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Abstract
Type isomorphism for intersection types is quite odd, since it is not a congruence and it does
not extend type equality in the standard interpretation of types. The lack of congruence is due
to the proof theoretic nature of the intersection introduction rule, which requires the same term
to be the subject of both premises. A partial congruence can be recovered by introducing a
suitable notion of type similarity. Type equality in standard models becomes included in type
isomorphism whenever atomic types have “functional” interpretations, i.e. they are equivalent
to arrow types. This paper characterises type isomorphism for a type system in which the
equivalence between atomic types and arrow types is induced by the initial projections of the
Scott D∞ model via the correspondence between inverse limit models and filter λ-models.
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1 Introduction

The notion of type isomorphism is a particularisation of the general notion of isomorphism as
defined in category theory. Two objects a and b are isomorphic if there exist two morphisms
f :a→ b and g :b→ a such that f ◦ g = idb and g ◦ f = ida:
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Analogously, two types σ and τ in some typed λ-calculus, are isomorphic if there are two
λ-terms f and g of types σ → τ and τ → σ, respectively, such that f ◦ g is βη equal to the
identity at type τ and g ◦ f is βη equal to the identity at type σ.

In a recent paper [15], isomorphic types are identified. So λ-terms getting a type σ have
also all types isomorphic to σ. This is useful both in looking for proofs of formulas through
the Curry-Howard correspondence and in searching functions by type in program libraries.

Bruce and Longo proved in [5] that only one equation, namely the swap equation:
σ → τ → ρ ≈ τ → σ → ρ

is needed for characterising isomorphism in the simply typed λ-calculus.
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Later, the study has been directed toward richer λ-calculi, obtained from the simply
typed λ-calculus in an incremental way, by adding some other type constructors (like product
[22, 4, 23]) or by allowing higher-order types (System F [5, 13]). Di Cosmo summarised in
[14] the equations characterising type isomorphisms in different type systems. The set of
equations grows incrementally in the sense that the set of equations for a typed λ-calculus,
obtained by adding a primitive to a given typed λ-calculus, is an extension of the set of
equations of the λ-calculus without that primitive.

In the presence of intersection, this incremental approach does not work, as pointed out
in [12]; the isomorphism is no longer a congruence and type equality in the standard models
of intersection types does not entail type isomorphism. Notice that both features hold also
in the very tricky case of the sum types [17].

The lack of congruence can be shown considering, for instance, the types ϕ1 → ϕ2 → σ

and ϕ2 → ϕ1 → σ. They are isomorphic (by argument swapping), while their intersections
with the same type (ϕ3 → ϕ4 → τ), i.e.

(ϕ1 → ϕ2 → σ) ∧ (ϕ3 → ϕ4 → τ) and (ϕ2 → ϕ1 → σ) ∧ (ϕ3 → ϕ4 → τ),
are not. It is interesting to note that the lack of congruence prevents to give a finitary
axiomatisation of the type isomorphism studied in this paper.

The standard models of intersection types map types to subsets of any domain that is a
model of the untyped λ-calculus, with the conditions that the arrow is interpreted as the
function space constructor and the intersection as the set-theoretic intersection [2]. For
example, σ ∧ τ → ρ is isomorphic (and equal in all standard models) to τ ∧ σ → ρ, but they
are no longer isomorphic when intersected with an atomic type ϕ, i.e. (σ ∧ τ → ρ) ∧ ϕ is not
isomorphic to (τ ∧ σ → ρ) ∧ ϕ (although their interpretations remain equal).

In place of congruence one can use a suitable notion of type similarity, as done in [12] for
characterising isomorphism. Instead, the existence of non-isomorphic types, which are equal
in all standard interpretations, reveals that the type assignment system considered in [12]
can be improved. The problem is caused by the absence of a functional behaviour for atomic
types. This is quite odd for the pure λ-calculus, where everything is a function.

The present paper proposes a type system whose isomorphisms contain type equality
in standard intersection models. This is achieved by assuming that each atomic type is
equivalent to a functional type. In particular the type system is sound for a type interpretation
in which each atomic type is interpreted as the set of constant functions returning values
belonging to the set itself. Notably, this choice takes inspiration from the properties of the
standard projections of Scott’s D∞ λ-model [21] and from the relations between inverse limit
models and filter models [6]. As proved in [6], in fact, D∞ is isomorphic to a filter λ-model
built from a set of atomic types which correspond to elements of the initial domain D0. In
this model a type interpretation in which all types have a functional character is obtained in
a natural way by taking the open sets in the Scott topology.

A strongly related paper is [9], where the functional interpretation of atomic types is
considered in a type system with also union types. Type similarity is extended to union types
and proved to be sound for type isomorphism, while its completeness is only conjectured.

Summary. Section 2 presents the type assignment system with its properties, notably
Subject Reduction and Subject Expansion. Section 3 discusses some basic isomorphisms
which entail equality in standard models (Theorem 18). The main result of this paper is
the characterisation of type isomorphism (Theorem 37) given in Section 5, using the type
normalisation presented in Section 4. As a consequence type isomorphism turns out to be
decidable (Theorem 39). Section 6 concludes with some directions for further studies.
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2 Type Assignment System

Let A be a denumerable set of atomic types ranged over by ϕ,ψ and ω an atom not in A.
The syntax of types is given by:

σ ::= ϕ | ω | σ → σ | σ ∧ σ .

As usual, parentheses are omitted according to the precedence rule “ ∧ over →” and →
associates to the right. It is useful to distinguish between different kinds of types. So in the
following:

σ, τ, ρ, θ range over arbitrary types;
α, β, γ range over atomic and arrow types, defined as α ::= ϕ | ω | σ → σ.

The following equivalence asserts the functional character of atomic types, by equating
them to arrow types. It also agrees with the interpretation of type ω as the whole domain of
elements (see Definition 17).

I Definition 1 (Semantic type equivalence). The semantic equivalence relation ∼= on types is
defined as the minimal congruence such that:

ϕ ∼= ω → ϕ ω ∼= ω → ω σ ∼= σ ∧ ω σ ∼= ω ∧ σ.

The congruence allows one to state that σ ∼= σ′ and τ ∼= τ ′ imply σ ∧ τ ∼= σ′ ∧ τ ′. Moreover
σ → τ ∼= σ′ → τ ′ iff σ ∼= σ′ and τ ∼= τ ′. Note that no other equivalence is assumed between
types, for instance σ ∧ τ is different from τ ∧ σ.

The equivalence of Definition 1 is dubbed semantic since it is derived by the relation
between D∞ λ-models and filter λ-models, see [1] and [3] (Section 16.3). Briefly, each inverse
limit model built from an ω-algebraic lattice D0 with order v is isomorphic to a filter λ-model
with subtyping ≤∞ when:

the intersections of atomic types are in one-to-one correspondence γ with the compact
elements of D0 (ω corresponds to ⊥);
each type corresponds to a compact element of D∞;
each arrow type corresponds to a step function between compact elements of D∞;
each intersection type corresponds to the join between compact elements of D∞;
the subtype relation ≤∞ mimics

the (reverse) partial order on the compact elements of D0, i.e. d, d′ ∈ D0 and d v d′
imply γ−1(d′) ≤∞ γ−1(d), and
the initial projection from the compact elements of D0 to the set of continuous functions
mapping D0 in D0, i.e. if d ∈ D0 is mapped to the step function d1 ⇒ d2, then

γ−1(d) ≤∞ γ−1(d1)→ γ−1(d2) ≤∞ γ−1(d).

The standard initial projection ι of Scott’s model [21] maps each element of D0 in the
constant function returning that element, i.e. ι(d) is equal to the step function ⊥ ⇒ d for
all d ∈ D0 (including d = ⊥). It is then easy to verify that the first two equivalences of
Definition 1 are induced by associating ⊥ with type ω, by taking as D0 the lattice obtained by
join completion of a domain with a denumerable set of incomparable elements (corresponding
to the types in A) and by using the standard initial projection. The last two equivalences of
Definition 1 agree with the facts that ⊥ is the least element of D∞ and that the intersection
corresponds to the join.

In the type assignment system considered in this paper, types can be assigned only to
linear λ-terms. A λ-term is linear if each free or bound variable occurs exactly once in it.

TYPES 2013



132 Isomorphism of “Functional” Intersection Types

(Ax) x :σ ` x :σ (∼=) Γ `M :σ σ ∼= τ

Γ `M :τ

(→ I) Γ, x :σ `M :τ
Γ ` λx.M :σ → τ

(→ E) Γ1 `M :σ → τ Γ2 ` N :σ
Γ1,Γ2 `MN :τ

(∧I) Γ `M :σ Γ `M :τ
Γ `M :σ ∧ τ (∧E) Γ `M :σ ∧ τ

Γ `M :σ
Γ `M :σ ∧ τ

Γ `M :τ

Figure 1 Typing rules.

This is justified by the observation that type isomorphisms are realised by finite hereditarily
permutators which are linear λ-terms (see Definitions 10 and 12). This is not restrictive since
it is easy to prove that the full system without linearity restriction [6] is conservative over the
present one. Therefore the types that can be derived for the finite hereditarily permutators
are the same in the two systems, so the present study of type isomorphism holds for the full
system too.

Figure 1 gives the typing rules. As usual, environments associate variables to types and
contain at most one type for each variable. The environments are relevant, i.e. they contain
only the used premises. The domain of the environment Γ is denoted by dom(Γ). When
writing Γ1,Γ2 one convenes that dom(Γ1) ∩ dom(Γ2) = ∅. It is easy to verify that Γ `M :σ
implies dom(Γ) = FV (M) (FV (M) denotes the set of free variables of M). An example of
derivation is shown in Figure 2.

Some useful admissible rules are:

(L) x :σ ` x :τ Γ, x :τ `M :ρ
Γ, x :σ `M :ρ (ω) dom(Γ) = FV (M)

Γ `M :ω

In order to state and prove the Inversion Lemma (Lemma 4) it is handy to introduce a
pre-order on types (Definition 2), which is induced by the typing rules (Lemma 3(2)).

I Definition 2 (Identity pre-order on types). 1. The set A of atomic and arrow types of a
type σ (notation A(σ)) is inductively defined by:

A(α) = {α, ω} A(σ ∧ τ) = A(σ) ∪ A(τ)
2. The identity pre-order relation - on types is defined by:

σ - τ if for all α ∈ A(τ) there is β ∈ A(σ) such that β ∼= α.

It is easy to verify that σ - ω and σ - ω → ω for all types σ. Clearly, whereas σ ∼= τ implies
σ - τ , the inverse does not hold since for example ϕ ∧ ψ - ω → ϕ, but ϕ ∧ ψ 6∼= ω → ϕ.

I Lemma 3. 1. Γ `M :σ iff Γ `M :α for all α ∈ A(σ).
2. If Γ `M :σ and σ - τ , then Γ `M :τ .

Proof. (1). By structural induction on σ. If σ = α and Γ ` M : σ, the rule (ω) derives
Γ `M :ω. Let σ = σ1 ∧ σ2. By rules (∧I) and (∧E) Γ `M :σ iff Γ `M :σ1 and Γ `M :σ2,
so the induction hypothesis applies.
(2). By definition for all α ∈ A(τ) there is β ∈ A(σ) such that β ∼= α. Point (1) implies that
Γ `M :β for all β ∈ A(σ). Then by rule (∼=) Γ `M :α for all α ∈ A(τ), so again by point
(1) Γ `M :τ . J

In the following,
∧
i∈{1,...,n} τi is used to denote any type obtained by multiple applications

of the intersection type constructor to the types τ1, . . . , τn.
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I Lemma 4 (Inversion Lemma). 1. If x :σ ` x :τ , then σ - τ .
2. If Γ ` λx.M :τ and τ - ρ→ σ, then Γ, x :ρ `M :σ.
3. If Γ ` MN : τ , then there are Γ1,Γ2, σi, τi (1 ≤ i ≤ n) such that Γ = Γ1,Γ2 and

Γ1 `M :σi → τi, and Γ2 ` N :σi for 1 ≤ i ≤ n and
∧
i∈{1,...,n} τi - τ .

4. If Γ ` MN : α, then there are Γ1,Γ2, σ, τ such that Γ = Γ1,Γ2 and Γ1 ` M : σ → τ ,
Γ2 ` N :σ and τ - α.

Proof. Points (1), (2) and (3) are proved by induction on derivations. Only the non-standard
cases are presented.
For point (1), if the last applied rule is (∼=), observe that σ - τ ′ and τ ′ ∼= τ imply σ - τ . If
the last applied rule is (∧I) or (∧E), observe that σ - τ1 and σ - τ2 iff σ - τ1 ∧ τ2.
For point (2), if the last applied rule is (∼=), observe that τ ′ ∼= τ and τ - σ → ρ imply
τ ′ - σ → ρ. If the last applied rule is (∧I) or (∧E), observe that τ1 ∧ τ2 - σ → ρ iff
τ1 - σ → ρ or τ2 - σ → ρ.
The proof of point (3), if the last applied rule is (∼=) or (∧E), is the same as that of point
(1). If the last applied rule is (∧I) by the induction hypothesis one has

∧
i∈{1,...,n} τ

(1)
i - τ1

and
∧
i∈{1,...,m} τ

(2)
i - τ2, which imply (

∧
i∈{1,...,n} τ

(1)
i ) ∧ (

∧
i∈{1,...,m} τ

(2)
i ) - τ1 ∧ τ2.

Point (4) follows from point (3) and the definition of -. In fact point (3) gives Γ = Γ1,Γ2 such
that Γ1 `M :σi → τi, Γ2 ` N :σi and

∧
i∈{1,...,n} τi - τ , for some Γ1,Γ2, σi, τi (1 ≤ i ≤ n).

In this case τ = α and
∧
i∈{1,...,n} τi - α implies that there is β ∈ A(

∧
i∈{1,...,n} τi) =⋃

i∈{1,...,n}A(τi) such that β ∼= α. So there is an i0 (1 ≤ i0 ≤ n) such that β ∈ A(τi0) and
β ∼= α, that give τi0 - α. One can then choose σ = σi0 and τ = τi0 . J

The following characterisation of the arrow types of the identity λx.x justifies the name
of the pre-order relation in Definition 2.

I Corollary 5. ` λx.x :σ → τ iff σ - τ .

Proof. Easy from Lemmas 4(2), 4(1) and 3(2). J

The Inversion Lemma allows one to show some useful properties of arrow types derivable
for λ-abstractions.

I Lemma 6. 1. If Γ ` λx.M :σ → τ and Γ ` λx.M :ρ→ θ, then Γ ` λx.M :σ ∧ ρ→ τ ∧ θ.
2. If Γ ` λx.M :σ → τ and Γ ` λx.M :σ → ρ, then Γ ` λx.M :σ → τ ∧ ρ.

Proof. (1). By Lemma 4(2) Γ, x :σ `M :τ and Γ, x :ρ `M :θ, which imply Γ, x :σ∧ρ `M :τ
and Γ, x :σ ∧ ρ `M :θ by rules (∧E) and (L). Rule (∧I) derives Γ, x :σ ∧ ρ `M :τ ∧ θ. Rule
(→ I) concludes the proof.
(2). By Lemma 4(2) and rules (∧I), (→ I). J

This section ends with the proofs of Subject Reduction (Theorem 8) and Subject Expansion
(Theorem 9). As usual a Substitution Lemma is required.

I Lemma 7 (Substitution Lemma). If Γ, x :σ `M :τ and Γ′ ` N :σ and dom(Γ)∩dom(Γ′) = ∅,
then Γ,Γ′ `M [N/x] :τ .

Proof. The proof is by structural induction on M . J

I Theorem 8 (Subject Reduction). If Γ `M :τ and M −→∗β N , then Γ ` N :τ .
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Proof. It is enough to show that Γ ` (λx.M)N :τ implies Γ `M [N/x] :τ . By Lemma 4(3)
there are Γ1,Γ2, σi, τi (1 ≤ i ≤ n) such that Γ = Γ1,Γ2 and Γ1 ` λx.M :σi → τi, Γ2 ` N :σi
for 1 ≤ i ≤ n and

∧
i∈{1,...,n} τi - τ . By Lemma 4(2) Γ1, x : σi ` M : τi, which implies

Γ1,Γ2 ` M [N/x] : τi by Lemma 7 for 1 ≤ i ≤ n. By applications of rule (∧I) one has
Γ `M [N/x] :

∧
i∈{1,...,n} τi and, by Lemma 3(2), one obtains Γ `M [N/x] :τ . J

Types are not preserved by η-reduction, for example x :ϕ → ϕ ` λy.xy :ϕ ∧ ψ → ϕ, while
x :ϕ→ ϕ 6` x :ϕ ∧ ψ → ϕ.

Subject expansion holds for both β and η-expansions.

I Theorem 9 (Subject Expansion). If M is a linear λ-term and M −→∗βη N and Γ ` N :τ ,
then Γ `M :τ .

Proof. For β-expansion it is enough to show that Γ `M [N/x] :τ implies Γ ` (λx.M)N :τ .
The proof is by structural induction on M , observing that the linearity condition implies
that there is exactly one occurrence of x in M .
For η-expansion let Γ ` M : τ and α ∈ A(τ). By Lemma 3(1) it is enough to show that
Γ ` λx.Mx :α, where x is fresh. Let α ∼= σ → ρ. By Lemma 3(1) and rule (∼=) Γ `M :σ → ρ.
By rules (→ E) and (→ I) one has Γ ` λx.Mx : σ → ρ. Rule (∼=) implies Γ ` λx.Mx :α.
Lemma 3(1) concludes. J

3 Isomorphism and Equality in Models

The study of type isomorphism in λ-calculus is based on the characterisation of λ-term
invertibility. A λ-term P is invertible if there exists a λ-term P−1 such that P ◦ P−1 =βη

P−1 ◦ P =βη λx.x. The paper [11] completely characterises the invertible λ-terms in
λβη-calculus: the invertible terms are all and only the finite hereditary permutators.

I Definition 10 (Finite Hereditary Permutator). A finite hereditary permutator (FHP for
short) is a λ-term of the form (modulo β-conversion)

λxy1 . . . yn.x(P1yπ(1)) . . . (Pnyπ(n)) (n ≥ 0)
where π is a permutation of 1, . . . , n, and P1, . . . , Pn are FHPs.

Note that the identity is trivially an FHP (take n = 0). Another example of an FHP is
λxy1y2.x y2 y1

∗
β←− λxy1y2.x ((λz.z) y2) ((λz.z) y1),

which proves the swap equation. It is easy to show that FHPs are closed on composition.

I Theorem 11. A λ -term is invertible iff it is a finite hereditary permutator.

This result, obtained in the framework of the untyped λ-calculus, has been the basis for
studying type isomorphism in different type systems for the λ-calculus. Note that every FHP
has, modulo βη-conversion, a unique inverse P−1. Even if in the type free λ-calculus FHPs
are defined modulo βη-conversion [11], in this paper each FHP is considered only modulo
β-conversion, because types are not invariant under η-reduction. Taking into account these
properties, the definition of type isomorphism can be stated as follows:

I Definition 12 (Type isomorphism). Two types σ and τ are isomorphic (σ ≈ τ) if there exists
a pair < P,P−1 > of FHPs, inverse of each other, such that ` P :σ → τ and ` P−1 :τ → σ.
The pair < P,P−1 > proves the isomorphism.
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136 Isomorphism of “Functional” Intersection Types

When P = P−1 one can simply write “P proves the isomorphism”.

It is immediate to verify that type isomorphism is an equivalence relation.

Clearly semantic type equivalence implies type isomorphism, i.e.
σ ∼= τ implies σ ≈ τ

The inverse does not hold, for example λxyz.xzy proves ω → ϕ→ ϕ ≈ ϕ→ ϕ (note that
ϕ→ ϕ ∼= ϕ→ ω → ϕ), but ω → ϕ→ ϕ 6∼= ϕ→ ϕ.

It is useful to consider some basic isomorphisms, which are directly related to set theoretic
properties of intersection and to standard properties of functional types. It is interesting
to remark that all these isomorphisms are provable equalities in the system B+ of relevant
logic [20].

idem. σ ∧ σ ≈ σ
comm. σ ∧ τ ≈ τ ∧ σ
assoc. (σ ∧ τ) ∧ ρ ≈ σ ∧ (τ ∧ ρ)
split. σ → τ ∧ ρ ≈ (σ → τ) ∧ (σ → ρ)

The identity λx.x proves the first three isomorphisms, and its η-expansion λxy.xy proves
the fourth one.

An intersection σ ∧ τ is set-theoretically equal to σ if σ is included in τ . So, it is handy
to introduce a pre-order on types which formalises set-theoretic inclusion taking into account
the meaning of the arrow type constructor and the semantic type equivalence given in
Definition 1. This pre-order is dubbed normalisation pre-order being used in the next section
to define normalisation rules (Definition 19).

I Definition 13 (Normalisation pre-order on types). The normalisation pre-order ≤ is the
pre-order relation on types defined by:

σ ≤ ω σ ∧ τ ≤ σ σ ∧ τ ≤ τ
ϕ ≤ σ → ϕ ω ≤ σ → ω

σ ≤ τ, σ ≤ ρ⇒ σ ≤ τ ∧ ρ σ′ ≤ σ, τ ≤ τ ′ ⇒ σ → τ ≤ σ′ → τ ′

Notice that σ ≤ ω derives from σ∧ω ∼= σ. Moreover ϕ ≤ σ → ϕ and ω ≤ σ → ω are justified
by ϕ ∼= ω → ϕ, ω ∼= ω → ω and the contra-variance of ≤ for arrow types.

The identity pre-order and the normalisation pre-order are incomparable, for example
ω → ϕ - ϕ, ω → ϕ 6≤ ϕ and σ → τ ≤ σ ∧ ρ→ τ , σ → τ 6- σ ∧ ρ→ τ .

The soundness of the normalisation pre-order follows from the following lemma, which
shows the expected isomorphisms. This lemma uses particular forms of FHPs defined as
follows.

I Definition 14 (Finite Hereditary Identity). A finite hereditary identity (FHI) is a β-normal
form obtained from λx.x through a finite (possibly zero) number of η-expansions.

It is easy to verify that, for each FHI different from the identity, one gets
Id ∗β←− λxy.Id1(x(Id2y))

for unique FHIs Id1, Id2. For example, for Id = λxy1y2y3.x(λt.y1t)y2(λu1u2.y3u1u2) one has
Id1 = λxy2y3.xy2(λu1u2.y3u1u2) and Id2 = λxt.xt.

I Lemma 15. 1. Let Id be an FHI, then ` Id :σ → σ for every type σ.
2. If σ ≤ τ , then there is an FHI Id such that ` Id :σ → τ .
3. If σ ≤ τ , then σ ∧ τ ≈ σ.
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Proof. (1). The proof is trivial observing that the identity λx.x has type σ → σ for all σ
and types are preserved by η-expansions (Theorem 9).
(2). The proof is by induction on the definition of ≤. Only interesting cases are considered.
If σ ≤ ρ and ρ ≤ τ imply σ ≤ τ , then by the induction hypothesis there are FHIs Id1, Id2
such that ` Id1 :σ → ρ and ` Id2 :ρ → τ . This implies ` λx.Id2(Id1x) :σ → τ . It is easy to
verify that λx.Id2(Id1x) β-reduces to an FHI.
If σ ≤ τ and σ ≤ ρ imply σ ≤ τ ∧ ρ, then by the induction hypothesis there are FHIs Id1, Id2
such that ` Id1 :σ → τ and ` Id2 :σ → ρ. By definition of FHI there is an FHI Id such that
Id −→∗η Id1 and Id −→∗η Id2. By Subject Expansion (Theorem 9) ` Id :σ → τ and ` Id :σ → ρ,
which imply ` Id :σ → τ ∧ ρ by Lemma 6(2).
If ϕ ≤ σ → ϕ one can derive y :σ ` y :ω by rule (ω), and x :ϕ ` x :ω → ϕ by rule (∼=). Then
` λxy.xy :ϕ→ σ → ϕ holds by rules (→ E) and (→ I).
If σ′ ≤ σ and τ ≤ τ ′ imply σ → τ ≤ σ′ → τ ′, then by the induction hypothesis there are
FHIs Id1, Id2 such that ` Id2 :σ′ → σ and ` Id1 :τ → τ ′. This implies

` λxy.Id1(x(Id2y)) : (σ → τ)→ σ′ → τ ′

and λxy.Id1(x(Id2y)) β-reduces to an FHI.
(3). By point (2) there is an FHI Id such that ` Id :σ → τ . By point (1) one has ` Id :σ → σ.
Lemma 6(2) gives ` Id :σ → σ ∧ τ . Lastly ` λx.x :σ ∧ τ → σ. J

For example λxyz.xyz has type (ϕ → ϕ) → (ϕ → ϕ) ∧ (ϕ → ψ → ϕ). Notice that
ϕ→ ϕ ∼= ϕ→ ω → ϕ ≤ ϕ→ ψ → ϕ.

Lemma 15 proves the validity of the basic isomorphism:
erase. if σ ≤ τ then σ ∧ τ ≈ σ

The following lemma assures that one can consider types modulo idempotence, com-
mutativity, associativity, splitting and erasure in every type context C[]. A type context is
defined as usual:

C[ ] ::= [ ] | C[ ]→ σ | σ → C[ ] | σ ∧ C[ ] | C[ ] ∧ σ

I Lemma 16. If σ ≈ τ is proved by reflexive and transitive application of the basic iso-
morphisms (idem), (comm), (assoc), (split), and (erase), then C[σ] ≈ C[τ ].

Proof. As the isomorphism is reflexive and transitive, it is enough to consider the case in
which σ ≈ τ is proved by one application of (idem), (comm), (assoc), (split), and (erase).
The proof is by structural induction on type contexts. For any context C[ ], an FHI IdC[ ]
that proves the isomorhism C[σ] ≈ C[τ ] is provided.

Id[ ] = λx.x for (idem), (comm), (assoc); Id[ ] = λxy.xy for (split); Id[ ] is given by
Lemma 15(3) for (erase).
IdC[ ]→ρ β←− λxy.x(IdC[ ]y).
Idρ→C[ ] β←− λxy.IdC[ ](xy).
Idρ∧C[ ] = IdC[ ]∧ρ = IdC[ ]. J

For example λxy.x(λzt.yzt) proves (ϕ→ ϕ)→ ψ ≈ (ϕ→ ϕ) ∧ (ϕ→ ψ → ϕ)→ ψ. In
fact, λwzt.wzt, having the type (ϕ→ ϕ)→ (ϕ→ ϕ)∧(ϕ→ ψ → ϕ), proves the isomorphism
by erasure (Lemma 15(3)). Moreover Id[ ]→ϕ

∗
β←− λxy.x(Id[ ]y) = λxy.x((λwzt.wzt)y) since

the isomorphism used in the empty context is the (erase).

Lemma 16 justifies the notation
∧
i∈I σi with finite I, where a single atomic or arrow

type is seen as an intersection (in this case I is a singleton).
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The standard models of intersection types map types to subsets of any domain that
is a model of the untyped λ-calculus, with the condition that the arrow is interpreted as
the function space constructor and the intersection as the set-theoretic intersection. More
formally using P to denote the power-set:

I Definition 17. Let D be the domain of a λ-model and V : A → P(D) a mapping from
atomic types to subsets of D. The standard interpretation of types is given by:

[ϕ]V = V(ϕ) [ω]V = D
[σ → τ]V = {d ∈ D | ∀d′ ∈ [σ]V : d · d′ ∈ [τ]V} [σ ∧ τ]V = [σ]V ∩ [τ]V

The equalities corresponding to the contextual closure of the basic type isomorphisms
(idem), (comm), (assoc), (split), and (erase), include the ones of [2], which are proved
to be the equalities valid in all standard models. Therefore all types equal in all standard
models are isomorphic in the system of Figure 1.

I Theorem 18. Type equality in the standard models of intersection types entails type
isomorphism.

Instead, the standard type interpretation does not validate a pre-order which includes the
clause ϕ ≤ ω → ϕ or ω → ϕ ≤ ϕ or both, unless the mapping from atomic types to subsets
of D enjoys particular properties. In particular a mapping V0 from atomic types to subsets
of D such that

V0(ϕ) = {d ∈ D | ∀d′ ∈ D : d · d′ ∈ V0(ϕ)}
validates the semantic type equivalence given in Definition 1, i.e. it gives the same inter-
pretation to equivalent types. If D is the domain of the inverse limit model discussed after
Definition 1, then a valid interpretation is that of taking as V0(ϕ) the set of all the elements
of D greater than or equal to the finite element corresponding to ϕ. Notably V0(ϕ) is an
open set in the Scott topology over D. More generally, the interpretation of each type σ is
the open set of all elements of D greater than or equal to the finite element corresponding to
σ, when mapping arrow types in step functions and intersection types in joins.

4 Normalisation

To investigate type isomorphism, following a common approach [4, 14, 12, 7, 8], a notion
of normal form of types is introduced. Normal type is short for type in normal form. The
notion of normal form is effective, since an algorithm to find the normal form of an arbitrary
type is given.

Type normalisation rules are introduced together with the proof of their soundness.

I Definition 19 (Type normalisation rules). The type normalisation rules are:
(ϕ⇒) ω → ϕ =⇒ ϕ (ω ⇒) ω ≤ σ and σ 6= ω imply σ =⇒ ω

(∧ ⇒) σ → τ ∧ ρ =⇒ (σ → τ) ∧ (σ → ρ) (≤⇒) σ ≤ τ implies σ ∧ τ =⇒ σ

(ctx⇒) σ =⇒ τ implies C[σ] =⇒ C[τ ]

The first two rules follow immediately from semantic type equivalence, the following two
rules correspond to the split and erase basic isomorphisms, respectively. Since ω ≤ σ → ω,
an admissible rule is σ → ω =⇒ ω.

For example by rules (∧ ⇒) and (≤⇒), taking into account that ∧ is considered modulo
commutativity:
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(ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3 =⇒ (ϕ1 → ϕ2) ∧ (ϕ1 → ϕ3) ∧ ϕ3 =⇒ (ϕ1 → ϕ2) ∧ ϕ3

since ϕ3 ≤ ϕ1 → ϕ3.

A normal type ξ is either ω or a normal intersection type. A normal intersection type ζ is
either a normal singleton type or an intersection of normal intersection types, which cannot
be reduced by rule (≤⇒). A normal singleton type ν is either an atomic type different from
ω or an arrow type from a normal intersection type to a normal singleton type, which cannot
be reduced by rule (ϕ⇒). Formally:

ξ ::= ω | ζ ζ ::= ν | ζ ∧ ζ ν ::= ϕ | ξ → ν

where an intersection is allowed only if rule (≤⇒) cannot be applied at top level and an
arrow is allowed only if rule (ϕ⇒) cannot be applied at top level. So a normal type is either
ω or

∧
i∈I νi for some I and νi with i ∈ I.

For example (ϕ→ ϕ) ∧ ψ is a normal type, but not a normal singleton type, while ϕ→ ϕ is
a normal singleton type.
The type (ω → ϕ → ϕ) ∧ ψ → ψ is a normal singleton type, because (ω → ϕ → ϕ) ∧ ψ is
a normal intersection type, being ω → ϕ → ϕ a normal singleton type. On the contrary
(ϕ→ ω → ϕ) ∧ ψ → ψ is not a normal singleton type, because ϕ→ ω → ϕ is not so.

I Theorem 20 (Soundness of the normalisation rules). If σ =⇒ τ , then there are FHIs Id, Id′

such that ` Id :σ → τ , ` Id′ :τ → σ.

Proof. Rule (ϕ⇒) is obtained by orienting the equivalence relation between types, so it is
sound since equivalent types are shown isomorphic by the identity. Rule (ω ⇒) is sound
because, by Lemma 15(2), there is an FHI Id such that ` Id :ω → σ, and obviously ` Id :σ → ω.
Rule (∧ ⇒) is sound by the isomorphism (split). Lemma 15(3) implies the soundness of rule
(≤⇒). Lemma 16 implies the soundness of rule (ctx⇒). J

For example (ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3 =⇒∗ (ϕ1 → ϕ2) ∧ ϕ3 as shown before, and λxy.xy

proves
(ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3 ≈ (ϕ1 → ϕ2) ∧ ϕ3.

In fact, both
x : (ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3 ` λy.xy : (ϕ1 → ϕ2) ∧ ϕ3

and
x : (ϕ1 → ϕ2) ∧ ϕ3 ` λy.xy : (ϕ1 → ϕ2 ∧ ϕ3) ∧ ϕ3

are derivable.

The following theorem shows the existence and uniqueness of the normal forms, i.e. that
the normalisation rules are terminating and confluent.

I Theorem 21 (Uniqueness of normal form). The normalisation rules of Definition 19 are
terminating and confluent.

Proof. The termination follows from an easy adaptation of the recursive path ordering
method [10]. The partial order on operators is defined by: → � ∧. Notice that the induced
recursive path ordering �∗ has the subterm property. This solves the case of all rules but
(∧ ⇒). For rule (∧ ⇒), since → � ∧, it is enough to observe that σ → τ ∧ ρ �∗ σ → τ

and σ → τ ∧ ρ �∗ σ → ρ.
For confluence, thanks to the Newman Lemma [18], it is sufficient to prove the convergence
of the critical pairs. Figure 3 shows the diamonds for the only three interesting cases, where
σ → τ ∧ ρ ≤ θ, ω → ϕ ≤ σ, ω ≤ σ, respectively. J
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(σ → τ ∧ ρ) ∧ θ
(≤⇒)

rz

(∧⇒)

&.
σ → τ ∧ ρ (σ → τ) ∧ (σ → ρ) ∧ θ

(σ → τ) ∧ (σ → ρ)
$,(∧⇒) px (≤⇒)

(ω → ϕ) ∧ σ
(≤⇒)
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 (
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(ω⇒) �&

ω ∧ ω
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ϕ
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(ϕ⇒)
t|

(≤⇒)

ω

Figure 3 Critical pairs and their diamonds.

The unique (modulo idempotence, commutativity and associativity of ∧) normal form of
σ is denoted by σ↓. The soundness of the normalisation rules (Theorem 20) implies that
each type is isomorphic to its normal form.

I Corollary 22. σ ≈ σ↓.

As expected, semantic equivalent types have the same normal form. Clearly the inverse
is false, since (σ → τ ∧ ρ)↓= (σ → τ) ∧ (σ → ρ), but σ → τ ∧ ρ 6∼= (σ → τ) ∧ (σ → ρ).

I Lemma 23. If σ ∼= τ , then σ↓= τ↓.

Proof. The proof is by cases on Definition 1. For the equivalences ϕ ∼= ω → ϕ and ω ∼= ω → ω,
rules (ϕ ⇒) and (ω ⇒) give (ω → ϕ)↓= ϕ and (ω → ω)↓= ω, respectively. For the
equivalences σ ∼= ω∧σ and σ ∼= σ∧ω, rule (∧ ⇒) with σ ≤ ω gives (ω∧σ)↓= (σ∧ω)↓= σ. The
congruence follows from the applicability of the normalisation rules in any type context. J

This section ends showing some properties of normal types for FHPs. The main result is
that isomorphic normal types different from ω are intersections with the same number of
normal singleton types, which are pairwise isomorphic (Theorem 27). Lemmas 24, 25 and 26
show preliminary results. In the following ξ, χ range over normal types and ν, µ, λ range over
normal singleton types.

I Lemma 24. 1. If ω - σ → τ , then ω ∼= τ .
2. If µ - σ → τ and τ 6∼= ω, then µ ∼= σ → ν and τ ∼= ν for some ν.

Proof. (1). Immediate by definition of - (Definition 2).
(2). By definition of - and of ∼= (Definition 1). J

I Lemma 25. Let λxy1 . . . yn.xQ1 . . . Qn be an FHP.
1. If x :

∧
i∈I µi ` λy1 . . . yn.xQ1 . . . Qn :

∧
j∈J νj, then for every j ∈ J there is a ij ∈ I such

that x :µij ` λy1 . . . yn.xQ1 . . . Qn :νj.
2. If x :ω ` λy1 . . . yn.xQ1 . . . Qn :ξ, then ξ = ω.
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Proof. (1). Take an arbitrary j ∈ J . Without loss of generality assume
νj ∼= ξ1 → · · · → ξn → ν.

This is not a restriction since ϕ ∼= ω → · · · → ω︸ ︷︷ ︸
m

→ ϕ for all m. By rules (∧E) and (∼=)

x :
∧
i∈I µi ` λy1 . . . yn.xQ1 . . . Qn :

∧
j∈J νj

implies x :
∧
i∈I µi ` λy1 . . . yn.xQ1 . . . Qn : ξ1 → · · · → ξn → ν. Then by Lemma 4(2) it

follows
x :

∧
i∈I µi, y1 :ξ1, . . . , yn :ξn ` xQ1 . . . Qn :ν.

By repeated applications of Lemma 4(4) there are σ1, . . . , σn, τ1, . . . , τn such that
x :

∧
i∈I µi, yπ(1) :ξπ(1), . . . , yπ(h−1) :ξπ(h−1) ` xQ1 . . . Qh−1 :σh → τh and

yπ(h) :ξπ(h) ` Qh :σh,
where yπ(h) is the head variable of Qh for 1 ≤ h ≤ n. Moreover τk - σk+1 → τk+1 for
1 ≤ k ≤ n−1 and τn - ν. By Lemma 4(1) x :

∧
i∈I µi ` x :σ1 → τ1 implies

∧
i∈I µi - σ1 → τ1.

Then there is ij ∈ I such that µij - σ1 → τ1 by definition of -. Lemma 24(2) applied to
µij - σ1 → τ1 gives µij ∼= σ1 → ν1 and τ1 ∼= ν1 for some ν1. This together with τ1 - σ2 → τ2
implies ν1 - σ2 → τ2. Again by Lemma 24(2) one has ν1 ∼= σ2 → ν2 and τ2 ∼= ν2 for some
ν2. By iterating one gets νk ∼= σk+1 → νk+1 and τk+1 ∼= νk+1 for some νk+1 (1 ≤ k ≤ n− 1).
Lastly τn ∼= νn and τn - ν imply νn ∼= ν. Taking into account that νk ∼= σk+1 → νk+1 and
νk+1 ∼= σk+2 → νk+2 imply νk ∼= σk+1 → σk+2 → νk+2, (1 ≤ k ≤ n− 2), one can conclude
µij
∼= σ1 → · · · → σn → ν. Notice that this implies µij 6∼= ω whenever νj 6∼= ω.

Rules (→ E) and (→ I) applied to x :µij ` x :σ1 → · · · → σn → ν and yπ(h) :ξπ(h) ` Qh :σh
for 1 ≤ h ≤ n derive x :µij ` λy1 . . . yn.xQ1 . . . Qn :νj .
(2). Toward a contradiction assume ξ =

∧
j∈J νj . Let νj ∼= ξ1 → · · · → ξn → ν for an

arbitrary j ∈ J , as in the proof of point (1). One gets ω - σ1 → τ1 and
τk - σk+1 → τk+1 for 1 ≤ k ≤ n− 1, τn - ν.

Lemma 24(1) implies ω ∼= ν, which is impossible. J

I Lemma 26. If ` Id :ξ → χ, then ξ ≤ χ.

Proof. If χ = ω the proof is trivial. If ξ = ω, then χ = ω by Lemma 25(2). Let ξ =
∧
i∈I µi,

χ =
∧
j∈J νi. By Lemma 25(1) for all j ∈ J there is ij ∈ I such that ` Id :µij → νj . Then

it is enough to show µij ≤ νj . The proof is by structural induction on Id. If Id = λx.x

by Lemma 4(1) µij - νj ; since both these types are normal singleton types, µij ∼= νj , and
Lemma 23 implies µij = νj . Otherwise let Id ∗β←− λxy.Id1(x(Id2y)) and µij

∼= ξ′ → µ,
νi ∼= χ′ → ν. By Lemma 4 ` Id1 :µ → ν and ` Id2 :χ′ → ξ′. By the induction hypothesis
µ ≤ ν and χ′ ≤ ξ′, which imply µij ≤ νj . J

One can use the previous lemmas to prove that if an FHP P has the type
∧
i∈I µi →

∧
j∈J νj

and its inverse P−1 has the type
∧
j∈J νj →

∧
i∈I µi, then not only for every j ∈ J there is

a ij ∈ I such that ` P :µij → νj , but P−1 precisely maps each component νj of the target
intersection to its corresponding µij in the source intersection.

I Theorem 27. If
∧
i∈I µi ≈

∧
j∈J νj and < P,P−1 > proves this isomorphism, then there

is a permutation π between I and J such that < P,P−1 > proves µi ≈ νπ(i) for all i ∈ I.

Proof. By Lemma 25(1), for all j ∈ J there is ij ∈ I such that ` P :µij → νj . Again by
Lemma 25(1) there is j′ ∈ J such that ` P−1 :νj′ → µij . Let us suppose j′ 6= j towards a
contradiction. One gets x : νj′ ` P (P−1x) : νj and by rule (→ I) ` λx.P (P−1x) : νj′ → νj ,
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which implies that νj′ ≤ νj by Lemma 26, since λx.P (P−1x) β-reduces to an FHI. So
∧
j∈J νj

would not be a normal type, since rule (≤⇒) could be applied. J

5 Characterisation of Isomorphism

This section shows the main result of the paper, i.e. that two types are isomorphic iff their
normal forms are “similar” (Definition 28). The basic aim of the similarity relation is that of
formalising isomorphism determined by argument permutations (as in the swap equation).
This relation has to take into account the fact that, for two types to be isomorphic, it is
not sufficient that they coincide modulo permutations of types in the arrow sequences, as
in the case of cartesian products. Indeed the same permutation must be applicable to all
types in the corresponding intersections. The key notion of similarity exactly expresses such
a condition.

I Definition 28 (Similarity). The similarity relation between two sequences of normal types
〈ξ1, . . . , ξm〉 and 〈χ1, . . . , χm〉, written 〈ξ1, . . . , ξm〉 ∼ 〈χ1, . . . , χm〉, is the smallest equivalence
relation such that:
1. 〈ξ1, . . . , ξm〉 ∼ 〈ξ1, . . . , ξm〉;
2. if 〈ξ1, . . . , ξi, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χi+1, . . . , χm〉, then

〈ξ1, . . . , (ξi ∧ ξi+1)↓, . . . , ξm〉 ∼ 〈χ1, . . . , (χi ∧ χi+1)↓, . . . , χm〉;
3. if 〈ξ(1)

i , . . . , ξ
(m)
i 〉 ∼ 〈χ(1)

i , . . . , χ
(m)
i 〉 for 1 ≤ i ≤ n, then

〈(ξ(1)
1 → . . .→ ξ

(1)
n → ν1)↓, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉,

where π is a permutation of 1, . . . , n.
Similarity between normal types is trivially defined as similarity between unary sequences:

ξ ∼ χ if 〈ξ〉 ∼ 〈χ〉.

For example, from 〈ω〉 ∼ 〈ω〉 and 〈ϕ〉 ∼ 〈ϕ〉 one obtains, by Definition 28(3),
〈(ω → ϕ→ ϕ)↓〉 ∼ 〈(ϕ→ ω → ϕ)↓〉,

that is ω → ϕ→ ϕ ∼ ϕ→ ϕ. Moreover 〈ψ, ω → ϕ→ ϕ〉 ∼ 〈ψ,ϕ→ ϕ〉 gives
ψ ∧ (ω → ϕ→ ϕ) ∼ ψ ∧ (ϕ→ ϕ).

The soundness of similarity can be shown without difficulties.

I Theorem 29 (Soundness). If 〈ξ1, . . . , ξm〉 ∼ 〈χ1, . . . , χm〉 , then there is a pair of FHPs
that proves ξj ≈ χj, for 1 ≤ j ≤ m.

Proof. By induction on the definition of ∼ (Definition 28).
(1). 〈ξ1, . . . , ξm〉 ∼ 〈ξ1, . . . , ξm〉. The identity proves the isomorphism.
(2). 〈ξ1, . . . , ξi, (ξi ∧ ξi+1)↓, . . . , ξm〉 ∼ 〈χ1, . . . , χi, (χi ∧ χi+1)↓, . . . , χm〉 since

〈ξ1, . . . , ξi, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χi+1, . . . , χm〉.
By the induction hypothesis there is a pair < P,P−1> that proves ξj ≈ χj , for 1 ≤ j ≤ m.
By Lemma 6(1), the same pair proves ξi ∧ ξi+1 ≈ χi ∧ χi+1. By Theorem 20 there are FHIs
Id1, Id2, Id′1, Id

′
2 such that < Id1, Id2> proves ξi ∧ ξi+1 ≈ (ξi ∧ ξi+1)↓ and < Id′1, Id

′
2> proves

χi ∧χi+1 ≈ (χi ∧χi+1)↓. By Lemma 15(1) ` Id` :ξj → ξj and ` Id′` :χj → χj for 1 ≤ j ≤ m
and 1 ≤ ` ≤ 2. Then the pair < λx.Id′1(P (Id2x)), λx.Id1(P−1(Id′2x))> proves the required
isomorphism.
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(3).
〈(ξ(1)

1 → . . .→ ξ
(1)
n → ν1)↓, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉

since 〈ξ(1)
i , . . . , ξ

(m)
i 〉 ∼ 〈χ(1)

i , . . . , χ
(m)
i 〉 for 1 ≤ i ≤ n. By the induction hypothesis, there

are pairs < Pi, P
−1
i > proving ξ(j)

i ≈ χ
(j)
i for 1 ≤ j ≤ m. Let

P = λxy1 . . . yn.x(P−1
1 yπ−1(1)) . . . (P−1

n yπ−1(n))
P−1 = λxy1 . . . yn.x(Pπ(1)yπ(1)) . . . (Pπ(n)yπ(n))

It is easy to verify that
` P : (ξ(j)

1 → . . .→ ξ
(j)
n → µj)→ χ

(j)
π(1) → . . .→ χ

(j)
π(n) → νj

` P−1 : (χ(j)
π(1) → . . .→ χ

(j)
π(n) → νj)→ ξ

(j)
1 → . . .→ ξ

(j)
n → µj

for 1 ≤ j ≤ m. Notice that

(ξ1 → . . .→ ξh → µ)↓=


ξ1 → . . .→ ξk → µ if ξk+1 = . . . = ξh = ω

and µ is an atomic type,
ξ1 → . . .→ ξh → µ otherwise

since ξ1, . . . , ξh are normal types and µ is a normal singleton type. Then
ξ1 → . . .→ ξh → µ ∼= (ξ1 → . . .→ ξh → µ)↓,

and, by the typing rule (∼=):
` P : (ξ(j)

1 → . . .→ ξ
(j)
n → µj)↓→ (χ(j)

π(1) → . . .→ χ
(j)
π(n) → νj)↓

` P−1 : (χ(j)
π(1) → . . .→ χ

(j)
π(n) → νj)↓→ (ξ(j)

1 → . . .→ ξ
(j)
n → µj)↓

for 1 ≤ j ≤ m. So < P,P−1 > is the required pair. J

An immediate implication of the Soundness Theorem is that two similar types are
isomorphic.

I Corollary 30. If ξ ∼ χ, then ξ ≈ χ.

As an example, by 〈ω, ϕ1, ω〉 ∼ 〈ω, ϕ1, ω〉, 〈ϕ2, ϕ3, ω〉 ∼ 〈ϕ2, ϕ3, ω〉, 〈ω, ϕ4, ϕ5〉 ∼ 〈ω, ϕ4, ϕ5〉
and the permutation < 3, 2, 1 >, one has:

〈ω → ϕ2 → ψ1, ϕ1 → ϕ3 → ϕ4 → ψ2, ω → ω → ϕ5 → ψ3〉 ∼
〈ω → ϕ2 → ψ1, ϕ4 → ϕ3 → ϕ1 → ψ2, ϕ5 → ψ3〉.

The isomorphism between the corresponding elements of the two sequences is proved by the
FHP λxy1y2y3.xy3y2y1.
As another example, by 〈ϕ1〉 ∼ 〈ϕ1〉, 〈ϕ2〉 ∼ 〈ϕ2〉, 〈ϕ3〉 ∼ 〈ϕ3〉, 〈ω〉 ∼ 〈ω〉, using the
permutation < 4, 1, 3, 2 >, one has

ϕ1 → ϕ2 → ϕ3 → ψ ∼ ω → ϕ1 → ϕ3 → ϕ2 → ψ.

The isomorphism is proved by the pair < λxy1y2y3y4.xy2y4y3y1, λxy1y2y3y4.xy4y1y3y2 > .

The proof of the similarity completeness, i.e. that isomorphic types have similar normal
forms (Theorem 36), is based on the isomorphism characterisation given in [12]. The type
system of [12] has all the rules of Figure 1, but rule (∼=). The isomorphism of [12] is called
here weak isomorphism and it is denoted by ≈w. The pre-order on types of [12] (weak
pre-order) is a restriction of the present normalisation pre-order, since in [12] no equivalence
between types is assumed. For example ϕ and σ → ϕ are unrelated in the weak pre-order.
The rules for normalising types in [12] are the rules (∧ ⇒), (≤⇒), and (ctx ⇒), but the
application of rule (ctx⇒) is subject to some conditions. For example (σ → τ ∧ ρ) ∧ ϕ is a
normal form in [12]. The normal form of [12] is called here weak normal form and denoted
by ↓w.
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The paper [12] defines a similarity between types, here dubbed weak similarity (∼w)
that differs from similarity (∼) since the semantic type equivalence ∼=, introduced in the
current type system, makes necessary to identify semantic equivalent types. The definition
of similarity pays heed to that.

I Definition 31 (Weak Similarity). The weak similarity relation between two sequences of
types 〈σ1, . . . , σm〉 and 〈τ1, . . . , τm〉, written 〈σ1, . . . , σm〉 ∼w 〈τ1, . . . , τm〉, is the smallest
equivalence relation such that:
1. 〈σ1, . . . , σm〉 ∼w 〈σ1, . . . , σm〉;
2. if 〈σ1, . . . , σi, σi+1, . . . , σm〉 ∼w 〈τ1, . . . , τi, τi+1, . . . , τm〉, then

〈σ1, . . . , (σi ∧ σi+1), . . . , σm〉 ∼w 〈τ1, . . . , (τi ∧ τi+1), . . . , τm〉;
3. if 〈σ(1)

i , . . . , σ
(m)
i 〉 ∼w 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n, then

〈σ(1)
1 → . . .→ σ

(1)
n → ρ1, . . . , σ

(m)
1 → . . .→ σ

(m)
n → ρm〉 ∼w

〈τ (1)
π(1) → . . .→ τ

(1)
π(n) → ρ1, . . . , τ

(m)
π(1) → . . .→ τ

(m)
π(n) → ρm〉,

where π is a permutation of 1, . . . , n.
Weak similarity between types is trivially defined as weak similarity between unary sequences:

σ ∼w τ if 〈σ〉 ∼w 〈τ〉.

The main difference between similarity (Definition 28) and weak similarity (Definition 31)
is that the first one only relates types in normal form. As a matter of fact, similarity and
weak similarity are incomparable, for example ϕ→ ϕ ∼ ω → ϕ→ ϕ, ϕ→ ϕ 6∼w ω → ϕ→ ϕ,
and

ϕ→ ω → ϕ ∼w ω → ϕ→ ϕ, ϕ→ ω → ϕ 6∼ ω → ϕ→ ϕ,
since ϕ→ ω → ϕ is not a normal type.

The characterisation of type isomorphism given in [12] can be written using the present
notation as:

I Theorem 32. σ ≈w τ iff σ↓w∼w τ↓w.

In order to use this result for showing completeness (Theorem 36) it is handy to compare
∼ with ∼w (Lemma 34) and ≈ with ≈w (Lemma 35). The following auxiliary lemma can
be shown by induction on the definition of ∼.

I Lemma 33. If 〈ξ1, . . . , ξi, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χi+1, . . . , χm〉, then
1. 〈ξ1, . . . , ξi, ξi, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χi, χi+1, . . . , χm〉;
2. 〈ξ1, . . . , ξi, ω, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, ω, χi+1, . . . , χm〉.

Proof. The proof is by induction over the derivation of similarity. The only interesting case
is when similarity is obtained using case 3 of Definition 28. Let
〈(ξ(1)

1 → . . .→ ξ
(1)
n → ν1)↓, . . . , (ξ(i)

1 → . . .→ ξ
(i)
n → νi)↓, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , (χ(i)

π(1) → . . .→ χ
(i)
π(n) → νi)↓, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉

since 〈ξ(1)
j , . . . , ξ

(i)
j , . . . , ξ

(m)
j 〉 ∼ 〈χ(1)

j , . . . , χ
(i)
j , . . . , χ

(m)
j 〉 for 1 ≤ j ≤ n.

By the induction hypothesis 〈ξ(1)
j , . . . , ξ

(i)
j , ξ

(i)
j , . . . , ξ

(m)
j 〉 ∼ 〈χ(1)

j , . . . , χ
(i)
j , χ

(i)
j , . . . , χ

(m)
j 〉 for

1 ≤ j ≤ n, which imply by the same clause:
〈(ξ(1)

1 → . . .→ ξ
(1)
n → ν1)↓, . . . , µ, µ, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , µ′, µ′, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉

and
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〈(ξ(1)
1 → . . .→ ξ

(1)
n → ν1)↓, . . . , µ, (ξ(i)

1 → . . .→ ξ
(i)
n → ω)↓, . . . , (ξ(m)

1 → . . .→ ξ
(m)
n → νm)↓〉 ∼

〈(χ(1)
π(1) → . . .→ χ

(1)
π(n) → ν1)↓, . . . , µ′, (χ(i)

π(1) → . . .→ χ
(i)
π(n) → ω)↓, . . . , (χ(m)

π(1) → . . .→ χ
(m)
π(n) → νm)↓〉

where µ = (ξ(i)
1 → . . .→ ξ

(i)
n → νi)↓, µ′ = (χ(i)

π(1) → . . .→ χ
(i)
π(n) → νi)↓. This concludes the

proof by observing that (ξ(i)
1 → . . .→ ξ

(i)
n → ω)↓= (χ(i)

π(1) → . . .→ χ
(i)
π(n) → ω)↓= ω. J

I Lemma 34. σ ∼w τ implies σ↓∼ τ↓.

Proof. One needs to show that 〈σ1, . . . , σm〉 ∼w 〈τ1, . . . , τm〉 implies
〈σ1↓, . . . , σm↓〉 ∼ 〈τ1↓, . . . , τm↓〉.

The proof is by induction on the definition of weak similarity.
(1). 〈σ1, . . . , σm〉∼w 〈σ1, . . . , σm〉. By case 1 of Definition 28 〈σ1↓, . . . , σm↓〉∼〈σ1↓, . . . , σm↓〉.
(2). 〈σ1, . . . , (σi ∧ σi+1), . . . , σm〉 ∼w 〈τ1, . . . , (τi ∧ τi+1), . . . , τm〉 since
〈σ1, . . . , σi, σi+1, . . . , σm〉 ∼w 〈τ1, . . . , τi, τi+1, . . . , τm〉. By the induction hypothesis

〈σ1↓, . . . , σi↓, σi+1↓, . . . , σm↓〉 ∼ 〈τ1↓, . . . , τi↓, τi+1↓, . . . , τm↓〉.
This implies, by case 2 of Definition 28,

〈σ1↓, . . . , (σi↓ ∧σi+1↓)↓, . . . , σm↓〉 ∼ 〈τ1↓, . . . , (τi↓ ∧τi+1↓)↓, . . . , τm↓〉,
which concludes the proof since (ρ↓ ∧θ↓)↓= (ρ ∧ θ)↓ for all ρ, θ.
(3). 〈σ(1)

1 → . . .→ σ
(1)
n → ρ1, . . . , σ

(m)
1 → . . .→ σ

(m)
n → ρm〉 ∼w

〈τ (1)
π(1) → . . .→ τ

(1)
π(n) → ρ1, . . . , τ

(m)
π(1) → . . .→ τ

(m)
π(n) → ρm〉

since 〈σ(1)
i , . . . , σ

(m)
i 〉 ∼w 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n, where π is a permutation of 1, . . . , n.

By the induction hypothesis 〈σ(1)
i ↓, . . . , σ

(m)
i ↓〉 ∼ 〈τ

(1)
i ↓, . . . , τ

(m)
i ↓〉 for 1 ≤ i ≤ n.

Let ](ρj) = pj for 1 ≤ j ≤ m, where ](θ) =
{
p if θ↓=

∧
`∈{1,...,p} ν`,

1 if θ↓= ω.

Then ρj↓=
∧
`∈{1,...,pj} λ

(j)
` for some λ(j)

` (1 ≤ ` ≤ pj) (1 ≤ j ≤ m).
By Lemma 33(1)

〈σ(1)
i ↓, . . . , σ

(1)
i ↓︸ ︷︷ ︸

p1

, . . . , σ
(m)
i ↓, . . . , σ

(m)
i ↓︸ ︷︷ ︸

pm

〉 ∼ 〈τ (1)
i ↓, . . . , τ

(1)
i ↓︸ ︷︷ ︸

p1

, . . . , τ
(m)
i ↓, . . . , τ (m)

i ↓︸ ︷︷ ︸
pm

〉.

This implies by case 3 of Definition 28
〈µ(1)

1 ↓, . . . , µ
(1)
p1 ↓, . . . , µ

(m)
1 ↓, . . . , µ(m)

pm ↓〉 ∼ 〈ν
(1)
1 ↓, . . . , ν

(1)
p1 ↓, . . . , ν

(m)
1 ↓, . . . , ν(m)

pm ↓〉
where µ(j)

` = σ
(j)
1 ↓→ . . . → σ

(j)
n ↓→ λ

(j)
` for 1 ≤ ` ≤ pj , ν(j)

` = τ
(j)
π(1)↓→ . . . → τ

(j)
π(n)↓→ λ

(j)
`

for 1 ≤ ` ≤ pj . By repeated applications of case 2 of Definition 28
〈
∧
`∈{1,...,p1} µ

(1)
` ↓, . . . ,

∧
`∈{1,...,pm} µ

(m)
` ↓〉 ∼ 〈

∧
`∈{1,...,p1} ν

(1)
` ↓, . . . ,

∧
`∈{1,...,pm} ν

(m)
` ↓〉

Notice that
∧
`∈{1,...,pj} µ

(j)
` ↓ and

∧
`∈{1,...,pj} ν

(j)
` ↓ for 1 ≤ j ≤ m are normal types by con-

struction. This concludes the proof, since it is easy to verify that (σ(j)
1 → . . .→ σ

(j)
n → ρj)↓=∧

`∈{1,...,pj} µ
(j)
` ↓ and (τ (1)

π(1) → . . .→ τ
(1)
π(n) → ρ1)↓=

∧
`∈{1,...,pj} ν

(j)
` ↓ for 1 ≤ j ≤ m. J

I Lemma 35. If ξ ≈ χ, then there are σ ∼= ξ, τ ∼= χ such that σ ≈w τ .

Proof. By induction on the abstraction nesting in the normal forms of P ,P−1, where the
pair < P,P−1 > proves the isomorphism ξ ≈ χ. By Lemma 25(2) and Theorem 27 either
ξ = χ = ω or ξ =

∧
i∈I µi, χ =

∧
i∈I νi and µi ≈ νi for all i ∈ I (note that, since ∧

is commutative, one can consider the identity permutation in Theorem 27). In the first
case the proof is trivial. In the second case it is enough to show that there are µ′i ∼= µi,
ν′i
∼= νi such that < P,P−1 > proves the isomorphism µ′i ≈w ν′i for all i ∈ I. One can

assume that P , P−1 have the same number of initial abstractions, possibly by η-expanding
(Theorem 9). Let P = λxy1 . . . yn.xQ1 . . . Qn and P−1 = λzt1 . . . tn.zR1 . . . Rn. It is easy
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146 Isomorphism of “Functional” Intersection Types

to verify that if yπ(j) is the head variable of Qj , then tj is the head variable of Rπ(j)
and λyπ(j).Qj is inverse of λtj .Rπ(j) for 1 ≤ j ≤ n. Let µi ∼= ξ1 → . . . → ξn → µ and
νi ∼= χ1 → . . . → χn → ν. By Lemma 4(2) x : µi, y1 : χ1, . . . , yn : χn ` xQ1 . . . Qn : ν and
z :νi, t1 :ξ1, . . . , tn :ξn ` zR1 . . . Rn :µ. By means of an argument similar to that one used in
the proof of Lemma 25(1) there are σ1, . . . , σn, τ1, . . . , τn such that µi ∼= σ1 → . . .→ σn → ν,
νi ∼= τ1 → . . . → τn → µ. Then ξj ∼= σj , χj ∼= τj for 1 ≤ j ≤ n and µ ∼= ν. Moreover
yπ(j) :χπ(j) ` Qj :σj and tj : ξj ` Rπ(j) : τπ(j) for 1 ≤ j ≤ n. Therefore yπ(j) :χπ(j) ` Qj : ξj
and tj :ξj ` Rπ(j) :χπ(j) for 1 ≤ j ≤ n. This implies ξj ≈ χπ(j), and then by the induction
hypothesis there are ξ′j ∼= ξj , χ′j ∼= χj such that ξ′j ≈w χ′π(j) for 1 ≤ j ≤ n. One can
then choose µ′i ∼= ξ′1 → . . . → ξ′n → µ, ν′i ∼= χ′1 → . . . → χ′n → µ, and σ =

∧
i∈I µ

′
i,

τ =
∧
i∈I ν

′
i. J

I Theorem 36 (Completeness). If σ ≈ τ , then σ↓∼ τ↓.

Proof. By Corollary 22, σ ≈ τ implies σ↓ ≈ τ↓. So, Lemma 35 assures that there are σ′, τ ′
such that σ′ ∼= σ↓, τ ′ ∼= τ↓, and σ′ ≈w τ ′. By Theorem 32 σ′ ≈w τ ′ implies σ′↓w∼w τ ′↓w.
Lemma 34 gives σ′↓∼ τ ′↓, since (ρ↓w)↓= ρ↓ for all types ρ. Lemma 23 concludes σ↓∼ τ↓. J

The result of the present paper is summarised in the following theorem.

I Theorem 37 (Main). Two types are isomorphic iff their normal forms are similar.

A consequence of the Main Theorem is the decidability of type isomorphism. A last
lemma shows the inverse of the Soundness Theorem.

I Lemma 38. If there is a pair of FHPs that proves ξj ≈ χj for 1 ≤ j ≤ m, then
〈ξ1, . . . , ξm〉 ∼ 〈χ1, . . . , χm〉.

Proof. By induction on the abstraction nesting in the normal forms of P ,P−1, where the pair
< P,P−1 > proves the isomorphisms ξj ≈ χj for 1 ≤ j ≤ m. As in the proof of Lemma 35,
one gets P = λxy1 . . . yn.xQ1 . . . Qn and P−1 = λzt1 . . . tn.zR1 . . . Rn, where λyπ(i).Qi is
inverse of λti.Rπ(i) for 1 ≤ i ≤ n. By Lemmas 25(2) and 33(2) one can assume that all
ξj , χj are different from ω for 1 ≤ j ≤ m. By Theorem 27 and case 2 of Definition 28 one
can consider that all ξj , χj are singleton types for 1 ≤ j ≤ m. Let ξj ∼= ξ

(j)
1 → . . . ξ

(j)
n → µj

and χj ∼= χ
(j)
1 → . . . χ

(j)
n → νj for 1 ≤ j ≤ m. As in the proof of Lemma 35 one gets

yπ(i) : χ(j)
π(i) ` Qi : ξ(j)

i and ti : ξ(j)
i ` Rπ(i) : χ(j)

π(i) for 1 ≤ j ≤ m and 1 ≤ i ≤ n. By
the induction hypothesis 〈ξ(1)

i , . . . , ξ
(m)
i 〉 ∼ 〈χ(1)

π(i), . . . , χ
(m)
π(i)〉 for 1 ≤ i ≤ n, so case 3 of

Definition 28 concludes the proof. J

I Theorem 39. Type isomorphism is decidable.

Proof. By Theorem 37, for deciding if two types are isomorphic it is sufficient to check if
their normal forms are similar. Normal forms can be computed owing to the fact that the
normalisation rules are terminating and confluent. By Definition 28, two types are similar
when the unary sequences built by these types are similar, then it enough to show that
similarity of type sequences is decidable. This is done by induction on the total number of
symbols in the types which occur in the two sequences. Let the sequences be 〈ξ1, . . . , ξm〉
and 〈χ1, . . . , χm〉. Theorem 29 implies that there is a pair of FHPs that proves ξi ≈ χi, for
1 ≤ i ≤ m. There are the following cases (leaving out the symmetric ones):
1. If one of the ξi is ω, then by ξi ≈ χi and Lemma 25(2) χi must be ω and the two sequences

〈ξ1, . . . , ξi−1, ξi+1, . . . , ξm〉 and 〈χ1, . . . , χi−1, χi+1, . . . , χm〉
must be similar.
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2. If one of the ξi is an intersection
∧
j∈{1,...,n} µj , then by Theorems 29 and 27 χi must

be an intersection
∧
j∈{1,...,n} νj , and there are a pair of FHPs and a permutation π

of {1, . . . , n} such that the pair proves ξi ≈ χi, for 1 ≤ i ≤ m, and µj ≈ νπ(j), for
1 ≤ j ≤ n. Lemma 38 implies that the two sequences
〈ξ1, . . . , ξi−1, µ1, . . . , µn, ξi+1, . . . , ξm〉 and 〈χ1, . . . , χi−1, νπ(1), . . . , νπ(n), χi+1, . . . , χm〉
are similar. Note that the number of permutations is finite and all sequences to be checked
have types with lower numbers of symbols.

3. If all types in the sequences are singleton types, let for 1 ≤ i ≤ m: ξi = ξ
(i)
1 → . . . ξ

(i)
pi → ϕi

and χi = χ
(i)
1 → . . . χ

(i)
qi → ψi, and n = max{p1, . . . , pm, q1, . . . , qm}. Let the similarity

in question be obtained by cases 1 or 3 of Definition 28. Both cases prescribe ϕi = ψi
for 1 ≤ i ≤ m and that there must exist a permutation π of {1, . . . , n} such that the
following similarities hold:

〈ξ̂(1)
j , . . . , ξ̂

(m)
j 〉 ∼ 〈χ̂(1)

π(j), . . . , χ̂
(m)
π(j)〉 for 1 ≤ j ≤ n,

where ξ̂(i)
j =

{
ξ

(i)
j if j ≤ pi,
ω otherwise.

χ̂
(i)
j =

{
χ

(i)
j if j ≤ qi,
ω otherwise.

It is easy to check that any pair of the so obtained sequences has a number of symbols
less than the one of the original sequence.
If instead the similarity in question is obtained by case 2 of Definition 28, one has

〈ξ1, . . . , ξi, ξ, ξi+1, . . . , ξm〉 ∼ 〈χ1, . . . , χi, χ, χi+1, . . . , χm〉
and (ξi∧ξ)↓= ξi, (χi∧χ)↓= χi. Then one starts from the sequences obtained by removing
ξ, χ and iterate this process until the similarity is obtained by cases 1 or 3 of Definition 28.

J

Note that in the system of [12], in which only intersection types are considered, decidability
is a rather immediate consequence of the decidability of type assignment for normal forms
proved in [19]. This result does not seem easily extensible to the present type assignment
system.

6 Conclusion

In this paper type isomorphism is studied in the setting of an intersection type system
in which all types have a functional character. An equivalence relation is introduced that
equates any atomic type ϕ to an arrow type from a distinguished atom ω to ϕ itself. In
the derived type system all type isomorphisms related to the set theoretic properties of
intersection, in particular idempotence, commutativity and associativity, are realised by
λ-terms of proper type. These isomorphisms, together with other two isomorphisms that
express properties of functional interpretation and inclusion of types, are preserved by every
context. It follows that semantic type equality in all standard models of intersection types
entails type isomorphism.

The type equivalence defined in this paper can be validated in the model D∞ [21] by an
interpretation in which each type denotes an open set in the Scott topology. One could then
use the present type system to investigate the isomorphisms between open sets in D∞. The
problem of finding a model which validates all and only the type isomorphisms studied in
this paper remains open.

We plan to study type isomorphism in other theories of intersection and union types, in
particular in the theories providing models of the call-by-value λ-calculus. An interesting
observation is that, with the typing rules given in [16] for the type constant ν, all intersections
of arrow types ending by ν are isomorphic to ν. In fact the rule Γ ` λx.M :ν allows one to
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148 Isomorphism of “Functional” Intersection Types

derive both
x :ν ` λy1 . . . ym.xy1 . . . ym :σ1 → . . .→ σn → ν

and x :σ1 → . . .→ σn → ν ` λy.xy :ν,
for any n ≤ m and arbitrary σ1, . . . , σn. Notably, the type theory of [16] gives a model of
the call-by-value λ-calculus.
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