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Abstract
For a scheduling problem on parallel machines, the power of preemption is defined as the ratio of
the makespan of an optimal non-preemptive schedule over the makespan of an optimal preempt-
ive schedule. For m uniform parallel machines, we give the necessary and sufficient conditions
under which the global bound of 2 − 1/m is tight. If the makespan of the optimal preemptive
schedule is defined by the ratio of the total processing times of r < m longest jobs over the
total speed of r fastest machines, we show that the tight bound on the power of preemption is
2− 1/min {r,m− r}.
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1 Introduction

In this paper, we perform an analysis of the power of preemption for scheduling problems on
uniform parallel machines.

In parallel machine scheduling, we are given the jobs of the set N = {J1, J2, . . . , Jn} and
m parallel machines M1, M2, . . . ,Mm. If a job Jj ∈ N is processed on machine Mi alone,
then its processing time is known to be pij . There are three main types of scheduling systems
with parallel machines: (i) identical parallel machines, for which the processing times are
machine-independent, i. e., pij = pj ; (ii) uniform parallel machines, which have different
speeds, so that pij = pj/si, where si denotes the speed of machine Mi; and (iii) unrelated
parallel machines, for which the processing time of a job depends on the machine assignment.

In all problems considered in this paper the objective is to minimize the makespan, i. e.,
the maximum completion time. For a schedule S, the makespan is denoted by Cmax(S). In
a non-preemptive schedule, each job is processed on the machine it is assigned to without
interruption. In a preemptive schedule, the processing of a job on a machine can be interrupted
at any time and then resumed either on this or on any other machine, provided that the
job is not processed on two or more machines at a time. For an instance of a scheduling
problem on parallel machines, let S∗np and S∗p denote an optimal non-preemptive and an
optimal preemptive schedule, respectively.

The problem of finding an optimal non-preemptive schedule on identical parallel machines
is NP-hard, and the corresponding problems on uniform or unrelated machines are obviously
no easier. The preemptive counterparts of these problems are polynomially solvable, even
in the most general settings with unrelated machines. See a focused survey [3] on parallel
machine scheduling with the makespan objective for details and references.
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Consider an instance of a scheduling problem to minimize the makespan Cmax on m

parallel machines (identical, uniform or unrelated). For the corresponding problem, we define
the power of preemption as the maximum ratio Cmax(S∗np)/Cmax(S∗p) across all instances of
the problem at hand. We denote the power of preemption by ρm. The power of preemption
determines what can be gained regarding the maximum completion time if preemption is
allowed.

In order to determine the exact value of ρm for a particular problem and to give that
concept some practical meaning, the following should be done:
(i) demonstrate that the inequality

Cmax
(
S∗np

)
Cmax

(
S∗p
) ≤ ρm (1)

holds for all instances of the problem;
(ii) exhibit instances of the problem for which (1) holds as equality, i. e., to show that the

value of ρm is tight; and
(iii) develop a polynomial-time algorithm that finds a heuristic non-preemptive schedule Snp

such that

Cmax
(
S∗np

)
Cmax

(
S∗p
) ≤ Cmax (Snp)

Cmax
(
S∗p
) ≤ ρm. (2)

If the machines are identical parallel, then it is known that ρm = 2 − 2/ (m+ 1), as
independently proved in [1] and [9]. It is shown in [11], that the value of ρm can be reduced
for some instances that contain jobs with fairly large processing times.

For unrelated parallel machines, a rounding procedure that is attributed to Shmoys and
Tardos and reproduced in [10] and [4] finds non-preemptive schedules Snp such that the
bound (2) holds for ρm = 4. This bound is tight, as proved in [4].

According to [13], for uniform parallel machines ρm = 2− 1/m. For m = 2 a parametric
analysis of the power of preemption with respect to the speed of the faster machine is
independently performed in [7] and [12]. For m = 3, a similar analysis is contained in [12],
provided that the machine speeds take at most two values, 1 and s ≥ 1.

2 Preliminaries

An instance I of the problem with n jobs andm parallel uniform machines is defined by the list
Ln = (p1, p2, . . . , pn) of the processing times of the jobs and the listMm = (s1, s2, . . . , sm)
of the machine speeds. The machines are numbered in non-increasing order of their speeds,
i. e., s1 ≥ s2 ≥ · · · ≥ sm.The jobs are numbered in accordance with the following truncated
LPT rule, i. e., m longest jobs are numbered in non-increasing order of their processing times

p1 ≥ p2 ≥ · · · ≥ pm, (3)

while the remaining jobs, all at lest as short as pm, are numbered arbitrary.
Feasible non-preemptive and preemptive schedules for an instance I = (Ln,Mm) are

denoted by Snp (Ln,Mm) or Snp (I), and by Sp (Ln,Mm) or Sp (I), respectively; the corres-
ponding optimal non-preemptive and preemptive schedules are denoted by S∗np (Ln,Mm) or
S∗np (I) and by S∗p (Ln,Mm) or S∗p (I) , respectively. The reference to an instance may be
omitted if it is clear which instance is being discussed.

APPROX/RANDOM’14



394 Power of Preemption on Uniform Parallel Machines

In our analysis of the power of preemption, we will need precise expressions for the
makespan of the preemptive schedules. The fastest algorithm for finding an optimal pree-
mptive schedule on uniform parallel machines is due to Gonzalez and Sahni [6] and requires
O(n+m logm) time.

Given an instance I = (Ln,Mm), for each u, 1 ≤ u ≤ m, define the total speed of the u
fastest machines Su =

∑u
i=1 si. Besides, define the set of u longest jobs Hu = {1, 2, . . . , u},

and for a set of jobs Q ⊆ N , define p(Q) =
∑

j∈Q pj , where for completeness p (∅) = 0.
It is well-known (see, e.g., [2]) that for an optimal preemptive schedule S∗p (I) the makespan

is equal to

Cmax(S∗p (I)) = max {Tu|1 ≤ u ≤ m} , (4)

where

Tu = p (Hu) /Su, 1 ≤ u ≤ m− 1; Tm = p (N) /Sm. (5)

In our consideration, we classify the instances on m uniform machines as follows.

I Definition 1. An instance I = (Ln,Mm) is said to belong to Class r, 1 ≤ r ≤ m, if
Cmax

(
S∗p (I)

)
= Tr = max {Tu|1 ≤ u ≤ m} .

Notice that an instance may belong to several classes simultaneously, if there is a tie for
the maximum value of Tu, 1 ≤ u ≤ m.

A non-preemptive schedule Snp (I) is defined by a partition of set N into m subsets N1,
N2, . . . , Nm, where the jobs of set Ni and only those are assigned to be processed on machine
Mi, 1 ≤ i ≤ m. Notice that even in an optimal schedule some of these subsets can be empty.

A popular heuristic for finding a non-preemptive schedule on uniform parallel machines
is known as the LPT List Scheduling. According to this algorithm, the jobs are scanned
in accordance with the LPT rule, i. e., in non-increasing order of their processing times,
the next job is assigned to the machine where it will complete as early as possible. For
an instance I on uniform machines, let the LPT algorithm output a schedule S (I). It
can be found in O(nm + n logn) time. The best known results on the worst-case ratio
ρLP T = Cmax (S (I)) /Cmax

(
S∗np (I)

)
are due to Kovacs [8] who proves 1.54 ≤ ρLP T ≤ 1.577.

It is proved in [13] that Cmax (S (I)) /Cmax
(
S∗p (I)

)
≤ 2− 1/m, and this bound is tight. For

a preemptive schedule Sp (I) found by a preemptive modification of the LPT algorithm the
inequality Cmax (Sp (I)) /Cmax

(
S∗p (I)

)
≤ 2− 2/ (m+ 1) holds; see [5].

In the subsequent sections, we only consider instances in which the number of jobs is no
smaller than the number of machines. Take an instance (Ln,Mm) with n < m. LetMn

be the list of machine speeds obtained from list Mm by a removal of the m − n slowest
machines.

It is clear that in each schedule S∗np (Ln,Mm) and S∗p (Ln,Mm) the jobs are assigned
to at most n fastest machines. Thus, in the non-preemptive case, S∗np (Ln,Mm) =
S∗np (Ln,Mn) and Cmax

(
S∗np (Ln,Mm)

)
= Cmax

(
S∗np (Ln,Mn)

)
, while in the preemptive

case Cmax
(
S∗p (Ln,Mm)

)
= max {Tu|1 ≤ u ≤ n < m} = Cmax

(
S∗p (Ln,Mn)

)
.

Since for an instance (Ln,Mm) with n < m the removal of the m− n slowest machines
does not change the value of the power of preemption, for the purpose of studying an upper
bound on it we only need to consider instances in which there are at least as many jobs as
machines.

We focus on a slightly modified version of the LPT algorithm, which can be stated as
follows.
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Algorithm LPTm
Step 1. If required, renumber the jobs so that the m longest jobs are numbered in accordance

with (3), while the other jobs are numbered arbitrarily.
Step 2. At any time that a machine becomes available, take the first job in the current list
Ln and assign it to the machine on which it will complete as early as possible. Remove
the assigned job from the list.

Step 3. Repeat Step 2 until all jobs are assigned.

Compared to the full version of the LPT algorithm, the modified Algorithm LPTm requires
only O (m logm+ nm) time, since finding and sorting m longest jobs takes O (m logm) time.
From now on, a schedule created by Algorithm LPTm for an instance I = (Ln,Mm) will be
called SLP T (I).

3 Upper Bounds on the Power of Preemption

In this section, we analyze the performance of Algorithm LPTm from the point of view of
the power of preemption.

I Definition 2. For an instance I = (Ln,Mm), suppose that in a non-preemptive schedule
Snp (I) the last completed operation is that of processing job Jh, 1 ≤ h ≤ n, on machine Mk,
1 ≤ k ≤ m. We call job Jh the terminal job and machine Mk the critical machine.

The main result of this section is the following statement.

I Theorem 3. Given an arbitrary instance I = (Ln,Mm), where n ≥ m, let SLP T (I) be a
schedule created by Algorithm LPTm. Then

Cmax (SLP T (I))
Cmax

(
S∗p (I)

) ≤ 2− 1
m
. (6)

Proof. The proof is based on the minimal counterexample technique, often used in worst-case
analysis of approximation algorithms. Suppose that the theorem is not true, i. e., there exists
an instance (Ln,Mm), which we call the minimal counterexample, such that

Cmax (SLP T (Ln,Mm))
Cmax

(
S∗p (Ln,Mm)

) > 2− 1
m

(7)

and no job can be removed from the instance without violating the inequality (7).
Suppose that in schedule SLP T (Ln,Mm) job Jh is the terminal job and machine Mk the

critical machine. If h < n then Algorithm LPTm assigns some jobs Jj with j > h after job
Jh and they complete earlier than job Jh. Imagine that these jobs are removed from the
instance, so that Lh = (p1, p2, . . . , ph) is the corresponding list of the processing times. For
the modified instance (Lh,Mm), we have

Cmax (SLP T (Lh,Mm)) = Cmax (SLP T (Ln,Mm)) ;
Cmax

(
S∗p (Lh,Mm)

)
≤ Cmax

(
S∗p (Ln,Mm)

)
,

so that

Cmax (SLP T (Lh,Mm))
Cmax

(
S∗p (Lh,Mm)

) ≥ Cmax (SLP T (Ln,Mm))
Cmax

(
S∗p (Ln,Mm)

) > 2− 1
m
.

Thus, if h < n we deduce that instance (Ln,Mm) cannot be the minimal counterexample,
and we must have that h = n. In other words, for the minimal counterexample (Ln,Mm)

APPROX/RANDOM’14
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Algorithm LPTm finds a schedule SLP T (Ln,Mm) that is terminated by job Jn. Since
n ≥ m, it follows that

pn ≤
1
m
p (N) . (8)

For schedule SLP T (Ln,Mm), let Ni denote the set of jobs assigned to machine Mi,
1 ≤ i ≤ m. For each machine, find the value Gi such that

Cmax (SLP T (Ln,Mm)) = p(Ni) +Gi

si
, 1 ≤ i ≤ m. (9)

Let us call the value Gi the gap on machine Mi. We can interpret the gap on some
machine as the amount of processing that could be additionally assigned to that machine so
that the machine completes at exactly time Cmax (SLP T (Ln,Mm)). Clearly, Gk = 0, i. e.,
there is no gap on the critical machine Mk. Besides, we must have that

pn ≥ max {Gi|1 ≤ i ≤ m, i 6= k} . (10)

If the latter inequality had not been true, then Algorithm LPTm would have as-
signed job Jn to another machine, producing a schedule with a smaller makespan than
Cmax (SLP T (Ln,Mm)).

Summing up the equalities (9) we deduce
m∑

i=1
p(Ni) +

m∑
i=1

Gi = p(N) +
m∑

i=1
Gi = Cmax (SLP T (Ln,Mm))

m∑
i=1

si

>

(
2− 1

m

)
Cmax

(
S∗p (Ln,Mm)

)
Sm,

where the last inequality is due to (7). Since Cmax
(
S∗p (Ln,Mm)

)
≥ Tm = p (N) /Sm, we

deduce
∑m

i=1 Gi >
(
1− 1

m

)
p(N). On the critical machine the gap is equal to zero, therefore

the largest gap on the remaining machines is at least 1
m−1

∑m
i=1 Gi. This and (10) yield

pn ≥
1

m− 1

m∑
i=1

Gi >
p(N)
m

,

which contradicts (8). Thus, the minimal counterexample does not exist and (6) holds. J

Notice that Theorem 3 holds for all instances, irrespective of their class. However, below
we show that the established upper bound can be reduced for instances I = (Ln,Mm) that
are known to belong to Class r, 1 ≤ r ≤ m− 1. If r is not unique, we select the value that is
the closest to m/2.

For r, 1 ≤ r ≤ m− 1, define the lists L′r andM′r obtained from the lists Ln andMm

by the removal of the r longest jobs and the r fastest machines, respectively. In other
words, L′r = (pr+1, . . . , pn) andM′r = (sr+1, . . . , sm). The following algorithm for creating
a non-preemptive schedule for an instance I of Class r applies Algorithm LPTm to two
instances, (Lr,Mr) and (L′r,M′r).

Algorithm LPTr
Step 1. Given an instance I = (Ln,Mm) of Class r, 1 ≤ r ≤ m−1, split I into two instances

(Lr,Mr) and (L′r,M′r).
Step 2. Run Algorithm LPTm twice to find a schedule SLP T (Lr,Mr) and a schedule

SLP T (L′r,M′r).
Step 3. Output schedule SLP T (r) (Ln,Mm) obtained by combining the schedules

SLP T (Lr,Mr) and SLP T (L′r,M′r).
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The algorithm requires O(m logm+ nm) time. For its analysis, define

T ′r =
∑n

j=r+1 pj∑m
i=r+1 si

.

I Lemma 4. For an instance I = (Ln,Mm) of Class r, 1 ≤ r ≤ m− 1, the inequality

Tr ≥ T ′r (11)

holds.

Proof. Since for an For an instance I = (Ln,Mm) of Class r by definition the inequality
Tr ≥ Tm holds, we deduce that

0 ≤ Tr − Tm =

r∑
j=1

pj

r∑
i=1

si

−

n∑
j=1

pj

m∑
i=1

si

=

r∑
j=1

pj

m∑
i=1

si −
n∑

j=1
pj

r∑
i=1

si

r∑
i=1

si

m∑
i=1

si

=

r∑
j=1

pj

(
m∑

i=1
si −

r∑
i=1

si

)
−

n∑
j=r+1

pj

r∑
i=1

si

r∑
i=1

si

m∑
i=1

si

=

r∑
i=1

pj

m∑
i=r+1

si −
n∑

j=r+1
pj

r∑
i=1

si

r∑
i=1

si

m∑
i=1

si

,

which implies that (11) holds. J

I Theorem 5. Given an arbitrary instance I = (Ln,Mm) of Class r, where n ≥ m and
1 ≤ r ≤ m− 1, let SLP T (r) (I) be a schedule created by Algorithm LPTr. Then

ρm =
Cmax

(
S∗np (I)

)
Cmax

(
S∗p (I)

) ≤ Cmax
(
SLP T (r) (I)

)
Cmax

(
S∗p (I)

) ≤ max
{

2− 1
r
, 2− 1

m− r

}
. (12)

Proof. Applying Theorem 3 to instances (Lr,Mr) and (L′r,M′r), we obtain

Cmax
(
S∗np (Lr,Mr)

)
Cmax

(
S∗p (Lr,Mr)

) ≤ Cmax (SLP T (Lr,Mr))
Cmax

(
S∗p (Lr,Mr)

) = Cmax (SLP T (Lr,Mr))
Tr

≤ 2− 1
r

;

Cmax
(
S∗np (L′r,M′r)

)
Cmax

(
S∗p (L′r,M′r)

) ≤ Cmax (SLP T (L′r,M′r))
Cmax

(
S∗p (L′r,M′r)

) ≤ Cmax (SLP T (L′r,M′r))
T ′r

≤ 2− 1
m− r

.

Due to (11)

Cmax
(
S∗np (Ln,Mm)

)
Cmax

(
S∗p (Ln,Mm)

) ≤
Cmax

(
SLP T (r) (Ln,Mm)

)
Tr

= max {Cmax (SLP T (Lr,Mr)) , Cmax (SLP T (L′r,M′r))}
Tr

≤ max
{
Cmax (SLP T (Lr,Mr))

Tr
,
Cmax (SLP T (L′r,M′r))

T ′r

}
≤ max

{
2− 1

r
, 2− 1

m− r

}
,

as required. J
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4 Proofs of Tightness

In this section, we prove that the established bounds on the power of preemption are tight.

4.1 Class m Instances
We start with instances of Class m. A tight instance I of this class satisfies the equality

ρm =
Cmax

(
S∗np(I

)
)

Cmax
(
S∗p(I

)
)

= 2− 1
m
. (13)

We exhibit the instances for which (13) holds; moreover, we describe the necessary and
sufficient conditions for an instance of Class m to be tight. Let us introduce a special class
of instances of the problem that plays a crucial role in establishing tightness of the bounds
on the power of preemption.

I Definition 6. For the problem with m uniform machines, an instance I = (Ln,Mm) is
called canonical if for each machine Mk there exists an optimal non-preemptive schedule
such that Mk is the only critical machine.

Under the usual assumption that n ≥ m, let I be a set of instances I = (Ln,Mm) such
that

The processing times satisfy pj = p, j ∈ N ;
The speeds are positive integers that for a positive W satisfy

s1 ≥ s2 ≥ · · · ≥ sm; 1 ≤Wsi ≤ m;
m∑

i=1
si = n+m− 1

W
.

I Lemma 7. For any instance I = (Ln,Mm) ∈ I the equality

Cmax
(
S∗np (I)

)
Cmax(S∗p (I)) = 1 + m− 1

n

holds.

Proof. For an optimal non-preemptive schedule S∗np(I), let ni denote the number of jobs
assigned to machine Mi. If ni ≤Wsi − 1, 1 ≤ i ≤ m, then we derive a contradiction:

n =
m∑

i=1
ni ≤W

m∑
i=1

si −m = (n+m− 1)−m = n− 1.

Thus, in S∗np(I) at least one machine should get ni ≥Wsi jobs, i. e., Cmax
(
S∗np(I

)
) ≥Wp.

The smallest value of the makespan is achieved if for an arbitrary k, 1 ≤ k ≤ m, machine
Mk gets exactly nk = Wsk jobs, so that Cmax

(
S∗np(I

)
) = Wp, which is the completion time

of the last job assigned to machine Mk. To make sure that all other machines complete
earlier than time p, assign exactly ni = Wsi − 1 jobs to machine Mi, 1 ≤ i ≤ m, i 6= k. This
allocation is feasible, i. e., all n jobs are distributed, since

n =
m∑

i=1
ni = W

m∑
i=1

si − (m− 1) = n.

Thus, we derive that for any instance I ∈ I the equality

Cmax
(
S∗np (I)

)
Cmax(S∗p (I)) = Wp

W pn
n+m−1

= 1 + m− 1
n

,

holds, i. e., I is a tight instance. J



A. J. Soper and V. A. Strusevich 399

The lemma below states that set I consists of instances of Class m.

I Lemma 8. Any instance I = (Ln,Mm) such that p1 = · · · = pn = p belongs to Class m.

Proof. For any u, 1 ≤ u ≤ m− 2, we have that Tu = up/Su, so that

Tu − Tu+1 = up

Su
− (u+ 1) p
Su + su+1

= usu+1 − Su

Su (Su + su+1)p.

Since

Su =
u∑

i=1
si ≥ usu ≥ usu+1,

we deduce that the sequence T1, T2, . . . Tm−1 is non-decreasing. Besides,

Tm−1 − Tm = (m− 1) p
Sm−1

− np

Sm−1 + sm

= (m− 1) sm − (n+ 1−m)Sm−1

Sm−1 (Sm−1 + sm) p ≤ 0.

This proves the lemma. J

Under the assumption that n ≥ m, the value 1 + (m− 1) /n reaches its maximum of
2− 1/m if n = m. Combining Theorem 3, Lemma 7 and Lemma 8, we derive the following
statement.

I Corollary 9. For instances of Class m the power of preemption is 2− 1
m , and this value

cannot be reduced for instances of this class.

As far as the set I is concerned, a stronger statement can be proved.

I Theorem 10. For an instance I = (Ln,Mm) of Class m to be tight, it is necessary and
sufficient that I is an instance of set I with n = m.

Proof. Sufficiency of the theorem immediately follows from Lemma 7. To prove necessity,
first notice that it follows from the tightness of instance I that is does not belong to Class r
for any r, 1 ≤ r ≤ m− 1. Due to Theorem 3 we have that

2− 1
m

=
Cmax

(
S∗np(I

)
)

Cmax
(
S∗p(I

)
)
≤ Cmax (SLP T (I))

Cmax
(
S∗p(I)

) ≤ 2− 1
m
. (14)

This implies that in (14) all inequalities hold as equalities, i. e., for a tight instance I
Algorithm LPTm in fact finds an optimal non-preemptive schedule. In the remainder of this
proof we can deal with schedule SLP T (I) instead of schedule S∗np (I).

If in schedule SLP T (I) some job Jh with h < n is terminal, then the jobs h + 1, . . . , n
can be removed from the instance. Since I is a Class m instance and does not belong to any
other class, the removal of the jobs reduces the makespan of the optimal preemptive schedule,
i. e., for the modified instance I ′, Cmax

(
S∗p(I ′)

)
< Cmax

(
S∗p(I)

)
. On the other hand we have

Cmax (SLP T (I ′)) = Cmax (SLP T (I)), so that

Cmax (SLP T (I ′))
Cmax

(
S∗p(I ′)

) >
Cmax (SLP T (I))
Cmax

(
S∗p(I)

) =
Cmax

(
S∗np(I

)
)

Cmax
(
S∗p(I

)
)

= 2− 1
m
.

However, this implies Theorem 3 does not hold for instance I ′. Thus, in what follows we
assume that in SLP T (I) the terminal job is job Jn and hence unique. For job Jn (8) holds
due to n ≥ m.

APPROX/RANDOM’14
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Similarly to the proof of Theorem 3, for schedule SLP T (I) let Gi be the gap on machine
Mi that is defined by (9). The gap analysis of schedule SLP T (I) leads to

p(N) +
m∑

i=1
Gi = Cmax (SLP T (I))

m∑
i=1

si =
(

2− 1
m

)
Cmax

(
S∗p (I)

)
Sm.

Since I is a Class m instance, we deduce from Cmax
(
S∗p (I)

)
= p (N) /Sm that

m∑
i=1

Gi =
(
m− 1
m

)
p(N).

Since in schedule SLP T (I) the gap on the critical machine is zero, it follows that the
largest gap Gmax = max {Gi|1 ≤ i ≤ m} is no smaller than p (N) /m. On the other hand,
Gmax does not exceed pn; otherwise Algorithm LPTm would have assigned job Jn to the
machine with the largest gap. Combining this with (8), we obtain

p (N)
m

≤ Gmax ≤ pn ≤
p (N)
m

.

It follows that for n ≥ m in the expression above all inequalities hold as strict equalities,
and we deduce that

m = n, i. e., in a tight instance I, the number of jobs is equal to the number of machines.
in a tight instance I all processing times are equal, i. e., pj = p, j ∈ N , where p = p(N)/n.
the largest gap Gmax is equal to p.

Lemma 8 confirms that a tight instance I belongs to Class m, i. e., Cmax
(
S∗p (I)

)
=

mp/Sm. The total gap on all machines is equal to
m∑

i=1
Gi = (m− 1) p. (15)

In schedule SLP T (I) the terminal job is unique, i. e., there are m−1 non-critical machines,
each with a non-zero gap. Since the largest gap is p, it follows from (15) that in schedule
SLP T (I) at the time of assigning the last job Jn the gaps on all machines are the same and
equal to p. This means that any machine can be made critical, while the remaining machines
will complete earlier. In other words, I is a canonical instance, and for each machine Mi,
there exists an optimal non-preemptive schedule in which machine Mi is critical.

For i, 1 ≤ i ≤ m, let ki denote the number of jobs on Mi in an optimal schedule in which
machine Mi is critical, i. e., Cmax

(
S∗np (I)

)
= kip/si, i = 1, . . . ,m. We deduce

Cmax
(
S∗np (I)

) m∑
i=1

si = p

m∑
i=1

ki.

On the other hand, since I is a Class m instance, the equalities Cmax
(
S∗p (I)

)
=

p (N) /
∑m

i=1 si = mp/
∑m

i=1 si hold, and we derive

Cmax
(
S∗np (I)

) m∑
i=1

si =
(

2− 1
m

)
Cmax

(
S∗p (I)

) m∑
i=1

si =
(

2− 1
m

)
pm.

This yields
∑m

i=1 ki = 2m− 1. Notice that all ratios ki/si, 1 ≤ i ≤ m, are equal. Let W
be the value W = k1

s1
= k2

s2
= . . . km

sm
. Then

W

m∑
i=1

si = 2m− 1.

and we conclude that I is an instance of set I with n = m. J
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4.2 Instances of Other Classes
We now demonstrate that for the instances of Class r, 1 ≤ r ≤ m− 1, the bounds on the
power of preemption established in Theorem 5 are tight. Our consideration is split into two
cases that depend on the sign of the difference 2r −m.

I Lemma 11. For n ≥ m, and r such that 1 ≤ r ≤ m − 1 and 2r ≥ m, there exists an
instance (Ln,Mm) of Class r such that

Cmax
(
S∗np (Ln,Mm)

)
Cmax

(
S∗p (Ln,Mm)

) = 2− 1
r
. (16)

Proof. For a given m, take an arbitrary r, such that 1 ≤ r ≤ m− 1 and 2r ≥ m. To prove
the lemma we exhibit an instance I = (Lm,Mm) of Class r with m machines and n = m

jobs. The r − 1 faster machines each have speed 2, while all remaining machines have unit
speed, i. e., si = 2, 1 ≤ i ≤ r − 1, and si = 1, r ≤ i ≤ m. The processing times are defined
by pj = 1, 1 ≤ j ≤ r, and pj = r

2r−1 < 1, r + 1 ≤ j ≤ m. We have that

Ti = 1
2 , 1 ≤ i ≤ r− 1; Tr = r

2r − 1 >
1
2 ; Ti = r + (i− r) pi

2r − 1 + (i− r) = r

2r − 1 , r+ 1 ≤ i ≤ m.

Here, Tr = Tr+1 = · · · = Tm and r is the index that is closest to m/2 due to r ≥ m/2.
Thus, instance I belongs to Class r and and Cmax

(
S∗p (I)

)
= r/ (2r − 1).

On the other hand, it can be verified that Cmax
(
S∗np (I)

)
= 1. Indeed, had Cmax

(
S∗np (I)

)
been strictly less than 1 then each of the faster machines of speed 2 should have pro-
cessed exactly one job of unit duration, and therefore the remaining job of unit dur-
ation would have been assigned to a machine of unit speed, a contradiction. Thus,
Cmax

(
S∗np (I)

)
/Cmax

(
S∗p (I)

)
= 2− 1/r, so that (16) holds. J

I Lemma 12. For n ≥ m, and r such that 1 ≤ r ≤ m − 1 and 2r < m, there exists an
instance (Ln,Mm) of Class r such that

Cmax
(
S∗np (Ln,Mm)

)
Cmax

(
S∗p (Ln,Mm)

) = 2− 1
m− r

. (17)

Proof. For a given m, take an arbitrary r, such that 1 ≤ r ≤ m− 1 and 2r < m. To prove
the lemma we exhibit an instance I = (Lm,Mm) of Class r with m machines and n = m

jobs. The speeds of all machines are equal to 2, except machine Mm, which has unit speed,
i. e., si = 2, 1 ≤ i ≤ m− 1, and sm = 1. Compute

Q = m− r
2 (m− r)− 1

and define the processing times as pj = 2Q > 1, 1 ≤ j ≤ r, and pj = 1, r + 1 ≤ j ≤ m. We
have that

Ti = Q, 1 ≤ i ≤ r; Ti = 2rQ+ (i− r)
2r + 2 (i− r) < Q, r + 1 ≤ i < m; Tm = 2rQ+ (m− r)

2m− 1 = Q.

Here, T1 = · · · = Tr and r is the index that is closest to m/2 due to r < m/2. Thus,
instance I belongs to Class r and and Cmax

(
S∗p (I)

)
= Q.

In an optimal non-preemptive schedule a longer job of duration 2Q and any other job
cannot be completed before time 1 on any machine, since 2Q+ 1 > 2. Thus, in any optimal
schedule there are r faster machines of speed 2 each processing exactly one longer job of

APPROX/RANDOM’14
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duration 2Q and completing at time Q. If the slow machine Mm is assigned a job, then it
completes it at time 1; otherwise, there exists a faster machine of speed 2 that processes
at least two shorter jobs. Thus, Cmax

(
S∗np (I)

)
= 1, and Cmax

(
S∗np (I)

)
/Cmax

(
S∗p (I)

)
=

2− 1/ (m− r), so that (17) holds. J

Thus, for instances of Class r the bound 2 − min {1/r, 1/ (m− r)} on the power of
preemption is tight.
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