cells containing a point of depth εn is

O((rl/n+ 1)d · n/l · φ(n/l)) = O(4d · 1/ε · φ(2/ε))

and so |U| = O(1/ε · φ(2/ε)). To show that sets in U form the required Macbeath regions,
recall that the cutting partitions Rd into a set of cells such that each cell intersects the
boundary of at most n/r = εn/2 objects in S. For a point p hitting εn regions, let C be the
shallow cell containing p. By the property of shallow-cuttings, of the εn regions containing
p, at most εn/2 regions can intersect C. The remaining at least εn/2 regions must then
completely contain C, and so for the r(C) added to U that contains p, we have |r(C)| ≥ εn/2.

The above shows the existence of O(1/εφ(1/ε)) sets such that any point contained in
Θ(εn) sets of S must hit one of the constructed sets. To make it work for all sets of size at
least εn, we can iteratively construct sets for increasing values of ε, i.e., ε, 2ε, . . . , 2iε, and
take the union, still obtaining O(1/εφ(1/ε)) sets.

For our problem of halfspaces, simply dualize each point in P to a halfspace, and apply
the above construction. For halfspaces, rφ(r) = O(rbd/2c), and so we get the following
combinatorial version of Macbeath: given a set P of n points in Rd, there exists a set
P = {P1, . . . , Pm}, Pi ⊂ P , with m = 1

εbd/2c , such that i) all sets in P have size Ω(εn), and
ii) any halfspace containing εn points of P contains at least one set in P.

The existence of a number of other ‘Macbeath-type’ statements for several other range
spaces is also implied by the above proof. In particular, for regions with linear union
complexity, i.e., φ(r) = O(1), there exist linear-sized Macbeath regions. This points to the
possibility of the existence of such structural partitioning properties for a wide range of sets
derived from geometric objects. In this paper we initiate a systematic study of the analogues
of Macbeath regions for other commonly studied geometric set-systems.

Our results. Given a set system (X,R) and ε > 0, we say that a set system U over X is an
ε-Macbeath net (or ε-Mnet for short) of (X,R) if i) each set in U has size Ω(ε|X|), and ii)
for every set R ∈ R of size at least ε|X|, there exists a set U ∈ U such that U ⊆ R. The size
of an ε-Mnet U is |U|. Parameterizing the problem a little further, if each set in U has size
at least εn/k, we call it a 1

k -heavy ε-Mnet .
In the study of ε-nets for geometric set systems, there are two types of set-systems that

are frequently studied: each of these are defined by a set of points P , and a set of regions
S. In the so-called ‘primal’ set-systems, P is taken as the ground set, and the subsets are
induced by the regions in S, where a region R induces the subset R ∩ P . In the so-called
‘dual’ set-systems, S is taken as the ground set, and the subsets are induced by points in P ,
where a point p induces the subset consisting of the regions in S containing p. Often in the
dual setting P is not mentioned, and is assumed to be the entire Euclidean space.

Earlier we pointed out the existence of ε-Mnets for halfspaces of size O(1/εbd/2c). Un-
fortunately this bound cannot be improved substantially: in Section 3, we show that it is
not very far from optimal, that is for any d, there exist a set of n points in Rd where any P
satisfying conditions i) and ii) has size at least Ω(1

εd(d−1)/3e).
The earlier statement in fact proved the existence of Macbeath sets for the dual problem

for general regions in terms of their union complexity. Namely, it showed:

I Theorem 2 (ε-Mnets for dual set-systems). Let S be a set of n regions in Rd with union
complexity φ(r)1. Then there exists an ε-Mnet for the dual set-system defined by S and Rd
(i.e., subsets of S hit by a point in the plane for the set system), of size O(1

εφ(1
ε)).

1 And satisfying certain technical conditions of bounded algebraic complexity. See [8] for a broader
discussion on this.

N.H. Mustafa and S. Ray 581

Interestingly, the dependence of φ(·) in general cannot be reduced to, for example, log φ(·),
as is the bound for ε-nets. A set-system which provides a counter-example follows from our
first main result, which considers ε-Mnets for the commonly-studied range-space induced by
axis-parallel rectangles in the plane. For these, we optimally tighten the result produced by
shallow-cuttings by improving the upper-bound, and then providing a matching lower-bound.
We prove the following in Section 2:

I Theorem 3 (ε-Mnet for rectangles in R2). Let R be a set of n rectangles, P a set of n
points in R2, ε > 0 a parameter, and k ≥ 2 an integer:
1. There exists a 1

2k -heavy ε-Mnet for the dual set-system defined by R and R2, of size
O(4k/ε1+1/k). Furthermore, this cannot be significantly improved: there exists a set R of
n axis-parallel rectangles such that any 1

k -heavy ε-Mnet for the dual set-system defined by
R and R2 has size Ω((1/ε)1+1/(k−1)).

2. There exists an ε-Mnet for the primal set-system defined by P and R, of size O((1/ε) log 1/ε).
Furthermore, this cannot be significantly improved: there exists a set P of n points in
R2 such that any 1

k -heavy ε-Mnet for the primal set-system defined by P and R has size
Ω(1

ε logk 1
ε).

Our second main result is to consider the primal case, i.e., where the input is a set of
points P , and the ranges are defined by geometric objects such as circles, k-sided polygons,
and in general, objects of some fixed descriptive complexity. We prove the following in
Section 3:

I Theorem 4. Let P be a set of n points in R2. Then one can construct ε-Mnets of size2:
O(1/ε) for sets induced by disks in the plane,
O(1/ε) for sets induced by rectangles all intersecting a fixed line l,
Õ(1/ε2) for sets induced by lines, cones, strips in the plane,
Õ(1/ε3) for sets induced by triangles, and in general k-sided polygons in the plane (the
constant in the asymptotic notation depends on k).

We further show in Section 3 that near-linear bounds (like those achieved for halfspaces in
2 and 3 dimensions, or for the dual set-systems of linear union-complexity) are not possible
for even simple primal set-systems: there exist a set P of n points in the plane such that any
ε-Mnet for lines must have size Ω(1/ε2). This implies that for strips or cones in the plane,
the same bound holds, ruling out near-linear bounds for even the simplest type of geometric
objects.

We conclude our study by observing that the above series of results, while their proofs use
different techniques, indicate an intriguing relation between the size of ε-nets and the size of
ε-Mnets . In all cases, they obey the following: if for a range-space (dual, or primal), the ε-nets
have size O(1/εf(1/ε)), then the size of ε-Mnets for the same range-space is O(1/εcf(1/ε)),
where c is constant. So for all spaces known to have linear-sized ε-nets (which is optimal),
our proofs prove the existence of linear-sized ε-Mnets (which is optimal). For the primal
set-systems of axis-parallel rectangles in the plane, the ε-nets have size O(1/ε log log 1/ε)
(shown to be optimal) [1, 17], and our result show ε-Mnets of size O(1/ε log 1/ε) (which we
show to be optimal). And for the remaining ranges which have ε-nets of size O(1/ε log 1/ε),
we show the existence of ε-Mnets of size O(1/εc). It would be interesting to see if there is
any connection with the (still) open problem of finding the right bound on the size of ε-nets
for lines in the plane.

2 Õ(·) ignores polylogarithmic factors.

STACS’14

582 Near-Optimal Generalisations of a Theorem of Macbeath

2 Proof of Theorem 3

In this section we prove Theorem 3, which completely resolves the case for rectangles. We
start by giving the lower-bounds for the primal and the dual problem, and then give the
matching upper-bounds for both.

2.1 Lower Bounds
The following Lemma gives the key insight to studying ε-Mnet for rectangles.

I Lemma 5. For any integers r, d ≥ 1, consider the grid G = [r]d in Rd. Then the set
system on G induced by incidences with axis-parallel lines can be realized by point-rectangle
incidences in R2.

Proof. Let r ≥ 1 be any integer and let [r] represent the set {0, · · · , r − 1}. Let G = [r]d
which can be thought of as a finite d-dimensional grid of side length r. For some fixed integers
a1, · · · , ai−1, ai+1, · · · ad ∈ [r], consider the set of points Si(a1, · · · , ai−1, ai+1, · · · ad) = {(a1,

· · · , ai−1, x, ai+1, · · · ad) : x ∈ [r]}. We call such a set a line in direction i. There are drd−1

lines, with rd−1 lines in each of the d directions.
We will show that there exists a mapping π : G 7→ R2 s.t. for each line l (in any direction

i), the smallest (inclusion minimal) axis parallel rectangle containing the image π(l) of the
points in l does not contain the image of any other points of G. Here is the mapping π that
we will use: π((a1, · · · , ad)) =

∑
j aj~vj , where ~vj = (rj , rd+1−j). For any point z ∈ G, we

will interpret p = π(z) both as a vector and as a point, as suitable. When treating it as a
vector we will denote it as ~p.

For any point p = (a1, · · · , ad) ∈ G, let ~V<i(p) denote the vector
∑
j<i aj ~vj and ~V>i(p)

denote the vector
∑
j>i aj ~vj . Thus we can write π(p) as ~V<i(p) + ai~vi + ~V>i(p).

Consider the line l = Si(a1, · · · , ai−1, ai+1, · · · ad). The minimal rectangle R containing
π(l) is defined by the two opposite corners π(u) and π(v), where u = (a1, · · · , ai−1, 0, ai+1, · · · ad)
and v = (a1, · · · , ai−1, r − 1, ai+1, · · · ad) are the extreme points in l. The width of R is
(r − 1)ri and its height is (r − 1)rd+1−i.

Consider any point z = (b1, · · · , bd) ∈ G \ l. Let p = π(z) and let q be the point∑
j 6=i aj~vj + bi~vi ∈ l. Now, ~p− ~q = (~V<i(p)− ~V<i(q)) + (~V>i(p)− ~V>i(q)). Since ~p 6= ~q, one of

the summands must be non-zero. Without loss of generality assume that the latter summand
is non-zero. The other case is symmetric.

Since the vector ~V>i(p) − ~V>i(q) is an integral combinations of the vectors vj , j > i,
its x-coordinate has magnitude at least ri+1. On the other hand the x-coordinate of
(~V<i(p) − ~V<i(q)) has magnitude at most

∑
1≤j<i(r − 1)rj = ri − ri−1. Therefore, the

horizontal distance between p and q is at least ri+1 − (ri − ri−1) which is greater than the
width of R. Hence, p /∈ R. When (~V<i(p) − ~V<i(q)) 6= 0, a similar argument holds for
the y-coordinates of p and q showing that their vertical distance is larger than the height
of R. J

Proof of Theorem 3 part 1) lower-bound. We now show that for any integer constant
d ≥ 2, there exists a set R of n axis-parallel rectangles such that any 1

k -heavy ε-Mnet for R
w.r.t. points has size Ω((1/ε)1+1/(k−1)).

Proof. Now apply Lemma 5 with d = k and r = ε−
1

d−1 . Let G be the grid [r]d as before.
We set P = {π(p) : p ∈ G} and we take R to be the set of rectangles with εn/d copies of
each of the set R′ of drd−1 rectangles corresponding to the drd−1 lines in G. Note that

N.H. Mustafa and S. Ray 583

|R| = εn/d · drd−1 = n. Since each of the points in G is contained in d lines (one in each
direction), the points in P are contained in d rectangles of R′ and consequently εn rectangles
of R. Since there is at most one line through two points in G there is at most one rectangle
in R′, and hence at most εn/d rectangles of R that contain any pair of points p, q ∈ P . Since
for any 1

k -heavy ε-Mnet U , each U ∈ U has size more than εn/k, it must be that no set in U
can be contained in two sets R(p) and R(q) induced by two distinct points p and q in P .
Therefore |U| ≥ |P | = rd = ε−

k
k−1 . J

Proof of Theorem 3 part 2) lower-bound. We now show that for any integer constant
k ≥ 2, there exists a set P of n points in R2 such that any 1

k -heavy ε-Mnet of P , w.r.t.
axis-parallel rectangles, has size Ω(1

ε logk 1
ε).

Proof. Apply Lemma 5 with r = k, and d such that rd−1 = 1
ε . Let R be the set of

drd−1 = 1/ε logk 1/ε rectangles corresponding to the lines of G, and let P be the set of points
with εn/r copies of each π(p),∀p ∈ G. Each of the rectangles in R contains rεn/r = εn

points of P . Any two rectangles of R share at most εn/r = εn/k points of P . Thus no two
rectangles in R may share the same set U ∈ U of a 1

k -heavy ε-Mnet U . Since each of them
must contain some U ∈ U , we have |U| ≥ |R| and the result follows. J

2.2 Upper Bounds

We now give constructions which match the preceding lower-bounds to complete the proof of
Theorem 3 part 1. Our argument is based essentially on the technique of boot-strapping; at
the cost of worse constant factors, we give a simple exposition below.

Construct a hierarchical subdivision of the rectangles in R by vertical lines, with an
integer k = 1/ε1/d, as follows. Let ni = n/ki, and εi = ε(k/2)i. At the 0-th level (i = 0), let
l01, . . . , l

0
k by a set of k vertical lines such that the number of rectangles of R lying between

two consecutive lines (‘a slab’) is at most n/k. Let R0
j be the set of rectangles lying entire in

the j-th slab. For each line l0j , construct a εi/4-Mnet for all of the (at most) n rectangles
of R intersecting it. Furthermore, recursively construct a εi+1-Mnet for the rectangles in
R0
j for each j. The recursive construction continues for d steps, where at the i-level, there

are ki total subproblems, each subproblem has at most ni = n/ki rectangles, and with
εi = ε(k/2)i. Finally we use a direct O(1/ε2d)-sized construction for the εd-Mnet of the final
kd subproblems at level i = d: construct 10/εd vertical and horizontal lines so that each
vertical and horizontal slab contains at most εdn/10 rectangles, and for each grid cell c, add
to U any εdnd/2 rectangles containing c (if possible). Now notice that any point in εdnd
rectangles must have at most εdnd/5 rectangles intersecting the cell boundary in which it
lies, and so at least εdnd/2 of the remaining ones would form a set in U . The next two claims
show that all these Mnet together form a ε-Mnet U for R of the required size, and we’re
done.

I Claim 1. Each set in U has size Θ(εn/2d). The size of U is O(4d/ε1+1/d).

Proof. At the i-level there are ki subproblems, each of size at most ni = n/ki with εi =
ε(k/2)i. For each such subproblem, we partition its ni rectangles by k lines, and construct
a εi/4-Mnet for the rectangles intersecting of these k lines. Note that the set of rectangles
intersecting any line, and clipped to one side of the line have linear union complexity and by
our Theorem on the dual set-systems, there exists a εi/4-Mnet of size O(1/εi). Hence the

STACS’14

584 Near-Optimal Generalisations of a Theorem of Macbeath

total size over all internal subproblems is:

d∑
i=0

ki · k ·O(1
εi

) =
d∑
i=0

ki+1 ·O(2i

εki
) =

d∑
i=0

O(2i

ε1+1/d) = O(2d

ε1+1/d) .

After d steps, we have kd subproblems, each with at most n/kd rectangles, and εd = ε(k/2)d.
Now just use a direct construction which constructs an ε-Mnet of size O(1/ε2), to get the
total size of Mnet at the last step to be O(k

d

ε2
d

) = O(4d

ε2kd) = O(4d/ε).
At any level i, we construct a εi-Mnet on a set of at most n/ki rectangles. So each set in

the Mnet has size εi · n/ki = O(εn/2i). J

I Claim 2. Each point in at least εn rectangles of R contains a set of U .

Proof. Take a point q lying in at least εn rectangles of R. At the 0-th level, say q lies in
the vertical slab defined by lines l0j and l0j+1. If q hits at least εn/4 rectangles intersected
by either l0j or l0j+1, say l0j , then it hits at least εn/4 rectangles out of a total of at most n
rectangles intersected by l0j . So the (εi/4 = ε/4)-Mnet for l0j will have a set contained by q.
Otherwise q hits at least ε0n0/2 = εn/2 = ε(k/2)(n/k) = ε1n1 rectangles of the set R0

j of
size n1 = n0/k, and we proceed to this subproblem.

In general, at the i-level, each subproblem has ni = n/ki rectangles, with εi = ε(k/2)i.
Then either q hits at least εi ·ni/4 rectangles intersecting one of the lines, and so will contain
a set from the εi/4-Mnet constructed for each of the k vertical lines. Or q contains at least
εini/2 rectangles out of a total of ni/k rectangles lying in one of the slabs defined by the k
vertical lines. But as

εini/2 = ε/2 · (k/2)i · n/ki = ε(k/2)i+1n/ki+1 = εi+1ni+1 ,

q will be covered inductively by the εi+1-Mnet constructed for the ni+1 = n/ki+1 rectangles
in one of the resulting subproblems at level i+ 1. J

Finally we present the tight upper-bound for the primal case of axis-parallel rectangles in
Theorem 3 part 2.

Assume P = {p1, . . . , pn} are sorted by their x-coordinates. Given P , construct the
balanced binary subdivision of P with vertical lines: divide P by a vertical line into two
equal-sized subsets P 0

0 , P
0
1 , and then recursively divide each of these sets for log 1/ε levels.

Let P ij be the j-th resulting subset of P at level i, i.e., P ij = {pjn/2i , . . . , p(j+1)n/2i−1}.
For each set P ij , and for each of its two bounding lines l0 and l1 in the binary subdivision

above, construct a 2i−1ε-Mnet for the following primal set-system: the base set is P ij , and
given the line l ∈ {l0, l1}, the sets are induced by rectangles intersecting the line l. Note
that all points of P ij lie on the same side of l. Let U be the union of all these Mnets . By
Theorem 4, a ε-Mnet for such a set-system has size O(1/ε).

We now prove that U is an ε-Mnet of P , w.r.t. axis-parallel rectangles, of sizeO(1/ε log 1/ε).

I Claim 3. Each set in U has size Θ(εn), and size of U is O(1/ε log 1/ε).

Proof. P ij has n/2i points, and so a (2i−1ε)-Mnet of P ij has sets of size O(2i−1ε · n/2i) =
O(εn). Each such 2i−1ε-Mnet has size O(1/2iε), there are 2i sets P ij at level i, and a total of
log 1/ε levels. Hence the size of U is O(1/2iε · 2i · log 1/ε) = O(1/ε log 1/ε). J

I Claim 4. Each axis-parallel rectangle containing εn points of P contains a set of U .

N.H. Mustafa and S. Ray 585

a

b c

p

q

r s

t

u

Figure 1 The union of triangles aqt,bsp, cur and prt covers the triangle abc.

Proof. Let R be an axis-parallel rectangle containing εn points of P . Let i be the smallest
index such that R intersects exactly one vertical line separarting two sets P ij and P ij+1 at
level i. Say R intersects the line l separating P ij and P ij+1. Then R must contain at least
εn/2 points from either P ij or P ij+1, say P ij . Let R′ be the part of R on the side of l towards
P ij . All such R′ form a set of psuedo-disks, and so R′ must contain at least one set of the
2i−1ε-Mnet for P ij , as

|R ∩ P ij | = |R′ ∩ P ij | ≥ εn/2 = 2i−1ε · n/2i = 2i−1ε · |P ij | .

J

3 Proof of Theorem 4

In this section we give the proof of Theorem 4. Given a set P of n points, first we give the
proof for the most difficult case, that of the primal set-system induced by triangles, and in
general, k-sided polygons in the plane. At the end we sketch out the modifications required
for the rest of the cases of strips, cones and disks.

So we are given a set P of n points, and its subsets induced by the family of all k-sided
polygons. The objective, as before, is to compute a small-sized ε-Mnet . We will assume P
to be in general position.

Since a k-sided polygon can be triangulated with k triangles, any k-sided polygon
containing εn points of P also contains a triangle containing εn/k points. Hence an ε/k-Mnet
with respect to triangles is an ε-Mnet with respect to k-sided polygons. We can therefore
restrict ourselves to triangles.

Consider any triangle T in the plane that contains εn points of P . By moving the sides
of the triangle we can ensure that each side of T contains at least two points of P and this
can be done in such a way that no point outside T enters the interior of P . Some points
in the interior of T may have moved to its boundary and some point outside T may also
have moved to the boundary. Since at most 6 points may be on the boundary of T , due to
P being in general position, the interior of T still contains at least εn/2 points assuming
εn ≥ 12. For εn < 12, the set P itself is an ε-Mnet . Thus we can further restrict ourselves
to the interior of triangles each of whose sides contain at least two points. Figure 1 shows a
triangle with each side containing two points of P . The points q and r could be identical,
they could both be equal at the corner b of the triangle. Similarly s and t could be at c and
u and p could be at a. Observe that the triangles aqt, bsp, cur and prt cover the triangle T
and therefore one of them must contain at least εn/4 points of P . Each of these triangles are
of the following type: at least two of the corners are in P and all sides contain at least two

STACS’14

586 Near-Optimal Generalisations of a Theorem of Macbeath

points of P . We call such triangles anchored triangles. Thus we can again restrict ourselves
to the problem of anchored triangles containing εn points.

Let O be the set of all anchored triangles. Let O′ = {o1, . . . , ot} be a maximal set of t
triangles from O such that oi ∩ P = εn and |oi ∩ oj ∩ P | ≤ εn/2.
I Claim 5. |O′| ≤ 2 · f(cε · log 1/ε, 2c log 1/ε), where f(n, l) is the maximum number of
≤ l-sized subsets induced by objects in O given any set of n points, and c is some fixed
constant.

Proof. The proof is via the probabilistic method. Pick each point of P independently at
random with probability p = c/(2εn) · log 1/ε to get a random sample S.
I Fact 1. With probability at least 1/2, the sets oi ∩ S, i = 1 . . . t, are distinct and
|S| ≤ c/ε · log 1/ε.

Proof. Consider the range space (P,R′), where R′ = {(oi \ oj) ∩ P | ∀1 ≤ i < j ≤ t}.
First note that from the definition of O′, we get that each set in R′ has size at least
εn− εn/2 = Θ(εn). Second, we use the fact that ranges induced by polygons with k sides
have VC-dimension at most 2k + 1 [14]; it is easy to see that R′ is a subset of the ranges
induced by polygons (or union of polygons) with at most 9 sides (overall), and so the
VC-dimension of R′ is at most 19. Then by the Haussler-Welzl theorem [10], for c > 19 · 4,
with probability at least 3/4, S is an ε-net for (P,R′). Now observe that if oi ∩ S = oj ∩ S,
then the set (oi \ oj) ∩ S is empty, a contradiction to the fact that S is an ε-net for R′.

Finally, from standard concentration estimates from Chernoff bounds, it follows that
|S| ≥ c/ε · log 1/ε with probability at most 1/4. J

For each oi ∈ O′, let Xi be the random variable which is 1 if |oi ∩ S| ≥ 2c log 1/ε, and 0
otherwise. Then
I Fact 2. With probability greater than 1/2,

∑
Xi ≤ t/2.

Proof. For a fixed i, by linearity of expectation:

E[|oi ∩ S|] = c/2 · log 1/ε

By Markov’s inequality applied to each Xi,

Pr[Xi = 1] = Pr[|oi ∩ S| ≥ 2c · log 1/ε] = Pr[|oi ∩ S| ≥ 4 · E[|oi ∩ S|]] ≤ 1/4

Hence the expected value of Y =
∑
Xi is:

E[
∑

Xi] =
∑

E[Xi] =
∑

Pr[Xi = 1] ≤ t/4

By Markov’s inequality applied to Y , we get that

Pr[
∑

Xi ≥ t/2] ≤ E[
∑

Xi]/(t/2) ≤ 1/2

So with probability greater than 1/2, at least half the sets of O′ contain at most 2c log 1/ε
points of S. J

Therefore, putting together Fact 1 and Fact 2, there exists a subset S of size (c/ε) log 1/ε
such that oi ∩ S are distinct for all objects in O′, and for at least |O′|/2 of the objects in O′,
we have |oi ∩ S| ≤ 2c log 1/ε.

Let f(n, l) be the number of distinct subsets of size at most l that can be achieved by
intersection with objects in O. These are called ≤ l-sets (the most extensively studied case

N.H. Mustafa and S. Ray 587

is for halfspaces in Rd). So in our case above, each oi ∩ S formed by these |O′|/2 objects is a
≤ l-set of S, where l = 2c log 1/ε. By the bound on number of ≤ l-sets for k-sided polygons,
we get

|O′|/2 = f(|S|, l) = f((c/ε) log 1/ε, 2c log 1/ε)
This gives the required bound on |O′|. J

Take this set O′ of maximal objects, each containing εn points of P , and every pair of objects
in O′ intersecting in less than εn/2 points. For each object oi ∈ O, do the following: apply
the simplicial partition theorem to oi ∩ P with the parameter t, which is a large enough
constant, to get a partition of oi ∩ P into t sets of size Θ(|oi ∩ P |/t). Add each of these t
sets to the ε-Mnet U for P .
I Claim 6. U is an ε-Mnet for the primal set-system defined by P and O, of size O(|O′|).

Proof. First note that each set added to U had size Θ(|oi ∩ P |/t) = Θ(εn). And the number
of such sets is O(|O′| · t) = O(|O′|). It remains to show that any object containing εn points
of P contain one set of U .

Take any object o containing εn points of P . By the maximality of O′, there exists
oi ∈ O′ such that |o∩ oi| ≥ εn/2. Furthermore, of all the sets in the simplicial partition of oi,
each edge of ∂o can intersect only O(

√
t) sets; so in total the boundary of o can intersect at

most O(d
√
t) sets. Each of these sets has O(|oi ∩ P |/t) points. So these sets can contribute

at most O(d
√
t · |oi ∩P |/t) points of oi to the object o. Taking t = αd for some large enough

constant α, this is less than εn/2. Therefore o must contain a point in oi which lies in a
partition for oi not intersecting ∂o, i.e., the partition lies completely inside o. J

I Claim 7. f(n, l) ≤ ln3.

Proof. The proof is folklore, and follows by standard application of the Clarkson-Shor
method [14]. For completeness we sketch it here. An anchored triangle abc can be of two
types - either all corners are in P or exactly two corners, say a and b, are in P and there is
a point p ∈ P on ac and another point q ∈ P on bc. The number of anchored triangles of
the first type is clearly at most

(
n
3
)
. Thus we only need to bound the number of anchored

triangles of the second type with at most l points in the interior. We first consider the case
when l = 0, i.e., anchored triangles of the second type with no point of P in the interior.
For such triangles, observe that fixing the points a, b and p determines q. If there were two
points q and q′ then it can be easily shown that one of anchored triangles T1 determined by
a, b, p and q and T2 determined by a, b, p and q′ is non-empty - either T1 contains q′ or T2
contains q. Thus the number of such triangles is at most

(
n
3
)
.

Let N denote the number of anchored triangles of the second type with at most l points
in the interior. Let Q be a subset of P obtained by picking each point of P independently
with probability p = 1/l. The expected number of empty anchored triangles of the second
type determined by Q is at most the expected number of triples in Q which is p3(n

3
)
since

every triple in P appears as a triple in Q with probability p3. At the same time, each of
the N anchored triangles with at most l points in the interior becomes an empty anchored
triangles in Q with probability p4(1 − p)l. Thus the expected number of empty anchored
triangles in Q is at least Np4(1− p)l. Thus Np4(1− p)l ≤ p3(n

3
)
. Since p = 1/l, it follows

that N = O(ln3). J

Triangles and k-sided polygons. Finally, the proof for the size of ε-Mnet for triangles and
k-sided polygons follows from Claims 5, 6 and 7. We now sketch the proof of the other cases
along the above lines.

STACS’14

588 Near-Optimal Generalisations of a Theorem of Macbeath

Lines, strips, cones. For sets induced by lines, strips, cones in the plane, one can follow
the above proof. The function f(n, l) correspondingly denotes the number of subsets of size l
induced by the objects of the appropriate type (lines, strips, cones). For lines, f(n, l) = O(n2),
for strips it is O(n2l) and for cones it is O(n2l2). The proof then follows from the above
claims.

Rectangles intersecting a common line l. As each rectangle contains εn points and inter-
sects l, for each rectangle R, take the portion of the rectangle on the side of l that contains
at least εn/2 points. We can construct εn/2-Mnets for the two sides of l separately.

So consider the rectangles anchored on l lying on the same side containing εn/2 points of
P . Call this set O. As before, let O′ be the maximal subset of O such that i) every pair
of rectangles in O′ share at most εn/10 points, and ii) each rectangle contains εn/2 points.
These form pseudo-disks (i.e., no two rectangles pierce each other) and by the result of [18],
|O′| = O(1/ε). Now Claim 6 implies that one can construct ε/2-Mnet of size O(1/ε).

Disks. By standard Veronese map, points P and disks D can be lifted to halfspaces H in
R3 such that each point is lifted to a point in R3 and each disk is lifted to a halfspace in R3

in such a way that their incidences are preserved. Now the required bound follows from the
result for halfspaces in R3.

Lower-bounds

I Theorem 6. For every ε > 0 and k an integer, there exists a set P of n points in the
plane, and a set D of Ω(1

εd+1) curves of degree at most d, such that i) each curve contains
εn points of P and, ii) no two curves share more than εn/k points of P .

Proof. For the lower-bound on the size of 1
k heavy ε-Mnet, consider the grid G = [dk]× [1

ε]
in the plane for some d ≥ 1, where [r] denotes the set {0, · · · , dre − 1}. Now, consider
univariate functions of x of the form y =

∑d
i=0 aix

i where each ai is an integer in [1
ε(d+1)(dk)i].

Clearly there are at least Ω(
∏d
i=0

1
ε(d+1)(dk)i) = Ω(1

εd+1) of these polynomials. Since for each
value of x ∈ [dk], the value of y is in [1

ε], each of these curves contain dk points of G. Also,
since these are curves of degree at most d, no two intersect in more than d points. Let P
be the set of n points containing εn/dk copies of each of the points in G. We thus get a set
of Ω(1

εd+1) curves of degree at most d, each of which contain εn points of P and no two of
which share more than εn/k points of P . J

I Corollary 7. This gives a lower bound of Ω(1
εd+1) for 1

k -heavy ε-Mnets for range spaces
induced by curves of degree at most d in the plane.

Note that this immediately implies that for sets induced by lines in the plane, ε-Mnets
must have size Ω(1/ε2). Which in turn is a special case for strips and cones in the plane.

I Corollary 8. Any ε-Mnet for sets induced by lines, strips and cones in the plane must have
size Ω(1/ε2).

Finally, using standard linearization [14] (with Veronese maps), it is possible to lift a set
of polynomial curves of degree d and a set of points to R3d+2 so that each point in the plane
is lifted to a point in R3d+2 and each curve is lifted to a halfspace (i.e., the curve y = f(x)
becomes (y − f(x))2 ≤ 0, and each monomial of this expansion can be treated as a different
coordinate for the linearization). Thus we have the following:

I Corollary 9. Any ε-Mnet for sets induced by halfspaces in Rd must have size Ω(1
εd(d−1)/3e).

N.H. Mustafa and S. Ray 589

References
1 B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles and boxes.

SIAM J. Comput., 39(7):3248–3282, 2010.
2 S. Arya, G. Dias da Fonseca, and D. M. Mount. Optimal area-sensitive bounds for polytope

approximation. In Symposium on Computational Geometry, pages 363–372, 2012.
3 I. Barany. Random polytopes, convex bodies, and approximation. In W. Weil, editor,

Stochastic Geometry, pages 77–118. Springer, 2007.
4 I. Barany and D. G. Larman. Convex bodies, economic cap coverings, random polytopes.

Mathematika, 35:274—-291, 1988.
5 H. Bronnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching. Discrete

Comput. Geom., 10:143––155, 1993.
6 T. M. Chan, E. Grant, J. Könemann, and M. Sharpe. Weighted capacitated, priority, and

geometric set cover via improved quasi-uniform sampling. In SODA, 2012.
7 C. Chekuri, K. L. Clarkson, and S. Har-Peled. On the set multi-cover problem in geometric

settings. In Symposium on Computational Geometry, pages 341–350, 2009.
8 K. L. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric set

cover. In Symposium on Computational Geometry, pages 135–141, 2005.
9 G. Ewald, D. G. Larman, and C. A. Rogers. The directions of the line segments and of the

r-dimensional balls on the boundary of a convex body in euclidean space. Mathematika,
17:1—-20, 1970.

10 D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom.,
2:127–151, 1987.

11 J. Komos, J. Pach, and G. Woeginger. Almost tight bounds for epsilon nets. Discrete &
Computational Geometry, pages 163–173, 1992.

12 A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Math, 56:269—-293,
1952.

13 J. Matousek. Reporting points in halfspaces. Computational Geometry, 2(3):169 – 186,
1992.

14 J. Matousek. Lectures in Discrete Geometry. Springer-Verlag, New York, NY, 2002.
15 N. H. Mustafa and S. Ray. An optimal generalization of the centerpoint theorem, and its

extensions. In Symposium on Computational Geometry, pages 138–141, 2007.
16 N. H. Mustafa and S. Ray. Weak ε-nets have a basis of size O(1/ε log 1/ε). Comp. Geom:

Theory and Appl., 40(1):84–91, 2008.
17 J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. In Symposium on

Computational Geometry, pages 458–463, 2011.
18 E. Pyrga and S. Ray. New existence proofs epsilon-nets. In Symposium on Computational

Geometry, pages 199–207, 2008.
19 S. Ray. Weak and strong ε-nets for Geometric Range Spaces. PhD thesis, Saarland Univer-

sity, 2009.
20 K. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Proceedings

of the 42nd ACM symposium on Theory of computing, STOC ’10, pages 641–648, 2010.

STACS’14

Non-autoreducible Sets for NEXP
Dung T. Nguyen and Alan L. Selman

University at Buffalo, The State University of New York, NY, US
{dtn3,selman}@buffalo.edu

Abstract
We investigate autoreducibility properties of complete sets for NEXP under different polynomial-
time reductions. Specifically, we show that under some polynomial-time reductions there are
complete sets for NEXP that are not autoreducible. We show that settling the question whether
every ≤p

dtt-complete set for NEXP is ≤p
NOR-tt-autoreducible either positively or negatively would

lead to major results about the exponential time complexity classes.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Autoreducibility, NEXP, diagonalization, structural complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.590

1 Introduction

Autoreducibility was first introduced by Trakhtenbrot [11]. A set A is autoreducible if A
is reducible to A via an oracle Turing machine M such that M never queries x on input x.
Ambos-Spies [1] introduced the polynomial-time variant of autoreducibility, where the oracle
Turing machine now runs in polynomial time. Each notion of polynomial-time reduction
induces the corresponding notion of autoreducibility.

The main question that has drawn many researchers’ attention is whether complete sets
for various complexity classes are polynomial-time autoreducible. Over many years, many
results about autoreducibility of complete sets of different classes have been discovered.
Glaßer et al. [7] showed that all m-complete sets of the following complexity classes are
many-one autoreducible: NP, PSPACE, EXP, NEXP, ΣP

k , ΠP
k , and ∆P

k for k ≥ 1. Beigel
and Feigenbaum [10] showed that all Turing complete sets for any class ΣP

k , ΠP
k , ∆P

k , k ≥ 0,
are Turing autoreducible. Also, all Turing complete sets for NP are Turing autoreducible.

Resolving some open questions about autoreducibility would lead to major class separa-
tion results. Buhrman et al. [2] proved various autoreducibility results for many different
complexity classes and demonstrated strong evidence that studying structural properties of
the complete sets, especially the autoreducibility property, might be an important tool to
separate complexity classes. For example, if there exists a Turing complete set of NEXP that
is not Turing autoreducible, then EXP is different from NEXP.

We reinforce this belief with the following result. Let hypothesis A be the assertion that
every ≤p

dtt-complete set for NEXP is ≤p
NOR-tt-autoreducible. We prove that hypothesis A is

true if and only if NEXP = coNEXP. It follows immediately that ¬A implies NEXP 6= EXP.
We see that settling hypothesis A either positively or negatively solves important problems
about these classes.

With this motivation in mind, we study autoreducibility questions for NEXP. Buhrman
et al. [2] extensively studied autoreducibility for EXP. It is known that under many-one,
1-tt, 2-tt, and Turing reductions, all complete sets for EXP are autoreducible. Also for any
k ≥ 3, under ≤p

k-tt-reduction, there exists a complete set for EXP that is not autoreducible.
For NEXP, it is known that all many-one complete sets are autoreducible. Moreover, Glaßer

© Dung T. Nguyen and Alan L. Selman;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 590–601

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.590
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D.T. Nguyen and A. L. Selman 591

et al. [6] took a next step to show that under 2-tt, disjunctive-truth-table, and conjunctive-
truth-table reductions, all complete sets for NEXP are autoreducible. We make progress
in this paper by proving non-autoreducibility of complete sets for NEXP under certain
polynomial-time reductions. In particular, we obtain the following results. (All definitions to
follow.)

For any positive integers s and k such that 2s − 1 > k, there is a ≤p
s-T -complete set for

NEXP that is not ≤p
k-tt-autoreducible.

There is a ≤p
T -complete set for NEXP that is not ≤p

tt-autoreducible.
There is a ≤p

3-tt-complete set for NEXP that is not honest ≤p
3-tt-autoreducible.

For any positive integer k, there is a ≤p
k-tt-complete set for NEXP that is not weakly

≤p
k-tt-autoreducible.

Proofs typically require intricate diagonalization arguments.
This paper is organized as follows. Section 2 contains notation and definitions about

many different polynomial-time reductions and autoreducibilities. In section 3, we obtain our
non-autoreducibility results for many different complete sets in NEXP. Section 4 contains
our result about hypothesis A. In section 5, we will show negative results in relativized
worlds for some open questions.

2 Preliminaries

Most notation and definitions are standard [9]. Strings are elements of {0, 1}∗. For every
string x, denote |x| to be the length of x. For every Turing machine M , L(M) denotes the
language accepted by the machine M . We denote MB to be an oracle Turing machine M
that accesses the oracle B. Also for every input x, M(x) is the outcome of the computation
of M on input x; i.e., M(x) = 1 if and only if M accepts input x. We assume that the pairing
function 〈. . .〉 is a one-to-one, polynomial-time computable function that can take any finite
number of inputs and its range does not intersect with 0∗. For every set A, the characteristic
function of A is denoted by A; that is, A(x) = 1 if x ∈ A and A(x) = 0 otherwise. Also |A|
denotes the cardinality of A.

For any two sets A and B, A is Turing-reducible to B in polynomial time, A≤p
TB, if

there exists a deterministic polynomial-time-bounded oracle Turing machine M such that
A = L(MB). Similarly, A≤p

k-TB if there exists a deterministic polynomial-time-bounded
oracle Turing machine M such that A = L(MB) and M asks no more than k queries for
any input x. In this paper, if we do not mention explicitly the running time of a reduction,
then that reduction is a polynomial time reduction. The reduction is nonadaptive, A≤p

ttB,
if the queries are independent of the oracle and so they do not depend on the answers
to the previous queries. Other notions of reductions are also considered. A set A is k-
truth-table-reducible to B, A≤p

k-ttB, if there exists a nonadaptive oracle Turing machine
MB that accepts A such that for any input x, the computation of MB on input x asks
no more than k queries. A set A is bounded-truth-table-reducible to B, A≤p

bttB, if there
exists some integer k such that A≤p

k-ttB. A set A is disjunctive-truth-table reducible to B
in polynomial time, A≤p

dttB, if there exists a polynomial time computable function f such
that for any x, f(x) = 〈q1, . . . , qk〉, and x ∈ A ⇐⇒ B(q1) ∨ · · · ∨ B(qk) = 1. Similarly, a
set A is conjunctive-truth-table reducible to B in polynomial time, A≤p

cttB, if there exists
a polynomial time computable function f such that for any x, f(x) = 〈q1, . . . , qk〉, and
x ∈ A ⇐⇒ B(q1)∧ · · · ∧B(qk) = 1. Other notions ≤p

k-dtt and ≤
p
k-ctt are defined analogously.

For any k-ary Boolean function α, a set A is α-truth-table reducible to B in polynomial

STACS’14

592 Non-autoreducible Sets for NEXP

time, A≤p
αttB, if there exists a polynomial time computable function f such that for any x,

f(x) = 〈q1, . . . , qk〉, and x ∈ A ⇐⇒ α(B(q1), . . . , B(qk)) = 1.
EXP =

⋃
{DTIME(2p(n)) | p is a polynomial} is the class of languages that can be decided

by a deterministic Turing machine in exponential time.
NEXP =

⋃
{NTIME(2p(n)) | p is a polynomial} is the class of languages that can be

decided by a nondeterministic Turing machine in exponential time.
Throughout this paper, let {NEXPi}i≥1 be an enumeration of all nondeterministic

exponential time Turing machines. Also we assume that the computation of NEXPj on input
x has running time that is bounded by 2|x|j .

Let K = {〈i, x, l〉 | NEXPi accepts input x within l steps} be a canonical complete set
for NEXP, where l is encoded in a binary string.

For any oracle Turing machine MB, let Q(MB , x) denote the set of all queries of the
computation of MB on input x.

I Definition 1 (Autoreducibility). For any reduction ≤, a set A is ≤-autoreducible if A ≤ A
via an oracle Turing machine MA such that for any x, x /∈ Q(MA, x). We call M an
autoreduction of A by ≤-reduction. The reduction ≤ can apply to any reductions, specifically,
all those that we mention above, such as ≤p

T ,≤
p
tt ,≤

p
k-tt ,≤

p
dtt , etc.

Honest reductions are discussed in [8] and [5]. Informally, in honest reductions, the strings
queried to the oracle cannot be too short compared to the input length. In this paper, we
use a stronger notion of honest reductions, where strings queried cannot be either too short
or too long compared to the input length. Its formal definition is as follows.

I Definition 2 (Honest truth-table reduction). Given any two sets A and B and an arbitrary
positive number c ≥ 1, we define an honest truth-table reduction ≤h-c

tt as follows: A≤h-c
tt B

if there exists a nonadaptive Turing machine M with oracle B such that MB accepts x if
and only if x ∈ A and for any input x, all queries q made to oracle B have length satisfying
|x|1/c ≤ |q| ≤ |x|c.

I Definition 3 (NOR-reduction). Given any two sets A and B, we define a NOR-truth-table
reduction ≤p

NOR-tt as follows: A≤p
NOR-ttB if there exists a nonadaptive Turing machine M

with oracle B such that for any input x, letting q1, . . . , qk be all queries of MB on input x,
then x ∈ A ⇐⇒ q1 /∈ B ∧ · · · ∧ qk /∈ B.

I Definition 4 (Weak-reduction). Given any two sets A and B, we define a weak truth-table
reduction ≤p

tt-w as follows: A≤p
tt-wB if and only if there exist two polynomial computable

functions f and g such that for any input x, f(x) = 〈q1, . . . , qk〉, g(x) = h(α1, . . . αk) is a
Boolean function with k variables α1, . . . αk such that h is neither an OR nor a NOR Boolean
function, and x ∈ A ⇐⇒ h(B(q1), . . . , B(qk)) = 1.

3 Non-autoreducible sets for NEXP

I Theorem 5. For any positive integers s and k such that 2s−1 > k, there is a ≤p
s-T -complete

set for NEXP that is not ≤p
k-tt-autoreducible.

Proof. Let {Mj}j≥1 be an enumeration of all ≤p
k-tt-reductions. Assume that Mj on input

x runs in time |x|j . We will construct a set B such that K≤p
s-TB but B is not ≤p

k-tt-
autoreducible. Recall that K, which is defined in the Preliminaries section, is a canonical
complete set for NEXP.

The ≤p
s-T -reduction from K to B will be as follows: we build a full binary tree of height s.

This tree has exactly 2s − 1 nodes. We number the nodes from top to bottom, left to right,

D.T. Nguyen and A. L. Selman 593

by using numbers 0, 1, . . . , 2s− 2; i.e. the root node will be numbered 0, then its two children
will be 1 and 2, etc. Then for any string x, each node i will be labeled by the pair 〈x, i〉.
From now on, for every such x, T (x) is such a query tree, and for every node N , N is referred
as a node itself or its label interchangeably. Also for any two nodes N1 and N2 such that
one node is an ancestor of another node, denote P(N1,N2) to be a unique path from N1
to N2. For every node N , denote the left path L(N) to be a path from N to a leaf node
by just traversing left. The right path R(N) is defined similarly. Those labels are possible
queries that can be asked to the oracle B by this reduction. Specifically, start at the root
node, and if the current query is node N , if the answer is YES, i.e. N ∈ B, then the next
query will be N ’s left child; otherwise the right child will be asked. The reduction accepts if
and only if the last query (certainly, it is one of the leaf nodes) belongs to B. Define the
sequence {yn}n≥0 such that y0 = 1 and yn+1 = 2yn

n + 1 for every n ≥ 0. Now we construct
such a set B that satisfies the above reduction. At the same time, we want to diagonalize
against all MB

n such that MB
n accepts 0yn if and only if 0yn /∈ B. The set B is constructed

in each stage as follows. Initially we set B = ∅.
At stage n, suppose that the set B has been constructed such that all strings of length

up to yn−1
n−1 have already been encoded into B appropriately to make the above reduction

work. We will encode all strings of length between yn−1
n−1 + 1 and ynn into B in this stage.

Compute Q that is the set of all queries q of Mn on input 0yn such that q = 〈x, i〉,
i ≤ 2s − 1, and yn−1

n−1 + 1 ≤ |x| ≤ ynn . Denote P to be the set of all x such that 〈x, i〉 ∈ Q
for some 0 ≤ i ≤ 2s − 1. And for each x ∈ P , denote P x to be the set of all 〈x, i〉 such that
〈x, i〉 ∈ Q and 0 ≤ i ≤ 2s − 1.

For each x in P , consider set P x. Notice that |P x| ≤ k < 2s − 1. Consider the query tree
T (x):

Case 1: If all leaf nodes are in P x, then there are some internal nodes such that they are
not in Px. Let N be the smallest node in the set of those nodes. Put N into B if and
only if x ∈ K. Also for every node N ′ in L(N) and N ′ 6= N , add N ′ to B. Finally for
every node N ′ in the path P(Root,N), add N ′ to B if and only if its left child node is
in the path.
Case 2: If there are some leaf nodes that are not in P x, let N be the smallest node in the
set of those nodes. Add N to B if and only if x ∈ K. For every node N ′ in P(Root,N),
add N ′ to B if and only if its left child is in that path.

For every x /∈ P such that yn−1
n−1 + 1 ≤ |x| ≤ ynn , put 〈x, 2s − 1〉 into B if and only if x ∈ K.

After all those steps are done, put 0yn into B if and only if MB
n rejects 0yn .

That is how B is constructed. It is straightforward to see that the construction satisfies
two properties: K≤p

s-TB and B is not ≤p
k-tt-autoreducible.

I Claim 6. B ∈ NEXP

Proof. Notice that all elements of B have one of two forms 0∗ and 〈x, i〉 where 0 ≤ i ≤ 2s−1.
For any input of any other form, it just rejects immediately.

Given an input b, consider the following cases:
b = 0yn for some n (otherwise, b /∈ B). Then by the construction,

0yn ∈ B ⇐⇒ MB
n rejects 0yn .

So if we know how to resolve all queries made to oracle B then it is easy to determine
whether MB

n accepts 0yn in exponential time. Now notice that in the above construction,
for every query q, it can be resolved by considering the query tree and it does not depend

STACS’14

594 Non-autoreducible Sets for NEXP

on the membership of some x in K. In this case membership in B can be answered
deterministically in exponential time.
b = 〈x, i〉 for some 0 ≤ i ≤ 2s − 1. By considering the query tree T (x), there are two
cases:

The membership of b in B can be determined straightforwardly, based on the above
construction, and does not depend on whether x ∈ K or not.
b ∈ B ⇐⇒ x ∈ K. In this case, we can simulate the machine to accept K on an input
x. Notice that |x| < |b|, so it can be done nondeterministically in exponential time.

Thus, B ∈ NEXP J

Hence, B is a ≤p
s-T -complete set for NEXP that is not ≤p

k-tt-autoreducible. J

Glaßer et al. [6] showed that every ≤p
2-tt-complete set for NEXP is ≤p

2-tt-autoreducible.
Theorem 5 is somehow “tight” in case s = 2 and k = 2. The following corollary separates
the notions of ≤p

2-T and ≤p
2-tt .

I Corollary 7. There is a ≤p
2-T -complete set for NEXP that is not ≤p

2-tt-complete.

It has been known that there is a Turing complete set for EXP that is not ≤p
tt-autoreducible

[4]. We want to remark that Buhrman et al. [3] showed that there is a set that is Turing
complete but not ≤p

tt-complete for NEXP. Moreover, their construction technique can be
adapted to show that for any positive integers s and k such that 2s−2 > k, there is a ≤p

s-T -
complete set for NEXP that is not ≤p

k-tt-autoreducible, which is weaker than what Theorem 5
states. By adding a minor trick to the proof in Theorem 5 or cleverly adapting the technique
in [3], we can separate the Turing-completeness notion from the ≤p

tt-autoreducibility notion
in NEXP, as opposed to Turing-completeness versus ≤p

tt-completeness in [3].

I Corollary 8. There is a Turing complete set for NEXP that is not ≤p
tt-autoreducible.

Proof. Notice that in this case, the Mn autoreduction will not ask just k queries on input
0yn , but it can ask up to ynn queries, because its running time on input 0yn is bounded by
ynn . Another modification is that the reduction from K to B will now need to ask more
queries, say |x|2 adaptive queries; that also means the query tree will have height |x|2.
With this trick in mind, in the construction algorithm of B at stage n, for every x in P ,
|P x| ≤ ynn = (2y

n−1
n−1 + 1)n < 2y

2(n−1)
n−1 < 2|x|2 . So the number of nodes in the query tree

T (x) will be bigger than the number of queries of Mn on input 0yn . In cases 1 and 2 the
construction will work similarly. J

Now we consider the more difficult question of whether every ≤p
3-tt-complete set for

NEXP is ≤p
3-tt-autoreducible. Notice that the above technique cannot be used, because the

number of options to encode every x in K into B is no more than the number of queries of
MB
n on input 0yn ; both are equal 3 in this case. This difficulty arises because we have no

“room” for the encoding and diagonalization at the same time. We need to use a different
technique to resolve that issue.

I Theorem 9. For any number c, there is a ≤p
2-T -complete set for NEXP that is not

≤h-c
3-tt-autoreducible.

Proof. Let {Mi}i≥1 be a standard enumeration of all ≤h-c
3-tt-autoreductions clocked such that

Mi runs in time ni. We will construct a ≤p
2-T -complete set B for NEXP incrementally in

each stage and diagonalize against all autoreductions Mi. We define the sequence {yn}n≥1
recursively as follows: y1 = 1 and yn+1 = max(ynn , yc

2

n) + 1 for all n ≥ 1.

D.T. Nguyen and A. L. Selman 595

In each stage, we construct B such that the following procedure is the ≤p
2-T -reduction

that reduces K to B. Given any input x, ask a query 0m to oracle B, where m is a number
that is bounded by some polynomial in |x|. If the answer is YES, then accept x if and only
if 〈0, x〉 ∈ B. If the answer is NO, then accept x if and only if 〈1, x〉 ∈ B. Obviously if B
satisfies this condition, then B is ≤p

2-T -hard for NEXP.
The detail of how B is constructed will be as follows.
Initially B = ∅.
Suppose at stage n, the set B is constructed up to length yn − 1. At this stage, we will
add appropriate strings of length between yn and yn+1 − 1 to accomplish two things:
encoding K into B and diagonalize, using the string 0yc

n , against the autoreduction Mn

that asks no more than 3 queries. Therefore, in the following steps, if Mn asks more than
3 queries, then the diagonalization task will be skipped to the next stage.

Consider the following case where queries of MB
n on input 0yc

n are 〈0, q1〉, 〈1, q2〉, and
〈1, q3〉 and the Boolean truth-table function is f(a, b1, b2). In other words, MB

n accepts
0yc

n if and only if f(B(〈0, q1〉), B(〈1, q2〉), B(〈1, q3〉)) = 1. (Lack of space does not permit a
complete proof of this Theorem.)

I Lemma 10. For any Boolean function f(a, b1, b2), at least one of the following statements
must be true:

There exist two Boolean functions g1(a) and g2(a), where g1(a) and g2(a) are one of a, 0,
or 1, such that f(a, g1(a), g2(a)) = 0 for every a.
There exists a Boolean function h(b1, b2), where h(b1, b2) is one of 0, 1, b1, b2, b1 ∧ b2, or
b1 ∨ b2, such that f(h(b1, b2), b1, b2) = 1 for every b1 and b2.

Suppose that we have f(b1 ∨ b2, b1, b2) = 1, for every b1 and b2 (in this case, we are
considering Statement 2 in the above lemma). Then if we set B(〈1, q2〉) = 1 if q2 ∈ K,
B(〈1, q3〉) = 1 if q3 ∈ K, and B(〈0, q1〉) = B(〈1, q2〉)∨B(〈1, q3〉). Also B(0yc

n) = 0. It is easy
to verify that 0yc

n /∈ B and MB
n accepts 0yc

n . So the diagonalization can be achieved by this
fact.

Moreover by this setting, the reduction K≤p
2-TB can be obtained correctly too. Notice

that 0yc
n /∈ B. Thus, q2 ∈ K if and only if 〈1, q2〉 ∈ B. Similarly for 〈1, q3〉. This fact is

correctly reflected in the above setting.
Last but not least, we need B to be in NEXP. Consider whether 〈1, q2〉 ∈ B. Notice that

it is equivalent to the question whether q2 ∈ K, which can be solved nondeterministically in
exponential time. A more difficult question is whether 〈0, q1〉 is in B. By B’s construction,
B(〈0, q1〉) = B(〈1, q2〉) ∨B(〈1, q3〉). By this fact, 〈0, q1〉 is in B if one of the two strings q2
and q3 is in B. This condition can also be solved nondeterministically in exponential time.
In summary, B is in NEXP.

By our construction we obtain three properties: ≤p
2-T -hardness of B, B is in NEXP,

and B is not autoreducible. That is, B is the set that we want to construct to prove this
theorem. J

We note that Lemma 10 cannot be generalized to a Boolean function of 4 variables
a1, a2, b1, b2 or more because we found a counterexample in that case. We obtained the
counterexample by writing a program to list all possible Boolean functions of 4 variables,
and then for each function checking whether it satisfies the two statements in Lemma 10.
So the proof of Theorem 9 cannot be generalized to work with ≤p

k-tt-reductions for k ≥ 4.
Nevertheless, the following theorem will show non-autoreducibility for ≤p

k-tt-reductions if we

STACS’14

596 Non-autoreducible Sets for NEXP

reduce the power of the ≤p
k-tt-autoreduction by not allowing the truth-table function to be

an OR or a NOR.

I Theorem 11. For any positive integer k, there is a ≤p
k-tt-complete set for NEXP(EXP)

that is not weakly ≤p
k-tt-w-autoreducible.

Proof. Let {Mj}j≥1 be an enumeration of polynomial-time weak ≤p
k-tt-autoreductions. For

each j ≥ 1, assume that Mj on input x runs in time |x|j . Denote α1, . . . , αk to be the
lexicographically first k strings of length dlog ke. We will construct a set B with the following
property: x ∈ K ⇐⇒ there exists a j, 1 ≤ j ≤ k, and 〈αj , x〉 ∈ B, which ensures that
K≤p

k-ttB, and then B is ≤p
k-tt-hard for NEXP. We also need B so that for any n ≥ 1, the

following property holds: 0yn ∈ B ⇐⇒ MB
n rejects input 0yn , which ensures that Mn is

not an autoreduction of B. (The value of yn will be chosen later in the proof) Then we can
conclude that B is not autoreducible.

We construct B in stages. In each stage, we will encode K into B and diagonalize against
all weak ≤p

k-tt-reductions using the string 0yn simultaneously to obtain those above two
properties.

Before going into detail of how B is constructed, we define the sequence {yn}n≥0 such
that y0 = 1 and yn+1 = 2yn

n + 1 for every n ≥ 0. B is constructed in each stage as follows.
Initially we set B = ∅. At stage n, suppose that B is already constructed up to strings of

length yn−1
n−1 . We will encode appropriately all strings of length between yn−1

n−1 + 1 and ynn
into B.

Let Q be the set of all queries q of Mn on input 0yn such that |q| > yn−1
n−1 . Let P = {x |

there exists a 1 ≤ j ≤ k such that 〈αj , x〉 ∈ Q}. For every x ∈ P , denote P x = {〈αj , x〉 |
〈αj , x〉 ∈ Q}.

Now we consider the following cases:
If |P x| < k for all x, then for every x ∈ P , denote t to be the smallest number such that
〈αt, x〉 /∈ Q. Put 〈αt, x〉 into B if and only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉
into B if and only if x ∈ K. Finally, put 0yn into B if and only if MB

n rejects 0yn .
If |P x| = k for some x, consider the Boolean truth-table function g of Mn on input 0yn ,
we have two following cases:

If g(0, 0, . . . , 0) = 0, then let c1, . . . , ck be the lexicographically smallest non-zero value
such that g(c1, . . . , ck) = 0. For every ci such that ci = 1, put 〈αi, x〉 into B if and
only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉 into B if and only if x ∈ K. Finally
put 0yn into B.
If g(0, 0, . . . , 0) = 1, then let c1, . . . , ck be the lexicographically smallest non-zero value
such that g(c1, . . . , ck) = 1. For every ci such that ci = 1, put 〈αi, x〉 into B if and
only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉 into B if and only if x ∈ K.

This concludes the construction of B. The following lemma claims the time complexity of B.

I Lemma 12. B ∈ NEXP.

Proof. Given an input b, one of the following cases can happen:
Case 1: If b has the form 0∗: if |b| 6= yn for all n then reject. Otherwise, compute the set
Q of all queries when running a Turing machine MB

n on input 0yn . Notations of P and
P x are defined similarly to B’s construction above.

If |P x| < k for all x, then simulate the Turing machine MB
n on input 0yn . Whenever a

query q is asked, the answer from oracle B will be resolved as follows:
∗ If |q| > yn−1

n−1 , then answer NO.
∗ Otherwise, check whether q ∈ B recursively.

D.T. Nguyen and A. L. Selman 597

If |P x| = k for some x. Then let g be a Boolean truth-table function of MB
n on input

0yn .
∗ If g(0, . . . , 0) = 0 then accept.
∗ Otherwise, reject.

Case 2: b = 〈αi, x〉 for some αi (if b 6= 〈αj , x〉 for all j then just reject)
Compute the number n such that yn−1

n−1 < |b| ≤ ynn .
Consider sets Q, P , and P x as above when running MB

n on input 0yn . We have the
following cases:

If |P y| < k for every y ∈ P : If b ∈ Q then reject. Otherwise, accept if and only if i = 1
and x ∈ K.
If |P y| = k for some y ∈ P : If x 6= y then accept if and only if i = 1 and x ∈ K.
Otherwise, if x = y, let g be a Boolean truth-table function of Mn on input 0yn .
Consider the two following cases:
∗ If g(0, . . . , 0) = 0. Let c1, . . . , ck be the lexicographically smallest non-zero value

such that g(c1, . . . , ck) = 0. Accept if and only if ci = 1 and x ∈ K.
∗ If g(0, . . . , 0) = 1. Let c1, . . . , ck be the lexicographically smallest non-zero value

such that g(c1, . . . , ck) = 1. Accept if and only if ci = 1 and x ∈ K.
Now we will analyze the running time of the above tasks. The most expensive tasks will be
described as follows:

The number n can be determined in polynomial time in terms of length of input b.
The query set Q and the truth-table function g can be computed in time ynn , which is no
more than O(2|b|2).
In case 1, to recursively check whether the query q of length smaller than yn−1

n−1 belongs

to B or not deterministically takes time 22y
n−1
n−1 , which is no more than 2yn = 2|b| (Recall

that in this case, b = 0yn).
Determining whether x belongs to K can be done nondeterministically in 2|x| < 2|b|.

We conclude that B ∈ NEXP. J

I Lemma 13. K≤p
k-ttB.

Proof. In B’s construction, for every x that is in K, we encode at least one of the following
strings 〈α1, x〉 . . . 〈αk, x〉 into B. Strings that do not belong to K are not encoded into B. It
follows that K≤p

k-ttB. J

It is not hard to see that B is not weakly ≤p
k-tt-autoreducible, so by Lemma 12 and

Lemma 13, B is a ≤p
k-tt-complete set for NEXP that is not weakly ≤p

k-tt-autoreducible. J

The above proof also yields the following corollary:

I Corollary 14. For any positive integer k, there is a ≤p
k-dtt-complete set for NEXP(EXP)

that is not weakly ≤p
k-tt-autoreducible.

4 Implications

We begin with the following theorem.

I Theorem 15. Every ≤p
dtt-complete set for EXP is ≤p

NOR-tt-autoreducible.

Glaßer et al. [6] also showed that every ≤p
dtt-complete set for EXP is ≤p

dtt-autoreducible.
Then by Theorem 15, Corollary 14 is somehow “tight” for EXP.

STACS’14

598 Non-autoreducible Sets for NEXP

Algorithm 1 Algorithm to decide B. Input is of the form 〈0i, x〉.
Q := Q(Mi, 〈0i, x〉) // Set of all queries of Mi on input 〈0i, x〉
If (x /∈ Q) Then

If (x /∈ A) Then
Accept

Else
Reject

EndIf
Else

Reject
EndIf

Algorithm 2 Autoreduction algorithm for A. Input string is x.
Q := {q1, . . . , qk} := Q(Mj , 〈0j , x〉)
If x /∈ Q Then

If ((q1 /∈ A)&&(q2 /∈ A)&& . . . &&(qk /∈ A)) Then
Accept

Else
Reject

EndIf
Else

Reject
EndIf

Proof. Let A be a ≤p
dtt-complete set for EXP. We will show that A is also ≤p

NOR-tt-
autoreducible.

Let {Mi}i≥1 be a standard enumeration of all ≤p
dtt-reductions such that Mi runs in time

pi(n) = ni on inputs of size n.
Consider a set B containing elements of the form 〈0i, x〉 that are decided by Algorithm 1.

Obviously B ∈ EXP.
Since A is the ≤p

dtt-complete set for EXP, B≤p
dttA by some disjunctive truth-table

reduction Mj . For any x, if x is one of queries of Mj on input 〈0j , x〉, then 〈0j , x〉 /∈ B. This
fact implies that for all queries q, including x, q /∈ A. Then x /∈ A. If x is not one of the
queries q1, . . . , qk of Mj on input 〈0j , x〉, then x ∈ A ⇐⇒ 〈0j , x〉 /∈ B ⇐⇒ qi /∈ A for all i.

Based on that observation, we have the autoreduction algorithm for A described in
Algorithm 2.

Observe that this is a ≤p
NOR-tt-autoreduction. Thus A is ≤p

NOR-tt-autoreducible. J

Recall that every ≤p
k-dtt-complete set for NEXP is ≤p

k-dtt-autoreducible [6]. Also every
≤p

k-dtt-complete set for EXP is both ≤p
k-dtt-autoreducible [6] and ≤p

NOR-k-tt-autoreducible.
We want to know whether the same holds for NEXP; that is, whether every ≤p

k-dtt-complete
set for NEXP is also ≤p

NOR-k-tt-autoreducible. Settling this question would lead to important
complexity class results.

I Theorem 16. For any positive integer k, every ≤p
k-dtt-complete set for NEXP is ≤p

NOR-k-tt-
autoreducible if and only if NEXP = coNEXP.

Proof. Suppose every ≤p
k-dtt-complete set for NEXP is ≤p

NOR-k-tt-autoreducible. Notice that
K, the canonical complete set of NEXP, is also ≤p

k-dtt-complete. By the assumption, K is
≤p

NOR-k-tt-autoreducible.

D.T. Nguyen and A. L. Selman 599

Algorithm 3 NOR-Autoreduction algorithm for A. Input string is x.
〈q1, . . . , qk〉 ← f(x)
For i:= 1 to k do

If (x = qi) Then
Reject and Terminate

EndIf
EndFor
If ((q1 /∈ A)&& . . . &&(qk /∈ A)) Then

Accept
Else

Reject
EndIf

Let f be the autoreduction of K. That is, for every x, f(x) = 〈q1, . . . , qk〉, x 6= qi for all
i, and x ∈ K ⇐⇒ q1 /∈ K ∧ · · · ∧ qk /∈ K. We have the following fact:

x ∈ K ⇐⇒ x /∈ K ⇐⇒ q1 ∈ K ∨ · · · ∨ qk ∈ K.

So K̄≤p
k-dttK. Because K ∈ NEXP, we have K ∈ NEXP. Therefore, NEXP = coNEXP.

To prove the other direction, suppose NEXP = coNEXP. Let A be any ≤p
k-dtt-complete

set for NEXP. We show that A is also ≤p
NOR-k-tt-autoreducible. Note that A ∈ NEXP. Hence,

A≤p
k-dttA by some polynomial-time function f . In other words, for any x, f(x) = 〈q1, . . . , qk〉

and x ∈ A ⇐⇒ q1 ∈ A ∨ q2 ∈ A ∨ · · · ∨ qk ∈ A.
Rewriting this, we have x ∈ A ⇐⇒ q1 /∈ A∧ q2 /∈ A∧ · · · ∧ qk /∈ A. Observe that if there

is some i, i = 1, . . . , k such that qi = x then x /∈ A. Because otherwise, it contradicts to
the preceding fact. Based on these observations, we have the ≤p

NOR-k-tt-autoreduction for A
described in Algorithm 3. Hence, A is ≤p

NOR-k-tt-autoreducible. J

I Corollary 17. For any positive integer k, if there is a ≤p
k-dtt-complete set for NEXP that

is not ≤p
NOR-k-tt-autoreducible, then NEXP 6= EXP.

Proof. The proof follows directly from either Theorem 15 or Theorem 16. J

In the following section, we will show a partial result about NOR-autoreducibility for a
≤p

dtt-complete set for NEXP in the relativized world.

5 Relativization

While the question whether every ≤p
dtt-complete set for NEXP is ≤p

NOR-tt-autoreducible is
still open, we can prove that it does not hold in a relativized world.

I Theorem 18. Relative to some oracle B, there is a ≤pB

m -complete set for NEXPB that is
not ≤pB

NOR-tt-autoreducible.

Proof. Let {MB
j }j≥1 be an enumeration of polynomial-time ≤pB

NOR-tt-autoreductions. Notice
that MB

j can now access oracle B.
Let {NEXPBi }i≥1 be an enumeration of all nondeterministic exponential time oracle Turing

machines. For each j ≥ 1, suppose that nj bounds the running time of MB
j and 2nj bounds

the running time of NEXPBj . Let KB = {〈i, x, l〉 | NEXPBi accepts input x within l steps},
where l is encoded in a binary string, be a canonical complete set for NEXPB .

STACS’14

600 Non-autoreducible Sets for NEXP

We will construct sets A and B with the property x ∈ KB ⇐⇒ 〈0, x〉 ∈ A, which
ensures that KB≤p

mA, and then A is ≤p
m-hard for NEXPB . We also need A and B so that

for any n ≥ 1, the following property holds: 0yn ∈ A ⇐⇒ MB,A
n rejects input 0yn (the

value of yn will be chosen later in the proof). These properties guarantee that MB
n is not an

autoreduction of A. Then we can conclude that A is not autoreducible for NEXPB .
We construct A and B together in stages. In each stage, we encode KB into A and

diagonalize against all ≤pB

NOR-tt-reductions using the string 0yn simultaneously to obtain
those above two properties.

We define the sequence {yn}n≥0 such that y0 = 1 and yn+1 = ynn + 1 for every n ≥ 0.
Suppose at stage n that the set A has already been constructed up to length yn − 1. At

this stage, we will construct A for strings of length between yn and yn+1 − 1. Now consider
all queries q of MB

n on input 0yn made to oracle A when |q| ≥ yn and q = 〈0, x〉 for some j.
Let Q be the set of all such queries q.

Consider the following cases:
1. If there is a query q′ such that |q′| < yn and q′ ∈ A. Then put 0yn into A and 〈02yn

, 0yn〉
into B. Finally, for all strings s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A if and only if
x ∈ KB .

2. Otherwise, ignore all queries of length smaller than yn. For every q′ = 〈0, x〉 ∈ Q such
that x ∈ KB , choose any accepting path of KB on input x and denote Qq′ to be the set
of all queries made in that path. Consider the following cases:
a. If no such q′ exists, then for all strings s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A if

and only if x ∈ KB .
b. Otherwise, let P be the union of Qq′ for all such q′. Notice that there are no more than
ynn such q′, and for every q′, |Qq′ | ≤ 2|x| < 2yn

n . Then, |P | < ynn2yn
n < 22yn . Therefore,

there exists a string t of length 2yn such that t /∈ P . Put 〈t, 0yn〉 into B. Put 0yn into
A. Finally, for all strings of s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A if and only if
x ∈ KB .

This concludes the construction of sets A and B.
Now we will briefly show that A belongs to NEXPB. To determine membership of an

input 0y, we just need to guess one string t of length 2y and ask one query 〈t, 0y〉 to oracle
B; accept if and only if the answer is YES. For other input of the form 〈0, x〉, accept if and
only if x ∈ KB . So A ∈ NEXPB .

To see that A is not reduced to itself by any ≤pB

NOR-tt-autoreduction, we will show that
for any Mn, MA,B

n accepts 0yn if and only if 0yn /∈ A. In case (1), because there is one
query q′ such that q′ ∈ A, by the NOR-tt reduction, MA,B

n rejects 0yn . Notice that putting
〈02yn

, 0yn〉 into B does not affect the membership of q′ in A. In case (2a), MA,B
n accepts 0yn

and in this case 0yn is not put into A, and then it makes MB
n not reduce A to itself. In case

(2b), MA,B
n does not accept 0yn and notice that putting 〈t, 0yn〉 into B does not affect the

memberships of all q′ in KB. And finally 0yn is added to A to make MB
n not reduce A to

itself.
It is easy to see that KB≤p

mA because we encode all strings x ∈ KB by 〈0, x〉 into A
and nothing else, except the strings of form 0∗. Hence, A is the many-one complete set for
NEXPB that is not ≤pB

NOR-tt-autoreducible. J

We note that Theorem 16 actually relativizes. So we have the following familiar corollary:

I Corollary 19. There is a set B such that relative to the oracle B, NEXPB 6= coNEXPB.

D.T. Nguyen and A. L. Selman 601

Buhrman et al. [2] showed that relative to some oracle, there is a ≤p
2-T -complete set for

EXP that is not Turing autoreducible. Their technique also works for NEXP. I.e., we have
the following theorem:

I Theorem 20. Relative to some oracle, there is a ≤p
2-T -complete set for NEXP that is not

Turing autoreducible.

6 Open Questions

We know for any positive integers s and k such that 2s− 1 > k that there is a ≤p
s-T -complete

set for NEXP that is not ≤p
k-tt-autoreducible. We do not know what happens when 2s−1 ≤ k.

It is not known whether every Turing-complete set is Turing-autoreducible. Referring to
Theorem 9, the situation for ≤p

k-tt-reductions for k ≥ 4 is still open.

Acknowledgements. Our thanks to Nils Wisiol and Benedikt Budig for useful discussions
and feedback on drafts of this paper. Special thanks to Leen Torenvliet for his extensive
comments and corrections of an earlier version.

References
1 K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding, editors, Logic

and Machines, Lecture Notes in Computer Science 177, pages 1–23. Springer-Verlag, 1984.
2 H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Using autoreducibility to

separate complexity classes. SIAM Journal on Computing, 29(5):1497–1520, 2000.
3 H. Buhrman, S. Homer, and L. Torenvliet. Completeness for nondeterministic complexity

classes. Mathematical Systems Theory, 24(3):179–200, 1991.
4 H. Buhrman and L. Torenvliet. On the structure of complete sets. In IEEE Structure

in Complexity Theory Conference, 1994., Proceedings of the Ninth Annual, pages 118–133,
1994.

5 R. Downey, S. Homer, W. Gasarch, and M. Moses. On honest polynomial reductions,
relativizations, and P=NP. In IEEE Structure in Complexity Theory Conference, pages
196–207. IEEE Computer Society, 1989.

6 C. Glaßer, D. Nguyen, C. Reitwießner, A. Selman, and M. Witek. Autoreducibility of
complete sets for log-space and polynomial-time reductions. In Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, ICALP (1), volume 7965 of
Lecture Notes in Computer Science, pages 473–484. Springer, 2013.

7 C. Glaßer, M. Ogihara, A. Pavan, A. Selman, and L. Zhang. Autoreducibility, mitoticity,
and immunity. J. Comput. Syst. Sci., 73(5):735–754, 2007.

8 S. Homer. Minimal degrees for polynomial reducibilities. J. ACM, 34(2):480–491, 1987.
9 R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.

Theoretical Computer Science, 1:103–123, 1975.
10 J. Feigenbaum R. Beigel. On being incoherent without being very hard. Computational

Complexity, 2:1–17, 1992.
11 B. Trahtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192, 1970. Translation in

Soviet Math. Dokl. 11: 814– 817, 1970.

STACS’14

Differentiability of polynomial time computable
functions
André Nies

Department of Computer Science, University of Auckland, Auckland, New Zealand
andre@cs.auckland.ac.nz

Abstract
We show that a real z is polynomial time random if and only if each nondecreasing polynomial
time computable function is differentiable at z. This establishes an analog in feasible analysis of
a recent result of Brattka, Miller and Nies, who characterized computable randomness in terms
of differentiability of nondecreasing computable functions.

Further, we show that a Martin-Löf random real z is a density-one point if and only if
each interval-c.e. function is differentiable at z. (To say z is a density-one point means that
every effectively closed class containing z has density one at z. The interval-c.e. functions are,
essentially, the variation functions of computable functions.)

The proofs are related: they both make use of the analytical concept of porosity in novel
ways, and both use a basic geometric fact on shifting dyadic intervals by 1/3.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Polynomial time randomness, feasible analysis, differentiability, porosity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.602

1 Main results

Recent research in algorithmic randomness has focussed on its interactions with computable
analysis. Theorems from analysis stating the well-behaviour of a function almost everywhere
(in the sense of measure) form a rich source of such interactions: effective versions of such
theorems usually correspond to algorithmic randomness notions that have been studied in
other contexts. For instance, Brattka, Miller and Nies showed the following effective version
of a classical theorem due to Lebesgue.

I Theorem 1 ([5], Thm. 4.1). Let z ∈ [0, 1]. Then z is computably random ⇔ f ′(z) exists
for each nondecreasing computable function f : [0, 1]→ R.

Here, a real z is computably random if no computable betting strategy can make
unbounded profit when betting on the bits of a binary expansion of z; a nondecreasing
function f is computable if and only if f is continuous and f(q) is a computable real
uniformly in a rational q. A result of Demuth [8] set in constructive language can be
interpreted as the first theorem of this kind: Martin-Löf randomness of a real z corresponds
to the differentiability at z of all computable functions of bounded variation. Other results
along these lines are in [16, 17, 12].

An algorithm is called feasible if it can be carried out with bounded resources, which often
means a running time that is polynomial in the size of the input. In feasible randomness/
feasible analysis, the underlying algorithmic concepts are re-interpreted in terms of feasible
algorithms. For instance, a real z ∈ [0, 1] is called polynomial time random if no polynomial
time betting strategy can make unbounded profit on the initial segments of its binary

© André Nies;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 602–613

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.602
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Nies 603

expansion. Despite its naturalness and potential applications, this concept is still poorly
understood. First studied by Wang [18], its base-invariance was only recently shown [11].
Base-invariance means that to show the real z is non-random, we can equivalently bet on
the symbols in a base-b expansion of z, for any b > 2. (The proof used lower derivatives, a
concept from analysis.)

Our first main result, Theorem 4 below, is the full analog of Theorem 1 in the polynomial
time setting. We use a particular case of the base invariance proved in [11], namely that
polynomial time randomness is invariant under adding or subtracting 1/3.

Our second main result, Theorem 7 below, also starts from Theorem 1, but now relaxes
the effectiveness hypothesis on the nondecreasing functions f considered. Instead of being
computable, we only require that f is interval-c.e., which means that f(0) = 0 and the ternary
relation “q < f(y)− f(x)”, for q, x, y ∈ Q ∩ [0, 1] and x < y, is computably enumerable. We
show that the corresponding randomness notion obtained through Lebesgue’s theorem is
also one that had been previously studied: Martin-Löf randomness together with being a
density-one point. Another classical result, the Lebesgue density theorem [13] asserts that
for almost every point z in a measurable class C ⊆ [0, 1], the class is “thick” around z in that
the relative measure of C converges to 1 as one “zooms in” on z. C is called effectively closed
if its complement is an effective union of open intervals with rational endpoints. We say
that a real z is a density-one point if the assertion of this theorem holds for every effectively
closed class C. In Theorem 4 we show that a ML-random real z is a density-one point ⇔
f ′(z) exists for each interval-c.e. function f : [0, 1] → R. In fact we formulate Theorem 7
via a randomness condition that is known to be equivalent to being a Martin-Löf random
density-one point (Andrews et al.; see [10]): every left-c.e. betting strategy (technically: a
martingale as defined below) converges along the binary expansion of z.

The implication “⇐” is not hard to see: if a ML-random real z is not a density-one
point as shown by an effectively closed class P ⊆ [0, 1], then the interval-c.e. function
f(x) = λ([0, x]− P) is not differentiable at z (where λ denotes Lebesgue measure). Below,
we give an alternative argument using the martingale formulation.

Despite being at very different levels of effectiveness, our two main results can be proved
by similar methods. They can be broadly described as “geometric”, in the sense that measure
is not needed, because it suffices to talk about interaction of classes with intervals. One main
concept used is the following: a class C of reals is porous at a real z if C has ‘holes’ of fixed
positive proportion in arbitrarily small intervals containing z (see Subsection 2.1). Both
results rest on the fact that ill-behaviour of a function f at z (such as non-differentiability in
a particular way) means that a class related to f is porous at z. This implies that z is not
random in the appropriate sense. For instance, in the feasible case, porosity can be used
directly to construct a polynomial time betting strategy that succeeds on z.

The other ‘geometric’ ingredient was observed for instance by Morayne and Solecki [14]:
the endpoints of a basic dyadic interval of length 2−n, and the shift by 1/3 of another basic
dyadic interval of the same length, have to be apart by at least 2−n/3 (Subsection 3.2).

I thank Santiago Figueira and Alexander Galicki for helpful comments. I thanks Santiago
and his parents for providing their apartment in Miramar, Argentina where most of this
research was carried out.

1.1 Polynomial time randomness and differentiability
A Cauchy name is a sequence (pi)i∈N of rationals such that |pi − pk| ≤ 2−i for each k > i. It
is used to represent the real limi pi. For feasible analysis, one uses a compact set of Cauchy
names. A special Cauchy name is given by an infinite sequence b0, b1, . . . from {−1, 0, 1}ω.

STACS’14

604 Differentiability of polynomial time computable functions

We let pi =
∑i
k=0 bk2−k. We call the bk the symbols of the special Cauchy name. If we want

to ensure that the represented real is in [0, 1], we ask that the sequence is 0∞, or starts with
0k1 . . . for some k ∈ N, or starts with 10k(−1) . . ., or is 10∞. Since we have a 3-element
input alphabet, a Turing machine (which has to rely on a fixed alphabet of symbols) can
process the initial segments of such a sequence.

A martingale is a function M : 2<ω → R+
0 such that 2M(σ) = M(σ0) +M(σ1) for each

string σ. For a bit sequence Z ∈ {0, 1}ω we let Z �n denote the initial segment of length n.
We say that M succeeds on Z if lim supnM(Z �n) =∞.

I Definition 2. A martingale M is called polynomial time computable if from a string σ and
i ∈ N we can in time polynomial in |σ|+ i compute the first i symbols of a special Cauchy
name for M(σ).

We say that a bit sequence Z is polynomial time random if no polynomial time martingale
succeeds on Z. Polynomial time randomness was first studied by Wang [18]. For a recent
publication on it that also provides background see [11].

I Definition 3 (see e.g. [19]). A function g : [0, 1]→ R is called polynomial time computable
if there is a polynomial time Turing machine turning every special Cauchy name for x ∈ [0, 1]
into a special Cauchy name for g(x).

In more detail, the first n symbols of g(x) can be computed in time polynomial in n, thereby
using polynomially many symbols of the oracle tape holding a special Cauchy name for x.
Commonly occurring functions such as ex, sin x are polynomial time computable, essentially
because analysis gives us rapidly converging approximation sequences, such as ex =

∑
n x

n/n!.
We can extend the definition in an obvious way to functions g : [0, 1]n → R. The use of
special Cauchy names ensures that basic functions such as addition and multiplication are
polynomial time computable. Our first main result is:

I Theorem 4. Let z ∈ [0, 1]. Then z is polynomial time random ⇔ f ′(z) exists for each
nondecreasing polynomial time computable function f : [0, 1]→ R.

We note that the implication “⇒” was independently announced by Miyabe and Kawamura
(2013), who directly adapted the proof of [5, Thm. 4.1] to the polynomial time setting.

1.2 Left-c.e. martingales and differentiability of interval c.e. functions
A real z is called left-computably-enumerable (left-c.e. for short) if the set {q ∈ Q : q < z} is
computably enumerable. A martingale M : 2<ω → R+

0 is called left-c.e. if M(σ) is a left-c.e.
real uniformly in σ.

Consider a real z ∈ [0, 1]−Q. If a martingale M converges to a finite value at the binary
expansion of z, we write M(z) for this value.

I Definition 5. We say that z is a convergence point for left-c.e. martingales if M(z) exists
for each left-c.e. martingale M .

Recall that for a function f : [0, 1]→ R, the variation function at x ∈ [0, 1] is the supremum
of the sums

∑
i |f(ti+1)− f(ti)| for finer and finer partitions 0 = t1 < . . . < tn = x of [0, x].

In order to identify the variation functions of computable functions, Freer, Kjos-Hanssen, Nies
and Stephan [12] studied a class of non-decreasing functions which they called interval-c.e.

I Definition 6. A non-decreasing function f : [0, 1] → R is interval-c.e. if f(0) = 0, and
f(y)− f(x) is a left-c.e. real, uniformly in rationals x < y.

A. Nies 605

Note that the variation function of each computable function of bounded variation is
continuous and interval-c.e. Freer et al. [12], together with Rute, showed that conversely,
every continuous interval-c.e. function is the variation function of a computable function.
For continuous functions, in Def. 6 we can drop the condition that x, y are rationals and
instead require the seemingly stronger condition that f(y)− f(x) is a left-c.e. real relative to
Cauchy names for x < y [12]. Our second main result is:

I Theorem 7. z ∈ [0, 1] is a convergence point for left-c.e. martingales ⇔ f ′(z) exists for
each interval-c.e. function f : [0, 1]→ R.

2 Preliminaries

2.1 Porosity and density
The proofs of our two main results use the notion of porosity which originates in the work of
Denjoy. See for instance [6, Ex. 7:9.12], or [4, 5.8.124] (but note the typo in the definition
there).

I Definition 8. We say that a set C ⊆ R is porous at z via the constant ε > 0 if there exist
arbitrarily small β > 0 such that (z − β, z + β) contains an open interval of length εβ that is
disjoint from C. We say that C is porous at z if it is porous at z via some ε > 0.

For the definitions below we follow [3]. Let λ denote Lebesgue measure. The lower density
of a set C ⊆ R at a point z is :

%(C|z) = lim inf
z∈I ∧ |I|→0

λ(I ∩ C)
|I|

,

where I ranges over intervals. The lower dyadic density %2(C|z) is the variant one obtains
when one only considers basic dyadic intervals containing z. Clearly %2(C|z) ≥ %(C|z). We
say that z is a (full) density-one point if %(C|z) = 1 for every effectively closed class C
containing z; z is a dyadic density-one point if %2(C|z) = 1 for every effectively closed class C
containing z.

I Proposition 9 (Khan and Miller, see [10], Part 3). For a Martin-Löf random real z, being
a dyadic density-one point implies being a full density-one point.

The convergence points for left-c.e. martingales coincide with the Martin-Löf random
density-one points. This was obtained by 2012 work of a group in Madison consisting of U.
Andrews, M. Cai, D. Diamondstone, S. Lempp, and J. S. Miller. The implication “left-c.e.
martingale convergence ⇒ density one point” was already pointed out in [2]. The converse is
harder to prove. See [10, Part 3] for a write-up due to Nies.

2.2 Slopes and martingales
First we need notation and a few definitions, mostly taken from [5] or [3]. For a func-
tion f : [0, 1]→ R, the slope at a pair a, b of distinct reals in its domain is

Sf (a, b) = f(a)− f(b)
a− b

.

For a nontrivial interval A with endpoints a, b, we also write Sf (A) instead of Sf (a, b).
We let σ, τ range over (binary) strings. For such a string σ, by [σ] we denote the closed

basic dyadic interval [0.σ, 0.σ + 2−|σ|]. The corresponding open basic dyadic interval is
denoted (σ).

STACS’14

606 Differentiability of polynomial time computable functions

I Fact 10. Let f be a non-decreasing polynomial time computable function. Then the
function Mf given by σ → Sf ([σ]) is a martingale that is polynomial time computable.

Proof. To compute the i-th symbol of a special Cauchy name forM(σ), it suffices to compute
the first (|σ|+ i+ c) symbols of special Cauchy names for f(0.σ) and f(0.σ+ 2−|σ|), where c
is an appropriate constant. This can be done in time polynomial in |σ|+ i. J

Derivatives. If z is in an open neighborhood of the domain of f , the upper and lower
derivatives of f at z are

Df(z) = lim sup
h→0

Sf (z, z + h) and Df(z) = lim inf
h→0

Sf (z, z + h),

where as usual, h ranges over positive and negative values. The derivative f ′(z) exists if and
only if these values are equal and finite.

We will also consider the upper and lower pseudo-derivatives defined by:

D̃f(x) = lim sup
h→0+

{Sf (a, b) | a ≤ x ≤ b ∧ 0 < b− a ≤ h},

D˜ f(x) = lim inf
h→0+

{Sf (a, b) | a ≤ x ≤ b ∧ 0 < b− a ≤ h},

where a, b range over rationals in [0, 1]. We only use them because in our arguments it is
often convenient to consider (rational) intervals containing x, rather than intervals with x as
an endpoint.

I Remark. Brattka et al. [5, after Fact 2.4] verified that Df(z) ≤ D˜ f(z) ≤ D̃f(z) ≤ Df(z)
for any real z ∈ [0, 1]; furthermore, in [5, Fact 7.2] they showed that for continuous functions
with domain [0, 1], the lower and upper pseudo-derivatives of f coincide with the usual lower
and upper derivatives.

These two pseudo-derivatives also coincide with the usual ones if f is nondecreasing. To
show Df(z) ≤ D̃f(z), fix an arbitrarily small ε > 0. Given h 6= 0, choose rationals a ≤ z,
z + h ≤ b such that (b − a) ≤ (1 + ε)|h|. Then Sf (z, z + h) ≤ (1 + ε)Sf (a, b). To show
D˜ f(z) ≤ Df(z), choose [a, b] inside the interval given by z, z + h with |h| ≤ (1 + ε)(b− a)
and verify that Sf (a, b) ≤ (1 + ε)Sf (z, z + h).

We will use the subscript 2 to indicate that all the limit operations are restricted to the
case of basic dyadic intervals containing z. Thus,

D̃2f(x) = lim sup
|A|→0

{Sf (A) | x ∈ A ∧ A is basic dyadic interval},

D˜ 2f(x) = lim inf
|A|→0

{Sf (A) | x ∈ A ∧ A is basic dyadic interval}.

3 Lemmas on comparing derivatives, and on shifting intervals

3.1 A pair of analytical lemmas
The proofs of our main results combine effectiveness considerations with a pair of purely
analytical lemmas. We show that discrepancy of dyadic and full upper/lower derivatives at
z implies that some closed set is porous at z. The proof extends the idea in the proof of
Proposition 9 due to Khan and Miller.

We denote by σ � τ that σ is an initial segment of τ ; σ ≺ τ denotes that σ is a proper
initial segment of τ ; σ ≺ Z that σ is an initial segment of the infinite bit sequence Z.

A. Nies 607

I Lemma 11. Suppose f : [0, 1] → R is a nondecreasing function. Suppose for a real
z ∈ [0, 1], with binary representation z = 0.Z, there is rational p such that

D̃2f(z) < p < D̃f(z).

Let σ∗ ≺ Z be any string such that ∀σ [σ∗ � σ ≺ Z ⇒ Sf ([σ]) ≤ p]. Then the closed set

C = [σ∗]−
⋃
{(σ) | Sf ([σ]) > p}, (1)

which contains z, is porous at z.

Proof. Suppose k ∈ N is such that p(1 + 2−k+1) < D̃f(z). We show that there exists
arbitrarily large n such that some basic dyadic interval [a, ã] of length 2−n−k is disjoint from
C, and contained in [z − 2−n+2, z + 2−n+2]. In particular, we can choose 2−k−2 as a porosity
constant.

By choice of k there is an interval I 3 z of arbitrarily short positive length such that
p(1 + 2−k+1) < Sf (I). Let n be such that 2−n+1 > |I| ≥ 2−n. Let a0 be greatest of the
form `2−n−k, ` ∈ Z, such that a0 < min I. Let av = a0 + v2−n−k. Let r be least such that
ar ≥ max I. Since f is nondecreasing and ar − a0 ≤ |I|+ 2−n−k+1 ≤ (1 + 2−k+1)|I|, we have

Sf (I) ≤ Sf (a0, ar)(1 + 2−k+1),

and therefore Sf (a0, ar) > p. Then, by the averaging property of slopes at consecutive
intervals of equal length, there is a u < r such that

Sf (au, au+1) > p.

Since (au, au+1) = (σ) for some string σ, this gives the required ‘hole’ in C which is near
z ∈ I and large on the scale of I: in Definition 8 (porosity), let β = 2−n+2 and note that we
have [au, au+1] ⊆ [z − 2−n+2, z + 2−n+2] because z ∈ I and |I| < 2−n+1. J

There is a dual lemma for lower derivatives. Note that it can not simply be obtained
from the preceding lemma by taking −f , because the function in the dual lemma is still
nondecreasing. In fact, now the shortish dyadic intervals we choose in the proof are all
contained in I. (So we can achieve a porosity constant of 2−k−1.)

I Lemma 12. Suppose f : [0, 1] → R is a nondecreasing function. Suppose for a real
z ∈ [0, 1], with binary representation z = 0.Z, there a rational q such that

D˜ f(z) < q < D˜ 2f(z).

Let σ∗ ≺ Z be any string such that ∀σ [σ∗ � σ ≺ Z ⇒ Sf ([σ]) ≥ q]. Then the closed set

C = [σ∗]−
⋃
{(σ) | Sf ([σ]) < q},

which contains z, is porous at z.

Proof. The argument is similar to the preceding one. We will show that we can choose as
a porosity constant 2−k−1 where k ∈ N is such that D˜ f(z) < q(1 − 2−k+1). There is an
interval I 3 z of arbitrarily short positive length such that Sf (I) < q(1− 2−k+1). As before,
let n be such that 2−n+1 > |I| ≥ 2−n. Let a0 be least of the form `2−n−k, ` ∈ Z, such that
a0 ≥ min(I). Let av = a0 + v2−n−k. Let r be greatest such that ar ≤ max(I).

STACS’14

608 Differentiability of polynomial time computable functions

Since f is nondecreasing and ar − a0 ≥ |I| − 2−n−k+1 ≥ (1− 2−k+1)|I|, we have

Sf (I) ≥ Sf (a0, ar)(1− 2−k+1),

and therefore Sf (a0, ar) < q. Then there is u < r such that

Sf (au, au+1) < q.

As before, this gives the required ‘hole’ in C near z ∈ I. J

3.2 Basic dyadic intervals shifted by 1/3
We prove the hard directions “⇒” in our main results by contraposition. We need to transform
a condition formulated in the setting of real analysis (that a function is not differentiable at a
real z) into a condition in Cantor space (that a martingale succeeds on the binary expansion
Z of the real). To do so, we use a basic ‘geometric’ fact for instance observed by Morayne
and Solecki [14]. For m ∈ N let Dm be the collection of intervals of the form

[k2−m, (k + 1)2−m]

where k ∈ Z. Let D̂m be the set of intervals (1/3) + I where I ∈ Dm.

I Lemma 13. Let m ≥ 1. If I ∈ Dm and J ∈ D̂m, then the distance between an endpoint of
I and an endpoint of J is at least 1/(3 · 2m).

To see this, assume that |k2−m − (p2−m + 1/3)| < 1/(3 · 2m). This yields |3k − 3p −
2m|/(3 · 2m) < 1/(3 · 2m), and hence 3|2m, a contradiction.

In order to apply Lemma 13, we may need values of nondecreasing functions f : [0, 1]→ R
at endpoints of any such intervals, which may lie outside [0, 1]. So we think of f as
extended to [−1, 2] via f(x) = f(0) for −1 ≤ x < 0 and f(y) = f(1) for 1 < y ≤ 2. The
effectiveness properties we consider here, polynomial time computable or interval-c.e. (defined
in Section 2), are preserved by this. For the interval-c.e. functions, this is clear because it
suffices to determine values of the function at rationals. In the polynomial time case, to
represent reals in [−1, 2] by special Cauchy names (see Subsection 1.1), we now also allow
sequences in {−1, 0, 1}ω starting with 0k(−1) . . . and 10k1 To compute a value of the
extended function for such a sequence, we let the Turing machine internally replace an input
of the form 0k(−1) . . . by 0∞ (which yields as an overall output a Cauchy name for f(0)),
and an input of the form 10k1 . . . by 10∞ (which yields f(1)).

4 Proof of Theorem 4

We prove Theorem 4: a real z is polynomial time random⇔ f ′(z) exists for each nondecreasing
polynomial time computable function f : [0, 1]→ R.

Proof. ⇐: Suppose z is not polynomial time random. Then some polynomial time martingale
succeeds on the binary expansion Z of z. A martingale M has the savings property if
M(τ) ≥ M(σ) − 2 for each strings σ ≺ τ . By [11, Lemma 6], there is a polynomial time
martingale M with the savings property that succeeds on Z.

Let µM be the corresponding measure given by µM ([σ]) = 2−|σ|M(σ). Let f = cdfM be
the cumulative distribution function of µM given by cdfM (x) = µM [0, x). Then D˜ 2f(z) =∞,
so f ′(z) does not exist.

A. Nies 609

To show f is polynomial time computable, observe that by [11, Lemma 13], for each
dyadic rational p, f(p) is a dyadic rational that can be computed from p in polynomial
time. Since M has the savings property, by [11, Prop. 12], f satisfies an ‘almost-Lipschitz
condition’: there is ε > 0 such that for every x, y ∈ [0, 1], if x ≤ y ≤ x+ ε, then f(y)−f(x) =
O((y− x) · log(1/y − x). This implies that f is polynomial time computable: Suppose we are
given a special Cauchy name (pi)i∈N for a real z. We know that |z− pn+logn| = O(2−n−logn).
So by the almost-Lipschitz condition, we have |f(z)− f(pn+logn)| = O(2−n). Thus, a Turing
machine can determine in polynomial time from the first n+ logn symbols of the special
Cauchy name for z the first n symbols of a special Cauchy name for f(z).
⇒: We may assume z > 1/2. By the hypothesis on f and Fact 10, the martingale M(σ) =
Sf ([σ]) is polynomial time computable. Recall that a Cauchy name is a sequence (pi)i∈N,
pi ∈ Q, such that ∀k > i |pi − pk| ≤ 2−i. We denote by M(σ)u the u-th term of this Cauchy
name, so that |M(σ)−M(σ)u| ≤ 2−u.

Let Z be the bit sequence such that z = 0.Z. Since z is polynomial time random,
limnM(Z �n) exists. This is a polynomial time version of the Doob martingale convergence
theorem; see, for instance [9, Thm. 7.1.3]. Returning to the language of slopes, the convergence
ofM on Z means that D˜ 2f(z) = D̃2f(z) <∞. Suppose now that f ′(z) fails to exist. Then by
the remark near the end of Subsection 2.2, we have D˜ f(z) < D˜ 2f(z) or D̃2f(z) < D̃f(z) since
f is nondecreasing. We will show that Z is not polynomial time random for a contradiction.

First suppose that D̃2f(z) < D̃f(z). Choose rationals r, p such that D̃2f(z) < r < p <

D̃f(z). Choose u ∈ N so large that D̃2f(z) < r−2−u and r+2−u < p. As usual let Z ∈ {0, 1}ω
be such that z = 0.Z. Let n∗ be sufficiently large so that Sf (A) ≤ r − 2−u for each basic
dyadic interval A containing z and of length ≤ 2−n∗ . Choose k with p(1 + 2−k+1) < D̃f(z).
Then Lemma 11 applies via the string σ∗ = Z �n∗ (and the same value of k as in its proof).

We define polynomial time rational-valued martingales L,L′ such that L succeeds on Z,
or L′ succeeds on Y , where 0.Y is the binary expansion of z− 1/3. By the base invariance of
polynomial time randomness [11, Thm. 14], if the second case applies, the expansion of z in
base 3 is not polynomial time random, and hence neither is Z, its expansion in base 2. Thus,
in either case, Z is not polynomial time random.

Defining L. It suffices to consider strings σ � σ∗. Let L(σ∗) = 1. Suppose η � σ∗ and L(η)
has been defined. Check whether there is a string α of length k + 4 such that M(ηα)u > r.

If so, decrease the capital to 0 on ηα (we know that ηα 6≺ Z, so this won’t make us lose
along Z). In return, increase the capital by a factor of 2k+4/(2k+4 − 1) along all strings ηα̂
such that |α̂| = k + 4 and α̂ 6= α. Continue the strategy with all strings ηα̂.

If no such α exists, don’t bet, that is, let L(η0) = L(η1) = L(η). Continue with the
strings η0 and η1.

Defining L′. Let ρ∗ = Y �n∗+1. It suffices to consider strings ρ � ρ∗.
Let L′(ρ∗) = 1. Suppose ρ � ρ∗ and L′(ρ) has been defined. Check if there is a string β

of length k + 5 such that [ρβ] + 1/3 ⊆ [τ] for a string τ of length |ρβ| − 1, and M(τ)u > r.
If so, decrease the capital to 0 on ρβ (we know that ρβ 6≺ Y). Increase the capital by a

factor of 2k+5/(2k+5 − 1) along all strings ρβ̂ such that |β̂| = k + 5 and β̂ 6= β. Continue the
strategy with all strings ρβ̂.

If no such β exists, don’t bet, that is, let L′(ρ0) = L′(ρ1) = L′(ρ). Continue with the
strings ρ0 and ρ1.

We check that the martingale L can be computed in polynomial time. The rational
γ = (2k+4 − 1)/2k+4 is dyadic of length k + 4. First assume that σ is not intermediate
between η and ηα as above, that is, we don’t have η ≺ σ and |σ| < |η| + k + 4. We can

STACS’14

610 Differentiability of polynomial time computable functions

efficiently decide whether L(σ) = 0. If L(σ) 6= 0, for an appropriate ` ≤ |σ|/k that we can
compute from σ, we have L(σ) = γ−`. We can compute γr using a polynomial in |σ| number
of operations. Hence, since division is computable in polynomial time, we can compute in
time polynomial in |σ|+ i the i-th component of a special Cauchy name for γ−`.

If we do have η ≺ σ and |σ| < |η|+ k + 4, we simply compute L(ηγ) for all γ of length
k + 4 with σ ≺ ηγ, and output the average of these values.

By a similar argument, the martingale L′ can be computed in polynomial time. We now
show that L succeeds on Z, or L′ succeeds on Y . Let C be the class from (1) in Lemma 11.
Consider n ≥ n∗+ 4 and a ‘hole’ [a, ã]∩C = ∅ where [a, ã] is a basic dyadic interval of length
2−n−k, and [a, ã] ⊆ [z − 2−n+2, z + 2−n+2].

I Claim 14. One of the following is true.
(i) z, a, ã are all contained in a single interval A taken from Dn−4.
(ii) z, a, ã are all contained in a single interval A′ taken from D̂n−4.

To see this note that {a, ã, z} is contained in an interval of length 2−n+2. Apply Lemma 13
and that 2−n+4/3 > 2−n+2.

In case (i) let A = [η], so that η ≺ Z (recall that z 6∈ Q so z is not an endpoint of A).
Let [a, ã] = ηα where |α| = k + 4. We have z 6∈ [a, ã], and L increases its capital by a factor
of 2k+4/(2k+4 − 1) along all strings ηα̂ as above.

Now suppose case (ii) applies. Let ρ be the string such that A′ = [ρ] + 1/3. There
is an interval [b, b̃] in D̂n+k+1 with [b, b̃] ⊆ [a, ã]. Since (ii) holds we have [b, b̃] = [ρβ] for
some string β of length k + 5. We have z 6∈ [b, b̃] and L′ increases its capital by a factor of
2k+5/(2k+5 − 1) along all strings ρβ̂ as above.

Note that the capital of L along Z, and of L′ along Y , never decreases, because there
is no basic dyadic interval [τ] containing z with |τ | ≥ n∗ and Sf (τ)u ≥ r. Suppose that L
fails on Z. Then for all sufficiently small holes [a, ã] case (ii) applies, so for sufficiently long
γ ≺ Y we can find ρ with γ � ρ ≺ Z such that L′ increases its capital by a fixed factor > 1
on the next k + 5 bits of Y . So L′ succeeds on Y .

The case D˜ f(z) < D˜ 2f(z) is analogous, using Lemma 12 instead of Lemma 11. J

A bit sequence is called computably stochastic if no computable selection rule can lead
to an asymptotic imbalance of 0s and 1s; see e.g. [15, 7.6.2] or [9] for the formal definition.
Ambos-Spies et al. [1] also studied the polynomial time version of this notion. They showed
that X ∈ {0, 1}ω is computably [polynomial time] stochastic iff no computable [polynomial
time] martingale that uses only finitely many, positive rational betting factors can win on X.
The martingales L, L′ constructed above are of this kind after a slight modification in order
to avoid betting capital 0.

I Corollary 15. Suppose that a binary expansion of a real z is polynomial time stochastic.
Then for each nondecreasing polynomial time computable function f : [0, 1]→ R, we have
D̃2f(z) = D̃f(z) and D˜ 2f(z) = D˜ f(z).

5 Proof of Theorem 7

Theorem 7 states that a real z is a convergence point for left-c.e. martingales ⇔ f ′(z) exists
for each interval-c.e. function f : [0, 1]→ R.

The implication “⇐” is the easier one as already noted above. For a proof in the language
of martingales, suppose a left-c.e. martingale M diverges along the binary expansion of z.

A. Nies 611

Let µM be the measure on [0, 1] corresponding to M , and let cdfM (x) = µM [0, x). Then
cdfM is interval-c.e. and cdf′M (z) fails to exist.

5.1 Porosity and upper derivatives
Recall that in Definition 8 we introduced the notion that a class of reals is porous at a real.

I Definition 16 ([3]). We call a real z ∈ [0, 1] a porosity point if some effectively closed class
to which z belongs is porous at z. Otherwise, z is a non-porosity point.

For instance, every density-one point in the sense of Subsection 2.1 is a non-porosity point.
The converse fails: every Turing incomplete Martin-Löf random real is a non-porosity point
by [3], but not necessarily a density-one point [7].

I Proposition 17. Let f : [0, 1] → R be interval-c.e. Then D̃2f(z) = D̃f(z) for each
non-porosity point z.

Proof. Assume D̃2f(z) < D̃f(z). Since f is interval-c.e., the function σ → Sf ([σ]) is a
left-c.e. martingale. In particular, the class C defined in (1) in Lemma 11 is effectively closed.
This class is porous at z for a contradiction. J

I Remark. If f is interval right-c.e. (in the obvious sense), we can apply the dual Lemma 12
to conclude that D˜ f(z) = D˜ 2f(z) for each non-porosity point z. For instance, let f be the
Lipschitz function given by f(x) = λ([0, x] ∩ P) for an effectively closed class P. Then we
may conclude that the (lower) dyadic density of P at a non-porosity point x coincides with
the (lower) full density, a variation on Proposition 9.

5.2 From dyadic to full derivative
We proceed to the proof of the implication “⇒”. We may assume z > 1/2. The real z is a
dyadic density-one point, hence a (full) density-one point by Prop. 9. Then z − 1/3 is also a
ML-random density-one point. So, using the work of the Madison group discussed at the end
of Subsection 2.1, the real z − 1/3 is also a c.e. martingale convergence point. In particular,
both z and z − 1/3 are non-porosity points.

By the hypothesis on z and since Sf is a left-c.e. martingale, we have D˜ 2f(z) = D̃2f(z).
By Proposition 17, we have D̃2f(z) = D̃f(z). To complete the proof of “⇒” in Theorem 7,
it remains to be shown that

D˜ f(z) = D˜ 2f(z). (2)

Then, since f is nondecreasing, by the remark near the end of Subsection 2.2 f ′(z) exists.
The plan is to show for a contradiction that if D˜ f(z) < D˜ 2f(z), then one of z, z − 1/3 is

a porosity point. Note that in Cantor space we can apply notions of porosity via the usual
transfer to [0, 1] given by the binary expansion; further, if a class G ⊆ {0, 1}ω is porous at
Y ∈ {0, 1}ω, then its image in [0, 1] is porous at 0.Y . We will actually show one of z, z− 1/3
is a porosity point in the sense of Cantor space, via Π0

1 classes E and Ê defined below.
As in Fact 10, let M = Mf be the martingale given by σ → Sf ([σ]). Note that M

converges on z by hypothesis (recall that we write M(z) for the limit). Thus D˜ 2f(z) =
D̃2f(z) = M(z).

Let f̂(x) = f(x+ 1/3), and let M̂ = M
f̂
. We now show that M̂ converges on z − 1/3,

and that the limits coincide.

STACS’14

612 Differentiability of polynomial time computable functions

I Claim 18. M(z) = M̂(z − 1/3).

As remarked above, z − 1/3 is also a convergence point for c.e. martingales. So M̂ converges
on z − 1/3. If M(z) < M̂(z − 1/3) then D̃2f(z) < D̃f(z). However, z is a non-porosity
point, so this contradicts Proposition 17. If M̂(z − 1/3) < M(z) we argue similarly using
that z − 1/3 is a non-porosity point. This establishes the claim.

Assume for a contradiction that (2) fails. We extend the method in the proof of Lemma 12,
taking into account both dyadic intervals, and dyadic intervals shifted by 1/3. For this recall
the notation in Subsection 3.2. Also recall that D˜ 2f(z) = M(z).

We can choose rationals p, q such that

D˜ f(z) < p < q < M(z) = M̂(z − 1/3).

Let k ∈ N be such that p < q(1− 2−k+1). Let u, v be rationals such that

q < u < M(z) < v and v − u ≤ 2−k−3(u− q).

Let n∗ ∈ N be such that for each n ≥ n∗ and any interval A ∈ Dn ∪ D̂n containing z, we
have Sf (A) ≥ u. Let

E = {X ∈ {0, 1}ω : ∀n ≥ n∗M(X �n) ≤ v}
Ê = {W ∈ {0, 1}ω : ∀n ≥ n∗M̂(W �n) ≤ v}

Since f is interval-c.e., M and M̂ are left-c.e. martingales, so these classes are effectively
closed. Let Z be the bit sequence such that z = 0.Z. By the choice of n∗ we have Z ∈ E .
Let Y be the bit sequence such that 0.Y = z − 1/3. We have Y ∈ Ê .

Consider an interval I 3 z of positive length ≤ 2−n∗−3 such that Sf (I) ≤ p. Let n be such
that 2−n+1 > |I| ≥ 2−n. Let a0 [resp., b0] be least of the form w2−n−k [resp., w2−n−k + 1/3],
where w ∈ Z, such that a0 [resp., b0] ≥ min(I). Let ai = a0 + i2−n−k and bj = b0 + j2−n−k.
Let r, s be greatest such that ar ≤ max(I) and bs ≤ max(I).

As before, since f is nondecreasing and ar − a0 ≥ |I| − 2−n−k+1 ≥ (1 − 2−k+1)|I|, we
have Sf (I) ≥ Sf (a0, ar)(1 − 2−k+1), and therefore Sf (a0, ar) < q. Then there is an i < r

such that Sf (ai, ai+1) < q. Similarly, there is j < s such that Sf (bj , bj+1) < q.

I Claim 19. One of the following is true.
(i) z, ai, ai+1 are all contained in a single interval taken from Dn−3.
(ii) z, bj , bj+1 are all contained in a single interval taken from D̂n−3.

For suppose that (i) fails. Then there is an endpoint of an interval A ∈ Dn−3 (that is, a
number of the form w2−n+3 with w ∈ Z) between min(z, ai) and max(z, ai+1). Note that
min(z, ai) and max(z, ai+1) are in I. By Fact 13 and since |I| < 2−n+1, there can be no
endpoint of an interval Â ∈ D̂n−3 in I. Then, since bj , bj+1 ∈ I, (ii) holds. This establishes
the claim.

Suppose I is an interval as above and 2−n+1 > |I| ≥ 2−n, where n ≥ n∗ + 3. Let
η = Z �n−3 and η̂ = Y �n−3.

If (i) holds for this I then there is a string α of length k + 3 (where [ηα] = [ai, ai+1])
such that M(ηα) < q. So by the choice of q < u < v and since M(η) ≥ u there is β of length
k + 3 such that M(ηβ) > v. (The decrease along ηα of the martingale M must be balanced
by an increase along some ηβ.) This yields a hole in E , large and near Z on the scale of I,
which is required for porosity of E at Z. Similarly, if (ii) holds for this I, then there is a
string α of length k + 3 (where [η̂α] = [bj , bj+1]) such that M(η̂α) < q. So by the choice of

A. Nies 613

q < u < v and since M̂(η̂) ≥ u there is a string β of length k+ 3 such that M̂(η̂β) > v. This
yields a hole large and near Y on the scale of I required for porosity of Ê at Y .

Thus, if case (i) applies for arbitrarily short intervals I, then E is porous at Z, whence z
is a porosity point. Otherwise (ii) applies for intervals below a certain length. Then Ê is
porous at Y , whence z − 1/3 is a porosity point.

References
1 K. Ambos-Spies, E. Mayordomo, Y. Wang, and X. Zheng. Resource-bounded balanced

genericity, stochasticity and weak randomness. In STACS 96 (Grenoble, 1996), volume
1046 of Lecture Notes in Comput. Sci., pages 63–74. Springer, Berlin, 1996.

2 L. Bienvenu, N. Greenberg, A. Kučera, A. Nies, and D. Turetsky. K-triviality, Oberwolfach
randomness, and differentiability. Mathematisches Forschungsinstitut Oberwolfach, pre-
print, 40 pages, 2012.

3 L. Bienvenu, R. Hölzl, J. Miller, and A. Nies. Demuth, Denjoy, and Density. Submitted,
available at http://arxiv.org/abs/1308.6402, 2013.

4 V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.
5 V. Brattka, J. Miller, and A. Nies. Randomness and differentiability. Submitted, http:

//arxiv.org/abs/1104.4465.
6 A. Bruckner, J. Bruckner, and B. Thomson. Real Analysis. Prentice Hall (Pearson), 2007.
7 A. R. Day and J. S. Miller. Density, forcing and the covering problem. Submitted, http:

//arxiv.org/abs/1304.2789, 2013.
8 O. Demuth. The differentiability of constructive functions of weakly bounded variation on

pseudo numbers. Comment. Math. Univ. Carolin., 16(3):583–599, 1975. Russian.
9 R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Springer-Verlag,

Berlin, 2010. 855 pages.
10 A. Nies (editor). Logic Blog 2013. Available at http://dl.dropbox.com/u/370127/Blog/

Blog2013.pdf, 2013.
11 S. Figueira and A. Nies. Feasible analysis, randomness, and base invariance. Theory of

Computing Systems, published electronically Oct 2013, DOI 10.1007/s00224-013-9507-7.
12 C. Freer, B. Kjos-Hanssen, A. Nies, and F. Stephan. Effective aspects of Lipschitz functions.

To appear in Computability.
13 H. Lebesgue. Sur les intégrales singulières. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys.

(3), 1:25–117, 1909.
14 M. Morayne and S. Solecki. Martingale proof of the existence of Lebesgue points. Real

Anal. Exchange, 15(1):401–406, 1989/90.
15 A. Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford Uni-

versity Press, Oxford, 2009.
16 N. Pathak. A computational aspect of the Lebesgue differentiation theorem. J. Log. Anal.,

1:Paper 9, 15, 2009.
17 N. Pathak, C. Rojas, and S. G. Simpson. Schnorr randomness and the Lebesgue differenti-

ation theorem. Proc. Amer. Math. Soc., 142(1):335–349, 2014.
18 Y. Wang. Randomness and Complexity. PhD dissertation, University of Heidelberg, 1996.
19 K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

STACS’14

http://arxiv.org/abs/1308.6402
http://arxiv.org/abs/1104.4465
http://arxiv.org/abs/1104.4465
http://arxiv.org/abs/1304.2789
http://arxiv.org/abs/1304.2789
http://dl.dropbox.com/u/370127/Blog/Blog2013.pdf
http://dl.dropbox.com/u/370127/Blog/Blog2013.pdf

2-Stack Sorting is polynomial ∗

Adeline Pierrot1 and Dominique Rossin2

1 Institute of Discrete Mathematics and Geometry, TU Wien, Wien, Austria
2 LIX UMR 7161, École Polytechnique and CNRS, Palaiseau, France

Abstract
This article deals with deciding whether a permutation is sortable with two stacks in series.
Whether this decision problem lies in P or is NP-complete is a longstanding open problem since
the introduction of serial compositions of stacks by Knuth in The Art of Computer Program-
ming [6] in 1973. We hereby prove that this decision problem lies in P by giving a polynomial
algorithm to solve it. This algorithm uses the concept of pushall sorting, which was previously
defined and studied by the authors in [8, 9].

1998 ACM Subject Classification G.2.1 Combinatorics: Permutations and Combinations,
E.1 Data Structures: Lists, Stacks, and Queues

Keywords and phrases permutation, stack, sort, NP-complete

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.614

1 Introduction

Stack sorting has been studied first by Knuth in the sixties [5]. Characterizing the stack-
sortable permutations is a historical problem, which led to define permutation patterns, an
active research domain in combinatorics (see the book [4]). Stack-sorting was then generalized
by Tarjan, who introduced sorting networks [10] allowing to sort more permutations, and
many variations of this problem have been studied afterwards (see [3] for a summary).

Here we study the decision problem “Is a given permutation σ sortable by two stacks
connected in series?”. It is cited many times in the literature: in [3], Bóna gives a summary of
advances on stack-sorting and mentions this problem as possibly NP-complete; more recently,
it is also cited as possibly NP-complete in [1]. Surprisingly, both conjectures exist: in [2],
the authors conjecture it is NP-complete, while Murphy in [7] conjectures it is polynomial.

In this article, we solve this problem that stayed open for several decades by giving a
polynomial decision algorithm. Details of the proofs can be found in [8].

The difficulty of this problem, whose statement is however very simple, lies in the fact
that both stacks are considered at once, which gives a great liberty on which operation to
apply on the permutation at each step, and yields an exponential naive algorithm.

There are two key ideas in this article: a/, limit the number of sortings to consider by
proving that if a permutation σ is sortable, then there is a sorting process of σ respecting some
condition denoted P . b/, encode a possibly exponential number of sortings by a sequence of
graphs called sorting graphs, using pushall stack configurations introduced in [8, 9].

The article is organized as follows: Section 2 studies general properties of two-stack
sorting thanks to stack words and stack configurations and limits the number of sortings
to consider by introducing Property (P). Section 3 introduces the sorting graph G(i) which
encodes possible stack configurations at a given time ti and gives an algorithm to compute

∗ With the support of ANR project ANR BLAN-0204_07 MAGNUM and SFB project SFB F50.

© Adeline Pierrot and Dominique Rossin;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 614–626

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.614
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Pierrot and D. Rossin 615

HV

ρλµ
σ1 . . . σn

(input)
1 . . . n
(output)

Figure 1 Sorting with two stacks in series.

this graph iteratively for all i from 1 to the number of right-to-left minima, leading to an
algorithm deciding whether a permutation is 2-stack sortable. Then Section 4 proves that
the resulting algorithm is polynomial.

2 Study of two-stack sorting processes

2.1 Definitions and general problem statement
A permutation of size n is a word of n letters σ = σ1σ2 . . . σn on the alphabet [1..n] containing
each letter from 1 to n exactly once. Given two stacks H and V in series (see Figure 1) and
a permutation σ, we want to sort the elements of σ using the stacks. We take σ as input:
the elements σi are read one by one, from σ1 to σn. We have three different operations (see
Figure 1):
ρ: Take the next element of σ still in the input and push it on top of the first stack H.
λ: Pop the topmost element of stack H and push it on top of the second stack V .
µ: Pop the topmost element of stack V and write it to the output.

If there is a sequence w = w1 . . . wk of operations ρ, λ, µ leading to the identity 1 . . . n as
output, the permutation σ is said 2-stack sortable. In that case, we define the sorting word
associated to this sorting process as the word w on the alphabet {ρ, λ, µ}. Note that w must
have n times each letter ρ, λ and µ and thus k = 3n. For example, 2431 is sortable using the
following process:

2 4 3 1 2
4 3 1 24 3 1 2

3
4 1 24

3 1 2
1

4
3

24
3
1

24
31 4

3
2

1 4
31 2 41 2 3 1 2 3 4

This sorting process is encoded by the word w = ρρλρλρλµλµµµ. We can also decorate the
word to specify the element on which each operation is performed. The decorated word for w
and 2431 is ŵ = ρ2ρ4λ4ρ3λ3ρ1λ1µ1λ2µ2µ3µ4. Note that we have the same information in
(σ,w) and in ŵ. Nevertheless, in a decorated word each letter ρi, λi or µi appears only once.
The decorated word associated to (σ,w) is denoted ŵσ.

Not all permutations are 2-stack sortable (the smallest non-sortable ones are of size 7, e.g.
σ = 2435761). The question of interest here is to decide whether a permutation is sortable.

There is a naive algorithm for this: given a permutation σ of size n, a sorting process
corresponds to a word on the alphabet {ρ, λ, µ} of size 3n. It is thus enough to test all words
of size 3n and check if one of them yields the identity permutation on the output when taking
σ as input. But this decision algorithm is exponential since there are 33n words to test.

STACS’14

616 2-Stack Sorting is polynomial

The number of words to test can be reduced by noting that not all words correspond
to a sorting process: a necessary condition is to contains n times each letter. But some
permutations have an exponential number of sorting processes. For instance, it is easy to see
that the decreasing permutation n(n−1) . . . 1 admits 2n−1 sorting processes.

A natural solution would be to define a canonical sorting process among all possible
sorting processes of a permutation, but researches in this direction have been unsuccessful.
Several greedy algorithms for 2-stack sorting have been defined, (cf. [11] and [2]) but none is
able to sort all 2-stack sortable permutations. A key idea of our polynomial algorithm is to
limit the number of sortings to consider by studying stack words and stack configurations.

2.2 Stack words and stack configurations
Not all words on the alphabet {ρ, λ, µ} describe sorting processes.

I Definition 1 (stack word and sorting word). Let w be a word on the alphabet {ρ, λ, µ} and
α ∈ {ρ, λ, µ}. Then |w|α denotes the number of occurrences of α in w.

A stack word is a word w ∈ {ρ, λ, µ}∗ such that for any prefix v of w, |v|ρ ≥ |v|λ ≥ |v|µ.
A sorting word is a stack word w such that |w|ρ = |w|λ = |w|µ.
For any permutation σ, a sorting word for σ is a sorting word encoding a sorting process

with σ as input (leading to the identity of size |σ| as output).

Intuitively, stack words describe a sequence of operations ρ, λ, µ that can be carried out
starting with empty stacks (and arbitrarily long input), whereas sorting words encode a
complete sorting process (stacks are empty at the beginning and at the end of the process).

Another way of describing sorting processes is, instead of focusing on the operations
made, to focus on the description of which element lies in each stack (and their order in
the stacks) at each step of the process. Such a description for one step is called a stack
configuration. For example, the figure on the right is a stack configuration which is a part of

the sorting process ρρλρλρλµλµµµ of 2431. 2
3

4

Stack configurations and stack words describing a sorting process are linked:

I Definition 2. Let w be a stack word. Starting with a permutation σ as input, the stack
configuration reached after performing operations described by the word w is denoted cσ(w).
A stack configuration c is reachable for σ if there exists a stack word w such that c = cσ(w).
A stack configuration is poppable if the elements in stacks H and V can be output in increasing
order using operations λ and µ.

Any stack configuration which is a part of a sorting process of a permutation σ has to
be reachable for σ and poppable. We describe necessary or sufficient conditions for a stack
configuration to be reachable or poppable.

I Lemma 3. Let c be a stack configuration. If c is poppable, then the values of the elements
of V are in decreasing order from bottom to top. If c is reachable for a permutation σ, then
the elements of H have increasing indices (as letters of σ) from bottom to top.

Poppable stack configurations have been characterized in [9] by the following Lemma.
Recall first that a permutation π = π1π2 . . . πk is a pattern of σ = σ1σ2 . . . σn if there exists
indices 1 ≤ i1 < i2 < . . . < ik such that σi1σi2σi3 . . . σik is order-isomorphic to π.

I Lemma 4. A stack configuration c is poppable if and only if:
Stack V does not contain the pattern 12 (seen from bottom to top).

A. Pierrot and D. Rossin 617

Stack H does not contain the pattern 132 (seen from bottom to top).
Stacks (V,H) do not contain the pattern |2|13|.

Plus, there is a unique sequence of stack operations to pop the elements out in increasing order.

The first two conditions are usual pattern relations (note that the first one corresponds
to the first part of Lemma 3). The third one means that there are no elements i, j, k with i
in V and j, k in H (k above j) such that j < i < k.

A stack configuration is usually associated to a permutation, implying that the elements
in the stacks are a subset of those of the permutation. In particular a total stack configuration
of σ is a stack configuration in which the elements of the stacks are exactly all those of σ.

I Definition 5 (pushall configuration). A stack configuration is a pushall stack configuration
of σ if it is poppable, total and reachable for σ.

Pushall stack configurations, which were defined and studied in [8] and [9], play a key role
in our polynomial algorithm. Indeed, a permutation which ends with its smallest element is
2-stack sortable if and only if it admits a pushall stack configuration. Moreover we have:

I Theorem 6 ([8, 9]). One can compute in time O(n2) the set of pushall stack configurations
of any permutation of size n.

2.3 Restrict the number of sortings to focus on: Property (P)
Some permutations have an exponential number of sorting processes. To obtain a polynomial
algorithm, we restrict the number of sortings to focus on. The following lemma shows that we
can focus on sorting processes where smallest elements are popped out “as soon as possible”.

I Lemma 7. Let σ be a 2-stack sortable permuta-
I = [i . . . j]

i(i + 1) . . . j
tion and w = uv be a sorting word for σ. Assume
that after performing the operations of u, the ele-
ments 1 . . . i− 1 have been output and the elements
i . . . j are at the top of the stacks. Then there exists
a sorting word w′ = uu′u′′ for σ such that u′ consists only of moving the elements i . . . j
from the stacks to the output in increasing order without moving any other elements.

Now we add some other constraints on the sortings, using the block-decomposition of
permutations. A block B of a permutation σ = σ1σ2 . . . σn is a factor σiσi+1 . . . σj of σ such
that the set of values {σi, . . . , σj} is an interval. Given two blocks B and B′ of σ, we say that
B < B′ if and only if σi < σj for all σi ∈ B, σj ∈ B′. A permutation σ is 	-decomposable if
it can be written as σ = B1 . . . Bk such that k ≥ 2 and for all i, Bi > Bi+1 in terms of blocks.
Otherwise we say that σ is 	-indecomposable. When each Bi is 	-indecomposable, we write
σ = 	[B1, . . . , Bk] and call it the 	-decomposition of σ. Note that we do not renormalize
the elements of Bi, thus, except Bk, the Bi are not permutations. Nevertheless, Bi can be
seen as a permutation by subtracting |Bi+1|+ · · ·+ |Bk| to all its elements.

The RTL (right-to-left) minima of a permutation are the elements σk such that there is
no j with j > k and σj < σk. We denote by σki

the ith RTL minimum of σ. If σ has r RTL
minima, then σ = . . . σk1 . . . σk2 . . . σkr

with σk1 = 1 and kr = n.
Take for example the permutation σ = 6 5 8 7 4 1 3 2. The 	-decomposition of σ is

σ = 	[6 5 8 7, 4, 1 3 2]. Furthermore, σ has 2 RTL-minima which are σ6 = 1 and σ8 = 2.
We denote σ(i) = {σj | j < ki and σj > σki} the restriction of σ to elements in the upper

left quadrant of the ith RTL minimum σki
. The 	i-decomposition of σ is the 	-decomposition

STACS’14

618 2-Stack Sorting is polynomial

A(i)

σki

σki+1

B
(i+1)
q(i+1)

B
(i)
p(i)

D(i)

A(i)

σki

σki+1

B
(i+1)
q(i+1)

B
(i)
p(i)

D(i)

A(i)

σki

σki+1

B
(i+1)
q(i+1)

B
(i)
p(i)

D(i)

Figure 2 The 	-decomposition of σ(i) and of σ(i+1) visualized in the diagram of σ (set of the
points at coordinates (i, σi)) resp. when p(i) = q(i+1), p(i) < q(i+1) and p(i) > q(i+1)).

of σ(i) = 	[B(i)
1 , . . . , B

(i)
si]. In the following, si always denotes the number of blocks of σ(i)

and B(i)
j the jth block in the 	i-decomposition.

We denote by A(i) the common part of σ(i) and σ(i+1), i.e., A(i) = σ(i)⋂σ(i+1) = {σj |
j < ki and σj > σki+1}. This sub-permutation A(i) intersects 	-indecomposable blocks of
σ(i) and σ(i+1). Let p(i) (resp. q(i+1)) be the index such that B(i)

p(i) (resp. B(i+1)
q(i+1)) contains

the smallest value of A(i). Let D(i) =
(
B

(i)
p(i)

⋃
B

(i+1)
q(i+1)

)⋂
A(i) (see Figure 2).

I Definition 8 (Properties (Pi) and (P)). Let w be a sorting word for a permutation σ. We
say that w verifies (Pi) if and only if the corresponding decorated word ŵ satisfies:
(i) µσj

appears before ρσki
for all σj < σki

,
(ii) ρσki

λσki
µσki

is a factor of ŵ,
(iii) All operations µσ`

with σ` ∈ B(i)
j and j ∈ [p(i) + 1..si] appear before ρσ(ki)+1 in ŵ.

If a word w verifies Property (Pi) for all i then we say that w verifies Property (P). We call
ti the time just before σki enters stack H.

I Theorem 9. If σ is 2-stack sortable then there is a sorting word of σ satisfying Property
(P). In particular, in the sorting process encoded by this word, the elements in the stacks at
time ti are exactly those of σ(i).

Theorem 9 is proved recursively using the following lemmas:

I Lemma 10 (easy). If the sorting word encoding a sorting process of σ verifies Property
(Pi), then the elements in the stacks at time ti are exactly those of σ(i).

I Lemma 11 (from Lemma 3). If σ = 	[B1, . . . Bk] then in any poppable stack configuration
reachable for σ, for all i < j, the elements of Bi are, in the stacks, below the elements of Bj .

I Lemma 12 (from Lemma 7 and Lemma 11). Let w be a sorting word for a permutation σ,
r be the number of RTL-minima of σ and ` ∈ [1..r]. If w verifies (Pi) for i ∈ [1..`−1] then
there exists a sorting word w′ for σ that verifies (Pi) for i ∈ [1..`].

Theorem 9 ensures that if a permutation σ is sortable then there is a sorting in which at
each time step ti, the elements in the stacks are those of σ(i). Thus if σ is sortable, then for
all i, σ(i) admits a pushall stack configuration. This necessary condition is not sufficient: the
pushall stack configuration for σ(i) has to be accessible from the one of σ(i−1).

A. Pierrot and D. Rossin 619

2.4 Stack configurations and accessibility
The stack configurations for a sorting process encode the elements that are currently in
the stacks. But some elements are still waiting in the input and some elements have been
output. To fully characterize a configuration, we define an extended stack configuration of a
permutation σ of size n to be a pair (c, i) where i ∈ {1, . . . , n+1} and c is a poppable stack
configuration made of all elements within σ1, σ2, . . . , σi−1 that are greater than a value p.
The elements σi, . . . , σn are still in the input and the elements σj < p, j < i have already
been output. Note that we don’t ask the configuration to be reachable.

I Definition 13. Let (c, i) be an extended stack configuration of a permutation σ. Then an
extended stack configuration (c′, j) of σ is accessible from (c, i) if the stack configuration (c′, j)
can be reached starting from (c, i) and performing operations ρ, λ and µ s. t. the elements of
c ∪ {σi . . . σn} that are output by the operations µ performed are output in increasing order.

For example, for σ = 2 3 1 6 5 8 4 7, the sequence of operations µ2µ3ρ6ρ5ρ8λ8 proves that

(6
5

8 , 7) is accessible from (3
2

, 4). But (63
2

, 5) is not accessible from (32
1

, 4).
In the following, given two total pushall stack configurations c and c′ corresponding to

σ(i) and σ(i+1), we study conditions for c′ to be accessible from c,

I Lemma 14. Let (c, ki), resp. (c′, ki+1), be a pushall stack configuration of σ(i), resp. σ(i+1).
Let π = σ|B(i)

p(i)

⋃
B

(i+1)
q(i+1)

. Then (c′, ki+1) is accessible from (c, ki) for σ if and only if:

1. (c′|π, |π|+ 1) is accessible from (c|π,#(D(i)⋃B(i)
p(i)) + 1) for π (see Figure 2).

2. ∀j < min(p(i), q(i+1)), c|B(i)
j

= c′
|B(i)

j

.

3. ∀j > q(i+1), c′
|B(i+1)

j

is a pushall configuration of σ|B(i+1)
j

.

Informally, it is possible to efficiently decide whether a configuration at time ti can evolve into
a given configuration at time ti+1. Moreover, during this transition, only a few operations are
undetermined: the largest elements don’t move, the smallest ones are output in increasing
order, and the remaining ones form a 	-indecomposable permutation. This will allow us
to exhibit a polynomial algorithm checking accessibility. The proof of Lemma 14 relies on
Lemma 7, Lemma 11 and the following lemma:

I Lemma 15. Let σ` ∈ A(i). During a sorting process of σ, the elements σm s. t. σm > σ`
and m < ` do not move between ti and ti+1 (indeed σ` prevent those elements from moving).

Thanks to Lemma 14, if c and c′ are two total pushall stack configurations corresponding
to stack configurations of σ(i) and σ(i+1), to decide whether c′ is accessible from c it is enough
to check three conditions. The last two ones are easy to check, and the first one can be
checked using the following lemma:

I Lemma 16. Let σ be a permutation of size n and (c, i), (c′, j) two extended stack config-
urations of σ with i < j. Let E (resp. F) be the set of elements of c (resp. c′).

If there exists k, ` ∈ {1 . . . n} such that E = {σm | m ≤ k} and F = {σm | σm ≥ `},
if moreover E ∪ F = σ,

then we can decide in linear time whether (c′, j) is accessible from (c, i) using Algorithm 1.

∅E
`

F

k

σq · · ·σn
x
ρ

x
λ

x
µ

1 · · · p− 1
σV...

σH...

STACS’14

620 2-Stack Sorting is polynomial

Algorithm 1: isAccessible
(
(c, i), (c′, j), σ

)
Data: σ a permutation and (c, i), (c′, j) two stack configurations of σ satisfying conditions

of Lemma 16
Result: true or false depending on whether the configuration c′ is accessible from c

Put configuration c in the stacks H and V
p← the smallest element of c ∪ {σi . . . σn} (next element to be output)
q ← i (next index of σ that must enter the stacks)
We denote by V (c′) the set of elements of V in configuration c′ and by σV the top of V in
the current configuration (the same goes for H).
while q < j or p < ` or σH ∈ V (c′) do

if σV = p then Perform µ; p← p+ 1
else if σH < ` then Perform λ

else if H = ∅ or σH ∈ H(c′) then Perform ρ; q ← q + 1
else if σq ∈ H(c′) or σH > σq then Perform λ

else Perform ρ; q ← q + 1
Return (H,V) == c′

The proof of Lemma 16 relies on Lemmas 4 and 7. The idea is that Algorithm 1 performs
only operations that we have to do to obtain (c′, j) starting from (c, i). Thus (c′, j) is
accessible from (c, i) if and only if the configuration obtained at the end is c′.

3 An iterative algorithm

3.1 A first naive algorithm
From Theorem 9, a permutation σ is 2-stack sortable if and only if it admits a sorting
process satisfying Property (P). The main idea is to compute the set of sorting processes of
σ satisfying (P) and decide whether σ is 2-stack sortable by testing the emptiness of this set.

Verifying (P) means verifying (Pj) for all j from 1 to r, r being the number of right-to-left
minima (whose indices are denoted kj). The algorithm proceeds in r steps: for all i from 1 to
r we iteratively compute the sorting processes of σ≤ki

verifying (P`) for all ` from 1 to i (with
σ≤ki

= σ1 . . . σki
). As σ≤kr

= σ, the last step gives sorting processes of σ satisfying (P).
By “compute the sorting processes of σ≤ki” we mean “compute the stack configuration

just before σki
enters the stacks in such a sorting process”:

I Definition 17. We call Pi-stack configuration of σ a stack configuration cσ(w) for which
there exists u such that the first letter of u is ρσki

and wu is a sorting word of σ≤ki
verifying

(P) for σ≤ki (that is, verifying (P`) for all ` from 1 to i).

The algorithm is based on the following two lemmas:

I Lemma 18 (Consequence of Theorem 9). For any i from 1 to r, σ≤ki
is 2-stack sortable if

and only if the set of Pi-stack configurations of σ is nonempty. In particular, σ is 2-stack
sortable if and only if the set of Pr-stack configurations of σ is nonempty.

I Lemma 19 (Consequence of Lemma 10). Any Pi-stack configuration of σ is a pushall stack
configuration of σ(i), accessible from some Pi−1-stack configurations of σ.

The algorithm proceeds in r steps such that after step i we know every Pi-stack config-
uration of σ and we want to compute at step i+ 1 the Pi+1-stack configurations of σ. As
Pi+1-stack configurations are pushall stack configurations of σ(i+1), a possible algorithm is to

A. Pierrot and D. Rossin 621

take every pair of configurations (c, c′) with c being a Pi-stack configuration of σ (computed
at step i) and c′ be any pushall stack configuration of σ(i+1) (given by Algorithm 5 of [9],
see Theorem 6). Then we can use Algorithm 1 to decide whether c′ is accessible from c for σ.
This leads to an algorithm deciding whether a permutation σ is 2-stack sortable, but this
algorithm is not polynomial. Indeed, the number of Pi-stack configurations of σ is possibly
exponential. However, this set can be described by a polynomial representation as a graph.

3.2 Towards the sorting graph
We now explain how to adapt the previous idea to obtain a polynomial algorithm. Instead of
computing all Pi-stack configurations of σ (which are pushall stack configurations of σ(i)),
we compute the restriction of such configurations to blocks B(i)

j of the 	-decomposition of
σ(i). By Lemma 11, those configurations are stacked one upon the others to give a Pi-stack
configuration. The stack configurations of any block B(i)

j are labeled with an integer which
is assigned when the configuration is computed. Those pairs (configurations, integer) will be
the vertices of the graph G(i) which we call a sorting graph, the edges of which representing
the configurations that can be stacked one upon the other. Vertices of the graph G(i) are
partitioned into levels corresponding to blocks B(i)

j . The integer labels allows us to ensure
the polynomiality of the representation. Indeed, a given label can only appear once per
level of the graph G(i). As those labels are assigned to configurations when they are created,
each label corresponding to a pushall stack configuration, from Theorem 4.4 of [9] there are
at most 9|σ| distinct labels thus at most 9|σ| vertices per level of the graph G(i). This is
formalized in Lemma 22. The label can be seen as the memory of the configuration that
encodes its history since it has been created: two configurations having the same label come
from the same initial pushall configuration.

More precisely, the sorting graph G(i) for a permutation σ and an index i verifies:
The vertices of G(i) are partitioned into si subsets V (i)

j with j ∈ [1 . . . si] called levels.
For any j ∈ [1 . . . si], the number of vertices in level V (i)

j is less than 9|σ|.
Each vertex v ∈ G(i) is a pair (c, `) with c a stack configuration and ` an index
called configuration index.
All configuration indices are distinct inside a graph level V (i)

j .
(c, `) ∈ V (i)

j ⇒ c is a pushall stack configuration of B(i)
j accessible for σ.

There are edges only between vertices of adjacent levels V (i)
j , V (i)

j+1 (this implies Lemma 23).
The paths between vertices of V (i)

1 and V (i)
si correspond to the stack configurations of

σ(i). Precisely, and that is why the algorithm is correct, such paths are in bijection with
the Pi-stack configurations of σ by stacking one upon the other the configurations of the
vertices of a path.
For any vertex v of G(i), there is a path between vertices of V (i)

1 and V (i)
si going through v.

Take for example the permutation σ = 4321. There is only one right-to-left minimum, which
is 1.

The sorting graph G(1) for σ = 4321 encodes the P1-stack configurations of σ, that are in
particular pushall stack configurations of σ(1) = 432. There are 8 different such configurations,
which are:

4
3
2

4
3

2 4
2

3 3
2

4 24
3

34
2

43
2

4
3
2

STACS’14

622 2-Stack Sorting is polynomial

2 5 2 6

3 3 3 4

4 1 4 2

Stack configurations
of B3 = 2

Stack configurations
of B2 = 3

Stack configurations
of B1 = 4

Figure 3 Sorting graph G(1) of σ = 4321.

As the 	-decomposition of σ(1) is
σ(1) = 	[4, 3, 2], the sorting graph G(1)

has 3 levels (see Figure 3).
Then the 8 P1-stack configurations of

σ are found taking each of the 8 differ-
ent paths going from any configuration
of B1 to any configuration of B3. For
example, the thick path of Figure 3 gives

the stack configuration 34
2

by stack-
ing the selected configuration of B3 above
the configuration of B2 and so on.

Our algorithm computes iteratively the graph G(i) from G(i−1) for i from 2 to r. The way
G(i) is computed from G(i−1) depends on the relative values of p(i) and q(i+1). By definition
of G(i), if at any step G(i) is empty, it means that σ≤ki

is not sortable (from Theorem 9), so σ
is not sortable either, and the algorithm returns false. This is summarized in Algorithm 2.

Algorithm 2: isSortable
Data: σ a permutation
Result: true or false depending on whether σ is 2-stack sortable
G ← ComputeG1
for i from 2 to r do

if p(i) = q(i+1) then G ← iteratepEqualsq(G) or return false
else if p(i) < q(i+1) then G ← iteratepLessThanq(G) or return false

else G ← iteratepGreaterThanq(G) or return false
return true

The rest of Section 3 describes the sub-procedures used in our main algorithm isSortable(σ).

3.3 First step: G(1)

In this subsection, we show how to compute the P1-stack configurations of σ, i.e. the stack
configurations corresponding to time t1 for sorting words of σ≤k1 that satisfy (P) for σ≤k1 .

From Lemma 19, such a stack configuration is a pushall stack configuration of σ(1).
Conversely, since σk1 = 1, σ(1) = σ<k1 and each sorting word of σ≤k1 satisfies (P1) for σ≤k1 .
Thus the set of P1-stack configurations of σ is the set of pushall stack configurations of σ(1).

By Proposition 4.7 of [9], these stack configurations are described by the set of stack
configurations for each block of the 	-decomposition of σ(1). More precisely, with σ(1) =
	[B(1)

1 , . . . , B
(1)
s1], there is a bijection from pushallConfigs(B(1)

1)× · · · × pushallConfigs(B(1)
s1)

onto pushallConfigs(σ(1)) by stacking configurations one upon the other (as in Lemma 11).
Thus, from Lemma 18, σ≤k1 is not sortable if and only if a set pushallConfigs(B(1)

j) is empty.
Moreover, it will be useful to label the configurations computed so that we attach a

distinct integer to each stack configuration when computed.
At this point, we have encoded all configurations corresponding to words satisfying (P)

up to the factor ρ1λ1µ1. The obtained graph is G(1). This step is summarized in Algorithm 3.

3.4 From step i to step i + 1
After step i we know the graph G(i) encoding every Pi-stack configuration of σ and we want
to compute the graph G(i+1) encoding Pi+1-stack configurations of σ at step i + 1. From

A. Pierrot and D. Rossin 623

Algorithm 3: ComputeG1
Data: σ a permutation, m a global integer variable
Result: false if σ≤k1 is not sortable, the sorting graph G(1) otherwise.
E = ∅ ; Compute σ(1) and its 	-decomposition 	[B(1)

1 , . . . , B
(1)
s1]

for j from 1 to s(1)
1 do

V
(1)
j ← ∅ ; S = pushallConfigs(B(1)

j)
if S = ∅ then return false
for s ∈ S do { V (1)

j ← V
(1)
j

⋃
{(s, m)} ; m← m+ 1 }

if j > 1 then E = E
⋃
{(s, s′), s ∈ V (1)

j , s′ ∈ V (1)
j−1}

return G(1) = (
⋃

j∈[1..s(1)
1]
V

(1)
j , E)

Lemma 19 it is enough to check the accessibility of pushall stack configuration of σ(i+1)

from Pi-stack configurations of σ. We cannot check every pair of configurations (c, c′) with c
being a Pi-stack configuration and c′ be a pushall stack configuration of σ(i+1), because the
number of such pair of configurations is possibly exponential. Thus our algorithm focuses
not on stack configurations of some σ(`) but on the restriction of such stack configurations to
the blocks B(`)

j , making use of Lemma 14. Using Lemma 19, Lemma 14 can be rephrased as:

I Lemma 20. Let c′ be a total stack configuration of σ(i+1), p = p(i) and q = q(i+1). Then
c′ is a Pi+1-stack configuration of σ if and only if:

For any j ≥ q, c′
|B(i+1)

j

is a pushall stack configuration of σ|B(i+1)
j

, and
there exists a Pi-stack configuration c of σ such that:
c′
|B(i)

min(p,q)∪···∪B
(i)
q

is accessible from c|B(i+1)
min(p,q)∪···∪B

(i+1)
p

for σ|B(i)
p

⋃
B

(i+1)
q

and

c′
|B(i+1)

1 ∪···∪B(i+1)
min(p,q)−1

= c|B(i)
1 ∪···∪B

(i)
min(p,q)−1

Recall that a Pi-stack configuration of σ is encoded by a path in the sorting graph
G(i), corresponding to the 	-decomposition of the permutation σ(i) into blocks B(i)

j . The
last point of Lemma 20 ensures that the first levels (1 to min(p(i), q(i+1)) − 1) in G(i+1)

are the same as the ones in G(i). The first point of Lemma 20 ensures that the last levels
(> q(i+1)) of G(i+1) form a complete partitioned graph whose vertices are all pushall stack
configurations of the corresponding blocks. So the only unknown levels for G(i+1) are those
between min(p(i), q(i+1)) and q(i+1) and we can compute them by testing accessibility.

There are distinct cases depending on the relative values of p(i) and q(i+1). To lighten
the notations in the following, we sometimes write p (resp. q) instead of p(i) (resp. q(i+1)).

3.4.1 Case p(i) = q(i+1)

If p(i) = q(i+1) then B(i+1)
q(i+1) ∩A(i) = B

(i)
p(i) ∩A(i) (see Figure 2). We have the sorting graph G(i)

encoding all Pi-stack configurations of σ and we want to compute the sorting graph G(i+1)

encoding all Pi+1-stack configurations of σ assuming that p(i) = q(i+1) = min(p(i), q(i+1)).
In this case, from Lemma 20, we only have to check accessibility of pushall configurations

of B(i+1)
q from configurations of B(i)

p belonging to level p of G(i). Indeed, from the properties
of the sorting graph given p.621, for any vertex v of G(i), there is a path between vertices
of V (i)

1 and V (i)
si going through v, and such a path corresponds to a Pi-stack configuration

of σ. Thus for any configurations x of B(i)
p belonging to a vertex v of level p of G(i), there

is at least one Pi-stack configuration c of σ such that c|B(i)
p

= x, and c|B(i)
1 ∪···∪B

(i)
min(p,q)−1

is

encoded by a path from v to level p of G(i) (which goes through each level < p).

STACS’14

624 2-Stack Sorting is polynomial

If there is no pushall configuration of B(i+1)
q accessible from some configurations of B(i)

p

belonging to level p of G(i), or if σ(i+1) has no pushall configuration, then σ has no Pi+1-stack
configuration and σ≤ki+1 is not sortable (from Lemma 18). This leads to algorithm 4.

Algorithm 4: iteratepEqualsq(G(i))
Data: σ a permutation and G(i) the sorting graph at step i
Result: false if σ≤ki+1 is not sortable, the sorting graph G(i+1) otherwise.
G an empty sorting graph with si+1 levels
G′ ← ComputeG1(σ(i+1)) (pushall sorting graph of σ(i+1)) or return false
Copy levels q + 1, . . . , si+1 of G′ into the same levels of G
for (c, `) in level p of G(i) do
H the subgraph of G(i) induced by (c, `) in levels < p

for (c′, `′) in level q of G′ do
if isAccessible(c, c′, σ|B(i)

p

⋃
B

(i+1)
q

) then
Add (c′, `′) in level q of G (if not already done)
Merge H in levels ≤ q of G with (c′, `′) as origin

if level q of G is empty then return false
for (c′, `′) in level q of G do Add all edges from (c′, `′) to each vertex of level q + 1 of G;
return G

3.4.2 Case p(i) < q(i+1)

If p(i) < q(i+1) then B(i+1)
q(i+1) ∩ A(i) B

(i)
p(i) ∩ A(i) (see Figure 2). By Lemma 20, we have to

select among pushall stack configurations of blocks p, p+ 1, . . . , q of σ(i+1) those accessible
from a configuration of B(i)

p that appears at level p in G(i). We can restrict the accessibility
test from configurations of B(i)

p appearing in graph G(i) to pushall stack configurations of
B

(i+1)
q . Indeed, Lemma 15 ensures that the elements of blocks B(i+1)

j for j from p to q−1 are
in the same stack at time ti and at time ti+1. Thus configurations of B(i+1)

j for j from p to
q−1 are restrictions of configurations of B(i)

p . We keep the same label in the vertex to encode
that those configurations of B(i+1)

p , B
(i+1)
p+1 , . . . , B

(i+1)
q−1 come from the same configuration of

B
(i)
p and we build edges between vertices of B(i+1)

j+1 and B
(i+1)
j that come from the same

configuration of B(i)
p . It is because of this case p = q that we have to label configurations in

our sorting graph. Indeed, two different stack configurations c1 and c2 of B(i)
p may have the

same restriction to some block B(i+1)
j but not be compatible with the same configurations of

the other blocks, thus we want the corresponding vertices of level j of G(i+1) to be distinct,
that’s why we use labels. More precisely, we have algorithm 5.

Algorithm 5: iteratepLessThanq(G(i))
Same as Algorithm 4, but replace this line:

Merge H in levels ≤ q of G with (c′, `′) as origin
by those four lines:

for j from q − 1 downto p do
Add (c|B(i+1)

j

, `) in level j of G
Add an edge between (c|B(i+1)

j

, `) and (c|B(i+1)
j+1

, `) in G.

Merge H in levels ≤ p of G with (c|B(i+1)
p

, `) as origin

A. Pierrot and D. Rossin 625

Note that in Algorithm 5, before calling isAccessible(c, c′, σ|B(i)
p

⋃
B

(i+1)
q

), we extend

configuration c′ toD(i)⋃B(i+1)
q by assigning the same stack than in c to points ofD(i)\B(i+1)

q .
This is justified by Lemma 15.

3.4.3 Case p(i) > q(i+1)

If p(i) > q(i+1) then B
(i)
p(i) ∩ A(i) B

(i+1)
q(i+1) ∩ A(i) (see Figure 2). This case is very similar

to the preceding one except that B(i)
p is not cut into pieces but glued with preceding

blocks. As a consequence, when testing accessibility of a configuration of B(i+1)
q , we should

consider every corresponding configuration in G(i), that is, every configuration obtained
by stacking configurations at level q, q + 1, . . . , p in G(i). Unfortunately, this may give an
exponential number of configurations; but noticing that by Lemma 15 the elements of blocks
B

(i)
q , B

(i)
q+1 . . . B

(i)
p−1 are exactly in the same stack at time ti and at time ti+1, it is sufficient

to check the accessibility of a pushall configuration c′ of B(i+1)
q from a configuration c of B(i)

p

and verify afterwards whether the configuration c has ancestors in G(i) that match exactly
the configuration c′. Thus in Algorithm 6, before calling isAccessible(c, c′, σ|B(i)

p

⋃
B

(i+1)
q

),

we extend configuration c to D(i)⋃B(i)
p by assigning the same stack than in c′ to points of

D(i) \B(i)
p .

Algorithm 6: iteratepLessThanq(G(i))
Same as Algorithm 4, but replace this block:

Add (c′, `′) in level q of G (if not already done)
Merge H in levels ≤ q of G with (c′, `′) as origin

by those four lines (and drop the definition of H, since it is redefined below):
if there is a path (c, `)↔ (c′

|B(i)
p−1

, `1)↔ . . .↔ (c′
|B(i)

q

, `k) in G(i) then

Add (c′, `′) in level q of G (if not already done)
H the subgraph of G(i) induced by (c′

|B(i)
q

, `k) in levels < q

Merge H in levels ≤ q of G with (c′, `′) as origin

Now that we have described all steps of our algorithm, let us study its complexity.

4 Complexity Analysis

In this section we state the complexity of isSortable(σ), our main algorithm (Algorithm 2).

I Theorem 21. Given a permutation σ, Algorithm 2 isSortable(σ) decides whether σ is
sortable with two stacks in series in polynomial time w.r.t. |σ|.

The key idea to prove this theorem relies on bounding the size of each graph G(i):

I Lemma 22. For any i ∈ [1..r], the maximal number of vertices in a level of G(i) is 9n
where n is the size of the input permutation.

I Lemma 23. For any i ∈ [1..r], the number of vertices of G(i) is O(n2) and the number of
edges of G(i) is O(n3), where n is the size of the input permutation.

STACS’14

626 2-Stack Sorting is polynomial

References
1 Michael Albert, Mike D. Atkinson, and Steve Linton. Permutations generated by stacks

and deques. Annals of Combinatorics, 14:3–16, 2010.
2 Mike D. Atkinson, M. M. Murphy, and N. Ruskuc. Sorting with two ordered stacks in

series. Theor. Comput. Sci., 289:205–223, October 2002.
3 Miklós Bóna. A survey of stack-sorting disciplines. Electron. J. Combin., 9(2):16, 2003.
4 S. Kitaev. Patterns in Permutations and Words. Monographs in Theoretical Computer

Science. An EATCS Series. Springer, 2011.
5 D. E. Knuth. The Art of Computer Programming, Volume I. Addison-Wesley, 1968.
6 D. E. Knuth. The Art of Computer Programming, Volume III. Addison-Wesley, 1973.
7 Maximillian M. Murphy. Restricted permutations, anti chains, atomic classes and stack

sorting. PhD thesis, University of St Andrews, 2002.
8 A. Pierrot. Combinatoire et algorithmique dans les classes de permutations. PhD thesis,

Université Paris Diderot - Paris 7, 2013. (in English).
9 A. Pierrot and D. Rossin. 2-stack pushall sortable permutations, 2013. arxiv:1303.4376.

10 Robert E. Tarjan. Sorting using networks of queues and stacks. J. ACM, 19(2), 1972.
11 Julian West. Sorting twice through a stack. Theor. Comput. Sci., 117(1&2):303–313, 1993.

Communication Lower Bounds for
Distributed-Memory Computations∗

Michele Scquizzato†1 and Francesco Silvestri2

1 Department of Computer Science, University of Pittsburgh, Pittsburgh, US
scquizza@pitt.edu

2 Department of Information Engineering, University of Padova, Padova, Italy
silvest1@dei.unipd.it

Abstract
In this paper we propose a new approach to the study of the communication requirements of
distributed computations, which advocates for the removal of the restrictive assumptions under
which earlier results were derived. We illustrate our approach by giving tight lower bounds on
the communication complexity required to solve several computational problems in a distributed-
memory parallel machine, namely standard matrix multiplication, stencil computations, compar-
ison sorting, and the Fast Fourier Transform. Our bounds rely only on a mild assumption on
work distribution, and significantly strengthen previous results which require either the compu-
tation to be balanced among the processors, or specific initial distributions of the input data, or
an upper bound on the size of processors’ local memories.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Communication, lower bounds, distributed memory, parallel algorithms,
BSP

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.627

1 Introduction

Communication is a major factor determining the performance of algorithms on current
computing systems, as the time and energy needed to transfer data between processing and
storage elements is often significantly higher than that of performing arithmetic operations.
The gap between computation and communication costs, which is ultimately due to basic
physical principles, is expected to become wider and wider as architectural advances allow to
build systems of increasing size and complexity. Hence, the cost of data movement will play
an even greater role in future years.

As in all endeavors where performance is systematically pursued, it is important to evaluate
the distance from optimality of a proposed algorithmic solution, by establishing appropriate
lower bounds. Given the well-known difficulty of establishing lower bounds, results are
often obtained under restrictive assumptions that may severely limit their applicability. It is
therefore important to progressively reduce or fully eliminate such restrictions.

In this spirit, we consider lower bounds on the amount of communication that is required
to solve some classical computational problems on a distributed-memory parallel system.

∗ This work was supported, in part, by the University of Padova Project CPDA121378 and by MIUR of
Italy under project AMANDA.
† Supported, in part, by a fellowship of “Fondazione Ing. Aldo Gini”, University of Padova, Italy. Most of
this work was done while this author was a Ph.D. student at the University of Padova.

© Michele Scquizzato and Francesco Silvestri;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 627–638

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.627
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

628 Communication Lower Bounds for Distributed-Memory Computations

Specifically, we revisit the assumptions and constraints under which preceding results were
derived, and prove new lower bounds which use much weaker hypotheses and thus have wider
applicability. Even when the functional form of the bounds remains the same, our results
do yield new insights to algorithm developers since they might reveal if some settings are
needed, or not, in order to obtain better performance.

We model the machine using the standard Bulk Synchronous Parallel (BSP) model of
computation [32], which consists of a collection of p processors, each equipped with an
unbounded private memory and communicating with each other through a communication
network. The distribution of inputs and outputs effectively forms a part of the problem
specification, thus restricting the applicability of upper and lower bounds. Much of previous
work on BSP algorithms considers a version of the BSP model equipped with an additional
external memory, which serves as the source of the input and the destination for the output
(see, e.g., [29]). This modification significantly alters the spirit of the BSP of serving as a
model for distributed-memory machines, making it very similar to shared-memory models
like the LPRAM [1]. In fact, in a distributed-memory machine, the inputs might already
be distributed in some manner prior to the invocation of the algorithm, and the outputs
are usually left distributed in the processors’ local memories at the end of the execution,
especially if the computation is a subroutine of a larger computation. Thus, lower bounds
that use this assumption, which essentially exploit this “hack” to guarantee that acquiring
the n input elements contributes to the communication cost of algorithms (as some processor
must read at least dn/pe input values), are not directly applicable to distributed-memory
architectures.

Other authors, within the original BSP model, assume specific distributions of the input
data. As we shall see later, it is usually assumed that the input is initially evenly distributed
among the p processors, that is, each processor is assigned either dn/pe or bn/pc pieces of the
input. However, this apparently reasonable hypothesis is somewhat restrictive, and actually
not part of the logic of the BSP model. In fact, the physical distribution of input data
across the processors may depend on several factors, ranging from how the input data set
gets acquired, to how the output of the preceding computation is distributed in the case of
algorithms being cascaded (that is, when the output of one is the input for the next), to file
system policies. Moreover, a uniform partition of the inputs postulates, but does not prove,
that unbalanced distributions may cause severe communication bottlenecks.

One possibility to circumvent both the issues discussed above is to require, in place of the
even distribution of the inputs and of the presence of an external memory, that algorithms
exhibit some level of load balancing of the computation. Typically, if W denotes the total
work required by any algorithm to solve the given problem, it is required that each processor
performs O (W/p) elementary computations. However, this way it is implicitly assumed,
but (as above) not proved, that optimal solutions balance computation. In fact, in general
there is a tradeoff between computation costs and communication costs. Some papers (see,
e.g., [22, 35]) quantify such tradeoffs by establishing lower bounds on the communication
cost of any algorithm as a function of its computation time. Nevertheless, results of this kind
usually indicate that the higher lower bounds on communication correspond only to perfectly
(to within constant factors) work-balanced computations, and such bounds are tight since
achieved by balanced algorithms. This leaves open the possibility that a substantial saving
on communication costs could actually be achieved at a price of a small unbalance of the
computation loads.

Another common assumption is putting an upper bound on the size of processors’ local
memories. However, current technological advances allow to build cheap memory and storage

M. Scquizzato and F. Silvestri 629

devices that, for many applications, allow a single machine to store the whole input data set
and the intermediate data. Moreover, results derived under this assumption are less general
than results that put no limits on the amount of storage available to processors; indeed,
lower bounds are relatively easier to establish, as the model essentially becomes a parallel
version of the standard external memory model for sequential computations, for which much
more results and techniques are known (see, e.g., [16, 2]).

In contrast, lower bounds presented in this paper do not hinge on any of the above
assumptions. We develop new lower bounds for a number of key computational problems,
namely standard matrix multiplication, stencil computations, comparison sorting, and the
Fast Fourier Transform, using the weak assumption that no processor performs more than a
constant fraction of the total required work. This requires more involved arguments, and
substantially strengthens previous work on communication lower bounds for distributed-
memory computations.

The model. The Bulk Synchronous Parallel (BSP) model of computation was introduced
by Valiant [32] as a bridging model for general-purpose parallel computing. The architectural
component of the model consists of p processing elements P0, P1, . . . , Pp−1, each equipped
with an unbounded local memory, interconnected by a communication medium. The execution
of a BSP algorithm consists of a sequence of supersteps, where each processor can perform
operations on data in its local memory, send/receive messages (each occupying a constant
number of words) and, at the end, execute a global synchronization. The running time of
the i-th superstep is expressed in terms of two parameters, g and `, as Ti = wi + hig + `,
where wi is the maximum number of local operations performed by any processor, and hi

is the maximum number of messages sent or received by any processor. The running time
TA of a BSP algorithm A is the sum of the times of its supersteps and can be expressed
as WA + HAg + SA`, where SA is the number of supersteps, WA =

∑SA
i=1 wi is the local

computation complexity, and HA =
∑SA

i=1 hi is the communication complexity.

Previous work. The complexity of communication on various models of computation has
received considerable attention. Lower bounds are often established through adaptations of
the techniques of Hong and Kung [16] for hierarchical memory, or by critical path arguments,
such as those in [1]. For applications of these and other techniques see [22, 2, 25, 15, 8, 6, 17,
24, 4, 9, 5] as well as [26] and references therein. In the following, we discuss previous work
on lower bounds for the communication complexity of the problems studied in this paper.

A standard computational problem is the multiplication of two n × n matrices. For
the classical Θ

(
n3) algorithm, an Ω

(
n2/p2/3) lower bound has been previously derived

for the BSP [31] and the LPRAM [1]. However, both results hinge on the hypothesis that
the input initially resides outside the processors’ local memories and thus must be read,
contributing to the communication complexity of the algorithms. As such, these results are
an immediate consequence of a result of [16] (then restated in [17]) which, loosely speaking,
bounds from above the amount of computation that can be performed with a given quantity
of data. When input is assumed to be initially evenly distributed across the p processors’
local memories, the same lower bound is claimed in [11]. Recently, Ballard et al. [3] obtained
a result of the same form by assuming perfectly balanced (to within constant factors)
computations, and disallowing any initial replication of inputs. The very same bound was
found also by Irony et al. [17], who restrict their attention to computations that take place
on machines where processors’ local memory size is assumed to be M = O

(
n2/p2/3) (see

also [4]). Finally, Solomonik and Demmel [28] investigate tradeoffs between input replication
and communication complexity.

STACS’14

630 Communication Lower Bounds for Distributed-Memory Computations

A class of computations ubiquitous in scientific computing is that of stencil computations,
where each computing node in a multi-dimensional grid is updated with weighted values
contributed by neighboring nodes. These computations include the diamond DAG in the
two-dimensional case and the cube DAG in three dimensions. For the former, Papadimitriou
and Ullman [22] present a communication-time tradeoff which yields a tight Ω (n) lower bound
on the communication complexity only for the case of balanced computations. Aggarwal
et al. [1] extend this result to all algorithms whose computational complexity is within a
constant factor of the number of nodes of the DAG. To the best of our knowledge, this is
the sole example of a tight lower bound that holds under the same hypothesis used in this
paper. By generalizing the technique in [22], Tiskin [31] establishes a tight bound for the
cube DAG, and claims its extension to higher dimensions. However, this results only hold
when the computational load is balanced among the p processors.

Another key problem is sorting. Many papers assume that the n inputs initially reside
outside processors’ local memories, thus obtaining an Ω (n/p) lower bound which turns out
to be tight when it is additionally assumed that problem instances have sufficient slackness,
that is, n >> p (e.g., p2 ≤ n is a common assumption). Under some technical assumptions,
a bound of the form Ω (n logn/(p log(n/p))), which is tight for all values of p ≤ n, was first
given within the LPRAM model [1]. This bound, however, includes the cost to read the
input from the shared memory. A similar lower bound was derived later by Goodrich [15]
within the BSP model, but the result holds only for the subclass of algorithms performing
supersteps of degree h = Θ (n/p), and when the inputs are evenly distributed among the
processors.

Previous work on the communication required to compute an FFT DAG of size n is
similar to previous work for sorting. By exploiting the property that, as shown in [34], the
cascade of three FFT networks has the topology of a full sorting network, the aforementioned
lower bounds for sorting also hold for the FFT DAG. In a recent paper [9], we obtain the
same result assuming that the maximum number of outputs held by any processor at the end
of the algorithm is at most n/2, and without assumptions on the distribution of the input
and of the computational loads; while these hypotheses are not equivalent to the one we are
using in this paper, the result in [9] is the closest to the one that we will develop in Section 5.

Our contribution. In this paper we present lower bounds on the communication complexity
required by key computational problems such as standard matrix multiplication, stencil
computations, comparison sorting, and the Fast Fourier Transform, when solved by parallel
algorithms on the BSP model. These results, which are all tight for the whole range of model
parameters, rely on the hypothesis that no processor performs more than a constant fraction
of the total required work. More formally, let W be the total work required by any algorithm
to solve the given problem (if the problem is represented by a directed acyclic graph, then W
is the number of nodes of the DAG, otherwise W is a lower bound on the computation time
required by any sequential algorithm), and letW be the maximum amount of work performed
by any BSP processor; then, W is assumed to satisfy the bound W ≤ εW , for some constant
ε ∈ (0, 1). The rationale behind this approach is that communication is the major bottleneck
of a distributed-memory computation unless the latter is sequential or “nearly sequential”,
in which case the main contribution to the running time T of an algorithm comes from
computation. Since it is directly linked to the running time metric, and it does not allow for
any other restrictive assumptions suggested by orthogonal constraints, we believe that this is
the right approach to perform a systematic analysis of the communication requirements of
distributed-memory computations.

M. Scquizzato and F. Silvestri 631

We emphasize that, in contrast to previous work, our lower bounds do not count the
communication required to acquire the input, allow for any initial distribution of the input
among the processors’ local memories, assume no upper bound on the sizes of the latter,
and do not require computations to be balanced. On the other hand, some of our results
make use of additional technical assumptions, such as the non-recomputation of intermediate
results in the course of the computation, or some restrictions on the replication of input
data. Such restrictions, however, were already in place in almost all of the corresponding
state-of-the-art lower bounds.

A full version of the paper can be found in [27].

2 Matrix Multiplication

In this section we consider the problem of multiplying two n× n matrices, A and B, using
only semiring operations, that is, addition and multiplication. Hence, each element ci,j of
the output matrix C is an explicit sum of products ai,k · bk,j , which are called multiplicative
terms. This rules out, e.g., Strassen’s algorithm and the Boolean matrix multiplication
algorithm of Tiskin [30]. As shown in [19], any algorithm using only semiring operations
must compute at least n3 distinct multiplicative terms.

In this section we establish a lower bound on the communication complexity of any
parallel algorithm for matrix multiplication on a BSP with p processors. This result is
derived assuming that no processor performs more than a constant fraction of the n3 total
work required by any algorithm, measured as the number of scalar multiplications, and that
each input element is initially stored in the local memory of exactly one processor. The
bound has the form of Ω

(
W 2/3), where W is the maximum number of multiplicative terms

evaluated by a processor, and is tight for all values of p between two and n2. The argument
through which we establish such a result is a repeated application of a “bandwidth” argument
which, loosely speaking, is as follows. Consider a processor which performs the maximum
amount of work. If this processor initially holds “few” input values, then, since it computes at
least n3/p multiplicative terms, it must receive “many” inputs from the submachine including
the other processors; otherwise, if it initially holds “many” inputs, then it has to send many
of them to the other processors, because it cannot perform too much work on its own, and
thus the other processors have to perform at least a constant fraction of the total work. The
lower bound applies to any distribution of input and output matrices, and only requires that
the input matrices are not initially replicated.

Towards this end, we first establish a lower bound of Ω
(
n2) under the same hypotheses

outlined above for two processors. This result is derived using a bandwidth argument that
bounds from below the amount of data that must travel across the communication network
of a two-processor machine. A bound of the same form can be found in [17, Section 6],
which holds only when the elements of the input matrices A and B are evenly, or almost
evenly, distributed among the two processors. Our result, which instead allows any initial
distribution of the input matrices (without replication), establishes the same bound by using
a mild hypothesis on the maximum computation load faced by the processors. Due to space
constraints, the proof of the result is deferred to the full version of the paper.

I Lemma 1. Let A be any algorithm for computing the matrix product C = AB, using only
semiring operations, on a BSP with two processors. If each processor computes at most εn3

multiplicative terms, where ε is an arbitrary constant in [1/2, 1), and the input matrices are
not initially replicated, then the communication complexity of the algorithm is

HA(n, p) = Ω
(
n2) .

STACS’14

632 Communication Lower Bounds for Distributed-Memory Computations

Now we can prove the main result of this section. The following theorem establishes an
Ω
(
W 2/3) lower bound to the communication complexity of any standard algorithm, where

W denotes the maximum number of multiplicative terms evaluated by a processor. By the
result of [19] and by the pigeonhole principle, there exists a processor that computes at least
n3/p multiplicative terms, from which the standard Ω

(
n2/p2/3) lower bound follows.

I Theorem 2. Let A be any algorithm for computing the matrix product C = AB, using only
semiring operations, on a BSP with p processors, where 1 < p ≤ n2, and let W be the max-
imum number of multiplicative terms evaluated by a processor. If W ≤ max{n3/p, n3/113},
and the input matrices are not initially replicated, then the communication complexity of the
algorithm is

HA(n, p) = Ω
(
W 2/3

)
.

Proof. Without loss of generality, we assume that any multiplicative term computed by the
processors is actually used towards the computation of some entry of the output matrix C
(that is, processors do not perform “useless” computations). Consider one of the processors
that compute W multiplicative terms, and without loss of generality let P0 denote such a
processor. Let I be the number of input elements initially held by this processor in its local
memory.

Consider first the case I ≤W 2/3/5. By [16, Lemma 6.1], a processor that computes W
multiplicative terms either accesses, during the whole execution of algorithm A, at least
(W/2)2/3 input elements, or computes multiplicative terms relative to at least (W/2)2/3

elements of the output matrix. In the first case, since P0 initially holds I ≤W 2/3/5 input
elements, it must receive at least (W/2)2/3− I = Ω

(
W 2/3) data words from other processors,

and the theorem follows. On the other hand, suppose P0 computes multiplicative terms
relative to (W/2)2/3 entries of the output matrix, and partition such entries into three groups:
G1, the set of entries whose multiplicative terms have all been computed by the processor;
G2, the set of entries produced by the processor but for which some multiplicative term
or partial sum has been communicated by some other processor; G3, the set of entries not
produced by the processor. Clearly, at least one of these three groups must have size at
least (W/2)2/3/3. If |G1| ≥ (W/2)2/3/3, then P0 must have computed at least n(W/2)2/3/3
multiplicative terms, and since any entry of the input matrices occurs in only n of such
terms, the processor must have received (W/2)2/3/3 − I = Ω

(
W 2/3) elements from other

processors. A similar argument applies to both G2 and G3.
Now suppose I > W 2/3/5 and p ≥ 113. Note that in this case, since p ≥ 113, it holds

that W ≤ n3/113. Assume, without loss of generality, that P0 initially holds at least I/2
elements of matrix A. Since any entry of the input matrices occurs in n multiplicative terms,
there are at least In/2 multiplicative terms that depend on the entries of A initially held by
the processor. Since W multiplicative terms are computed by the processor, the remaining
In/2−W ≥W 2/3n/10−W 2/3n/11 = W 2/3n/110 ones are computed by other processors.
Since, by hypothesis, each entry of A is initially non-replicated and a processor can compute at
most n multiplicative terms using a single entry of A, we have that (In/2−W)/n ≥W 2/3/110
messages are required for sending the appropriate entries of A to the processors that will
compute the remaining entries. Hence, HA(n, p) ≥W 2/3/110.

Finally, when I > W 2/3/5 and p < 113, the sought lower bound follows by Lemma 1.
Indeed, the p processors can be virtually partitioned into two subsets, each consisting of
exactly p/2 processors; in particular, processor P ∗0 will be identified with the submachine
including the first half of the p processors, and P ∗1 with the submachine including the second
half. Since p < 113, by hypothesis each BSP processor computes at most n3/p multiplicative

M. Scquizzato and F. Silvestri 633

terms, and thus both P ∗0 and P ∗1 compute at most (n3/p)(p/2) = n3/2 multiplicative terms
overall. Hence we can apply Lemma 1 to processors P ∗0 and P ∗1 , obtaining the desired
result. J

The proposed bound is tight and is matched by the algorithm that decomposes the
problem into n3/W ≤ p subproblems of size W 1/3 ×W 1/3, and then solves each subproblem
sequentially in each round. Since W ≥ n3/p, the minimum communication complexity is
Ω
(
n2/p2/3), which is achieved by the standard 3D algorithm (see, e.g., [17]).

3 Stencil Computations

A stencil defines the computation of an element in a (d− 1)-dimensional spatial grid at time
t as a function of neighboring grid elements at time t − 1, . . . , t − τ , for some value τ ≥ 1
and constant d > 1 (see, e.g., [14]). We provide an Ω

(
nd−1/p(d−2)/(d−1)) lower bound to the

communication complexity of any algorithm evaluating n time steps of a (d− 1)-dimensional
stencil. For simplicity we assume τ = 1, however our bounds still apply in the general case.
The bound follows by investigating the (n, d)-stencil problem, which consists in evaluating
all nodes of a d-dimensional array DAG of size n. A d-dimensional array DAG has nd nodes
〈i0, . . . , id−1〉, for each 0 ≤ i0, . . . , id−1 < n, and there is an arc from 〈i0, . . . , ik, . . . , id−1〉
to 〈i0, . . . , ik + 1, . . . , id−1〉, for each 0 ≤ k < d and 0 ≤ i0, . . . , id−1 < n− 1. Observe that
〈0, . . . , 0〉 and 〈n− 1, . . . , n− 1〉 are the single input and output nodes, respectively. A lower
bound to the (n, d)-stencil problem applies to the computation of n steps of a stencil: indeed,
the DAG given by the (d−1)-dimensional grid plus the time dimension spans a d-dimensional
spacetime containing an (n/2, d)-array as a subgraph.

Our result hinges on the restriction on the nature of the computation whereby each vertex
of the DAG is computed exactly once. In this setting, the crucial property is that for each arc
(u, v) such that u is computed by processor P and v is computed by processor P ′, P 6= P ′,
there corresponds a message from P to P ′ (which may also cross other processors). Such
arcs are referred to as communication arcs.

We now introduce some preliminary definitions, which will be used throughout the section.
We envision an (n, d)-stencil DAG as partitioned into pd/(d−1) smaller d-dimensional arrays,
called blocks, of size n/p1/(d−1), and denote each block with Bi0,...,id−1 for 0 ≤ i0, . . . , id−1 <

p1/(d−1). Block Bi0,...,id−1 contains nodes 〈i′0, . . . , i′d−1〉, for each ikn/p1/(d−1) ≤ i′k < (ik +
1)n/p1/(d−1). A block has nd/pd/(d−1) nodes, and is said `-owned if more than half of its
nodes are evaluated by processor P`, with 0 ≤ ` < p. A block is owned if there exists some
`, with 0 ≤ ` < p, such that it is `-owned; it is shared otherwise. Two blocks Bi0,...,id−1

and Bi′0,...,i′
d−1

are said to be adjacent if their coordinates differ in just one position k and
|ik − i′k| = 1 (i.e., they share a face). For the sake of simplicity, we assume that n and p
are powers of 2d−1 and thus the previous values (e.g., n/p1/(d−1)) are integral: since d is a
constant, this assumption is verified by suitably increasing n and decreasing p by a constant
factor which does not asymptotically affect our lower bounds.

In order to establish our main lower bound, we need two preliminary lemmas (whose
proofs are deferred to the full version). The first one gives a slack lower bound based on the
d-dimensional version of the Loomis-Whitney geometric inequality [21], and resembles the
result of Theorem 2 for matrix multiplication when d = 3.

I Lemma 3. Let Ad be any algorithm solving the (n, d)-stencil problem, without recomputa-
tion, on a BSP with p processors, where 1 < p ≤ nd−1, and denote with W the maximum
number of nodes evaluated by a processor. If W ≤ εnd, for an arbitrary constant ε ∈ (0, 1),

STACS’14

634 Communication Lower Bounds for Distributed-Memory Computations

then the communication complexity of the algorithm is

HAd
(n, p) = Ω

(
W (d−1)/d

)
.

Now we need a second lemma that bounds from below the number of messages exchanged
by a processor P` while evaluating nodes in an `-owned block and in an adjacent block which
is not `-owned.

I Lemma 4. Consider an `-owned block B adjacent to a shared or `′-owned block B′, with
` 6= `′. Then, the number of messages exchanged by processor P` for evaluating, without
recomputation, nodes in B and B′ is Ω

(
nd−1

p

)
.

The next theorem gives the claimed Ω
(
nd−1/(p(d−2)/(d−1))

)
lower bound, and its proof is

inspired by the argument in [31] for the cube DAG (which however assumes balanced work).
The lower bound is matched by the balanced algorithm given in [31], which decomposes the
(n, d)-stencil into pd/(d−1) subDAGs of dimension d and size n/p1/(d−1). The proof of the
theorem is deferred to the full version.

I Theorem 5. Let Ad be any algorithm for solving the (n, d)-stencil problem, without
recomputation, on a BSP with p processors, where 1 < p ≤ nd−1, and let W be the maximum
number of nodes evaluated by a processor. If W ≤ εnd, for an arbitrary constant ε ∈ (0, 1),
then the communication complexity of the algorithm is

HAd
(n, p) = Ω

(
nd−1

p(d−2)/(d−1)

)
.

4 Sorting

In this section we give a lower bound to the communication complexity of comparison-based
sorting algorithms. Comparison sorting is defined as the problem in which a given set X of
n input keys from an ordered set has to be sorted, such that the only operations allowed on
members of X are pairwise comparisons. Our bound only requires that no processor does
more than a constant fraction ε of the Θ (n logn) comparisons required by any comparison
sorting algorithm, for any ε ∈ (0, 1), and does not impose any protocol on the distribution
of the inputs and the outputs on the processors, nor upper bounds to the size of their
local memories, or specific communication patterns. As for previous work, we still need the
technical assumptions that the inputs are not initially replicated, and that the processors
store only a constant number of copies of any input key at any moment during the execution
of the algorithm.

The main result follows from the application of two lemmas, each of which provides a
different and independent lower bound to the communication complexity of sorting. Both
rely on non-trivial counting arguments, adapted from [2, 1], that hinge on the fact that any
comparison sorting algorithm must be able to distinguish between all the n! permutations of
the n inputs. The first lemma provides a lower bound as a function of the maximum number
S of input keys initially held by a processor. The second gives a lower bound as a function
of the number Π of permutations that can be distinguished before any communications take
place. We begin by stating the first lemma.

I Lemma 6. Let A be any algorithm sorting n keys on a BSP with p processors, with
1 < p ≤ n, and let S denote the maximum number of input keys initially held by a processor.
If each processor performs at most ε(n logn) comparisons, with ε being an arbitrary constant

M. Scquizzato and F. Silvestri 635

in (0, 1), and the input is not initially replicated, then the communication complexity of the
algorithm is

HA(n, p) = Ω (S) .

We now provide a second lemma, which bounds from below the communication complexity
of sorting in BSP as a function of the number Π of permutations that can be distinguished
before any communications take place, that is, when processors can only compare their local
inputs.

I Lemma 7. Let A be any algorithm sorting n keys on a BSP with p processors, where
1 < p ≤ n, and let Π be the number of distinct permutations that can be distinguished by A
before the second superstep, that is, by comparing the inputs that (possibly) reside initially in
the processors’ local memories. If A stores only a constant number of copies of any key at
any time instant, then the communication complexity of the algorithm is

HA(n, p) = Ω
(
n logn− log Π
p log(n/p)

)
.

Now we are ready to prove the main result of this section, an Ω ((n logn)/(p log(n/p)))
lower bound to the communication complexity of any comparison sorting algorithm. The
result follows by combining the bounds given by the previous two lemmas. Both bounds are
not tight when considered independently, the first (Lemma 6) because it is weak when at the
beginning the input keys tend to be distributed evenly among the processors, the second
(Lemma 7) because it is weak when the input keys tend to be concentrated on one or few
processors. However, the simultaneous application of both provides the sought (tight) lower
bound. Once again, the proof of the following theorem is deferred to the full version.

I Theorem 8. Let A be any algorithm for sorting n keys on a BSP with p processors, with
1 < p ≤ n. If each processor performs at most ε(n logn) comparisons, with ε being an
arbitrary constant in (0, 1), the inputs are not initially replicated, and the p processors store
only a constant number of copies of any key at any time instant, then the communication
complexity of the algorithm is

HA(n, p) = Ω
(

n logn
p log(n/p)

)
.

5 Fast Fourier Transform

In this section we consider the problem of computing the Discrete Fourier Transform of n
values using the n-input FFT DAG. In the FFT DAG, a vertex is a pair 〈w, l〉, with 0 ≤ w < n

and 0 ≤ l ≤ logn, and there exists an arc between two vertices 〈w, l〉 and 〈w′, l′〉 if l′ = l+ 1,
and either w and w′ are identical or their binary representations differ exactly in the l′-th
bit. We show that, when no processor computes more than a constant fraction of the total
number of vertices of the DAG, the communication complexity is Ω (n logn/(p log(n/p))).
Our bound does not assume any particular I/O protocol, and only requires that every input
resides in the local memory of exactly one processor before the computation begins; as for
preceding results, our bound also hinges on the restriction on the nature of the computation
whereby each vertex of the FFT DAG is computed exactly once. The bound is tight for any
p ≤ n, and is achieved by the well-known recursive decomposition of the DAG into two sets
of smaller

√
n-input FFT DAGs with each set containing

√
n of such subDAGs (see, e.g., [7]).

STACS’14

636 Communication Lower Bounds for Distributed-Memory Computations

We will first establish a lemma which, under the same hypothesis of the main result,
provides a lower bound to the communication complexity as a function of the maximum
work performed by any processor. The proof of the lemma (which, for space limitations, is
deferred to the full version) is based on a bandwidth argument, which exploits the fact that
an FFT DAG can perform all cyclic shifts (see, e.g., [20]), and on the following technical
result which is implicit in the work of Hong and Kung (a simplified proof is due to Aggarwal
and Vitter [2]).

I Lemma 9 ([16]). Consider the computation of the n-input FFT DAG. During the com-
putation, if a processor accesses at most S nodes of the DAG, then it can evaluate at most
2S logS nodes, for any S ≥ 2.

I Lemma 10. Let A be any algorithm computing, without recomputation, an n-input FFT
DAG on a BSP with p processors, with 1 < p ≤ n, and let W be the maximum number of
nodes of the FFT DAG computed by a processor. If W ≤ ε(n logn), for an arbitrary constant
in (0, 1), and the inputs are not initially replicated, then the communication complexity of
the algorithm is

HA(n, p) = Ω
(

W

logW

)
.

The main result of this section follows by a simple application of the preceding lemma
and of a result implicit in the proof of the lower bound due to Bilardi et al. [9, Corollary 1].
The proof is deferred to the full version.

I Theorem 11. Let A be any algorithm computing, without recomputation, an n-input FFT
DAG on a BSP with p processors, where 1 < p ≤ n. If each processor computes at most
ε(n logn) nodes, for an arbitrary constant in (0, 1), of the FFT DAG and the inputs are not
initially replicated, then the communication complexity of the algorithm is

HA(n, p) = Ω
(

n logn
p log(n/p)

)
.

6 Conclusions

We have presented new lower bounds on the amount of communication required to solve
some key computational problems in distributed-memory parallel architectures. All our
bounds have the same functional form of previous results that appear in the literature;
however, the latter are built by making a critical use of some assumptions that rule out a
large part of possible algorithms. The novelty and the significance of our results stem from
the assumptions under which our lower bounds are developed, which are much weaker than
those used in previous work.

Our bounds are derived within the BSP model of computation, but can be easily extended
to other models for distributed computations based on or similar to the BSP, such as LogP [13]
and MapReduce [18, 23]. Moreover, we believe that our results can be also ported to models
for multicore computing (see, e.g., [10, 33, 12]), since our proofs are based on some techniques
that have already been exploited in this scenario.

There is still much to do towards the establishment of a definitive theory of communication-
efficient algorithms. In fact, we were not able to remove all the restrictions there were in place
in previous work: in some cases our lower bounds still make use of some technical assumptions,
such as the non-recomputation of intermediate results, or restrictions on the replication of

M. Scquizzato and F. Silvestri 637

input data. Although it seems that such restrictions can be relaxed to encompass a small
amount of recomputation or input replication, it is an open question to assess whether these
assumptions are inherent to our proof techniques or can be removed. In particular, it is
not clear, in general, when recomputation has the power to reduce communications, since
many lower bound techniques do not apply in this more general scenario (see, e.g., [5]).
Providing tight lower bounds that hold also when recomputation is allowed is a fascinating
and challenging avenue for future research.

Acknowledgements. The authors would like to thank Gianfranco Bilardi and Andrea
Pietracaprina for useful comments.

References
1 Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Communication complexity of PRAMs.

Theoretical Computer Science, 71:3–28, 1990.
2 Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.
3 Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. Brief an-

nouncement: strong scaling of matrix multiplication algorithms and memory-independent
communication lower bounds. In Proc. 24th ACM Symposium on Parallelism in Algorithms
and Architectures, pages 77–79, 2012.

4 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Minimizing communication
in numerical linear algebra. SIAM J. on Matrix Analysis and Applications, 32(3):866–901,
2011.

5 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Graph expansion and
communication costs of fast matrix multiplication. J. of the ACM, 59(6):32:1–32:23, 2012.

6 Gianfranco Bilardi, Andrea Pietracaprina, and Paolo D’Alberto. On the space and ac-
cess complexity of computation DAGs. In Proc. 26th International Workshop on Graph-
Theoretic Concepts in Computer Science, pages 47–58, 2000.

7 Gianfranco Bilardi, Andrea Pietracaprina, Geppino Pucci, and Francesco Silvestri.
Network-oblivious algorithms. In Proc. 21st IEEE International Parallel and Distributed
Processing Symposium, pages 1–10, 2007.

8 Gianfranco Bilardi and Franco Preparata. Processor-time tradeoffs under bounded-speed
message propagation: Part II, lower bounds. Theory of Computing Systems, 32(5):531–559,
1999.

9 Gianfranco Bilardi, Michele Scquizzato, and Francesco Silvestri. A lower bound technique
for communication on BSP with application to the FFT. In Proc. 18th International
Conference on Parallel Processing, pages 676–687, 2012.

10 Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran, Shimin
Chen, and Michael Kozuch. Provably good multicore cache performance for divide-and-
conquer algorithms. In Proc. 19th ACM-SIAM Symposium on Discrete Algorithms, pages
501–510, 2008.

11 Thomas Cheatham, Amr F. Fahmy, Dan C. Stefanescu, and Leslie G. Valiant. Bulk syn-
chronous parallel computing – a paradigm for transportable software. In Proc. 28th Hawaii
International Conference on System Sciences, pages 268–275, 1995.

12 Rezaul Alam Chowdhury, Vijaya Ramachandran, Francesco Silvestri, and Brandon Blakeley.
Oblivious algorithms for multicores and networks of processors. Journal of Parallel and
Distributed Computing, 73(7):911–925, 2013.

13 David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Eunice E. Santos,
Klaus E. Schauser, Ramesh Subramonian, and Thorsten von Eicken. LogP: A practical
model of parallel computation. Communications of the ACM, 39(11):78–85, 1996.

STACS’14

638 Communication Lower Bounds for Distributed-Memory Computations

14 Matteo Frigo and Volker Strumpen. Cache oblivious stencil computations. In Proc. 19th
International Conference on Supercomputing, pages 361–366, 2005.

15 Michael T. Goodrich. Communication-efficient parallel sorting. SIAM Journal on Comput-
ing, 29(2):416–432, 1999.

16 Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proc. 13th
ACM Symposium on Theory of Computing, pages 326–333, 1981.

17 Dror Irony, Sivan Toledo, and Alexandre Tiskin. Communication lower bounds for
distributed-memory matrix multiplication. Journal of Parallel and Distributed Comput-
ing, 64(9):1017–1026, 2004.

18 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
MapReduce. In Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pages
938–948, 2010.

19 Leslie Robert Kerr. The Effect of Algebraic Structure on the Computational Complexity of
Matrix Multiplication. PhD thesis, Cornell University, 1970.

20 Frank T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann Publishers Inc., 1992.

21 L.H. Loomis and H. Whitney. An inequality related to the isoperimetric inequality. Bulletin
of The American Mathematical Society, 55:961–962, 1949.

22 Christos H. Papadimitriou and Jeffrey D. Ullman. A communication-time tradeoff. SIAM
Journal on Computing, 16(4):639–646, 1987.

23 Andrea Pietracaprina, Geppino Pucci, Matteo Riondato, Francesco Silvestri, and Eli Upfal.
Space-round tradeoffs for MapReduce computations. In Proc. 26th International Confer-
ence on Supercomputing, pages 235–244, 2012.

24 Desh Ranjan, John Savage, and Mohammad Zubair. Strong I/O lower bounds for bino-
mial and FFT computation graphs. In Proc. 17th Annual International Conference on
Computing and Combinatorics, pages 134–145, 2011.

25 John E. Savage. Extending the Hong-Kung model to memory hierarchies. In Proc. First
Annual International Conference on Computing and Combinatorics, pages 270–281, 1995.

26 John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-
Wesley Longman Publishing Co., Inc., 1998.

27 Michele Scquizzato and Francesco Silvestri. Communication lower bounds for distributed-
memory computations. CoRR, abs/1307.1805, 2013.

28 Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5D matrix mul-
tiplication and LU factorization algorithms. In Proc. 17th International Conference on
Parallel Processing, pages 90–109, 2011.

29 Alexander Tiskin. BSP (bulk synchronous parallelism). In Encyclopedia of Parallel Com-
puting, pages 192–199. Springer, 2011.

30 Alexandre Tiskin. Bulk-synchronous parallel multiplication of Boolean matrices. In Proc.
25th Int’l Colloquium on Automata, Languages and Programming, pages 494–506, 1998.

31 Alexandre Tiskin. The Design and Analysis of Bulk-Synchronous Parallel Algorithms. PhD
thesis, University of Oxford, 1998.

32 Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

33 Leslie G. Valiant. A bridging model for multi-core computing. Journal of Computer and
System Sciences, 77(1):154–166, 2011.

34 Chuan-Lin Wu and Tse-Yun Feng. The universality of the shuffle-exchange network. IEEE
Transactions on Computers, 30:324–332, 1981.

35 I-Chen Wu and H. T. Kung. Communication complexity for parallel divide-and-conquer. In
Proc. 32nd annual Symposium on Foundations of Computer Science, pages 151–162, 1991.

Stochastic Scheduling on Unrelated Machines ∗

Martin Skutella1, Maxim Sviridenko2, and Marc Uetz3

1 TU Berlin, Institut für Mathematik, Berlin, Germany
martin.skutella@tu-berlin.de

2 University of Warwick, Department of Computer Science, Coventry, United
Kingdom
sviri@dcs.warwick.ac.uk

3 University of Twente, Department of Applied Mathematics, Enschede, The
Netherlands
m.uetz@utwente.nl

Abstract
Two important characteristics encountered in many real-world scheduling problems are hetero-
geneous processors and a certain degree of uncertainty about the sizes of jobs. In this paper we
address both, and study for the first time a scheduling problem that combines the classical un-
related machine scheduling model with stochastic processing times of jobs. Here, the processing
time of job j on machine i is governed by random variable Pij , and its realization becomes known
only upon job completion. With wj being the given weight of job j, we study the objective to
minimize the expected total weighted completion time E

[∑
j wjCj

]
, where Cj is the completion

time of job j. By means of a novel time-indexed linear programming relaxation, we compute in
polynomial time a scheduling policy with performance guarantee (3+∆)/2+ε. Here, ε > 0 is ar-
bitrarily small, and ∆ is an upper bound on the squared coefficient of variation of the processing
times. When jobs also have individual release dates rij , our bound is (2 + ∆) + ε. We also show
that the dependence of the performance guarantees on ∆ is tight. Via ∆ = 0, currently best
known bounds for deterministic scheduling on unrelated machines are contained as special case.

1998 ACM Subject Classification F.2.2 Sequencing and Scheduling, G.2.1 Combinatorial Al-
gorithms, G.1.6 Optimization

Keywords and phrases Stochastic Scheduling, Unrelated Machines, Approximation Algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.639

1 Introduction

Deterministic scheduling. The problem to minimize the total weighted completion time on
unrelated parallel machines, denoted R | (rij) |

∑
wjCj in the three-field notation of Graham

et al. [8], is one of the most important classical problems in the theory of deterministic
scheduling. Each job j has a weight wj , possibly an individual release date rij before which
job j must not be scheduled on machine i, and the processing time of job j on machine i
is pij . Each job has to be processed non preemptively on any one of the machines, and each
machine can process at most one job at a time. The objective is to find a schedule minimizing

∗ The first author was supported by the DFG Research Center Matheon “Mathematics for key technologies”
in Berlin and by the DFG Focus Program 1307 within the project “Algorithm Engineering for Real-
time Scheduling and Routing”. The second author was supported by EPSRC grants EP/J021814/1,
EP/D063191/1, FP7 Marie Curie Career Integration Grant and Royal Society Wolfson Research Merit
Award. The third author was supported by the Centre for Telematics and Information Technology
(CTIT) of the University of Twente.

© Martin Skutella, Maxim Sviridenko, and Marc Uetz;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 639–650

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.639
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

640 Stochastic Scheduling on Unrelated Machines

the total weighted completion time
∑
j wjCj , where Cj denotes the completion time of job j

in the schedule. The special case with identical parallel machines is already known to be
strongly NP-hard [12] but there do exist polynomial time approximation schemes [1, 28].
The general setting of unrelated parallel machines turns out to be significantly harder and
there is a complexity gap compared to identical parallel machines: Hoogeveen et al. [11]
prove MaxSNP-hardness and hence there is no polynomial time approximation scheme. On
the positive side, the currently best known approximation algorithms for unrelated parallel
machines have performance guarantees 3/2 and 2, for the problem without and with release
dates, respectively [4, 23, 25, 26]. Improving these bounds is considered to be among the
most important open problems in scheduling [24] which is also an indication of the high
significance of unrelated machine scheduling.

Stochastic scheduling. We consider for the first time the stochastic variant of unrelated
machine scheduling. Here, the processing time of a job j on machine i is given by random
variable Pij . In stochastic scheduling, we are asked to compute a non-anticipatory scheduling
policy. Roughly spoken, a scheduling policy makes scheduling decisions at certain decision
times t, and these decisions are based on the observed past up to time t as well as the a
priori knowledge of the input data of the problem. The policy, however, must not anticipate
information about the future, such as the actual realizations of the processing times of
jobs which have not yet been completed by time t. We refer to Möhring et al. [16] for
the formal definition of stochastic scheduling policies, and here confine ourselves with an
intuitive description that puts stochastic scheduling in the framework of stochastic dynamic
optimization: Actions of a scheduling policy at a time t consists of a set of jobs, possibly
empty, to be started on a set of idle machines, together with a tentative next decision
time t∗ > t. The next action of the policy is due at t∗, or the time of the next job completion,
or the time when the next job is released, whatever occurs first. Depending on the action of
the policy, the next decision time as well as the state of the schedule at the next decision time
is realized according to the probability distributions of the jobs’ processing times. A non-
anticipatory policy may learn over time, but it has only access to distributional information
about remaining processing times of unfinished jobs, conditioned on the state of the schedule
at time t.1 As all previous work in the area, we assume that the random variables Pij are
stochastically independent across jobs. For any given non-anticipatory scheduling policy, the
possible outcome of the objective function

∑
j wjCj is a random variable, and our goal is to

minimize its expected value, which by linearity of expectation equals
∑
j wjE[Cj].

Related work. Generalizing a well known result of Smith [29] for deterministic single
machine scheduling, Rothkopf [19] proved in 1966 that the WSEPT rule2 minimizes the
expected total weighted completion time on a single machine. Apart from Weiss’ results
on the asymptotic optimality of WSEPT in stochastic scheduling on identical parallel
machines [32, 33], the first constant factor approximation algorithms for stochastic scheduling
on identical parallel machines have been obtained in 1999 by Möhring et al. [17]. Next to
a linear programming (LP) based analysis of the WSEPT rule, they define list scheduling

1 A concrete example may help: Imagine a job j which has processing time either small (ε) or large (M),
both with probability 1/2. For a scheduling policy that starts this job at time t, it can make sense to
define a tentative next decision time at t∗ = t + ε, because then it learns with certainty what the actual
processing time of job j is. Using such building blocks, one can even show that an optimal scheduling
policy is generally not work conserving, i. e., machines are left deliberately idle [31].

2 Weighted shortest expected processing time first: schedule jobs in order of non-increasing ratios wj/E[Pj].

M. Skutella, M. Sviridenko, and M. Uetz 641

Table 1 Performance bounds for nonpreemptive stochastic machine scheduling problems. Para-
meter ε > 0 can be chosen arbitrarily small. Parameter ∆ upper bounds the squared coefficient of
variation CV2[Pij] = Var[Pij]/E2[Pij] for all Pij . The third column shows the results for CV[Pij] ≤ 1;
e. g., uniform, exponential, or Erlang distributions. As usual in stochastic scheduling, these bounds
hold with respect to the expected performance of any non-anticipatory scheduling policy.

stochastic scheduling worst case performance guarantee reference
model arbitrary Pij CV[Pij] ≤ 1

P | |E
[∑

wjCj

]
1 + (m−1)(∆+1)

2m
2− 1/m [17]

P | rj |E
[∑

wjCj

]
2 + ∆ 3 [22]

R | |E
[∑

wjCj

]
1 + ∆+1

2 + ε 2 + ε this paper

R | rij |E
[∑

wjCj

]
2 + ∆ + ε 3 + ε this paper

policies which are based on linear programming relaxations in completion time variables.
The performance bounds are constant whenever the coefficients of variation of the jobs’
processing times are bounded by a constant. As usual in stochastic scheduling, all bounds
hold with respect to any non-anticipatory scheduling policy. By using an idea from Chekuri
et al. [2], that approach was extended to stochastic scheduling problems with precedence
constrains by Skutella and Uetz [27]. Subsequently, in line with earlier work by Chou et
al. [3], Megow et al. [14] combined the stochastic scheduling model with online scheduling,
and derived combinatorial, constant competitive algorithms that are not guided by linear
programming relaxations. Yet all results, including the analysis in [14], are based on one and
the same linear programming relaxation, namely that of [17]. With respect to the underlying
relaxation, Schulz [22] goes one step further, and uses the mean busy time relaxation that was
previously used also by Correa and Wagner [5], yet its validity in stochastic scheduling still
relies on the validity of the completion time relaxation of [17]. Nevertheless, in comparison
to [14], the clever use of an optimal solution to an equivalent time-indexed LP relaxation for
deterministic scheduling yields improved and simpler results.

Two other research directions are related to our work, yet for different models and
independent of the techniques of [17] as well as ours. One is approximation algorithms for
preemptive stochastic scheduling by Megow and Vredeveld [15]. They use a single machine
relaxation that is optimally solved by a Gittins index policy, and thereby achieve a competitive
ratio of 2 for preemptive online stochastic scheduling on parallel identical machines. The
other is work by Scharbrodt et al. [20] and Souza and Steger [30], who analyze the expected
competitive ratio rather than the expected performance of a policy. In that model, one
analyzes the ratio E[v(Π)/v(Offline-Opt)], while we follow [14, 17, 22, 27] and focus on the
ratio E[v(Π)]/E[v(ΠOpt)] instead.

Note that all results discussed here are restricted to identical parallel machines. Table 1
gives an overview of currently best known performance bounds in nonpreemptive stochastic
scheduling with minsum objective, next to the results obtained in this paper.

With respect to algorithmic ideas and techniques, the evolution of stochastic scheduling
has largely benefited in the past from progress being made for the corresponding deterministic
scheduling problems. For example, all LP-based approximation results for stochastic schedul-
ing on identical parallel machines outlined above build upon a class of linear programming
relaxations in completion time variables that dates back to Wolsey [34] and Queyranne [18]
(for single machine scheduling), and was later generalized to identical parallel machines by

STACS’14

642 Stochastic Scheduling on Unrelated Machines

Schulz [21] and Hall et al. [10] who also presented LP-based approximation algorithms for
deterministic scheduling problems.

Our contribution. We obtain the first approximation algorithms for stochastic scheduling
on unrelated machines. Despite the fact that the unrelated machine scheduling model is
significantly richer than identical machine scheduling, our bounds essentially match all
previous performance bounds that have been obtained for the corresponding stochastic
scheduling problems on identical parallel machines; see Table 1. We also give a tight lower
bound, showing that the dependence of the performance bound on the squared coefficient
of variation ∆ is unavoidable for the class of policies that we use. For the first time we
completely depart from the LP relaxation of Möhring et al. [17], and show how to put a
novel, time-indexed linear programming relaxation to work in stochastic machine scheduling.
We are optimistic that this novel approach will inspire further research and prove useful for
other stochastic optimization problems in scheduling and related areas.

Time-indexed linear programming relaxations have played a pivotal role in the development
of constant factor approximation algorithms for deterministic scheduling on unrelated parallel
machines [23]. In spite of that, it remained unclear and a major open problem how to come
up with a meaningful time-indexed LP relaxation for stochastic scheduling problems [13].
Here the main difficulty is that, in contrast to deterministic schedules that can be fully
described by time-indexed 0-1-variables, scheduling policies feature a considerably richer
structure including complex dependencies between the execution of different jobs which
cannot be easily described by time-indexed variables.

In Section 3 we show how to overcome this difficulty and present the first time-indexed
LP relaxation for stochastic scheduling on unrelated parallel machines. Here, the value of the
time-indexed variable xijt represents the probability of job j being started on machine i at
time t.3 While writing down the machine capacity constraints4 is rather easy for deterministic
scheduling in this formulation, the situation is somewhat more complicated in the stochastic
setting and we require a fair amount of information about the exact probability distributions
of random variables Pij .

Notice that, due to the stochastic nature of processing times, even a schedule produced
by an optimal policy can be arbitrarily long such that infinitely many variables xijt may
take positive values. Nonetheless, in the full version of the paper we show how to overcome
this difficulty. Indeed, we can compute an LP-solution in polynomial time that approximates
the optimal LP solution with arbitrary precision.

In Section 4 we discuss how to turn a feasible solution to the time-indexed LP relaxation
into a simple scheduling policy. Our approach is inspired by the randomized rounding
algorithm for deterministic scheduling on unrelated parallel machines in [23]. Each job j is
randomly assigned to a machine i with probability

∑
t xijt; then, on each machine i, the

WSEPT policy is used to schedule the jobs assigned to i. The analysis, however, is based on
a somewhat more elaborate, random sequencing of jobs which is determined by a two-stage
random process.

Since each job is immediately and irrevocably assigned to a machine, our scheduling
policies fall into the special class of fixed assignment policies. Notice that these policies
ignore the additional information that evolves over time in the form of the actual realizations
of processing times. Not surprisingly, this ignorance comes at a price. In Section 6 we

3 Even for simple scheduling policies like the WSEPT rule, determining this probability is non-trivial.
4 The machine capacity constraints say that each machine can process at most one job at a time.

M. Skutella, M. Sviridenko, and M. Uetz 643

prove a lower bound of ∆/2 on the performance guarantee of any fixed assignment policy.
Moreover, we also show that the LP relaxation can have an optimality gap in the same order
of magnitude. These negative results nicely complement our positive results; see Table 1.

In order to keep the presentation as simple as possible, we ignore release dates and restrict
to the problem R | |E

[∑
wjCj

]
throughout most of the paper. Only in Section 5 we show

how release dates can be taken care of in our approach.

Parallel to Stochastic Knapsack. There is an interesting parallel of the present work
on stochastic scheduling with that on stochastic knapsack problems5. The first study
of approximation algorithms for stochastic knapsack problems is due to Dean et al. [6],
presenting constant factor approximation algorithms along with an analysis of the adaptivity
gap6. Their results are based on a linear programming relaxation that is essentially the
deterministic knapsack LP where item sizes and weights are replaced by expected values.
In that sense, methodology-wise their linear program parallels that of [17] in stochastic
scheduling on parallel machines. Recently, Gupta et al. [9] were able to obtain constant
factor approximation algorithms for a much broader class of stochastic knapsack problems
(and other problems, too). Key to these results is a more sophisticated, time-indexed linear
programming relaxation, based on the same type of variables as we use here. It is interesting
to note that in their paper as well as in ours, moving from “natural yet simple” LP relaxations
to richer time-indexed LP relaxations is key to more general results.

2 Notation and preliminaries

We are given a set of jobs J of cardinality n with job weights wj ∈ Z>0, j ∈ J , and a set of
unrelated parallel machines M of cardinality m. Moreover, for every job j ∈ J and every
machine i ∈ M , we are given a random variable Pij . Each job j needs to be executed on
any one of the machines i ∈M , and each machine can process at most one job at a time. If
job j is processed on machine i, its processing time is Pij . However, the actual realization
of the processing time is only known upon j’s completion and we are thus looking for a
non-anticipatory scheduling policy which minimizes the expected total weighted completion
time E

[∑
j wjCj

]
, where Cj denotes the completion time of job j.

Later, in Section 5, we consider a slightly more general model where each job j ∈ J also
comes with a machine dependent release date rij ∈ Z≥0 before which job j must not be
scheduled on machine i. One can think of applications where some job j ∈ J might not
be processed on a certain machine i ∈ M , i. e., E[Pij] = ∞. For the sake of simplicity of
presentation, we assume in this paper that E[Pij] is finite for all i ∈M and j ∈ J . But all
presented results also hold for the more general case where E[Pij] =∞ for certain pairs i, j.

Throughout this paper we assume that the random variables Pij , i ∈ M , j ∈ J , take
positive integral values only. The following lemma states that this assumption costs at most
a factor 1 + ε in the objective function value.

I Lemma 1. For any fixed ε > 0, while only loosing a factor 1 + ε in the objective function
value, an arbitrary instance can be modified such that the random variables Pij , i ∈M , j ∈ J ,
take positive integral values only.

5 Note that a stochastic knapsack problem can be reinterpreted as a single machine stochastic scheduling
problem where all jobs have due date 1, and with weighted earliness objective.

6 In stochastic scheduling, this would correspond to the gap between the best static list scheduling policy
and an optimal (adaptive) scheduling policy.

STACS’14

644 Stochastic Scheduling on Unrelated Machines

Proof. If E[Pij] = 0 and rij = 0 for some pair i, j, then we can ignore job j since it can
be scheduled at no further cost on machine i at time 0. We can thus assume from now on
that E[Pij] > 0 or rij > 0 for all pairs i, j. By scaling processing times and release dates
appropriately, we can make sure that E[Pij] ≥ n

ε or rij ≥ n
ε for each pair i, j. As a result of

this scaling step we know that, for any scheduling policy, E[Cj] ≥ n/ε for each job j ∈ J .
Rounding up all processing times to the nearest positive integer therefore increases the
(expected) completion time of any job j by at most n ≤ εE[Cj]. The overall increase in the
objective function is thus bounded by a factor 1 + ε. J

Given that all processing times are integral, we can obviously assume with no further loss
of generality that jobs can only be started at integral points in time t ∈ Z≥0. In order to write
down an LP relaxation in time-indexed variables, we require a fair amount of information
about the exact probability distributions of random variables Pij . More precisely, besides
the expectations E[Pij], we also need the values

qijr := Pr[Pij ≥ r + 1] for i ∈M , j ∈ J , and r ∈ Z≥0.

This, of course, raises questions about the input size of the problem. Here we make the
following assumption. In the input we are given, for each job j ∈ J and each machine i ∈M ,
the expected processing time E[Pij]. Moreover, we have access to an oracle which, for any
triple i, j, r returns qijr. We emphasize that, in order for our approach to work, it suffices to
get these values within some finite precision at the expense of an additional factor 1 + ε in
the performance guarantee of our algorithms. More precisely, it suffices to get the values qijr
rounded to multiples of ε/n, which, in particular, can be encoded polynomially in the input
size. Notice that such an oracle can be simulated by a polynomial-time Monte Carlo algorithm
that can sample from the distribution of the random variables Pij . Having said that, in order
to keep the presentation simple we neglect these aspects throughout the paper and assume
that we have access to the exact values qijr.

In the analysis of our algorithm we need the following standard property of the moments
of random variable Pij .

I Lemma 2. Let j ∈ J and i ∈M . Then,∑
r∈Z≥0

qijr = E[Pij] and
∑
r∈Z≥0

(r + 1
2) qijr = 1 + CV[Pij]2

2 E[Pij]2 ,

where CV[Pij]2 :=
(
E[P 2

ij]− E[Pij]2
)
/E[Pij]2 is the squared coefficient of variation of Pij.

The proof of the lemma is based on standard results for the nth moment of a random variable,
see, e. g. [7, V.6, Lemma 1].

3 Time-indexed LP relaxation

In the following we derive an LP relaxation of the stochastic scheduling problem under
consideration. For a given non-anticipatory scheduling policy Π, let xijt be the probability
that Π starts job j ∈ J on machine i ∈M at time t ∈ Z≥0. Notice that this random decision
may depend on the actual processing times of other jobs started by Π before time t. On
the other hand, due to the non-anticipatory nature of policy Π, the random variable Pij is
independent of Π’s random decision to start job j on machine i at time t.

As the xijt’s are going to be the variables of our LP relaxation, we derive crucial
properties that are going to be the constraints of the LP relaxation. If job j ∈ J is started on

M. Skutella, M. Sviridenko, and M. Uetz 645

machine i ∈M at time t ∈ Z≥0, due to the non-anticipative nature of policy Π, j’s expected
completion time is t + E[Pij]. Thus, by linearity of expectation, the expected completion
time of j is

E[Cj] =
∑
i∈M

∑
t∈Z≥0

xijt
(
t+ E[Pij]

)
.

A more careful look at j’s behavior reveals the following property. Conditioning on j being
started on machine i at time t, the probability that j is still occupying machine i within the
later time interval [s, s+ 1], s ∈ Z≥t, is equal to qij s−t by definition. Unconditioning yields

Pr
[
i processes j in [s, s+ 1]

]
=

s∑
t=0

xijt qij s−t . (1)

As machine i can process at most one job at a time, also the expected number of jobs being
processed by i in [s, s+ 1] is bounded by 1. That is, by linearity of expectation,

∑
j∈J

s∑
t=0

xijt qij s−t ≤ 1 .

Finally, since policy Π has to process all jobs, we get for every job j
∑
i∈M

∑
t∈Z≥0

xijt = 1.
Thus, the probabilities xijt corresponding to policy Π form a feasible solution to the following
LP relaxation, and the value of this LP solution x is equal to the expected value of the
schedule produced by policy Π:

min
∑
j∈J

wj C
LP
j

s.t.
∑
i∈M

∑
t∈Z≥0

xijt = 1 for all j ∈ J , (2)

∑
j∈J

s∑
t=0

xijt qij s−t ≤ 1 for all i ∈M , s ∈ Z≥0, (3)

CLP
j =

∑
i∈M

∑
t∈Z≥0

xijt (t+ E[Pij]) for all j ∈ J , (4)

xijt ≥ 0 for all j ∈ J , i ∈M , t ∈ Z≥0.

Notice that the LP variables CLP
j are uniquely determined by the x-variables and could as

well be omitted by replacing them in the objective function with the right hand side of (4).
Also notice that this linear program suffers from infinitely many variables and constraints.

We claim that this can be dealt with at the expense of an additional factor 1 + ε in the
performance guarantee of our algorithms. For a detailed discussion and formal proof, see the
full version of the paper.

I Theorem 3. The above infinite time-indexed LP relaxation can be solved in pseudo-
polynomial time in the input size. Moreover, a (1 + ε)-approximate LP solution can be found
in time polynomial in the input size and 1/ε.

4 Turning an LP solution into a scheduling policy

For a feasible LP solution x, let Xij :=
∑
t∈Z≥0

xijt for i ∈ M , j ∈ J . LP constraints (2)
imply that

∑
i∈M Xij = 1 for every job j ∈ J .

STACS’14

646 Stochastic Scheduling on Unrelated Machines

Given the values Xij corresponding to a feasible LP solution x, our scheduling policy
Assign(X) assigns each job j ∈ J independently at random to one machine i ∈ M with
probability Xij . Then, on each machine i ∈M , it sequences jobs assigned to i according to
the WSEPT rule.

I Theorem 4. The expected value of the schedule constructed by policy Assign(X) is at
most 3

2 + ∆
2 times the value of the underlying LP solution x.

Notice that Theorem 4 and Theorem 3 imply the existence of a polynomial-time algorithm
that, for any given instance of our stochastic scheduling problem and for any ε > 0, finds a
scheduling policy with performance guarantee 3

2 + ∆
2 +ε. Remember that ∆ upper bounds the

squared coefficient of variation CV[Pij]2 for all Pij . It is not difficult to see that, instead of
the random assignment of jobs to machines, we can use a deterministic assignment obtained
via the method of conditional probabilities and still get the same performance guarantee.

The proof of Theorem 4 is based on a refined, somewhat more complicated policy, that
takes the entire LP solution x into account and yields a worse schedule in expectation. It is
therefore sufficient to prove the bound stated in Theorem 4 for this alternative policy which
we refer to as Assign&Sequence(x).

Assign&Sequence(x)
1. For every job j ∈ J , choose a pair (i, t) independently at random with probability xijt

and some r ∈ Z≥0 independently at random with probability qijr/E[Pij]; assign job j to
machine i and set its tentative start time s to s := t+ r (we write “j → i, s” for short).

2. On each machine i ∈M , sequence all jobs assigned to i in order of increasing tentative
start times; ties are broken randomly.

Notice that, as in the simpler policy Assign(X), job j is assigned to machine i with
probability

∑
t∈Z≥0

xijt = Xij . Since Assign(X) sequences the jobs on every machine in
an optimal way, it is superior to policy Assign&Sequence(x). By construction of policy
Assign&Sequence(x), the probability of assigning job j ∈ J to machine i ∈M and setting
its tentative start time to s ∈ Z≥0 is

Pr[j → i, s] =
s∑
t=0

xijt
qij s−t
E[Pij]

. (5)

We prove the following job-by-job performance guarantee for Assign&Sequence(x).

I Theorem 5. For every job j ∈ J , the expected value of j’s completion time in the
schedule constructed by policy Assign&Sequence(x) is at most (3

2 + ∆j

2)CLP
j where ∆j :=

maxi∈M CV[Pij]2.

By linearity of expectation, Theorem 5 immediately implies Theorem 4. In the proof of
Theorem 5 we make use of the following lemma.

I Lemma 6. Let j ∈ J , i ∈M , and s ∈ Z≥0. If j → i, s, then the expected total processing
time of jobs that policy Assign&Sequence(x) schedules on machine i before job j is at
most s+ 1

2 .

Proof. We first bound the expected total processing time of jobs k 6= j with k → i, s′ for
some fixed s′ ∈ Z≥0:

∑
k 6=j

E[Pik] Pr[k → i, s′] (5)=
∑
k 6=j

s′∑
t′=0

xikt′ qik s′−t′ ≤ 1 by (3).

M. Skutella, M. Sviridenko, and M. Uetz 647

Thus, the expected7 total processing times of jobs processed before job j on machine i is at
most∑

k 6=j
E[Pik]

(
s−1∑
s′=0

Pr[k → i, s′] + 1
2 Pr[k → i, s]

)
≤ s+ 1

2 .

This concludes the proof. J

Proof of Theorem 5. By Lemma 6 we get

E[Cj | j → i, s] ≤ s+ 1
2 + E[Pij] (6)

for every job j ∈ J , machine i ∈M , and tentative start time s ∈ Z≥0. Unconditioning the
expectation yields

E[Cj] =
∑
i∈M

∑
s∈Z≥0

E
[
Cj | j → i, s

]
Pr[j → i, s] .

Applying inequality (6) and equation (5) we get

E[Cj] ≤
m∑
i=1

∑
s∈Z≥0

(
s+ 1

2 + E[Pij]
) s∑
t=0

xijt
qij s−t
E[Pij]

.

Exchanging the order of summation of s and t, and setting r := s− t yields

E[Cj] ≤
m∑
i=1

∑
t∈Z≥0

xijt

(
t+ E[Pij] +

∑
r∈Z≥0

(r + 1
2) qijr

E[Pij]

)

=
m∑
i=1

∑
t∈Z≥0

xijt

(
t+
(

3
2 + CV[Pij]2

2

)
E[Pij]

)

≤
(

3
2 + ∆j

2

)
CLP
j

by Lemma 2 and (4). This concludes the proof. J

We note that the same results can in fact be obtained by considering a weaker LP relaxation
in variables yijs, corresponding to the probability that job j is being processed on machine i
in time interval [s, s+ 1].

5 Adding release dates

In this section we show how to adapt our analysis for a more general problem where each
job j ∈ J comes with a machine dependent deterministic release date rij ∈ Z≥0 before which
job j must not be scheduled on machine i. To handle release dates we add one additional
family of constraints to our time-indexed LP relaxation:

xijt = 0 for all i ∈M , j ∈ J , t < rij .

These constraints are obviously fulfilled by the probabilities xijt corresponding to an arbitrary
scheduling policy Π as no job may be started before it is released. We consider the same LP
based policy Assign&Sequence(x) for this more general problem.

7 Notice that the expectation is taken with respect to both the random decisions of our policy As-
sign&Sequence(x) as well as the random processing times of jobs k 6= j.

STACS’14

648 Stochastic Scheduling on Unrelated Machines

I Theorem 7. In the presence of release dates, for every job j ∈ J , the expected value of
j’s completion time in the schedule constructed by policy Assign&Sequence(x) is at most
(2 + ∆j)CLP

j where ∆j := maxi∈M CV[Pij]2.

The proof of Theorem 7 is almost identical to the proof of Theorem 5, and contained in the
full version of the paper. We conclude this section with the following result.

I Corollary 8. In the presence of release dates, the expected value of the schedule constructed
by policy Assign&Sequence(x) is at most 2 + ∆ times the value of the underlying LP solu-
tion x. Thus, for any given instance of the stochastic scheduling problem and for any ε > 0,
a (2 + ∆ + ε)-approximate scheduling policy can be found in polynomial time.

6 Tightness of Performance Bounds

In this section, we argue that our results cannot be easily improved, because both LP
relaxation as well as our scheduling policies have an optimality gap of Θ(∆).

I Theorem 9. Even for the special case of a single machine, the multiplicative gap between
the expected value of an optimal policy and the value of an optimal LP solution can be as
large as ∆/2.

This is remarkable and somewhat surprising since the corresponding time-indexed linear
program for the deterministic single machine scheduling problem has the same optimal value
as an optimal schedule.

I Theorem 10. Even for the special case of identical parallel machines, the performance
ratio of any fixed-assignment policy can be as large as (1−δ)∆

2 for any δ > 0, for large enough
number of machines m.

For the proof of these two theorems we refer to the full version of the paper.

7 Execution of Scheduling Policies

We have argued that the policy we propose can be computed in polynomial time, but
so far did not discuss the computation time to actually execute the scheduling policy, or
more generally, any stochastic scheduling policy. The major issue is how, and with which
computational effort the scheduler learns about the next job completion when executing a
set of jobs. Probabilistically, this event is described by the minimum of a set of random
variables, of which we just sample while executing the policy. In general, and already if there
is just one single job to be processed, there might of course be nonzero probability for a job
to be exponentially longer than expected. But due to Markov’s inequality, the probability
for exceeding the expected processing time by an exponential factor is exponentially small,
too. Therefore, with high probability the sampled processing times of jobs can be encoded
polynomially in the input size of the problem. Apart from this minor issue inherent in
all stochastic scheduling problems, we note that the policy Assign(X) is in particular
elementary [16], meaning that jobs are only started upon release times or completion times
of other jobs. Hence, there is only a linear number of decision times.

8 Concluding remarks

One of the main technical contributions of this paper is to introduce the important concept of
time-indexed linear programming relaxations to the area of stochastic scheduling, which yields,

M. Skutella, M. Sviridenko, and M. Uetz 649

for the first time, performance bounds for stochastic unrelated machine scheduling that even
match currently best known results for deterministic unrelated machine scheduling. Obtaining
performance bounds independent of the coefficient of variation of the underlying processing
times remains an interesting challenge, even for the special case of parallel machines.

Acknowledgements. The authors would like to thank Nicole Megow for helpful discussions
on the topic of this paper, and Andreas S. Schulz and Benjamin Labonté for valuable
comments on an earlier version of this paper. Most of the results presented in this paper were
obtained during the Dagstuhl Seminar 13111 “Scheduling”. The authors would like to thank
the organizers and Schloss Dagstuhl for providing an enjoyable and stimulating atmosphere.

References

1 F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne,
M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes for minimizing average
weighted completion time with release dates. In Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science, pages 32–43, New York City, NY, 1999.

2 C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average
completion time scheduling. SIAM Journal on Computing, 31:146–166, 2001.

3 C.F. Chou, H. Liu, M. Queyranne, and D. Simchi-Levi. On the asymptotic optimality
of a simple on-line algorithm for the stochastic single machine weighted completion time
problem and its extensions. Operations Research, 54:464– 474, 2006.

4 F. A. Chudak. A min-sum 3/2-approximation algorithm for scheduling unrelated parallel
machines. Journal of Scheduling, 2:73–77, 1999.

5 J. Correa and M. Wagner. LP-based online scheduling: From single to parallel machines.
Mathematical Programming, 119:109–136, 2008.

6 B. Dean, M. X. Goemans, and J. Vondrák. Approximating the stochastic knapsack problem:
The benefit of adaptivity. Mathematics of Operations Research, 33:945–964, 2008.

7 W. Feller. An Introduction to Probability Theory and Its Applications, volume 2. Wiley
Series in Probability and Mathematical Statistics, 2nd edition, 1971.

8 R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5:287–326, 1979.

9 A. Gupta, R. Krishnaswamy, M. Molinaro, and R. Ravi. Approximation algorithms for
correlated knapsacks and non-martingale bandits. In Proceedings of the 52nd Annual IEEE
Symposium on Foundations of Computer Science, pages 827–836. IEEE Computer Society,
2011.

10 L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. Mathematics of Operations
Research, 22:513–544, 1997.

11 H. Hoogeveen, P. Schuurman, and G. J. Woeginger. Non-approximability results for schedul-
ing problems with minsum criteria. INFORMS Journal on Computing, 13:157–168, 2001.

12 J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:343–362, 1977.

13 N. Megow. Approximation in stochastic scheduling. Invited talk at the Dagstuhl Seminar
13111 “Scheduling”, Schloss Dagstuhl, Wadern, 2013.

14 N. Megow, M. Uetz, and T. Vredeveld. Models and algorithms for stochastic online schedul-
ing. Mathematics of Operations Research, 31(3):513–525, 2006.

STACS’14

650 Stochastic Scheduling on Unrelated Machines

15 N. Megow and T. Vredeveld. Approximation in preemptive stochastic online scheduling. In
Y. Azar and T. Erlebach, editors, Algorithms - ESA 2006, volume 4168 of Lecture Notes
in Computer Science, pages 516–527. Springer-Verlag, 2006.

16 R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems I: General
strategies. ZOR - Zeitschrift für Operations Research, 28:193–260, 1984.

17 R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in stochastic scheduling: The
power of LP-based priority policies. Journal of the ACM, 46:924–942, 1999.

18 M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Programming,
58:263–285, 1993.

19 M. H. Rothkopf. Scheduling with random service times. Management Science, 12:703–713,
1966.

20 M. Scharbrodt, T. Schickinger, and A. Steger. A new average case analysis for completion
time scheduling. Journal of the ACM, 53:121–146, 2006.

21 A. S. Schulz. Scheduling to minimize total weighted completion time: Performance guar-
antees of LP-based heuristics and lower bounds. In W. H. Cunningham, S. T. McCormick,
and M. Queyranne, editors, Integer Programming and Combinatorial Optimization, volume
1084 of Lecture Notes in Computer Science, pages 301–315. Springer, 1996.

22 A. S. Schulz. Stochastic online scheduling revisited. In B. Yang, D.-Z. Du, and C. Wang,
editors, Combinatorial Optimization and Applications, volume 5165 of Lecture Notes in
Computer Science, pages 448–457. Springer, 2008.

23 A. S. Schulz and M. Skutella. Scheduling unrelated machines by randomized rounding.
SIAM Journal on Discrete Mathematics, 15:450–469, 2002.

24 P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms for machine
scheduling: Ten open problems. Journal of Scheduling, 2:203–213, 1999.

25 J. Sethuraman and M. S. Squillante. Optimal scheduling of multiclass parallel machines.
In Proceedings of the 10th Annual ACM–SIAM Symposium on Discrete Algorithms, pages
963–964, 1999.

26 M. Skutella. Convex quadratic and semidefinite programming relaxations in scheduling.
Journal of the ACM, 48:206–242, 2001.

27 M. Skutella and M. Uetz. Stochastic machine scheduling with precedence constraints. SIAM
Journal on Computing, 34:788–802, 2005.

28 M. Skutella and G. J. Woeginger. A PTAS for minimizing the total weighted completion
time on identical parallel machines. Mathematics of Operations Research, 25:63–75, 2000.

29 W. E. Smith. Various optimizers for single-stage production. Naval Research and Logistics
Quarterly, 3:59–66, 1956.

30 A. Souza and A. Steger. The expected competitive ratio for weighted completion time
scheduling. Theory of Computing Systems, 39:121–136, 2006.

31 M. Uetz. When greediness fails: Examples from stochastic scheduling. Operations Research
Letters, 31:413–419, 2003.

32 Gideon Weiss. Approximation results in parallel machines stochastic scheduling. Annals of
Operations Research, 26:195–242, 1990.

33 Gideon Weiss. Turnpike optimality of Smith’s rule in parallel machines stochastic schedul-
ing. Mathematics of Operations Research, 17:255–270, 1992.

34 L. A. Wolsey. Mixed integer programming formulations for production planning and
scheduling problems. Invited talk at the 12th International Symposium on Mathematical
Programming, MIT, Cambridge, 1985.

Computational Complexity of the Extended
Minimum Cost Homomorphism Problem on
Three-Element Domains
Hannes Uppman∗

Department of Computer and Information Science, Linköping University,
Linköping, Sweden
hannes.uppman@liu.se

Abstract
In this paper we study the computational complexity of the extended minimum cost homo-
morphism problem (Min-Cost-Hom) as a function of a constraint language, i.e. a set of constraint
relations and cost functions that are allowed to appear in instances. A wide range of natural
combinatorial optimisation problems can be expressed as extended Min-Cost-Homs and a classi-
fication of their complexity would be highly desirable, both from a direct, applied point of view
as well as from a theoretical perspective.

The extended Min-Cost-Hom can be understood either as a flexible optimisation version of
the constraint satisfaction problem (CSP) or a restriction of the (general-valued) valued constraint
satisfaction problem (VCSP). Other optimisation versions of CSPs such as the minimum solution
problem (Min-Sol) and the minimum ones problem (Min-Ones) are special cases of the extended
Min-Cost-Hom.

The study of VCSPs has recently seen remarkable progress. A complete classification for
the complexity of finite-valued languages on arbitrary finite domains has been obtained Thapper
and Živný [STOC’13]. However, understanding the complexity of languages that are not finite-
valued appears to be more difficult. The extended Min-Cost-Hom allows us to study problematic
languages of this type without having to deal with with the full generality of the VCSP. A recent
classification for the complexity of three-element Min-Sol, Uppman [ICALP’13], takes a step in
this direction. In this paper we generalise this result considerably by determining the complexity
of three-element extended Min-Cost-Hom.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical
Algorithms and Problems, F.4.1 Mathematical Logic

Keywords and phrases Complexity, Optimisation, Constraint Satisfaction

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.651

1 Introduction

The constraint satisfaction problem (CSP) is a decision problem where an instance consists of
a set of variables, a set of values, and a collection of constraints expressed over the variables.
The objective is to determine if it is possible to assign values to the variables in such a way
that all constrains are satisfied simultaneously. In general the constraint satisfaction problem
is NP-complete. However, by only allowing constraint-relations from a fixed constraint
language Γ one can obtain tractable fragments. A famous conjecture by Feder and Vardi [7]

∗ Partially supported by the National Graduate School in Computer Science (CUGS), Sweden.

© Hannes Uppman;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 651–662

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.651
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

652 Complexity of the Extended Min-Cost-Hom on Three-Element Domains

predicts that this restricted problem, denoted CSP(Γ), is either (depending on Γ) in P or is
NP-complete.

In this paper we will study an optimisation version of the CSP. Several such variants have
been investigated in the literature. Examples are: the min ones problem (Min-Ones) [17],
the minimum solution problem (Min-Sol) [14] and the valued constraint satisfaction prob-
lem (VCSP) [18]. The problem we will work with is called the extended minimum cost
homomorphism problem (Min-Cost-Hom). The “unextended” version of this problem was,
motivated by a problem in defence logistics, introduced in [9] and studied in a series of papers
before its complexity was completely characterised in [20]. The extended version of the
problem was introduced in [21] and differs from the original version in that it is parametrised
not only by a set of allowed constraint relations, but also by a set of allowed cost functions
(a formal definition is given in Section 2).

The extended Min-Cost-Hom provide a more general framework than both Min-Ones
and Min-Sol; a problem of one of the latter types is also an extended Min-Cost-Hom. The
VCSP-framework on the other hand is more general than the extended Min-Cost-Hom. In
fact, we can describe every extended Min-Cost-Hom as a VCSP for a constraint language in
which every cost function is either {0,∞}-valued or unary. The extended Min-Cost-Hom
captures, despite this restriction, a wealth of combinatorial optimisation problems arising in
a broad range of fields.

The study of VCSPs has recently seen remarkable progress; Thapper and Živný [22]
described when a certain linear programming relaxation solves instances of the problem,
Kolmogorov [15] simplified this description for finite-valued languages, Huber, Krokhin and
Powell [10] classified all finite-valued languages on three-element domains, and Thapper and
Živný [23] found a complete classification of the complexity for finite-valued languages on
arbitrary finite domains.

Most of the classifications that have been obtained concerns finite-valued constraint
languages ([22] mentioned above being a notable exception). Understanding the complexity
of general languages appears to be more difficult. Extended Min-Cost-Homs allows us to
study languages of this type without having to deal with with the full generality of the VCSP.
Using techniques of the so called algebraic approach (see e.g. [2, 3, 11]), and building on
results by Takhanov [20, 21] and Thapper and Živný [22, 23] we could in [24] take a step in
this direction by proving a classification for the complexity of Min-Sol on the three-element
domain. In this paper we generalise these results to the extended Min-Cost-Hom. Namely,
we prove the following theorem.

I Theorem 1. Let (Γ,∆) be a finite language on a three-element domain D and define
Γ+ = Γ ∪ {{d} : d ∈ D} ∪ {{x : ν(x) < ∞} : ν ∈ ∆}. If (Γ,∆) is a core, then one of the
following is true.

(Γ+,∆) is of semilattice type (Definition 5) and Min-Cost-Hom(Γ+,∆) is in PO.
(Γ+,∆) is of tournament pair type (Definition 14) and Min-Cost-Hom(Γ+,∆) is in PO.
Min-Cost-Hom(Γ,∆) is NP-hard.

If (Γ,∆) is of semilattice type, then Min-Cost-Hom(Γ,∆) can be solved efficiently by
linear programming [22]. If (Γ,∆) is of tournament pair type we show how to reduce the
problem to one demonstrated to be tractable in [20, 21]. Also in this case the underlying
algorithmic technique is linear programming.

We define cores in Section 5. Theorem 1 combined with the following result, which
follows from [23, Lemma 2.4], yields a full classification for the extended Min-Cost-Hom on
three-element domains.

H. Uppman 653

I Proposition 2. If (Γ′,∆′) is a core of (Γ,∆) then Min-Cost-Hom(Γ,∆) and Min-Cost-
Hom(Γ′,∆′) are polynomial-time inter-reducible.

To obtain the classification we apply tools from the algebraic approach, and, following
Thapper and Živný, we make repeated use of Motzkin’s Theorem. Our tractability results
are formulated and proved for arbitrary finite domains and are therefore not restricted to
the three-element case. Many of the tools we derive to aid in proving our main theorem
are also effective on domains of size larger than three. One example is that we show that a
relation fails to be in the wpp-closure of a language only if some fractional polymorphism
of the language does not preserve the relation (Proposition 20). This complements results
in [3]. Another example is that we show that all constants can be added to a core language
without significantly changing the complexity of the associated extended Min-Cost-Hom
(Proposition 34). This complements results in [23].

The rest of the paper is organised as follows. In Section 2 we define some fundamental
concepts, in Section 3 we state and prove tractability results, in Section 4 we collect a
number of results that will be used later on (these might also be useful on domain of larger
size), in Section 5 we define cores [23] and prove a related result, in Section 6 we focus on
the three-element domain and establish our main result; that core languages that are not
tractable by the results in Section 3 are in fact NP-hard.

A longer version of this paper, containing complete proofs, is available at http://arxiv.
org/abs/1308.1394.

2 Preliminaries

Let D be a finite set. The pair (Γ,∆) is called a finite language if Γ is a finite set of finitary
relations on D and ∆ is a finite set of functions D → Q≥0 ∪ {∞}. For every finite language
(Γ,∆) we define the optimisation problem Min-Cost-Hom(Γ,∆) as follows.
Instance: A triple (V,C,w) where

V is a set of variables,
C is a set of Γ-allowed constraints, i.e. a set of pairs (s,R) where the constraint-scope
s is a tuple of variables, and the constraint-relation R is a member of Γ of the same
arity as s,
w is a weight function V ×∆→ Q≥0.

Solution: A function ϕ : V → D s.t. for every (s,R) ∈ C it holds that ϕ(s) ∈ R, where ϕ is
applied component-wise.

Measure: The measure of a solution ϕ is m(ϕ) =
∑
v∈V

∑
ν∈∆ w(v, ν)ν(ϕ(v)). For every

function ϕ : V → D that is not a solution we define m(ϕ) =∞.
The objective is to find a solution ϕ that minimises m(ϕ).

For an instance I we let Sol(I) denote the set of all solutions, Optsol(I) the set of all
optimal solutions and Opt(I) the measure of an optimal solution. If I is unsatisfiable we
set Opt(I) = ∞. We define 0∞ = ∞ 0 = 0, x ≤ ∞ and x +∞ = ∞ + x = ∞ for all
x ∈ Q≥0 ∪ {∞}.

2.1 Names and Notation
A k-ary operation on D is a function Dk → D and a (unary) cost function on D is a
function D → Q≥0 ∪ {∞}. The set of all operations on D is denoted OD. The ith projection
operation will be denoted pri and the arity of a relation R is denoted ar(R). We define(
A
2
)

= {{x, y} ⊆ A : x 6= y}. For functions f1, . . . , fk : A → B and g : Bk → C we denote

STACS’14

http://arxiv.org/abs/1308.1394
http://arxiv.org/abs/1308.1394

654 Complexity of the Extended Min-Cost-Hom on Three-Element Domains

by g[f1, . . . , fk] the function x 7→ g(f1(x), . . . , fk(x)) from A to C. For a binary operation
f we define f through f(x, y) = f(y, x). A k-ary operation f on D is called conservative
if f(x1, . . . , xk) ∈ {x1, . . . , xk} for every x1, . . . , xk ∈ D. A ternary operation m on D is
called arithmetical if m(x, y, y) = m(x, y, x) = m(y, y, x) = x for every x, y ∈ D. We say
that an operation f on D is conservative (arithmetical) on S ⊆ D if f |S is conservative
(arithmetical). Similarly we say that f is conservative (arithmetical) on S ⊆ 2D if f |S is
conservative (arithmetical) for every S ∈ S.

For a set A of operations (relations) we write A(k) for the set of all k-ary operations
(relations) in A. For a set Γ of relations on D we use Γc to denote Γ ∪ {{d} : d ∈ D}.

We use δ for the Kronecker delta function, i.e. δx,y = 1 if x = y and δx,y = 0 otherwise. A
semilattice operation is a binary operation that is idempotent, commutative and associative.

2.2 Polymorphisms
A function f : Dm → D is called a polymorphism of Γ if for every R ∈ Γ and every
t1, . . . , tm ∈ R it holds that f(t1, . . . , tm) ∈ R, where f is applied component-wise. The set
of all polymorphisms of Γ is denoted Pol(Γ). A function ω : Pol(k)(Γ) → Q≥0 is a k-ary
fractional polymorphism [4] of (Γ,∆) iff

∑
g∈Pol(k)(Γ) ω(g) = 1 and

∑
g∈Pol(k)(Γ)

ω(g)ν(g(x1, . . . , xk)) ≤ 1
k

k∑
i=1

ν(xi) for every ν ∈ ∆, x1, . . . , xk ∈ D.

The support of a fractional polymorphism ω, denoted supp(ω), is the set of polymorphisms for
which ω is non-zero. The set of all fractional polymorphisms of (Γ,∆) is denoted fPol(Γ,∆).

I Example 3. The function pri is a trivial polymorphism for any set of relations Γ, and the
function f 7→

∑k
i=1

1
k δpri,f is a k-ary fractional polymorphism of every language (Γ,∆).

2.3 Reductions
A relation R is called pp-definable in Γ iff there is an instance I = (V,C) of CSP(Γ) s.t.
R = {(ϕ(v1), . . . , ϕ(vn)) : ϕ ∈ Sol(I)} for some v1, . . . , vn ∈ V . The notation 〈Γ〉 is used for
the set of all relations that are pp-definable in Γ. Similarly; R is called weighted pp-definable
(wpp-definable) in (Γ,∆) iff there is an instance I = (V,C,w) of Min-Cost-Hom(Γ,∆) s.t.
R = {(ϕ(v1), . . . , ϕ(vn)) : ϕ ∈ Optsol(I)} for some v1, . . . , vn ∈ V . We use 〈Γ,∆〉w to
denote the set of all such relations. A function ν : D → Q≥0 ∪ {∞} is called expressible
in (Γ,∆) iff there is an instance I = (V,C,w) of Min-Cost-Hom(Γ,∆) and v ∈ V s.t.
ν(x) = min{m(ϕ) : ϕ : V → D,ϕ(v) = x}. The set of all cost functions expressible in (Γ,∆)
is denoted 〈Γ,∆〉e. We use Feas(∆) for the set {{x : ν(x) <∞} : ν ∈ ∆}.

What makes these closures interesting is the following result, see e.g. [4, 5, 13].

I Theorem 4. Let Γ′ ⊆ 〈Γ,∆〉w and ∆′ ⊆ 〈Γ,∆〉e be finite sets. Then, it holds that
Min-Cost-Hom(Γ′ ∪ Feas(∆′),∆′) is polynomial-time reducible to Min-Cost-Hom(Γ,∆).

3 Tractable languages

We will make use of two tractability results. The first follows from a theorem by Thapper
and Živný [22, Theorem 4.1 (see remarks in Section 5)].

I Definition 5. We say that a finite language (Γ,∆) is of semilattice type if there exists
ω ∈ fPol(2)(Γ,∆) with f ∈ supp(ω) s.t. f is a semilattice operation.

H. Uppman 655

I Theorem 6. If (Γ,∆) is a finite language of semilattice type, then Min-Cost-Hom(Γ,∆)
is in PO.

I Example 7. Let (Γ,∆) be a language on a totally ordered domain D that admits the binary
fractional polymorphism f 7→ 1

2δmin,f + 1
2δmax,f . Certainly min is a semilattice operation, so

by Theorem 6 it follows that Min-Cost-Hom(Γ,∆) is in PO.

We remark that the theorem in [22] from which Theorem 6 follows is very capable; it explains
the tractability of every finite-valued VCSP that is not NP-hard [23].

The second tractability result generalises a family of languages that Takhanov has proved
tractable [20, 21]. The particular formulation we will use here is a bit more general than a
version we previously used in [24, Theorem 8].

To state the result we need to introduce a few concepts. A central observation is given
by the following lemma. The result follows immediately from the definition of fractional
polymorphisms and the measure function m. We omit the proof.

I Lemma 8. If (Γ,∆) admits a k-ary fractional polymorphism ω and I is an instance of Min-
Cost-Hom(Γ,∆) with ϕ1, . . . , ϕk ∈ Sol(I), then f [ϕ1, . . . , ϕk] ∈ Sol(I) for every f ∈ supp(ω)
and ∑

f∈Pol(k)(Γ)

ω(f)m(f [ϕ1, . . . , ϕk]) ≤ 1
k

k∑
i=1

m(ϕk).

I Example 9. Consider again Example 7. It follows from Lemma 8 that, for any instance I =
(V,C,w) and any ϕ1, ϕ2 : V → D, we havem(min[ϕ1, ϕ2])+m(max[ϕ1, ϕ2]) ≤ m(ϕ1)+m(ϕ2).
Functions of this kind are called submodular and are central characters in the field of discrete
optimisation, see e.g. [8].

The following definition establishes some convenient notation.

I Definition 10. For functions ω ∈ fPol(k)(Γ,∆) and x ∈ D, y ∈ Dk we define Wω
x (y) =∑

f∈Pol(k)(Γ):f(y)=x ω(f). When there is no risk of confusion we drop the superscript and
simply write Wx(y).

For an instance I of Min-Cost-Hom(Γ,∆), a variable v and a value d we use Opt(I, v → d)
to denote the optimal measure of a solution to I that maps v to d, i.e. min{m(ϕ) : ϕ ∈
Sol(I), ϕ(v) = x}. Using these definitions we obtain the following corollary of Lemma 8.

I Lemma 11. Let I = (V,C,w) be an instance of Min-Cost-Hom(Γ,∆) and v ∈ V be s.t.
{a1, . . . , ak} ⊆ {ϕ(v) : ϕ ∈ Sol(I)}. If (Γ,∆) admits a k-ary fractional polymorphism ω, then

∑
d∈D

Wd(a1, . . . , ak) Opt(I, v → d) ≤ 1
k

k∑
i=1

Opt(I, v → ai).

I Definition 12. We say that S ⊆ D is shrinkable to S \ {x} in (Γ,∆) if (Γ,∆) admits
a sequence of fractional polymorphisms ω1, . . . , ωm and tuples a1 ∈ Sk1 , . . . , am ∈ Skm s.t.
whenever I = (V,C,w) is an instance of Min-Cost-Hom(Γ,∆) with v ∈ V s.t. S ⊆ {ϕ(v) :
ϕ ∈ Sol(I)} it holds that the system of inequalities we obtain from Lemma 11 applied to ωi
and ai, for i ∈ [m], implies that

n∑
i=1

ti Opt(I, v → si) ≤ Opt(I, v → x)

for some integer n, some t1, . . . , tn ∈ Q≥0 s.t.
∑n
i=1 ti = 1, and some s1, . . . , sn ∈ S \ {x}.

If S is shrinkable to S′ and S′ is shrinkable to S′′, then we say that S is shrinkable to S′′.

STACS’14

656 Complexity of the Extended Min-Cost-Hom on Three-Element Domains

So, if S is shrinkable to S \ {x} in (Γ,∆) there is a set of fractional polymorphisms of (Γ,∆)
with which we can prove the existence of some s ∈ S \ {x} s.t. if I is an instance of Min-
Cost-Hom(Γ,∆), v ∈ V and S ⊆ {ϕ(v) : ϕ ∈ Sol(I)}, then Opt(I, v → s) ≤ Opt(I, v → x).

I Example 13. Consider the language (Γ, ∅) on the domain D. Let {a1, . . . , am} ⊆ D. It is
not hard to see that ω : f 7→

∑m−1
i=1

1
m−1δpri,f is in fPol(m)(Γ, ∅). Hence, ω and (a1, . . . , am)

certifies that {a1, . . . , am} is shrinkable to {a1, . . . , am−1}.

We can now define the second family of tractable languages.

I Definition 14. A finite language (Γ,∆) on the domain D is said to be of tournament pair
type if Γ = Γc, CSP(Γ) is in P and there exists F ⊆ 〈Γ,∆〉(1)

w , A ⊆
(
D
2
)
, f1, f2 ∈ Pol(2)(Γ)

and g ∈ Pol(3)(Γ) s.t. the following holds.
If {a, b} ⊆ B for some B ∈ F , and {a, b} 6∈ A, then f1|{a,b} and f2|{a,b} are projections
and g|{a,b} is arithmetical.
If {a, b} ⊆ B for some B ∈ F , and {a, b} ∈ A, then f1|{a,b} and f2|{a,b} are different
idempotent, conservative and commutative operations.
Every S ∈ 〈Γ,∆〉(1)

w \ F is shrinkable to some S′ ∈ F .
g is idempotent on every set in F and conservative on every set in F \ A.

I Theorem 15. If (Γ,∆) is a finite language of tournament pair type, then Min-Cost-
Hom(Γ,∆) is in PO.

Proof sketch. Given an instance I of Min-Cost-Hom(Γ,∆) we can, since CSP(Γc) is in P ,
compute for every variable v the set Dv = {ϕ(v) : ϕ ∈ Sol(I)}. From the definition of
shrinkable sets it is immediate that if Dv is shrinkable to S ∈ 〈Γ,∆〉w, then we can add
the constraint (v, S) to I without deteriorating the measure of an optimal solution. We can
repeat this procedure until Dv is in F for every variable v.

It is known, see [24, Proof of Theorem 8], that from f1, f2, g one can construct (by
superposition) operations f ′1, f ′2, g′ that in addition to the conditions of the theorem also
satisfy the following stronger properties:

If {a, b} ⊆ B for some B ∈ F and {a, b} 6∈ A, then f ′1|{a,b} = f ′2|{a,b} = pr1.
The operation g′ is idempotent and conservative on every set in F .

Clearly f ′1, f ′2, g′ ∈ Pol(Γ). Note that f ′1, f ′2, g′ preserves every unary relation S ⊆ B for
B ∈ F . The result therefore follows from a reduction to the conservative, multi-sorted version
of the problem and a result due to Takhanov for this variant [21, Theorem 23]. J

I Example 16. Consider again Min-Cost-Hom(Γ, ∅). We saw in Example 13 that for every
{x} ⊆ X ⊆ D it holds that X is shrinkable to {x}. Hence, if Γc = Γ and CSP(Γ) is in P it
follows from Theorem 15 that Min-Cost-Hom(Γ, ∅) is in PO. This of course is no surprise as
Min-Cost-Hom(Γ, ∅) essentially is the same problem as CSP(Γ).

4 Tools

Here we establish a collection of results that are used to prove the results in the last two
sections. We hope this will provide an overview of the kind of techniques that are used to
prove our main theorem.

Several of the results are proved with the help of the following classical theorem, see
e.g. [19, p. 94].

I Theorem 17 (Motzkin’s Transposition Theorem). For any A ∈ Qm×n, B ∈ Qp×n, b ∈ Qm
and c ∈ Qp, exactly one of the following holds:

H. Uppman 657

Ax ≤ b, Bx < c for some x ∈ Qn
AT y +BT z = 0 and (bT y + cT z < 0 or bT y + cT z = 0 and z 6= 0) for some y ∈ Qm≥0 and
z ∈ Qp≥0

The first result concerns a slight generalisation of the concept of dominating fractional
polymorphisms [24].

I Definition 18. Let k ≥ 2 and a ∈ Dk−1, b ∈ D be s.t. a1, . . . , ak−1, b are distinct
elements. A fractional polymorphism ω ∈ fPol(k)(Γ,∆) is called (a1, . . . , ak−1, b)-dominating
if Wω

aj
(a1, . . . , ak−1, b) ≥ 1

k for every j ∈ [k − 1] and 1
k > Wω

b (a1, . . . , ak−1, b).

I Proposition 19. Let (Γ,∆) be a finite language on a finite set D. Let k ≥ 2 and a ∈ Dk−1,
b ∈ D be s.t. a1, . . . , ak−1, b are distinct. If (Γ,∆) does not admit a fractional polymorphism
that is (a1, . . . , ak−1, b)-dominating, then 〈Γ,∆〉e contains a unary function ν that satisfies
∞ > ν(a1), . . . , ν(ak−1), ν(b) and ν(c) > ν(b) for every c ∈ D \ {b}.

Using similar arguments we can also prove the following characterisation of which relations
that are wpp-definable in (Γ,∆).

I Proposition 20. Let (Γ,∆) be a finite language on a finite set D and let ∅ 6= R =
{t1, . . . , tk} ⊆ Dn. Exactly one of the following is true.
1. There exists ω ∈ fPol(k)(Γ,∆) with f ∈ supp(ω) s.t. f(t1, . . . , tk) 6∈ {t1, . . . , tk}.
2. It holds that R ∈ 〈Γ,∆〉w.

From Proposition 20 we can quickly derive a number of useful results.

I Corollary 21. Let (Γ,∆) be a finite language on a finite set D. For any fixed k the set of
wpp-definable k-ary relations, 〈Γ,∆〉(k)

w , can be computed.

Proof sketch. This is immediate from Proposition 20; we can find all polymorphisms of
arities 1, . . . , |D|k and then, for every R ⊆ Dk, solve a linear program. J

I Corollary 22. Let (Γ,∆) be a finite language on a finite set D and let {a, b} ⊆ D. If there
is ν ∈ 〈Γ,∆〉e and A ⊆ D s.t. {a, b} ⊆ A, A ∈ 〈Γ,∆〉w, ν(a) < ν(b) < ∞ and ν(b) ≤ ν(x)
for any x ∈ A \ {a, b}, then one of the following is true.
1. {a, b} ∈ 〈Γ,∆〉w
2. There is ω ∈ fPol(2)(Γ,∆) that is (a, b)-dominating.

Proof. Assume (1) does not hold. By Proposition 20 there must exist some ω ∈ fPol(2)(Γ,∆)
with f ∈ supp(ω) s.t. f(a, b) 6∈ {a, b}. It is not hard to see that in this case, because of ν,
the fractional polymorphism ω must be (a, b)-dominating. Hence, (2) must be true. J

I Corollary 23. Let (Γ,∆) be a finite language on a finite set D and let {a1, . . . , ak} ⊆ D.
One of the following is true.
1. There is ω ∈ fPol(k)(Γ,∆) and i ∈ [k] s.t. ω is (a1, . . . , ai−1, ai+1, . . . , ak, ai)-dominating.
2. For every i ∈ [k] there is j ∈ [k] \ {i} s.t. {ai, aj} ∈ 〈Γ,∆〉w.

Proof. Assume (1) is false. By Proposition 19, for any i ∈ [k], there is νi ∈ 〈Γ,∆〉e s.t.
arg minx∈D νi(x) = {ai} and νi(x) < ∞ if x ∈ {a1, . . . , ak}. Let i ∈ [m]. Pick j s.t.
νi(aj) = min{νi(x) : x ∈ {a1, . . . , ai−1, ai+1, . . . , ak}}.

Note that there is no ψ ∈ fPol(2)(Γ,∆) that is (ai, aj)-dominating; if there was then

f 7→
k−2∑
i=1

1
k
δpri,f +

∑
g∈supp(ψ)

2
k
ψ(g)δg[prk−1,prk],f

STACS’14

658 Complexity of the Extended Min-Cost-Hom on Three-Element Domains

would be (b1, . . . , bk−2, ai, aj)-dominating for b1, . . . , bk−2 ∈ D. Hence, by Corollary 22, we
have {ai, aj} ∈ 〈Γ,∆〉w. Since the choice of i was arbitrary (2) must be true. J

The generalised min-closed languages were introduced by Jonsson, Kuivinen and Nordh [12]
and defined as sets of relations preserved by a particular type of binary operation. Kuiv-
inen [16, Section 5.5] provides an alternative characterisation of the languages as those
preserved by a so called min set function.

A set function [6] is a function f : 2D \ {∅} → D. A ν-min set function [16] is a set
function f satisfying ν(f(X)) ≤ min{ν(x) : x ∈ X} for every X ∈ 2D \ {∅}. The following
proposition, which is a variant of [16, Theorem 5.18], will later prove to be useful.

I Proposition 24. Let (Γ, {ν}) be a finite language s.t. 〈Γ, {ν}〉(1)
w ⊆ Γ. The following are

equivalent:
1. Γ is preserved by a ν-min set function,
2. Γ is preserved by a set function f s.t. ν(f(X)) = min{ν(x) : x ∈

⋂
Y ∈〈Γ〉:Y⊇X Y } for

every X ∈ 2D \ {∅},
3. Γ is preserved by a set function and for every R ∈ 〈Γ〉 it holds that

R ∩ (arg min
x∈pr1(R)

ν(x)× · · · × arg min
x∈prar(R)(R)

ν(x)) 6= ∅.

Furthermore, if ν is injective, then the following condition is equivalent to the ones above.
4. For every R ∈ 〈Γ〉 it holds that

R ∩ (arg min
x∈pr1(R)

ν(x)× · · · × arg min
x∈prar(R)(R)

ν(x)) 6= ∅.

Let ν : D → Q≥0 be injective. We call the binary relation R a cross (with respect to
ν) iff |R| ≥ 2 and there are α1, α2 ∈ Q>0 s.t. α1ν(t1) + α2ν(t2) = 1 for every t ∈ R. The
following lemma is a generalisation of [24, Lemma 25].

I Lemma 25. Let ν : D → Q≥0 be injective. If Γ is not preserved by a ν-min set function,
then 〈Γ,∆〉w contains a cross.

Proof. Let minν be the unique set function satisfying {minν(X)} = arg minx∈X ν(x) for
every X ⊆ D. If Γ is not preserved by a ν-min set function, then Proposition 24 implies that
there is R ∈ 〈Γ〉 s.t. (minν(pr1(R)), . . . ,minν(prar(R)(R))) 6∈ R.

In fact, there must be a binary relation in 〈Γ〉 of this kind. To see this let R ∈ 〈Γ〉 be a
k-ary relation s.t. (minν(pr1(R)), . . . ,minν(prk(R))) 6∈ R and s.t. that every relation R′ ∈ 〈Γ〉
of smaller arity satisfies (minν(pr1(R′)), . . . ,minν(prar(R′)(R′))) ∈ R′. This means that there
is t1 ∈ R s.t. t1i = minν(pri(R)) for i ∈ [k] \ {1}, otherwise pr2,...,ar(R)(R) contradicts the
minimality of k. Similarly there is t2 ∈ R s.t. t2i = minν(pri(R)) for i ∈ [k] \ {2}. This means
that R′ = {(x, y) : (x, y,minν(pr3(R)), . . . ,minν(prk(R))) ∈ R} is a non-empty relation of
arity 2 s.t. (minν(pr1(R′)),minν(pr2(R′))) 6∈ R′. Hence, k = 2.

Clearly we can choose α1, α2 s.t. R′′ = arg min(x,y)∈R(α1ν(x)+α2ν(y)) satisfies |R′′| ≥ 2,
and R′′ ∈ 〈Γ,∆〉w is a cross. J

To prove that a given language is computationally hard we make use of the following
lemma which is an immediate consequence of [20, Theorem 3.1].

I Lemma 26. If {a, b} ∈ Γ and ν(a) < ν(b) <∞, σ(b) < σ(a) <∞ for some ν, σ ∈ ∆, then
either

H. Uppman 659

there exists f1, f2 ∈ Pol(2)(Γ) s.t. f1|{a,b} and f2|{a,b} are two different idempotent,
commutative and conservative operations,
there exists g ∈ Pol(3)(Γ) s.t. g|{a,b} is arithmetical, or
Min-Cost-Hom(Γ,∆) is NP-hard.

The following result by Takhanov [20, Theorem 5.4] shows how “partially arithmetical”
polymorphisms (like the ones that we might get out of the previous lemma) can be stitched
together.

I Lemma 27. Let C ⊆
(
D
2
)
. If C ⊆ Γ and for each {a, b} ∈ C an operation in Pol(3)(Γ) is

arithmetical on {a, b}, then there is an operation in Pol(3)(Γ) that is arithmetical on C.

The next lemma is a variation, see [24, Lemma 14], of a lemma by Thapper and Živný [23,
Lemma 3.5]. It allows us to prove the existence of certain nontrivial fractional polymorphisms.
We may also obtain this lemma as a simple corollary of Proposition 20.

I Lemma 28. If {(a, b), (b, a)} 6∈ 〈Γ,∆〉w, then for all σ ∈ 〈Γ,∆〉e there is ω ∈ fPol(2)(Γ,∆)
with f ∈ supp(ω) s.t. {f(a, b), f(b, a)} 6= {a, b} and σ(f(a, b)) + σ(f(b, a)) ≤ σ(a) + σ(b).

Finally, the following lemmas are used to “canonicalise” interesting fractional polymorphisms.

I Definition 29. Let P ⊆ O(2)
D . For a function ω : P → Q≥0 we define ω2 : P → Q≥0 by

ω2(f) =
∑
g,h∈P :g[h,h]=f ω(g)ω(h).

I Lemma 30. If ω ∈ fPol(2)(Γ,∆), then ω2 ∈ fPol(2)(Γ,∆).

I Lemma 31. Let β : D2 → Q≥0 and define Cω(x) =
∑
f∈Pol(2)(Γ):f(x)=f(x) ω(f) and

M(ω) =
∑
x∈D2 Cω(x). Set Ω = {ω ∈ fPol(2)(Γ,∆) : ∀s ∈ D2, Cω(s) ≥ β(s)}. If 〈Γ,∆〉(1)

w ⊆
Γ, then either Ω = ∅, or there is ω∗ ∈ Ω s.t. M(ω∗) = supω∈ΩM(ω).

I Lemma 32. Let S ⊆
(
D
2
)
and Π = {ω ∈ fPol(2)(Γ,∆) : for all S ∈ S there exists

f ∈ supp(ω) s.t. f |S is commutative}. If 〈Γ,∆〉(1)
w ⊆ Γ and Π 6= ∅, then there is ω ∈ Π s.t.

for every f ∈ supp(ω) and x ∈ D2 it holds that {f(x), f(x)} 6∈ S.

5 Cores

In this section we define cores and prove that one can add all constants to a language that is
a core without making the associated extended Min-Cost-Hom much more difficult. We use
a definition of cores from [23, Definition 3].

I Definition 33. A finite language (Γ,∆) is a core iff for every ω ∈ fPol(1)(Γ,∆) and
every f ∈ supp(ω) it holds that f is injective. A language (Γ′,∆′) is a core of another
language (Γ,∆) if (Γ′,∆′) is a core and (Γ′,∆′) = (Γ,∆)|g(D) for some ψ ∈ fPol(1)(Γ,∆) and
g ∈ supp(ψ).

A result very similar to the following was given in [10, 23] for finite-valued languages.

I Proposition 34. If (Γ,∆) is a core, then Min-Cost-Hom(Γc,∆) is polynomial-time reducible
to Min-Cost-Hom(Γ,∆).

Proof sketch. We will show that Min-Cost-Hom(Γc,∆) is polynomial-time reducible to
Min-Cost-Hom(Γ ∪ 〈Γ,∆〉(|D|)w ,∆). By Theorem 4 this is sufficient.

Assume D = {d1, . . . , d|D|}. Let R = {(d1, . . . , d|D|)} and let R′ be the closure of R
under the operations f ∈ supp(ω), ω ∈ fPol(1)(Γ,∆).

STACS’14

660 Complexity of the Extended Min-Cost-Hom on Three-Element Domains

Note that there is no k > 1, ψ ∈ fPol(k)(Γ,∆) and g ∈ supp(ψ) s.t. g does not preserve
R′. This follows from the fact that R′ was generated from a single tuple. It is not hard to
show that there is $ ∈ fPol(1)(Γ,∆) s.t. R′ = {f(d1, . . . , d|D|) : f ∈ supp($)}. Assume that
there is s = f(t1, . . . , tk) 6∈ R′ for some f ∈ supp(ψ) and t1, . . . , tk ∈ R′. This means that we
from ψ and $ can construct $′ ∈ fPol(1)(Γ,∆) with f ∈ supp($′) s.t. s = f(d1, . . . , d|D|),
which is a contradiction.

From Proposition 20 it follows that R′ ∈ 〈Γ,∆〉w. Since (Γ,∆) is a core, for every
ω ∈ fPol(1)(Γ,∆) and f ∈ supp(ω) we know that f is injective. Hence, every t ∈ R′ equals
(π(d1), . . . , π(d|D|)) for some permutation π on D.

We now use a construction that is applied for the corresponding result for CSPs [2,
Theorem 4.7]. Given an instance I of Min-Cost-Hom(Γc,∆) we create an instance of I ′ of
Min-Cost-Hom(Γ ∪ 〈Γ,∆〉(|D|)w ,∆) from I by adding variables vd1 , . . . , vd|D| and replacing
every constraint (v, {di}) with the constraint ((v, vdi),=). Finally we add the constraint
((vd1 , . . . , vd|D|), R′). If there is a solution to I, then there is also a solution to I ′. And, if
ψ is an optimal solution to I ′, then (ϕ(vd1), . . . , ϕ(vd|D|)) = (π(d1), . . . , π(d|D|)) for some
permutation π on D and ω ∈ fPol(1)(Γ,∆) s.t. π ∈ supp(ω). Hence πk ◦ ψ is another
optimal solution to I ′, for any k ≥ 1. In particular there is an optimal solution ϕ∗ to I ′ s.t.
(ϕ∗(vd1), . . . , ϕ∗(vd|D|)) = (d1, . . . , d|D|). This allows us to recover an optimal solution to
I. J

6 Proof of Theorem 1

In this section we prove our main result. To do this we rely of a few lemmas that are proved
with the help of a fair bit of case analysis. For their proofs we refer the interested reader to
the longer version of this paper.

Let A denote the following assumption: (Γ,∆) is a finite language on D = {a, b, c} s.t.
Γc ∪ Feas(∆) ∪ 〈Γ,∆〉(1)

w ∪ 〈Γ,∆〉(2)
w ⊆ Γ.

The supporting lemma below is used in the proofs of the results that follow.

I Lemma 35. Assume A. If {a, b} 6∈ Γ, then either there is ω ∈ fPol(2)(Γ,∆) that is
(a, b) or (b, a)-dominating, or there are νa, νb ∈ 〈Γ,∆〉e s.t. νa(a) < νa(c) < νa(b) and
νb(b) < νb(c) < νb(a).

We are going to analyse a few different cases depending on the number of two-element
subsets of the domain that is wpp-definable in (Γ,∆). The following lemma, which follows
immediately from Corollary 23, connects this number to dominating fractional polymorphisms.

I Lemma 36. Assume A. Either |Γ∩
(
D
2
)
| ≥ 2 or there is ω ∈ fPol(3)(Γ,∆) and a1, a2, a3 ∈ D

s.t. ω is (a1, a2, a3)-dominating and {a1, a2, a3} = D.

To understand languages that admit a ternary dominating fractional polymorphism we use
the following lemma.

I Lemma 37. Assume A. If {a, b} 6∈ Γ and there is ω ∈ fPol(3)(Γ,∆) s.t. ω is (a, b, c)-
dominating, then either {a, c}, {b, c} ∈ Γ, or (Γ,∆) is of semilattice type or of tournament
pair type, or Min-Cost-Hom(Γ,∆) is NP-hard

The following four lemmas are used to handle languages that contain two unary two-element
relations.

I Lemma 38. Assume A. If {a, c}, {c, b} ∈ Γ and there is ω ∈ fPol(2)(Γ,∆) that is (a, b)-
dominating, then (Γ,∆) is of tournament pair type or Min-Cost-Hom(Γ,∆) is NP-hard.

H. Uppman 661

I Lemma 39. Assume A. If {a, b} 6∈ Γ and {a, c}, {c, b} ∈ Γ, then either {(a, c), (c, a)} ∈ Γ,
{(b, c), (c, b)} ∈ Γ, or (Γ,∆) is of semilattice type or of tournament pair type, or Min-Cost-
Hom(Γ,∆) is NP-hard

I Lemma 40. Assume A. If {a, b} 6∈ Γ, {a, c}, {c, b} ∈ Γ and {(a, c), (c, a)} ∈ Γ and
{(b, c), (c, b)} 6∈ Γ, then (Γ,∆) is of tournament pair type or Min-Cost-Hom(Γ,∆) is NP-
hard.

I Lemma 41. Assume A. If {a, b} 6∈ Γ and {(a, c), (c, a)}, {(b, c), (c, b)} ∈ Γ, then (Γ,∆) is
of tournament pair type or Min-Cost-Hom(Γ,∆) is NP-hard.

We can now prove the main theorem.

Proof of Theorem 1. Let Γ′ = 〈Γ,∆〉(1)
w ∪ 〈Γ,∆〉(2)

w ∪ Γc ∪ Feas(∆).
Note that if (Γ′,∆) is of semilattice type or of tournament pair type, then so is (Γc ∪

Feas(∆),∆). Furthermore, by Theorem 4 and Proposition 34 we know that Min-Cost-
Hom(Γ′,∆) is polynomial time reducible to Min-Cost-Hom(Γ,∆). Hence, if Min-Cost-
Hom(Γ′,∆) is NP-hard, then also Min-Cost-Hom(Γ,∆) is NP-hard.

Clearly, if CSP(Γ′) is NP-hard, then so is Min-Cost-Hom(Γ′,∆). And, if CSP(Γ′) is not
NP-hard, then it is in P. This follows from [1].

If |
(
D
2
)
∩ Γ′| = 3, then (Γ′,∆) is of tournament pair type or Min-Cost-Hom(Γ′,∆) is

NP-hard. This follows from [24, Theorem 12].
If |
(
D
2
)
∩ Γ′| < 2, then, by Lemma 36, we know that there is ω ∈ fPol(3)(Γ′,∆) that

is (a1, a2, a3)-dominating for some {a1, a2, a3} = D. If {a1, a2} 6∈ Γ′, then by Lemma 37
we know that either |

(
D
2
)
∩ Γ′| = 2 (a contradiction) or (Γ′,∆) is of semilattice type or

of tournament pair type, or Min-Cost-Hom(Γ′,∆) is NP-hard. Otherwise {a1, a2} ∈ Γ′.
Since |

(
D
2
)
∩ Γ′| < 2 it must hold that {a1, a3} 6∈ Γ′ and {a2, a3} 6∈ Γ′. In this case, since

{a1, a2, a3} is shrinkable to {a1, a2}, it holds that either (Γ′,∆) is of tournament pair type
or Min-Cost-Hom(Γ′,∆) is NP-hard.

The only remaining case is |
(
D
2
)
∩ Γ′| = 2. In this case the result follows from Lemma 39,

Lemma 40 and Lemma 41. J

Acknowledgements. I am thankful to Peter Jonsson for rewarding discussions and to the
anonymous reviewers for their helpful comments.

References
1 Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element

set. Journal of the ACM, 53(1):66–120, 2006.
2 Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of con-

straints using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
3 David Cohen, Martin Cooper, Páidí Creed, Peter Jeavons, and Stanislav Živný. An al-

gebraic theory of complexity for discrete optimization. SIAM Journal on Computing,
42(5):1915–1939, 2013.

4 David Cohen, Martin Cooper, and Peter Jeavons. An algebraic characterisation of com-
plexity for valued constraints. In Proceedings of CP 2006, volume 4204 of Lecture Notes in
Computer Science, pages 107–121. Springer Berlin Heidelberg, 2006.

5 David Cohen, Martin Cooper, Peter Jeavons, and Andrei Krokhin. The complexity of soft
constraint satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

6 Víctor Dalmau and Justin Pearson. Closure functions and width 1 problems. In Proceedings
of CP 1999, volume 1713 of Lecture Notes in Computer Science, pages 159–173. Springer
Berlin Heidelberg, 1999.

STACS’14

662 Complexity of the Extended Min-Cost-Hom on Three-Element Domains

7 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

8 Satoru Fujishige. Submodular Functions and Optimization, volume 58 of Annals of Discrete
Mathematics. Elsevier, 2005.

9 Gregory Gutin, Arash Rafiey, Anders Yeo, and Michael Tso. Level of repair analysis and
minimum cost homomorphisms of graphs. Discrete Applied Mathematics, 154(6):881–889,
2006.

10 Anna Huber, Andrei Krokhin, and Robert Powell. Skew bisubmodularity and valued CSPs.
In Proceedings of SODA 2013, pages 1296–1305, 2013.

11 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. Journal
of the ACM, 44(4):527–548, 1997.

12 Peter Jonsson, Fredrik Kuivinen, and Gustav Nordh. MAX ONES generalized to larger
domains. SIAM Journal on Computing, 38(1):329–365, 2008.

13 Peter Jonsson, Fredrik Kuivinen, and Johan Thapper. Min CSP on four elements: Mov-
ing beyond submodularity. In Proceedings of CP 2011, volume 6876 of Lecture Notes in
Computer Science, pages 438–453. Springer Berlin Heidelberg, 2011.

14 Peter Jonsson and Gustav Nordh. Introduction to the maximum solution problem. In
Complexity of Constraints, volume 5250 of Lecture Notes in Computer Science, pages 255–
282. Springer Berlin Heidelberg, 2008.

15 Vladimir Kolmogorov. The power of linear programming for finite-valued CSPs: A con-
structive characterization. In Proceedings of ICALP 2013, volume 7965 of Lecture Notes in
Computer Science, pages 625–636. Springer Berlin Heidelberg, 2013.

16 Fredrik Kuivinen. Algorithms and Hardness Results for Some Valued CSPs. PhD thesis,
Linköping University, The Institute of Technology, 2009.

17 Creignou Nadia, Khanna Sanjeev, and Sudan Madhu. Complexity Classifications of Boolean
Constraint Satisfaction Problems. Society for Industrial and Applied Mathematics, Phil-
adelphia, PA, USA, 2001.

18 Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. Valued constraint satisfaction prob-
lems: Hard and easy problems. In Proceedings of IJCAI 1995, pages 631–637, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

19 Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986.

20 Rustem Takhanov. A dichotomy theorem for the general minimum cost homomorphism
problem. In Proceedings of STACS 2010, number 5 in Leibniz International Proceedings in
Informatics (LIPIcs), pages 657–668, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

21 Rustem Takhanov. Extensions of the minimum cost homomorphism problem. In Proceed-
ings of COCOON 2010, volume 6196 of Lecture Notes in Computer Science, pages 328–337.
Springer Berlin Heidelberg, 2010.

22 Johan Thapper and Stanislav Živný. The power of linear programming for valued CSPs.
In Proceedings of FOCS 2012, pages 669–678. IEEE Computer Society, 2012.

23 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. In Proceedings
of STOC 2013, pages 695–704, New York, NY, USA, 2013. ACM.

24 Hannes Uppman. The complexity of three-element Min-Sol and conservative Min-Cost-
Hom. In Proceedings of ICALP 2013, volume 7965 of Lecture Notes in Computer Science,
pages 804–815. Springer Berlin Heidelberg, 2013.

The Complexity of Deciding Statistical Properties
of Samplable Distributions∗

Thomas Watson

University of Toronto, Toronto, Canada
thomasw@cs.toronto.edu

Abstract
We consider the problems of deciding whether the joint distribution sampled by a given circuit
satisfies certain statistical properties such as being i.i.d., being exchangeable, being pairwise inde-
pendent, having two coordinates with identical marginals, having two uncorrelated coordinates,
and many other variants. We give a proof that simultaneously shows all these problems are C=P-
complete, by showing that the following promise problem (which is a restriction of all the above
problems) is C=P-complete: Given a circuit, distinguish the case where the output distribution
is uniform and the case where every pair of coordinates is neither uncorrelated nor identically
distributed. This completeness result holds even for samplers that are depth-3 circuits.

We also consider circuits that are d-local, in the sense that each output bit depends on at
most d input bits. We give linear-time algorithms for deciding whether a 2-local sampler’s joint
distribution is fully independent, and whether it is exchangeable.

We also show that for general circuits, certain approximation versions of the problems of
deciding full independence and exchangeability are SZK-complete.

We also introduce a bounded-error version of C=P, which we call BC=P, and we investigate
its structural properties.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Complexity, statistical properties, samplable distributions

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.663

1 Introduction

Testing for independence of random variables is a fundamental problem in statistics. Theor-
etical computer scientists have studied this and other analogous problems from two main
viewpoints. The first viewpoint is property testing of distributions, which is a black-box
model in which a tester is given samples and tries to distinguish between some statistical
property being “close” or “far” from satisfied. Some important works giving upper and lower
bounds for property testing of distributions include [4, 3, 5, 2, 14, 18, 7].

The other viewpoint is the non-black-box model in which a tester is given a description of
a distribution (from which it could generate its own samples). This could potentially make
some problems easier, but there are complexity-theoretic results showing that several such
problems are computationally hard, particularly when the input is a succinct description of
a distribution. One of the most general and natural ways to succinctly specify a distribution
is to give the code of an efficient algorithm that takes “pure” randomness and transforms
it into a sample from the distribution. (This gives a polynomial-size specification of a
distribution over a potentially exponential-size set.) For arbitrary circuit samplers, the

∗ Supported by funding from NSERC.

© Thomas Watson;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 663–674

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.663
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

664 The Complexity of Deciding Statistical Properties of Samplable Distributions

papers [15, 10, 11, 22] contain completeness results for various approximation problems
concerning statistical distance, Shannon entropy, and min-entropy. See [12] for a survey of
both the black-box and the non-black-box viewpoints.

In this paper we consider a wide array of “exact” problems concerning statistical properties
of the joint distribution produced by a given sampler. Such problems include deciding whether
the joint distribution is i.i.d., exchangeable, pairwise independent, and many other variants.
Exchangeability is a very important and useful concept with many different applications
in pure and applied probability [1], but it has been less-often studied in the theoretical
computer science community. A joint distribution over a finite domain is called exchangeable
if it is invariant under permuting the coordinates. It is fairly straightforward to see that a
finite distribution is exchangeable iff it is a mixture of distributions that arise from drawing
a sequence of colored balls without replacement from an urn. When each coordinate is a
single bit, exchangeability is equivalent to the probability of a string only depending on
the Hamming weight. We feel it is natural to pose complexity-theoretic questions about
exchangeability.

We prove that the aforementioned wide array of problems, and more generally a single
problem we call Panoptic-Stats which is no harder than any of those problems, are complete
for the complexity class C=P. This class was introduced in [21] as part of the counting
hierarchy, and it can be viewed as a class that captures “exact counting” of NP witnesses. The
class C=P is at least as hard as the polynomial-time hierarchy, since PH ⊆ BP ·C=P [17] and
even PH ⊆ ZP · C=P [16]. It is no harder than “threshold counting”, since C=P ⊆ PP, but
neither is it substantially easier, since PP ⊆ NPC=P. It was shown in [9] that C=P = coNQP.

In many areas of complexity theory, when arbitrary small-size circuits are too unwieldy to
reason about, we restrict our attention to more stringent complexity measures, such as parallel
time, that are combinatorially simple enough to reason about and obtain unconditional
results. One model of efficient parallel time computation is AC0 (constant-depth unbounded
fan-in circuits with AND, OR, and NOT gates). Papers that study AC0 circuits that sample
distributions include [20, 13, 19, 6]. Another (generally more restrictive) model of efficient
parallel time computation is locally-computable functions, where each output bit depends on
at most a bounded number of input bits. Papers that study locally-computable functions
as samplers include [20, 8, 19, 22] as well as a large collection of papers investigating the
possibility of implementing pseudorandom generators locally. (See [8] for an extensive list
of past work on the power of locally-computable functions, including whether they can
implement PRGs, one-way functions, and extractors.)

We prove that our C=P-completeness results hold even when restricted to samplers that
are AC0-type circuits with depth 3 and top fan-in 2 (i.e., each output gate has fan-in at most
2). We also consider 2-local samplers (where each output bit depends on at most 2 of the
pure random input bits) such that each coordinate of the sampled joint distribution is a single
bit. We give polynomial-time (in fact, linear-time) algorithms for deciding whether such
a sampler’s distribution is fully independent, and whether it is exchangeable. These seem
to be the first-of-a-kind algorithmic results on deciding statistical properties of succinctly
described distributions.

We also consider approximate versions of the problems discussed above: deciding whether
the joint distribution of a given sampler is statistically close or far from satisfying a property.
It was shown in [10] that for the property of being uniform, the problem is NISZK-complete.
It was shown in [15] that the problem of deciding whether a pair of samplable distributions are
statistically close or far is complete for SZK (statistical zero knowledge). We prove that with
suitable parameters, the approximate versions of the full independence and exchangeability
problems (for general circuit samplers) are also SZK-complete.

T. Watson 665

In this paper we also consider a “bounded-error” version of C=P, which we call BC=P
and which does not seem to have been defined or studied in the literature before. Although it
does not appear to be directly relevant to statistical properties of samplable distributions, we
take the opportunity to study this class and prove that it is closed under several operations
(disjunction, conjunction, union, and intersection).

2 Results

If D is a joint distribution over ({0, 1}k)n, we let Di (for i ∈ {1, . . . , n}) denote the ith
coordinate, which is marginally distributed over {0, 1}k. For each of the computational
problems we consider, the input is a circuit S : {0, 1}r → ({0, 1}k)n (and we assume that
the values of k and n are part of the description of the circuit). We call such a circuit a
(k, n)-sampler, and if it has size ≤ s we also call it a (k, n, s)-sampler. Plugging a uniformly
random string into S yields a joint output distribution, which we denote by S(U).

We formulate computational problems using the framework of promise problems. Through-
out this paper, when we talk about reductions and completeness, we are always referring to
deterministic polynomial-time mapping reductions.

We state our completeness results for exact problems in Section 2.1 and prove them
in Section 3 and the full version. We state our algorithmic results for exact problems in
Section 2.2 and prove them in Section 4 and the full version. We state our completeness
results for approximate problems in Section 2.3 and prove them in Section 5 and the full
version. In the full version, we also study a new complexity class, BC=P.

2.1 Exact Completeness Results
For a joint distribution D over ({0, 1}k)n, we say that Di, Dj are uncorrelated if they have
covariance 0, in other words E(Di · Dj) = E(Di) · E(Dj) (when {0, 1}k is interpreted as
binary representations of nonnegative integers). Uncorrelated is the same as independent if
k = 1. We consider the following extreme notion of a distribution being nonuniform.

I Definition 1. A joint distribution is discordant if there are ≥ 2 coordinates and every pair
of coordinates is neither uncorrelated nor identically distributed.

I Definition 2. Panoptic-Stats is the following promise problem.

Panoptic-StatsYES =
{
S : S(U) is uniform

}
Panoptic-StatsNO =

{
S : S(U) is discordant

}
We say that promise problem Π is a generalization of promise problem Π′, or that Π′ is a

restriction of Π, if Π′YES ⊆ ΠYES and Π′NO ⊆ ΠNO.
I Fact 1. Panoptic-Stats is generalized by all the following languages, which are defined
in a natural way.

Uniform, Iid, Fully-Independent, Identically-Distributed,
Exchangeable, K-Wise-Uniform, K-Wise-Independent,
K-Wise-Exchangeable, 2-Wise-Uncorrelated, K-Exists-Uniform,
K-Exists-Independent, K-Exists-Identically-Distributed,
K-Exists-Exchangeable, 2-Exists-Uncorrelated, Non-Discordant

For example, S ∈ Uniform ⇐⇒ S(U) is uniform. Also, K ≥ 2 is any constant (unre-
lated to k). Technical caveat: To ensure the K-Wise- and K-Exists- problems generalize

STACS’14

666 The Complexity of Deciding Statistical Properties of Samplable Distributions

Panoptic-Stats, they are defined in terms of a property holding for every or some (respect-
ively) set of min(K,n) coordinates.

We prove that Panoptic-Stats and all the languages listed in Fact 1 are complete for
the complexity class C=P. In fact, the C=P-hardness of each of the individual languages
in Fact 1 is fairly simple to prove, but the C=P-hardness of Panoptic-Stats shows two
things: (1) that this phenomenon is very robust, not dependent on some fragile aspects of the
properties being decided, and (2) that only one proof is needed to show the C=P-hardness of
all the languages in Fact 1.

To prove the C=P-hardness of Panoptic-Stats, it suffices to prove hardness for the case
n = 2. However, hardness for n = 2 does not seem to directly imply hardness for a larger
number of coordinates; it is desirable to prove hardness even when restricted to samplers
that are small in terms of the number of coordinates n. We formalize this by introducing
a new parameter m and viewing k, n, s as functions of m. Thus m can be thought of as
indexing a family of parameter settings.

I Definition 3. We say that a triple of functions κ(m), ν(m), σ(m) : N→ N is polite if the
functions are monotonically nondecreasing, polynomially bounded in m, computable in time
polynomial in m, and σ(m) ≥ m.

I Definition 4. Panoptic-Statsκ,ν,σ is the restriction of Panoptic-Stats to (k, n, s)-
samplers with k = κ(m), n = ν(m), and s ≤ σ(m) for some m.

prC=P is the class of promise problems for which there exists a polynomial-time ran-
domized algorithm M that accepts with probability 1

2 on YES instances, and accepts with
probability 6= 1

2 on NO instances. Here we use a standard model of computation in which
randomized algorithms have access to independent unbiased coin flips. We use the following
equivalent definition of prC=P.

I Definition 5. prC=P is the class of all promise problems reducible to the following promise
problem Uniform-Bit.

Uniform-BitYES =
{
S : S is a (1, 1)-sampler and S(U) is uniform

}
Uniform-BitNO =

{
S : S is a (1, 1)-sampler and S(U) is nonuniform

}
C=P is defined as the class of languages in prC=P.

I Theorem 6. Panoptic-Statsκ,ν,σ is prC=P-hard for every polite κ, ν, σ with κν ≤ o(σ).

I Theorem 7. Panoptic-Statsκ,ν,σ is prC=P-hard even when restricted to samplers that
are AC0-type circuits with depth 3 and top fan-in 2, for every polite κ, ν, σ with κν+ν2 ≤ o(σ).

I Theorem 8. All the languages listed in Fact 1 are in C=P.

Consequently, all the languages listed in Fact 1 are C=P-complete, even when restricted
to (κ, ν, σ)-samplers (like in Definition 4) with polite κ, ν, σ satisfying κν ≤ o(σ) (for general
circuit samplers) or satisfying κν + ν2 ≤ o(σ) (for depth-3 circuits with top fan-in 2).

2.2 Exact Algorithmic Results
We say a (k, n, s)-sampler is d-local if each of the kn output bits depends on at most d of
the uniformly random input bits. For d-local samplers, if dk ≤ O(log s) then some statistical
properties, such as being pairwise independent or having identically distributed marginals,

T. Watson 667

can be decided trivially in polynomial time. We now prove that some other properties,
namely being fully independent or being exchangeable, can be decided in polynomial time
when d = 2 and k = 1. (Admittedly, our algorithms are not very “algorithmic”; we prove
combinatorial characterizations for which it is simple to check whether a given sampler
satisfies the characterization.)

I Theorem 9. There exists a linear-time algorithm for deciding whether the joint distribution
of a given 2-local (1, n)-sampler is fully independent.

I Theorem 10. There exists a linear-time algorithm for deciding whether the joint distribution
of a given 2-local (1, n)-sampler is exchangeable.

When d = 2 and k = 1, we can also improve the efficiency of the trivial quadratic-time
algorithm for deciding pairwise independence.

I Theorem 11. There exists a linear-time reduction from the problem of deciding whether
the joint distribution of a given 2-local (1, n)-sampler is pairwise independent, to the element
distinctness problem. Hence the former problem can be solved in deterministic O(n logn)
time and in zero-error randomized expected linear time.

2.3 Approximate Completeness Results
The statistical distance between two distributions D(1), D(2) over the same set is defined as∥∥D(1) −D(2)

∥∥ = maxevents E
∣∣Pr[D(1) ∈ E]− Pr[D(2) ∈ E]

∣∣. We say D(1), D(2) are c-close if∥∥D(1) −D(2)
∥∥ ≤ c, and f -far if ∥∥D(1) −D(2)

∥∥ ≥ f .
We prove that for appropriate parameters, approximate versions of the full independence

and exchangeability problems are prSZK-complete (for arbitrary circuit samplers). We do
not reproduce the original definition of prSZK, but we make use of the characterization of
this class proved by Sahai and Vadhan [15].

I Definition 12. For functions 0 ≤ c(k, n, s) < f(k, n, s) ≤ 1, Fully-Independentc,f is
the following promise problem.1

Fully-Independentc,fYES =
{
S : S is a (k, n, s)-sampler and S(U) is c(k, n, s)-close
to some fully independent distribution over ({0, 1}k)n

}
Fully-Independentc,fNO =

{
S : S is a (k, n, s)-sampler and S(U) is f(k, n, s)-far
from every fully independent distribution over ({0, 1}k)n

}
Exchangeablec,f is defined in an analogous way.

I Theorem 13. Fully-Independentc,f is prSZK-hard for all constants 0 < c < f < 1
4 .

I Theorem 14. Fully-Independentc,f ∈ prSZK where c = c′/(n + 1), for all constants
0 < c′ < f2 < 1.

I Theorem 15. Exchangeablec,f is prSZK-hard for all constants 0 < c < f < 1
2 .

I Theorem 16. Exchangeablec,f ∈ prSZK for all constants 0 < 2c < f2 < 1.

Consequently for example Fully-Independent0.05/(n+1), 0.24 and Exchangeable0.12, 0.49

are prSZK-complete.

1 The superscripts have a different meaning than the superscripts in Definition 4.

STACS’14

668 The Complexity of Deciding Statistical Properties of Samplable Distributions

3 Proofs of Exact Completeness Results

3.1 The Key Lemma
The following is the key lemma in the proof of Theorem 6. It can be interpreted qualitatively
as a certain type of amplification.

I Lemma 17. There is an algorithm that takes as input a (1, 1, s)-sampler S and an integer
n ≥ 2, runs in time O(n+s), and outputs a (1, n,O(n+s))-sampler T such that the following
both hold.

S(U) is uniform =⇒ T (U) is uniform
S(U) is nonuniform =⇒ T (U) is discordant

Proof. Let T perform the following computation.

run S and let b be its output
choose bits a1, a2, . . . , an uniformly at random
if there exists an ` < n such that a` = 0 then

let `∗ be the least such `
output a1, . . . , a`∗ , b, a`∗+2, . . . , an

else output a1, . . . , an

It is straightforward to see that if S(U) is uniform then T (U) is uniform. Now suppose
S(U) is nonuniform, say Pr[S(U) = 1] = p 6= 1

2 . For brevity we define D = T (U). Consider
any two coordinates Di and Dj where i < j. For technical reasons in the analysis below, if
`∗ does not exist then we define `∗ to be an arbitrary value > n.

We first show that Di and Dj are not identically distributed. If i > 1 then

Pr[Di = 1]
= Pr

[
Di = 1

∣∣ `∗ = i− 1
]
· Pr[`∗ = i− 1] + Pr

[
Di = 1

∣∣ `∗ 6= i− 1
]
· Pr[`∗ 6= i− 1]

= p · 1
2i−1 + 1

2 ·
(
1− 1

2i−1

)
.

Similarly, Pr[Dj = 1] = p · 1
2j−1 + 1

2 ·
(
1 − 1

2j−1

)
. Since p 6= 1

2 , and since Pr[Di = 1] and
Pr[Dj = 1] are different convex combinations of p and 1

2 , that means they are not equal.
More formally,

Pr[Di = 1]− Pr[Dj = 1] =
(
p− 1

2
)(1

2i−1 − 1
2j−1

)
6= 0.

On the other hand, suppose i = 1. Then Pr[Di = 1] = 1
2 , and Pr[Dj = 1] is a nontrivial

convex combination of p and 1
2 and is thus not equal to Pr[Di = 1]. In either case, Di and

Dj are not identically distributed.
Now we show that Di and Dj are correlated. Suppose j = i+ 1. Then Pr

[
Dj = 1

∣∣ Di =
1
]

= 1
2 , and

Pr
[
Dj = 1

∣∣ Di = 0
]

= Pr
[
Dj = 1

∣∣ `∗ = i, Di = 0
]
· Pr
[
`∗ = i

∣∣ Di = 0
]
+

Pr
[
Dj = 1

∣∣ `∗ < i, Di = 0
]
· Pr
[
`∗ < i

∣∣ Di = 0
]

= p · Pr
[
`∗ = i

∣∣ Di = 0
]

+ 1
2 ·
(
1− Pr

[
`∗ = i

∣∣ Di = 0
])
.

T. Watson 669

(Technically Pr
[
Dj = 1

∣∣ `∗ < i, Di = 0
]
is undefined if i = 1, but then 1−Pr

[
`∗ = i

∣∣ Di =
0
]

= 0 anyway so the final equation above still holds.) It follows that

Pr
[
Dj = 1

∣∣ Di = 0
]
− Pr

[
Dj = 1

∣∣ Di = 1
]

=
(
p− 1

2
)
· Pr
[
`∗ = i

∣∣ Di = 0
]
6= 0

since p 6= 1
2 and Pr

[
`∗ = i

∣∣ Di = 0
]
> 0. On the other hand, suppose j > i + 1. Then

Pr
[
Dj = 1

∣∣ Di = 0
]

= 1
2 , and

Pr
[
Dj = 1

∣∣ Di = 1
]

= Pr
[
Dj = 1

∣∣ `∗ = j − 1, Di = 1
]
· Pr
[
`∗ = j − 1

∣∣ Di = 1
]
+

Pr
[
Dj = 1

∣∣ `∗ 6= j − 1, Di = 1
]
· Pr
[
`∗ 6= j − 1

∣∣ Di = 1
]

= p · Pr
[
`∗ = j − 1

∣∣ Di = 1
]

+ 1
2 ·
(
1− Pr

[
`∗ = j − 1

∣∣ Di = 1
])
.

It follows that

Pr
[
Dj = 1

∣∣ Di = 1
]
− Pr

[
Dj = 1

∣∣ Di = 0
]

=
(
p− 1

2
)
· Pr
[
`∗ = j − 1

∣∣ Di = 1
]
6= 0

since p 6= 1
2 and Pr

[
`∗ = j − 1

∣∣ Di = 1
]
> 0. In either case, Di and Dj are correlated since

Pr
[
Dj = 1

∣∣ Di = 0
]
6= Pr

[
Dj = 1

∣∣ Di = 1
]
. J

I Lemma 18. Lemma 17 holds even when T is required to be an AC0-type circuit with depth
3 and top fan-in 2, except that the size of T and the running time of the algorithm both
become O(n2 + s).

Proof. The construction and analysis are the same as in the proof of Lemma 17, but we need
more care in implementing T . First, we use a standard reduction to convert S into a 3-CNF
F that accepts the same number of inputs as S (but has more input bits). Thus, for some
polynomially large q, S accepts a uniformly random input with probability 1

2 iff F accepts a
uniformly random input with probability 1

2q . Let x1, x2, . . . , xr denote the input bits of F .
Construct a new CNF F ′ with input bits x0, x1, . . . , xr by taking F and including x0 in each
of the clauses (yielding a 4-CNF), then adding a new clause (x0 ∨ x1 ∨ · · · ∨ xq). Since

Pr[F ′ accepts] = 1
2 · Pr[F accepts] + 1

2 · Pr
[
(x1 ∨ · · · ∨ xq) accepts

]
it follows that F accepts with probability 1

2q iff F ′ accepts with probability 1
2 . Now to

implement T , we include a copy of F ′ as well as the random input bits a1, a2, . . . , an. The
1st output bit of T is just a1. For the ith output bit when i > 1, we have a multiplexer
that selects the output of F ′ if (a1 ∧ a2 ∧ · · · ∧ ai−2 ∧ ai−1) is true, and selects ai otherwise.
Overall, T is an OR-AND-OR circuit (with negations pushed to the inputs) where each
output gate has fan-in at most 2. J

3.2 prC=P-Hardness
I Corollary 19. Lemmas 17 and 18 also hold when the algorithm is additionally given an
integer k ≥ 1 and is required to output a (k, n)-sampler T , except that the size of T and the
running time of the algorithm both become O(kn+ s) (for Lemma 17) or O(kn+n2 + s) (for
Lemma 18).

See the full version for the straightforward proof of Corollary 19.

Proof of Theorem 6. We reduce Uniform-Bit to Panoptic-Statsκ,ν,σ. Let c be the
constant factor in the big O in Corollary 19. Given a (1, 1, s)-sampler S, we first find the
smallest m such that c ·

(
κ(m)ν(m) + s

)
≤ σ(m). Such an m exists and is O(s) because

STACS’14

670 The Complexity of Deciding Statistical Properties of Samplable Distributions

κν ≤ o(σ) and σ(m) ≥ m for all m. Then we run the algorithm from Corollary 19 (based on
Lemma 17) with k = κ(m) and n = ν(m) to get T of size at most c ·

(
κ(m)ν(m) + s

)
≤ σ(m).

Thus the following both hold.

S ∈ Uniform-BitYES =⇒ T ∈ Panoptic-Statsκ,ν,σYES

S ∈ Uniform-BitNO =⇒ T ∈ Panoptic-Statsκ,ν,σNO

The reduction’s running time is polynomial since m,κ(m), ν(m), σ(m) are all polynomially
bounded in s and computable in time polynomial in s, and since the algorithm from
Corollary 19 runs in time O(kn+ s). J

The proof of Theorem 7 is similar; see the full version for details.

3.3 Containment in C=P
In the proof of Theorem 8 we use the following lemma, which states that C=P is closed under
exponential conjunctions and polynomial disjunctions. We supply a folklore proof of this
lemma in the full version.

I Lemma 20. If L ∈ C=P then both of the following hold.
∀qL ∈ C=P for every polynomial q, where ∀qL =

{
x : (x, y) ∈ L for all y ∈ {0, 1}q(|x|)}.

∨L ∈ C=P where ∨L =
{

(x1, . . . , x`) : xi ∈ L for some i
}

.

Proof of Theorem 8. The arguments are very similar, so we just give three representative ex-
amples: Fully-Independent, K-Wise-Exchangeable, and 2-Exists-Uncorrelated.
First we mention a useful tool: If S1, S2 are (1, 1)-samplers, then we define Equ(S1, S2) to be
a (1, 1)-sampler that picks i ∈ {1, 2} uniformly at random, runs Si, and negates the output
if i = 2. Hence Equ(S1, S2)(U) is uniform iff S1(U), S2(U) are identically distributed.

Now we prove that Fully-Independent ∈ C=P. Note that Fully-Independent =
∀qL where, if we view S as (say) a (k, n)-sampler, and y as (an appropriately encoded
description of) an element of ({0, 1}k)n (so q is linear in the size of S), then

(S, y) ∈ L ⇐⇒ Pr[S(U) = y] =
∏n
i=1 Pr[S(U)i = yi].

Thus by Lemma 20 it suffices to show that L ∈ C=P. A reduction from L to Uniform-Bit
just outputs Equ(S1, S2), where S1 runs S and accepts iff the output is y, and S2 runs S for
n times and accepts iff for all i, the ith coordinate of the output of the ith run is yi.

Now we prove that K-Wise-Exchangeable ∈ C=P. Note that K-Wise-
Exchangeable = ∀qL where, if we view S as (say) a (k, n)-sampler, and y = (I, π, w)
as (an appropriately encoded description of) a subset I ⊆ {1, . . . , n} of size min(K,n), a
permutation π on {1, . . . ,min(K,n)}, and an element w ∈ ({0, 1}k)min(K,n) (so q is certainly
polynomial in the size of S), then(

S, (I, π, w)
)
∈ L ⇐⇒ Pr[S(U)I = w] = Pr[S(U)I = π(w)]

where S(U)I is the restriction to coordinates indexed by I, and π(w) ∈ ({0, 1}k)min(K,n) is
obtained by permuting the coordinates of w by π. Thus by Lemma 20 it suffices to show that
L ∈ C=P. A reduction from L to Uniform-Bit just outputs Equ(S1, S2), where S1 runs
S and accepts iff the output restricted to I is w, and S2 runs S and accepts iff the output
restricted to I is π(w).

Now we prove that 2-Exists-Uncorrelated ∈ C=P. Note that if we define the lan-
guage L =

{
(S, i, j) : S(U)i and S(U)j are uncorrelated

}
, then 2-Exists-Uncorrelated

T. Watson 671

reduces to ∨L by mapping a (k, n)-sampler S to
(
(S, 1, 2), (S, 1, 3), (S, 1, 4), . . . , (S, n− 1, n)

)
.

Thus by Lemma 20 it suffices to show that L ∈ C=P. A reduction from L to Uniform-Bit
just outputs Equ(S1, S2), where S1 runs S yielding some y ∈ ({0, 1}k)n and accepts with
probability 1

22k · yi · yj so that Pr[S1(U) = 1] = 1
22k ·E

(
S(U)i · S(U)j

)
, and S2 runs S twice

(independently) yielding some y(1) and y(2) and accepts with probability 1
22k · y(1)

i · y
(2)
j so

that Pr[S2(U) = 1] = 1
22k · E(S(U)i) · E(S(U)j). J

4 Proofs of Exact Algorithmic Results

We prove Theorem 9 in Section 4.1. The proof of Theorem 10 (on exchangeability of
distributions with 2-local samplers) is much more interesting and less elementary, but due to
space constraints we must defer it to the full version (where we also prove Theorem 11).

First we introduce some terminology to describe 2-local samplers. Each output bit
depends on either zero, one, or two input bits. Output bits that depend on zero input bits
are constants (0 or 1). The nonconstant output bits can be modeled with an undirected
graph (multi-edges and self-loops allowed) as follows. The input bits are the nodes. Each
output bit depending on one input bit is a self-loop, labeled with a function from {0, 1} to
{0, 1} (either the identity or negation). Each output bit depending on two input bits is an
edge between those two nodes, labeled with a function from {0, 1}2 to {0, 1}. There are
three types of such functions that depend on both bits: AND-type (accepting one of the four
inputs), XOR-type (accepting two of the four inputs), and OR-type (accepting three of the
four inputs).

4.1 Full Independence for 2-Local Samplers
We prove Theorem 9. Consider a 2-local (1, n)-sampler S, and assume without loss of
generality that S has no constant output bits. We claim that S(U) is fully independent iff
both of the following conditions hold.
(i) The graph is a forest, ignoring self-loops.
(ii) Each connected component of the graph has at most one of the following: a self-loop,

an AND-type edge, or an OR-type edge.
It is trivial to check in linear time whether these conditions hold.

First we assume that (i) and (ii) both hold, and show that S(U) is fully independent. The
different connected components of the graph are certainly fully independent of each other,
so we can focus on showing that the coordinates of a single connected component are fully
independent. If there is a self-loop, an AND-type edge, or an OR-type edge in the connected
component, then let e be that edge. Otherwise, let e be any edge in the connected component.
We show that conditioned on e evaluating to any particular bit, the joint distribution of the
remaining edges in e’s connected component is uniform. This implies that the whole joint
distribution of the connected component is fully independent.

Suppose e is a self-loop at some node v, so we are conditioning on v being some particular
bit. Ignoring e itself, we can view e’s connected component as a tree rooted at v with
only XOR-type edges. After the conditioning, there is a bijection between the set of all
assignments of values to the edges (excluding e) and the set of all assignments of values
to the nodes (excluding v) in e’s connected component: An assignment to nodes (together
with the conditioned value of v) determines an assignment to edges. Furthermore, every
assignment to edges arises from some assignment to nodes, because for any assignment to
edges, we can start at v and work our way downward to the leaves, uniquely specifying the

STACS’14

672 The Complexity of Deciding Statistical Properties of Samplable Distributions

value of each node in terms of the values of its parent and the edge to its parent. Since
the sets have the same size, we have exhibited a bijection between them. This means that
conditioned on either value of e, the joint distribution of all the other edges in e’s connected
component is uniform.

Now suppose e = {u, v} is not a self-loop. We show that, in fact, conditioned on any
one of the four assignments of values to the pair u, v, the joint distribution of all the other
edges in e’s connected component is uniform. Removing e results in two new connected
components, each of which is a tree of XOR-type edges, one rooted at u and the other rooted
at v. Let U denote the set of nodes in u’s new connected component excluding u itself,
and let V denote the set of nodes in v’s new connected component excluding v itself. By
the argument from the previous paragraph (when e was a self-loop), a uniformly random
assignment to U induces a uniformly random assignment to the edges in u’s new connected
component, and similarly for V . Since assignments to U and V are chosen independently of
each other, this means that the values of all the edges in e’s original connected component
(except e itself) are jointly uniformly distributed (conditioned on any particular assignment
to u, v, and hence conditioned on any particular assignment to e).

Now we prove the converse by assuming that (i) and (ii) do not both hold, and showing
that S(U) is not fully independent. Let us refer to self-loops, AND-type edges, and OR-type
edges as non-XOR-type edges. If (i) and (ii) do not both hold, then at least one of the
following conditions holds.
(A) There is a cycle consisting entirely of XOR-type edges.
(B) There is a cycle with exactly one AND-type edge or OR-type edge.
(C) There is a path between two non-XOR-type edges.
Suppose (A) holds. Let e be an edge on the cycle. Then e’s marginal distribution is uniform,
but conditioning on any particular values of the other edges on the cycle determines whether
or not e’s endpoints are the same bit as each other, and thus fixes the value of e. Hence S(U)
is not fully independent. Suppose (B) holds. Let ` denote the number of nodes on the cycle.
Then the probability that all edges on the cycle evaluate to 1 must be an integer multiple of
1
2` (since they only depend on ` input bits), but the product of the marginal probabilities
that each edge on the cycle evaluates to 1 must be either 1

2`+1 (if there is an AND-type edge)
or 3

2`+1 (if there is an OR-type edge). Hence S(U) is not fully independent. Suppose (C)
holds. Without loss of generality, all intermediate edges on the path are XOR-type. Let e1
and e2 be the two non-XOR-type edges, which we consider to be part of the path. Let `
denote the number of nodes on the path. Then the probability that all edges on the path
evaluate to 1 must be an integer multiple of 1

2` (since they only depend on ` input bits), but
the product of the marginal probabilities that each edge on the path evaluates to 1 must be
either 1

2`+1 (if neither e1 nor e2 is OR-type) or 3
2`+1 (if exactly one of e1, e2 is OR-type) or

9
2`+1 (if both e1 and e2 are OR-type). Hence S(U) is not fully independent.

5 Proofs of Approximate Completeness Results

Due to space constraints, we defer most of this section to the full version. Here, we just give
the argument for Theorem 16, which uses the following lemma.

I Lemma 21. Suppose D is a distribution over ({0, 1}k)n. If D is c-close to some exchange-
able distribution D∗, then D is 2c-close to the distribution D′ obtained by drawing a sample
from D then permuting the coordinates according to a uniformly random permutation.

Proof of Lemma 21. For a multiset W ⊆ {0, 1}k of size n, we say that w ∈ ({0, 1}k)n is an
ordering of W if the multiset

{
wi : i ∈ {1, . . . , n}

}
equals W . Let Ord(W) denote the set

T. Watson 673

of all orderings of W . Let d∗+W be the sum of Pr[D = w]− Pr[D∗ = w] over all w ∈ Ord(W)
such that Pr[D = w]− Pr[D∗ = w] > 0, and let d∗−W be the sum of Pr[D∗ = w]− Pr[D = w]
over all w ∈ Ord(W) such that Pr[D∗ = w]− Pr[D = w] > 0. Then we have

‖D −D∗‖ = 1
2 ·
∑
w∈({0,1}k)n

∣∣Pr[D = w]− Pr[D∗ = w]
∣∣

= 1
2 ·
∑

multisets W ⊆ {0, 1}k of size n
(
d∗+W + d∗−W

)
(1)

Letting d′+W and d′−W be the analogous quantities with D′ instead of D∗, we have

‖D −D′‖ = 1
2 ·
∑

multisets W ⊆ {0, 1}k of size n
(
d′+W + d′−W

)
. (2)

Now fix some W . Note that since D∗ is exchangeable, all elements of Ord(W) have the same
probability under D∗; call this probability p∗W . If w is an element of Ord(W) then permuting
the coordinates of w uniformly at random yields a uniformly random element of Ord(W).
Thus all elements of Ord(W) have the same probability under D′, namely

p′W = 1
|Ord(W)| ·

∑
w∈Ord(W) Pr[D = w].

If p′W ≥ p∗W then d′+W ≤ d∗+W by definition. If p′W ≤ p∗W then d′−W ≤ d∗−W by definition. We
also have

0 =
(∑

w∈Ord(W) Pr[D = w]
)
− |Ord(W)| · p′W

=
∑
w∈Ord(W)

(
Pr[D = w]− p′W

)
= d′+W − d

′−
W

which implies that d′+W = d′−W ≤ max(d∗+W , d∗−W). Hence
(
d′+W + d′−W

)
≤ 2 ·max(d∗+W , d∗−W) ≤

2 ·
(
d∗+W + d∗−W

)
. Since this holds for all W , we get ‖D −D′‖ ≤ 2 · ‖D −D∗‖ by Equations

(1) and (2). J

We mention that the constant factor of 2 in Lemma 21 is tight, by the following example.
Suppose k = 1, and suppose D is uniformly distributed over a set of n strings, one of
which has Hamming weight 1 and the other n − 1 of which have Hamming weight n − 1.
Let D∗ be uniformly distributed over the strings of Hamming weight n− 1. Note that D∗
is exchangeable, and ‖D − D∗‖ = 1

n . However, D′ has probability 1
n2 on each string of

Hamming weight 1, and probability n−1
n2 on each string of Hamming weight n− 1, and thus

‖D −D′‖ = 2(1− 1
n) · 1

n = 2(1− 1
n) · ‖D −D∗‖.

To prove Theorem 16, we reduce Exchangeablec,f to the promise problem of deciding
whether the distributions of two given samplers are 2c-close or f -far in statistical distance
(from each other), which Sahai and Vadhan [15] proved is in prSZK for all constants
0 < 2c < f2 < 1. Given a (k, n)-sampler S with distribution D = S(U), the reduction
outputs S and another (k, n)-sampler S′ that samples from D′ (as in the statement of
Lemma 21) by running S then permuting the coordinates uniformly at random. (There is a
minor technical issue arising from n! not being a power of 2, but this is not problematic.) If
D is c-close to some exchangeable distribution then D,D′ are 2c-close. If D is f -far from
every exchangeable distribution then D,D′ are f -far since D′ is exchangeable.

References
1 David Aldous. More uses of exchangeability: Representations of complex random structures.

In Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman, pages
35–63. Cambridge University Press, 2010.

STACS’14

674 The Complexity of Deciding Statistical Properties of Samplable Distributions

2 Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning
Xie. Testing k-wise and almost k-wise independence. In Proceedings of the 39th ACM
Symposium on Theory of Computing, pages 496–505, 2007.

3 Tuğkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing random variables for independence and identity. In Proceedings of the 42nd
IEEE Symposium on Foundations of Computer Science, pages 442–451, 2001.

4 Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren Smith, and Patrick White. Testing
closeness of discrete distributions. Journal of the ACM, 4, 2013.

5 Tuğkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing mono-
tone and unimodal distributions. In Proceedings of the 36th ACM Symposium on Theory
of Computing, pages 381–390, 2004.

6 Christopher Beck, Russell Impagliazzo, and Shachar Lovett. Large deviation bounds for
decision trees and sampling lower bounds for AC0-circuits. In Proceedings of the 53rd IEEE
Symposium on Foundations of Computer Science, pages 101–110, 2012.

7 Siu On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal algorithms
for testing closeness of discrete distributions. CoRR, abs/1308.3946, 2013.

8 Anindya De and Thomas Watson. Extractors and lower bounds for locally samplable
sources. ACM Transactions on Computation Theory, 4(1), 2012.

9 Stephen Fenner, Frederic Green, Steven Homer, and Randall Pruim. Quantum NP is hard
for PH. In Proceedings of the 6th Italian Conference on Theoretical Computer Science,
pages 241–252, 1998.

10 Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made
non-interactive? or On the relationship of SZK and NISZK. In Proceedings of the 19th
International Cryptology Conference, pages 467–484, 1999.

11 Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero-knowledge with
applications to the structure of SZK. In Proceedings of the 14th IEEE Conference on
Computational Complexity, page 54–73, 1999.

12 Oded Goldreich and Salil Vadhan. On the complexity of computational problems regarding
distributions. Studies in Complexity and Cryptography, pages 390–405, 2011.

13 Shachar Lovett and Emanuele Viola. Bounded-depth circuits cannot sample good codes.
Computational Complexity, 21(2):245–266, 2012.

14 Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds for
approximating distribution support size and the distinct elements problem. SIAM Journal
on Computing, 39(3):813–842, 2009.

15 Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge. Journal
of the ACM, 50(2):196–249, 2003.

16 Jun Tarui. Probabilistic polynomials, AC0 functions, and the polynomial-time hierarchy.
Theoretical Computer Science, 113(1):167–183, 1993.

17 Seinosuke Toda and Mitsunori Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. SIAM Journal on Computing, 21(2):316–328, 1992.

18 Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011.

19 Emanuele Viola. Extractors for circuit sources. In Proceedings of the 52nd IEEE Symposium
on Foundations of Computer Science, pages 220–229, 2011.

20 Emanuele Viola. The complexity of distributions. SIAM Journal on Computing, 41(1):191–
218, 2012.

21 Klaus Wagner. The complexity of combinatorial problems with succinct input representa-
tion. Acta Informatica, 23(3):325–356, 1986.

22 Thomas Watson. The complexity of estimating min-entropy. Technical Report TR12-070,
Electronic Colloquium on Computational Complexity, 2012.

Faster Compact On-Line Lempel-Ziv Factorization
Jun’ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga,
and Masayuki Takeda

Department of Informatics, Kyushu University, Nishiku, Fukuoka, Japan
{tomohiro.i,bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract
We present a new on-line algorithm for computing the Lempel-Ziv factorization of a string that
runs in O(N logN) time and uses only O(N log σ) bits of working space, where N is the length
of the string and σ is the size of the alphabet. This is a notable improvement compared to the
performance of previous on-line algorithms using the same order of working space but running
in either O(N log3 N) time (Okanohara & Sadakane 2009) or O(N log2 N) time (Starikovskaya
2012). The key to our new algorithm is in the utilization of an elegant but less popular in-
dex structure called Directed Acyclic Word Graphs, or DAWGs (Blumer et al. 1985). We
also present an opportunistic variant of our algorithm, which, given the run length encoding of
size m of a string of length N , computes the Lempel-Ziv factorization of the string on-line, in
O
(
m ·min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})
time and O(m logN) bits of space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Lempel-Ziv Factorization, String Index

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.675

1 Introduction

The Lempel-Ziv (LZ) factorization of a string [20], discovered over 35 years ago, captures
important properties concerning repeated occurrences of substrings in the string, and has
numerous applications in the field of data compression, compressed full text indices [12],
and is also the key component to various efficient algorithms on strings [11, 6]. Therefore,
a large amount of work has been devoted to its efficient computation, especially in the
off-line setting where the text is static, and the LZ factorization can be computed in as
fast as O(N) time assuming an integer alphabet, using O(N logN) bits of space (see [1]
for a survey; more recent results are in [14, 10, 7, 9]). In this paper, we consider the more
difficult and challenging on-line setting, where new characters may be appended to the
end of the string. If we may use O(N logN) bits of space, the problem can be solved in
O(N log σ) time where σ is the size of the alphabet, by use of string indices such as suffix
trees [19] and on-line algorithms to construct them [18]. However, when σ is small and
N is very large (e.g. DNA), the O(N logN) bits space complexity is much larger than
the N log σ bits of the input text, and can be prohibitive. To solve this problem, space
efficient on-line algorithms for LZ factorization based on succinct data structures have
been proposed. Okanohara and Sadakane [15] gave an algorithm that runs in O(N log3 N)
time using N log σ + o(N log σ) + O(N) bits of space. Later Starikovskaya [17], achieved
O(N log2 N) time using O(N log σ) bits of space, assuming logσ N characters are packed in
a machine word. Kärkkäinen et al. [8] proposed an LZ factorization algorithm that works in
O(Ntd) time and N log σ +O(N logN/d) bits of space with dN/de delay (i.e., it processes
dN/de characters in a batch) for any d ≥ 1, where t is the time for a rank query on a string
over an alphabet of size σ. When d = Θ(logσ N), their algorithm runs in O(Nt logN/ log σ)

© Jun’ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and
Masayuki Takeda;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 675–686

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.675
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

676 Faster Compact On-Line Lempel-Ziv Factorization

time and O(N log σ) bits of space. However, the delay then becomes Θ(N log σ/ logN),
which seems to be too large to be called on-line.

In this paper, we propose a new on-line LZ factorization algorithm running in O(N logN)
time using O(N log σ) bits of space, which is a notable improvement compared to the run-
times of the previous on-line algorithms while still keeping the working space within a
constant factor of the input text. Our algorithm is based on a novel application of a full
text index called Directed Acyclic Word Graphs, or DAWGs [4], which, despite its elegance,
has not received as much attention as suffix trees. To achieve a more efficient algorithm, we
exploit an interesting feature of the DAWG structure that, unlike suffix trees, allows us to
collect information concerning the left context of strings into each state in an efficient and
on-line manner. We further show that the DAWG allows for an opportunistic variant of the
algorithm which is more time and space efficient when the run length encoding (RLE) of
the string is small. Given the RLE of size m ≤ N of the string, our on-line algorithm runs
in O

(
m ·min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})
= o(m logm) time using O(m logN) bits of

space.

2 Preliminaries

Let Σ = {1, . . . , σ} be a finite integer alphabet. An element of Σ∗ is called a string. The
length of a string S is denoted by |S|. The empty string ε is the string of length 0. Let
Σ+ = Σ∗ − {ε}. For a string S = XY Z, X, Y and Z are called a prefix, substring, and suffix
of S, respectively. The set of prefixes and substrings of S are denoted by Prefix(S) and
Substr(S), respectively. The longest common prefix (lcp) of strings X,Y is the longest string
in Prefix(X) ∩ Prefix(Y). The i-th character of a string S is denoted by S[i] for 1 ≤ i ≤ |S|,
and the substring of a string S that begins at position i and ends at position j is denoted
by S[i..j] for 1 ≤ i ≤ j ≤ |S|. For convenience, let S[i..j] = ε if j < i. A position i is
called an occurrence of X in S if S[i..i + |X| − 1] = X. For any string S = S[1..N], let
Srev = S[N] · · ·S[1] denote the reversed string. For any character a ∈ Σ and integer i ≥ 0,
let a0 = ε, ai = ai−1a. We call i the exponent of ai.

The default base of logarithms will be 2. Our model of computation is the unit cost word
RAM with the machine word size at least logN bits. For an input string S of length N ,
let r = logσ N = logN

logσ . For simplicity, assume that logN is divisible by log σ, and that N
is divisible by r. A string of length r, called a meta-character, consists of logN bits, and
therefore fits in a single machine word. Thus, a meta-character can also be transparently
regarded as an element in the integer alphabet Σr = {1, . . . , N}. We assume that given
1 ≤ i ≤ N − r + 1, any meta-character A = S[i..i+ r − 1] can be retrieved in constant time.
Also, we can pre-compute an array of size 2

logN
2 occupying O(

√
N logN) = o(N) bits in o(N)

time, so Arev can be computed in constant time given A. We call a string on the alphabet Σr
of meta-characters, a meta-string. Any string S whose length is divisible by r can be viewed
as a meta-string S of length n = |S|

r . We write 〈S〉 when we explicitly view string S as a
meta-string, where 〈S〉[j] = S[(j− 1)r+ 1..jr] for each j ∈ [1, n]. Such range [(j− 1)r+ 1, jr]
of positions will be called meta-blocks and the beginning positions (j− 1)r+ 1 of meta-blocks
will be called block borders. For clarity, the length n of a meta-string 〈S〉 will be denoted by
‖〈S〉‖. Meta-strings are sometimes called packed strings. Note that n logN = N log σ.

2.1 LZ Factorization
There are several variants of LZ factorization, and as in most recent work, we consider the
variant also called s-factorization [5]. The s-factorization of a string S is the factorization

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 677

S = f1 · · · fz where each s-factor fi ∈ Σ+ (i = 1, . . . , z) is defined as follows: f1 = S[1]. For
i ≥ 2: if S[|f1 · · · fi−1|+1] = c ∈ Σ does not occur in f1 · · · fi−1, then fi = c. Otherwise, fi is
the longest prefix of fi · · · fz that occurs at least twice in f1 · · · fi. Notice that self-referencing
is allowed, i.e., the previous occurrence of fi may overlap with itself. Each s-factor can be
represented in a constant number of words, i.e., either as a single character or a pair of
integers representing the position of a previous occurrence of the factor and its length.

2.2 Tools
Let B be a bit array of length N . For any position x of B, let rank(B, x) denote the number
of 1’s in B[1..x]. For any integer j, let select(B, j) denote the position of the jth 1 in B.
For any pair of positions x, y (x ≤ y) of B, the number of 1’s in B[x..y] can be expressed
as pc(B, x, y) = rank(B, y) − rank(B, x − 1). It is possible to maintain B and support
rank/select queries and bit flip operations in O(logN) time, using N + o(N) bits of space
(e.g. Raman et al. [16]).

Directed Acyclic Word Graphs (DAWG) are a variant of suffix indices, similar to suffix
trees or suffix arrays. The DAWG of a string S is the smallest partial deterministic finite
automaton that accepts all suffixes of S. Thus, an arbitrary string is a substring of S iff it
can be traversed from the source of the DAWG. While each edge of the suffix tree corresponds
to a substring of S, an edge of a DAWG corresponds to a single character.

I Theorem 1 (Blumer et al. [4]). The numbers of states, edges and suffix links of the DAWG
of string S are O(|S|), independent of the alphabet size σ. The DAWG augmented with the
suffix links can be constructed in an on-line manner in O(|S| log σ) time using O(|S| log |S|)
bits of space.

We give a more formal presentation of DAWGs below. Let EndPosS(u) = {j | u =
S[i..j], 1 ≤ i ≤ j ≤ N}. Define an equivalence relation on Substr(S) such that for any
u,w ∈ Substr(S), u ≡S w ⇐⇒ EndPosS(u) = EndPosS(w), and denote the equivalence
class of u ∈ Substr(S) as [u]S . When clear from the context, we abbreviate the above
notations as EndPos, ≡ and [u], respectively. Note that for any two elements in [u],
one is a suffix of the other. We denote by ←−u the longest member of [u]. The states
V and edges E of the DAWG can be characterized as V = {[u] | u ∈ Substr(S)} and
E = {([u], a, [ua]) | u, ua ∈ Substr(S), u 6≡ ua}. We also define the set G of labeled reversed
edges, called suffix links, by G = {([au], a, [u]) | u, au ∈ Substr(S), u = ←−u }. An edge
([u], a, [ua]) ∈ E is called a primary edge if |←−u |+ 1 = |←−ua|, and a secondary edge otherwise.
We call [ua] a primary (resp. secondary) child of [u] if the edge is primary (resp. secondary).
By storing |←−u | at each state [u], we can determine whether an edge ([u], a, [ua]) is primary
or secondary in O(1) time using O(|S| log |S|) bits of total space.

Whenever a state [u] is created during the on-line construction of the DAWG, it is
possible to assign the position pos[u] = min EndPosS(u) to that state. If state u is reached
by traversing the DAWG from the source with string p, this means that p = S[pos[u] −
|p| + 1..pos[u]], and thus the first occurrence pos[u] − |p| + 1 of p can be retrieved, using
O(|S| log |S|) bits of total space.

For any set P of points on a 2-D plane, consider query find_any(P, Ih, It) which returns
an arbitrary element in P that is contained in a given orthogonal range Ih × It if such exists,
and returns nil otherwise. A simple corollary of the following result by Blelloch [3]:

I Theorem 2 (Blelloch [3]). The 2D dynamic orthogonal range reporting problem on n

elements can be solved using O(n logn) bits of space so that insertions and deletions take

STACS’14

678 Faster Compact On-Line Lempel-Ziv Factorization

O(logn) amortized time and range reporting queries take O(logn+ k logn/ log logn) time,
where k is the number of output elements.

is that the query find_any(P, Ih, It) can be answered in O(logn) time on a dynamic set P
of points. It is also possible to extend the find_any query to return, in O(logn) time, a
constant number of elements contained in the range.

3 On-line LZ Factorization with Packed Strings

The problem setting and high-level structure of our algorithm follows that of
Starikovskaya [17], but we employ somewhat different tools. The goal of this section is to
prove the following theorem.

I Theorem 3. The s-factorization of any string S ∈ Σ∗ of length N can be computed in an
on-line manner in O(N logN) time and O(N log σ) bits of space.

By on-line, we assume that the input string S is given r characters at a time, and we are
to compute the s-factorization of the string S[1..jr] for all j = 1, . . . , n. Since only the
last factor can change for each j, the whole s-factorization need not be re-calculated so we
will focus on describing how to compute each s-factor fi by extending fi while a previous
occurrence exists. We show how to maintain dynamic data structures using O(N log σ) bits
in O(N logN) total time that allow us to (1) determine whether |fi| < r in O(1) time, and
if so, compute fi in O(|fi| logN) time (Lemma 4), (2) compute fi in O(|fi| logN) time
when |fi| ≥ r (Lemma 9), and (3) retrieve a previous occurrence of fi in O(|fi| logN) time
(Lemma 11). Since

∑z
i=1 |fi| = N , these three lemmas prove Theorem 3.

The difference between our algorithm and that of Starikovskaya [17] can be summarized
as follows: For (1), we show that a dynamic succinct bit-array that supports rank/select
queries and flip operations can be used, as opposed to a suffix trie employed in [17]. This
allows our algorithm to use a larger meta-character size of r = logσ N instead of logσ N

4
in [17], where the 1/4 factor was required to keep the size of the suffix trie within O(N log σ)
bits. Hence, our algorithm can pack characters more efficiently into a word. For (2), we show
that by using a DAWG on the meta-string of length n = N/r which occupies only O(N log σ)
bits, we can reduce the problem of finding valid extensions of a factor to dynamic orthogonal
range reporting queries, for which a space efficient dynamic data structure with O(logn)
time query and update exists [3]. In contrast, Starikovskaya’s algorithm uses a suffix tree on
the meta-string and dynamic wavelet trees requiring O(log2 n) time for queries and updates,
which is the bottleneck of her algorithm. For (3), we develop a technique for the case |fi| < r,
which may be of independent interest.

In what follows, let li =
∑i−1
k=1 |fk|, i.e., li is the total length of the first i− 1 s-factors.

Although our presentation assumes that N is known, this can be relaxed at the cost of a
constant factor by simply restarting the entire algorithm when the length of the input string
doubles.

3.1 Algorithm for |fi| < r

Consider a bit array Mk[1..N]. For any meta-characterA ∈ Σr, let Mk[A] = 1 iff S[l+1..l+r] =
A for some 0 ≤ l ≤ k − r, i.e., Mk[A] indicates whether A occurs as a substring in S[1..k].
We will dynamically maintain a single bit array representing Mk, for increasing values of k.
For any short string t (|t| < r), let Dt and Ut be, respectively, the lexicographically smallest

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 679

and largest meta-characters having t as a prefix, namely, the bit-representation1 of Dt is the
concatenation of the bit-representation of t and 0(r−|t|) log σ, and the bit-representation of Ut
is the concatenation of the bit-representation of t and 1(r−|t|) log σ. These representations can
be obtained from t in constant time using standard bit operations. Then, the set of meta-
characters that have t as a prefix can be represented by the interval tr(t) = [Dt, Ut]. It holds
that t occurs in S[1..k − r + |t|] iff some element in Mk[Dt..Ut] is 1, i.e. pc(Mk, Dt, Ut) > 0.
Therefore, we can check whether or not a string of length up to r occurs at some position
p ≤ li by using Mli+r−1.

For any 0 ≤ m ≤ r, let tm = S[li + 1..li +m]. We have that |fi| < r iff Mli+r−1[tr] = 0,
which can be determined in O(1) time. Assume |fi| < r, and let mi = max{m | 0 ≤
m < r, pc(Mli+r−1, Dtm , Utm) > 0}, where mi = 0 indicates that S[li + 1] does not occur
in S[1..li]. From the definition of s-factorization, we have that |fi| = max(1,mi). Notice
that mi can be computed by O(|fi|) rank queries on Mli+r−1, due to the monotonicity of
pc(Mli+r−1, Dtm , Utm) for increasing values of m. To maintain Mk we can use rank/select
dictionaries for a dynamic bit array of length N (e.g. [16]) mentioned in Section 2. Thus we
have:

I Lemma 4. We can maintain in O(N logN) total time, a dynamic data structure occupying
N + o(N) bits of space that allows whether or not |fi| < r to be determined in O(1) time,
and if so, fi to be computed in O(|fi| logN) time.

3.2 Algorithm for |fi| ≥ r.

To compute fi when |fi| ≥ r, we use the DAWG for the meta-string 〈S〉 which we call the
packed DAWG. While the DAWG for S requires O(N logN) bits, the packed DAWG only
requires O(N log σ) bits. However, the complication is that only substrings with occurrences
that start at block borders can be traversed from the source of the packed DAWG. In
order to overcome this problem, we will augment the packed DAWG and maintain the set
Points[u] = {(Arev, X) | ([u], X, [uX]) ∈ E,A←−u X ∈ Substr(〈S〉)} for all states [u] of the
packed DAWG. A pair (Arev, X) ∈ Points[u] represents that there exists an occurrence of
A←−u X in 〈S〉, in other words, the longest element ←−u corresponding to the state can be
extended by X and still have an occurrence in 〈S〉 immediately preceded by A.

I Lemma 5. For meta-string 〈S〉 of length n and its packed DAWG (V,E,G), the the total
number of elements in Points[u] for all states [u] ∈ V is O(n).

Proof. Consider edge ([u], X, [uX]) ∈ E. If ←−u X 6= ←−uX, i.e., the edge is secondary, it
follows that there exists a unique meta-character A = 〈S〉[pos[uX] − ‖←−u X‖] such that
A←−u X ≡〈S〉 ←−u X, namely, any occurrence of ←−u X is always preceded by A in 〈S〉. If
←−u X =←−uX, i.e., the edge is primary, then, for each distinct meta-character A preceding an
occurrence of ←−u X =←−uX in 〈S〉, there exists a suffix link ([A←−uX], A, [←−uX]) ∈ G. Therefore,
each point (Arev, X) in Points[u] can be associated to either a secondary edge from [u] or
one of the incoming suffix links to its primary child [uX]. Since each state has a unique
longest member, each state has exactly one incoming primary edge. Therefore, the total
number of elements in Points[u] for all states [u] is equal to the total number of secondary
edges and suffix links, which is O(n) due to Theorem 1. J

1 Assume that 0log N and 1log N correspond to meta-characters 1 and N , respectively.

STACS’14

680 Faster Compact On-Line Lempel-Ziv Factorization

I Lemma 6. For string S ∈ Σ∗ of length N , we can, in O(N log σ) total time and bits
of space and in an on-line manner, construct the packed DAWG (V,E,G) of S as well as
maintain Points[u] for all states [u] ∈ V so that find_any(Points[u], Ih, It) for an orthogonal
range Iv × Ih can be answered in O(logn) time.

Proof. It follows from Theorem 1 that the packed DAWG can be computed in an on-line
manner, in O(n logN) = O(N log σ) time and bits of space, since the size of the alphabet for
meta-strings is O(N) and the length of the meta-string is n = N

r . To maintain and support
find_any queries on Points efficiently, we use the dynamic data structure by Blelloch [3]
mentioned in Theorem 2. Thus from Lemma 5, the total space requirement is O(N log σ)
bits. Since each insert operation can be performed in amortized O(logn) time (no elements
are deleted in our algorithm), what remains is to show that the total number of insert
operations to Points is O(n). This is shown below by a careful analysis of the on-line DAWG
construction algorithm [4].

Assume we have the packed DAWG for a prefix u = 〈S〉[1..‖u‖] of meta-string 〈S〉.
Let B = 〈S〉[‖u‖+ 1] be the meta-character that follows u in 〈S〉. We group the updates
performed on the packed DAWG when adding B, into the following two operations: (a) the
new sink state [uB] is created, and (b) a state is split.

First, consider case (a). Let u0 = u, and consider the sequence [u1], . . . , [uq] of states
such that the suffix link of [uj] points to [uj+1] for 0 ≤ j < q, and [uq] is the first state in
the sequence which has an out-going edge labeled by B. As in [4], we use an auxiliary state
⊥ and assume that for every meta-character A ∈ Σr there is an edge (⊥, A, [ε]) leading to
the source [ε], so that there always exists such state [uq] in any sequence of suffix links. Note
that any element of [uj+1] is a suffix of any element of [uj]. The following operations are
performed. (a-1) The primary edge from the old sink [u] to the new sink [uB] is created.
No insertion is required for this edge since [uB] has no incoming suffix links. (a-2) For each
1 ≤ j < q a secondary edge ([uj], B, [uB]) is created, and the pair (Crevj , B) is inserted to
Points[uj], where Cj is the unique meta-character that immediately precedes ←−ujB in uB, i.e.,
Cj = 〈uB〉[pos[uB] − ‖←−ujB‖]. (a-3) Let ([uq], B,w) be the edge with label B from state [uq].
The suffix link of the new sink state [uB] is created and points to w. Let e = ([v], B,w) be
the primary incoming edge to w, and A be the meta-character that labels the suffix link (note
that [v] is not necessarily equal to [uq]). We then insert a new pair (Arev, B) into Points[v].

Next, consider case (b). After performing (a), node w is split if the edge ([uq], B,w) is
secondary. Let [v1] = [v], and let [v1], . . . , [vk] be the parents of the state w of the packed
DAWG for u, sorted in decreasing order of their longest member. Then, it holds that there
is a suffix link from [vh] to [vh+1] and any element of [vh+1] is a suffix of any element of
[vh] for any 1 ≤ h < k. Assume ←−viB is the longest suffix of uB that has another (previous)
occurrence in uB. (Namely, [vi] is equal to the state [uq] of (a-2) above.) If i > 1, then
the state w is split into two states [v1B] and [viB] such that [v1B] ∪ [viB] = w and any
element of [viB] is a proper suffix of any element of [v1B]. The following operations are
performed. (b-1) The secondary edge from [vi] to w becomes the primary edge to [viB],
and for all i < j ≤ k the secondary edge from [vj] to w becomes a secondary edge to [vjB].
The primary and secondary edges from [vh] to w for all 1 ≤ h < i become the primary and
secondary ones from [vh] to [v1B], respectively. Clearly the sets Points[vh] for all 1 ≤ h < i

are unchanged. Also, since edges ([vj], B, [viB]) are all secondary, the sets Points[vj] for
all i < j ≤ k are unchanged. Moreover, the element of Points[vi] that was associated to
the secondary edge to w, is now associated to the suffix link from [v1B] to [viB]. Hence,
Points[vi] is also unchanged. Consequently, there are no updates due to edge redirection.
(b-2) All outgoing edges of [v1B] are copied as outgoing edges of [viB]. Since any element of

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 681

[viB] is a suffix of any element of [v1B], the copied edges are all secondary. Hence, we insert
a pair to Points[viB] for each secondary edge, accordingly.

Thus, the total number of insert operations to Points for all states is linear in the number
of update operations during the on-line construction of the packed DAWG, which is O(n)
due to [4]. This completes the proof. J

For any string f and integer 0 ≤ m ≤ min(|f |, r − 1), let strings αm(f), βm(f), γm(f)
satisfy f = αm(f)βm(f)γm(f), |αm(f)| = m, and |βm(f)| = j′r where j′ = max{j ≥ 0 |
m + jr ≤ |f |}. We say that an occurrence of f in S has offset m (0 ≤ m ≤ r − 1), if,
in the occurrence, αm(f) corresponds to a suffix of a meta-block, βm(f) corresponds to a
sequence of meta-blocks (i.e. βm(f) ∈ Substr(〈S〉)), and γm(f) corresponds to a prefix of a
meta-block.

Let fmi denote the longest prefix of S[li + 1..N] which has a previous occurrence in S
with offset m. Thus, |fi| = max0≤m<r |fmi |. In order to compute fmi , the idea is to find
the longest prefix u of meta-string 〈βm(S[li + 1..N])〉 that can be traversed from the source
of the packed DAWG while assuring that at least one previous occurrence of u in 〈S〉 is
immediately preceded by a meta-block that has αm(S[li + 1..N]) as a suffix. It follows that
u = βm(fmi).

I Lemma 7. Given the augmented packed DAWG (V,E,G) of Lemma 6 of meta-string 〈S〉,
the longest prefix f of any string P that has an occurrence with offset m in S can be computed
in O(|f |r logn+ r logn) time.

Proof. We first traverse the packed DAWG for 〈S〉 to find βm(f). This traversal is trivial
for m = 0, so we assume m > 0. For any string t (|t| < r), let Lt and Rt be, respectively,
the lexicographically smallest and largest meta-character which has t as a suffix, namely, the
bit-representation of Lt is the concatenation of 0(r−|t|) logσ and the bit-representation of t, and
the bit-representation of Rt is the concatenation of 1(r−|t|) logσ and the bit-representation of
t. Then, the set of meta-characters that have trev as a prefix, (or, t as a suffix when reversed),
can be represented by the interval hr(t) = [Lrevt , Rrevt]. Suppose we have successfully
traversed the packed DAWG with the prefix u = 〈βm(P)〉[1..‖u‖] and want to traverse
with the next meta-character X = 〈βm(P)〉[‖u‖ + 1]. If u = ←−u , i.e. only primary edges
were traversed, then there exists an occurrence of αm(P)uX with offset m in string S

iff find_any(Points[u], hr(αm(P)), [X,X]) 6= nil. Otherwise, if u 6= ←−u , all occurrences of
u (and thus all extensions of u that can be traversed) in 〈S〉 is already guaranteed to
be immediately preceded by the unique meta-character A = 〈S〉[pos[u] − ‖u‖] such that
Arev ∈ hr(αm(P)). Thus, there exists an occurrence of αm(P)uX with offset m in string S
iff ([u], X, [uX]) ∈ E. We extend u until find_any returns nil or no edge is found, at which
point we have αm(P)u = αm(f)βm(f).

Now, γm(f) is a prefix of meta-character B = 〈βm(P)〉[‖〈u〉‖ + 1]. When u = ←−u , we
can compute γm(f) by asking find_any(Points[u], hr(αm(P)), tr(B[1..j])) for 0 ≤ j < r.
The maximum j such that find_any does not return nil gives |γm(f)|. If u 6= ←−u , γm(f)
is the longest lcp between B and any outgoing edge from [u]. This can be computed in
O(logn+ |γm(f)|) time by maintaining outgoing edges from [u] in balanced binary search
trees, and finding the lexicographic predecessor/successor B−, B+ of B in these edges, and
computing the lcp between them. The lemma follows since each find_any query takes
O(logn) time. J

From the proof of Lemma 7, βm(fmi) can be computed in O(|f
m
i |
r logn) time, and for all

0 ≤ m < r, this becomes O(|fi| logn) time. However, for computing γm(fmi), if we simply

STACS’14

682 Faster Compact On-Line Lempel-Ziv Factorization

apply the algorithm and use O(r logn) time for each fmi , the total time for all 0 ≤ m < r

would be O(r2 logn) which is too large for our goal. Below, we show that all γm(fmi) are
not required for computing max0≤m<r |fmi |, and this time complexity can be reduced.

Consider computing Fm = max0≤x≤m |fxi | for m = 0, . . . , r − 1. We first compute
f̂mi = αm(fmi)βm(fmi) using the first part of the proof of Lemma 7. We shall compute
γm(fmi) only when Fm can be larger than Fm−1 i.e., |f̂mi | + |γm(fmi)| > Fm−1. Since
|γm(fmi)| < r, this will never be the case if |f̂mi | ≤ Fm−1 − r + 1, and will always be the
case if |f̂mi | > Fm−1. For the remaining case, i.e. 0 ≤ Fm−1 − |fmi | < r − 1, Fm > Fm−1 iff
|γm(fmi)| > Fm−1− |f̂mi |. If u =←−u , this can be determined by a single find_any query with
j = Fm−1 − |f̂mi |+ 1 in the last part of the proof of Lemma 7, and if so, the rest of γm(fmi)
is computed using the find_any query for increasing j. When u 6=←−u , whether or not the
lcp between B and B− or B+ is greater than Fm−1 − |f̂mi | can be checked in constant time
using bit operations.

From the above discussion, each find_any or predecessor/successor query for computing
γm(fmi) updates Fm, or returns nil. Therefore, the total time for computing Fr−1 = |fi| is
O((r + |fi|) logn) = O(|fi| logn).

A technicality we have not mentioned yet, is when and to what extent the packed DAWG
is updated when computing fi. Let F be the length of the current longest prefix of S[li+1..N]
with an occurrence less than li + 1, found so far while computing fi. A self-referencing
occurrence of S[li + 1..li + F] can reach up to position li + F − 1. When computing fi using
the packed DAWG, F is increased by at most r characters at a time. Thus, for our algorithm
to successfully detect such self-referencing occurrences, the packed DAWG should be built up
to the meta-block that includes position li + F − 1 + r and updated when F increases. This
causes a slight problem when computing fmi for some m; we may detect a substring which
only has an occurrence larger than li during the traversal of the DAWG. However, from the
following lemma, the number of such future occurrences that update F can be limited to a
constant number, namely two, and hence by reporting up to three elements in each find_any
query that may update F , we can obtain an occurrence less than li + 1, if one exists. These
occurrences can be retrieved in O(logN) time in this case, as described in Section 3.3.

I Lemma 8. During the computation of fmi , there can be at most two future occurrences of
fmi that will update F .

Proof. As mentioned above, the packed DAWG is built up to the meta string 〈S[1..s]〉
where s = d li+F+r−1

r er. An occurrence of fmi possibly greater than li can be written as
pm,k = d lir er −m + 1 + kr, where k = 0, 1, For the occurrence to be able to update
F and also be detected in the packed DAWG, it must hold that s > pm,k + F . Since
li + F + 2r − 2 ≥ s > pm,k + F ≥ li −m+ 1 + kr + F , k should satisfy (2− k)r ≥ 1−m,
and thus can only be 0 or 1. J

The main result of this subsection is the following:

I Lemma 9. We can maintain in a total of O(N logN) time, a dynamic data structure
occupying O(N log σ) bits of space that allows fi to be computed in O(|fi| logN) time, when
|fi| ≥ r.

3.3 Retrieving a Previous Occurrence of fi

If |fi| ≥ r, let fi = fmi , Arev ∈ hr(αm(fi)), u = βm(fi), and X ∈ tr(γm(fi)) where A and X
were found during the traversal of the packed DAWG. We can obtain the occurrence of fi by
simple arithmetic on the ending positions stored at each state, i.e., from pos[uX] if uX 6=

←−
uX

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 683

or m = 0, from pos[AuX] otherwise. State [AuX] can be reached in O(logN) time from state
[uX], by traversing the suffix link in the reverse direction.

If |fi| < r, then fi is a substring of a meta-character. Let Ai be any previously occurring
meta-character which has fi as a prefix and satisfy Mli+r−1[Ai] = 1, thus giving a previous
occurrence of fi. Since Ai is any meta-character in the range tr(fi) = [Dtm , Utm] with a
set bit, Ai can be retrieved in O(logN) time by Ai = select(Mli+r−1, rank(Mli+r−1, Utm)).
Unfortunately, we cannot afford to explicitly maintain previous occurrences for all N meta-
characters, since this would cost O(N logN) bits of space. We solve this problem in two
steps.

First, consider the case that a previous occurrence of fi crosses a block border, i.e.
has an occurrence with some offset 1 ≤ m ≤ |fi| − 1, and fi = αm(fi)γm(fi). For each
m = 1, . . . , |fi|−1, we ask find_any(Points[ε], hr(αm(fi)), tr(γm(fi))). If a pair (Arev, X) is
returned, this means that AX occurs in 〈S〉 and A[r−m+1..r] = αm(fi) and X[1..γm(fi)] =
γm(fi). Thus, a previous occurrence of fi can be computed from pos[AX]. The total time
required is O(|fi| logn). If all the find_any queries returned nil, this implies that no
occurrence of fi crosses a block border and fi occurs only inside meta-blocks. We develop an
interesting technique to deal with this case.

I Lemma 10. For string S[1..k] and increasing values of 1 ≤ k ≤ N , we can maintain a
data structure in O(N logN) total time and O(N log σ) bits of space that, given any meta-
character A, allows us to retrieve a meta-character A′ that corresponds to a meta block of S,
and some integer d such that A′[1 + d..r] = A[1..r − d] and 0 ≤ d ≤ dA,k, in O(logN) time,
where dA,k = min{(l − 1) mod r | 1 ≤ l ≤ k − r + 1, A = S[l..l + r − 1]}. 7

Proof. Consider a tree Tk where nodes are the set of meta-characters occurring in S[1..k].
The root is 〈S〉[1]. For any meta-character A 6= 〈S〉[1], the parent B of A must satisfy
B[2..r] = A[1..r− 1] and A 6= B. Given A, its parent B can be encoded by a single character
B[1] ∈ Σ that occupies log σ bits and can be recovered from B[1] and A in constant time by
simple bit operations. Thus, together with Mk used in Section 3.1 which indicates which
meta-characters are nodes of Tk, the tree can be encoded with O(N log σ) bits of space (recall
that there are only N distinct meta-characters). We also maintain another bit vector Xk of
length N so that we can determine in constant time, whether a node in Tk corresponds to a
meta-block. The lemma can be shown if we can maintain the tree for increasing k so that
for any node A in the tree, either A corresponds to a meta-block (dA,k = 0), or, A has at
least one ancestor at most dA,k nodes above it that corresponds to a meta-block. Assume
that we have Tk−1, and want to update it to Tk. Let A = S[k − r + 1..k]. If A previously
corresponded to or the new occurrence corresponds to a meta-block, then, dA,k = 0 and we
simply set Xk[A] = 1 and we are done. Otherwise, let B = S[k − r..k − 1] and denote by C
the parent of A in Tk−1, if there was a previous occurrence of A. Based on the assumption
on Tk−1, let xB ≤ dB,k−1 = dB,k and xC be the distance to the closest ancestor of B and
C, respectively, that correspond to a meta-block. We also have that dA,k−1 ≥ xC + 1. If
(k−r) mod r ≥ xC +1, then dA,k = min{(k−r) mod r, dA,k−1} ≥ xC +1, i.e., the constraint
is already satisfied and nothing needs to be done. If (k − r) mod r < xC + 1 or there was
no previous occurrence of A, we have that dA,k = (k − r) mod r. Notice that in such cases,
we cannot have A = B since that would imply dA,k = dA,k−1 6= (k − r) mod r, and thus
by setting the parent of A to B, we have that there exists an ancestor corresponding to a
meta-block at distance xB + 1 ≤ dB,k + 1 ≤ (k − r − 1) mod r + 1 = dA,k.

Thus, what remains to be shown is how to compute xC in order to determine whether (k−
r) mod r < xC +1. Explicitly maintaining the distances to the closest ancestor corresponding
to a meta-block for all N meta characters will take too much space (O(N log logN) bits).

STACS’14

684 Faster Compact On-Line Lempel-Ziv Factorization

Instead, since the parent of a given meta-character can be obtained in constant time, we
calculate xC by simply going up the tree from C, which takes O(xC) = O(logN) time. Thus,
the update for each k can be done in O(logN) time, proving the lemma. J

Using Lemma 10, we can retrieve a meta-character A′ that corresponds to a meta-block and
an integer 0 ≤ d ≤ dAi,k such that A′[1 + d..r] = Ai[1..r− d], in O(logN) time. Although A′
may not actually occur d positions prior to an occurrence of Ai in S[1..k], fi is guaranteed to
be completely contained in A′ since it overlaps with Ai, at least as much as any meta-block
actually occurring prior to Ai in S[1..k]. Thus, fi = Ai[1..|fi|] = A′[1 + d..d + |fi|], and
(pos[A′] − 1)r + 1 + d is a previous occurrence of fi. The following lemma summarizes this
section.

I Lemma 11. We can maintain in O(N logN) total time, a dynamic data structure occupying
O(N log σ) bits of space that allows a previous occurrence of fi to be computed in O(|fi| logN)
time.

4 On-line LZ factorization based on RLE

For any string S of length N , let RLE(S) = ap1
1 a

p2
2 · · · apmm denote the run length encoding

of S. Each apkk is called an RL factor of S, where ak 6= ak+1 for any 1 ≤ k < m, ph ≥ 1
for any 1 ≤ h ≤ m, and therefore m ≤ N . Each RL factor can be represented as a pair
(ak, pk) ∈ Σ× [1..N], using O(logN) bits of space. As in the case with packed strings, we
consider the on-line LZ factorization problem, where the string is given as a sequence of
RL factors and we are to compute the s-factorization of RLE(S)[1..j] = ap1

1 · · · a
pj
j for all

j = 1, . . . ,m. Similar to the case of packed strings, we construct the DAWG of RLE(S)
of length m, which we will call the RLE-DAWG, in an on-line manner. The RLE-DAWG
has O(m) states and edges and each edge label is an RL factor apkk , occupying a total of
O(m logN) bits of space. If z is the number of s-factors of string S, then z ≤ 2m. This
allows us to describe the complexity of our algorithm without using z. The main result of
this section follows:

I Theorem 12. Given RLE(S) = ap1
1 a

p2
2 · · · apmm of size m of a string S of length N , the

s-factorization of S can be computed in O
(
m ·min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})
time

using O(m logN) bits of space, in an on-line manner.

Proof. Let RLE(S) = ap1
1 a

p2
2 · · · apmm . For any 1 ≤ k ≤ h ≤ m, let RLE(S)[k..h] =

apkk a
pk+1
k+1 · · · a

ph
h . Let Substr(RLE(S)) = {RLE(S)[k..h] | 1 ≤ k ≤ h ≤ m}.

Assume we have already computed f1, . . . , fi−1 and we are computing a new s-factor fi
from the (`i + 1)th position of S. Let ad be the RL factor which contains the (`i + 1)th
position, and let t be the position in the RL factor where fi begins.

Firstly, consider the case where 2 ≤ t ≤ d. Let p = d− t+ 1, i.e., the remaining suffix of
ad is ap. It can be shown that ap is a prefix of fi. In the sequel, we show how to compute
the rest of fi. For each j = 1, . . . ,m and for any out-going edge e = ([u], bq, [ubq]) of a state
[u] of the RLE-DAWG for RLE(S)[1..j] and each character a ∈ Σ, define

mpe[u](a, bq) = max({p | ap←−u bq ∈ Substr(RLE(S)[1..j])} ∪ {0}).

That is, mpe[u](a, bq) represents the maximum exponent of the RL factor with character a,
that immediately precedes ←−u bq in RLE(S)[1..j]. For each pair (a, b) of characters for which
there is an out-going edge ([u], bq, [ubq]) from state [u] and mpe[u](a, bq) > 0, we insert a

J. Yamamoto, T. I, H. Bannai, S. Inenaga, and M. Takeda 685

point (mpe[u](a, bq), q) into Pts[u],a,b. By similar arguments to the case of packed DAWGs,
each point in Pts[u],a,b corresponds to a secondary edge, or a suffix link (labeled with ap for
some p) of a primary child, so the total number of such points is bounded by O(m).

Suppose we have successfully traversed the RLE-DAWG by u with an occurrence that is
immediately preceded by ap (i.e., apu is a prefix of s-factor fi), and we want to traverse with
the next RLE factor bq from state [u].

If u = ←−u , i.e., only primary edges were traversed, then we query Pts[u],a,b for a point
with maximum x-coordinate in the range [0, N]× [q,N]. Let (x, y) be such a point. If x ≥ p,
then since y ≥ q, there must be a previous occurrence of ap←−u bq, and hence ap←−u bq is a
prefix of fi. If there is an outgoing edge of [u] labeled by bq, then we traverse from [u] to
[ubq] and update the RLE-DAWG with the next RL factor bq, and continue to extend fi.
Otherwise, it turns out that fi = ap←−u bq. If x < p, or no such point existed, then we query
for a point with maximum y-coordinate in the range [p,N]× [0, q]. If (x′, y′) is such a point,
then fi = ap←−u by′ . If no such point existed, then fi = ap←−u .

Otherwise (if u 6= ←−u), then all occurrences of u in S[1..`i] is immediately preceded by
the unique RL factor ap′ with p′ ≥ p. Thus, if ([u], bq, [ubq]) ∈ E, then apubq is a prefix of fi.
We update the RLE-DAWG with the next RL factor bq, and continue to extend fi. If there
is no such edge, then fi = apuby, where y = min(max({k | ([u], bk, [ubk]) ∈ E} ∪ {0}) ∪ {q}).

Secondly, let us consider the case where t = 1. Let ([ε], ag, [ag]) be the edge which has
maximum exponent g for the character a from the source state [ε]. If g < d, then fi = ag.
Otherwise, ad is a prefix of fi, and we traverse the RLE-DAWG in a similar way as above,
while checking an immediately preceding occurrence of ad.

If we use priority search trees of McCreight [13], and balanced binary search trees, the
above queries and updates are supported in O(logm) time using a total of O(m logN) bits
of space. We can do better based on the following observation. For a set T of points in a
2D plane, a point (p, q) ∈ T is said to be dominant if there is no other point (p′, q′) ∈ T
satisfying both p′ ≥ p and q′ ≥ q. Let Dom[u],a,b denote the set of dominant points of
Pts[u],a,b. Now, a query for a point with maximum x-coordinate in range [0, N] × [q,N]
reduces to a successor query on the y-coordinates of points in Dom[u],a,b. On the other hand,
a query for a point with maximum y-coordinate in range [p,N]× [0, q] reduces to a successor
query on the x-coordinate of points in Dom[u],a,b. Hence, it suffices to maintain only the
dominant points.

When a new dominant point is inserted into Dom[u],a,b due to an update of the RLE-
DAWG, then all the points that have become non-dominant are deleted from Dom[u],a,b.
We can find each non-dominant point by a single predecessor/successor query. Once a
point is deleted from Dom[u],a,b, it will never be re-inserted to Dom[u],a,b. Hence, the total
number of insert/delete operations is linear in the size of Dom[u],a,b, which is O(m) for all
the states of the RLE-DAWG. Using the data structure of [2], predecessor/successor queries
and insert/delete operations are supported in O

(
min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})
time,

using a total of O(m logN) bits of space.
Each state of the RLE-DAWG has at most m children and the exponents of the edge

labels are in range [1, N]. Hence, at each state of the RLE-DAWG we can search branches in
O
(

min
{

(log logm)(log logN)
log log logN ,

√
logm

log logm

})
time with a total of O(m logN) bits of space, using

the data structure of [2]. A final technicality is how to access the set Dom[u],a,b which is asso-
ciated with a pair (a, b) of characters. To access Dom[u],a,b at each state [u], we maintain two
level search structures, one for the first characters and the other for the second characters of the
pairs. At each state [u] we can access Dom[u],a,b in O

(
min

{
(log logm)(log logN)

log log logN ,
√

logm
log logm

})

STACS’14

686 Faster Compact On-Line Lempel-Ziv Factorization

time with a total of O(m logN) bits of space, again using the data structure of [2]. This
completes the proof. J

References
1 A. Al-Hafeedh, M. Crochemore, L. Ilie, J. Kopylov, W.F. Smyth, G. Tischler, and

M. Yusufu. A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM
Computing Surveys, 45(1):Article 5, 2012.

2 Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci., 65(1):38–72, 2002.

3 Guy E. Blelloch. Space-efficient dynamic orthogonal point location, segment intersection,
and range reporting. In Proc. SODA 2008, pages 894–903, 2008.

4 Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, M. T. Chen, and
Joel Seiferas. The smallest automaton recognizing the subwords of a text. Theoretical
Computer Science, 40:31–55, 1985.

5 Maxime Crochemore. Linear searching for a square in a word. Bulletin of the European
Association of Theoretical Computer Science, 24:66–72, 1984.

6 Jean-Pierre Duval, Roman Kolpakov, Gregory Kucherov, Thierry Lecroq, and Arnaud
Lefebvre. Linear-time computation of local periods. Theoretical Computer Science, 326(1-
3):229–240, 2004.

7 Keisuke Goto and Hideo Bannai. Simpler and faster Lempel Ziv factorization. In Proc.
DCC 2013, pages 133–142, 2013.

8 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lightweight Lempel-Ziv parsing.
In Proc. SEA 2013, pages 139–150, 2013.

9 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Proc. CPM 2013, pages 189–200, 2013.

10 Dominik Kempa and Simon J. Puglisi. Lempel-Ziv factorization: fast, simple, practical. In
Proc. ALENEX 2013, pages 103–112, 2013.

11 Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In Proc. FOCS 1999, pages 596–604, 1999.

12 Sebastián Kreft and Gonzalo Navarro. Self-indexing based on LZ77. In Proc. CPM 2011,
pages 41–54, 2011.

13 Edward M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257–276, 1985.
14 Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Proc. CPM 2011,

pages 15–26, 2011.
15 Daisuke Okanohara and Kunihiko Sadakane. An online algorithm for finding the longest

previous factors. In Proc. ESA 2008, pages 696–707, 2008.
16 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic data structures.

In Proc. WADS 2001, pages 426–437, 2001.
17 Tatiana Starikovskaya. Computing Lempel-Ziv factorization online. In Proc. MFCS 2012,

pages 789–799, 2012.
18 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
19 P. Weiner. Linear pattern-matching algorithms. In Proc. of 14th IEEE Ann. Symp. on

Switching and Automata Theory, pages 1–11, 1973.
20 J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory, IT-23(3):337–343, 1977.

	p000-00-frontmatter
	Foreword
	Conference Organization
	External Reviewers

	p001-01-esparza
	Introduction
	How Crowds Communicate
	The Power of Crowds
	Communication by broadcast
	Communication by global store with locking.
	Communication by rendez-vous
	Communication by global store without locking

	Some Results on Crowds of Infinite-State Processes

	p011-02-miltersen
	Introduction to the talk

	p013-03-segoufin
	Introduction
	Preliminaries
	Database as finite relational structures, queries
	Model of computation
	Parametrized complexity
	The enumeration class

	Restricting the queries
	Conjunctive queries
	Signed conjunctive queries
	Guarded First-Order Queries

	Restricting the class of structures
	Bounded degree
	Bounded expansion
	Nowhere dense
	Low Degree

	Structures with bounded treewidth
	Discussion
	The impact of order
	Longer delay
	Other enumeration problems

	Conclusions

	p028-04-kayal
	p029-05-adamczyk
	Introduction
	Our results
	Applications
	Related work

	Preliminaries
	Matroids and polytopes
	Submodular functions
	Multilinear extension
	Continuous greedy algorithm

	Overview of the iterative randomized rounding approach

	Linear stochastic probing
	Submodular stochastic probing

	p041-06-anderson
	Introduction
	Preliminaries
	Vocabularies, Structures, and Logics
	Symmetric and Uniform Circuits

	Symmetry and Support
	Translating Symmetric Circuits to Formulas
	Coherent and Locally Polynomial Circuits
	Future Directions

	p053-07-angel
	Introduction
	Related Works and our Contribution

	Preliminaries
	The Dynamic Program and its Correctness
	Conclusion

	p063-08-antoniadis
	Introduction
	Related Results
	Model & Preliminaries
	Overview
	Structural Properties via Primal-Dual Formulation
	Computing an Optimal Schedule
	Preliminaries and Formal Algorithm Description
	Correctness of the Algorithm
	The Subroutines
	Completing the Correctness Proof

	The Running Time

	p075-09-araujo
	Introduction
	Preliminaries
	Sub-exponential algorithm
	Main Result

	From boolean variables to integral variables
	From 3-SAT to INT-SAT
	Proof of Proposition 2

	Proof of Proposition 3
	Binomial trees
	Auxiliary trees and Variable-trees
	Clause-trees and definition of T(int)

	p087-10-azar
	Introduction
	A Randomized Algorithm
	The algorithm
	The analysis

	A Deterministic Algorithm
	Conclusions

	p099-11-aziz
	Introduction
	Preliminaries
	General insights

	Exact algorithms for restricted graph classes
	Graphs with a constant number of clique or coclique modules
	Graphs of degree at most two

	Computational complexity of the general problem
	An approximation algorithm
	Conclusions

	p112-12-bacquey
	Introduction
	Definitions and context
	The computational model
	Recognition on ring-CA
	Computability of functions on ring-CA
	Complexity classes and results

	From the cyclic model to the standard model
	From the standard model to the cyclic model
	Global vision
	Basic tools
	Merging process
	Strengthening the construction to achieve strong recognition

	Extensions
	Conclusion and open problems

	p125-13-bauwens
	Introduction
	Definitions and results
	Online semimeasures
	Proofs of lower bounds

	p137-14-bekos
	Introduction
	Subhamiltonicity of Triconnected 4-Planar Graphs
	Two-Page Book Embeddings of General 4-Planar Graphs
	Conclusions and Open Problems

	p149-15-berenbrink
	Introduction
	Model and Definitions
	Algorithm Simple ApproxSqrt
	A space-efficient version
	Algorithm ApproxSqrt
	Structural Properties
	Analysis of the Algorithm

	Algorithm Exact
	Algorithm ApproxLog
	Analysis

	p162-16-blanchet-sadri
	Introduction
	Preliminaries
	Constructing Indeterminate Strings for Prefix Arrays
	Connecting Prefix Arrays and Border Arrays
	Restricting Prefix Arrays to Partial Words
	Conclusion and Future Work

	p174-17-boyar
	Introduction
	Model
	Contribution

	Optimal Algorithms with Advice
	An Algorithm with Sublinear Advice
	An Algorithm with Linear Advice
	A Lower Bound for Linear Advice
	Concluding Remarks

	p187-18-bringmann
	Introduction
	Results

	Key technical argument
	Maximum Load
	Cover time
	Remarks and open questions

	p199-19-bruyere
	Introduction
	Beyond Worst-Case Synthesis
	Mean-Payoff Value Function
	Truncated Sum Value Function - Shortest Path Problem

	p214-20-cao
	Introduction
	Outline of the algorithm
	Segments
	Mixed separators in chordal graphs
	Proof of Theorem 2.1

	p226-21-chen
	Introduction
	Notations and Problem Definition
	Preliminary Results
	Online Scheduling for Job Sets Packable on One Processor
	Lower Bound on the Competitive Factor
	4-Competitive Online Scheduling
	3.59-Competitive Scheduling for Unit Jobs

	Online Multi-Processor Scheduling
	Trading the Energy-Efficiency with the Number of Processors
	Lower Bound on the Competitive Factor
	O(1)-Competitive Online Scheduling for Unit Jobs

	p239-22-chillara
	Introduction
	Organization
	Preliminaries
	Unified analysis of depth-4 lower bounds
	Lower bounds on the size of depth-4 circuits computing NWn,(X) and IMMn,n(X)

	Determinantal complexity of IMMn,d(X)
	Upper bound for the rank of Hdet(Y0)
	Lower bound for the rank of HIMMn,d(X0)

	Open Problems

	p251-23-cygan
	Introduction
	Our results and organization of the paper
	Related facility location work

	Preliminaries
	Reduction to graphic instances
	Finding a skeleton
	Clustering
	Rounding
	Distance -transfer
	Final rounding

	Wrap-up

	p263-24-dereniowski
	Introduction
	Related work
	Our results and overview of the paper

	Model and preliminaries
	Upper bound on cover time
	Lower bound on cover time

	p276-25-disser
	Introduction
	Preliminaries
	Solving the Oblivious Knapsack Problem
	Unit Densities
	Hardness

	p288-26-drange
	Introduction
	Completion to trivially perfect graphs
	Structure of trivially perfect graphs
	Structure of minimal completions
	The algorithm

	Completion to threshold and pseudosplit graphs
	Lower bounds
	Conclusion and open problems

	p300-27-filmus
	Introduction
	Preliminaries
	From Space to Width
	A Static Technique for Proving Space Lower Bounds
	From Small Space to Small Degree in Polynomial Calculus?
	Concluding Remarks

	p312-28-garnero
	Introduction
	An explicit protrusion replacer
	Encoders
	Equivalence relations and representatives
	Explicit protrusion replacer

	Application to concrete problems
	Further research

	p325-29-gavinsky
	Introduction
	Our results

	Notation and more
	Random
	Partition expanders vs. expanders
	Partition expanders as PRGs in communication complexity
	Lower bound on the degree of partition expanders
	Model separations based on PRGs
	Ultra-separation of

	Discussion

	p337-30-gawrychowski
	Introduction
	The problems
	Prerequisites
	General solutions
	The bijective case
	Conclusions

	p350-31-goldberg
	Introduction
	The complexity of modular counting
	Dichotomies for graph homomorphism problems
	Counting graph homomorphisms modulo 2
	Our result
	Notation

	Pinning, gadgets and mosaics
	Finding hardness gadgets
	Counting homomorphisms to cactus graphs

	p362-32-hoyrup
	Introduction
	Background and notations
	Notations
	Effective topology
	Effective Polish spaces

	A non-uniform result
	Reversibility
	Reversible functions
	Irreversible functions
	Examples

	The constructive result
	Application to the ergodic decomposition

	Genericity

	p374-33-huschenbett
	Introduction
	Preliminaries
	Ehrenfeucht-Fraïssé Games for Arbitrary Fragments
	Ehrenfeucht-Fraïssé Games on Identities
	The Word Problem for -Terms over Aperiodic Monoids
	Summary

	p386-34-i
	Introduction
	Problem and Model of Computation
	Basic Techniques
	Karp–Rabin fingerprints
	Grouping
	String periodicity

	Monte Carlo Algorithm
	Las Vegas Algorithm
	 time algorithm
	Overview
	A single round in detail

	 time algorithm

	Concluding Remarks

	p397-35-ivanyos
	Introduction
	Comparison with previous works

	Wong sequences for pairs of matrix spaces
	The second Wong sequence and singularity witnesses
	The connection
	The power overflow problem

	The power overflow problem for rank-1 spanned matrix spaces
	The first Wong sequence and triangularizable matrix spaces

	p409-36-iwama
	Introduction
	Preliminaries
	Lower Bounds
	General Branching Programs for Height-3 TEP
	Concluding Remarks

	p421-37-jaendel
	Introduction
	Definitions
	Computability of the speed and the entropy
	Biinfinite tapes are no better
	A reformulation
	Crossing sequences
	The main theorems

	p433-38-jelinek
	Introduction
	Preliminaries
	Non-Atomic Players
	Characterization for Parallel-Arc Networks
	Taxing Subnetworks

	Atomic Players
	Characterization of flows inducible by -restricted tolls
	Optimal -Restricted Tolls on Parallel-Arc Networks
	Optimally Taxing Subnetworks with Heterogeneous Players

	p445-39-jez
	Introduction
	Trees and SLCF tree grammars

	Compression operations
	The algorithm TtoG
	Size of the grammar produced by TtoG: recompression
	Normal form
	Intuition and invariants
	(F1up,F1down)-compression
	Chain compression
	Leaf compression
	Calculating the total cost of representing letters

	p458-40-kawarabayashi
	Introduction
	Preliminaries
	Review of our FOCS'12 coloring
	A novel outer loop for high degree graphs
	A good round
	Analysis of outer loop

	p470-41-komm
	Introduction
	Preliminaries
	Proof Sketch of Theorem 8
	Avoiding Request-Boundedness

	Applications and Lower Bounds
	Task Systems
	The k-Server Problem
	Paging
	Makespan Scheduling

	Necessity of Requirements

	p482-42-kothari
	Introduction
	Oracle identification algorithm
	Basic halving algorithm
	Improved halving algorithm
	Final algorithm

	Composition theorem for input-dependent query complexity
	Composition theorem for worst-case query complexity
	Cost functions
	Algorithm analysis

	Other applications
	Quantum learning theory
	Boolean matrix multiplication

	Open questions

	p494-43-koetzing
	Introduction
	Mathematical Preliminaries
	Learning Criteria

	Learning by Enumeration
	The Power of Enumeration Learning

	p506-44-lewenstein
	Introduction
	Preliminaries
	Unrooted LCP Queries on Small Sets
	Wildcard Pattern Queries in Less Space
	LCP Queries for Patterns with Wildcards, =loglogn
	 Wildcard Pattern Matching Queries for loglogn
	Wildcard Pattern Matching Queries for Small Alphabets

	p518-45-figueira
	Introduction
	Recognizable, regular, and rational relations
	Synchronizations of relations
	Synchronizations for recognizable, regular, and rational relations
	Automata theoretic characterizations

	Resynchronizing relations
	Closure via Parikh images
	Future work

	p530-46-lohrey
	Introduction
	Preliminaries
	Boolean closed full trios
	Rational Kripke frames
	Open problems

	p542-47-marx
	Introduction
	Our framework
	Results
	Algorithms
	Hardness proofs
	Conclusions

	p554-48-mitchell
	Introduction
	The formal computation model
	General program transformations
	Data-oblivious data structures

	Stacks and queues, via composition
	Stacks and queues, directly
	Priority queues
	Data compaction and the partition problem
	Offline Oblivious RAM
	Lower bounds via communication complexity

	p566-49-monin
	Introduction
	General Background
	About the arithmetical complexity of sets
	About algorithmic randomness

	Solovay genericity and its variants
	Forcing with 01 sets
	Forcing with 01 sets of positive measure
	A separation for weak and non weak-genericity

	Background on higher computability and higher randomness
	Computable ordinals
	Second order definable sets
	Higher randomness

	Higher Solovay genericity and its variants

	p578-50-mustafa
	Introduction
	Proof of Theorem 3
	Lower Bounds
	Upper Bounds

	Proof of Theorem 4

	p590-51-nguyen
	Introduction
	Preliminaries
	Non-autoreducible sets for NEXP
	Implications
	Relativization
	Open Questions

	p602-52-nies
	Main results
	Polynomial time randomness and differentiability
	Left-c.e. martingales and differentiability of interval c.e. functions

	Preliminaries
	Porosity and density
	Slopes and martingales

	Lemmas on comparing derivatives, and on shifting intervals
	A pair of analytical lemmas
	Basic dyadic intervals shifted by

	Proof of Theorem 4
	Proof of Theorem 7
	Porosity and upper derivatives
	From dyadic to full derivative

	p614-53-pierrot
	Introduction
	Study of two-stack sorting processes
	Definitions and general problem statement
	Stack words and stack configurations
	Restrict the number of sortings to focus on: Property (P)
	Stack configurations and accessibility

	An iterative algorithm
	A first naive algorithm
	Towards the sorting graph
	First step: G(1)
	From step i to step i+1
	Case p(i) = q(i+1)
	Case p(i) < q(i+1)
	Case p(i) > q(i+1)

	Complexity Analysis

	p627-54-scquizzato
	Introduction
	Matrix Multiplication
	Stencil Computations
	Sorting
	Fast Fourier Transform
	Conclusions

	p639-55-skutella
	Introduction
	Notation and preliminaries
	Time-indexed LP relaxation
	Turning an LP solution into a scheduling policy
	Adding release dates
	Tightness of Performance Bounds
	Execution of Scheduling Policies
	Concluding remarks

	p651-56-uppman
	Introduction
	Preliminaries
	Names and Notation
	Polymorphisms
	Reductions

	Tractable languages
	Tools
	Cores
	Proof of Theorem 1

	p663-57-watson
	Introduction
	Results
	Exact Completeness Results
	Exact Algorithmic Results
	Approximate Completeness Results

	Proofs of Exact Completeness Results
	The Key Lemma
	
	Containment in

	Proofs of Exact Algorithmic Results
	Full Independence for

	Proofs of Approximate Completeness Results

	p675-58-yamamoto
	Introduction
	Preliminaries
	LZ Factorization
	Tools

	On-line LZ Factorization with Packed Strings
	Algorithm for
	Algorithm for .
	Retrieving a Previous Occurrence of

	On-line LZ factorization based on RLE

