
Definitional Extension in Type Theory
Tao Xue

School of Computer Science, McGill University, Montreal, Canada
xuet.cn@hotmail.com

Abstract
When we extend a type system, the relation between the original system and its extension is
an important issue we want to understand. Conservative extension is a traditional relation we
study with. But in some cases, like coercive subtyping, it is not strong enough to capture
all the properties, more powerful relation between the systems is required. We bring the idea
definitional extension from mathematical logic into type theory. In this paper, we study the notion
of definitional extension for type theories and explicate its use, both informally and formally, in
the context of coercive subtyping.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Language

Keywords and phrases conservative extension, definitional extension, subtype, coercive subtyp-
ing

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.251

1 Introduction

In the studies of type theory, sometimes we extend a type system with some notions and rules.
We are interested in what power the extension systems can bring to us, and we also want to
know the relations between the systems. Understanding the relations between the systems
tells us some of the properties the new system should hold. The most common property we
always think of is conservativity, or put in anther way, whether the extension is a conservative
extension. For example, Hofmann showed the conservativity of extensional type theory over
intensional type theory with extensional concepts added [4]. Informally, conservativity means
that the new system maybe more convenient than the original system but it cannot prove any
new theorem within the old language. It requires that all the theorems in the old language,
which are provable in new system, are also provable in the old system.

Subtypes are introduced into type theory and studied in many works [1, 2, 14, 15].
Coercive subtyping [7] is one approach of studying subtype in type theory. Unlike the
traditional way of dealing subtype with subsumption rule

a : A A ≤ B
a : B

which is very common in the study of functional programming languages [13], coercive
subtyping is an abbreviation mechanism. We consider a unique coercion c between two types
A and B, written as A <c B. Intuitively, for every place we require a term of type B, we can
use a term a of type A instead, and it is just an abbreviation of using the term c(a). This
simple mechanism is quite powerful, one recent use is in the study of linguistic semantics
[9, 19].

Since we take coercive subtyping as an abbreviation mechanism, we don’t want it to
increase any power of the existing system. Soloviev and Luo [17] studied the relationship
between a type system and its coercive subtyping extension and called it “conservativity”. In

© Tao Xue;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 251–269

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.251
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

252 Definitional Extension in Type Theory

fact, the relationship is not quite the same as the traditional notion of conservative extension
and it turns out that it can better be characterized as an definitional extension in a more
general sense. In this paper, we will give a definition of this notion of definitional extension
and explicate it, both informally with a simple example and formally for coercive subtyping.

Soloviev and Luo’s previous work [17] was based on a notion of basic subtyping rules
which turns out to be unnecessarily general. It does not exclude certain “bad” subtyping
rules which cannot be used normally but can be applied once we introduce coercive subtyping.
This would destroy the consistency of the whole system. Recently, we fix the problem by
considering coercion sets rather than coercion rules and, furthermore, the latter can be
captured by the former [11, 18]. In this paper, our treatment of coercive subtyping is based
on this new framework.

The paper goes in the following way. We give the motivation of introducing definitional
extension in Section 2 by showing that coercion mechanism cannot be expected as a conservat-
ive extension. In Section 3, we present a definition of conservative extension and definitional
extension in type theory. We use a simplified example to demonstrate the relation between
a system and its coercion extension in Section 4 and give a sketch on the full study of the
relation in Section 5.

2 Motivation: coercive subtyping

Coercive subtyping [7] is an approach to introducing subtypes into type theory and it considers
subtyping by means of abbreviations.

The basic idea of coercive subtyping is that, when we consider A as a subtype of B, we
choose a unique function c from A to B, and declare c to be a coercion, written as A <c B.
Intuitively, the idea means anywhere we need to write an object of type B, we can use
an object a of type A instead. Actually in the context, the object a is to be seen as an
abbreviation for the object c(a) : B. More precisely, if we have f from B to C, then f can
be applied to any object a of type A to form f(a) of type C, which is definitionally equal
to f(c(a)). We can consider f(a) to be an abbreviation for f(c(a)), with coercion c being
inserted to fill the gap between f and a. The idea above could be captured by means of the
following formal rules:

f : B → C a : A A <c B

f(a) : C
f : B → C a : A A <c B

f(a) = f(c(a)) : C

As an extension of a type theory, coercive subtyping is based on the idea that subtyping
is abbreviation. On the one hand, it should not increase any expressive power of the
original system. On the other hand, coercions can always be correctly inserted to obtain the
abbreviated expressions as long as the basic coercions are coherent 1.

In the study coercive subtyping, Soloviev and Luo tried to think it be a conservative
extension [17]. But we find that conservativity is not accurate to capture the relation. In
the expressions of coercive subtyping, there are “gaps” introduced by the coercions. Given
f : B → C and a : A, although f(a) : C is well-formed with coercive subtyping A <c B, we
can still image that there is a “gap” in f(a) between f and a. As mentioned above, we want
to show that all the “gaps” in the expressions caused by coercions can be correctly inserted.

1 Informally, coherence in coercive subtyping means there is unique coercion between two different types,
further details are discussed in Section 5.

T. Xue 253

For example, let’s consider types Nat = 0 |succ(Nat), Bool = true|false and coercion
Bool <c Nat. With coercive subtyping, we can have terms:

succ(true), succ(false), succ(succ(true)), succ(succ(false)), . . .

As we have emphasised that coercive subtyping is just abbreviation, these terms should
actually be equivalent to the following terms:

succ(c(true)), succ(c(false)), succ(succ(c(true))), succ(succ(c(false))), . . .

Such equivalence is the most important property of the extension with coercive subtyping.
We want to show that all the judgements or derivations in the system with coercive subtyping
can be translated into the equivalent ones in the original type system. “conservative extension”
is not enough for our use, it only talks about whether the derivable judgements in new system
are still derivable in the original one, it doesn’t ask for such equivalence connection. We find
the idea of “definitional extension” in first-order logic theories contains a translation between
the formulas of the theories. Hence, we think that such notion of definitional extension is a
suitable option to describe the relation between a type system and its coercive subtyping
extension.

3 Conservative extension and definitional extension

To build a definition for the definitional extension, we should give definitions for the equival-
ence between judgements and equivalence between derivations first. Such definitions depend
on the forms of judgements. In this paper, we will consider the type systems formalised in
Luo’s logical framework2 [6]. For other cases, we should be able to consider them in a similar
way.

3.1 Luo’s logical framework
Luo’s logical framework [6] is a typed version of Martin-Löf’s logical framework [15]. In
Luo’s logical framework, the functional abstractions of the form (x)k in Martin-Löf’s logical
framework are replaced by the typed form [x : K]k. We will simply call it LF in the rest
part of this paper.

LF is a type system with terms of the following forms:

Type, El(A), (x : K)K ′, [x : K]k′, f(k)

The kind Type denotes the conceptual universe of types; El(A) denotes the kind of objects
of type A; (x : K)K ′ denotes a dependent product; [x : K]k′ denotes an abstraction; and
f(k) denotes an application. The free occurrences of the variable x in K ′ and k′ are bound
by the binding operators (x : K) and [x : K]. There are five forms of judgements in LF:

Γ ` valid, which asserts that Γ is a valid context.
Γ ` K kind, which asserts that K is a valid kind.
Γ ` k : K, which asserts that k is an object of kind K.
Γ ` k = k′ : K, which asserts that k and k′ are equal objects of kind K.
Γ ` K = K ′, which asserts that K and K ′ are two equal kinds.
Figure 7 shows the LF rules. It contains the rules for context validity and assumptions,

the general equality rules, the type equality rules, the substitution rules, the rules for kind
Type and the rules for dependent product kinds.

2 It is different from the Edinburgh Logical Framework [3].

TYPES 2013

254 Definitional Extension in Type Theory

3.2 Conservative extension
In mathematical logic, when we say a logical theory S2 is an extension of a theory S1, it
means that the syntax of S2 includes all the syntax of S1 and every theorem of S1 is a
theorem of S2. We call S2 a conservative extension of S1, if S2 is an extension of S1 and we
have a further condition that any theorem of S2 in the language of S1 is a theorem in S1.

When we talk about such extensions, it is important to point out that the syntax of S2
contains all the syntax of S1. We can have two labels of the theorems, one is proposable,
another is provable. Proposable means the theorem can be written down in the language,
not necessary be proved. Provable means the theorem can not only be written down but also
be proved. In conservative extension, we don’t care those theorems which are proposable in
S2 but not proposable in S1. However, we will see later that in definitional extension we
need to think of them.

We can consider the idea similarly in type theory. Instead of thinking of the theorems,
we would like to think of the judgements. If a judgement can be derived through the rules
in the system, we call it a derivable judgement. We say type system T2 which includes all
the syntax of system T1 is a conservative extension of T1 , if for any proposable sequent
(judgement) t of the system T1, t is derivable in T2 implies that t is derivable in T1. If a
sequent is not proposable in T1 (only proposable in T2), its derivability does not matter.

More precisely, let’s use `T for the derivable judgements in system T . T2 is an extension
of T1 requires that, T2 includes all the syntax of T1 and for any judgement Γ ` Σ in T1(it
may not be derivable):

Γ `T1 Σ ⇒ Γ `T2 Σ

For such an extension to be conservative, we also require:

Γ `T2 Σ ⇒ Γ `T1 Σ

I Definition 1 (conservative extension). Type theory T2 is a conservative extension of T1,
if T2 includes all the syntax of T1 and for any proposable judgement J in T1, there’s a
derivation of J in T1 if and only if there’s a derivation of J in T2.

3.3 Definitional extension
Sometimes, conservative extension is not powerful enough to describe the relation between
the systems. In some cases, like the study of coercive subtyping [11], we not only want to
show the conservativity, but also want the systems to keep a stronger relation. We want the
formulas, judgements or derivations in one system could be translated to corresponding ones
in another system. Definitional extension describes such kind of relation.

Traditionally, the notion of definitional extension was formulated for first-order logical
theories [5]: a first-order theory is a definitional extension of another if the former is a
conservative extension of the latter and any formula in the former is logically equivalent to
its translation in the latter. More precisely, a definitional extension S′ of a first-order theory
S is obtained by successive introductions of relations(or functions) in such a way that, for
example, for an n-ary relation R, the following defining axiom of R is added:

∀x1...∀xn. R(x1, ..., xn) ⇐⇒ φ(x1, ..., xn),

where φ(x1, ..., xn) is a formula in S.

T. Xue 255

For such a definitional extension S′, we have:
for any formula ψ in S′, ψ ⇐⇒ ψ∗ is provable in S′, where ψ∗ is the formula in S

obtained from ψ by replacing any occurrence of R(t1, ..., tn) by φ(t1, ..., tn) (with necessary
changes of bound variables).
S′ is a conservative extension of S.

Taking the idea of definitional extension, especially the translation between formulas, we
are going to consider a similar relation in type theory. The notion of definitonal extension
in first-order logic is characterised in terms of translation on formulas. In our type theory,
we have at least two options to present the translation on: judgements and derivations.
Intuitively, derivable judgements and derivations are very close related to each other. In
analogy to the formulas in logic, it sounds even more natural to use judgements in type
theory. However, we will choose derivations to formalise our definition. Let’s consider the
type systems with coercive subtyping. Translating a judgement with coercive subtyping into
a judgement without coercive subtyping requires us to point out all the “gaps” introduced
by coercion in the judgement. They are not simply marked in the syntax, and due to the
congruence rules of subtyping, the insertion might not be syntactically unique. We have
to look up the derivations to find the coercions out. More generally, in intensional type
theories, the non-syntax-directed use of the conversion rule makes the connection between
the judgement and derivation non-structural. When we have the mechanisms like coercion,
the choice of rules by which to refine a judgement becomes no more free. Based on these
reasons, it is necessary to give the definition in term of derivations.

Before giving a formal definition of definitional extension, we need to define the equivalence
between derivations first. The equivalence between the derivations can be defined by the
equivalence between derivable judgements and the equivalence between the judgements
intuitively means that the corresponding parts of two judgements are equal formulas. In LF,
the judgements are of form:

Γ ` valid, Γ ` K kind, Γ ` k : K, Γ ` k1 = k2 : K and Γ ` K1 = K2

Hence, we can define the equivalence between the judgements in the following way:

I Notation 2. In a type system S specified in LF, let Γ1 and Γ2 be

Γ1 ≡ x1 : K1, x2 : K2, · · · , xn : Kn

Γ2 ≡ x1 : M1, x2 : M2, · · · , xn : Mn

The equality Γ ` Γ1 = Γ2 is an abbreviation for the following list of n judgements:

Γ ` K1 = M1;
Γ, x1 : K1 ` K2 = M2;

...
Γ, x1 : K1, · · · , xn−1 : Kn−1 ` Kn = Mn.

With the LF rules, we can proof the following propositions of our equality abbreviation in
type system S specified in LF. Then, we can use them to define equality between judgements
and between derivations in S.

I Proposition 3. In a type system S specified in LF.
1. If Γ1 is a valid context, then ` Γ1 = Γ1.
2. If Γ ` Γ1 = Γ2, then Γ ` Γ2 = Γ1.

TYPES 2013

256 Definitional Extension in Type Theory

3. If Γ ` Γ1 = Γ2 and Γ ` Γ2 = Γ3, then Γ ` Γ1 = Γ3.
4. If Γ,Γ1 ` J and Γ ` Γ1 = Γ2 then Γ,Γ2 ` J . (J is of form valid, K kind, k : K,

k1 = k2 : K or K1 = K2)

Proof. See appendix B. J

I Definition 4. (equality between judgements) Let S be a type theory specified in LF.
The notion of equality between judgements of the same form in S, notation J1 =s J2, is
inductively defined as follows:
1. (Γ1 ` valid) =s (Γ2 ` valid) iff ` Γ1 = Γ2 is derivable in S.
2. (Γ1 ` K1 kind) =s (Γ2 ` K2 kind) iff ` Γ1 = Γ2 and Γ1 ` K1 = K2 are derivable in S.
3. (Γ1 ` k1 : K1) =s (Γ2 ` k2 : K2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2 and Γ1 ` k1 = k2 : K1 are

derivable in S.
4. (Γ1 ` K1 = K ′1) =s (Γ2 ` K2 = K ′2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2 and Γ1 ` K ′1 = K ′2 are

derivable in S.
5. (Γ1 ` k1 = k′1 : K1) =s (Γ2 ` k2 = k′2 : K2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2, Γ1 ` k1 =

k2 : K1 and Γ1 ` k′1 = k′2 : K1 are derivable in S.

The equivalence between the derivations can be given as follows:

I Definition 5. (equality between derivations) Suppose d is a derivation in type system S,
let conc(d) denote the conclusion of derivation d. Given two derivations d1 and d2, we call
d1 and d2 equivalent derivations in S and write d1 ∼s d2 iff conc(d1) =s conc(d2) in S.

I Theorem 6. Let S be a type theory specified in LF, =s and ∼s are equivalence relations.

Proof. Straight with Proposition 3 and LF rules in Figure 7. J

When no confusion may occur, We will omit S and simply write = and ∼ for the
equivalence between judgements and derivations in system S.

I Definition 7. (definitional extension) We call T2 is a definitional extension of T1, if we
have:

for any derivation d in T2, we can translate d into a corresponding derivation d′ in T1, d
and d′ are equivalent derivations in T2.
T2 is a conservative extension of T1.

4 A simple example

In Section 2, we have proposed our motivation of introducing definitional extension: con-
servative extension is not enough to capture the properties when we extend a system with
coercive subtyping. However, we find that coercive subtyping is not a definitional extension
either. The reason is that terms like succ(true) are proposable but not derivable in the
original system. With the help of coercive subtyping, they are derivable. It doesn’t satisfy
the definition of conservative extension, hence not definitional extension. To figure out what
exactly the relation is, we have to employ some intermediate systems to help us.

The complete description of the relations between a type system, its coercive subtyping
extension and intermediate systems is complex and includes some tedious proofs [18]. We
will give a sketch of it in the next section. In this section, we try to give an example with
coercive subtyping to tell such story in a simple and informal way. Through this trivial
looking example, we would like to show the following points: 1) why definitional extension is
still not enough (or why we introduce a intermediate system); 2) how to introduce a proper
intermediate system; 3) the relations between the systems.

T. Xue 257

Ic

φ

��

Φ

&&
I∗

Φ′

conservative
//

φ′

OO

I

Figure 1 Relations between Ic, I∗ and I.

We will consider three systems in the example, a type system I and two of its extensions.
I is a very simple type system with only two constant types Nat and Bool. We extend it
into system Ic with one coercion Bool <c Nat. We also introduce system I∗ as extension of
I with ∗ calculus, such ∗ plays a role of gap holder when we apply the coercion. Through
the relations between the judgements of these systems, we can draw a picture for the links
between these systems as Figure 1 (definitions of Φ, Φ′, φ and φ′ are shown in the later parts
of this section).

We will use some informal notions in this example section for the purpose of a simple
description. We only have subtyping in the example, while in LF we shift them into subkinding.
We will omit the contexts of judgements and use judgements to formalise translations for
definitional extension. It is worth pointing out that using judgements for the translations
doesn’t violate our previous settings with derivations in this example. Because in the syntax
of judgements, the applications of succ on true or false indicate the use of coercion application
rule in the derivation clearly.

4.1 System I

In I, we only have two basic types Nat and Bool with their constructors, and a term c of
type Bool → Nat:

Nat : Type, 0 : Nat, succ : Nat → Nat,
Bool : Type, true : Bool, false : Bool, c : Bool → Nat

And, we have the following rules:

f : M → N a : M
f(a) : N

a : M
a = a : M

a1 = a2 : M
a2 = a1 : M

a1 = a2 : M a2 = a3 : M
a1 = a3 : M

In this system, the judgements are of form:
a : M and a1 = a2 : M

We can easily list out all the derivable judgements in I, they can only be of the following
cases:

0 : Nat, succ : Nat → Nat, succ(...succ(0)) : Nat,
true : Bool, false : Bool, c : Bool → Nat, c(true) : Nat, c(false) : Nat,
succ(...succ(c(true))) : Nat, succ(...succ(c(false)) : Nat,
0 = 0 : Nat, succ(...succ(0)) = succ(...succ(0)) : Nat,
true = true : Bool, false = false : Bool,
succ = succ : Nat → Nat, c = c : Bool → Nat,
succ(...succ(c(true))) = succ(...succ(c(true))) : Nat,
succ(...succ(c(false))) = succ(...succ(c(false))) : Nat

TYPES 2013

258 Definitional Extension in Type Theory

I Remark. For the judgements like succ(...succ(c(true))) = succ(...succ(c(true))) : Nat, the
left and right term of the equal mark have the same number of succ. It’s the same case for
the other similar judgements in rest of this section.

4.2 System Ic

Let’s enrich the system I with coercive subtyping. We extend I into system Ic with coercion
Bool <c Nat and coercion application rules:

f : B → C a : A A <c B

f(a) : C
f : B → C a : A A <c B

f(a) = f(c(a)) : C

The judgements in system Ic are of form3:
a : M and a1 = a2 : M

We can get all the derivable judgements in system Ic. Besides all those we have in system
I, we can derive the following judgements:

succ(...succ(true)) : Nat, succ(...succ(false)) : Nat,
succ(...succ(true)) = succ(...succ(true)) : Nat,
succ(...succ(false)) = succ(...succ(false)) : Nat,
succ(...succ(c(true))) = succ(...succ(true)) : Nat,
succ(...succ(c(false))) = succ(...succ(false)) : Nat,
succ(...succ(true)) = succ(...succ(c(true))) : Nat,
succ(...succ(false)) = succ(...succ(c(false))) : Nat

4.3 Relation between I and Ic

Now, let’s consider the relation between I and Ic. We want to show that every derivable
judgement in Ic is equivalent to a corresponding derivable judgement in I. To achieve this
goal, we define a translation Φ from every derivable judgements in system Ic to derivable
judgements in I. Φ inserts all the gaps caused by coercion with term c (since we only have
one subtyping relation). The definition of Φ is as follows :
1. Φ(t) ≡ t, if the t is the judgement in I,
2. Φ(t) ≡ succ(...succ(c(b)) : Nat, if t ≡ succ(...succ(b)) : Nat, b is either true or false,
3. Φ(t) ≡ succ(...succ(c(b))) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ(b)) = succ(...succ(b)) : Nat, b is either true or false,
4. Φ(t) ≡ succ(...succ(c(b) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ(b)) = succ(...succ(c(b))) : Nat, b is either true or false,
5. Φ(t) ≡ succ(...succ(c(b)) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ(c(b))) = succ(...succ(b)) : Nat, b is either true or false.

It is easy to prove that Φ is total. In order to show the equality between the judgements
in Ic and their translations in I, we can prove Φ is holding the following property.

I Proposition 8. For any derivable judgement t in system Ic, Φ(t) and t are equivalent
judgements in system Ic

3 We do not consider subtyping relation as a judgement in this example section. But in full study of
coercive subtyping in LF, we will think them as judgements. See the discussion in Section 5.

T. Xue 259

Although we have shown certain relation between system I and Ic, it just satisfies the
first condition of definitional extension. We cannot say Ic is a definitional extension of I,
because definitional extension requires conservativity. Unfortunately, Ic is not a conservative
extension of Ic. A simple counter example is that, succ(true) : Nat is a judgement but not
derivable in I, however it is derivable in Ic. It doesn’t satisfy the definition of conservative
extension.

The reason for this problem is that the abbreviation with “gaps” mechanism of coercive
subtyping makes such non-well-formed sequences to be well-formed. If we consider an
intermediate system with an extra place holder for the “gaps”, we may get rid of the problem.

4.4 System I∗

To make a more specific study for the relations, we will introduce another system I∗.
Intuitively, I∗ means that for any place we want to use a coercion, we insert a symbol ∗ to
fill the gap, it equals to the term where the coercion applied. Similarly like Ic, I∗ extends
system I with the following rules:

f : B → C a : A A <c B

f ∗ a : C
f : B → C a : A A <c B

f ∗ a = f(c(a)) : C

In system I∗, the judgements are also of form:
a : M and a1 = a2 : M

We can list all the derivable judgements in system I∗ as follows, besides all those in
system I:

succ(...succ ∗ true) : Nat, succ(...succ ∗ false) : Nat,
succ(...succ ∗ true) = succ(...succ ∗ true) : Nat,
succ(...succ ∗ false) = succ(...succ ∗ false) : Nat,
succ(...succ(c(true)) = succ(...succ ∗ true) : Nat,
succ(...succ(c(false))) = succ(...succ ∗ true) : Nat,
succ(...succ ∗ true) = succ(...succ(c(true))) : Nat,
succ(...succ ∗ true) = succ(...succ(c(false))) : Nat

4.5 Relation between I and I∗

It is trivial to show that I∗ is a conservative extension of I. Since judgements like succ∗ true :
Nat are not judgements in I, we don’t need to consider them, all the other derivable
judgements in I∗ are exactly the same judgements in I.

I Proposition 9. System I∗ is a conservative extension of system I.

Like what we have done for the relation between Ic and I. We can introduce a total
translation Φ′ from judgements of system I∗ to judgements of system I. Intuitively, it
substitutes all the appearance of ∗ with our only coercion c:
1. Φ′(t) ≡ t, if the t is a derivable judgement in I,
2. Φ′(t) ≡ succ(...succ(c(b)) : Nat, if t ≡ succ(...succ ∗ b) : Nat, b is either true or false,
3. Φ′(t) ≡ succ(...succ(c(b)) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ ∗ b) = succ(...succ ∗ b) : Nat, b is either true or false,
4. Φ′(t) ≡ succ(...succ(c(b) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ ∗ b) = succ(...succ(c(b))) : Nat, b is either true or false,
5. Φ′(t) ≡ succ(...succ(c(b)) = succ(...succ(c(b))) : Nat,

if t ≡ succ(...succ(c(b))) = succ(...succ ∗ b) : Nat, b is either true or false.

TYPES 2013

260 Definitional Extension in Type Theory

Now we have a total translation Φ′ from system I∗ to system I. Again, it is easy to prove
that for every derivable judgement t in system I∗, Φ′(t) and t are equal judgements in I∗.
Together with the conservative property, we can conclude that I∗ is a definitional extension
of I.

For any derivable judgement t in I∗, Φ′(t) is a derivable judgement in I, Φ′(t) and t are
equivalent judgements in I∗.
I∗ is a conservative extension of I.

4.6 Relation between Ic and I∗

Now, let’s think of the relation between, Ic and I∗. The rules and judgements are almost
the same, only different in symbols. Intuitively, they should be equivalent systems. We can
show their equality by introducing two more translations between the systems: φ from the
judgement of Ic to the judgement of I∗, φ′ from the judgement of I∗ to the judgement of Ic.

φ changes every place of succ(true) or succ(false) in system Ic into term succ ∗ true or
succ ∗ false.
φ′ simply removes every occurrence of ∗ in system I∗.

It’s trivial to show that φ and φ′ are total, and easy to prove that Ic and I∗ are two
equivalent systems by means of :

I Proposition 10.
For every judgement t in Ic, φ′(φ(t)) ≡ t.
For every judgement t′ in I∗ φ(φ′(t′)) ≡ t′.

We can also show that Φ is a composition of Φ′ and φ:

I Proposition 11. For any derivable judgement t in Ic, Φ(t) ≡ Φ′(φ(t))

Finally, we can reach the conclusion for the relations between all these systems: Ic is
equivalent to a system I∗ which is a definitional extension of I, as shown in the graph
previously (Figure 1):

Ic is an equivalent system of I∗
I∗ is a definitional extension of I:

5 Coercive subtyping in LF

Luo formulated coercive subtyping [7] in his LF [6]. Later we find that the extension took a
too general set of coercion rules which may ruin the consistency of the extension system. We
solve the problem by reformulating it with some restriction [11, 18]. In this section, we give
a sketch of reformulated system and proofs to show the definitional extension, further details
could be found in the author’s thesis [18].

We will mainly consider the following systems: an original type system T ; an extension of
system T with coercive subtyping (T [C]); an extension of system T with coercive subtyping
and place holder ∗ (T [C]∗); an intermediate system without coercion application rules
(T [C]0K).

We introduce coercive subtyping in type level (rules in Figure 2) and then move them
into kind level (rules in Figure 3). The symbol ∗ is introduced as a place holder to fill the
gaps left by the coercions. We call it ∗-calculus. Following the idea in Section 4, we should be
able to show that T [C]∗ is a definitional extension over T . Unfortunately, we can not reach
this conclusion yet, because we need to consider the derivations of subtyping and subkinding
judgements (Γ ` A <c B : Type or Γ ` K <c K

′). We didn’t consider them in the simplified

T. Xue 261

Base Coercion
Γ ` A <c B : Type ∈ C

Γ ` A <c B : Type
Congruence

Γ ` A <c B : Type Γ ` A = A′ : Type Γ ` B = B′ : Type Γ ` c = c′ : (A)B
Γ ` A′ <c′ B′ : Type

Transitivity
Γ ` A <c1 B : Type Γ ` B <c2 C : Type

Γ ` A <c2◦c1 C : Type
Substitution

Γ, x : K,Γ′ ` A <c B : Type Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]A <[k/x]c [k/x]B : Type

Weakening

Γ,Γ′ ` A <c B : Type Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)
Γ, x : K,Γ′ ` A <c B : Type

Context Retyping

Γ, x : K,Γ′ ` A <c B : Type Γ ` K = K ′

Γ, x : K ′,Γ′ ` A <c B : Type

Figure 2 The structural subtyping rules of T [C]0.

example in the previous section, there was only one coercion taken as axiom. In a complete
description in LF, we have derivations of these subtyping and subkinding judgements, we can
hardly match them to any equivalent derivations in T . To fill this gap, we have to involve the
intermediate system T [C]0K into the relations between T , T [C] and T [C]∗. T [C]0K extends T
as T [C] but without the coercion application rules (rules in Figure 4). We will show that
T [C]∗ is a definitional extension of T [C]0K , T [C]0k is a conservative extension of T and T [C]
is an equivalent system of T [C]∗.

5.1 System T [C]
Let T be a type system specified in LF such as Martin-Löf’s type theory [12] or UTT [6].
With a set C of coercive subtyping judgements (judgements of form Γ ` A <c B : Type),
the following basic coercion rules in Figure 2, 3 and coercion application rules in Figure 4,
we can extend T into a type system T [C] with coercive subtyping4.

5.2 Coherence
Coherence is an important issue in coercive subtyping. Informally, it means there’s a unique
coercion between two types. To give a formal definition in our structure, we need to introduce
an intermediate system T [C]0.

4 Rules in Figures 2, 3, 4 and 5 are only the subtyping and subkinding rules. Figure 7 contains the rest
LF rules.

TYPES 2013

262 Definitional Extension in Type Theory

Basic subkinding rule

Γ ` A <c B : Type
Γ ` El(A) <c El(B)

Subkinding for dependent product kinds

Γ ` K ′1 <c1 K1 Γ, x′ : K ′1 ` [c1(x′)/x]K2 = K ′2 Γ, x : K1 ` K2 kind
Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2

where c ≡ [f : (x : K1)K2][x′ : K ′1]f(c1(x′));

Γ ` K ′1 = K1 Γ, x′ : K ′1 ` K2 <c2 K
′
2 Γ, x : K1 ` K2 kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2
where c ≡ [f : (x : K1)K2][x′ : K ′1]c2f(x′);

Γ ` K ′1 <c1 K1 Γ, x′ : K ′1 ` [c1(x′)/x]K2 <c2 K
′
2 Γ, x : K1 ` K2 kind

Γ ` (x : K1)K2 <c (x′ : K ′1)K ′2
where c ≡ [f : (x : K1)K2][x′ : K ′1]c2(f(c1(x′))).
Congruence for subkinding

Γ ` K1 <c K2 Γ ` K1 = K ′1 Γ ` K2 = K ′2 Γ ` c = c′ : (K1)K2

Γ ` K ′1 <c K ′2

Transitivity for subkinding

Γ ` K <c K
′ Γ ` K ′ <c′ K ′′

Γ ` K <c′◦c K ′′

Substitution for subkinding

Γ, x : K,Γ′ ` K1 <c K2 Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]K1 <[k/x]c [k/x]K2

Weakening for subkinding

Γ,Γ′ ` K1 <c K2 Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)
Γ, x : K,Γ′ ` K1 <c K2

Context Retyping for subkinding

Γ, x : K,Γ′ ` K1 <c K2 Γ ` K = K ′

Γ, x : K ′,Γ′ ` K1 <c K2

Figure 3 The subkinding rules of T [C]0K .

T. Xue 263

Coercive application rule

(CA1)Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) : [c(k0)/x]K ′

(CA2)Γ ` f = f ′ : (x : K)K ′ Γ ` k0 = k′0 : K0 Γ ` K0 <c K

Γ ` f(k0) = f ′(k′0) : [c(k0)/x]K ′

Coercive definition rule

(CD)Γ ` f : (x : K)K ′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f(k0) = f(c(k0)) : [c(k0)/x]K ′

Figure 4 The coercive application and definition rules of T [C].

T [C]0 is a system extending T with set C of coercion subtyping judgements, subtyping
judgements Γ ` A <c B : Type and basic subtyping rules (Figure 2).

I Definition 12. (coherence) C is called a coherent set of coercive subtyping judgement, if
in T [C]0 we have:
1. Γ ` A <c B : Type implies Γ ` A : Type, Γ ` B : Type, Γ ` c : (A)B are derivable

in T .
2. We cannot derive Γ ` A <c A : Type, for any Γ, A, c.
3. Γ ` A <c1 B : Type and Γ ` A <c2 B : Type imply that Γ ` c1 = c2 : (A)B is derivable

in T .

In fact, we can prove that any two coercions between two given kinds are equal in T [C].
Let c and c′ be two different coercion from K to K ′, K <c K

′ and K <c′ K
′:

Γ ` c = [x : K](c(x)) (η rule)
= [x : K]([y : K ′]y)c(x) (β rule)
= [x : K]([y : K ′]y)(x) (ξ and coercive definition)
= [x : K]([y : K ′]y)(c′(x)) (ξ and coercive definition)
= [x : K](c′(x)) (β rule)
= c′ : (K)K ′ (η rule)

This fact implies that without the coherence condition, in T [C] we can prove some result
that we can’t get in T . That’s the reason why we define coherence before introducing the
coercion application rule. And we have to use a coherent set of C, otherwise the conservativity
cannot hold.

5.3 Relation between T [C] and T

Now, we would like to consider the relation between system T [C] and T . The example in
Section 4 gives us the basic idea of dealing their relation. However, it is more complicated in
LF, there are several extra things we need to consider.

We need to extend the form of judgements. As we have rules of subtyping and subkinding
and derivations of them, we consider the subtyping and subkinding as judgements as well.

TYPES 2013

264 Definitional Extension in Type Theory

Coercive application rule

(CA∗1)Γ ` f : (x : K)K′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 : [c(k0)/x]K′

(CA∗2)Γ ` f = f ′ : (x : K)K′ Γ ` k0 = k′0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 = f ′ ∗ k′0 : [c(k0)/x]K′

Coercive definition rule

(CD∗)Γ ` f : (x : K)K′ Γ ` k0 : K0 Γ ` K0 <c K

Γ ` f ∗ k0 = f(c(k0)) : [c(k0)/x]K′

Figure 5 The coercive application and definition rules of T [C]∗.

So we introduce two new forms of judgements:

Γ ` A <c B : Type and Γ ` K1 <c K2

Since we have two new forms of judgements, we need to consider the equivalence between
these judgements as well. We can extend the Definition 4 with the following two cases:

I Definition 13. (equality between the subtyping and subkinding judgements) Let S be a
type theory specified in LF:
1. (Γ1 ` A1 <c1 B1 : Type) =s (Γ2 ` A2 <c2 B2 : Type) iff ` Γ1 = Γ2, Γ1 ` A1 =

A2 : Type, Γ1 ` B1 = B2 : Type, Γ ` c1 = c2 : (A1)B1 are derivable in S.
2. (Γ1 ` K1 <c1 K

′
1) =s (Γ2 ` K2 <c2 K

′
2) iff ` Γ1 = Γ2, Γ1 ` K1 = K2, Γ1 ` K ′1 = K ′2 and

Γ ` c1 = c2 : (K1)K ′1 are derivable in S.

It is straight to show the relation =s and ∼s are still equivalence relations in coercive
subtyping extensions.

I Theorem 14. Let S be a type theory with coercive subtyping specified in LF, =s and ∼s
are equivalence relations.

5.3.1 System T [C]0K

The system T [C]0K is an intermediate system which extends T with subtyping and subkinding
rules but no coercion application and definition rules. It is obtained from T by adding the
new judgement form Γ ` A <c B : Type, Γ ` K <c K

′ and the inference rules in Figure 2
and 3. Since we don’t have any coercion application rule in T [C]0K , the coercion judgements
cannot be applied, T [C]0K can be trivially proved as a conservative extension of T .

I Proposition 15. System T [C]0K is a conservative extension of system T .

5.3.2 System T [C]∗

We can think T [C] as a system obtained from T [C]0K by adding the coercive application and
coercive definition rules in Figure 4. We will extend T [C]0K into another system T [C]∗ with
∗ as gap holder when we apply coercive subtyping.

T [C]∗ is the system obtained from T [C]0K by adding the coercive application and coercive
definition rules in Figure 5.

It is easy to find out that all the judgements with ∗ are not judgements in T [C]0K . It
means that T [C]∗ is conservative over T [C]0K

I Proposition 16. T [C]∗ is a conservative extension of T [C]0K .

T. Xue 265

5.3.3 Relation between the systems
To describe the relation between the type system T [C], T [C]∗ and T [C]0K , we introduce four
algorithms Θ, Θ∗, θ1 and θ2 between the systems.

For two type systems T1 and T2, we write

f : T1 → T2

if f is a function from the T1-derivations to T2-derivations.
We describe four algorithms, which are such functions:

Θ : T [C]→ T [C]0K
Θ∗ : T [C]∗ → T [C]0K
θ1 : T [C]→ T [C]∗

θ2 : T [C]∗ → T [C]

The algorithms behave in the following way:
The algorithm Θ replaces the derivations of Γ ` K1 <c K2 in the premises of coercive rules
(CA1)(CA2)(CD) by derivations of Γ ` c : (K1)K2 and replaces the coercive applications
by several ordinary applications.
The algorithm Θ∗ replaces the derivations of Γ ` K1 <c K2 in the premises of coercive
rules (CA∗1)(CA∗2)(CD∗) by derivations of Γ ` c : (K1)K2 and replaces the coercive
applications by several ordinary applications.
The algorithm θ1 replaces coercive applications in T [C] derivations by coercive applications
in T [C]∗, by inserting ∗ into appropriate places.
The algorithm θ2 replaces coercive applications of the form f ∗ a in T [C]∗ by coercive
applications f(a) in T [C].

We need to show that our algorithms behave in the right way, they insert the coercions
into where they should be. The following property guarantees that all the coercions are
inserted correctly by the algorithms:

I Proposition 17.
1. For any derivation t in T [C], t and Θ(t) are equivalent derivations in T [C].
2. For any derivation t′ in T [C]∗, t′ and Θ∗(t′) are equivalent derivations in T [C]∗.

With the proposition below, we can show that T [C] and T [C]∗ are equivalent systems.

I Proposition 18.
1. For any derivation t in T [C], t and θ2(θ1(t)) are equivalent derivations in T [C].
2. For any derivation t′ in T [C]∗, t′ and θ1(θ2(t′)) are equivalent derivations in T [C]∗.

Finally, with the propositions above we can conclude the relations between our systems
and intermediate systems. Their relations can be drawn as Figure 6.

T [C] is a equivalent system of T [C]∗.
T [C]∗ is a definitional extension of T [C]0K .
T [C]0K is a conservative extension of T .

T [C]∗ is a definitional extension of T [C]0K and T [C]0K is a conservative extension of T ,
we would like to call that T [C]∗ is a D-conservative extension5 of T .

5 There is a notion of D-conservativity in Luo’s note [8], we have a different meaning with that.

TYPES 2013

266 Definitional Extension in Type Theory

T [C]

θ2

��

Θ

$$
T [C]∗ Θ∗ //

θ1

OO

T [C]0K
conservative // T

Figure 6 Relations between T [C], T [C]∗, T [C]0K and T.

I Remark. Although we have shown that T [C]∗ with ∗-calculus has a more nature relationship
with T , we still use T [C] as for description of coercive subtyping. T [C] itself is directly
connected to important themes in the study of subtyping: implicit coercions and subtyping
as abbreviation.

6 Conclusion and discussion

During the study of coercive subtyping, we find that conservativity is not enough to capture the
relation between the systems. We borrow the idea of definitional extension from mathematical
logic to describe the relation and formulate it in type theory. With a simple example, we
demonstrate the relations and properties between a type system and its coercive subtyping
extension. Although the example only consists of two basic types and one coercion, it’s a
nice shot containing the idea and key elements of the whole coercive subtyping extension
story. We also give a sketch of the study on coercive subtyping in LF.

We hope this work presents a clear description of extending a type system with coercive
subtyping and wish the notion of definitional extension can help with studies on other
extensions in type theory. For example, implicit syntax of Pollack [16] is a good candidate.
It starts from LEGO [10] and widely used on today’s systems. We write terms with implicit
arguments omitted and they are not well-typed in the system until the missing arguments
have been inserted. It is not a conservative extension and we wish our notion could help
to figure the exact relation out. More broadly, we can think of elaboration. An elaboration
process maps surface language features to underlying constructions. We would like to see if
elaboration is definitional extension or something more.

Acknowledgments. I would like to thank Zhaohui Luo for discussions regarding this topic
and also thank to the anonymous reviewers for their valuable comments.

References
1 David Aspinall and Adriana Compagnoni. Subtyping dependent types. Theoretical Com-

puter Science, 266(1-2):273–309, 2001.
2 Gilles Barthe and Maria João Frade. Constructor subtyping. In S. Doaitse Swierstra, editor,

Proceedings of Programming Languages and Systems, 8 conf. (ESOP’99), volume 1576 of
Lecture Notes in Computer Science, pages 109–127. Springer, 1999.

3 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics.
In Proceedings of Symposium on Logic in Computer Science 1987, pages 194–204. IEEE
Computer Society, 1987.

4 Martin Hofmann. Extensional Concepts in Intensional Type Theory. PhD thesis, University
of Edinburgh, 1995.

5 Stephen Kleene. Introduction to Metamathematics. North Holland, 1952.

T. Xue 267

6 Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, 1994.

7 Zhaohui Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130, 1999.
8 Zhaohui Luo. D-conservativity. Notes, January 2012.
9 Zhaohui Luo. Formal semantics in modern type theories with coercive subtyping. Linguist-

ics and Philosophye, 35(6):491–513, 2012.
10 Zhaohui Luo and Robert Pollack. Lego proof development system: User manual, 1992.
11 Zhaohui Luo, Sergei Soloviev, and Tao Xue. Coercive subtyping: Theory and implementa-

tion. Information and Computation, 223:18–42, February 2013.
12 Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
13 Robin Milner. A theory of type polymorphism in programming. Journal of Computer

Systems and Sciences, 17:348–375, 1978.
14 John C. Mitchell. Type inference with simple subtypes. Journal of Functional Programming,

1(3):245–285, 1991.
15 Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf’s Type

Theory: An Introduction. Oxford University Press, Oxford, 1990.
16 Robert Pollack. Implicit syntax. In the preliminary Proceedings of the 1st Workshop on

Logical Frameworks, 1990.
17 Sergei Soloviev and Zhaohui Luo. Coercion completion and conservativity in coercive sub-

typing. Annals of Pure and Applied Logic, 113(1–3):297–322, 2002.
18 Tao Xue. Theory and Implementation of Coercive Subtyping. PhD thesis, Royal Holloway,

University of London, 2013.
19 Tao Xue and Zhaohui Luo. Dot-types and their implementaion. Logical Aspects of Compu-

tational Linguistics (LACL’12). LNCS, 7351:234–249, 2012.

TYPES 2013

268 Definitional Extension in Type Theory

A LF inference rules

Contexts and assumptions

<>` valid
Γ ` K kind x 6∈ FV (Γ)

Γ, x : K ` valid
Γ, x : K,Γ′ ` valid
Γ, x : K,Γ′ ` x : K

Γ,Γ′ ` J Γ ` K kind x 6∈ FV (Γ) ∪ FV (Γ′)
Γ, x : K,Γ′ ` J

General equality rules

Γ ` K kind
Γ ` K = K

Γ ` K = K′

Γ ` K′ = K

Γ ` K = K′ Γ ` K′ = K′′

Γ ` K = K′′

Γ ` k : K
Γ ` k = k : K

Γ ` k = k′ : K
Γ ` k′ = k : K

Γ ` k = k′ : K Γ ` k′ = k′′ : K
Γ ` k = k′′ : K

Equality typing rules

Γ ` k : K Γ ` K = K′

Γ ` k : K′
Γ ` k = k′ : K Γ ` K = K′

Γ ` k = k′ : K′

Γ, x : K,Γ′ ` J Γ ` K = K′

Γ, x : K′,Γ′ ` J
where J is of form: valid, K0 kind, k : K0, K1 = K2 or k1 = k2 : K0

Substitution rules
Γ, x : K,Γ′ ` valid Γ ` k : K

Γ, [k/x]Γ′ ` valid
Γ, x : K,Γ′ ` K′ kind Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]K′ kind
Γ, x : K,Γ′ ` k′ : K′ Γ ` k : K

Γ, [k/x]Γ′ ` [k/x]k′ : [k/x]K′

Γ, x : K,Γ′ ` K′ = K′′ Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]K′ = [k/x]K′′

Γ, x : K,Γ′ ` k′ = k′′ : K′ Γ ` k : K
Γ, [k/x]Γ′ ` [k/x]k′ = [k/x]k′′ : [k/x]K′

Γ, x : K,Γ′ ` K′ kind Γ ` k = k′ : K
Γ, [k/x]Γ′ ` [k/x]K′ = [k′/x]K′

Γ, x : K,Γ′ ` k′ : K′ Γ ` k1 = k2 : K
Γ, [k1/x]Γ′ ` [k1/x]k′ = [k2/x]k′ : [k1/x]K′

The kind Type

Γ ` valid
Γ ` Type kind

Γ ` A : Type
Γ ` El(A) kind

Γ ` A = B : Type
Γ ` El(A) = El(B)

Dependent product kinds

Γ ` K kind Γ, x : K ` K′ kind
Γ ` (x : K)K′ kind

Γ ` K1 = K2 Γ, x : K1 ` K′1 = K′2
Γ ` (x : K1)K′1 = (x : K2)K′2

Γ, x : K ` k : K′

Γ ` [x : K]k : (x : K)K′ (η) Γ ` K1 = K2 Γ, x : K1 ` k1 = k2 : K
Γ ` [x : K1]k1 = [x : K2]k2 : (x : K1)K

Γ ` f : (x : K)K′ Γ ` k : K
Γ ` f(k) : [k/x]K′

Γ ` f = f ′ : (x : K)K′ Γ ` k1 = k2 : K
Γ ` f(k1) = f ′(k2) : [k1/x]K′

(β) Γ, x : K ` k′ : K′ Γ ` k : K
Γ ` ([x : K]k′)(k) = [k/x]k′ : [k/x]K′ (ξ) Γ ` f : (x : K)K′ x 6∈ FV (f)

Γ ` [x : K]f(x) = f : (x : K)K′

Figure 7 The inference rules of LF.

T. Xue 269

B Proof of Proposition 3

In a type system S specified in LF.
1. If Γ1 is a valid context, ` Γ1 = Γ1
2. If Γ ` Γ1 = Γ2, then Γ ` Γ2 = Γ1.
3. If Γ ` Γ1 = Γ2 and Γ ` Γ2 = Γ3, then Γ ` Γ1 = Γ3.
4. If Γ,Γ1 ` J and Γ ` Γ1 = Γ2 then Γ,Γ2 ` J . (J is of form valid, K kind, k : K,

k1 = k2 : K or K1 = K2)

Proof. Suppose
Γ1 ≡ x1 : K1, x2 : K2, · · · , xn : Kn

Γ2 ≡ x1 : M1, x2 : M2, · · · , xn : Mn

Γ3 ≡ x1 : N1, x2 : N2, · · · , xn : Nn
1. Straight by definition.
2. Since Γ ` Γ1 = Γ2, by definition we have:

Γ ` K1 = M1;
Γ, x1 : K1, · · · , xi−1 : Ki−1 ` Ki = Mi (i = 2, · · · , n)

For any 1 < i ≤ n:
Γ, x1 : K1, · · · , xi−2 : Ki−2, xi−1 : Ki−1 ` Ki = Mi Γ, x1 : K1, · · · , xi−2 : Ki−2 ` Ki−1 = Mi−1

Γ, x1 : K1, · · · , xi−2 : Ki−2, xi−1 : Mi−1 ` Ki = Mi

.

.

.
Γ, x1 : K1, x2 : M2, · · · , xi−1 : Mi−1 ` Ki = Mi Γ ` K1 = M1

Γ, x1 : M1, x2 : M2, · · · , xi−1 : Mi−1 ` Ki = Mi

Γ, x1 : M1, x2 : M2, · · · , xi−1 : Mi−1 ` Mi = Ki

and i = 1 is trivial with Γ ` K1 = M1
Γ `M1 = K1

. Hence, we have Γ ` Γ2 = Γ1 by definition.
3. Since Γ ` Γ2 = Γ3, by definition we have:

Γ ` M1 = N1

Γ, x1 : M1, · · · , xi−1 : Mi−1 ` Mi = Ni (i = 2, · · · , n)
We have Γ ` K1 = M1, and from case 2:

Γ, x1 : M1, · · · , xi−1 : Mi−1 ` Ki = Mi (i = 2, · · · , n)

In the LF, we have transitivity rules for equal kinds, so we can get:
Γ ` K1 = N1

Γ, x1 : M1, · · · , xi−1 : Mi−1 ` Ki = Ni (i = 2, · · · , n)
For any 1 < i ≤ n:

Γ, x1 : M1, · · · , xi−2 : Mi−2, xi−1 : Mi−1 ` Ki = Ni Γ, x1 : M1, · · · , xi−2 : Mi−2 ` Mi−1 = Ki−1

Γ, x1 : M1, · · · , xi−2 : Mi−2, xi−1 : Ki−1 ` Ki = Ni

.

.

.
Γ, x1 : M1, x2 : K2, · · · , xi−1 : Ki−1 ` Ki = Ni Γ ` K1 = M1

Γ, x1 : K1, x2 : K2, · · · , xi−1 : Ki−1 ` Ki = Ni

We have Γ ` Γ1 = Γ3 by definition.
4.

Γ, x1 : K1, · · · , xn−1 : Kn−1, xn : Kn ` J Γ, x1 : K1, · · · , xn−1 : Kn−1 ` Kn = Mn

Γ, x1 : K1, · · · , xn−1 : Kn−1, xn : Mn ` J

.

.

.
Γ, x1 : K1, xx : M2, · · · , xn : Mn ` J Γ ` K1 = M1

Γ, x1 : M1, xx : M2, · · · , xn : Mn ` J

Hence we have Γ,Γ2 ` J .

TYPES 2013

	Introduction
	Motivation: coercive subtyping
	Conservative extension and definitional extension
	Luo's logical framework
	Conservative extension
	Definitional extension

	A simple example
	System I
	System Ic
	Relation between I and Ic
	System I*
	Relation between I and I*
	Relation between Ic and I*

	Coercive subtyping in LF
	System T[C]
	Coherence
	Relation between T[C] and T
	System T[C]0K
	System T[C]*
	Relation between the systems

	Conclusion and discussion
	LF inference rules
	Proof of Proposition 3

