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Abstract
Metric facility location is a well-studied problem for which linear programming methods have been
used with great success in deriving approximation algorithms. The capacity-constrained general-
izations, such as capacitated facility location (Cfl) and lower-bounded facility location (Lbfl),
have proved notorious as far as LP-based approximation is concerned: while there are local-
search-based constant-factor approximations, there is no known linear relaxation with constant
integrality gap. According to Williamson and Shmoys devising a relaxation-based approximation
for Cfl is among the top 10 open problems in approximation algorithms.

This paper advances significantly the state-of-the-art on the effectiveness of linear program-
ming for capacity-constrained facility location through a host of impossibility results for both
Cfl and Lbfl. We show that the relaxations obtained from the natural LP at Ω(n) levels of
the Sherali-Adams hierarchy have an unbounded gap, partially answering an open question of
[27, 6]. Here, n denotes the number of facilities in the instance. Building on the ideas for this
result, we prove that the standard Cfl relaxation enriched with the generalized flow-cover valid
inequalities [1] has also an unbounded gap. This disproves a long-standing conjecture of [25].
We finally introduce the family of proper relaxations which generalizes to its logical extreme the
classic star relaxation and captures general configuration-style LPs. We characterize the behavior
of proper relaxations for Cfl and Lbfl through a sharp threshold phenomenon.
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1 Introduction

Facility location is one of the most well-studied problems in combinatorial optimization. In
the uncapacitated version (Ufl) we are given a set F of facilities and set C of clients. We
may open facility i by paying its opening cost fi and we may assign client j to facility i
by paying the connection cost cij . We are asked to open a subset F ′ ⊆ F of the facilities
and assign each client to an open facility. The goal is to minimize the total opening and
connection cost. A ρ-approximation algorithm, ρ ≥ 1, outputs in polynomial time a feasible
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solution with cost at most ρ times the optimum. The approximability of general Ufl is
settled by an O(log |C|)-approximation [18] which is asymptotically best possible, unless P
= NP. In metric Ufl the service costs satisfy the following variant of the triangle inequality:
cij ≤ cij′ + ci′j′ + ci′j for any i, i′ ∈ F and j, j′ ∈ C. This very natural special case of Ufl
is approximable within a constant-factor, and many improved results have been published
over the years. In those, LP-based methods, such as filtering, randomized rounding and the
primal-dual method have been particularly prominent (see, e.g., [33]). After a long series of
papers the currently best approximation ratio for metric Ufl is 1.488 [26], while the best
known lower bound is 1.463, unless P = NP ([17] and Sviridenko [32]). In this paper we
focus on two generalizations of metric Ufl: the capacitated facility location (Cfl) and the
lower-bounded facility location (Lbfl).

Cfl is the generalization of metric Ufl where every facility i has a capacity ui that
specifies the maximum number of clients that may be assigned to i. In uniform Cfl all
facilities have the same capacity U. Finding an approximation algorithm for Cfl that uses a
linear programming lower bound, or even proving a constant integrality gap for an efficient
LP relaxation, are notorious open problems. Intriguingly, the following rare phenomenon
occurs. The natural LP relaxations have an unbounded integrality gap and the only known
O(1)-approximation algorithms are based on local search, with the currently best ratios being
5 [9] for the non-uniform and 3 [4] for the uniform case respectively. In the special case where
all facility costs are equal, Cfl admits an LP-based approximation [25]. Comparing the LP
optimum against the solution output by an LP-based algorithm establishes a guarantee that
is at least as strong as the one established a priori by worst-case analysis. In contrast, when
a local search algorithm terminates, it is not at all clear what the lower bound is. According
to Williamson and Shmoys [33] devising a relaxation-based algorithm for Cfl is one of the
top 10 open problems in approximation algorithms.

A lot of effort has been devoted to understanding the quality of relaxations obtained by
an iterative lift-and-project procedure. Such procedures define hierarchies of successively
stronger relaxations, where valid inequalities are added at each level. After at most n levels,
where n is the number of variables, all valid inequalities have been added and thus the integer
polytope is expressed. Relevant methods include those developed by Balas et al. [8], Lovász
and Schrijver [28] (for linear and semidefinite programs), Sherali and Adams [3], Lasserre
[22] (for semidefinite programs). See [23] for a comparative discussion.

The seminal work of Arora et al. [7], studied integrality gaps of families of relaxations
for Vertex Cover, including relaxations in the Lovász-Schrijver (LS) hierarchy. This paper
introduced the use of hierarchies as a restricted model of computation for obtaining LP-based
hardness of approximation results. Proving that the integrality gap for a problem remains
large after many levels of a hierarchy is an unconditional guarantee against the class of
relaxation-based algorithms obtainable through the specific method. At the same time, if
an LP relaxation maintains a gap of g after a linear number of levels, one can take this
as evidence that polynomially-sized relaxations are unlikely to yield approximations better
than g (see also [29]). In fact, the former belief is now a theorem for maximum constraint
satisfaction problems: in terms of approximation, LPs of size nk, are exactly as powerful as
O(k)-level Sherali-Adams relaxations [11].

Lbfl is in a sense the opposite problem to Cfl. In an Lbfl instance every facility i
comes with a lower bound bi which is the minimum number of clients that must be assigned
to i if we open it. In uniform Lbfl all the lower bounds have the same value B. Lbfl is
even less well-understood than Cfl. The first approximation algorithm for the uniform case
had a performance guarantee of 448 [31], which has been improved to 82.6 [5]. Both use
local search.
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Apart from some work of the authors [21, 20] there has been no systematic theoretical
study of the power of linear programming for approximating Cfl. In [21] we show an
unbounded gap for Cfl at Ω(n) levels of the LS and the semidefinite mixed-LS+ hierarchies,
n being the number of facilities. In [20] we show that linear relaxations in the classic variables
require at least an exponential number of constraints to achieve a bounded integrality gap.
Note that it is well-known that hierarchies may produce an exponential number of inequalities
already after one round. For related problems there are some recent interesting results.
Improved approximations were given for k-median [27] and capacitated k-center [14, 6],
problems closely related to facility location. For both, the improvements are obtained by
LP-based techniques that include preprocessing of the instance in order to defeat the known
integrality gap. For k-median, the authors of [27] state that their (1 +

√
3 + ε)-approximation

algorithm can be converted to a rounding algorithm on an O( 1
ε2 )-level LP in the Sherali-

Adams (SA) lift-and-project hierarchy. They propose exploring the direction of using SA
for approximating Cfl. In [6] the authors raise as an important question to understand the
power of lift-and-project methods for capacitated location problems, including whether they
automatically capture relevant preprocessing steps.

Our results. We give impossibility results on arguably the most promising directions for
strengthening linear relaxations for Cfl and Lbfl and in doing so we answer open problems
from the literature. Our contribution is threefold.

First, we show that the LPs obtained from the natural relaxations for Cfl and Lbfl at
Ω(n) levels of the SA hierarchy have an unbounded gap on an instance where |F | = Θ(n)
and |C| = Θ(n3). This result answers the questions of [27] and [6] stated above as far as
the natural LP is concerned and moreover it is asymptotically tight. In the instances we
consider clients have unit demands and it is well known that in this case the integer polytope
and the mixed-integer (where fractional client assignments are allowed) polytope are the
same. Since SA extends to mixed-integer programs as well [13, 8], the mixed-integer polytope
is obtained after at most n levels. Thus at most that many levels are needed also by the
stronger, full-integer, SA procedure we employ, which in the lifting stage multiplies also
with assignment variables. From a qualitative aspect, we give the first, to our knowledge,
SA bounds for a relaxation where variables have more than one type of semantics, namely
the facility opening and the client assignment type. Compare this, for example, with the
Knapsack and Max Cut LPs that contain each one type of variable. The lifting of the
assignment variables raises obstacles in the proof that we managed to overcome as discussed
in Section 3.

We use the local-to-global method which was implicit in [7] for local-constraint relaxations
and was then extended to the SA hierarchy in [15]. See also [16] for an explicit description
and [12] for applications to Max Cut and other problems. In this approach, the feasibility
of a solution for the t-level SA relaxation is established through the design of a set of
appropriate distributions over feasible integer solutions for each constraint such that these
global distributions agree with each other locally on relevant events. To prove Theorem 4 for
Cfl we devise first in Lemma 3 an intuitive method to construct an initial set of distributions
for a constraint. These initial distributions are inadequate for constraints where all facilities
appear as indices. An alteration procedure, explained in Propositions 3.1–3.3, produces
the final set of distributions. Theorem 4 extends significantly our earlier result on the LS
hierarchy for Cfl [21] to the stronger SA hierarchy. It turns out that in both cases we can
start from the same bad instance. It should be noted that the methodology in the two proofs
is completely different – in [21] the result was obtained via an inductive construction of
protection matrices.

APPROX/RANDOM’14
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Our second contribution (cf. Theorem 6) is that the effective capacity inequalities intro-
duced in [1, 2] for Cfl fail to reduce the gap of the classic relaxation to constant. These
constraints generalize the flow-cover inequalities for Cfl. Thus we disprove the long-standing
conjecture of [25] that the addition of the latter to the classic LP suffices for a constant
integrality gap. Our proof deviates from standard integrality gap constructions by applying
the local-global method. The bad solution fools every inequality π because its part that
is “visible” to π can be extended to a solution sπ that is a convex combination of feasible
integer solutions. Our ideas can be extended to even more general families such as the
submodular inequalities [1], cf. Theorem 7. All results in this paper make no time-complexity
assumptions. To our knowledge no efficient separation algorithm for the effective capacity
inequalities is known.

We finally introduce the family of proper relaxations which are configuration-like linear
programs. The so-called Configuration LP was used by Bansal and Sviridenko [10] for the
Santa Claus problem and has yielded valuable insights, mostly for resource allocation and
scheduling problems (e.g., [30]). The analogue of the Configuration LP for facility location
already exists, it is the star relaxation (see, e.g., [19]). We take the idea of a star to its
logical extreme by introducing classes. A class consists of a set with an arbitrary number of
facilities and clients together with an assignment of each client to a facility in the set. A
proper relaxation for an instance is defined by a collection C of classes and a decision variable
for every class. We allow great freedom in defining C : the only requirement is that the
resulting formulation is symmetric and valid. The complexity α of a proper relaxation is the
maximum fraction of the available facilities that are contained in a class of C. In Theorem 12
we characterize the behavior of proper relaxations for Cfl and Lbfl through a threshold
result: anything less than maximum complexity results in unboundedness of the integrality
gap, while there are proper relaxations of maximum complexity with a gap of 1.

Our results disqualify the so far most promising approaches for an efficient LP relaxation
for Cfl. Moreover, we advance drastically the state-of-the-art for the little understood Lbfl.
Whether a fundamentally new approach may succeed for either problem remains as an open
question.

2 Preliminaries

Given an instance I(F,C) of Cfl or Lbfl, we use n,m to denote |F | and |C| respectively.
We will show our negative results for uniform, integer, capacities and lower bounds. Each
client can be thought of as representing one unit of demand. It is well-known that in such a
setting the splittable and unsplittable versions of the problem are equivalent. The following
0-1 IP is the standard valid formulation of uncapacitated facility location with unsplittable
unit demands.

min{
∑
i∈F fiyi +

∑
i∈F

∑
j∈C xijcij | xij ≤ yi ∀i ∈ F,∀j ∈ C,∑

i∈F xij = 1 ∀j ∈ C, yi, xij ∈ {0, 1} ∀i ∈ F,∀j ∈ C}

The linear relaxation results from the above IP by replacing the integrality constraints
with: 0 ≤ yi ≤ 1, 0 ≤ xij ≤ 1, ∀i ∈ F,∀j ∈ C. To obtain the standard LP relaxations for
uniform Cfl (and Lbfl) with capacity U (lower bound B) the following constraints are
added respectively:∑

j xij ≤ Uyi ∀i ∈ F and
∑
j xij ≥ Byi ∀i ∈ F.

We will slightly abuse terminology by using the term (LP-classic) for both LPs. It will
be clear from the context to which problem, Cfl or Lbfl, we refer.
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We proceed to define the Sherali-Adams hierarchy [3]. Consider a polytope P ⊆ Rd
defined by the linear constraints Ax− b ≤ 0, 0 ≤ xi ≤ 1, i = 1, . . . , d. We define the polytope
SAk(P ) ⊆ Rd as follows. For every constraint π(x) ≤ 0 of P , for every set of variables
U ⊆ {xi | i = 1, . . . , d} such that |U | ≤ k, and for everyW ⊆ U , consider the valid constraint:
π(x)

∏
xi∈U−W xi

∏
xi∈W (1− xi) ≤ 0. Linearize the system obtained this way by replacing

(i) x2
i with xi for all i and (ii)

∏
xi∈I xi with xI for each set I ⊆ {xi|i = 1, . . . , d}. SAk(P ) is

the projection of the resulting linear system onto the singleton variables. We call SAk(P )
the polytope obtained from P at level k of the SA hierarchy. Given a cost vector c ∈ Rd, the
relaxation obtained from P at level k of SA is min{cTx | x ∈ SAk(P )}.

3 Sherali-Adams Gap for CFL

Consider an instance of metric Cfl with a total of 2n facilities, n with opening cost 0
which we call cheap (and denote the corresponding set by Cheap) and n with opening cost
1 which we call costly (and denote by Costly). The capacity U = n3 and we have a total
of nU + 1 clients. All connection costs are 0. We will show that the following bad solution
s to the instance1 survives a number of SA levels, which is linear in the number 2n of
facilities, more specifically for n/10 levels. On the other hand, it is known that at level 2n
the relaxation obtained expresses the integral polytope. Let α = n−2. For all i ∈ Cheap and
for all j ∈ C, yi = 1 and xij = 1−α

n , and for all i ∈ Costly and for all j ∈ C yi = 10
n2 and

xij = α
n . Theorem 4 below indicates that, as often with hierarchies, simple valid inequalities

are generated after many rounds. The reader who is further interested in the robustness of
SA for Cfl may consult Section 3.2.

The following lemma, which is implicit in previous work [15, 16] gives sufficient conditions
for a solution to be feasible at level k of the SA hierarchy.

I Lemma 1 ([15, 16]). Let s be a feasible solution to the relaxation and let v(π, z) be the
set of variables appearing in a lifted constraint obtained from π multiplied by z. Solution s
survives k levels of SA if for every constraint π and each multiplier z with at most k distinct
variables there is:
1. A solution s′ = sπ,z which agrees with s on v(π, z) such that s′ is a convex combination

Ed of integer solutions (and thus Ed defines a distribution on integer solutions) and
2. For any two sets v(π1, z1) and v(π2, z2), let x1x2 · . . . ·xl, l ≤ k+ 1, be a product appearing

in both lifted constraints obtained from π1 and π2 multiplied with z1 and z2 respectively.
Then the probability P [x1 = 1 ∧ x2 = 1 ∧ . . . ∧ xl = 1] is the same in both distributions
Ed1 and Ed2 associated with v(π1, z1) and v(π2, z2) respectively.

First consider a constraint π :
∑
j xiπj ≤ Uyiπ and a multiplier z. After multiplying by

z and expanding, we obtain a linear combination of monomials (products). Then, for the
k < n− 1 levels we consider there must be some costly facility ib /∈ v(π, z). We construct a
solution sπ,z = (y′, x′) by setting y′ib = 1−

∑
i∈Costly−{ib} yi and letting all other variables

the same as in the original bad solution s. We say that facility ib takes the blame. We will
prove that sπ,z can be obtained as a convex combination Ed of a set of integer solutions
satisfying constraint

∑
i∈Costly yi = 1. While sπ,z can be obtained as a convex combination

1 The reader should notice that any similarity with Knapsack is superficial. Theorem 4 is about the Cfl
polytope. Moreover, it is easy to embed our instance in a slightly larger one, with a non-trivial metric,
so that the projection of the bad Cfl solution to the y-variables, is in the integral polytope of the
“underlying” knapsack instance.

APPROX/RANDOM’14
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Ed in a variety of ways, we require that the assignments of clients to the cheap facilities are
indistinguishable in Ed and the same must be true for the assignments to costly facilities other
than ib. In the upcoming definition, we use the product p = z1z2 . . . zl as an abbreviation of
the event Ep :=

∧l
i=1(zi = 1).

I Definition 2. Let ib be the facility that takes the blame. We say that a distribution Ed is
assignment-symmetric if the following are true:
1. PEd [xia1 jb1

. . . xiat jbt yiat+1
. . . yial ], with t + l ≤ k + 1 is the same if we exchange all

occurrences of cheap facility ir by cheap facility ir′ (in other words relabeling facilities).
Note that we allow repetitions of facilities and clients in the description of the event.

2. PEd [xia1 jb1
. . . xiat jbt yiat+1

. . . yial ] is the same if we exchange all occurrences of client jq
by client jq′ .

3. PEd [xia1 jb1
. . . xiat jbt yiat+1

. . . yial ] is the same if we exchange all occurrences of costly
facility i1 by costly facility i2, i1, i2 6= ib.

We can always obtain sπ,z from such an assignment-symmetric distribution Ed as shown
in the following lemma.

I Lemma 3. Solution sπ,z is a convex combination Ed of integer solutions which defines an
assignment-symmetric distribution.

Proof. We describe a probabilistic experiment which induces an assignment-symmetric
distribution Ed over integer solutions satisfying

∑
i∈Costly yi = 1.

Fix costly facility ib. Let w1
ib

=
∑

j
x′ibj

y′
ib

be the desired number of clients assigned to facility
ib in the integer solutions in Ed where facility ib is opened. To simplify the presentation let
us assume that w1

ib
and the w values we subsequently define are integers (we discuss later how

to handle fractional w’s). Let w1
ich

= |C|−wib
|Cheap| be the number of clients assigned to facility

ic, c ∈ Cheap. Likewise, fix costly facility ico 6= ib. Let w2
ico

=
∑

j
x′icoj

y′
ico

be the number of
clients assigned to facility ico in each integer solution in Ed where facility ico is opened and
similarly let w2

ich
= |C|−wico
|Cheap| be the number of clients assigned to facility ic, c ∈ Cheap, in

each integer solution in Ed where facility ico is opened. Observe that all the defined w’s are
less than U . The following procedure produces the assignment-symmetric distribution Ed.

Pick costly facility ic with probability y′ic . If ic = ib (ic 6= ib) then consider n bins
corresponding to the n cheap facilities each one having w1

ch (w2
ch) slots and 1 bin corresponding

to ico having w1
ib

(w2
co) slots. Randomly distribute |C| balls to the slots of the n+ 1 bins,

with exactly one ball in each slot. Note that the above experiment induces a distribution over
feasible integer solutions satisfying

∑
i∈Costly yi = 1 since all the defined bin capacities are less

than U and every client is assigned to exactly one opened facility in each outcome and exactly
1 costly facility is opened. Moreover the induced distribution Ed is assignment-symmetric
and the expected (y, x) vector with respect to Ed is solution sπ,z.

Clearly, sπ,z is the convex combination induced by Ed and Ed is assignment-symmetric:
the cheap facilities are always open, and the costly are open a fraction of the time that is
equal to the value of their corresponding y variable. The expected demand assigned to each
ico ∈ Costly is y′icowco which is the total demand assigned to ico by sπ,z. Since the clients
have the same probability of being tossed in the bin corresponding to ico, the expected
assignment of each client j to ico is the same as in sπ,z.

As for the assignments to the cheap facilities, observe that in every outcome of the
experiment the demand not assigned to costly facilities is exactly the demand assigned to
cheap. Since we have proved that the expected assignments to the costly facilities are those
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of the bad solution, by linearity of expectation we get that the total assignments to all
cheap facilities are

∑
i∈Cheap

∑
j xij (the total assignment of each client add up to 1 by the

constraints of the LP). By the symmetric way the cheap are handled in the experiment
we have that the total expected demand assigned to each i ∈ Cheap is

∑
j xij and by the

symmetric way the clients are assigned to i through the experiment we get that the expected
assignment of each j to i is xij .

To handle the case where the w’s are not integers (which is actually always the case),
we do the following: each time costly facility ib (ic 6= ib) is picked, we set the number of
slots of the corresponding bin to bw1

ib
c (bw2

ico
c) with probability 1 − (w1

ib
− bw1

ib
c) (1 −

(w2
ico
− bw2

ico
c)), otherwise set the slots to dw1

ib
e(dw2

ico
e); this ensures that the expected

number of slots is w1
ib

(w2
ico

). The same rationale applies to the remaining cases of the
construction. If the number of slots of ib (ico) is set to bw1

ib
c (bw2

ico
c) then we pick some

n( |C|−bw
1
ib
c

n − b( |C|−bw
1
ib
c

n )c) ( n( |C|−bw
2
ico
c

n − b( |C|−bw
2
ico
c

n )c)) cheap facilities at random and

set their corresponding number of slots to d |C|−bw
1
ib
c

n e (d |C|−bw
2
ico
c

n e) and the number of

slots of the rest of the cheap facilities to b |C|−bw
1
ib
c

n c(b |C|−bw
2
ico
c

n c). Otherwise pick some

n( |C|−dw
1
ib
e

n − b( |C|−dw
1
ib
e

n )c) ( n( |C|−dw
2
ico
e

n − b( |C|−dw
2
ico
e

n )c)) cheap facilities at random and

set their corresponding number of slots to d |C|−dw
1
ib
e

n e (d |C|−dw
2
ico
e

n e) and the number of slots

of the rest to b |C|−dw
1
ib
e

n c(b |C|−dw
2
ico
e

n c). Note than in every case the expected number of
slots per facility is as in the initial description of the experiment where we assumed the w
values to be integers. J

We set the product-variables xI appearing in constraint π multiplied by multiplier z to
PEd [I]. Constraints xij ≤ yi, xij ≤ 1, yi ≤ 1, are handled in the exact same way; the set of
variables appearing in them is a subset of those appearing in the more complex constraints.

The second and more challenging case is when constraint π is
∑
i xijπ = 1 for some client

jπ. Let again z be a multiplier of level k. Observe now that all facilities in F appear in
v(π, z) as indexes of at least the xij variables. We select one facility ib not appearing in z
to take the blame. Let sπ,z = (y′, x′) be the corresponding extended solution that can be
written as a convex combination/assignment–symmetric distribution Ed of integer solutions;
the existence of Ed is ensured by Lemma 3. In this case there is a major obstacle to the
agreement of the products xI : conditioning on the event xibj the probability of an event
xij′ , i ∈ Cheap for some j′ 6= j is higher than it would be if we were to condition on the event
xi′j , i

′ ∈ Costly − {ib}. The same is true for more complex events involving assignments
to cheap facilities conditioning on an assignment of facility ib compared to the analogous
event conditioning on some other costly facility. This can be problematic since facility ib
takes the blame in some distributions but does not in some others and thus there is the
danger of violating the consistency required by the 2nd condition of Lemma 1. We overcome
this difficulty by making alterations to Ed and constructing a distribution Ef where the
probabilities of the aforementioned events are the same.

We now devise the altered distribution Ef . We first display the intuition in the following
example: consider the event A : xibj = 1 ∧ xichj′ = 1 and the event B : xicoj = 1 ∧ xichj′ = 1
with ico ∈ Costly − {ib} and ich ∈ Cheap. The probability of A is P [A] = P [xibj =
1]P [xichj′ = 1 | xibj = 1] = x′ibj

w1
ch

|C|−1 and the probability of B is P [B] = P [xicoj =

1]P [xichj′ = 1 | xicoj = 1] = x′icoj
w2
ch

|C|−1 . Note that P [A] ≈ P [B](1 + 1/n) so P [A] is only
slightly greater. We nullify the difference between those probabilities by performing an
alteration step to distribution Ed that we call transfusion of probability. We pick some

APPROX/RANDOM’14
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measure of an integer solution s1 for which xichj′ = 1∧xibj = 1∧xibj′′ = 0 for some client j′′.
We pick the same quantity of measure of some integer solution (or of some set of solutions)
s2 for which xichj′ = 0 ∧ xibj = 0 ∧ xibj′′ = 1 and we exchange the values of the assignments
xibj , xibj′′ of the solutions. Let that quantity be P [A]− P [B], it is easy to see that each set
of solutions has enough measure to perform the transfusion. The resulting distribution Ef
now has P [A] = P [B]. In general, when transfusing probabilistic measure for complex events,
we must be careful not to change the probability of events involving only assignments to
cheap facilities, as opposed to the simplified example above.

Now let p be a product appearing in constraint π after having multiplied by multiplier
z. We only consider products where exactly one variable xibj appears. Recall we chose ib
so that it does not appear in z; thus we cannot have yib or more than one assignments of
ib appearing in a product p. We may also assume that there is no yi variable in p, since if
there is for some i ∈ Costly − {ib} the probability of Ep is simply 0 and if i ∈ Cheap the we
can ignore the effect of yi = 1 since it is always true. Likewise we assume that there is no
assignment variable of another costly facility. We shall make corrections of the probability of
all such events Ep in a top-down manner: at step i we fix the probability of all the events
xibj = 1 ∧ xia1 jb1

= 1 ∧ . . . ∧ xiak−i+1 jbk−i+1
= 1 where xibjxia1 jb1

. . . xiak−i+1 jbk−i+1
is a

product p appearing in constraint π multiplied by z. In other words, we fix the probabilities
in decreasing order of the cardinality of the set of variables appearing in p. The following
proposition relates the probability of Ep with that of Ep′ = Epxij , an event with the additional
requirement that xij = 1.

I Proposition 3.1. Let p = xibjxia1 jb1
xia2 jb2

. . . xial jbl and let p′ = pxial+1 jbl+1
. Then in

Ed, (1− o(1))P [Ep]/n ≤ P [Ep′ ] ≤ (1 + o(1))P [Ep]/n.

Consider step i of the above iterative construction of Ef . Let p = xibjxia1 jb1
. . . xiak−i+1 jbk−i+1

and the event Ep : xibj = 1 ∧ xia1 jb1
= 1 ∧ . . . ∧ xiak−i+1 jbk−i+1

= 1. We wish in Ef the prob-
ability P [Ep] to be equal to P [Ep/fixed] = P [xi∗j = 1∧ xia1 jb1

= 1∧ . . .∧ xiak−i+1 jbk−i+1
= 1]

in Ed for i∗ ∈ Costly − {ib}. We bound the ratio P [Ep]
P [Ep/fixed] :

I Proposition 3.2. Let Ep and Ep/fixed be defined as above. Then
(1 + (1− o(1))1/n)k−i+1 ≤ P [Ep]

P [Ep/fixed] ≤ (1 + (1 + o(1))1/n)k−i+1.

Now we describe in detail the alterations of the probabilities in each iteration. The
corrections of the probabilities of events of previous iterations affect the probabilities of the
events of the current iteration of the procedure that constructs Ef . We bound this effect
on the probability of an event Ep of the current iteration i by considering the corrections
of the events Ep′ = Ep ∧ xij = 1, with xij in the set of variables appearing in z and
xij /∈ Ep, of the previous iteration and using the union bound.2 There are exactly i

events needed to be taken into consideration for each such Ep of the current step i. The
amount of the effect of the correction of the previous iteration is by Proposition 3.2 at most
i((1+(1+o(1))1/n)k−i+2−1)P [Ep′/fixed] while the measure of the needed correction for Ep is
at least ((1+(1−o(1))1/n)k−i+1−1)P [Ep/fixed] which by Proposition 3.1 and by the number
of rounds we consider is higher, in particular ((1 + (1 − o(1))1/n)k−i+1 − 1)P [Ep/fixed] ≥
n(1−o(1))((1+(1−o(1))1/n)k−i+1−1)P [Ep′/fixed] > i((1+(1+o(1))1/n)k−i+2−1)P [Ep′/fixed].
To subtract from P [Ep] the rest of the probabilistic measure required from the correction at

2 Notice that any effect of iteration j < i− 1 on P [Ep], originates from events that are subsets of Ep′ and
has therefore been accounted for.
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step i, say a measure of µ, we do the following transfusion step: pick a measure µ of solutions
from distribution Ed such that xibj = 0, xibj′ = 1 for any j′ that does not appear as index
of any variable in v(π, z), all the other events of Ep are false, and so are all the remaining
events corresponding to assignments in z. Then pick an equal measure of solutions from Ed
such that xibj = 1, xibj′ = 0, all the other events of Ep are true, and all the remaining events
corresponding to assignments in z are false. Now exchange the values of the assignments of j
and j′ of the solutions of the two sets. The resulting distribution has the probability of Ep
fixed to the desired value and moreover, by the choice of the sets of solutions on which we
perform the transfusion step, the probability of the events fixed in previous iterations was
not altered and neither was the probability of events containing only assignments of cheap
facilities. Clearly, the solution sπ,z is still obtained in expectation. It remains to show that
the transfusion step can be performed, i.e., that there is enough measure µ in the involved
sets of integer solutions.

I Proposition 3.3. The probabilistic transfusion step of the above iterative procedure can
always be performed.

Proof. The intuition behind the proof is that the “donor” event that supplies the required
measure is much more likely to occur than the events that require the transfusion.

Consider the measure t in Ed of the set of integer solutions satisfying yib = 1 and all events
encountered at any iteration being false, namely xibj = 0∧xi1j1 = 0∧xi2j2 = 0∧. . .∧xikjk = 0.
Then, by the random experiment of the construction of Ed, this event is equivalent to the
event that facility ib is picked, xibj = 0 and the k balls corresponding to the clients of the
rest of the events are not tossed in their corresponding bins. Using again that both w1

ch, w
2
ch

are Θ(n3) and k < n, we can bound the probability of the k balls by that of k Bernoulli trials
with probability of success 2/n (we are once again very generous). Then the probability
that all events fail is at least (1 − 2/n)k > limn→∞(1 − 2/n)n = 1/e2. Thus measure t
is at least (yib − xibj)1/e2 which is constant. On the other hand the measure required
by the transfusion step for each event Ep of iteration i that needs to be fixed is at most
(e2 − 1)P [Ep/fixed] = Θ(1/ni). There are

(
k+1
k−i+1

)
such events of iteration i, and summing

over all the iterations of our construction we get
∑k
i=1
(
k+1
k−i+1

)
Θ(1/ni) which quantity is less

than (yib − xibj)1/e2 for the k = n/10 levels of SA we consider, so we can always pick the
required amount of measure. J

I Theorem 4. There is a family of Cfl instances with 2n facilities and n4 + 1 clients such
that the relaxations obtained from (LP-classic) at Ω(n) levels of the Sherali-Adams hierarchy
have an integrality gap of Ω(n).

Proof. For each lifted constraint π multiplied by multiplier z at level t, the corresponding
distribution Ed or Ef is clearly a distribution over integer solutions, so the first condition of
Lemma 1 is satisfied. For the second condition, observe that if an event Ep involves more than
one costly facility, it has 0 probability in all distributions. If an event Ep involves only cheap
facilities, it has the same probability in all distributions Ef and Ed, since in the construction
of a distribution Ef we took care not to change the probability of such events. An event
Ep that involves more than one assignment of a costly facility (but no other costly) has in
every distribution Ef the same probability (which is the same as in every Ed) since in the
construction of Ef we did not alter the probabilities of such events. And lastly, when an
event Ep involves exactly one assignment of some costly facility ix, note that in some cases ix
takes the blame but in other cases it does not, depending on v(π, z). But due to the iterative
procedure of probabilistic transfusion, the probability of event Ep in a distribution in which
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306 Sherali-Adams Gaps, Flow-cover Inequalities and Configurations for Facility Location

ix is not the facility that takes the blame is equal to the probability of the same event in the
distributions that ix takes the blame. So Lemma 1 holds. It is easy to see that bad solution
has cost Θ(n−1) while any feasible solution to the instance has cost Ω(1). J

3.1 SA Gap for LBFL
A similar result to Theorem 4 can be proved for Lbfl. Consider an instance with n facilities,
lower bound B = n3 and a total of n(B− 1) clients. The metric space here is more intriguing
than the one for the Cfl case. Consider a regular (n− 1)-dimensional simplex with edge
length 1. On each of the n vertices of the simplex a facility along with some B − 1 clients
are located. All opening costs are 0. Clearly every integer solution has a cost of at least
B − 1 since we can open at most n − 1 of the facilities, and so at least B − 1 clients will
have to be assigned to some facility other than the one on the same vertex. We call a client
j that is located on the same vertex with facility i, exclusive client of i. We denote by
Exclusive(i) the set of clients that are exclusive to facility i. On the other hand we can
show that the following bad solution s is feasible at Ω(n) levels of the SA hierarchy. For all
i ∈ F, yi = 1−n−2; for a client j ∈ C, xij = 1− 10n−2, if j ∈ Exclusive(i), and xij = 10n−2

n−1
for all other facilities. Solution s incurs a cost of o(B).

I Theorem 5. There is a family of Lbfl instances with n facilities and n4 − n clients such
that the relaxations obtained from (LP-classic) at Ω(n) levels of the Sherali-Adams hierarchy
have an integrality gap of Ω(n).

The proof is similar to that of Cfl and is thus omitted. Here the reader can find a sketch
of the necessary changes to the proof of Theorem 4.

Proof sketch of Theorem 5. Consider a constraint π :
∑
j xiπj ≥ Byiπ and a multiplier

z at level k and let v(π, z) be the set of variables appearing in the multiplied constraint.
We pick a facility ib not in v(π, z) to take the blame. We construct a solution s′ where
we set y′ib = n − 1 −

∑
i 6=ib yi and for each j ∈ Exclusive(ib) we set x′ibj = y′ib = 1−1/n

n

and we distribute the remaining demand that was assigned to ib to each facility from a
constant-size set Ib of facilities not appearing in v(π, z). Solution s′ can be obtained as a
convex combination of integer solutions by constructing a distribution similarly to Lemma 3.
This time the distribution satisfies that exactly n− 1 facilities are opened in each outcome
of the experiment. Note that we do not require the underlying distribution to be assignment
symmetric, because facilities have to treat differently their exclusive clients. We set the values
of the linearized products appearing in the multiplied constraint equal to the probability
of the corresponding events with respect to the aforementioned distribution. No product
involving variables of ib ∪ Ib appear in the constraint. For constraints 0 ≤ xij , yi ≤ 1 and
xij ≤ yi the construction of the distribution is the same. The distributions constructed so
far are locally consistent as required by Lemma 1.

The case where the constraint is π :
∑
i xijπ = 1 is once again more complicated. We

choose a facility ib /∈ z and moreover jπ /∈ Exclusive(ib) to take the blame and the set Ib is
defined as before except we also require that jπ is not exclusive to any of them. Solution s′
is constructed like in the previous case. All products take the value of the corresponding
events in the distribution except those in which the unique variable involving ib appears,
namely xibj and those involving facilities in Ib. We perform a transfusion step so that the
probabilities of all the events whose corresponding products appear in the lifted constraint
become consistent with the distributions of the previous case: this time we need to fix the
probabilities of the events involving facility ib or some facility i ∈ Ib. J
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3.2 Robustness of the SA Gap
In this section we explain how adding simple valid inequalities does not affect our arguments
on the SA hierarchy.

As an example we address the valid inequality
∑
i yi ≥ dD/Ue, where D is the total

amount of demand. This is a well-known facet-inducing constraint for our instance, see,
e.g., [24, p. 283]. Of course this inequality is rendered useless by slight modifications to the
instance and the bad solution. Identifying “areas” of a fractional solution where the demand
exceeds the available capacity is impossible without some yet unknown form of preprocessing.
In fact part of the motivation behind Theorem 4 is to demonstrate that the SA hierarcy is
inadequate for such preprocessing purposes.

We modify the family of "bad" instances by using the same trick we used in the proof
of Theorem 6: we have n cheap and n costly facilities and Un + 1 clients, and the bad
solution in which for every ch ∈ Cheap, co ∈ Costly, and client j, ych = 1, xchj = 1−α

n ,

yco = 10/n2, xcoj = α
n with α = n−2, and additionally we add a set of n dummy facilities ai,

1 ≤ i ≤ n, all with 0 opening costs, on the same point at distance 1 from the rest. In the
bad solution s we additionally set yai = 1 and xaij = 0 for all i and for all clients j. The
inequality is obviously satisfied.

In the design of the locally consistent distributions, now we must give a distribution for
the case where the constraint π is the new one

∑
i yi ≥ dD/Ue, and verify that the "visible"

part of the distribution agrees with the visible part of all other distributions of the proof. In
this case there must be some dummy facility ad not appearing as an index in the multiplier
z of the constraint (although its y variable does appear in π). Additionally there must be
a costly facility i′ for which the assignments of clients to i′ do not appear in v(π, z) – this
is ensured by the number of rounds we consider. We modify the solution (y, x) to obtain
(y′, x′) where the facilities i′ and ad exchange the values of their corresponding assignments.
We define now the random experiment similarly to the proof of Lemma 3 with facility ad
taking the blame. The only difference is that while ad is opened 100% of the time, it is not
assigned any demand when a costly facility other than i′ is opened. In the terminology of
Theorem 6 that follows, ad is always open but it is inactive when some i ∈ Costly, i 6= i′,

is opened. It is easy to see that the distribution obtained is consistent with all the other
distributions defined for this modified instance, as required by Lemma 1.

4 Fooling the Effective Capacity Inequalities for CFL

In this section we show that the (LP-classic) for Cfl with the addition of the effective
capacity inequalities proposed in [1] has unbounded gap.

Consider the general case where facility i has capacity ui and client j has demand dj .
For a set J of clients, we denote their total demand by d(J) =

∑
j∈J dj . Let J ⊆ C be

a set of clients, let I ⊆ F be a set of facilities, and let Ji ⊆ J be a set of clients for each
facility i ∈ I. Given a facility i, we denote the effective capacity of i with respect to Ji by
ūi = min{ui, d(Ji)}. I is a cover with respect to J if

∑
i∈I ūi = d(J) + λ with λ > 0. λ is

called the excess capacity. Let (x)+ = max{x, 0}. In the case where Ji = J for all i ∈ I the
following inequalities called flow-cover inequalities were introduced for Cfl in [1].∑

i∈I
∑
j∈J djxij +

∑
i∈I(ui − λ)+(1− yi) ≤ d(J)

If maxi∈I(ūi) > λ, the following inequalities, called the effective capacity inequalities are
valid and strengthen the flow-cover inequalities [1].
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∑
i∈I
∑
j∈Ji djxij +

∑
i∈I(ūi − λ)+(1− yi) ≤ d(J)

The proof of the following theorem uses some of the ideas we introduced earlier for
Theorem 4.

I Theorem 6. The integrality gap of the relaxation obtained from (LP-classic) with the
addition of the effective capacity inequalities is Ω(n), where n is the number of facilities in
the instance.

Proof. Consider an instance with n cheap and n+2 costly facilities and Un+1 clients, U = n3.

Define the bad solution s, similarly to Section 3, s.t. for every ch ∈ Cheap, co ∈ Costly, and
client j, ych = 1, xchj = 1−α

n , yco = 10/n2, xcoj = α
n+2 . Recall that α = n−2. We add a set of

n+ 2 facilities ai, 1 ≤ i ≤ n+ 2, all with 0 opening costs, on the same point at distance 1
from the rest (an instance of the so-called facility location on a line). In the bad solution s
we additionally set yai = 1 and xaij = 0 for all i and for all clients j.

We will prove that in every cover I with respect to some client set J and to the Ji client
sets for each i, there must always be a number of at least 2n3 clients whose assignment
variables to some costly and to some ai do not appear in the constraint. This is because
if, ūi = U for each i ∈ Costly, or, ūai = U for each i ≤ n + 2, then the excess capacity
λ > U since d(J) ≤ Un + 1. This contradicts the requirement that λ < U . So there must
be a costly facility ico′ and some facility ai′ such that for the corresponding sets we have
|Jico′ |, |Jai′ | < U , and so there is a set J∗ of 2n3 clients whose assignments to those two
facilities do not appear in the constraint. We exchange the values of xico′ j and xai′ j for all
j ∈ J∗, leaving everything else the same, and we obtain a solution s′ = (y′, x′). We can prove
similarly to the proof of Lemma 3 that s′ is a convex combination of integer solutions and
thus solution s satisfies the inequality since the parts of s and s′ visible to that inequality
are the same.

We modify the construction of Lemma 3 in the following way: facility ai′ is opened 100%
of the time but is active 1−

∑
i∈Costly y

′
i of the time, when none of the costly facilities are

opened. When it is not active, the capacity of its corresponding bin is 0. When a costly other
than ico′ is opened the experiment is the same as in Lemma 3. If costly facility ico′ is opened

the capacity of the corresponding bin is w2
co′ =

∑
j
x′
co′j

y′
i
co′

and the capacity of the cheap is
|C|−w2

co′
n . We randomly select some w2

co′ clients that do not belong to J∗ to be tossed in the
bin of ico′ ; we randomly distribute the balls corresponding to the remaining clients to the
slots of the cheap facilities. When ai′ is active, and thus no costly facility is opened, the

capacity of the corresponding bin is w1
ai′

=
∑

j
x′a
i′ j

1−
∑

i∈Costly
y′
i

and the capacity of the cheap is
|C|−w1

a
i′

n . We select randomly some w1
ai′

clients in J∗ and we toss the corresponding balls in
the bin of ai′ . We randomly toss the remaining balls to the slots of the bins of the cheap
facilities.

Note that the above experiment induces a distribution over feasible integer solutions
since all the defined bin capacities are less than U (this is by the choice of the size of J∗)
and every client is assigned to exactly one opened facility in each outcome. We do not
need this distribution to be assignment-symmetric. Observe that the expected vector with
respect to the latter distribution is solution s′. Finally, note that we once again treated the
capacities w of the bins as being integral. For fractional bin capacities (which is actually
always the case for the defined w’s) we can define the experiment in a similar way to the
proof of Lemma 3. J
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The submodular inequalities introduced in [1] are even stronger than the effective capacity
inequalities. We limit our discussion to uniform Cfl where all clients have unit demands.

Choose a subset J ⊆ C of clients, and let I ⊆ F be a subset of facilities. For each facility
i ∈ I choose a subset Ji ⊆ J . Consider a 3-level network G with a source s, a set of nodes
corresponding to the facilities, a set of nodes corresponding to the clients and a sink t. The
source s is connected by an edge of capacity min{U, |Ji|} to each facility node i. That node
is connected by an edge of unit capacity to each node corresponding to client j, j ∈ Ji. Each
node corresponding to some client is connected by an edge of unit capacity to the sink t.

Define f(I) as the maximum s-t flow value in G. Define f(I \ {i}) as the maximum flow
when facility i is closed, i.e., when the capacity of edge (s, i) is set to zero. The difference in
maximum flow when all facilities in I are open, and when all facilities except facility i are
open, is called the increment function and is defined as ρi(I \ {i}) = f(I)− f(I \ {i}).

For any choice of I ⊆ F, J ⊆ C, and Ji ⊆ J, for all i, the following inequalities, called the
submodular inequalities, are valid [1]. The name reflects the fact that the function f(I) is
submodular. ∑

i∈I
∑
j∈Ji xij +

∑
i∈I ρi(I \ {i})(1− yi) ≤ f(I)

Theorem 7 below strictly generalizes Theorem 6 to the submodular inequalities.

I Theorem 7. The integrality gap of the relaxation obtained from (LP-classic) with the
addition of the submodular inequalities is Ω(n), where n is the number of facilities in the
instance.

5 Proper Relaxations

In this section we present the family of proper relaxations and characterize their strength.
Consider a 0-1 (y, x) vector on the set of variables of the classic relaxation (LP-classic) such
that yi ≥ xij for all i ∈ F, j ∈ C. The meaning of yi = 1 is the usual one that we open facility
i. Likewise, the meaning of xij = 1 is that we assign client j to facility i. We call such a
vector a class. Note that the definition is quite general and a class can be defined from any
such (y, x), which may or may not have a relationship to a feasible integer solution. We
denote the vector corresponding to a class cl as (y, x)cl. We associate with class cl the cost
of the class ccl =

∑
i|yi=1∈(y,x)cl fi +

∑
i,j|xij=1∈(y,x)cl cij . Let the assignments of class cl be

defined as Agncl = {(i, j) ∈ F × C | xij = 1 in (y, x)cl}. We say that cl contains facility i, if
the corresponding entry yi in the vector (y, x)cl equals 1. The set of facilities contained in cl
is denoted by F (cl).

I Definition 8 (Constellation LPs). Let C be a set of classes defined for an instance I(F,C)
of Cfl or Lbfl. Let xcl be a variable associated with class cl ∈ C. The constellation LP with
class set C, denoted LP(C), is defined as min{

∑
cl∈C cclxcl |

∑
cl|∃i:(i,j)∈Agncl xcl = 1 ∀j ∈

C,
∑
cl|i∈F (cl) xcl ≤ 1 ∀i ∈ F, xcl ≥ 0 ∀cl ∈ C}.

We refer simply to a constellation LP when C is implied from the context. We define the
projection s′ = (ys′ , xs′) of solution s = (xscl)cl∈C of LP(C) to the facility opening and
assignment variables (y, x) as ys′i =

∑
cl|i∈cl x

s
cl and xs

′

ij =
∑
cl|(i,j)∈Agncl x

s
cl. We restrict

our attention to constellation LPs that satisfy a symmetry property that is very natural for
uniform capacities and unit demands.

I Definition 9 (P1: Symmetry). We say that property P1 holds for the constellation linear
program LP(C) if for every class cl ∈ C, all classes resulting from a permutation that relabels
the facilities and/or the clients of cl are also in C.
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I Definition 10 (Proper Relaxations). We call proper relaxation for Cfl (Lbfl) a constellation
LP that is valid and satisfies property P1.

A simple example of a constellation LP is the well-known (LP-star) (see, e.g., [19]) where
C corresponds to the set of all stars: a facility and a set of at most U (or at least B for
Lbfl) clients assigned to it. Obviously (LP-star) is a proper relaxation, while (LP-classic) is
equivalent to (LP-star). Therefore proper relaxations generalize the known natural relaxations
for Cfl and Lbfl. In order to characterize the strength of a proper LP we need the notion
of complexity.

I Definition 11 (Complexity of proper relaxations). Given an instance I(F,C) of Cfl (Lbfl)
let F ′ be a maximum-cardinality set of open facilities in an integral feasible solution. The
complexity α of a proper relaxation LP (C) for I is defined as the supcl∈C(|F (cl)|/|F ′|).

The complexity of a proper LP represents the maximum fraction of the total number of
feasibly openable facilities that is allowed in a single class. A complexity of nearly 1 means
that there are classes that take each into consideration almost the whole instance at once.
Low complexity means that all classes consider the assignments of a small fraction of the
instance at a time.

I Theorem 12. Every proper relaxation for uniform Cfl (Lbfl) with complexity α < 1 has
an unbounded integrality gap. There is a proper relaxation for Cfl (Lbfl) of complexity 1
whose projection to (y, x) expresses the integral polytope.

Proof sketch of Theorem 12 for Lbfl. We are given an arbitrary proper relaxation LP (C)
of complexity α < 1, for an instance with n + 1 facilities, n3 clients and B = n2, and the
following metric distances: put every facility i, i ≤ n− 1, together with B − 1 clients, which
we call exclusive clients of i, on a distinct vertex of an (n− 2)-dimensional regular simplex in
Rn−2 with edge length D. Put facilities n, n+ 1 together with their exclusive clients, which
are all the B+n− 1 remaining clients, to a point far away from the simplex, so the minimum
distance from a vertex is D′ = Ω(nD). We set all the facility costs to 0.

A major challenge is that we have no a priori knowledge of C. We use the validity of
LP (C) and the fact that α < 1, to prove that there is a class cl0 with some desired properties
that must belong to C. Using classes that are symmetric to cl0, which also must belong to
C, we construct a vector s that is feasible for LP (C) and whose projection on the classic
variables is the following (y∗, x∗): for each facility i ≤ n− 1, its exclusive clients are assigned
to it with a fraction of n

2−1
n2 each, while they are assigned with a fraction of 1

(n2)(n−2) to each
other facility i′ ≤ n− 1. As for facilities n, n+ 1, all of their exclusive clients are assigned
with a fraction of 1/2 to each. Moreover y∗i = n2−1

n2 , for i ≤ n− 1, and y∗n = y∗n+1 = n2+n−1
2n2 .

The cost of the fractional solution we constructed is O(nD) due to the assignments of
exclusive clients of facility i, i ≤ n− 1, to facilities i′ with i′ 6= i, i′ ≤ n− 1. As for the cost
of an arbitrary integral solution, observe that since the n2 +n− 1 exclusive clients of n, n+ 1
are very far from the rest of the facilities, using n of them to satisfy some demand of those
facilities and help to open all of them, incurs a cost of Ω(nD′) = Ω(n2D). On the other hand,
if we do not open all of the n− 1 facilities on the vertices of the simplex (since they have in
total (n− 1)(B − 1) exclusive clients which is not enough to open all of them), there must
be at least one such facility not opened in the solution, thus its B − 1 = Θ(n2) exclusive
clients must be assigned elsewhere, incurring a cost of Ω(n2D). J
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