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Abstract
In the k-median problem, given a set of locations, the goal is to select a subset of at most k
centers so as to minimize the total cost of connecting each location to its nearest center. We
study the uniform hard capacitated version of the k-median problem, in which each selected
center can only serve a limited number of locations.

Inspired by the algorithm of Charikar, Guha, Tardos and Shmoys, we give a (6 + 10α)-
approximation algorithm for this problem with increasing the capacities by a factor of 2+ 2

α , α ≥ 4,
which improves the previous best (32l2 + 28l + 7)-approximation algorithm proposed by Byrka,
Fleszar, Rybicki and Spoerhase violating the capacities by factor 2 + 3

l−1 , l ∈ {2, 3, 4, . . . }.
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1 Introduction

In the capacitated k-median problem (CKM), we are given a set N of locations (where a
center can potentially be opened). Each location j ∈ N has a capacityM (uniform capacities),
and a demand dj that must be served. Assigning one unit of the demand of location j to
center i ∈ N incurs service costs cij . We assume the service costs are non-negative, identity
of indiscernibles, symmetric and satisfy the triangle inequality. That is, cij ≥ 0,∀i, j ∈ N ;
cij = 0, if i = j; cij = cji,∀i, j ∈ N and cit + ctj ≥ cij ,∀i, j, t ∈ N . The objective is to serve
all the demands by opening at most k centers and satisfying the capacity constraints such
that the total cost is minimized. In this paper, we consider the hard capacities and splittable
demands, that is, we allow at most one center to be opened at any location and each location
can be served from more than one open center. (In contrast, the soft capacities allows that
multiple centers can be opened in a single location. In the unsplittable demands case each
location must be served by exactly one open center.)

CKM can be formulated as the following mixed integer program (MIP), where variable
xij indicates the fraction of the demand of location j that is served by location i, and yi
indicates whether location i is selected as a center.

min
∑
i,j∈N

djcijxij

subject to:
∑
i∈N

xij = 1, ∀j ∈ N ;
∑
j∈N

djxij ≤Myi, ∀i ∈ N ;

∑
i∈N

yi ≤ k; 0 ≤ xij ≤ yi, ∀i, j ∈ N ;

yi ∈ {0, 1}, ∀i ∈ N.
(1)

Replacing constraints (1) by 0 ≤ yi ≤ 1,∀i ∈ N , we obtain the LP-relaxation of CKM.
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1.1 Related Work and Our Results
The k-median problem is a classical NP-hard problem in computer science and operations
research, and has a wide variety of applications in clustering and data mining [4, 13]. The
uncapacitated k-median problem was studied extensively [1, 2, 6, 8, 9, 14, 15, 17], and the best
known approximation algorithm was recently given by Byrka et al. [6] with approximation
ratio 2.611 + ε by improving the algorithm of Li and Svensson [17].

The capacitated versions of k-median problem are much less understood. The above
LP-relaxation has an unbounded integrality gap. More precisely, the capacity or the number
of opened centers has to be increased by a factor of at least 2, if we try to get an integral
solution within a constant factor of the cost of an optimal solution to the LP-relaxation
[9]. All the previous attempts with constant approximation ratios for this problem violate
at least one of the two kinds of hard constraints: the capacity constraint and cardinality
constraint (at most k centers can be opened), even the local search technique.

For the hard uniform capacity case, by increasing the capacities within a factor of 3,
Charikar et al. [7, 9, 12] presented a 16-approximation algorithm based on LP-rounding.
This violation ratio of capacities was recently improved to 2 + 3

l−1 , l ∈ {2, 3, 4, . . . } by Byrka
et al. [5], with the corresponding approximation ratio of 32l2 + 28l+ 7. In addition, Korupolu
et al. [16] proposed a (1 + 5/ε)-approximation algorithm while opening at most (5 + ε)k
centers, and a (1 + ε)-approximation algorithm while opening at most (5 + 5/ε)k centers
based on a local search technique.

For soft non-uniform capacities, Chuzhoy and Rabani [10] presented a 40-approximation
algorithm while violating the capacities within a factor of 50 based on primal-dual and
Lagrangian relaxation methods. Using at most (1 + δ)k facilities, Bartal et al. [3] gave a
19.3(1 + δ)/δ2-approximation algorithm (δ > 0). For hard non-uniform capacities, Gijswijt
and Li [11] gave a (7 + ε)-approximation algorithm while opening at most 2k centers.

In this paper, we improve the algorithm of Charikar et al. [9] to reduce its violation ratio
of capacities from 3 to 2+ 2

α , α ≥ 4 and get an (6+10α)-approximation algorithm for the hard
uniform capacitated k-median problem, which improves the previous best approximation
ratio for any violation ratio of capacities in (2, 3). The approximation ratios we obtain for
violation ratio of 2.1, 2.3, 2.5, 2.75 and 3 (for instance) are summarized in the following table.

violation ratio of capacities 2.1 2.3 2.5 2.75 3
previous best 31627 4187 1771 947 16
our algorithm 206 72.67 46 46 46

Note that with increasing the capacities by a factor of at least 3, the best approximation
ration is still due to Charikar et al. [9].

Additionally, for metric facility location problems there is a slightly different model for
the capacitated k-median [5, 11], in which we are given a set F of facilities and a set D of
clients. Each facility has a capacity M . Each client j ∈ D has a demand dj that has to be
served by facilities. Note that the capacity of each client is 0. This is different from our
model, in which each location has a capacity M . We show that our algorithm can be easily
extended to solve this model with increasing the approximation ratio by a factor at most
2 + 1

6+10α .

1.2 The Main Idea Behind Our Algorithm
In Charikar et al. [9] algorithm, based on an optimal solution to the LP-relaxation, a
{ 1

2 , 1}-solution (x, y) is first constructed such that yi ∈ {0, 1
2 , 1},∀i ∈ N ;

∑
j∈N xijdj ≤M ,
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Figure 1 A star Qt.

if yi = 1
2 ; and

∑
j∈N xijdj ≤ 2M , if yi = 1. Note that

∑
j∈N xijdj ≤Myi could be violated

in this solution.
Next, a center is directly opened at location i if yi = 1. Then, they construct a collection

of rooted stars spanning the locations i ∈ N with yi = 1
2 . By a star by star rounding

procedure, exactly half of the locations with fractional opening value 1
2 are chosen as centers.

The demands of another half of the locations, where no center is opened finally, are reassigned
to the opened half. In the worst case, the capacity of the root of some star has to be increased
by factor 3 to satisfy the capacity constraint. Take Fig. 1 as an example. The star Qt, rooted
at t, has two children j1 and j2 with yt = yj1 = yj2 = 1

2 . In the worst case of Charikar et al.
algorithm, we are allowed to build at most byt + yj1 + yj2c centers, i. e., 1 center. Without
loss of generality, suppose we build a center at the root t, and reassign the demand served by
j1 and j2 to t. Then, the capacity of t has to be increased by factor 3 to satisfy the capacity
constraint, as

∑
j∈N xijdj ≤M for i = t, j1, j2.

We generalize the algorithm of Charikar et al. to improve its violation ration from 3 to
2 + ε. The key idea behind our algorithm relies on the following observations. One is that if
we can obtain a {1− 1

δ , 1}-solution, then 2 centers can be built for the above example in the
worst case by setting δ ≥ 3, as then byt + yj1 + yj2c ≥ b 2

3 + 2
3 + 2

3c = 2. Consequently, we
only need to blow up the capacity of location t by factor 2 instead of 3, by building centers
at t and j2, and assigning the demand served by j1 to t. However, this example only shows
one kind of stars. To make sure the violation ratio can be improved for all kinds of stars, we
construct a {(α−2

α , α−1
α ], [1, 2)}-solution (x, y) such that

1. for each i ∈ N , α−2
α < yi ≤ α−1

α , or 1 ≤ yi < 2, or yi = 0; and |{i ∈ N | α−2
α < yi <

α−1
α }| ≤ 1;

2. if α−2
α < yi ≤ α−1

α , then
∑
j∈N djxij ≤M ;

3. if 1 ≤ yi < 2, then
∑
j∈N djxij ≤Myi.

Another one is that constraints yi ≤ 1,∀i ∈ N hold in each step of the algorithm by
Charikar et al. That is, they round yi > 1 to be 1 for each i ∈ N in each step. This is a
quite natural operation since we consider the hard capacitated case, i. e., at most one center
can be opened at any location. However, we observe that after obtaining an optimal solution
to the LP-relaxation, it is sufficient to make sure constraints yi ≤ 1,∀i ∈ N hold in our last
step. For all other steps (except last step), this rounding can be avoided by relaxing the
constraint yi ≤ 1 to yi < 2. We use an example to show the profit we can gain from avoiding
this rounding. Suppose we have a star Qt rooted at t with one child j1. Moreover, yt = 1.9
and yj1 = 0.5. Then, in the worst case, we can build byt + yj1c = 2 centers. We open t

and j1. Consequently, we only need to increase the capacity of t by factor 1.9 (note that
if 1 ≤ yi < 2, then

∑
j∈N djxij ≤Myi for our {(α−2

α , α−1
α ], [1, 2)}-solution). However, if we

round 1.9 to 1, we obtain a star Qt with yt = 1 and yj1 = 0.5. Then, in the worst case, only
1 center can be built as byt + yj1c = 1. Without loss of generality, suppose we build a center
at t, and assign the demand served by j1 to t. Then, we need to increase the capacity of t by
factor 2.9.

APPROX/RANDOM’14
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2 An Improved Approximation Algorithm

From now on, let (x, y) denote an optimal solution to the LP-relaxation with total cost
CLP . We consider yi as the opening value of location i. If yi ∈ (0, 1), we say that location
i is fractionally opened (as a center). For each j ∈ N , define Cj =

∑
i∈N cijxij . Note that

CLP =
∑
j∈N djCj . The outline of our algorithm is similar to [9].

Step 1. We partition locations to a collection of clusters. The total opening value of each
cluster is at least α−1

α , α ≥ 4.
Step 2. For each cluster, we integrate the nearby opened locations to obtain a [α−1

α , 2)-
solution (x′, y′) to the LP-relaxation, which satisfies the relaxing constraints 0 ≤ y′i < 2
instead of 0 ≤ y′i ≤ 1 for each i ∈ N .

Step 3. We redistribute the opening values among locations with y′i ∈ [α−1
α , 1) to obtain a

{(α−2
α , α−1

α ], [1, 2)}-solution (x′, ŷ), which satisfies the relaxing constraints
∑
j∈N djx

′
ij ≤M

if ŷi ∈ (0, 1),
∑
j∈N djx

′
ij ≤Mŷi otherwise, instead of

∑
j∈N djx

′
ij ≤Mŷi for each i ∈ N .

Step 4. We round the {(α−2
α , α−1

α ], [1, 2)}-solution to be an integral solution with increas-
ing the capacities by a factor of 2 + 2

α .

2.1 Step 1: Clustering
In this step, by the filtering technique of Lin and Vitter [18], we will partition locations into
clusters, and for each cluster select a single location as the core of this cluster, such that
each location in the cluster is not far to its cluster core and the cores are sufficiently far to
each other.

Let N ′ be the collection of all cluster cores. Let N ′(j) denote the closest cluster core to j
in N ′. For each l ∈ N ′, let Ml denote the cluster whose core is l, and define Zl =

∑
j∈Ml

yj
be the total opening value of all locations in cluster Ml.

I Definition 1. We call a cluster Ml terminal if Zl ≥ 1, non-terminal if 0 < Zl < 1.

Let n = |N |. The clustering is done by Procedure 1 (similar to [9]). After this step, the
following properties hold (α ≥ 4):

[1a]. ∀j ∈Ml, l ∈ N ′, clj ≤ 2αCj ;
[1b]. ∀l, l′ ∈ N ′ and l 6= l′, cll′ > 2αmax{Cl, Cl′};
[1c]. ∀l ∈ N ′, Zl =

∑
j∈Ml

yj ≥ α−1
α ;

[1d].
⋃
l∈N ′Ml = N ; and Ml

⋂
Ml′ = ∅,∀l, l′ ∈ N ′ and l 6= l′.

We can easily get property 1a, 1b and 1d from this procedure.
Note that location i belongs to clusterMl if cil ≤ αCl. For contradiction, suppose for some

i ∈ N with cil ≤ αCl, i ∈Ml′ instead of i ∈Ml, where l′ ∈ N ′ − {l}. This means cil′ ≤ cil
as we add i to cluster Ml′ only if N ′(i) = l′. Then, we have cll′ ≤ cil + cil′ ≤ 2cil ≤ 2αCl,
which is a contradiction as cll′ > 2αCl by property 1b. Then, we have the following lemma.
See [18] for the proof.

I Lemma 2. (property 1c) ∀l ∈ N ′, Zl ≥ α−1
α .

2.2 Step 2: Obtaining a [α−1
α

, 2)-solution
We will get rid of locations with relatively small fractional opening value in this step, by
constructing a [α−1

α , 2)-solution (x′, y′) in which y′i = 0 or α−1
α ≤ y′i < 2, ∀i ∈ N . For each

cluster Ml, we transfer the amount of locations (their opening values and the demands served
by these locations) far away from the cluster core l to locations closer to l.
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Procedure 1. Clustering
1. order all locations in nondecreasing order of Cj , (without loss of generality, assume
C1 ≤ · · · ≤ Cn);
2. set N ′ := ∅;
3. for j = 1 to n do

find a location l ∈ N ′ such that clj ≤ 2αCj , where α ≥ 4;
if no such location is found then

choose j as a cluster core, i. e., set N ′ := N ′ ∪ {j};
end

end
4. set Ml := ∅, ∀l ∈ N ′;
5. for j = 1 to n do

if j is closer to cluster core l ∈ N ′ than all other cluster cores (break ties
arbitrarily) then

add location j to cluster Ml. (i. e., set Ml := {j ∈ N | N ′(j) = l}.)
end

end

In this step, initially set y′i = yi, x
′
ij = xij ,∀i, j ∈ N . Then, we consider clusters one by

one. For each cluster Ml, l ∈ N ′, order locations in Ml in nondecreasing value of clj , j ∈Ml.
Without loss of generality, assume we get an order j1, · · · , ju (note that j1 = l). If we decide
to move the amount of location jb to ja (1 ≤ a < b ≤ u), then perform Procedure 2 [7, 12].

Procedure 2. Move(ja,jb)
1. let δ = min{1− y′ja

, y′jb
};

2. for all j ∈ N , set x′jaj
:= x′jaj

+ δ
y′

jb

x′jbj
, x′jbj

:= x′jbj
− δ

y′
jb

x′jbj
;

3. set y′ja
:= y′ja

+ δ,y′jb
:= y′jb

− δ;

I Lemma 3. After Procedure 2, we still have
1.

∑
j∈Ml

y′j =
∑
j∈Ml

yj , for each l ∈ N ′;
2. for each j ∈ N ,

∑
i∈N x

′
ij = 1;

3.
∑
j∈N djx

′
ij ≤My′i, for each i ∈ N .

We use Procedure 3 to decide whether we move the amount of location jb to ja.

I Lemma 4. If in Procedure 3, ja exists but jb does not exist, and Ml is a terminal cluster,
then a ≥ 2 and y′ja−1

= 1.

Proof. Since Ml is a terminal cluster, we have Zl ≥ 1. Moreover, we know y′jt
= 1 for each

t < a and y′js
= 0 for each s > a, as jb does not exist. Thus, a ≥ 2. Otherwise, Zl < 1, a

contradiction. J

I Lemma 5. After this step, we have the following properties
[2a]. for all i ∈ N , α−1

α ≤ y′i < 2 or y′i = 0; and
∑
j∈N djx

′
ij ≤My′i;

[2b].
∑
i∈N y

′
i =

∑
i∈N yi ≤ k;

[2c]. x′ij ≤ y′i,∀i, j ∈ N.

APPROX/RANDOM’14
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Procedure 3. Concentrate(Ml)
while there exists a location in Ml with fractional opening value do

1. let ja be the first location in the sequence j1, · · · , ju such that 0 ≤ y′ja
< 1;

2. let jb be the first location in the sequence ja+1, · · · , ju such that 0 < y′jb
≤ 1;

3. if ja and jb both exist then
execute procedure Move(ja,jb) to move the amount of jb to ja;

end
4. if ja exists but jb does not exist then

if Ml is a terminal cluster,i. e.,a ≥ 2 then
set y′ja−1

:= y′ja−1
+ y′ja

, y′ja
:= 0;

for each j ∈ N , set x′ja−1j
:= x′ja−1j

+ x′jaj
, x′jaj

:= 0;
end
terminate.

end
end

Proof. Property 2a. If Ml is a non-terminal cluster, i. e., 0 < Zl < 1, then we will move
the amount of each location in Ml to its core l according to Procedure 3. Consequently, we
obtain α−1

α ≤ y′l = Zl < 1 (property 1c) and y′j = 0,∀j ∈Ml − {l}.
If Ml is a terminal cluster, i. e., Zl ≥ 1, then according to Lemma 4 we get y′jt

= 1 for
each t < a and y′js

= 0 for each s > a if ja exists and jb does not exist. Then, we move the
amount of y′ja

to y′ja−1
. So, 1 ≤ y′ja−1

< 2 as 0 ≤ y′ja
< 1. Note that if ja does not exist, we

know y′j = 1 for each j ∈Ml.
Thus, for all i ∈ N , α−1

α ≤ y′i < 2 or y′i = 0.
∑
j∈N djx

′
ij ≤My′i,∀i ∈ N hold by Lemma 3

(note that it is easy to check these inequalities still hold after the step 4 in Procedure 3).
Property 2b. This directly follows by Lemma 3(1).
Property 2c. Initially, we set y′i = yi, x

′
ij = xij for all i, j ∈ N . Thus, x′ij ≤ y′i holds, for

each i, j ∈ N. We will show that after the procedure these inequalities still hold.
For each non-terminal cluster, only the core has a positive opening value after this step.

And in the procedure the opening value of core is always increased by a bigger amount than
the increasing of the fraction of the demand served by the core.

For a terminal cluster, each location i in the cluster has y′i = 0 or y′i ≥ 1 after this step.
Note that for each location i ∈ N with y′i ≥ 1, x′ij ≤ y′i holds for each j ∈ N as x′ij ≤ 1.
Moreover, observe that for each j ∈ N , we always set x′ij := 0 if y′i is already set to be 0. J

Since each location is not far away from its cluster core, these transfer operations would
not increase too much extra cost. More precisely, we can bound the service cost by the
following lemma. The proof is similar as Lemma 2.8.3 and 2.8.3 in [7].

I Lemma 6. (1). Let Ml be a non-terminal cluster. The demand of location j originally
served by jb(jb ∈ Ml) must be served by core l after the procedure. And we have clj ≤
2cjbj + 2αCj .

(2). Let Ml be a terminal cluster. If we move the demand of location j served by jb to ja
(ja, jb ∈Ml, a < b), we have cjaj ≤ 3cjbj + 4αCj .

Let N1 = {i ∈ N | y′i ≥ 1} be the collection of locations with the opening value at least 1.
Let N2 = {i ∈ N | y′i ∈ [α−1

α , 1)} be the collection of locations with fractional opening value
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in [α−1
α , 1). Note that N2 can also be written as {i ∈ N ′ | Zi ∈ [α−1

α , 1)}. That is, N2 is the
collection of non-terminal cluster cores. Moreover, we have N1 ∪N2 ⊇ N ′.

I Lemma 7. If |N2| − 1 <
∑
i∈N2

y′i, we can get an integer solution with increasing the
capacity by factor 2, by opening all locations in N1 ∪N2 as centers. The total cost of the
obtained solution can be bounded by (3 + 4α)CLP .

Proof. If |N2|−1 <
∑
i∈N2

y′i, then |N2| = d
∑
i∈N2

y′ie as y′i < 1 for each i ∈ N2. Additionally,
since

∑
i∈N1

y′i ≤ k −
∑
i∈N2

y′i (by property 2b) and y′i ≥ 1 for each i ∈ N1, we have
|N1| ≤ bk −

∑
i∈N2

y′ic.
Thus, if we only open locations in N1∪N2, then we open at most k centers as d

∑
i∈N2

y′ie+
bk −

∑
i∈N2

y′ic = k.
Since y′i = 0 for each i /∈ N1 ∪N2, we have

∑
i∈N1∪N2

x′ij = 1,∀j ∈ N by Lemma 3(2)
and property 2c. That is,

∑
i∈N1∪N2

djx
′
ij = dj for each j ∈ N. Thus, the demand of each

j ∈ N can be satisfied by assigning djx′ij to i ∈ N1 ∪N2.
By Lemma 6, it is easy to see that the total cost of the obtained solution can be bounded

by (3 + 4α)CLP . By Lemma 5, we know for all i ∈ N , α−1
α ≤ y′i < 2 or y′i = 0; and∑

j∈N djx
′
ij ≤My′i. So, we increase the capacity by at most a factor of 2. J

From now on, we only consider the following case.

I Assumption 8.
∑
i∈N2

y′i ≤ |N2| − 1.

I Definition 9. We define new demands d′ as follows. For each i ∈ N , set d′i :=
∑
j∈N djx

′
ij .

(Note that d′i = 0 for each i ∈ N − (N1 ∪N2).)

2.3 Step 3: Obtaining a {(α−2
α

, α−1
α

], [1, 2)}-solution
For each i ∈ N2, let s(i) be the nearest location to i in (N1∪N2)−{i} (break ties arbitrarily).
Let Y =

∑
i∈N2

y′i. Note that we only consider the case: Y ≤ |N2| − 1 by Assumption 8.
After this step we will obtain a solution (x′, ŷ) with α−2

α < ŷi ≤ α−1
α , or 1 ≤ ŷi < 2, or ŷi = 0

for each i ∈ N .
In this step, initially we order all locations in N2 in nondecreasing order of d′ics(i)i.

Without loss of generality, suppose we get an order i1, · · · , iv. Next, for each i ∈ N −N2, set
ŷi := y′i. For each i ∈ N2, set ŷi := α−1

α . Let Y ′ := Y −
∑
i∈N2

ŷi. Then, perform Procedure
4.
I Remark. The Procedure 4 terminates at r > 1. If the procedure terminates at r = 1, then
we get Y =

∑v
t=1 y

′
it
> |N2| − 1, a contradiction.

I Lemma 10. After the above procedure, we have the following properties
[3a]. for all i ∈ N , α−2

α < ŷi ≤ α−1
α , or 1 ≤ ŷi < 2, or ŷi = 0; and only ŷi1 can be in

(α−2
α , α−1

α ), i. e., |{i ∈ N | α−2
α < ŷi <

α−1
α }| ≤ 1;

[3b]. for any location i ∈ N , if α−2
α < ŷi ≤ α−1

α , then d′i =
∑
j∈N djx

′
ij ≤M ;

[3c]. for any location i ∈ N , if 1 ≤ ŷi < 2, then d′i =
∑
j∈N djx

′
ij ≤Mŷi;

[3d].
∑
i∈N2

ŷi =
∑
i∈N2

y′i;
∑
i∈N ŷi =

∑
i∈N y

′
i ≤ k;

[3e].
∑
i∈N2

(1− ŷi)d′ics(i)i ≤
∑
i∈N2

(1− y′i)d′ics(i)i.

Proof. Property 3a. For each location i ∈ N −N2, we set ŷi := y′i. So, 1 ≤ ŷi < 2 for each
i ∈ N1; ŷi = 0 for each i ∈ N − (N1 ∪N2).

For each location i ∈ N2, initially we set ŷi := α−1
α . In the Procedure 4, only ŷi1 could

be decreased by a number in (0, 1
α ). The opening value of other location in N2 remains the

same or is set to be 1.

APPROX/RANDOM’14



332 An Improved Algorithm for the Hard Uniform Capacitated k-median Problem

Procedure 4. Determine new opening values for N2(Y ≤ |N2| − 1)
for r = v to 1 do

if Y ′ = 0 then
terminate;

end
if Y ′ > 0 and Y ′ + ŷir < 1 then

set ŷi1 := ŷi1 − (1− Y ′ − ŷir ), ŷir := 1;
terminate;

end
if Y ′ > 0 and Y ′ + ŷir ≥ 1 then

set ŷir := 1 and update Y ′ := Y −
∑
i∈N2

ŷi;
end

end

Property 3b, 3C. Notice that if for location i we have α−2
α < ŷi ≤ α−1

α after the procedure,
then we know α−1

α ≤ y′i < 1. And if 1 ≤ ŷi < 2 for location i after the procedure, then we
have y′i ≤ ŷi.

We make no change on x′. Thus, combining with property 2a, we have if α−2
α < ŷi ≤ α−1

α ,
then

∑
j∈N djx

′
ij ≤My′i < M. If 1 ≤ ŷi < 2, then

∑
j∈N djx

′
ij ≤My′i ≤Mŷi.

Property 3d. We move the opening value from one location to the other locations. We
do not change the total opening value. So,

∑
i∈N2

ŷi =
∑
i∈N2

y′i holds after Procedure 4.
Moreover, we set ŷi := y′i for each i ∈ N −N2. Thus, we also have

∑
i∈N ŷi =

∑
i∈N y

′
i ≤ k.

Property 3e. We always transfer the opening value from ia to ib, where a < b and
d′ibcs(ib)ib ≥ d′iacs(ia)ia . Therefore,

∑
i∈N2

ŷid
′
ics(i)i ≥

∑
i∈N2

y′id
′
ics(i)i. Then, we have∑

i∈N2
(1− ŷi)d′ics(i)i ≤

∑
i∈N2

(1− y′i)d′ics(i)i. J

2.4 Step 4: Rounding to an Integral Solution
Let N̂1 = {i ∈ N | 2 > ŷi ≥ 1} be the set of locations with opening value greater than or
equal to 1. Let N̂2 = {i ∈ N | α−2

α < ŷi ≤ α−1
α } be the set of location with fractional opening

value strictly less than 1. Let L1 = |N̂1|. Note that N1 ∪N2 = N̂1 ∪ N̂2, and N̂2 ⊆ N2.

In this step, we aim to construct an integral solution (x̄, ȳ) with
∑
j∈N x̄ijd

′
j ≤ (2+ 2

α )Mȳi
for each i ∈ N . If location j is opened as a center, we serve the demand d′j of location j by
itself. That is, set x̄jj := 1, x̄ij := 0 for each i 6= j, i ∈ N. And we build a center at location i
if 1 ≤ ŷi < 2, i. e., set ȳi := 1 for each i ∈ N̂1. For N̂2, we will open at most k − L1 locations
as centers. If a center is not opened at location j ∈ N̂2, we assign the demand d′j of j to
another opened center i, i. e., set x̄ij := 1. Now we start to show the details of this step.

Initially, for each i, j ∈ N set x̄ij := 0; and ȳi := 0. Then, we construct a collection of
rooted trees spanning the locations in N̂2 as in [9]. Recall that s(i) is the closest location to
i in (N̂1 ∪ N̂2)− {i} (N1 ∪N2 = N̂1 ∪ N̂2) for each i ∈ N2. We draw a directed edge from i

to s(i) if i ∈ N̂2. The cycles can be eliminated by the following way. For each cycle, we take
any location in this cycle as a root and delete the edge from this root to other location. If
there is a directed edge from i to s(i) finally, we consider s(i) as the parent of i. Then, we
get a desired collection of rooted trees.

Next, we decompose each tree into a collection of rooted stars by Procedure 5.
I Remark. In each rooted star, all the children of the root have a fractional opening value.
If the root of a star is a fractionally opened location, then the root has at least one child.
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Procedure 5. Decompose a tree T to stars
while there are at least two nodes in T do

choose a leaf node i with biggest number of edges on the path from i to the root;
consider the subtree rooted at s(i) as a rooted star, and remove this subtree;

end
if only one node i is left and 0 < ŷi < 1 then

add i to the star rooted at s(i) as a child of s(i);
end

I Definition 11. An even star is a star with even number of children. An odd star is a star
with odd number of children.

Let Qt denote the star rooted at location t. By abuse of notation, we also use Qt to
denote the collection of locations in the star rooted at t. Let Rt =

∑
i∈Qt

ŷi be the total
opening value in Qt.

I Lemma 12. (1) If a star Qt has even positive number of fractionally opened locations,
i. e., |Qt ∩ N̂2| = 2q is an even number and q ∈ Z+, then the total opening value of these
fractionally opened locations is greater than q, i. e.,

∑
i∈Qt∩N̂2

ŷi > q.

(2) If |Qt ∩ N̂2| = 2q + 1 is an odd number and q ∈ Z+, then
∑
i∈Qt∩N̂2

ŷi > q + 1.

Proof. (1) By property 3a, |{i ∈ N | α−2
α < ŷi <

α−1
α }| ≤ 1. So in N̂2 at most one location

has a fractional opening value in (α−2
α , α−1

α ), and all other locations have fractional
opening value exactly equal to α−1

α .
So, ∑

i∈Qt∩N̂2

ŷi >
α− 2
α

+ α− 1
α

(2q − 1) = 2qα− 2q − 1
α

= q + qα− 2q − 1
α

.

Moreover, since α ≥ 4 and q ≥ 1, we have qα−2q−1
α ≥ 2q−1

α > 0. Thus,
∑
i∈Qt∩N̂2

ŷi > q.

(2) First, we have∑
i∈Qt∩N̂2

ŷi >
α− 2
α

+ α− 1
α

2q = 2qα− 2q + α− 2
α

= q + 1 + qα− 2q − 2
α

.

Then, as α ≥ 4 and q ≥ 1, we get qα−2q−2
α ≥ 2q−2

α ≥ 0. Thus,
∑
i∈Qt∩N̂2

ŷi > q + 1.
J

We build a center at each location i ∈ N̂1 −
⋃
tQt (locations are in N̂1, but not in any

star), i. e., set ȳi := 1 and x̄ii := 1. For each kind of star Qt, we define operations to make
sure at most bRtc locations in Qt are selected to be centers.

1. An even star rooted at location t with 1 ≤ ŷt < 2. Let i1, · · · , i2q be a sequence of
all its children in nondecreasing order of distance from t. We build centers at location
t, i1, i3, · · · , i2q−1, and serve the demand d′i2r

of i2r by opened location i2r−1, i. e.,

set ȳt := 1; ȳi2r−1 := 1, ȳi2r := 0, r = 1, · · · , q;
set x̄tt := 1; x̄i2r−1i2r−1 := 1, x̄i2r−1i2r := 1, r = 1, · · · , q.
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2. An even star rooted at location t with α−2
α < ŷt ≤ α−1

α . Let i1, · · · , i2q be a sequence
of all its children in nondecreasing order of distance from t. (Note that q ≥ 1 by the
before Remark.) We build centers at location t, i2, i4, · · · , i2q, and serve the demand
d′i2r+1

of i2r+1 by opened location i2r, serve the demand d′i1 of i1 by t.
3. An odd star rooted at location t with 1 + 2

α ≤ ŷt < 2. Let i1, · · · , i2q+1 be a sequence
of all its children in nondecreasing order of distance from t. We open t, i1, i3, · · · , i2q+1
as centers, and serve the demand d′i2r

of i2r by opened location i2r−1.
4. An odd star rooted at location t with α−2

α < ŷt ≤ α−1
α or 1 ≤ ŷt < 1 + 2

α . Let
i1, · · · , i2q+1 be a sequence of all its children in nondecreasing order of distance from
t. We build centers at location t, i2, i4, · · · , i2q, and serve the demand d′i2r+1

of i2r+1 by
opened location i2r, serve the demand d′i1 of i1 by t.

Note that (x̄, ȳ) is an integral solution for new demands d′. To get an integral solution
for our original demands d, we can redistribute the demands d′ to their original locations
according to Definition 9.

3 Analysis

By property 3a, 3b and 3c, and Lemma 12, we can get the following lemma.

I Lemma 13. For each kind of star Qt, we build at most bRtc centers. And for each i ∈ N ,
we have

∑
j∈N d

′
j x̄ij ≤ (2 + 2

α )Mȳi.

I Lemma 14. We build at most k centers, and increase capacities by factor 2 + 2
α .

Proof. Suppose we get stars Q1, · · · , Qt by decomposing all the trees in Step 4. Then
by property 3d, we know

∑t
r=1 Rr +

∑
i∈N̂1−

⋃t

r=1
Qr
ŷi ≤ k. Moreover, we build at most∑t

r=1bRrc+
∑
i∈N̂1−

⋃t

r=1
Qr
bŷic centers by Lemma 13 and the operation for locations that

are in N̂1 but not in any star. Consequently, we build at most k centers. Again, by Lemma 13
we increase the capacity by at most a factor of 2+ 2

α to satisfy all the demand constraints. J

For each location i in star Qt, let r(i) ∈ Qt denote the location that the demand d′i of i
is reassigned to. Define the cost of star Qt as

∑
i∈Qt

d′icr(i)i.

I Lemma 15. The cost of stars can be bounded by
∑
i∈N2

∑
j∈N

∑
i′∈Mi

dj(4ci′jxi′j +
8αCjxi′j).

Proof. Note that in this proof we only consider location i ∈ N̂2, since we always build a
center at each location in N̂1 and serve its demand by itself.

For each star Qt, the reassignment is always to serve the demand d′i of location i

by an opened location i′ that is closer to the root t, where i, i′ ∈ Qt and cti′ ≤ cti.

Recall that s(i) is the closest location to i in (N1 ∪ N2) − {i}. By Procedure 5, we know
s(i) = s(i′) = t. The cost for this reassignment is d′ici′i, which can be bounded by 2d′ics(i)i as
ci′i ≤ cs(i)i′ + cs(i)i ≤ 2cs(i)i.

Since α−2
α < ŷi ≤ α−1

α for each i ∈ Qt ∩ N̂2, we have 2d′ics(i)i ≤ 2α(1− ŷi)d′ics(i)i.

We sum 2α(1− ŷi)d′ics(i)i over all i ∈ N̂2 to get an upper bound for the total cost of stars,
i. e.,

∑
i∈N̂2

2α(1− ŷi)d′ics(i)i. Note that N̂2 ⊆ N2. Then, by property 3e,the definition of d′i
and Procedure 3 (Lemma 6), we know∑

i∈N̂2

2α(1− ŷi)d′ics(i)i ≤
∑
i∈N2

∑
j∈N

∑
i′∈Mi

2α(1− y′i)djxi′jcs(i)i.
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Therefore, it is sufficient to show that for each j ∈ N, i′ ∈Mi, i ∈ N2

2α(1− y′i)djxi′jcs(i)i ≤ dj(4ci′jxi′j + 8αCjxi′j).

We have two cases: (a) N ′(j) = i and (b) N ′(j) 6= i. We show the above inequality holds
for both cases.
(a) N ′(j) = i.

Since y′i ∈ [α−1
α , 1),∀i ∈ N2, we can find a location i∗ /∈Mi with xi∗i > 0 and ci∗i ≤ Ci

1−y′
i
.

Otherwise,
∑
r∈N xricri > Ci, a contradiction.

Note that cN ′(i∗)i∗ ≤ cii∗ since N ′(i∗) 6= i, and N ′(i∗) is the closest location to i∗ in N ′,
and i ∈ N ′. So, cs(i)i ≤ ciN ′(i∗) ≤ cN ′(i∗)i∗ + cii∗ ≤ 2cii∗ ≤ 2 Ci

1−y′
i
.

If Ci ≤ Cj , then we have

2α(1− y′i)djxi′jcs(i)i ≤ 2αdjxi′j2Ci ≤ 4αdjxi′jCj . (2)

Otherwise Ci > Cj . Then, we consider location j before i when we choose the cluster
cores N ′, and j can not be a cluster core. This means there exists a location r ∈ N ′
with Cr ≤ Cj and Crj ≤ 2αCj before we check whether j should be chosen as a cluster
core. So, 2αCi < cri ≤ crj + cij ≤ 2αCj + 2αCj = 4αCj . That is, Ci ≤ 2Cj . Thus, for
this case we have

2α(1− y′i)djxi′jcs(i)i ≤ 2αdjxi′j2Ci ≤ 8αdjxi′jCj . (3)

(b) N ′(j) 6= i.
The proof for this case is similar as that in [7, 12]. First, we have

cs(i)i ≤ cN ′(j)i ≤ ci′i + ci′N ′(j) ≤ 2ci′N ′(j) ≤ 2(ci′j + cN ′(j)j),

where i′ ∈Mi.

By property 1a, cN ′(j)j ≤ 2αCj . So, cs(i)i ≤ 2ci′j + 4αCj .
Note that 0 < α(1− y′i) ≤ 1 as 1 > y′i ≥ α−1

α , i ∈ N2. Thus, we have

2α(1− y′i)djxi′jcs(i)i ≤ 2djxi′j(2ci′j + 4αCj) = dj(4ci′jxi′j + 8αCjxi′j). (4)

From inequalities (2), (3) and (4), we get

2α(1− y′i)djxi′jcs(i)i ≤ dj(4ci′jxi′j + 8αCjxi′j).

J

In our algorithm, we reassign the service twice: in Step 2 and Step 4. The cost of
reassignment for Step 2 (Step 4) can be bounded by Lemma 6 (Lemma 15). Combining these
two upper bounds, the total cost can be bounded by∑

i∈N2

∑
j∈N

∑
i′∈Mi

dj(2ci′j + 2αCj)xi′j +
∑

i∈N ′−N2

∑
j∈N

∑
i′∈Mi

dj(3ci′j + 4αCj)xi′j

+
∑
i∈N2

∑
j∈N

∑
i′∈Mi

dj(4ci′jxi′j + 8αCjxi′j)

≤
∑
i∈N

∑
j∈N

dj(6cij + 10αCj)xij =
∑
j∈N

dj(6Cj + 10αCj) = (6 + 10α)CLP .

Then combining with Lemma 7 and 14, we can prove the following theorem.

I Theorem 16. For any α ≥ 4, there is a (6 + 10α)-approximation algorithm for the hard
uniform capacitated k-median problem with increasing the capacity by factor at most 2 + 2

α .
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4 Extent Our Algorithm to Solve Another Model

As mentioned in the introduction, the following model is also considered in some references
for the capacitated k-median problem, where variable xij indicates the fraction of the demand
of client j that is served by facility i, and yi indicates if facility i is open. Let yi take value
one if facility i is open and value zero otherwise. We denote this model by CKL.

min
∑
i∈F

∑
j∈D

djcijxij

subject to:
∑
i∈F

xij = 1, ∀j ∈ D;
∑
j∈D

djxij ≤Myi, ∀i ∈ F ;

∑
i∈F

yi ≤ k; 0 ≤ xij ≤ yi, ∀i ∈ F, j ∈ D,

yi ∈ {0, 1}, ∀i ∈ F. (5)

Replacing constraints (5) by 0 ≤ yi ≤ 1, i ∈ F, we get the LP-relaxation of CKL.

4.1 The Algorithm
Let (x0, y0) be an optimal solution to the LP-relaxation of CKL. For each facility i ∈ F ,
define a demand

d1
i =

∑
j∈D

djx
0
ij .

To make use of the algorithm presented in Section 2, we set N := F . That is, each location
i ∈ N has a capacity M and demand d1

i . Then, we get an instance of CKM considered in
Section 2. Suppose we get an integral solution (x1, y1) for this constructed instance by the
algorithm proposed in Section 2.

Then, we construct an integral solution (x∗, y∗) for the original instance of CKL by
redistributing the demands d1

i′ of location (facility) i′ ∈ N back to clients D. That is, set
y∗ := y1; and set x∗ij :=

∑
i′∈N (x1

ii′x
0
i′j), for each i ∈ N = F, j ∈ D.

4.2 Analysis
We only blow up the capacity once at the moment when we use the algorithm proposed in
Section 2 to resolve the constructed instance. Theorem 16 states that this violation ratio is
at most 2 + 2

α . Thus, we have the following result.

I Lemma 17. (x∗, y∗) is an integral solution for CKL with
∑
j∈D djx

∗
ij ≤ (2 + 2

α )My∗i for
each i ∈ F, where α ≥ 4.

I Lemma 18. For any α ≥ 4, there is a (13 + 20α)-approximation algorithm for CKL by
increasing the capacity by factor 2 + 2

α .

Proof. Let COST (·, ·) be the total cost of solution (·, ·). Let OPTCKL and OPTCKM be
the optimal objective value of our original instance and constructed instance respectively.

By the process to obtain the constructed instance, we have OPTCKM ≤ OPTCKL +
COST (x0, y0). Then,

COST (x∗, y∗)
≤ COST (x1, y1) + COST (x0, y0) ≤ (6 + 10α)OPTCKM + COST (x0, y0)
≤ (6 + 10α)(OPTCKL + COST (x0, y0)) + COST (x0, y0) ≤ (13 + 20α)OPTCKL,
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where the first inequality holds according to the process to get the solution (x∗, y∗) and
triangle inequalities; the second inequality follows by Theorem 16; the last inequality holds
as COST (x0, y0) ≤ OPTCKL. J
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