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Abstract
We produce a first order proof of a famous combinatorial result, Ramsey Theorem for pairs and
in two colors. Our goal is to find the minimal classical principle that implies the “miniature”
version of Ramsey we may express in Heyting Arithmetic HA. We are going to prove that Ramsey
Theorem for pairs with recursive assignments of two colors is equivalent in HA to the sub-classical
principle Σ0

3-LLPO. One possible application of our result could be to use classical realization to
give constructive proofs of some combinatorial corollaries of Ramsey; another, a formalization of
Ramsey in HA, using a proof assistant.

In order to compare Ramsey Theorem with first order classical principles, we express it as
a schema in the first order language of arithmetic, instead of using quantification over sets and
functions as it is more usual: all sets we deal with are explicitly defined as arithmetical predicates.
In particular, we formally define the homogeneous set which is the witness of Ramsey theorem
as a ∆0

3-arithmetical predicate.
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1 Introduction

The purpose of this paper is to study, from the viewpoint of first order arithmetic, Ramsey
Theorem [15] for pairs for recursive assignments of two colors, in order to find some principle
of classical logic equivalent to it in Intuitionistic Arithmetic HA. Ramsey theorem is
not intuitionistically provable, and a priori, it is not evident whether a classical principle
expressing Ramsey in intuitionistic arithmetic exists. Our long-time research goal is to study
the constructive content of corollaries in first order arithmetic of Ramsey Theorem using
interactive realizability, and to this aim we want to find the statement and the proof of
Ramsey in first order arithmetic requiring the minimum amount of classical logic. In the
PhD thesis of Giovanni Birolo [4] there is an example of a constructive study of a classical
proof obtained by interactive realizability. Birolo studied a geometric property that required
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the law of Excluded Middle of level one (EM1); for Ramsey, the required principles are higher
than EM1 in the hierarchy of classical principles presented in [1].

Our study of Ramsey Theorem differs from the results in Classical Reverse Mathematics
([5], [6], [13], [8]) in many aspects. We already stressed that we formulate Ramsey in first
order arithmetic, replacing set variables with explicit set definitions. Besides, Classical
Reverse Mathematics is interested in the necessary set existence axioms needed to proof a
theorem and investigates the minimum restriction of the induction schema required in a
proof, while they assume the entire Excluded Middle schema. Our work may be considered
a kind of Intuitionistic Reverse Mathematics: we assume the entire induction schema, and
we investigate the minimum restriction of the Excluded Middle Schema and of some other
classical schemas required in a classical proof. Therefore our approach is different from
what Ishihara calls Constructive Reverse Mathematics in [9]. Ishihara works in Bishop’s
Constructive Mathematics which is an informal mathematics using intuitionistic logic and
assuming some function existence axioms; instead, he does not study the level of classical
principles used in the proof.

As regards the comprehension axiom, instead, there are some links with Classical Reverse
Mathematics. Recall that the description axiom says that each arithmetic binary predicate
that is fully and uniquely defined is a graph of some function: N→ N. If we add function
variables and we assume the description axiom, the Excluded Middle for an arithmetic
predicate and the comprehension axiom for the same predicate are equivalent in HA +
functions.

We may stress the difference between the two approaches through an example. Let
consider the Infinite Pigeonhole Principle. On the one hand, in reverse mathematics, this
principle is equivalent to BΣ0

2( the bounding principle for Σ0
2-formulas, see [16]) which is

equivalent to ∆0
2-induction ([17]). On the other hand, in our setting, it is a consequence

of the law of Excluded Middle of level two: EM2. In [12] Liu considered the base system
for reverse mathematics RCA0, in which we assume the entire Excluded Middle, but only
induction for Σ0

1 formulas and recursive comprehension. Liu proved that Ramsey Theorem
for pairs in two colors does not imply WKL0, Weak König’s Lemma for recursive trees, in
RCA0. Instead in [11] Kohlenbach and Kreuzer proved in iRCA*

0, the intuitionistic system
corresponding to RCA* (Σ0

0-induction, exponentiation axioms but no excluded middle), that
Ramsey Theorem for pairs implies Π0

2-LEM, which is more than WKL0. In this work we drop
function and set variables, and we consider Heyting Arithmetic HA, in which we have no
Excluded Middle Schema but we have the full induction schema. Under these assumptions,
we prove that recursive Ramsey Theorem for pairs in two colors is equivalent to Σ0

3-LLPO
(Lesser Limited Principle of Omniscience for Σ0

3 predicates, a principle weaker than full
Excluded Middle, but stronger than WKL0, which we explain below).

Our study of Ramsey Theorem differs also from the no-counterexample [2], since we do
not transform Ramsey Theorem into some weaker and constructively provable statement,
but we study the minimum restriction of the Excluded Middle schema required to prove
the original result in HA. We differ from the dialectica interpretation ([11], [14]), because it
transforms RT2

2 into a constructively provable, classically equivalent statement and deletes
the non-constructive content leaving only the combinatorial core. Moreover the dialectica
interpretation requires complex types and variables for each type, while we use the type of
natural numbers and of functions over natural numbers only, and no function variable.

At the beginning of this work, in a private communication, Alexander Kreuzer conjectured
that Erdős Rado proof of Ramsey Theorem may be formalized in HA + EM4, Excluded
Middle restricted to Σ0

4 formulas. We prove that he was right. Moreover, by modifying
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66 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

Jockusch’s proof of Ramsey [10] (that is already a modified version of Erdős Rado proof
of the same result) we prove that the classical principle Σ0

3-LLPO is in fact equivalent to
Ramsey Theorem in HA. Σ0

3-LLPO (see [1]) is a classical principle weaker than Excluded
Middle Schema for Σ0

3 formulas, which may be restated as the conjunction of Excluded
Middle for Σ0

2 formulas and De Morgan Laws for Σ0
3 formulas. If we add Choice to HA,

Σ0
3-LLPO is equivalent to WKL3, Weak König’s Lemma for Σ0

2 trees.
We hope to apply, in future works, the method called interactive realizability to understand

and explain the computational content of Ramsey Theorem, and to find new constructive
proofs for some consequences of it. The interactive realizability is a realizability interpretation
for first order classical arithmetic introduced in 2008 by Stefano Berardi and Ugo de’ Liguoro
[3]. If a corollary of Ramsey Theorem is a consequence of Intuitionistic Ramsey Theorem,
an alternative method to prove it constructively could be to use the Coquand’s work [7].
However his proof use the Brouwer’s thesis, so this method does not guarantee a proof in
HA.

This is the plan of the paper. In Section 2 we explain how to state Ramsey Theorem
without using functions and set variables; in Section 3 we prove that Ramsey Theorem
implies Σ0

3-LLPO and in Section 4, by modifying Jockusch’s proof, we prove the opposite
implication. In the conclusions we discuss the interest of the equivalence with Σ0

3-LLPO.

2 Ramsey Theorem and Classical Principles for Arithmetic

In this section we introduce some notations for Ramsey Theorem and for some classical
principles. Any natural number n is identified with the set {0, . . . , n − 1}. We use N to
denote the least infinite ordinal, which is identified with the set of natural numbers. For any
set X and any natural number r,

[X]r = {Y ⊆ X | |Y | = r}

denotes the set of subsets of X of cardinality r. If r = 1 then [N]r is the set of singleton
subsets of N, and just another notation for N. If r = 2 then [N]2 is the complete graph on
N: we think of any subset {x, y} of N with x 6= y as an edge of the graph. We will think
that each edge {x, y} has direction from min{x, y} to max{x, y}. Let n,m ∈ N, then a map
f : [N]r → n is called a coloring of [N]r with n colors. If r = 2 and f({x, y}) = c < n, then
we say that the edge {x, y} has color c. If f : [N]r → n is a map then for all X ⊆ N we
denote with f ′′[X]r the set of colors of hyper-edges of X, that is:

f ′′[X]r = {k ∈ N | ∃e ∈ [X]r such that f(e) = k} .

We say that X ⊆ [N]r is homogeneous for f , or f is homogeneous on X, if all hyper-edges
of X have the same color, that is, there exists k < n such that f ′′[X]r = {k}. We also say
that X is homogeneous for f in color k. If r = 1 we can think of the function f as a point
coloring map on natural numbers. In this case an homogeneous set X is any set of points of
N which all have the same color. If r = 2 we can think of the function f as an edge coloring
of a graph that has as its vertices the natural numbers. In this case an homogeneous set X
is any set of points of N whose connecting edges all have the same color.

We denote Heyting Arithmetic, with one symbol and axioms for each primitive recursive
map, with HA. We work in the language for Heyting Arithmetic with all primitive recursive
maps, extended with the symbols {f0, . . . , fn}, where n is a natural number and fi denotes
a total recursive function for all i < n+ 1. These fi will indicate an arbitrary coloring in the
formulation of Ramsey Theorem below. If P = ∀x1∃x2 . . . p(x1, x2, . . . ), with p arithmetic
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atomic formula, and Q = ∃x1∀x2 . . .¬p(x1, x2 . . . ), then we say that P , Q are dual each
other and we write P⊥ = Q and Q⊥ = P . Dual is defined only for prenex formulas as P , Q.
We consider the classical principles as statement schemas as in [1]. A conjunctive schema is
a set C of arithmetical formulas, expressing the second order statement “for all A in C, A
holds” in a first order language. We prove a conjunctive schema C in HA if we prove any A
in C in HA. A conjunctive schema C implies a formula A in HA if s1∧· · ·∧sn ` A in HA for
some s1, . . . , sn ∈ C. The conjunctive schema C implies another conjunctive schema C ′ in
HA if C implies A in HA for any A in C ′. In order to express Ramsey Theorem we also have
to consider the dual concept of disjunctive schema D, expressing the second order statement
“for some A in D, A holds” in a first order language. We prove a disjunctive schema D in
HA if we prove s1 ∨ · · · ∨ sn in HA for some s1, . . . , sn ∈ D. A disjunctive schema D implies
a formula A in HA if s ` A in HA for all s ∈ D.

The infinite Ramsey Theorem is a very important result for finite and infinite combinat-
orics. In this paper we study Ramsey Theorem in two colors, for singletons and for pairs.
They are informally stated as follows:

I RT1
2(Σ0

n). For any coloring ca : N → 2 of vertices with a parameter a, there exists an
infinite subset of N homogeneous for the given coloring. (ca ∈ Σ0

n).

I RT2
2(Σ0

n). For any coloring ca : [N]2 → 2 of edges with a parameter a, there exists an
infinite subset of N homogeneous for the given coloring. (ca ∈ Σ0

n).

RT2
2(Σ0

0) (respectively RT1
2(Σ0

0)) says that given a family {ca | a ∈ N} of recursive edge
(vertex) colorings of a graph with N vertices, then for any coloring there exists a subgraph
with N vertices such that each edge (vertex) of the subgraph has the same color.

In this work we formalize Ramsey Theorem for two colors, for pairs (respectively, for
singletons) and for recursive colorings by the following disjunctive schema which we call
Ramsey schema R:

R := {∀a(B(., ca) infin. hom. black ∨W (., ca) infin. hom. white) | B,W arithm. predic.} .

Here c = {ca | a ∈ N} denotes any recursive family of recursive assignment of two colors,
black and white. A sufficient condition to prove Ramsey schema is to find at least two
predicates B, W and a proof of ∀a(B(., ca) infinite homogeneous black ∨ W (., ca) infinite
homogeneous white) in HA. For short we say that for each recursive family of recursive
colorings there is an homogeneous set.

The conjunctive schemata for HA we consider, expressing classical principles and taken
from [1], are the followings.

I Σ0
n-LLPO. Lesser Limited Principle of Omniscience. For any parameter a

∀x, x′ (P (x, a) ∨ Q(x′, a)) =⇒ ∀xP (x, a) ∨ ∀xQ(x, a). (P, Q ∈ Σ0
n−1)

It is a kind of law for prenex formulas and if we assume the Axiom of Choice it is
equivalent to Weak König’s Lemma for Σ0

n−1 trees. We postpone the discussion about this
principle at the conclusions of the paper.

I Pigeonhole Principle for Π0
n. The Pigeonhole Principle states that given a partition of

infinitely many natural numbers in two classes, then at least one of these classes has infinitely
many elements. For any parameter a

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))] =⇒

∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z [z ≥ x ∧ Q(z, a)]. (P,Q ∈ Π0
n)
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68 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

I EMn. Excluded Middle for Σ0
n formulas. For any parameter a

∃x P (x, a) ∨ ¬∃x P (x, a). (P ∈ Π0
n−1)

Recall that P⊥ denotes the dual of P for any prenex P . As shown in [1, corollary 2.9]
the law of Excluded Middle for Σ0

n formulas is equivalent in HA to

∃x P (x, a) ∨ ∀x P (x, a)⊥. (P ∈ Π0
n−1)

In all our schemata we use parameters. The parameter a is necessary since we need to use in
HA statements with a free variable a, like

∀a (∀x P (x, a) ∨ ∃x ¬P (x, a))

in our proof.

3 Ramsey Theorem for pairs and recursive coloring implies the
Limited Lesser Principle of Omniscience for Σ0

3 formulas

In this section we prove RT2
2(Σ0

0) =⇒ Σ0
3-LLPO in HA. From now on, all proofs are done in

Intuitionistic Arithmetic HA. By definition of disjunctive schema, we have to prove that for
each P in Σ0

3-LLPO, there exist a finite number of recursive families of recursive colorings
ca,0, . . . , ca,j−1 such that, fixed any Wi(., ca,i) and Bi(., ca,i), if we assume

{∀a(Wi(., ca,i) infinite and homogeneous ∨Bi(., ca,i) infinite and homogeneous) | i < j}

then we deduce P .
We say that a sequence is stationary if it is constant from a certain point on. In our proof

we need some conjunctive schemata provable in Classical Arithmetic: that, in every primitive
recursive family of monotone and bounded above sequences s : N → N, each sequence is
stationary and that, in every primitive recursive family of recursive sequences t : N→ N for
which there are at most k values of x such that t(x) 6= t(x+ 1), each sequence is stationary.
In order to obtain these results in HA from RT2

2(Σ0
0) we need to prove the EM1 schema first,

as shown by the following lemma (proved in HA, as all lemmas for now on).

I Lemma 1. 1. RT2
2(Σ0

0) implies EM1;
2. EM1 implies that, for any family F = {s(n, ·) | n ∈ N} of recursive monotone and bounded

above sequences enumerated by a binary primitive recursive function s : N× N→ N, each
sequence in F is stationary;

3. EM1 implies that, for any family G = {t(n, ·) | n ∈ N} of recursive sequences enumerated
by a binary primitive recursive function t : N × N → N for which there are at most k
values of x such that t(n, x) 6= t(n, x+ 1), each sequence in G is stationary.

Proof. 1. RT2
2(Σ0

0) implies RT1
2(Σ0

0) that implies the infinite pigeonhole principle which
implies EM1.
a. For the first implication, given a coloring of the points ca : N → 2 we consider a

coloring of the edges

c∗a : [N]2 → 2

that depends only on the smallest point of the edge, that is, for every x < y,
c∗a({x, y}) := ca(x). The infinite homogeneous set for c∗a, whose existence is guaranteed
by RT2

2(Σ0
0), is such that it is homogeneous also for ca. Then RT2

2(Σ0
0) implies RT1

2(Σ0
0).
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b. The infinite pigeonhole principle can be stated as follows

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))] =⇒

∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z [z ≥ x ∧ Q(z, a)] ,

with P and Q recursive predicates. Assuming the hypothesis of the principle, we define
the following recursive coloring ca : N→ 2: for each x ∈ N ca(x) := 0 if and only if the
first witness zx of

∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))]

is such that P (zx, a) is true. Thanks to RT1
2(Σ0

0) we have an infinite homogeneous set.
If it is uniform in color 0 then P is true for infinitely many z, otherwise Q is true for
infinitely many z.

c. By hypothesis we have the pigeonhole principle:

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))] =⇒

∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z [z ≥ x ∧ Q(z, a)] ,

with P and Q recursive predicates. We want to show that

∃x P (x, a) ∨ ∀x ¬P (x, a) ;

with P recursive predicate. To prove it, we apply the pigeonhole principle with

P ∗(z, a) := ∃y ≤ z P (y, a)

Q∗(z, a) := ∀y ≤ z ¬P (y, a) .

The hypothesis of the pigeonhole principle holds for P ∗, Q∗ with z = x. For the same
principle, we deduce that either

∀x ∃z [z ≥ x ∧ ∃y ≤ z P (y, a)]

is true, from which it follows ∃x P (x, a), or

∀x ∃z [z ≥ x ∧ ∀y ≤ z ¬P (y, a)]

is true, from which it follows ∀x ¬P (x, a).
2. Suppose that n ∈ N and s(n, ·) ∈ F . We assume that s is recursive and there is an r ∈ N

such that for every x, y ∈ N

x ≤ y =⇒ s(n, x) ≤ s(n, y) ≤ r .

We prove that there exists m such that for every y ≥ m we have s(n,m) = s(n, y). The
proof is by induction on r. If r = 0 then s(n, x) = 0 for each x, hence we choose m = 0.
Supposing the thesis holds for r, we prove the thesis for r+ 1 using EM1. For EM1, either
there is m such that s(n,m) = r + 1, or not. In the first case by monotonicity we have
that for every x, m ≤ x implies r + 1 = s(n,m) ≤ s(n, x) ≤ r + 1, then s(n, x) = r + 1
for every x ≥ m. In the second case, we have s(n, x) ≤ r for each x ∈ N, we apply the
induction hypothesis and deduce the thesis. We need to use only one statement of EM1

∀n∀r (∃m(s(n,m) = r + 1) ∨ ∀m(s(n,m) 6= r + 1)) ,

which implies all the formulas in EM1 used in the proof.
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70 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

3. Let s(n, x) be the number of y < x such that t(n, y) 6= t(n, y + 1). s(n, ·) is monotone by
construction. Since the number of changes of value of t(n, ·) is bounded by some r ∈ N
then s(n, ·) is bounded by the same r. Moreover {s(n, ·) | n ∈ N} is enumerated by a
primitive recursive function, since G has this property. So s(n, ·) is stationary from a
certain m onwards thanks to the second part of this Lemma. From the same point m
even t(n, ·) is stationary.

J

We may now prove the main result of this section:

I Theorem 2. RT2
2(Σ0

0) implies Σ0
3-LLPO.

Proof. Let a be a parameter, we assume the hypothesis of Σ0
3-LLPO:

∀x, x′ (H0(x, a) ∨H1(x′, a)) ,

where

H0(x, a) := ∃y ∀z P0(x, y, z, a)

H1(x, a) := ∃y ∀z P1(x, y, z, a)

for some P0, P1 primitive recursive predicates. In order to prove

∀x H0(x, a) ∨ ∀x H1(x, a)

we define a recursive 2-coloring such that:
if there are infinitely many white (0) edges from x, then

H0(0, a) ∧ · · · ∧H0(x, a) ;

if there are infinitely many black (1) edges from x, then

H1(0, a) ∧ · · · ∧H1(x, a) .

Given x andm, wherem > x, the color of {x,m} expresses a conjecture based on a limited
study of the predicates Hi(x, a). White represents the hypothesis that H0(0, a)∧· · ·∧H0(x, a)
is true, after the analysis of the statements H0(0, a), . . . , H0(x, a) with quantifiers restricted
to the set [0,m]. Vice versa, black represents the hypothesis that H1(0, a) ∧ · · · ∧H1(x, a) is
true, after the analysis of the statements H1(0, a), . . . , H1(x, a) with quantifiers restricted
to the set [0,m].

The coloring, and so the current hypothesis, is defined as follows. For every n ∈ N we
define a primitive recursive function

ya
n(m, c) : N× 2→ m+ 1

that returns the minimum y ≤ m+ 1 such that

∀z ≤ m Pc(n, y, z, a) ,

if such y exists. If such y does not exist then ya
n(m, c) = m.

Note that ya
n(m, c) is weakly increasing: if ya

n(m+ 1, c) ≤ m, then by definition

∀z ≤ m+ 1 Pc(n, ya
n(m+ 1, c), z, a) ,
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thus trivially

∀z ≤ m Pc(n, ya
n(m+ 1, c), z, a)

follows and hence by construction ya
n(m, c) ≤ ya

n(m + 1, c) ≤ m; on the other hand if
ya

n(m+ 1, c) = m+ 1 we obtain ya
n(m+ 1, c) > m ≥ ya

n(m, c).
For all x ∈ N define a sequence Cx : N→ 2, where, for all m > x, Ca

x(m) will be the color
of the edge {x,m}.

Ca
x(m) = c expresses that, analysing the interval [0,m], Hc(0, a)∧· · ·∧Hc(x, a) is believed

to be true. The definition of Ca
x(m) is given by induction on m.

Ca
x(0) = 0;

if for all n ≤ x ya
n(m,Ca

x(m)) = ya
n(m + 1, Ca

x(m)) then Ca
x(m + 1) = Ca

x(m), else
Ca

x(m+ 1) = 1− Ca
x(m).

We paint the edge {x,m} with color Ca
x(m). Now we want to prove that for some m0

and for all m ≥ m0, that Ca
x(m) is stationary, that ya

n(m, c) is stationary for every n ≤ x,
and that y = ya

n(m, c) is a witness of

Hc(n, a) := ∃y ∀zPc(n, y, z, a) .

As a matter of fact we supposed:

∀n, n′ ≤ x(H0(n, a) ∨H1(n′, a)) .

Hence we can constructively prove that witnesses exist either for H0(0, a) ∧ · · · ∧H0(x, a) or
for H1(0, a)∧· · ·∧H1(x, a), so there exist d1, d2, . . . , dx such that either for all n = 0, . . . , x

∀z P0(n, dn, z, a)

or for n = 0, . . . , x

∀z P1(n, dn, z, a).

In the first case we have

ya
0 (m, 0) ≤ d0, . . . , y

a
x(m, 0) ≤ dx

for each m, so, thanks to the first and the second part of Lemma 1, the recursive sequences
(ya

0 (m, 0), . . . , ya
x(m, 0)) are stationary. In the other case we have

ya
0 (m, 1) ≤ d0, . . . , y

a
x(m, 1) ≤ dx

for each m, so, as above, the recursive sequence (ya
0 (m, 1), . . . , ya

x(m, 1)) are stationary.
Moreover the sequences (ya

0 (m, c), . . . , ya
x(m, c))m∈N with c < 2 increase in at least one

component every second change of color. Since one of these is stationary, from a point
onwards there could be only one change of color, so the number of change of values of Ca

x(m)
is bounded above. Thanks to the first and the third part of Lemma 1 the sequence Ca

x(m) is
stationary, for each x ∈ N.

Now we need to prove that if there exists m0 such that for all m ≥ m0 C
a
x(m) = c, then

Hc(0, a) ∧ · · · ∧Hc(x, a). In this case, by definition of ya
n(·, c), there exist e0, . . . , ex such

that ya
n(m, c) = en for all n = 0, . . . , x. It follows that

∀z ≤ m Pc(n, en, z, a)
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72 Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

for each n ≤ x, m ≥ m0, hence

∀z Pc(n, en, z, a)

for every n ≤ x, and thus Hc(n, a) for all n ≤ x.
Applying RT2

2(Σ0
0), there exists an infinite homogeneous setX. Hence ifX is homogeneous

in color c, and x ∈ X, then by stationarity of Ca
x(m) every edge {x,m} is of color c, except

for a finite number of cases. Thus Hc(0, a)∧· · ·∧Hc(x, a) for each x ∈ X and so for infinitely
many x. We obtain

∀x Hc(x, a) .

In order to obtain an implication between schemata, observe that only three finite sets
of statements in RT2

2(Σ0
0) are required in the proof: the statement that corresponds to the

coloring of the edges and finitely many statements which corresponds to the two uses of
Lemma 1 in the previous page. J

4 The Limited Lesser Principle of Omniscience for Σ0
3 formulas

implies Ramsey Theorem for pairs and recursive coloring

In this section we modify Jockusch’s proof of Ramsey Theorem [10] in order to obtain a proof
in HA of Σ0

3-LLPO =⇒ RT2
2(Σ0

0). It is enough to prove that if {ca | a ∈ N} is a recursive
family of recursive colorings, a finite number of statement in Σ0

3-LLPO imply that there are
predicates W (., c) and B(., c) such that,

∀a(W (., ca) infinite and homogeneous ∨B(., ca) infinite and homogeneous ) .

We first sketch Jockusch’s proof of RT2
2 (which is itself a modification of Erdős Rado

proof of RT2
2): it consists in defining a suitable infinite binary tree J . We first remark that

RT1
2 (Ramsey Theorem for colors and points of N) is nothing but the Pigeonhole Principle:

indeed, if we have a partition of N into two colors, then one of the two classes is infinite.
We informally prove now RT2

2 from RT1
2. Fix any coloring f : [N]2 → 2 of all edges of the

complete graph having support N. If X is any subset of N, we say that X defines a 1-coloring
of X if for all x ∈ X, any two edges from x to some y, z in X have the same color. If X is
infinite and defines a 1-coloring, then, by applying RT1

2 to X we produce an infinite subset
Y of X whose points all have the same color c, that is, such that all edges from all points of
X all have the color c. Thus, a sufficient condition for RT2

2 is the existence of an infinite set
defining a 1-coloring. In fact we need even less. We say that a tree V included in the graph
N defines a 1-coloring w.r.t. V if for all x ∈ V , for any two proper descendants y, z of x in
V , the edges x to y, z have the same color. Assume there exists some infinite binary tree V
defining a 1-coloring w.r.t. V . Then V has some infinite branch B by König’s Lemma. B
is a total order in V , therefore B is a complete subgraph of N. Thus, B defines an infinite
1-coloring over the points of B, and proves RT2

2. Therefore a sufficient condition for RT2
2 is

the existence of an infinite binary tree V defining a 1-coloring w.r.t. V . Erdős Rado proof,
Jockusch’s proof and our proof differ in the definition of V , even if the general idea is similar.

I Theorem 3. Σ0
3-LLPO implies RT2

2(Σ0
0) in HA.

Proof. We consider Jockusch’s version of Erdős Rado proof of RT2
2 and we modify it in

order to do not use classical principles stronger than Σ0
3-LLPO. Erdős and Rado introduce

an ordering relation ≺E on N which defines the proper ancestor relation of a binary tree E
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structure on N. The 2-coloring on edges of N, restricted to the set of pairs x ≺E y, gives
the same color to any two edges x ≺E y and x ≺E z with the same origin x. This defines a
canonical 1-coloring over the nodes of E. Jockusch defines a relativization ≺J to an infinite
set J included in N of the relation ≺E , that still defines a binary tree and a 1-coloring over
the nodes of J . In both proofs, an infinite homogeneous set is obtained from an infinite set
of nodes of the same color in an infinite branch of the tree. In Erdős-Rado and Jockusch’s
proofs, the pigeonhole principle is applied to a ∆0

3-branch obtained by König’s Lemma. To
formalize this proof in HA we would have to use the classical principle Σ0

4 -LLPO. Our goal
is to prove RT2

2(Σ0
0) using the weaker principle Σ0

3-LLPO. We will define an infinite binary
tree T with order relation ≺T such that T is Π0

1 and has exactly one infinite branch, the
rightmost. T is a variant of J such that we may prove that there are infinitely many nodes
of the same color in the infinite branch using only Σ0

3-LLPO. An infinite set totally ordered
for ≺T and painted on the same color will be the monochromatic set for the original graph.
Moreover our proof recursively defines two monochromatic ∆0

3-sets, one of each color, that
can not be both finite, even if we can not decide which of these is the infinite one.

Let V be a subset of N such that 0 ∈ V . Firstly define, for each subset V of N such that
0 ∈ V , a tree structure ≺V for V , then we choose a certain set for V . More precisely, we
define a relation x ≺V y for each x ∈ V and y ∈ N, that restricted to V × V will define a
tree with root 0. The definition of x ≺V y is given by induction on x: at each step we use
only the subset V ∩ (x+ 1) of V .

0 ≺V 1.
x ≺V y if and only if x ∈ V and y ∈ N and x < y and for every z such that z ≺V x:
{z, x} and {z, y} have the same color.

We define a tree T choosing an infinite sequence of points x0, x1, . . . of N. The Jockusch
relation ≺J restricted from J×N to J×J in general is different from the Erdős Rado relation
≺E restricted from N×N to J × J , but both relations have the same properties, which hold
also for our relation ≺V , no matter what is V ⊆ N. Let us briefly state them.

I Lemma 4. Let V ⊆ N be any predicate of HA, 0 ∈ V , and ≺V defined as above.
1. ≺V⊆<.
2. 0 ≺V x for every x ∈ Nr {0}.
3. If x, y ∈ N and V ∩ (x+ 1) = U ∩ (x+ 1) then

x ≺V y ⇐⇒ x ≺U y .

4. ≺V is transitive.
5. If x < y ≺V z and x ≺V z then x ≺V y.
6. Let z ∈ N. The relations < and ≺V describe the same order on

pdV (z) := {x ∈ V | x ≺V z} ,

i.e. for each x, y ∈ pdV (z)

x < y ⇐⇒ x ≺V y .

Proof. 1. It follows from the definition of ≺V .
2. It follows from definition of ≺V and from the fact that does not exist a natural number z

such that z ≺V 0, since for the first point we should have z < 0.
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3. Prove by induction on x. For x = 0 it follows from the second point. Suppose that it is
true for each z < x. Prove ⇒. Assume x ≺V y, then by definition

x ∈ V ∧ y ∈ N ∧ ∀z ≺V x ca({z, x}) = ca({z, y}) .

By hypothesis it follows that x ∈ U , since

V ∩ (x+ 1) = U ∩ (x+ 1) ,

and thus, by induction hypothesis on z < x and by V ∩ (z + 1) = U ∩ (z + 1), we obtain

z ≺V x ⇐⇒ z ≺U x ,

hence

x ∈ U ∧ y ∈ N ∧ ∀z ≺U x ca({z, x}) = ca({z, y}) ;

i.e. x ≺U y. The proof of the vice versa is analogous.
4. (x ≺V y) ∧ (y ≺V z) =⇒ x ≺V z .

By induction on z. For z = 0 it is true since x, y ≺V 0 is false. Assume that the
transitivity holds for all z′ < z and that

x ≺V y ∧ y ≺V z ,

then, by definition and by inductive hypothesis on y < z,

∀w ≺V x (w ≺V y ∧ ca({w, x}) = ca({w, y}) = ca({w, z})) ,

we conclude x ≺V z by the definition of V .
5. By induction on x. If x = 0 it is trivial. Assume that it is true for each t < x and we

prove it for x. Observe that x ∈ V , y ∈ V and z ∈ N. Since x ≺V z, we have that

∀t ≺V x ca({t, x}) = ca({t, z}) ,

and since y ≺V z we obtain

∀t′ ≺V y ca({t′, y}) = ca({t′, z}) .

Since x < y, in order to prove x ≺V y it suffices to show that

∀t ≺V x(t ≺V y) .

Let t ≺V x, then t ≺V x ≺V z and so, thanks to transitivity, we obtain t ≺V z. Since
we have t < x < y ≺V z and t ≺V z, then t ≺V y by induction hypothesis. Therefore
x ≺V y.

6. (⇐) follows from the first property. (⇒). Let x, y be such that x, y ≺V z and x < y.
Then, thanks to point 5 and since x < y ≺V z and x ≺V z, we have x ≺V y.

J

By the sixth point of Lemma 4, the relation ≺V defines a total order on pdV (z) for each
z ∈ V ; by the second point of Lemma 4 we have 0 ∈ pdV (z) if z > 0. Hence ≺V defines a
tree with root 0 (we say that ≺V is the father/child relation).

It remains to choose a particular tree T definable by a predicate of HA, to use it in the
proof of Ramsey Theorem. Define, by induction on n, the set of the first n+ 1 nodes of T :

Tn := {x0, . . . , xn} .
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As auxiliary parameter we define a color cn in {0, 1} as follows: if n = 0 then cn = 0 and if
n > 0 then cn = c({Father(xn), xn}). The next edge added to Tn, if possible, should come
from xn and have color cn. The proof of correctness of the definition of T requires the law
of Excluded Middle of level 1, which is a consequence of Σ0

3-LLPO (see [1]). T is a finite
conjunction of decidable statements or simply universal statements and so it is Π0

1.
The next node xn+1 of T is the first natural number z which satisfies the predicate we

call “First Choice”, or, if none exists, the first which satisfies the predicate we call “Second
Choice”.

z is a first choice node after Tn if z is greater than xn in the relation defined by Tn, and
the edge from xn to z has color cn;

FirstChoice(z, Tn) := z �Tn
xn ∧ c({z, xn}) = cn .

FirstChoice(z, Tn) is decidable.
z is a second choice node after Tn if z is the first node greater than some ancestor xp of
xn in the relation defined by Tn, and for no proper descendant of xp and ascendant of xn

there is such a z.

SecondChoice(z, Tn) := ∃p < n+ 1{[z �Tn
xp ∧ ∀y < z(y > xn ⇒ y 6�Tn

xp)]
∧∀h ≤ n[(h ≥ p+ 1 ∧ xh �Tn

xp ∧ xn <Tn
xh)⇒ ∀w(w > xn ⇒ w 6�Tn

xh)]}.

SecondChoice(z, Tn) is Π0
1.

Formally, z is the chosen node after Tn either if z is the minimal first choice node, or if there
are not first choice nodes and z is the unique second choice node;

Chosen({z, Tn}) :=[FirstChoice(z, Tn) ∧ ∀y < z¬FirstChoice(y, Tn)]
∨ [∀y¬FirstChoice(y, Tn) ∧ SecondChoice(z, Tn)].

Chosen(z, Tn) is Π0
1. We informally define the tree T , then we translate its definition in HA.

I Definition 5 (Informal definition of T ). We informally define Tn by induction on n.
If n = 0 then T0 = x0 := 0.
For n+ 1, if Chosen(xn+1, Tn), then Tn+1 = Tn ∪ {xn+1}.
T =

⋃
n∈N

Tn .

The definition 5 of T (which is not yet a definition in HA) uses EM1, in other words an
oracle for the properties Σ0

1, hence T is a ∆0
2 tree. We may represent in HA by some Π0

1
predicates: “x0, . . . , xn are the first n nodes of T” and x ∈ T .

I Definition 6 (Formal definition of T ). “x0, . . . , xn are the first n nodes of T” is the
predicate of HA:

(x0 = 0) ∧ ∀i < nChosen(xi+1, {x0, . . . , xi})

“x is a node of T” is the predicate of HA:

Node(x) := ∃n < x∃x0, . . . , xn < x(Chosen(x, {x0, . . . , xn})∧

“x0, . . . , xn are the first n nodes of T”) ;

Both predicates are Π0
1. Now, we are going to prove that T of definition 6 satisfies the

requirements of definition 5.
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I Lemma 7. If T is the tree defined by definition 5, every occurrence of the relation ≺Tn in
FirstChoice and SecondChoice can be replaced by an occurrence of the relation ≺T .

Proof. Just see that the definition guarantees that for each n

Tn ∩ (x+ 1) = T ∩ (x+ 1) ,

for each x ∈ Tn. Thus, applying the third point of Lemma 4, for every x ∈ Tn and for every
y ∈ N

x ≺Tn y ⇐⇒ x ≺T y. J

The fact that T of definition 6 satisfies the requirements of definition 5 is a consequence
of the uniqueness of the chosen node.

I Lemma 8. For each n there exists a unique z such that Chosen(z, Tn).

Proof. The uniqueness follows since we choose either the minimal first choice node, or, if it
does not exist, the unique second choice node. The existence is a consequence of the EM1
statement:

∀z¬FirstChoice(z, Tn) ∨ ∃zFirstChoice(x, Tn) .

If there exists z which satisfies FirstChoice(z, Tn) then z is the chosen node, otherwise we
prove that the second choice node exists. As a matter of fact, thanks to Σ0

3-LLPO, EM1
holds; and, by EM1, we may prove in HA that either there is a first z such that z �T xn, a
statement we may write as φ(xn):

φ(x) := ∃z((z �T x) ∧ ∀y < z(y > x =⇒ y 6�T x)

or for all z, z �T xn is false, a statement we may write as ψ(xn), where:

ψ(x) := ∀z(z 6�T x) .

Informally, if φ(xn), i.e. if xn has a first child z greater than xn, we chose z. On the other
hand, if ψ(xn), i.e., if xn has no child z greater than xn, we can decide if the father xp of xn

has got a child greater than xn or not, and so on. In the worst case we arrive at the root 0,
which has at least the child xn + 1, which is > xn.

Formally, we have to prove the following formula:

∃x ≤ xn(∀y ≤ xn((y > x ∧ y ≺Tn
xn) =⇒ ψ(y)) ∧ (x �Tn

xn) ∧ φ(x));

which follows by the maximalization principle applied to the list 0 = xn0 , . . . , xnp = xn of
ancestors of xn, and by φ(xn0) and ∀x.φ(x) ∨ ψ(x). J

Observe that the construction of the tree required one instance of two formulas of the
EM1 schema with different parameters. Each formula in EM1 used in the proof above of
Lemma 8 is an instance of one of the following formulas:

∀n∀〈x0, . . . , xn, cn〉(∀x¬FirstChoice(x, Tn) ∨ ∃xFirstChoice(x, Tn)) ,

and

∀x(∃z((z �T x) ∧ ∀y < z(y > x =⇒ y 6�T x) ∨ ∀z(z 6�T x) .
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So only two statements of Σ0
3-LLPO (the ones that imply the above formulas in EM1 )

are sufficient in order to prove the existence of the tree.
Let rn the branch in Tn that ends with xn.

rn = {xi0 , . . . , xim} ,

where xi0 = 0 and xim
= xn. We describe how rn grows. If the z which satisfies Chosen(z, Tn)

is such that FirstChoice(z, Tn) then rn+1 = rn ∪ z, while if it satisfies SecondChoice(z, Tn)
then there exists xp ∈ Tn such that z �Tn

xp moreover for every y > xn and for each h > p

such that xh is in rn between xp+1 and xn, y �Tn
xh does not hold. Observe that since

xn <Tn xp, we have xp ∈ rn. From this characterization of rn we deduce:

I Lemma 9. Let T be the tree defined above, and x, y, z ∈ N.
1. All nodes of T having descendants after xn are in rn: if xi ∈ Tn, z > xn, and z �Tn

xi,
then xi ∈ rn.

2. If x ∈ T has two children y, z ∈ T , with y < z then y has no descendants in T which are
> z.

Proof. 1. We prove the statement for all z, i by induction on n. If n = 0 it is trivial. Now
suppose that the thesis is true for n and prove it for n+ 1. Let rn+1 be the branch of
Tn+1 that ends with xn+1. We have to check that for each xk ∈ Tn+1 r rn+1, there are
no y �T xk such that y > xn+1. By definition of T , we have rn+1 ∩ xn = {xi0 , . . . , xiq},
where xiq

is the xp of the predicate SecondChoice. Thus, if xk ∈ Tn+1 r rn+1, there are
two possibilities left: either xk ∈ {xiq+1 , . . . , xim}, or xk ∈ Tn r rn. In the first case, by
the choice of xp there is not any y > xn such that

y �T xim
∨ . . . ∨ y �T xiq+1 .

Even more so, there is not any y > xn+1 > xn such that

y �T xim
∨ . . . ∨ y �T xiq+1 .

In the second case, by induction hypothesis, for every xk ∈ Tn r rn there do not exist any
y �T xk for which y > xn, hence there are not any y �T xk for which y > xn+1 > xn.

2. Assume z = xn+1 is the node chosen by some Tn = {x0, . . . , xn}. x has a child y < z in
T , therefore some child y ∈ Tn, hence x 6= xn because xn is a leaf in Tn. z is a child of x
in T , therefore, by definition of Chosen, z is a second choice node with xp = x for some
p < n. By definition of SecondChoice(z, Tn) we have

y �T x ∧ xn �T y ⇒ ∀w(w > xn ⇒ w 6�T y) .

Since z > xn we obtain

∀w(w > z ⇒ w 6�T y) . J

Moreover we need to prove that the tree T is a binary tree: each node has at most two
children.

I Lemma 10. Let T be the predicate from definition 6, defining a tree.
1. The following is a sufficient condition for x ≺T y. If i, x ∈ T and y ∈ N are such that

x is an immediate successor of i with respect to the relation ≺T , i ≺T y, x < y and
ca({i, x}) = ca({i, y}), then x ≺T y.

2. Each node i of T has at most one child x such that {i, x} is black, and at most one child
y such that {i, y} is white.
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Proof. 1. By hypothesis we have that

∀t ≺T i ca({t, i}) = ca({t, x})

and

∀t ≺T i ca({t, i}) = ca({t, y}) ,

so we have

∀t ≺T i ca({t, x}) = ca({t, y}). (1)

Since x is an immediate successor of i,

t ≺T x ⇐⇒ t ≺T i ∨ t = i

by formula 1 and by the hypothesis ca({i, x}) = ca({i, y}), we obtain the thesis x ≺T y.
2. Let i ∈ T and let x and y be two children of i. Then we have that x ≺T y and y ≺T x are

false, otherwise we should have i ≺T x ≺T y and i ≺T y ≺T x. By point 1 above, since
x < y or y < x, it follows that c({i, x}) 6= c({i, y}). Therefore the number of children
must be lesser than the number of colors, i.e. two. J

The tree T is infinite by construction and is binary by Lemma 10.2. We are going to
prove, using EM2 (that is a consequence of Σ0

3-LLPO, [1]), that each node with infinitely
many descendants has at least one child with infinitely many descendants, then that each
node with infinitely many descendants has exactly one child with infinitely many descendants.
This implies that T has exactly one infinite branch, which, to be accurate, is the rightmost
branch of T , if we order children according to their integer value.

Observe that, by the definition of the tree, we have that, given a node t with infinitely
many descendants, his first child has infinitely many descendants if and only if the first child
is also the unique child (see Lemma 9.2). We define the uniqueness of the children of x as
follows:

Unique(x) := ∀x∀z((Child(x, t) ∧ Child(z, t)) =⇒ x = z) ,

where

Child(x, t) := ∃n < t∃x0, . . . , xn < t

(“x0, . . . , xn, t, x are the first n+ 2 nodes of T”) .

This is an assertion Π0
2, since Child is Π0

1. Indeed, using EM1, we can transform the
occurrence of Child(x, t) in Unique(x) in a Σ0

1 formula and the whole predicate Unique(x) in
a Π0

2 formula. If we apply EM2 to Unique(x) we deduce that either that t has at most one
child, or there exist two different children x and z of t. In the first case the first node xn+1
chosen after t = xn in T is a child of t, otherwise, by definition of Tn+1, t would not belong
to the rightmost branch rn+1 of Tn+1, and by Lemma 9.1, t would not have descendants. So
the node x is the unique child of t, and the infinitely many descendants of t are descendants
of x. In the second case if x < z are two children of t then z is the second child of t. Since
we proved that a node has at most two children and by the definition of T , every descendant
of t grater of z is descendant also of z, otherwise from a point onward t would not have
descendants. Hence the second child of t, z, has infinitely many descendants. Observe that
only one statement of Σ0

3-LLPO is sufficient in order to prove that “t has only one child or
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not” for every t ∈ T ; as a matter of fact we need the formula in Σ0
3-LLPO that implies the

following formula in EM2

∀t(∀x∀z((Child(x, t) ∧ Child(z, t)) =⇒ x = z)∨

¬(∀x∀z((Child(x, t) ∧ Child(z, t)) =⇒ x = z))) .

We prove now that the infinite branch exists, is unique and define two monochromatic
sets, where at least one is infinite. Now define r as follows; we say that x ∈ r if and only if

InfiniteBranch(x) ⇐⇒ ∀y > x(Node(y)⇒ x ≺T y).

I Lemma 11. Let T be the tree defined above.
1. T has a unique infinite branch, r, the rightmost branch, which consists of all and only the

nodes with infinitely many descendants.
2. If T has infinitely many edges with color c, then r has infinitely many edges with color c.

Proof. 1. Thanks to the second part of Lemma 9, if a node has two children the first child
has not got descendants greater than the second one, and therefore each node of T has
at most one immediate infinite subtree. Since we have just proved the existence of the
infinite subtree, it follows that each node of T that has infinitely many descendants is
a root of a infinite subtree that has exactly one infinite subtree. Then the set of nodes
with infinite children in T , which includes the root because T is infinite, has exactly one
child for each node, and then defines the only infinite branch r of T .

2. Let r = {xi0 , . . . , xin , . . . } be the unique infinite branch of T . Suppose that T has
infinitely many edges of color c and prove that r has infinitely many edges of color c.
Consider any node xip of r, we want to prove that r has an edge of color c below xip . If
{xip

, xip+1} has color c we are done. Suppose it has color 1− c: then cip+1 = 1− c. By
hypothesis, there exists n such that n ≥ ip+1 and there exists m < n such that {xm, xn}
has color c. Since r is infinite, there exists q such that iq ≥ n+ 1 > n ≥ ip+1. We prove
that at least one of the edges

{xip+1 , xip+2}, . . . , {xiq−1 , xiq}

has color c. Suppose by contradiction that they all have color 1−c (we are using Excluded
Middle over a decidable statement about the colors of finitely many edges). In this case,
for every k ∈ [p+ 1, q− 1] there exists y > xik+1−1 ≥ xik

such that y �T xik
and {y, xik

}
has color 1− c, since {xik

, xik+1} has color 1− c; so there exists a first choice node. Since
for each such k there is a first choice node (with color 1− c), it follows that between ip+1
and iq the tree T grows keeping cik

= 1− c and only along the branch r. So we do not
add the edge {xm, xn} of color c between ip+1 e iq, contradiction. J

We have still to prove that, indeed, the infinite branch of T has infinitely many pairs
x ≺T y of color c. By Lemma 11.2, it is enough to prove that T has infinitely many pairs
x ≺T y of color c, for some c. ≺T is a Π0

1 predicate. Thus, if we apply the infinite pigeonhole
principle for Π0

1 predicates, we deduce that T either has infinite white edges, or has infinitely
many black edges. However, the pigeonhole principle for Π0

1 predicates is a classical principle,
therefore we have to derive the particular instance we use from Σ0

3-LLPO.

I Lemma 12. Σ0
3-LLPO implies the infinite pigeonhole principle for Π0

1 predicates.
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Proof Lemma 12. The infinite pigeonhole principle for Π0
1 predicates can be stated as

follows:

∀x ∃z [z ≥ x ∧ (P (z, a) ∨Q(z, a))]

=⇒ ∀x ∃z [z ≥ x ∧ P (z, a)] ∨ ∀x ∃z[z ≥ x ∧Q(z, a)] ,

with P and Q Π0
1 predicates. We prove that the formula above is equivalent in HA to some

formula of Σ0
3-LLPO. Let

H(x, a) := ∃z [z ≥ x ∧ P (z, a)]
K(x, a) := ∃z [z ≥ x ∧Q(z, a)].

In fact both H and K are equivalent in HA to Σ0
2 formulas H ′, K ′. By intuitionistic prenex

properties (see [1])

∃z[z ≥ x ∧ (P (z, a) ∨Q(z, a))]

is equivalent to

∃z[z ≥ x ∧ P (z, a)] ∨ ∃z[z ≥ x ∧ Q(z, a)] .

The formula above is equivalent to H ′ ∨K ′. Thus, any formula of pigeonhole principle for
Π0

1 with H, K is equivalent to the instance of Σ0
3-LLPO with H ′, K ′. J

Thus, there exist infinitely many edges of r in color c. Their smaller nodes define a
monochromatic set for the original graph, since given an infinite branch r and x ∈ r, if there
exists y ∈ r such that x ≺T y and {x, y} has color c, then for every z ∈ r such that x ≺T z,
the edge {x, z} has color c. Thus we can devise a coloring on r, given color c to x if {x, y}
has color c, with y child of x in r. After that, every infinite set of points with the same
color in r defines an infinite set with all edges of the same color, and then it proves Ramsey
Theorem in HA starting from the assumption of Σ0

3-LLPO. J

Observe that the infinite branch r is Π0
2. Moreover r can not be ∆0

2. Here we prove it
classically for short. Suppose by contradiction that r is ∆0

2. In this hypothesis we will prove
that for each recursive coloring there exists an infinite homogeneous set ∆0

2. Indeed, using
the fact that all edges from the same point of r to another point of r have the same color,
we may describe the homogeneous set of color c = 0, 1 as the set of points whose edges to
any other point of r all have color c:

HomSet(y) ⇐⇒ y ∈ r ∧ ∀z > y(InfiniteBranch(z) =⇒ c({y, z}) = c)

and also as the set of points having some edge to another point of r of color c:

HomSet(y) ⇐⇒ y ∈ r ∧ ∃z > y(InfiniteBranch(z) ∧ c({y, z}) = c) .

Therefore, if r is ∆0
2 then the first formula is Π0

2 and the second one is Σ0
2. So for any c = 0, 1

the homogeneous set is ∆0
2. Since at least one of these sets is infinite and since Jockusch

proved that exists a coloring of [N]2 that has no infinite homogeneous set Σ0
2, we obtain a

contradiction. So r 6∈ ∆0
2 in general.

In Jockusch’s proof he shows that one of the homogeneous sets (the red one in his notation)
is Π0

2, since at the beginning of each step he looks for red edges; while the second one is ∆0
3.

In our proof we can see that both the homogeneous sets are ∆0
3, since our construction is
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symmetric with respect to the two colors. As a matter of fact, since r is Π0
2, the previous

two formulas are respectively Π0
3 and Σ0

3. This is enough in order to prove that both the
homogeneous sets are ∆0

3. There always is an infinite homogeneous set Π0
2, but apparently

the proof is purely classical and cannot compute the integer code of such Π0
2 predicate. Again

we refer to Jockusch [10] for details.

5 Conclusions

Σ0
3-LLPO is a principle of uncommon use, but it is equivalent to König’s Lemma, given

function variables and choice axiom [1]. The first goal of this section is to present the
equivalence between Σ0

3-LLPO and two more common principles: EM2 and DeMorgan(Σ0
3).

After that we present some possible future developments.
First of all we want to prove that Σ0

n -LLPO is equivalent to the union of DeMorgan(Σ0
n)

and EMn−1, where

DeMorgan(Σ0
n) := ¬(P ∧Q) =⇒ ¬P ∨ ¬Q. (P,Q ∈ Σ0

n)

DeMorgan(Σ0
3) is a principle outside the hierarchy considered in [1] and incomparable with

EM1.
In order to prove the equivalence claimed above we need the following statements; their

proof are shown in [1].

I Lemma 13. Let Σ0
n -LLPO∗ := ¬(P ∧Q) =⇒ P⊥ ∨Q⊥ where P,Q ∈ Σ0

n, then:
1. Σ0

n -LLPO is equivalent to Σ0
n -LLPO∗;

2. Σ0
n -LLPO implies EMn−1.

Now, we can prove the equivalence. This equivalence helps us to analyse the proof of
Theorem 3. Observing it, we can see that the most of the proof uses only EM2 and that
DeMorgan(Σ0

3) (and so Σ0
3-LLPO) is used only in the last part (Lemma 12).

I Theorem 14. Σ0
n -LLPO ⇐⇒ DeMorgan(Σ0

n) + EMn−1.

Proof. Denote with P, Q any two Σ0
3 formulas.

⇒. Thanks to Lemma 13 we have Σ0
n -LLPO =⇒ EMn−1. We have to prove DeMorgan(Σ0

n).
By the first part of Lemma 13, it suffices to prove that Σ0

n -LLPO∗ implies DeMorgan(Σ0
n).

In HA holds P⊥ =⇒ ¬P , so we obtain

¬(P ∧Q) =⇒ P⊥ ∨Q⊥ =⇒ ¬P ∨ ¬Q .

⇐. Thanks to De Morgan we have ¬(P ∧ Q) =⇒ ¬P ∨ ¬Q. Moreover, by EMn−1, we
obtain ¬P =⇒ P⊥ [1, corollary 2.9]. So, it follows Σ0

n -LLPO∗ (that is equivalent to
Σ0

n -LLPO):

¬(P ∧Q) =⇒ P⊥ ∨Q⊥ . J

The first question that raises after this work is what is the minimal classical principle
that implies RT2

2(Σ0
n), Ramsey Theorem for pairs in two colors, but with any Σ0

n family of
colorings. We conjecture that, modifying conveniently the proofs of Theorem 2 and Theorem
3, we should obtain

Σ0
n+3 -LLPO ⇐⇒ RT2

2(Σ0
n). (2)

A first development of this paper might be to check of the equivalence 2, for each n ∈ N.
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We conjecture that the result RT2
2(Σ0

0) may be generalized from 2 colors to any finite
number of colors, that is, to the theorem RT2

n(Σ0
0), for any n ∈ N. Apparently, however, the

proof of Theorem 3 requires non-trivial changes in the case of n colors.
In this paper we consider Ramsey Theorem as schema in order to work with first order

statements. Now our idea is to study Ramsey Theorem working in HA + functions +
description axiom (that is a conservative extension of HA, see [1]), in order to use only one
statement to express Ramsey Theorem for pairs in two colors. It seems to us that this unique
statement is still equivalent to Σ0

3-LLPO.
As we said in the introduction, in the future we hope to apply the interactive realizability

[3] in order to study the computational content of Ramsey Theorem, and to find new
constructive proofs for some consequences of it. Since the use of EMn corresponds to n
nested limits in this interpretation, thanks to our results, we may state that only three nested
limits suffice to formalize this proof.

A further development would be to use this equivalence in order to find the minimal
classical principles which imply a given corollary of Ramsey Theorem in HA.

Moreover we may observe that our proofs are semi-formal in HA, so it could be formalized
using proof assistant software, like Coq.
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