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Abstract
We prove new results for approximating Graphic TSP. Specifically, we provide a polynomial-
time 9

7 -approximation algorithm for cubic bipartite graphs and a ( 9
7 + 1

21(k−2) )-approximation
algorithm for k-regular bipartite graphs, both of which are improved approximation factors com-
pared to previous results. Our approach involves finding a cycle cover with relatively few cycles,
which we are able to do by leveraging the fact that all cycles in bipartite graphs are of even
length along with our knowledge of the structure of cubic graphs.
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1 Introduction

1.1 Motivation and Related Work
The traveling salesman problem (TSP) is one of most well known problems in combinatorial
optimization, famous for being hard to solve precisely. In this problem, given a complete
undirected graph G = (V, E) with vertex set V and edge set E, with non-negative edge costs
c ∈ R|E|, c 6= 0, the objective is to find a Hamiltonian cycle in G of minimum cost. In its most
general form, TSP cannot be approximated in polynomial time unless P = NP . In order to
successfully find approximate solutions for TSP, it is common to require that instances of
the problem have costs that satisfy the triangle inequality (cij + cjk ≥ cik ∀i, j, k ∈ V ). This
is the Metric TSP problem. The Graphic TSP problem is a special case of the Metric TSP,
where instances are restricted to those where ∀i, j ∈ E, the cost of edge (i, j) in the complete
graph G are the lengths of the shortest paths between nodes i and j in an unweighted,
undirected graph, on the same vertex set.

One value related to the ability to approximate TSP is the integrality gap, which is
the worst-case ratio between the optimal solution for a TSP instance and the solution to a
linear programming relaxation called the subtour relaxation [7]. A long-standing conjecture
(see, e.g.,[11]) for Metric TSP is that the integrality gap is 4

3 . One source of motivation for
studying Graphic TSP is that the family of graphs with two vertices connected by three paths
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of length k has an integrality gap that approaches 4
3 . This family of graphs demonstrates

that Graphic TSP captures much of the complexity of the more general Metric TSP problem.
For several decades, Graphic TSP did not have any approximation algorithms that

achieved a better approximation than Christofides’ classic 3
2 -approximation algorithm for

Metric TSP [4], further motivating the study of this problem. However, a wave of recent
papers [9, 1, 3, 10, 13, 5, 14] have provided significant improvements in approximating
Graphic TSP. Currently, the best known approximation algorithm for Graphic TSP is due to
Sebő and Vygen [14], with an approximation factor of 7

5 .
Algorithms with even smaller approximation factors have also been found for Graphic

TSP instances generated by specific subclasses of graphs. In particular, algorithms for
Graphic TSP in cubic graphs (where all nodes have degree 3) have drawn significant interest
as this appears to be the simplest class of graphs that has many of the same challenges as
the general case. Currently, the best approximation algorithm for Graphic TSP in cubic
graphs is due to Correa, Larré, and Soto [5], whose algorithm achieves an approximation
factor of ( 4

3 −
1

61236 ) for 2-edge-connected cubic graphs. Progress in approximating Graphic
TSP in cubic graphs also relates to traditional graph theory, as Barnette’s conjecture [2]
states that all bipartite, planar, 3-connected, cubic graphs are Hamiltonian. This conjecture
suggests that instances of Graph TSP on Barnette graphs could be easier to approximate,
and conversely, approximation algorithms for Graphic TSP in Barnette graphs may lead to
the resolution of this conjecture. Indeed, Correa, Larré, and Soto [6] provided a ( 4

3 −
1

18 )-
approximation algorithm for Barnette graphs. Along these lines, Aggarwal, Garg, and Gupta
[1] were able to obtain a 4

3 -approximation algorithm for 3-edge-connected cubic graphs before
any 4

3 -approximation algorithms were known for all cubic graphs. In this paper, we examined
graphs that are cubic and bipartite, another class of graphs that includes all Barnette graphs.
An improved approximation for this class of graphs is the primary theoretical contribution
of this paper:

I Theorem 1. Given a cubic bipartite connected graph G with n vertices, there is a polynomial
time algorithm that computes a spanning Eulerian multigraph H in G with at most 9

7 n edges.

I Corollary 2. Given a k-regular bipartite connected graph G with n vertices where k ≥ 4,
there is a polynomial time algorithm that computes a spanning Eulerian multigraph H in G

with at most ( 9
7 + 1

21(k−2) )n− 2 edges.

Proof. First, we will extract k edge-disjoint perfect matchings from G. We find a cubic
subgraph, Gcubic, by taking the union of any two of these perfect matchings and the perfect
matching (of the remaining k − 2 matchings) such that the number of K3,3 components
in the resulting subgraph is minimal. For a detailed description of this procedure, see [12,
Algorithm 9]. In each component of Gcubic that is a K3,3 we will find a 6-cycle covering these
nodes. This can be done in constant time by taking any walk through this component that
does not visit a node twice as long as this is possible, then returning to the first node. In
every other connected component, run the Compress and Expand phases of the BIGCYCLE
algorithm, which will find a 2-factor over each component containing at most ni

7 cycles,
where ni is the number of nodes in the connected component. We apply the pigeonhole
principle – the K3,3 components contained in any of the k − 2 cubic subgraphs from which
we selected Gcubic are the “pigeons”, of which there are at most at most n

6 , and these k − 2
cubic subgraphs are the “holes” – and conclude that there are x1 nodes in K3,3s within
Gcubic, where x1 ≤ n

k−2 [12, Lemma 7]. These nodes are covered by x1
6 cycles. Then, there

x2 nodes in the remaining components and x1 + x2 = n. These x2 nodes are covered by at
most x2

7 cycles. Then, the overall 2-factor of G has at most x1
6 + x2

7 cycles. The following
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calculations compute an upper bound on these cycles in terms of n:

x1

6 + x2

7 = 7x1 + 6x2

42
= 6n + x1

42
= n

7 + x1

42
≤ n

7 + n

42(k − 2)

By Proposition 3, this 2-factor can be extended into a spanning Eulerian multigraph in
G with at most n + 2( n

7 + n
42(k−2) − 1) = ( 9

7 + 1
21(k−2) )n− 2 edges, proving the corollary. J

This result complements results [15, 8] which provide guarantees for k-regular graphs in the
asymptotic regime. Corollary 2 improves on these guarantees for small values of k.

1.2 Overview

In this paper, we will present an algorithm to solve Graphic TSP, which guarantees a solution
with at most 9

7 n edges in cubic bipartite graphs. The best possible solution to Graphic TSP
is a Hamiltonian cycle, which has exactly n edges, so this algorithm has an approximation
factor of 9

7 .
A corollary of Petersen’s theorem is that every cubic bipartite graph contains three

edge-disjoint perfect matchings. The union of any 2 of these matchings forms a 2-factor.
The following proposition demonstrates the close relationship between 2-factors and Graphic
TSP tours in connected graphs.

I Proposition 3. Any 2-factor with k cycles in a connected graph can be extended into a
spanning Eulerian multigraph with the addition of exactly 2(k − 1) edges. This multigraph
contains exactly n + 2(k − 1) edges in total.

Proposition 3 can be implemented algorithmically by compressing each cycle into a single node
and then finding a spanning tree in this compressed graph. We then add two copies of the
edges from this spanning tree to the 2-factor. We present an algorithm, BIGCYCLE, which
begins by finding a 2-factor with at most n

7 cycles. Then, it applies Proposition 3 to generate
a spanning Eulerian subgraph from this 2-factor containing at most n + 2× ( n

7 − 1) = 9
7 n− 2

edges.
BIGCYCLE first shrinks every 4-cycle in the graph, then it generates a 2-factor in the

condensed graph. If the resulting 2-factor has no 6-cycles, then we can expand the 4-cycles
and this will be our solution. If the 2-factor does have a 6-cycle, then the algorithm contracts
either this 6-cycle or a larger subgraph that includes this 6-cycle. We are able to iterate
this process until we find a 2-factor in the compressed graph with no “organic” 6-cycles. At
this point, the algorithm is able to expand the compressed graph back to its original state,
maintaining a 2-factor with relatively few cycles. Theorem 13 in Section 3.5 proves that this
2-factor has at most n

7 cycles.



J. A. Karp and R. Ravi 287

2 A 9
7-Approximation Algorithm for Graphic TSP in Cubic Bipartite

Graphs

2.1 Overview
In a graph with no 4-cycles (squares), all 2-factors will have an average cycle length of at
least 6, so all 2-factors will have at most n

6 cycles, which results in a 4
3 -approximation. In

order to improve our approximation guarantee, we need to target 6-cycles, as well as 4-cycles.
The algorithm we present finds a square-free 2-factor in which every 6-cycle can be put in
correspondence with a distinct cycle of size 8 or larger. Then, we can find a 2-factor in which
every large cycle and its corresponding 6-cycles have average cycle length of at least 7 via
an amortized analysis over the compressing iterations (Lemma 12 in Section 3.4). We then
show that this is enough to conclude that the 2-factor contains at most n

7 cycles (Theorem
13 in Section 3.5). This is primary contribution of this paper.

A method used throughout this paper is to systematically replace certain subgraphs
containing 4-cycles and 6-cycles with other subgraphs. We will refer to these replacement
subgraphs as “gadgets”. To keep track of portions of the graph that have not been altered by
these gadgets, we define the term “organic” as follows:

I Definition 4. A subgraph is organic if it consists entirely of nodes and edges contained in
the original graph. For a single edge to be organic, both its end-nodes must be organic.

We also give a formal definition of the term “gadget”:

I Definition 5. A gadget is a subgraph that is inserted into the graph by the BIGCYCLE
algorithm in place of a different subgraph. Examples of gadgets are shown in Figures 2, 4, 6,
8, and 10. Gadgets are used to replace other subgraphs containing 4- or 6-cycles.

In the following section, we introduce the gadgets used in the BIGCYCLE algorithm. When
our 2-factor contains 4-cycles and organic 6-cycles, we will use these gadgets to condense
our graph and remove these cycles. We then repeat this process (condensing 4-cycles that
appear along the way) and compute a new 2-factor in the condensed graph until we obtain
a 2-factor with no organic 6-cycles. We show that expanding the graph can create a small
number of new 6-cycles in our 2-factor, but we are able to account for them, ensuring that
the bounds described in the previous paragraph must hold.

2.2 Gadgets
In this section, we present the most important subgraphs that will be replaced with gadgets
by the algorithm. Several of the more specialized gadgets are omitted in this article. All
gadgets are shown in the extended version of this paper [12]. In total, there are 3 gadgets
to replace 4-cycles and 6 gadgets to replace 6-cycles. We will give these configurations the
names S1, S2, S3, H1, H2, H3, H4, H5, and H6. The gadget that replaces a configuration
Hi will be called H ′i.

First, we introduce the gadget we use to replace squares whose outgoing edges are incident
on four distinct vertices

We also introduce the S3, which is used to replace squares whose outgoing edges are
incident on only two vertices.

The S2, another square-replacing gadget is omitted. The first gadget used to replace
6-cycles is two super-vertices which replace a simple 6-cycle, H1.

APPROX/RANDOM’14
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1 2

34

Figure 1 A square with four distinct neigh-
bors: S1.

1 3

2 4

Figure 2 The gadget that replaces this
configuration: S′1.

A

B

1 2

3 4

Figure 3 A square with two distinct neigh-
bors: S3.

A

B

21

43

Figure 4 The super-edge which replaces
this configuration: S′3.

The remaining gadgets are special cases of 6-cycles. In this paper, only the first two of
these specialized gadgets are displayed. Note that every H2 contains a H1, all H3s contain a
H2, and H4s, H5s, and H6s are special cases of H3s.

The motivation to use these additional gadgets comes out of necessity, to prevent large
numbers of 6-cycles from being introduced into the 2-factor during the expansion phase of
the algorithm. For example, Figures 13 and 14 in Section 3 document an expansion that
turns an x + y + 4-cycle in the cycle cover passing through a gadget which replaced a H1
into two cycles of lengths x + 3 and y + 5. Since the algorithm will condense H2s before H1s,
this ensures that y, the length of a path, is at least 3, meaning that the y + 5-cycle is not a
6-cycle. The motivation for introducing the remaining specialized gadgets is similar.

In the next subsection, we present a detailed description of the algorithm.

2.3 The Algorithm
Listing 1 presents pseudocode for the BIGCYCLE algorithm. The remainder of this sec-
tion explains the details of the algorithm, broken up into three subroutines, and presents
motivation for the operations performed by the algorithm. The COMPRESS, EXPAND,
and DOUBLETREE subroutines called by BIGCYCLE are described in the following three
subsections.

2.3.1 Finding a “Good” 2-factor in the Condensed Graph Gk

We start the algorithm by receiving a connected cubic bipartite graph. Call this graph G0.
If G0 is a K3,3 then we compute a 2-factor in this graph, which will be a Hamiltonian cycle,

Listing 1 BIGCYCLE(G)
Input: An undirected , unweighted , cubic , bipartite graph G = (V, E)
Fcompressed ←COMPRESS (G)
F ←EXPAND (Fcompressed)
T SP ←DOUBLETREE (G,F )
Return T SP
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1
2

3

4
5

6

Figure 5 A simple 6-cycle: H1.

1 23 4

5 6

Figure 6 The gadget which replaces the
6-cycle: H ′1.

1 2 3

4
5

6

Figure 7 Two 6-cycles with 3 common
edges: H2.

1 42 5

3 6

Figure 8 The gadget which replaces the
configuration in Figure 7: H ′2.

and return this cycle as our solution. Otherwise, we search for 4-cycles that are not contained
in K3,3s and replace them with their corresponding gadgets until we are returned a graph
with no squares except possibly inside of K3,3s. Let i be the number of square compressions
made, and let Gi be the compressed graph at the end of this process. Next, construct a
2-factor, Fi, in Gi. When we construct 2-factors throughout the algorithm, we do so by
decomposing the graph into 3 edge-disjoint perfect matchings and taking the union of the
two perfect matching containing the fewest S′3 gadgets, shown in Figure 4. These two perfect
matchings form a 2-factor with limited potential to introduce organic 6-cycles of the type
shown in Figure 16 (Section 3.2). If Fi contains no organic 6-cycles, then we advance to the
next phase of the algorithm, described in the next subsection. In this case, k = i.

If Fi does contain an organic 6-cycle, C, then we check if the current compressed graph Gi

contains organic subgraphs that can be replaced by gadgets in the following order (ordered
from most specialized to most general): H6, H5, H4, H3, H2, H1. We choose the first
organic configuration on the list (the most specialized configuration) we can find in Gi

and replace this configuration with the corresponding gadget, outputting graph Gi+1 to
reflect this change. The order of choosing subgraphs to replace is useful in accounting for
the average length of the cycles in the final 2-factor, as shown in the proof of Lemma 11.
We then search for 4-cycles that are not contained in K3,3s and replace them with their
corresponding gadgets until we have removed any 4-cycles generated as a consequence of
replacing a subgraph with one of our gadgets, obtaining a new compressed graph Gj , where
j− i+1 is the number of 4-cycles compressed. We construct a new 2-factor Fj and repeat the
process in this paragraph until we have a 2-factor Fk with no organic 6-cycles, in a condensed
graph Gk, where k is the total number of gadget replacement operations performed during
this phase of the algorithm. This process is performed by the COMPRESS subroutine in
Listing 1.

2.3.2 Expanding a 2-factor in Gk into a 2-factor in G0

We will describe the process of expanding Fk and Gk so that we get back to the original
graph G0 with a desirable 2-factor F0 in more detail.

We will reverse the process described in the previous subsection by replacing our gadgets
in compressed graph Gi with the original configuration from the earlier graph Gi−1 in the
reverse order of that in which we replaced the configurations. In other words, the gadgets we
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6 1

2 3

5
4

Figure 9 A specialized configuration con-
taining three overlapping 6-cycles: H3.

4

3

5

1

6

2

Figure 10 The gadget which replaces the
configuration in Figure 9: H ′3.

1 23 4

5 6

Figure 11 A pair of super-vertices in Gi.
The bold edges are included in 2-factor Fi.
The dashed bold edges represent a path, in-
cluded in Fi.

1
2 3

4

5

6

Figure 12 2-factor Fi−1 after expanding
the super-vertices from Fig. 11.

inserted last are those which we first replace with their original configuration. We call this
process “expanding” because each one of these operations adds vertices and edges to the
graph. After we have made each replacement to expand the graph, Fi is no longer a 2-factor
in Gi−1 because the new nodes added by the most recent expansion step are not covered by
Fi. However, we can add edges to Fi so that it becomes a 2-factor, Fi−1 in the graph after
this expansion step. It may not be immediately clear that this is always possible. In fact,
one of the bigger challenges in developing this algorithm was choosing a set of gadgets where
this property holds. Figures 11 and 12 show an example of how this process works.

At each expansion, we are able to extend Fi into a set of edges Fi−1, which will be a
2-factor in the expanded graph, Gi−1. In order to optimize the performance of BIGCYCLE,
we must impose one extra operation in this phase of the algorithm. After each expansion of
a H ′1 that introduces an organic 6-cycle, C1, into the 2-factor, we will perform a local search
to see if C1 and the nearby edges of the newly expanded 2-factor Fi−1, those contained in
neighborhood of nodes within distance 3 of C1, can be altered in a way that reduces the
number of cycles in the 2-factor and does not add any 4- or 6-cycles to the 2-factor . If this
is possible, then we update Fi−1 so that it contains fewer cycles. In addition to being an
effective heuristic to reduce the number of cycles in our final 2-factor, this operation allows
us to improve our approximation factor by eliminating an otherwise troubling corner case.

At this point, we can repeat the process of replacing gadgets with their original configura-
tions and adding edges to the 2-factor until we have expanded the graph back to the original
input G0 and have a 2-factor, F0, in this graph. This process is performed by the EXPAND
subroutine in Listing 1.

2.3.3 Obtaining a Good Final Solution by Adding Edges to F0

We now have a 2-factor F0, which contains at most k cycles. We compress each cycle into a
single node and compute a spanning tree in this compressed graph. This spanning tree has
k − 1 edges. Then, we add two copies of the edges in this spanning tree to our 2-factor F0
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S1

S2

A1

B1

1

2

3

6

x y

Figure 13 A cycle in Fi, a 2-factor over the
condensed graph Gi. S1 and S2 are two super-
vertices which replaced a standard hexagon.
The dashed lines represent paths of length 3.

B2

A2

A1

B1

1
2

3

4

5

6
P

PP

y

x

Figure 14 The cycle from Figure 13, after
expanding S1 and S2

to obtain a solution with n + 2(k − 1) edges. In Section 3 we prove that F0 has at most n
7

cycles, so this gives us a solution of at most 9
7 n− 2 edges. This process is performed by the

DOUBLETREE subroutine in Listing 1.

3 Accounting for 6-Cycles

In the proof of our approximation guarantee, the limitation on producing a lower approxima-
tion factor comes from the possibility that some proportion of our final 2-factor’s cycles will
be of length 6. Most operations the algorithm performs while expanding the 2-factor from
the condensed to the original graph result in cycles of length 8 or larger, so in this section
we will look at operations that create organic 6-cycles in detail. To account for 6-cycles, we
show that every organic 6-cycle can be put in correspondence with some long cycle of length
8 or longer. Then, Lemma 12 demonstrates that the average cycle length of any long cycle
and its corresponding set of 6-cycles is sufficiently long to ensure that our final cycle cover
has relatively few cycles, even if some of them are 6-cycles.

Figures 13 and 14, taking the dashed lines to be paths of lengths x and y, demonstrate
how a (y + 7)-cycle can turn into a 6-cycle and a (y + 5)-cycle after an expansion if x = 3.

We will carefully analyze this and several other cases that form the bottleneck in our
analysis, which occur when expanding our graph back to its original state. We will account
for organic 6-cycles by creating a correspondence from every 6-cycle in the final 2-factor
F0 to some larger cycle in F0. This way, if we can show that every large cycle of length
l ≥ 8 in F0 is affiliated with at most f(l) 6-cycles, then the average cycle length is at least
minl≥8

6×f(l)+l
f(l)+1 . Once we have placed a lower-bound on the average cycle length in this

manner (Lemma 12), we can easily determine our approximation factor (Theorems 1 and 13).

3.1 An Expansion that Introduces Organic 6-cycles

In this section we discuss the expansion shown in Figures 13 and 14, a representative example
of how it is possible for a small number of 6-cycles to be included in the final 2-factor. This
expansion is the only type of operation involving the H ′1 gadget that can introduce an organic
6-cycle into the 2-factor during an expansion. There are two other expansions with a similar
outcome which involve the H ′2 and H ′3 gadgets, respectively. The analysis to account for these
expansions is very similar to the analysis of this case. Furthermore, these “bad” H2 and H3

APPROX/RANDOM’14
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expansions introduce larger sets of protected edges than the H1 expansion in Figures 13 and
14, so this H1 expansion is what limits the approximation factor we obtain in our analysis.

I Remark. If an expansion operation of the type shown in Figures 13 and 14 were to occur,
then it is not possible for the nodes corresponding to A1 and B1 in these figures to be
the super-vertices of a H1’s gadget whose expansion introduces an organic 6-cycle into the
2-factor. A proof of this remark can be found in the extended version of this paper [12,
Remark 1].

We now give a definition and a lemma about “protected edges”, organic paths which help us
analyze the performance of the BIGCYCLE algorithm. We use this term because protected
edges cannot be separated from each other in the 2-factor during subsequent expansion
operations.

I Definition 6. Protected edges are edges contained in maximal paths that are organic,
included in a cycle of length at least 8 in a 2-factor Fi, and part of an organic subgraph
that was previously contracted and then expanded. Protected edges are identified during the
“expanding” phase of the algorithm (described in Section 2.3), when the expansion operation
introduces an organic 6-cycle. The edges labeled “P ” in Figure 14 are an example of a set of
protected edges.

I Lemma 7. Let P1 and P2 be the sets of protected edges corresponding to two 6-cycles, C1
and C2, respectively. Then P1 ∩ P2 = ∅ and V (P1) ∩ V (P2) = ∅.

I Definition 8. For a given 6-cycle, C, in the final 2-factor, F0, consider the value i such
that C is a cycle of Fi but not of Fi+1. Then, it was the expansion operation from Gi+1 to
Gi which “finalized” this cycle. Then, the protected edges identified during this “finalizing”
operation are defined to be the protected edges corresponding to C. For example, in Figure 14
we put the edges labeled “P ’ in correspondence with the 6-cycle containing edges 1 and 2.

I Definition 9. For any cycle, Ci, of length at least 8, in the 2-factor F we will define a set
of 6-cycles, SCi

which correspond to Ci. For each 6-cycle, C, in F , we say C is an element
of SCi

if C’s protected edges are in Ci or if C’s protected edges are in another 6-cycle C ′

whose protected edges are in Ci.

3.2 Expanding Gadgets that Replaced Squares
Expanding S′3s, not in the 2-factor, of the type shown in Figure 15 can introduce organic
6-cycles into the 2-factor. However, we limit the number of S′3s whose edges are not in the
2-factor by computing three disjoint perfect matchings and taking as our 2-factor the union
of the two perfect matchings that contain the most edges in S′3s. Then, at most 1

3 of the S′3s
will have edges not included in the 2-factor. Then, we can put the 6-cycles introduced by
expanding each S′3 of this type in correspondence with a larger cycle containing the protected
edges of the same type shown in Figure 16. These edges are labeled “P” in Figure 16.

3.3 Expanding All Other Gadgets
In the analysis that follows, we have identified all expansions with the potential to introduce
organic 6-cycles cycles into Fi that were not present in Fi+1. Confirming this fact requires
checking all possible ways a 2-factor can pass through each gadget to ensure that all expansions
that can introduce organic 6-cycles are properly analyzed. Diagrams documenting every
one of these other expansions are in the extended version of this paper [12], and a careful
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A1

B1

A1

B1

Figure 15 A S′3 in Gi which is not covered
by the 2-factor Fi (left), and the S3 in Gi−1

that replaced the S′3 after expansion (right)

A2

B2

x

A2

B2

P
P

P
P

P

x

Figure 16 A S′3 in Gi that is covered by
the 2-factor Fi (left), and the S3 in Gi−1 that
replaced the S′3 after expansion (right). The
5 bold edges labeled “P” will be the 6-cycle
in Figure 15’s protected edges.

examination of these sections confirms that all unmentioned expansion operations are not
capable of introducing an organic 6-cycle into the 2-factor. These other operations result
either in converting one cycle into one larger cycle, converting one cycle into two large (length
of at least 8) cycles, or converting two cycles into one or two large cycles.

3.4 Analyzing the Worst Case
We call the edges identified in Definition 6 “protected” because they form organic paths
in our 2-factor, so these paths will remain part of the 2-factor regardless of the future
expansion operations performed. In Definition 8, we established a correspondence between
protected edges and 6-cycles in our 2-factor. This relation allows us to place every 6-cycle in
correspondence with some large cycle in our 2-factor, as stated in Definition 9. We will use
this correspondence to analyze the performance of BIGCYCLE. The proof of the following
lemma is in the extended version of this paper [12, Lemmas 3 and 4].

I Lemma 10. If a 6-cycle, C1, has its corresponding protected edges in another 6-cycle,
C2, then C2 has 5 corresponding protected edges. These protected edges are all in a cycle
which either contains no other protected edges or is of length at least 10. Furthermore, C1
and C2 must have been introduced into the 2-factor during the expansion of a H ′1 and H ′2,
respectively.

Before we prove a lower bound on average cycle length, we need the following lemma
regarding 8-cycles in the final 2-factor.

I Lemma 11. Every cycle C of length 8 in the final 2-factor F has at most one corresponding
6-cycle.

This lemma is proved by examining the different ways in which two or more 6-cycles could
be placed into correspondence with C and demonstrating that all of these cases result in a
contradiction. The contradictions primarily arise from requiring C to contain more protected
edges than it can fit. We then show that the remaining cases require the algorithm to have
performed in a way that contradicts its instructions, such as compressing a H2 when a
square was in the graph, or combining two organic paths in separate cycles into a single cycle
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separated by at most a single edge, something the BIGCYCLE algorithm will never do. The
proof of this lemma is available in the extended version of this paper [12, Lemma 5].

We are now prepared to prove the next lemma, regarding average cycle length of a large
cycle and its set of corresponding 6-cycles:

I Lemma 12. For any cycle C in the final 2-factor F of length l such that l ≥ 8 and its set
of corresponding 6-cycles, the average length of this set of cycles is at least 7.

Proof. First, consider the simple case where C has no corresponding 6-cycles. The set of
cycles we are considering in this case is just a single cycle of length l ≥ 8. l ≥ 8 > 7, so in
this case, the only cycle in the set of cycles has length at least 7.

Now, consider the case when all of the corresponding 6-cycles have their protected edges
contained in the large cycle C (to be clear, the only way this condition could be violated is if
some 6-cycle has its protected edges in another 6-cycle, whose protected edges are contained
in C). Each of the expansion operations that included one of the corresponding 6-cycles in
the 2-factor protects at least 3 edges, and these protected edges are contained in C, so at
most l

3 6-cycles can correspond to cycle C. If l ≥ 10, then the average cycle length among
cycle C and its corresponding 6-cycles is at least

b l
3c × 6 + l

b l
3c+ 1

≥ 7

If l = 8 then by Lemma 11, C has at most one corresponding 6-cycle, so the average
length of C and its corresponding 6-cycle is also 7. We must consider the case when at least
one corresponding 6-cycle, C1, has its protected edges in another 6-cycle, C2. If l = 8 and C
contains C2’s protected edges then C has at least two corresponding 6-cycles, C1 and C2,
contradicting Lemma 11.

Next, consider if l = 10 and C contains C2’s 5 protected edges in the final 2-factor. C

cannot contain another set of 5 protected edges, due to Lemma 7, because this would require
these protected edges to share a node with C2’s protected edges. Then, in addition to C1
and C2, C can have at most one additional corresponding 6-cycle, otherwise C would contain
more than 10 protected edges. In this case, C has at most 3 corresponding 6-cycles, so the
average length of C and its corresponding 6-cycles is at most 10+3×6

4 = 7.
The only remaining case is when l ≥ 12 and at least one corresponding 6-cycle, C1, has

its protected edges contained in another 6-cycle, C2. By Lemma 10, each 6-cycle has at least
3 protected edges in C or its protected edges are in another 6-cycle whose 5 protected edges
are in C. So, if a corresponding 6-cycle’s protected edges are not in C, then there is another
6-cycle corresponding to C for which these two 6-cycles contribute 5 protected edges to C.
Then, each 6-cycle on average contributes at least 5

2 protected edges to C, so there are at
most 2l

5 6-cycles corresponding to C. Then, the average cycle length among cycle C and its
corresponding 6-cycles is at least

b 2l
5 c × 6 + l

b 2l
5 c+ 1

≥ 7 (because l ≥ 12)

In all possible cases, C and its corresponding 6-cycles have average length of at least 7. J

3.5 Main Theorems
I Theorem 13. Given a cubic bipartite graph G with n > 6 vertices, there is a polynomial
time algorithm that computes a 2-factor with at most n

7 cycles
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Proof. It follows directly from Lemma 12 that the average cycle length in the 2-factor
produced by BIGCYCLE is at least 7. Then, it must be the case that BIGCYCLE produces
a 2-factor with at most n

7 cycles.
The BIGCYCLE algorithm performs O(n) contractions and expansions. In between each

contraction, the algorithm will search for other subgraphs to contract and will compute a
2-factor in the current graph. This process takes O(n 3

2 ) in the worse case, so the contraction
phase of the algorithm runs in O(n 5

2 ). The expansion phase of the algorithm takes O(n)
time in the worst case, since there are at most O(n) expansions and each one is performed in
constant time. Then, BIGCYCLE finds a 2-factor with at most n

7 cycles in O(n 5
2 ). J

We can now restate our main theorem from Section 1.1:

I Theorem 1. Given a cubic bipartite connected graph G with n vertices, there is a polynomial
time algorithm that computes a spanning Eulerian multigraph H in G with at most 9

7 n edges.

Proof. Theorem 13 proves that the COMPRESS and EXPAND phases of BIGCYCLE
produce a 2-factor with at most n

7 cycles for the required class of graphs. Proposition 3
demonstrates that the DOUBLETREE phase BIGCYCLE successfully extends the 2-factor
into a spanning Eulerian multigraph with at most 9

7 n− 2 edges.
From Theorem 13 that we can compute the required 2-factor in O(n 5

2 ). Once we have
done this, we can compute the doubled spanning tree in O(n) as well, as the graph has O(n)
edges. The total running time of the algorithm is O(n 5

2 ) in the worst case. J
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