
A “Game Semantical” Intuitionistic Realizability
Validating Markov’s Principle
Federico Aschieri∗,1 and Margherita Zorzi†,2

1 Laboratoire de l’Informatique du Parallélisme (UMR 5668, CNRS, UCBL)
École Normale Supérieure de Lyon – Université de Lyon, France

2 Dipartimento di Informatica, Università di Verona, Italy

Abstract
We propose a very simple modification of Kreisel’s modified realizability in order to computa-
tionally realize Markov’s Principle in the context of Heyting Arithmetic. Intuitively, realizers
correspond to arbitrary strategies in Hintikka-Tarski games, while in Kreisel’s realizability they
can only represent winning strategies. Our definition, however, does not employ directly game
semantical concepts and remains in the style of functional interpretations. As term calculus, we
employ a purely functional language, which is Gödel’s System T enriched with some syntactic
sugar.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Markov’s principle, intuitionistic realizability, Heyting arithmetic,
game semantics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.24

1 Introduction

1.1 Markov’s Argument
Given a recursive function f : N → N, if it is impossible that for every natural number n,
f(n) 6= 0, then there exists an n such that f(n) = 0. This classically true statement has
come to be universally known as Markov’s Principle, and was introduced by Markov in
the context of his theory of Constructive Recursive Mathematics (see e.g. [23]). Markov’s
original argument for it was simply the following: if it is not possible that for all n, f(n) 6= 0,
then by computing in sequence f(0), f(1), f(2), . . ., one will eventually hit a number n such
that f(n) = 0, which can be effectively recognized as a witness. For the rest of the paper
we shall consider the formalization of Markov’s principle in Heyting Arithmetic, that is the
axiom scheme

MP : ¬∀xNP → ∃xNP⊥

where P is a decidable predicate and P⊥ its negation.
Markov’s justification of his own principle is hardly satisfying from a constructive point

of view; the intuitionistic school of Brouwer, indeed, rejected it. It is true that, following

∗ This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR)
† Partially supported by LINTEL (Linear Techniques For The Analysis Of Languages), https://sites.

google.com/site/tolintel/

© Federico Aschieri and Margherita Zorzi;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 24–44

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.24
https://sites.google.com/site/tolintel/
https://sites.google.com/site/tolintel/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Aschieri and M. Zorzi 25

Markov’s argument, one can recursively realize MP using Kleene’s realizability interpreta-
tion [13], thus providing a computational interpretation of it. However, a Kleene realizer
just blindly searches for a witness of the conclusion, without even considering the possible
constructive content of a proof of the premise. In other terms, such a realizer does not
embody the meaningful transformation of a proof of ¬∀xNP into a proof of ∃xNP⊥ which is
demanded by the Brouwer-Heyting-Kolmogorov reading of logical constants [23]. However,
when added to Heyting Arithmetic, MP gives rise to a constructive system enjoying the
disjunction and the existential witness property [21] (if a disjunction is derivable, one of the
disjoint is derivable too, and if an existential statement is derivable, so it is one instance of
it). So a better interpretation of MP can and must be provided. In this article we shall try
to answer, in particular, to the following question: is it possible to realize Markov’s Principle
just using a functional language and a simple intuitionistic realizability?

1.2 Gödel’s Dialectica Interpretation

A much more refined constructive justification of Markov’s Principle was in fact introduced
by Gödel [10]. Indeed, the idea behind Gödel’s Dialectica Interpretation is so refined, that
it forms the basis for all subsequent constructive interpretations of MP [5, 11]. As pointed
out by Diller [6], a very satisfying constructive justification of MP is indeed hidden in the
Dialectica, and is the following. A formal proof of ¬∀xNP is a natural deduction of ⊥ from
the hypothesis ∀xNP . If we consider a normal form of this proof, we have actually a deduction
of ⊥ from finitely many instances P (t1), . . . , P (tn); so one of them must be false and we get
a ti such that P⊥(ti), and ti reduces to some numeral n. Thus, as required in the BHK
semantics, from any proof of the premise of Markov’s Principle one can effectively extract a
witness for the conclusion, without having to run a blindfold process.

More in detail, Gödel’s interpretation of implication allows one to describe a realizer of
the premise ¬∀xNP of MP as a functional mapping a witness for ∀xNP (essentially, something
void) into a possible counterexample to ∀xNP . If this counterexample works, one witness
∃xNP⊥, otherwise one has refuted the realizer of the premise of MP.

Gödel’s Dialectica is thus very interesting and, rather remarkably, allows to computation-
ally interpret any proof in Heyting Arithmetic plus MP with a term in a simple and purely
functional language, Gödel’s system T. However, in spite of its simple interpretation of MP,
the Dialectica is a rather involved translation, which burdens a lot the reading of implication,
making it particularly painful to unravel in presence of nested implications in the translated
formula, as it is often the case. It is also quite cumbersome to decorate natural deductions
with Gödel realizers. Is it really needed all this complication if one wants just to interpret
Markov’s Principle?

1.3 Kreisel’s Modified Realizability

Inspired by Gödel’s interpretation, Kreisel put forward his modified realizability [14, 15] as
a simplification of the Dialectica, which is actually equivalent to it in the case of formulas
without implications (Oliva [17]). In modified realizability, the familiar BHK reading of
implication is restored – which originates the main simplification – and the term assignment for
proofs can be taken as a pleasant intuitionistic Curry-Howard correspondence. Unfortunately,
Kreisel introduced modified realizability with the specific aim of showing that Markov’s
principle is not realizable in the syntactical model made by the terms of Gödel’s T. So one is
left with a very good intuitionistic realizability, which is not able to concretely realize MP.

TYPES 2013

26 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

1.4 Modified Realizability and Friedman’s Translation

The Friedman translation is a strikingly simple device introduced by Friedman [7] in order
to prove closure of intuitionistic systems S under Markov’s rule:

S ` ¬∀xNP =⇒ S ` ∃xN¬P

where P is any decidable quantifier free formula. While combining Friedman’s translation
with modified realizability allows to interpret any fixed instance of MP, the situation does not
improve too much because it is not possible to validate the full axiom scheme MP. In other
terms, if a proof contains more than one instance of MP, combining Friedman’s translation
with modified realizability is not enough to interpret it.

Indeed, one possible solution to this issue, due to Coquand-Hofmann [5], is to first make
Friedman’s translation more flexible by using a somewhat unusual forcing [3] and then
combining the result with modified realizability. We seek however a simpler and less ad hoc
modification of modified realizability.

1.5 Game Semantics and Functional Interpretations

What’s wrong with modified realizability? The problem is that it is not a refined game
semantics, which is really the framework needed to explain constructively classical principles
(see e.g. [4, 1]). Instead, the Dialectica is better suited to represent dialogues among players
– i.e. proofs and tests – which arise in classical game semantics.

The standard way to associate a game to an arithmetical formula A is to consider an
interaction between two players who debate A; the first player – usually called Eloise – tries
to show that it is true, while the second player – usually called Abelard – tries to show that
the formula is false. Thus, Eloise wins when true atomic formulas are on the board while
Abelard wins with false ones. In the case of formulas of the shape A∨B, ∃xNA, Eloise moves:
in the first case by choosing A or B and in the second case by choosing an instance A(n),
where n is intended to be a witness for the existential quantifier. In the case of formulas
of the shape A ∧B, ∀xNA, Abelard moves: in the first case by choosing A or B and in the
second case by choosing an instance A(n), where n is intended to be a counterexample to
the universal quantifier. This kind of game was introduced by Hintikka [12] and it is also
known as Tarski game.

As far as →-free formulas are concerned, modified realizability and Dialectica agree
(Oliva [17]): a realizer represents in both cases a winning strategy for Eloise, that is, a way
of selecting moves that allows Eloise to win every play, no matter how Abelard plays. But in
the case of formulas of the shape A→ B, according to modified realizability, Abelard should
give Eloise a winning strategy for A, and then the game for B is played; while according to
Dialectica, Abelard should give Eloise some strategy for A and then the game for B is played,
and either Eloise wins this game, or “temporarily” looses it, but still with the possibility of
winning the whole game if she manages to show that the strategy offered by Abelard was
not winning. This second way of formulating the game for → is much better, since the first
one is not concretely playable: how to establish effectively whether the strategy given by
Abelard to Eloise is winning? In the case of Dialectica, Abelard is given a chance to play the
game for the premise A without necessarily having to play in the best way possible, but just
at his best, as in real life games.

F. Aschieri and M. Zorzi 27

1.6 A Game Semantical Twist of Modified Realizability
The goal of the present paper is to tweak modified realizability in such a way that its
game semantical content is improved and made more similar to the one of Dialectica, while
retaining the simplicity and the appeal of Kreisel’s original definition. One should allow
realizers to be not only winning strategies, but arbitrary ones, thus allowing poor Abelard to
have more chances to play in the game for the formula A→ B. True realizers – among which
those extracted from proofs – should be winning strategies, but in the concept of realizability
should appear also weaker realizers, that is, arbitrary strategies.

1.7 Plan of the paper
In Section §2 the term calculus T in which realizers are written and the language of the
arithmetical theory HAω + MP are introduced. In Section §3 we give our definition of
realizability. In Section §4 an extensionality property of T is introduced and discussed as a
crucial tool for studying the realizer of the Markov’s Principle, defined in Section §5. Section
§6 is devoted to prove our main result, that every theorem of HAω + MP is realizable; also
the relationship between our notion of realizability and truth is discussed. Conclusions and
considerations about future works are in Section §7.

2 The Term Calculus

In this section we introduce the typed lambda calculus T in which realizers are written.
System T is obtained from Gödel’s T (see [8, 9]) by adding a new atomic type U and new
operations on it. The basic objects of T are numerals (S . . . S0), booleans (True, False) and
its basic computational constructs are primitive recursion at all types (R), if-then-else (if),
pairs, as in Gödel’s T. Terms of the form ifA t1 t2 t3 will be sometimes written in the far more
legible form if t1 then t2 else t3. T , which is formally described in Figure 1, also includes:

two denumerable sets of constants of type U, namely >0,>1,>2, . . . and ⊥0,⊥1,⊥2, . . .;
two constants tt and ff of type N→ U: they transform numerals n into, respectively, the
constants >n and ⊥n; these are also the only constructs of the system that can generate
constants of type U;
the constant quote of type U → N: quote takes as argument any constant >n or ⊥n
and transform it into the numeral n. In other terms, quote takes a constant of type U
and returns its Gödel number, which is its position in the enumeration. However – and
this will be crucial in the following! – quote is not able to tell from which enumeration
its argument comes from and it just returns its position n, which may thus refer to
the ordering >0,>1,>2, . . . as well as the ordering ⊥0,⊥1,⊥2, Therefore, quote is
partially blind with respect to constants of type U: of its argument >n or ⊥n, it sees only
something like ?n – i.e. the index n.

These non-standard features of T notwithstanding, the type U and all the constants
tt , ff , quote are just syntactic sugar. Indeed, the type U can be encoded in Gödel’s T as

Bool× N; then >n and ⊥n can be encoded respectively as 〈True, n〉 and 〈False, n〉; tt and
ff can be encoded respectively as λxN 〈True, x〉 and λxN 〈False, x〉, and quote as the term
λxBool×N π1(x). The typing rules for tt , ff , quote fully agree with the above encodings. So
its clear that T is still a purely functional language; however, in order to be able to reason
about it in a more refined way, we have found necessary to add the new type and constants
as primitive constructs.

TYPES 2013

28 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

Types

σ, τ ::= N | Bool | U | σ → τ | σ × τ

Constants
>0,>1,>2, . . .

⊥0,⊥1,⊥2, . . .

c ::= Rτ | ifτ | 0 | S | True | False |>i (i ∈ N) |⊥i (i ∈ N) | tt | ff | quote
Terms

t, u ::= c | xτ | tu | λxτu | 〈t, u〉 | π0u | π1u

Typing Rules for Variables and Constants

xτ : τ | 0 : N | S : N→ N | True : Bool | False : Bool |

>i : U for every i ∈ N | ⊥i : U for every i ∈ N
tt : N→ U | ff : N→ U | quote : U→ N

ifτ : Bool→ τ → τ → τ | Rτ : τ → (N→ (τ → τ))→ N→ τ

Typing Rules for Composed Terms
t : σ → τ u : σ

tu : τ
u : τ

λxσu : σ → τ
u : σ t : τ
〈u, t〉 : σ × τ

u : τ0 × τ1
i ∈ {0, 1}πiu : τi

Reduction Rules All the usual reduction rules for simply typed lambda calculus (see Girard [8]) plus the
rules for recursion, if-then-else and projections

Rτuv0 7→ u RτuvS(t) 7→ vt(Rτuvt) ifτ Trueu v 7→ u ifτ Falseu v 7→ v πi〈u0, u1〉 7→ ui, i = 0, 1

plus the following ones, assuming n be a numeral:

tt n 7→ >n ff n 7→ ⊥n
quote>m → m quote⊥m → m

Figure 1 The extension T of Gödel’s system T.

It is easy provable that T is strongly normalizing and has the uniqueness-of-normal-form
property:

I Theorem 1 (Strong Normalization and Weak Church-Rosser). The system T enjoys strong
normalization and weak-Church-Rosser (uniqueness of normal forms) for all closed terms of
atomic types N, Bool or U.

Proof. By the translation of T into T. J

The following normal form theorem for T also holds.

I Theorem 2 (Normal Form Property for T). Assume A is either an atomic type N, Bool,U or
a product type. Then any closed normal term t ∈ T of type A is: a numeral n : N, or a boolean
True, False : Bool, or a constant >i : U, or a constant ⊥i : U, or a pair 〈u, v〉 : B × C.

Proof. As in Lemma 5 in [2]. J

From now onwards, for every pair of terms t, u of System T , we shall write t = u if they
are the same term modulo the equality rules corresponding to the reduction rules of System
T (equivalently, if they have the same normal form).

Finally, we define two sets of terms:

>> := {t | t is a term of T and t = >i for some i ∈ N}

and
⊥⊥ := {t | t is a term of T and t = ⊥i for some i ∈ N} .

F. Aschieri and M. Zorzi 29

2.1 Language of HAω + MP
We now define the language of the arithmetical theory HAω + MP.

I Definition 3 (Language of HAω + MP). The language L of HAω + MP is defined as follows.
1. The terms of L are all t ∈ T .
2. The atomic formulas of L are all Q ∈ T such that Q : Bool.
3. The formulas of L are built from atomic formulas of L by the connectives ∨,∧,→ ∀,∃ as

usual, with quantifiers possibly ranging over variables xτ , yτ , zτ of arbitrary finite type τ
of T.

We denote with ⊥ the atomic formula False. With P⊥ we denote the complement of
the predicate P , that is, if P then False else True. If P is an atomic formula of L in the
free variables xτ1

1 , . . . , x
τn
n and t1 : τ1, . . . , tn : τn are terms of L, with P (t1, . . . , tn) we shall

denote the atomic formula P [t1/x1, . . . , tn/xn].

3 Realizability

For every formula A of L, we are now going to define what type |A| realizers of A must have.

I Definition 4 (Types for realizers). For each formula A of L we define a type |A| of T by
induction on A:

|P | = U if P is atomic |A ∧B| = |A| × |B| |A→ B| = |A| → |B|
|A ∨B| = Bool× (|A| × |B|) |∀xτA| = τ → |A| |∃xτA| = τ × |A|

We remark that any HAω term of type |A|, by definition, can be taken to represent an
arbitrary strategy for Eloise in the Hintikka-Tarski game for A. For example, a term

t : |∀xτA| = τ → |A|

takes a move u : τ by Abelard, corresponding to the game A[u/xτ], and gives Eloise the
strategy tu to follow for the continuation. A term

t : |∃xτA| = τ × |A|

gives Eloise a move to play, π0t = u, and a strategy π1t for continuing the game A[u/xτ].
For precise definitions of Hintikka-Tarski games and strategies we refer to [1]. In this paper,
however, we do not need to examine these concepts in further detail, because game semantical
notions will be just used as guidelines to understand intuitively the realizability that we are
going to introduce.

Let now p0 := π0 : σ0 × (σ1 × σ2) → σ0, p1 := π0π1 : σ0 × (σ1 × σ2) → σ1 and
p2 := π1π1 : σ0 × (σ1 × σ2)→ σ2 be the three canonical projections from σ0 × (σ1 × σ2).

We define the realizability relation t F , where t ∈ T and F is a formula:

I Definition 5 (Realizability). For each closed formula F and closed term t : |F | of System
T , we define a relation t F of HAω by induction on F as follows:
1. t Q if and only if (Q = True and t ∈ >>) or (Q = False and t ∈ ⊥⊥) for Q atomic

formula;
2. t A ∧B if and only if π0t A and π1t B;
3. t A ∨B if and only if p0t = True and p1t A or p0t = False and p2t B;
4. t A→ B if and only if for all u, if u A, then tu B;
5. t ∃xτA if and only if π0t = u for u : τ closed term of HAω and π1t A[u/x];
6. t ∀xτA if and only if for all closed term u : τ of HAω, tu A[u/x].

TYPES 2013

30 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

We remark that the clauses 2–6 of our realizability relation coincide exactly with those
of modified realizability for the corresponding formulas. Our definition tweaks modified
realizability in two other ways. Firstly, instead of considering Gödel’s T as canonical term
model, we take T . Secondly, we modify in a crucial way the realizability condition for atomic
formulas. In modified realizability P is realizable by any term if it is true, while not realizable
if it is false; in our case, a realizer of P is a term which just computes the truth value of P
and returns it under the form of a constant belonging to >> or to ⊥⊥.

In game semantical language, a realizer of P just determines the outcome of the Hintikka-
Tarski game for P , returning a constant belonging to >> or to ⊥⊥ according as to whether
Eloise or Abelard wins. The intuition is that, as anticipated in the introduction, we want
arbitrary strategies to realize formulas. This forces atomic formulas to be realizable regardless
of their truth value, and we just need the truth value to be reflected by realizers. Of course,
realizer coming from proofs will have an extra condition that will prevent them from realizing
false formulas, as we shall soon see. We shall also show that any closed formula of HAω

is realizable: any strategy t for A can be mapped into a realizer tA of A which follows
the strategy t. All that implies a crucial change in the meaning with respect to modified
realizability also for implication. Since arbitrary strategies can be turned into realizers, a
realizer of A→ B will map not only winning strategies for A into winning strategies for B,
but also realizers/arbitrary-strategies for A into realizers/arbitrary-strategies for B.

I Definition 6 (Translation of Arbitrary Strategies). Let A be any formula and t : |A| any
term of HAω containing all the free variables of A. We define by induction on A a term tA of
T with free variables containing those of A:

If P is atomic, then
tP := if P then >0 else ⊥0

tA∧B := 〈(π0t)A, (π1t)B〉 tA∨B := 〈p0t, (p1t)A, (p2t)B〉 tA→B := λx|A|. (tx)B
t∀xτA := λxτ . (tx)A t∃xτA := 〈π0t, (π1t)A[π0t/xτ]〉

where x is fresh.

I Proposition 7 (Arbitrary Strategies and Realizability). Let A be any closed formula and
t : |A| any closed term of HAω. Then

tA A

Proof. We proceed by induction on A. We cover only few representative cases, the others
being similar.

1. A = P , with P atomic. Then

tP := if P then >0 else ⊥0

Now, if P = True, then tP = >0 ∈ >>, so tP P ; if P = False, then tP = ⊥0 ∈ ⊥⊥, so
tP P .

2. A = B → C. Then
tA := λx|B|. (tx)C

Now, suppose u B. We have to show tAu C. But it is easy to see that

tAu = (tx)C [u/x] = (tu)C

and by inductive hypothesis (tu)C C. We thus conclude by Lemma 9 that tA A.

F. Aschieri and M. Zorzi 31

3. A = ∃xτB. Then
tA := 〈π0t, (π1t)B[π0t/xτ]〉

Since by inductive hypothesis

(π1t)B[π0t/xτ] B[π0t/x
τ]

we conclude by Lemma 9 that tA A.
J

In the following, we will focus on a particular class of terms, called proof-like. These are
the terms that are extracted from the actual proofs, and that neither contain any constant
from the set ⊥⊥ nor have the possibility of generating them with a constant ff .

I Definition 8 (Proof-like Terms). A proof-like term is a term t of T which does not contain
constants of the form ⊥i (i ∈ N) or ff .

In the following, the “true” realizers will be proof-like terms. They actually represent
winning strategies, that is, they carry sound constructive information about the formula they
realize.

The concept of proof-like realizer is also crucial to determine a meaningful interaction
between strategies in the definition of realizability for implication. For instance, suppose that
some proof-like term t realizes a formula A→ B, where for simplicity A and B are →-free.
Let u be a realizer of A. Then tu must realize B. Since tu is not necessarily proof-like, tu
may not represent a winning strategy for B. For example, assume B = ∀xN ∃yN P (x, y); then
there could be a numeral n such that if we let m = π0(tun), then P (n,m) = False. n is a
test that refutes the realizer tu, when seen as a strategy for B. Now, the term π1(tun), which
realizes P (n,m), must reduce to a constant in ⊥⊥. Since t is proof-like, such a constant must
be produced by the term u in the reduction of π1(tun); namely, a test must be produced that
refutes u as well, when seen a strategy. For example, if A = ∃xN ∀yNQ(x, y), in the reduction
of π1(tun), π1u must be applied to some numeral j such that π0u = i and Q(i, j) = False.
In that case, a constant in ⊥⊥ is produced, and it may actually be the constant which is the
normal form of π1(tun).

We point out that this behaviour of realizers of implications is analogous to that of terms
witnessing the Dialectica interpretation of implications.

The next Lemma tells that realizability respects the notion of equality of T terms: if two
terms can be proved equal in T , then then they realize the same formulas.

I Lemma 9. If t1 = t2 and u1 = u2 are valid in T , then t1 A[u1/x] if and only if
t2 A[u2/x] for each formula A.

Proof. By induction on the formula A. J

4 Extensionality

Proving that Markov’s Principle is realizable by a proof-like term is by no means trivial. The
goal of this section is to introduce a key tool that will let us describe an important kind
of extensionality property of System T . Afterwards, we shall be able to reason in a more
sophisticated way about terms of T , and in particular about the realizer of MP that we shall
propose.

A basic feature of typed functional lambda calculi is extensionality: in concrete computa-
tions, there is no way to discriminate syntactically different terms if, denotationally, they

TYPES 2013

32 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

represent the same function. For example, suppose t and u are two terms of T of type N2 → N
implementing in different way the addition function. For instance, t may perform recursion
on the first argument and u on the second. The two terms represent the same function, but
they are syntactically different normal forms. Nevertheless, any term Ψ : (N2 → N)→ N of T
will not be able to discriminate t and u: Ψt and Ψu will convert to the same numeral.

Another characteristic of typed lambda calculi is the impossibility of distinguishing
different mute constants, which are the constants whose associated reduction rules cannot
leak any information about their shape. If we take a term t and permute its mute constants
obtaining t′, the normal form of t′ can be obtained from the normal form of t by the same
permutation of constants. To put it differently, mute constants can be moved around and
duplicated inside a term, but they have no influence whatsoever on the evolution of the
computation. Now, while the constants True, False,S, 0 can be discriminated (by if and
R), the constants of the form >n,⊥n do not. They are not completely mute since their
indexes can be recognized by quote , but their main form (⊥,>) cannot be determined by
any reduction rule.

All these considerations lead us to the concept of extensionality modulo a relation R over
the base type U. Here, R relates terms which should be regarded as almost, or observationally,
equal. If we take the usual definition of extensionality and, instead of fixing it to be equality
at type U, we let it to be R, we determine a more flexible concept of extensionality, relating
objects which can well be different, but cannot be computationally distinguished. Now, let
us consider any reflexive binary relation R between closed terms of type U of T . R is said
to be saturated with respect to equality if for every t1, t2, u1, u2, if t1R t2 and t1 = u1 and
t2 = u2, then u1Ru2.

I Definition 10 (Extensionality Modulo a Relation). Let t and u two closed terms of T of
type ρ and R a reflexive relation between closed terms of type U of T saturated with respect
to equality. We define the extensionality relation t ∼R u by induction on the type ρ:

If ρ = U, then t ∼R u if and only if tRu;
If ρ = N, then t ∼R u if and only if t = u;
If ρ = Bool, then t ∼R u if and only if t = u;
If ρ = τ → σ, then t ∼R u if and only if ∀v : τ ∀w : τ. v ∼R w implies tv ∼R uw;
If ρ = τ × σ, then t ∼R u if and only if π0t ∼R π0u and π1t ∼R π1u.

Intuitively, a closed term t of T is extensional modulo R if t ∼R t. Let us now prove that
the relation ∼R as well is saturated with respect to equality.

I Lemma 11. Given u1, u2, t1, t2 closed terms of T of type σ, suppose u1 = t1, u2 = t2 and
u1 ∼R u2. Then t1 ∼R t2.

Proof. By induction on the type σ.
σ = U: the thesis follows by saturation of the relation R.
σ = N or ρ = Bool: by Definition 10, u1 = u2, so t1 = t2 and we conclude t1 ∼R t2.
σ = ρ → τ . Let us consider any pair of terms r : ρ and s : ρ such that r ∼R s. By
Definition 10 of the extensionality relation and by the fact that u1 ∼R u2, it holds that
u1r ∼R u2s. Now, we can apply the inductive hypothesis to the type τ of the terms u1r

and u2s: since u1r = t1r and u2s = t2s, we have t1r ∼R t2s. Therefore, by Definition 10,
t1 ∼R t2.
σ = ρ × τ . By Definition 10, u1 ∼R u2 implies that π0u1 ∼R π0u2 and π1u1 ∼R π1u2.
Since π0u1 = π0t1, π0u2 = π0t2, π1u1 = π1t1, π1u2 = π1t2, by applying the inductive
hypothesis on the types ρ and τ one has that π0t1 ∼R π0t2 and π1t1 ∼R π1t2. Thus, by
Definition 10, t1 ∼R t2. J

F. Aschieri and M. Zorzi 33

The following proposition says that any closed term of T in which quote does not occur,
is extensional modulo R, where R is any reflexive binary relation between terms. The proof
of the extensionality of the constant quote requires instead the definition of a particular
relation R and will be formalized in Lemma 14. Since ∼R can be seen as a logical relation,
in the sense of Plotkin, our proposition can be seen as yet another incarnation of the usual
Fundamental Theorem of logical relations (see e.g. [16]).

I Proposition 12 (Extensionality). Let t be a term of T with free variables among x1, . . . , xk
and assume that the constant quote does not occur in t. If u1, . . . , uk, v1, . . . , vk are closed
terms of T such that u1 ∼R v1, . . . , uk ∼R vk, then t[u1/x1 . . . uk/xk] ∼R t[v1/x1 . . . vk/xk].

Proof. By induction on the structure of t.
1. t is a variable xi for some i ∈ [1, k]. Trivially, xi[u1/x1 . . . uk/xk] = ui ∼R vi =

xi[v1/x1 . . . vk/xk].
2. t is an application t1t2. Suppose t1 : τ → σ and t2 : τ . By inductive hypothesis, one has

t1[u1/x1 . . . uk/xk] ∼R t1[v1/x1 . . . vk/xk] and t2[u1/x1 . . . uk/xk] ∼R t2[v1/x1 . . . vk/xk].
By Definition 10 of the extensionality relation

t1[u1/x1 . . . uk/xk]t2[u1/x1 . . . uk/xk] ∼R t1[v1/x1 . . . vk/xk]t2[v1/x1 . . . vk/xk]

which is to say
t1t2[u1/x1 . . . uk/xk] ∼R t1t2[v1/x1 . . . vk/xk] .

3. t is λzσw. Let us consider any two terms r1, r2 of type σ such that r1 ∼R r2. By inductive
hypothesis, it holds that

w[u1/x1 . . . uk/xk r1/z] ∼R w[v1/x1 . . . vk/xk r2/z] .

Since
(λzσw)[u1/x1 . . . uk/xk]r1 = w[u1/x1 . . . uk/xk r1/z]

(λzσw)[v1/x1 . . . vk/xk]r2 = w[v1/x1 . . . vk/xk r2/z]

by Lemma 11 we obtain

(λzσw)[u1/x1 . . . uk/xk]r1 ∼R (λzσw)[v1/x1 . . . vk/xk]r2

and thus the thesis.
4. t is a pair 〈t1, t2〉. Then, for i = 0, 1, by induction hypothesis

πi(t[u1/x1. . .uk/xk]) = ti[u1/x1 . . . uk/xk] ∼R ti[v1/x1 . . . vk/xk] = πi(t[v1/x1 . . . vk/xk])

and thus by Lemma 11 we obtain

πi(t[u1/x1 . . . uk/xk]) ∼R πi(t[v1/x1 . . . vk/xk])

and thus the thesis.

5. t is πiw, i = 0, 1. By inductive hypothesis,

w[u1/x1 . . . uk/xk] ∼R w[u1/x1 . . . uk/xk]

and by Definition 10 of extensionality we have the thesis.
6. t is a constant such as 0 : N, True : Bool, False : Bool: we conclude t ∼R t by

Definition 10.

TYPES 2013

34 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

7. t is the constant S : N→ N. Given two terms w1, w2 : N such that w1 ∼R w2, by definition
of extensionality relation, w1 = w2. Then clearly Sw1 ∼R Sw2 and we obtain the thesis
by Definition 10.

8. t is ⊥i, >i (i ∈ N): ⊥i ∼R ⊥i and >i ∼R >i follows by reflexivity of the relation R.
9. t is the constant tt : N → U. Let us consider two terms w1 and w2 of type N such that

w1 ∼R w2. By Definition 10, w1 = w2, i.e they have the same numeral, say m, as normal
form. Therefore, tt w1 = >m ∼R >m = tt w2 and, by Lemma 11 and definition of the
extensionality relation, tt ∼R tt .

10. t is the constant ff : as for the previous case.
11. t is the constant ifτ . Let us consider r1 : Bool, r2 : τ, r3 : τ and s1 : Bool, s2 : τ, s3 : τ

terms of T such that r1 ∼R s1, r2 ∼R s2 and r3 ∼R s3. We want to prove that
ifτ r1 r2 r3 ∼R ifτ s1 s2 s3. By Definition 10, r1 ∼R s1 implies that r1 = s1, i.e. r1 and s1
both reduces to either True or False.
There are two cases, according to the normal form of r1 and s1. If r1 = s1 = True,
then ifτ r1 r2 r3 = r2 ∼R s2 = ifτ s1 s2 s3 and the thesis follows by Lemma 11. If
r1 = s1 = False: symmetric to the previous case.

12. t is the constant Rτ . Let us consider r1, s1 : τ, r2, s2 : N → (τ → τ), r3, s3 : N terms of
T such that r1 ∼R s1, r2 ∼R s2 and r3 ∼R s3. We want to prove that Rτ r1 r2 r3 ∼R
Rτ s1 s2 s3. By Definition 10, r3 ∼R s3 implies that r3 = s3 and therefore r3 and
s3 reduce to the same numeral: we argue by induction on it. If r3 = s3 = 0, then
Rτ r1 r2 0 = r1 ∼R s1 = Rτ s1 s2 s3 and one can conclude by Lemma 11. If r3 = s3 = S(m),
then

Rτ r1 r2 r3 = Rτ r1 r2 S(m) = r2 m (Rτ r1 r2 m)

Rτ s1 s2 s3 = Rτ s1 s2 S(m) = s2 m (Rτ s1 s2 m)

By induction hypothesis Rτr1 r2 m ∼R Rτs1 s2 m and Definition 10, r2 m (Rτ r1 r2 m) ∼R
s2 m (Rτ s1 s2 m) and the thesis follows by Lemma 11.

J

I Corollary 13. Let t be any closed term of T . If quote ∼R quote , t ∼R t.

Proof. Clearly, for some fresh variable z : U, t = (t[z/ quote])[quote /z]. Thus, by Proposition
12 applied to t[z/ quote], we obtain t ∼R t. J

In Section 6 we will prove that every theorem in HAω + MP is realizable and in particular
that a proof-like realizer r of Markov’s Principle ¬∀xNP → ∃xNP⊥ can be defined. In this
case, the extensionality relation plays a crucial role. Our realizer r of Markov’s Principle will
have to map a realizer of ¬∀xNP into a realizer of ∃xNP⊥. In other words, given a realizer of
¬∀xNP , r must in some way extract from it either a counterexample for ∀xNP to be used as
a witness of ∃xNP⊥, or a constant in ⊥⊥, by which one can realize everything.

So let us examine a realizer of ∀xNP → ⊥. It takes as input a realizer of ∀xNP and returns
a realizer of ⊥. A tentative first plan to define r may thus be to construct a realizer of ∀xNP

in order to obtain a realizer of ⊥, that is, a constant in ⊥⊥. A realizer of ∀xNP is indeed easily
definable in T as follows:

testλx.P ::= λxN. if P then tt x else ff x

It behaves the expected way: when fed with a numeral m it evaluates P [m/x] yielding >m if
P [m/x] = True and ⊥m if P [m/x] = False.

Thus we are done... aren’t we? Unfortunately, no. Clearly, testλx.P is not proof-like,
since it contains the subterm ff and so it may evaluate to ⊥i for some numeral i. As previously

F. Aschieri and M. Zorzi 35

said, only proof-like terms will be considered realizers/winning strategies and r is forbidden
to contain a term such as testλx.P .

We have thus to formulate a new plan for constructing r. The idea is to use extensionality.
We want to alter testλx.P in such a way that it behaves extensionally as before but at the
same time it is proof-like! With that in mind, we modify the term testλx.P like this:

mtestλx.P ::= λxN.if P then tt x else tt x

While that may appear like a crazy attempt, it works. The term mtestλx.P is indeed
proof-like, and differs from testλx.P only for the fact that it returns a constant in >> also
when P [m/x] is false. That would be a great difference in another situation, but here it
is not the case: testλx.P and mtestλx.P are equal up to a subterm of the form tt x or ff x,
which yields mute constants – constants that cannot be discriminated by any term in T . In
other words, mtestλx.P behaves observationally, i.e. extensionally, like testλx.P , provided
the relation R is suitable chosen.

In order to prove that mtestλx.P ∼R testλx.P , R will be defined to hold either on pairs
of equal terms (and this captures the case in which the evaluation of P on the given input
n yields True and both mtestλx.P and testλx.P evaluates to tt n) or on pair of discordant
constants (>k,⊥k), where the index k is a numeral such that P [k/x] = False. These
constants are considered to be “equal” by the terms of our system and their index k is a
counterexample to the formula ∀xNP and therefore a correct witness for ∃xNP⊥. Notice
that k can be extracted both from >k and ⊥k by the constant quote , which is not able to
produce any information about the argument but the index itself. The same constant quote
is extensional modulo the relation R just introduced. All these notions are formalized in the
following lemma:

I Lemma 14 (Test Equivalence). Let us consider the terms mtestλx.P and testλx.P defined
above and the saturated-with-respect-to-equality relation

R ::= {(t1, t2) | t1 = t2 or (t1 = >k, t2 = ⊥k and P [k/x] = False for some numeral k)}

where we assume that the only free variable of P is x. Then:
1. mtestλx.P ∼R testλx.P
2. quote ∼R quote

Proof.

1. Let us consider two closed term s : N and r : N such that s ∼R r. By Theorem 2 and by
Definition 10, s and r reduce to the same numeral, say n : N. We want to prove that
mtestλx.P n ∼R testλx.P n.
Two cases occur:

P [n/x] = True. Then mtestλx.P n = tt n = >n = tt n = testλx.P n. By definition of
R, mtestλx.P n R testλx.P n, which is to say mtestλx.P n ∼R testλx.P n.
P [n/x] = False. Then

mtestλx.P n = tt n = >n ∼R ⊥n = ff n = testλx.P n

Therefore, by Lemma 11 mtestλx.P n ∼R testλx.P n.

Finally, by Definition 10 and Lemma 11, one can conclude mtestλx.P ∼R testλx.P .

TYPES 2013

36 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

2. Let us consider two terms u1 and u2 of type U such that u1 ∼R u2. By Theorem 2 and
by Definition 10:

either u1 = u2, and clearly quoteu1 = quoteu2 and, by Definition 10, quoteu1 ∼R
quoteu2;
or u1 = >k, u2 = ⊥k for some k and P [k/x] = False. Also in this case quoteu1 =
quoteu2 = k and, by Definition 10, quoteu1 ∼R quoteu2.

Finally, by Definition 10 and Lemma 11, one can conclude quote ∼R quote . J

5 A Realizer of Markov’s Principle

We are now ready to define the realizer r of Markov’s Principle. r takes as argument a
realizer z of ¬∀xNP and we want r to pass the term mtestλx.P as argument to z. Of course,
mtestλx.P is not a realizer of ∀xNP , which is required in order to obtain with certitude a
realizer of ⊥ from z. However, it is extensionally equal to the realizer testλx.P , which is
enough. Now, let us consider zmtestλx.P . The informal reasoning is the following (for a
detailed argument see the proof of the Adequacy Theorem 15 or come back after having
read it for intuitive explanations of the formal details). zmtestλx.P is extensionally equal
to z testλx.P , for R chosen as in Lemma 14, and z testλx.P must normalize to a constant
in ⊥⊥, say ⊥k. That constant is ultimately generated either by testλx.P or already by z.
In this latter case, also zmtestλx.P will be able to produce ⊥k, and we are done, we can
realize everything. In the former case, zmtestλx.P should reduce to >k, with k witness for
∃xNP⊥, because zmtestλx.P R z testλx.P ; then k can be extracted by quote applied to
zmtestλx.P .

For those reasons, we are lead to define r as:

λz(N→U)→U〈 quote (zmtestλx.P), if P⊥[quote (zmtestλx.P)/x] then tt 0 else z(mtestλx.P)〉

r just tests whether the numeral k = quote (zmtestλx.P) is a witness for ∃xNP⊥; if it is the
case, then tt 0 = >0 realizes P⊥[k/x], otherwise zmtestλx.P realizes ⊥ and thus P⊥[k/x].

5.1 Curry-Howard Correspondence for HAω + MP
In Figure 2, we define a standard natural deduction system for HAω + MP (see [19], for
example) together with a term assignment in the spirit of Curry-Howard correspondence for
intuitionistic logic.

We replace purely universal axioms (i.e., Π0
1-axioms) with sound Post rules, which are

inferences of the form

Γ ` A1 Γ ` A2 · · · Γ ` An
Γ ` A

where A1, . . . , An, A are atomic formulas of T such that for every substitution

σ = [t1/x1, . . . , tk/xk]

of closed terms t1, . . . , tk of T , A1σ = . . . = Anσ = True implies Aσ = True. Any other
axiomatic presentation of HAω would have worked just fine, but Post rules allows to define
in a uniform way a more flexible deduction system, which is very useful when coding actual

F. Aschieri and M. Zorzi 37

Contexts With Γ we denote contexts of the form x1 : A1, . . . , xn : An, with x1, . . . , xn proof variables
and A1, . . . , An formulas of T .

Axioms Γ, x : A ` x|A| : A

Conjunction Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` π0u : A

Γ ` u : A ∧B
Γ ` π1u : B

Implication Γ ` u : A→ B Γ ` t : A
Γ ` ut : B

Γ, x : A ` u : B
Γ ` λx|A|u : A→ B

Disjunction Intro. Γ ` u : A
Γ ` 〈True, u, d|B|〉 : A ∨B

Γ ` u : A
Γ ` 〈False, d|A|, u〉 : A ∨B

Disjunction Elim. Γ ` u : A ∨B Γ ` w1 : A→ C Γ ` w2 : B → C
Γ ` if p0u then w1(p1u) else w2(p2u) : C

Universal Quantification Γ ` u : ∀ατA
Γ ` ut : A[t/ατ]

Γ ` u : A
Γ ` λατu : ∀ατA

where t is a term of T and αN does not occur free in any formula B occurring in Γ.

Existential Quantification Γ ` u : A[t/ατ]
Γ ` 〈t, u〉 : ∃ατ .A

Γ ` u : ∃ατ .A Γ ` t : ∀ατ . A→ C
Γ ` t(π0u)(π1u) : C

where ατ is not free in C.

Induction Γ ` u : A(0) Γ ` v : ∀αN.A(α)→ A(S(α))
Γ ` λαNRuvα : ∀αNA

Booleans Γ ` u : A(True) Γ ` v : A(False)
Γ ` λαBool if x then u else v : ∀αBoolA

Post Rules Γ ` u1 : A1 Γ ` u2 : A2 · · · Γ ` un : An
Γ ` if A then tt 0 else if A⊥

1 then u1 else . . . if A⊥
n then un else tt 0 : A

where n > 0 and A1, A2, . . . , An, A are atomic formulas and the rule is a sound Post rule.

Post Rules with no Premises Γ ` tt 0 : A
where A is an atomic formula of T and an axiom of equality or a classical propositional tautology.

MP Γ ` r : ¬∀xNP → ∃xNP⊥

where r = λz(N→U)→U〈 quote (zmtestλx.P), if P⊥[quote (zmtestλx.P)/x] then tt 0 else zmtestλx.P 〉

Figure 2 Terms Assignment Rules for HAω + MP.

mathematical proofs. Let now eq : N2 → Bool a term of Gödel’s system T representing
equality between natural numbers. Among the Post rules, we have the Peano axioms

Γ ` eq S(x) S(y)
Γ ` eq x y

Γ ` eq 0 S(x)
Γ ` ⊥

and axioms of equality

Γ ` eq xx
Γ ` eqx y Γ ` eq y z

Γ ` eq x z
Γ ` A(x) Γ ` eqx y

Γ ` A(y)

TYPES 2013

38 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

and for every A1, A2 such that A1 = A2 is an equation of system T (equivalently, A1, A2
have the same normal form in T), we have the rule

Γ ` A1
Γ ` A2

.

We also have a Post rule

Γ ` A1 Γ ` A2 · · · Γ ` An
Γ ` A

for every classical propositional tautology A1 → . . . → An → A, where for i = 1, . . . , n,
Ai, A are atomic formulas obtained as combination of other atomic formulas by the Gödel’s
system T closed terms representing boolean connectives. For example, given terms ⇒Bool

,∧Bool,∨Bool : Bool → Bool → Bool . . . representing boolean connectives, one can form,
out of atomic formulas A and B, the atomic formulas ⇒Bool AB and ∧BoolAB. Using infix
notations, we have for example the rules

Γ ` ⊥
Γ ` P ,

Γ ` B
Γ ` A⇒Bool B

,
Γ ` A ∧Bool B

Γ ` A .

Finally, we have a rule of case reasoning for booleans. For any formula A(αBool) he have the
axiom:

Γ ` A(True) Γ ` A(False)
Γ ` ∀αBoolA

.

We remark that some of the Post rules, for example many of those for eq, are derivable
from others. We remark that the negations ⊥ and ¬, and the disjunctions ∨Bool and ∨
have the same meaning but they are syntactically different: for every atomic formula P ,
we consider P⊥ and P ∨Bool P

⊥ as atomic formulas, while ¬P and P ∨ P⊥ as compound
formulas. But one can show that, for every atomic formula P , HAω ` P⊥ ↔ ¬P : it is enough
to derive HAω ` True⊥ ↔ ¬True and HAω ` False⊥ ↔ ¬False, then use the rule of case
reasoning for booleans to obtain HAω ` ∀αBoolα⊥ ↔ ¬α and conclude with the elimination
of ∀ applied to P . We can derive HAω ` True⊥ → ¬True as follows:

True⊥, True ` True⊥ = if True then False else True
True⊥, True ` False

True⊥ ` True→ False = ¬True
and HAω ` ¬True→ True⊥ as follows:

¬True ` ¬True ¬True ` True
¬True ` False

¬True ` True⊥ = if True then False else True

HAω ` False⊥ ↔ ¬False can be derived even more easily, since ¬False = False→ False
is derivable and

` True
` False⊥ = if False then False else True

Moreover, P ∨Bool P
⊥ is an axiom, while we may derive HAω ` P ∨ P⊥ again by case

reasoning for booleans.
If τ is any type of T , we denote with dτ a dummy term of type τ , defined by dN = 0,

dBool = False, dU = >0, dσ→ρ = λzσ.dρ (with zσ any variable of type σ), dσ×ρ = 〈dσ, dρ〉.

F. Aschieri and M. Zorzi 39

6 Main Results

6.1 The Adequacy Theorem
We now prove our main result, namely, that every theorem of HAω + MP is realizable by a
proof-like term. This derives as an easy corollary from the Adequacy Theorem 15. In the
Adequacy Theorem we will exploit the extensionality relation defined in Section 4.

As usual in adequacy proofs for realizability, we prove a stronger version of the theorem,
suitable to be proved by induction.

I Theorem 15 (Adequacy). Assume that Γ ` w : A in HAω + MP, with Γ = x1 : A1, . . . , xn :
An and suppose that all the free variables occurring in Γ and w : A are among α1 : τ1, . . . , αk :
τk. For any choice of closed terms r1 : τ1, . . . , rk : τk of system T , if there are terms t1, . . . , tn
such that, for i = 1, . . . , n

ti Ai[r1/α1, . . . , rk/αk]

then
w[t1/x|A1|

1 , . . . , tn/x
|An|
n , r1/α1, . . . , rk/αk] A[r1/α1, . . . , rk/αk] .

Proof.
I Notation 1. For any term v and formula B, we denote v[t1/x|A1|

1 · · ·tn/x|An|n r1/α1· · ·rk/αk]
with v and B[r1/α1 · · · rk/αk] with B. We have |B| = |B| for all formulas B.
We proceed by induction on the derivation of Γ ` w : A. Let r be the last rule applied in the
derivation.
1. r is an axiom for variables. For some i, w = x

|Ai|
i and A = Ai. So w = ti Ai = A.

2. r is the ∧I rule, then w = 〈u, t〉, A = B ∧ C, Γ ` u : B and Γ ` t : C. Therefore,
w = 〈u, t〉. By induction hypothesis, π0w = u B and π1w = t C; so, by Lemma 9,
w B ∧ C = A.

3. r is a ∧E rule, say left, then Γ ` u : A ∧ B, w = π0u. Since u A ∧ B by induction
hypothesis, if w = π0u we can conclude w A.

4. r is the → E rule, then Γ ` u : B → A and Γ ` t : B w = ut, . So w = ut A, for
u B → A and t B by induction hypothesis.

5. r is the → I rule, then w = λx|B|u, A = B → C and Γ, x : B ` u : C. Suppose now that
t B; we have to prove that wt C. By induction hypothesis on u, u C. One has

wt = (λx|B|u)[t1/x|A1|
1 · · · tn/x|An|n r1/α1 · · · rk/αk]t

= (λx|B|u)t[t1/x|A1|
1 · · · tn/x|An|n r1/α1 · · · rk/αk]

= u[t/x|B|][t1/x|A1|
1 · · · tn/x|An|n r1/α1 · · · rk/αk]

= u .

Then since u = wt, by Lemma 9, wt C.
6. r is a ∨I rule, say left (the other case is symmetric), then w = 〈True, u, d|C|〉, A = B ∨C

and Γ ` u : B. So, w = 〈True, u, d|C|〉 and hence π0w[s] = True. u B follows with the
help of induction hypothesis.

7. r is a ∨E rule, then

w = if p0u then w1(p1u) else w2(p2u)

and Γ ` u : B ∨ C, Γ ` w1 : B → A, Γ ` w2 : C → A.
Assume p0u = π0u = True. By inductive hypothesis u B ∨ C, w1 B → A and
w2 C → A. Therefore, p1u B. Hence w = w1(p1u).

TYPES 2013

40 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

Since w1 B → A and p1u B, by definition of realizability, w1(p1u) A. By
w = w1((p1u)) and Lemma 9, also w A.
Symmetrically, if p0u = False, we obtain again w A.

8. r is the ∀E rule, then w = ut, A = B[t/ατ] and Γ ` u : ∀ατB. So, w = ut. By inductive
hypothesis u ∀ατB and so we can conclude that ut B[t/ατ].

9. r is the ∀I rule, then w = λατu, A = ∀ατB and Γ ` u : B (with ατ not occurring free
in the formulas of Γ). So, w = λατu, since α 6= α1, . . . , αk. Let t : τ be a closed term
of HAω; by Lemma 9, it is enough to prove that wt = u[t/ατ], u[t/ατ] B[t/ατ], which
amounts to show that the induction hypothesis can be applied to u. We observe that,
since α 6= α1, . . . , αk, for i = 1, . . . , n we have

ti Ai = Ai[t/ατ] .

10. r is the ∃E rule, then w = t(π0u)(π1u), Γ ` t : ∀ατ : B → C and Γ ` u : ∃ατ .B.
By inductive hypothesis u ∃αN.B, π0u = v for v term in HAω and hence π1u B[v/ατ].
Then

tv(π1u) C[v/ατ] = C .

We thus obtain by w = t(π0u)(π1u) and by Lemma 9 that w C.
11. r is the ∃I rule, then w = 〈t, u〉, A = ∃ατB, Γ ` u : B[t/ατ]. So, w = 〈t, u〉; and, indeed,

π1w = u B[t/ατ] by induction hypothesis. By Lemma 9 we conclude the thesis.
12. r is the induction rule. Therefore w = λαNRuvα, A = ∀αNB, Γ ` u : B(0) and

Γ ` v : ∀αN.B(α)→ B(S(α)). So, w = λαNRuvα.
We have to prove that wu B[n/α] for all closed term u of type N.
Let n be the normal form of u: by Lemma 2 n is a numeral. A plain induction shows that

wn = Ruvn B[n/α]

for u B(0) and vi B(i)→ B(S(i)) for all numerals i by induction hypothesis. If we
set i = n, the thesis follows by Lemma 9 and wu = wn.

13. r is the rule for booleans, then w = λαBool if α then u else v, Γ ` u : B(True), Γ ` v :
B(False) and A = ∀αBoolB. By inductive hypothesis, u B(True) and v B(False).
So, w = λαBoolif α then u else v. Let t : Bool be a closed term of HAω; by Lemma 9, it
is enough to prove that

wt = (if t then u else v) B[t/αBool] .

By Lemma 2, there are two cases:
the normal form of t is True. Then wt = (if True then u else v) reduces to u: the
thesis follows by Lemma 9 and the inductive hypothesis on u.
the normal form of t is False. Then wt reduces to v: the thesis follows by Lemma 9
and the inductive hypothesis on v.

14. r is a Post rule, then w = if A then tt 0 else if A⊥1 then u1 else . . . if A⊥n then un else tt 0.
By inductive hypothesis, for i = 1, . . . , n, ui Ai. There are two cases:

if A = True , then w = tt 0 = >0 ∈ >> and thus w A.
if A = False, then there exists j ∈ [1, n] such that Aj = False and uj ∈ ⊥⊥. Thus
w = uj and the thesis follows by Lemma 9 and the inductive hypothesis.

F. Aschieri and M. Zorzi 41

15. r is the MP axiom, then for some atomic formula Q

w = λz(N→U)→U〈 quote (zmtestλx.Q), if Q⊥[quote (zmtestλx.Q)/x] then tt 0 else zmtestλx.Q〉

and A = ¬∀xNQ → ∃xNQ⊥. Let u : (N → U) → U be a closed term of T such that
u (∀xNQ)→ ⊥. We have to prove that

wu = 〈 quote (umtestλx.Q), if Q⊥[quote (umtestλx.Q)/x] then tt 0 else umtestλx.Q〉 ∃xNQ⊥

By Theorem 2, assume quote (umtestλx.Q) = m, with m numeral. There are two cases:
m is a witness for ∃xNQ⊥, that is, Q⊥[m/x] = True. Then

π1(wu) = if Q⊥[m/x] then tt 0 else umtestλx.Q = >0 ∈ >>

and by Lemma 9 we can conclude wu ∃xNQ⊥.
m is not a witness for ∃xNQ⊥, that is, Q⊥[m/x] = False and

π1(wu) = if Q⊥[m/x] then tt 0 else umtestλx.Q = umtestλx.Q

In order to obtain the thesis, we have to prove that umtestλx.Q Q⊥[m/x]. We have
that testλx.Q ∀xNQ and so u testλx.Q ⊥. Therefore u testλx.Q = ⊥n, for some
numeral n. Let us define the saturated relation R defined as in Lemma 14

R ::= {(t1, t2) | t1 = t2 or (t1 = >i, t2 = ⊥i and Q[i/x] = False for some i)}

By the Test Equivalence Lemma 14, mtestλx.Q ∼R testλx.Q, quote ∼R quote ;
therefore, by Corollary 13, u ∼R u and by Definition 10, umtestλx.Q ∼R u testλx.Q,
which implies umtestλx.Q R u testλx.Q. Now, u testλx.Q = ⊥n and it cannot be that
umtestλx.Q = >n, because by assumption quote (umtestλx.Q) = m and we would
thus have m = n, with again by assumption

Q[m/x] = True

By definition of R, this forces umtestλx.Q = u testλx.Q. Therefore, umtestλx.Q ∈ ⊥⊥.
We conclude that umtestλx.Q Q⊥[m/x].

J

Since all the terms decorating the inference rules of HAω + MP are proof-like, as an easy
corollary of Theorem 15 we obtain the main theorem:

I Theorem 16. If A is a closed formula and HAω + MP ` t : A, then t A, with t proof-like
term of T .

6.2 Realizability and Truth
We now want to investigate the relationship between realizability and truth. We have already
seen in Proposition 7 that any formula is realizable. Here, we want to show that our notion
of realizability is consistent at least when realizers come from proofs in HAω + MP: whenever
a formula not containing → is realized by a proof-like term, it is also true, for a suitable
notion of truth. Intuitively, we consider a formula of HAω to hold if it is true in the canonical
syntactical model in which quantifiers of type τ range over the closed terms of HAω of type τ .
In particular, the truth of arithmetical formulas is exactly the standard arithmetical truth
over N. We now give the obvious definition.

TYPES 2013

42 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

I Definition 17 (Truth in the Syntactical Model). Given a closed formula F of HAω, we define
by induction over F its truth value [[F]] ∈ {True, False}.

If P is atomic, [[P]] = True if P = True, [[P]] = False otherwise.
[[A ∧B]] = True if [[A]] = [[B]] = True, [[A ∧B]] = False otherwise.
[[A ∨B]] = True if [[A]] = True or [[B]] = True, [[A ∨B]] = False otherwise.
[[A→ B]] = True if [[A]] = True implies [[B]] = True, [[A→ B]] = False otherwise.
[[∀xτA]] = True if for all closed terms t : τ of HAω, [[A[t/x]]] = True, [[∀xτA]] = False
otherwise.
[[∃xτA]] = True if there exists a closed term t : τ of HAω such that [[A[t/xτ]]] = True,
[[∃xτA]] = False otherwise.

We are now ready show the consistency of our notion of realizability.

I Proposition 18 (Consistency of Realizability). Let F be a closed →-free formula and let t
be a proof-like term such that t F . Then [[F]] = True.

Proof. By induction on F .
1. F = P , with P atomic. Since t is proof-like, no term in the reduction tree of t can contain

a constant in ⊥⊥. Therefore, t /∈ ⊥⊥, and since t P , it must be that P = True.
2. F = A∧B. Since t A∧B, we have that π0t A and π1t B. By induction hypothesis,

[[A]] = True and [[B]] = True. Therefore, [[A ∧B]] = True.
3. F = A ∨B. Since t A ∨B, we have that p1t A or p2t B. By induction hypothesis,

[[A]] = True or [[B]] = True. Therefore, [[A ∨B]] = True.
4. F = ∀xτA. Since t ∀xτA, we have that for all closed terms u of HAω, tu A[u/xτ].

By induction hypothesis, for all closed terms u of HAω, [[A[u/xτ]]] = True. Therefore,
[[∀xτA]] = True.

5. F = ∃xτA. Since t ∃xτA, we have that for π0t = u for some closed term u of HAω, and
π1t A[u/xτ]. By induction hypothesis, [[A[u/xτ]]] = True. Therefore, [[∃xτA]] = True.

J

Proposition 18 is very important since ensure that proof-like realizers produce correct
constructive content for the formulas they realize. For instance, if t ∃xτA, then π0t = u

for some closed term u of HAω and [[A[u/x]]] = True. Thus, our realizability can be used to
extract in an effective way sound witnesses from proofs in HAω + MP of →-free formulas.
Proposition 18 is not true for all formulas, since the Axiom of Choice is realizable, as in
Kreisel’s modified realizability, but not true in the syntactical model. But we conjecture
that Proposition 18 can be strengthened further and that many kind of formulas containing
implications are true when realized. However, for reasons of space and complexity we do not
address this matter here.

7 Concluding Remarks and Further Works

As remarked in the introduction, there are several constructive interpretations of Markov’s
Principle [10, 5, 11]. While the semantics are quite different from each other, it is quite clear
that the computational mechanisms employed by the extracted programs are essentially the
same. Our realizability is no exception and exploits, as all the other interpretations, a proof
of ¬∀xNP in order to get a witness for ∃xNP⊥.

However, it is clear that our realizability is intensionally different from the Dialectica, it
is simpler and the term assignment for extracting programs is much lighter. It remains to

F. Aschieri and M. Zorzi 43

establish the exact relationship between the two notions: are they equivalent? We conjecture
that in most cases there is a translation between realizers of formulas in our sense and terms
witnessing their Dialectica interpretation.

Our realizability appears also less ad hoc then Avigad’s smooth version [3] of Coquand-
Hofmann translation, which requires an usual forcing style definition, with conditions being
set of purely universal formulas. With that approach one must always refer to these conditions,
which are used to interpret Markov’s Principle, even when considering other formulas or
axiom schemes (for example, one may like to interpret countable choice, which has nothing
to do with MP).

We also remark that our realizability has not been formulated as a syntactical formula
translation. Indeed it is not trivial to formalize it in such a way, since we have employed
several syntactical tools, as the notion of proof-like term and the normalization theorem.
However, we claim to be able to formulate realizability as a formula translation in the style
of modified realizability. Once formalized, we also claim that our realizability can be used
to obtain with new methods some conservativity results, for example the one stating that
HAω + MP is conservative over HAω for →-free arithmetical formulas.

Finally, compared with Herbelin [11], we employ a purely functional language, while he
uses exception handling mechanisms.

Another way of extending this work is to interpret the generalized Markov’s Principle:

GMP : ¬∀xτP → ∃xτP⊥ .

It is indeed reasonable that the methods of this paper can be refined in order to interpret
also this axiom.

References
1 F. Aschieri: A Constructive Analysis of Learning in Peano Arithmetic, Annals of Pure and

Applied Logic 162(11), 2012.
2 F. Aschieri, S. Berardi: A New Use of Friedman’s Translation: Interactive Realizability,

Logic, Construction, Computation, Ontos Mathematical Logic 3, 11–50, 2011.
3 J. Avigad: Interpreting Classical Theories in Constructive Ones, Journal of Symbolic Logic

65, 1785–1812, 2000.
4 T. Coquand: A Semantic of Evidence for Classical Arithmetic, Journal of Symbolic Logic

60, 325–337,1995.
5 T. Coquand, M. Hofmann: A New Way of Establishing Conservativity of Classical Systems

over their Intuitionistic Versions, Mathematical Structures in Computer Science 9(4), 323–
333, 1999.

6 J. Diller: Logical Problems of Functional Intepretations, Annals of Pure and Applied Logic
114, 27–42, 2002.

7 H. Friedman: Classically and Intuitionistically Provable Recursive Functions, Lecture Notes
in Mathematics 669, 21–27, 1978.

8 J.-Y. Girard, Y. Lafont, P. Taylor: Proofs and Types, Cambridge University Press. 1989.
9 Girard, J.-Y.: Proof Theory and Logical Complexity, Studies in Proof Theory, Bibliopolis,

1987.
10 K. Gödel: Über eine bisher noch nicht benutzte Erweiterung des finiten Standpunktes, Dia-

lectica 12, 280–287, 1958.
11 H. Herbelin: An Intuitionistic Logic that Proves Markov’s Principle, Proceedings of Logic

in Computer Science, 50–56, 2010.
12 J. Hintikka, G. Sandu: Game-Theoretical Semantics in Handbook of Language and Com-

putation, MIT Press, 1997.

TYPES 2013

44 A “Game Semantical” Intuitionistic Realizability Validating Markov’s Principle

13 S.C. Kleene: On the interpretation of intuitionistic number theory. Journal of Symbolic
Logic 10(4),109–124, 1972.

14 G. Kreisel: Interpretation of Analysis by Means of Constructive Functionals of Finite Types.
Constructivity in Mathematics, 101–128, North-Holland, 1959.

15 G. Kreisel: On Weak Completeness of Intuitionistic Predicate Logic, Journal of Symbolic
Logic 27, 1962.

16 J. Mitchell: Foundations for Programming Languages, MIT Press, 2000.
17 P. Oliva: Unifying Functional Intepretations, Notre Dame Journal of Formal Logic 47(2),

263–290, 2006.
18 D. Prawitz: Ideas and Results in Proof Theory. In Fenstad, ed., Proceedings of the 2nd

Scandinavian Logic Symposium, 235–307, North-Holland, 1972.
19 M.H. Sorensen, P. Urzyczyn: Lectures on the Curry-Howard isomorphism, Studies in Logic

and the Foundations of Mathematics 149, Elsevier, 2006.
20 A. Troelstra: Notions of Realizability for Intuitionistic Arithmetic and Intuitionistic Arith-

metic in all Finite Types, in Fenstad, ed., Proceedings of the 2nd Scandinavian Logic
Symposium, 369–405, North-Holland,1972.

21 A. Troelstra: Metamathematical Investigations of Intuitionistic Arithmetic and Analysis,
Lectures Notes in Mathematics 344, Springer-Verlag, 1973.

22 A. Troelstra: Realizability, in S. Buss, ed., Handbook of Proof Theory, Studies in Logic
and in the Foundation of Mathematics, Elsevier, 1998.

23 A. Troelstra, D. van Dalen: Constructivism in Mathematics Volume I, North-Holland, 1988.

	Introduction
	Markov's Argument
	Gödel's Dialectica Interpretation
	Kreisel's Modified Realizability
	Modified Realizability and Friedman's Translation
	Game Semantics and Functional Interpretations
	A Game Semantical Twist of Modified Realizability
	Plan of the paper

	The Term Calculus
	Language of HA + MP

	Realizability
	Extensionality
	A Realizer of Markov's Principle
	Curry-Howard Correspondence for HA +MP

	Main Results
	The Adequacy Theorem
	Realizability and Truth

	Concluding Remarks and Further Works

