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Abstract
We give a characterization of vertex-monotone properties with sharp thresholds in a Poisson
random geometric graph or hypergraph. As an application we show that a geometric model of
random k-SAT exhibits a sharp threshold for satisfiability.
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1 Introduction

A property A of a discrete random structure is said to exhibit a sharp threshold with respect
to a parameter p if there exists a pc = pc(n) so that for every ε > 0, for p > (1 + ε)pc, A holds
with probability 1− o(1) and for p < (1− ε)pc, A holds with probability o(1). The classic
sharp thresholds in the Erdős-Rényi random graph G(n, p) are the threshold for connectivity
at p = logn/n and the threshold for a giant component at p = 1/n, see [2]. A property that
does not exhibit a sharp threshold is that of containing a triangle: for any c ∈ (0,∞), when
p = c/n the probability that G(n, p) contains a triangle is strictly bounded away from 0
and 1.

In addition to much investigation of the threshold location and behavior of specific
properties of random graphs, a series of works have proved general threshold theorems. The
first such result was by Bollobás and Thomason [6] showing that any monotone property
A (a property closed under adding additional edges) has a threshold function: a p∗(n) so
that for p � p∗, G(n, p) has property A with probability tending to 1, and for p � p∗,
G(n, p) has property A with probability tending to 0. Subsequently, Friedgut and Kalai [11]
showed that every monotone property has a threshold width bounded by O(log−1 n): there
is a function C(ε) so that for any ε > 0, if G(n, p) has property A with probability ε, then
G(n, p+ C(ε)/ logn) has property A with probability at least 1− ε. Bourgain and Kalai [7]
improved this upper bound to O(logδ−2 n) for any δ > 0. Nevertheless, these theorems do
not imply a sharp threshold in the sense defined above unless the critical probability for the
property is sufficiently high.

Friedgut [10] gave a characterization of all monotone properties of random graphs that
exhibit a sharp threshold: essentially they are properties that cannot be approximated by
the property of containing a subgraph from a list of constant-size subgraphs. In other words,
properties with coarse thresholds are all similar to the property of containing a triangle.
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Friedgut used his general theorem to prove that the satisfiability of a random k-SAT formula
exhibits a sharp threshold, and then Achlioptas and Friedgut [1] used it to prove that the
property of being k-colorable has a sharp threshold in G(n, p). These properties had resisted
previous analysis in part because of their complexity: determining the satisfiability of a
k-SAT formula or the k-colorability of a graph are both NP-hard problems. In contrast,
2-SAT has a polynomial-time algorithm in the worst-case, and the threshold location [8] and
width [5] of a random 2-SAT formula are both well understood.

In this paper we prove a general sharp threshold theorem for the Random Geometric
Graph (RGG). The standard model of the RGG, Gd(n, r), involves placing n points uniformly
at random (or according to a Poisson process of intensity n) in [0, 1]d (or the d-dimensional
unit torus) and joining any two points at distance at most r by an edge. Unlike the edges in
G(n, p), the edges in the RGG are not independent. The RGG exhibits thresholds for some
of the same properties as the Erdős-Rényi random graph. There is a unique giant component
whose appearance occurs sharply at the threshold radius r = λcn

−1/d [19]. The exact value
of the constant λc is not known, but numerical simulations for d = 2 indicate λc ≈ 1.44 [21]
and bounds are given in [16, 14]. The RGG also has a sharp threshold for connectivity at
r = (logn/(nVd))1/d [13, 18] (in the d-dimensional torus) where Vd is the volume of a unit
ball in Rd.

The RGG has been extensively studied in fields such as cluster analysis, statistical physics,
hypothesis testing, and wireless sensor networks. One further application of the RGG is
modeling data in a high-dimensional space, where the coordinates of the nodes of the RGG
represent the attributes of the data. The metric imposed by the RGG then depicts the
similarity between data elements in the high-dimensional space. See [4] or [19] for a survey
of results on the RGG.

In the RGG, Goel et al. have shown that every monotone property has a threshold width
(in terms of r) of O(log3/4 n/

√
n) (for d = 2) and O(log1/d n/n1/d) (for d ≥ 3) [12]. This

implies a sharp threshold in the sense described above when the critical radius of a property
is sufficiently large, but not for sparser graphs, and in particular not in the connectivity or
giant component regimes. For one-dimensional RGG’s, McColm proved that every monotone
property has a threshold function [15], in the sense of Bollobás-Thomason.

We prove a general criteria for sharp thresholds in the Poisson RGG. As an application,
we introduce a geometric model of random k-SAT in which literals are placed at random in
[0, 1]d, and prove that satisfiability exhibits a sharp threshold in this model. We also identify
the location of this threshold in the case k = 2. Previously, a model of random k-SAT for
k = 1, 2 with literals placed on a 2-dimensional lattice was proposed in [20], and in [17] the
authors investigate a model of random k-XOR-SAT with finite interaction range, a kind of
one-dimensional geometry.

The organization and main contributions of this paper are as follows:
1. In Section 2, we introduce notation, define two models of RGG’s, and define a sharp

threshold in each model. We then define analogous models of random geometric k-SAT.
2. In Section 3 we state our main result: a characterization of vertex-monotone properties

with sharp thresholds in the Poisson RGG. We also state a result on transferring sharp
thresholds from the Poisson to fixed-n model.

3. In Section 4 we state our results on random geometric k-SAT: for all k ≥ 2, the satisfiability
phase transition is sharp in the Poisson model. For k = 2, we find the location of this
threshold.

4. Section 5 contains the proofs of the sharp threshold lemma and the sharpness of the
satisfiability phase transition.

5. Sections 6–8 contain auxiliary results and proofs.
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2 Models and Notation

We will denote point sets in [0, 1]d by S, T and the graphs, hypergraphs or formulae formed
by joining 2 (or k) points that appear in a ball of diameter r by GS , GT , FS , FT respectively.

We denote (hyper)graph properties by A and write G ∈ A if graph G has property A. We
say a property A holds ‘with high probability’ or ‘whp’ if Pr[G ∈ A] = 1− o(1) as n→∞.
We write f(n) ∼ g(n) if f(n) = g(n)(1 + o(1)).

We work with two models of random geometric graphs. For n, d ∈ N and µ, r ∈ R+,
Gd(n, µ, r) is the random graph formed by drawing a point set S according to a Poisson point
process of intensity n ·µ on [0, 1]d and then forming GS by joining any two points at distance
at most r. For the hypergraph version of this model, we form a k-uniform hyperedge on any
set of k points in S that appear in a ball of diameter r. If t > k points all appear in one ball
of diameter r, then all

(
t
k

)
possible k-uniform hyperedges are formed. The second model,

Gd(n, r), is the random graph drawn by placing n points uniformly and independently at
random in [0, 1]d to form S, then forming GS by connecting points at distance at most r.
Note that Gd(n, r) has the same distribution as Gd(n, µ, r) conditioned on |S| = n. We use
balls of diameter r instead of radius r to form the hypergraphs so as to match the definition
of the RGG in the case k = 2.

We say a property A has sharp threshold in Gd(n, µ, r) if there exists a function µ∗(n), r(n)
so that for any ε > 0,
1. For µ > (1 + ε)µ∗, Pr[Gd(n, µ, r) ∈ A] = 1− o(1).
2. For µ < (1− ε)µ∗, Pr[Gd(n, µ, r) ∈ A] = o(1).

For Gd(n, r) it is more convenient to describe a sharp threshold in terms of the probability
that two random points in [0, 1]d form an edge1. We write r(p) for the radius that achieves
edge probability p. With this definition, we say that a property A has sharp threshold in
Gd(n, r) if there exists a function p∗(n) so that for any ε > 0,
1. For p > (1 + ε)p∗, Pr[Gd(n, r(p)) ∈ A] = 1− o(1).
2. For p < (1− ε)p∗, Pr[Gd(n, r(p)) ∈ A] = o(1).

For the k-SAT problem, we will work with formulae on n boolean variables x1, . . . , xn. A
literal is a variable xi or its negation xi. We say a formula F ∈ SAT if F is satisfiable.

We define two random geometric distributions over k-SAT formulae, Fk(n, γ) and Fk(n, µ):
1. Fk(n, γ): Randomly place 2n points uniformly and independently in [0, 1]d each labeled

with the name of a unique literal in {x1, . . . , xn, x1, . . . , xn}. For any set of k literals that
appear in a ball of diameter r = γn−1/d, form the corresponding k-clause and add it to
the random formula.

2. Fk(n, µ): Draw independent Poisson point processes of intensity µ on [0, 1]d for each of
the 2n literals. For any set of k literals that appear in a ball of diameter r = n−1/d, add
the corresponding clause.

Note that Fk(n, γ) with γ = 1 has the same distribution as Fk(n, µ) conditioned on each
literal appearing exactly once.

In this work, we will consider k, γ, µ and d fixed with respect to n, and take asymptotics
as n→∞. We use `∞ balls for simplicity in what follows, but all results hold for Euclidean
balls as well, with constants involving the volume of the d-dimensional unit sphere.

1 For constant dimension d, this definition is equivalent to asking for a critical threshold radius r∗, but
for d = d(n) → ∞, allowing r to increase by a factor (1 + ε) will cause a super-constant factor increase
in the number of edges of the graph.
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Another natural model to consider would be the following, call it F̃ (n, r): randomly place
n points uniformly and independently in [0, 1]d, each labeled with the name of a variable
x1, . . . xn (instead of the name of a literal). Then for each set of k variables appearing in
a ball of diameter r, add a k-clause with the signs of the k variables chosen uniformly and
independently from the 2k possible choices. The threshold behavior of satisfiability in F̃ (n, r)
is simpler than in the other two models: the threshold is coarse, and determined locally by
large cliques of variables (see Section 7).

3 Sharp Thresholds in Random Geometric Graphs

The following theorem characterizes vertex-monotone properties with sharp thresholds in the
Poissonized random geometric graph Gd(n, µ, r). It is an application of Bourgain’s theorem
in the appendix of Friedgut’s paper on sharp thresholds in random graphs [10].

I Theorem 1. Let A be a vertex-monotone property of a k-uniform hypergraph that does not
have a sharp threshold in Gd(n, µ, r). Then there exists constants ε, δ,K > 0 independent of
n so that for arbitrarily large n there is an α ∈ (δ, 1− δ) so that either
1. PrGd(n,µ,r)[∃H ⊆ S : |H| ≤ K,GH ∈ A] ≥ ε,

or
2. There exists a point set T in [0, 1]d with |T | ≤ K, GT /∈ A so that

Pr[Gd(n, µ, r) ∈ A|T ⊆ S] ≥ α+ ε .

with µ chosen so that PrGd(n,µ,r)[A] = α.

In other words, if a property does not have a sharp threshold, then either there is a
constant probability that a constant-size witness of A exists in the RGG or there is a point
set of constant size in [0, 1]d that by itself does not have property A, but by conditioning on
the presence of these points significantly raises the probability of A in the RGG. To prove
that a property has a sharp threshold, we rule out both of these possibilities.

We can connect sharp thresholds in Gd(n, µ, r) with those in Gd(n, r). In particular, if
the threshold intensity µ∗(n) has a limit, then there is a sharp threshold edge probability
p∗ in Gd(n, r), and it too is uniform in n, up to a technical condition on the form of the
threshold density.

I Proposition 2. Let q(n) = a logb(n)n−c be a decreasing function of n for constants a, b, c.
Suppose a vertex and edge-monotone property A has a uniform sharp threshold in Gd(n, µ, r):
there exists a constant µ∗, independent of n, so that
1. For µ > (1 + ε)µ∗, Pr[Gd(n, µ, r(q(n))) ∈ A] = 1− o(1)
2. For µ < (1− ε)µ∗, Pr[Gd(n, µ, r(q(n))) ∈ A] = o(1),
then A has a sharp threshold in Gd(n, r) in a uniform sense: there exists a t∗, independent
of n, so that
1. For p > (1 + ε)t∗q(n), Pr[Gd(n, r(p)) ∈ A] = 1− o(1).
2. For p < (1− ε)t∗q(n), Pr[Gd(n, r(p)) ∈ A] = o(1).

Here we think of q(n) as a typical threshold function, for example: 1/n, c/n2, log2 n/n,

etc. The technical condition on q is required to rule out properties whose definition depends
non-uniformly on n, eg. for small n, A is the property of containing a triangle, while for
large n, it is the property of containing an edge.

We conjecture that in fact all edge-monotone properties in Gd(n, r) can be characterized
similarly:

APPROX/RANDOM’14
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I Conjecture 3. For every edge-monotone property A with a coarse threshold in Gd(n, r(p))
with respect to p, there are constants K, ε, δ > 0 so that for large n, α ∈ (δ, 1 − δ), and p
chosen so that Pr[Gd(n, r(p)) ∈ A] = α, either
1. PrGd(n,r(p))[∃H ⊆ S : |H| ≤ K,GH ∈ A] ≥ ε,

or
2. There exists a point set T in [0, 1]d with |T | ≤ K, GT /∈ A so that

Pr[Gd(n, r(p)) ∈ A|T ⊆ S] ≥ α+ ε .

4 Random Geometric k-SAT

As an application of Theorem 1, we prove that in the Fk(n, µ) model, the threshold for
satisfiability is sharp:

I Theorem 4. For all k, there exists a function µ∗k(n) so that for every ε > 0,
1. For µ < µ∗k(n)− ε, Fk(n, µ) ∈ SAT whp.
2. For µ > µ∗k(n) + ε, Fk(n, µ) /∈ SAT whp.

Next, for k = 2 we determine the exact location of the satisfiability threshold in both
models:

I Theorem 5. For any ε > 0,
1. If γ < 2−(1+1/d)− ε, then whp F2(n, γ) ∈ SAT . If γ > 2−(1+1/d) + ε, then whp F2(n, γ) /∈

SAT .
2. If µ < 2−(d+1)/2 − ε, then whp F2(n, µ) ∈ SAT . If µ > 2−(d+1)/2 + ε, then whp

F2(n, µ) /∈ SAT .

Note that from Proposition 8 in Section 6, both thresholds occur at m = n clauses, matching
the threshold for random 2-SAT. The proof of Theorem 5 is omitted in this extended abstract,
but appears in the full version of the paper.

5 Proofs

5.1 Proof of Theorem 1
To prove Theorem 1, we discretize [0, 1]d and place points independently at each gridpoint
with a given probability. We apply Bourgain’s theorem in a dual fashion, to the product space
over positioned points instead of the product space of edges as in G(n, p). We then show
that with a fine enough discretization, the graph formed in the discrete model is identical to
the graph formed in the Poisson model with high probability.

We will prove the theorem for labeled k-uniform hypergraphs, where the label set is
{1, 2, . . . , L(n)} and the dimension d = d(n) may be constant or tend to infinity with n.
Points with label i will appear in [0, 1]d according to a Poisson point process of intensity
nµ/L, with all labels appearing independently (thus the union of all labeled points is itself a
Poisson point process of intensity nµ). For a random geometric graph we can specialize to
k = 2 with a single label. For random geometric k-SAT, the label set will have size 2n, one
label for each literal.

Place Nd grid points onto [0, 1]d where N = 16dn3 so that gridpoint (i1, . . . , id) is located
at ((i1 − 1/2)/N, . . . (id − 1/2)/N) and each ij ranges over {1, . . . N}. To that gridpoint,
assign the region Ai1,...,id = ((i1 − 1)/N, i/N ]× · · · × ((id − 1)/N, id/N ]. At each grid point,
let each of the L possible labels appear independently with probability p = µn/LNd (more
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than one label can appear at a single grid point). For every set of k labeled points that
appear in a ball of diameter r (in l2 or l∞ distance, depending on the model), include the
corresponding hyperedge in the hypergraph. The following proposition allows us to transfer
results from the discrete model to the continuous model:

I Proposition 6. There is a coupling of the discrete and continuous model so that with
probability 1− o(1), the labeled hypergraph generated by each is identical.

Proof. We couple as follows: If at least one point with label l falls in the region Ai1,...,id in
the continuous model, let the label l be present on gridpoint (i1, . . . , id) in the discrete model.
If no point with label l falls in Ai1,...,id in the continuous model, then flip an independent
coin that is heads with probability

eµn/LN
d

· (µn/LNd − (1− e−µn/LN
d

)).

If the coin is heads, let l be present at (i1, . . . , id).
The following facts suffice to prove the proposition:
The coupling is faithful: the probability that gridpoint (i, j) has a point with label l is:

1− e−µn/LN
d

+ e−µn/LN
d

· eµn/LN
d

· (µn/LNd − (1− e−µn/LN
d

)) = µn/LNd

and all gridpoints and literals are independent by construction.
With probability 1− o(1) no coins come up heads: i.e. no extra labeled points appear
in the discrete model. The probability of heads for a single coin is O((µn/LNd)2), and
there are at most LNd coins flipped. By the union bound whp no heads are flipped.
With probability 1 − o(1) no two copies of any one label appear in the same Ai1,...,id .
The probability that label l appears at least twice in a fixed Ai1,...,id is O((µn/LNd)2).
There are Nd such boxes and L labels, so again whp no region contains more than one.
With probability 1−o(1) no hyperedges disappear and no new hyperedges appear, moving
from the continuous to the discrete model. In the coupling a point moves by at most
1/2N in each coordinate. For l1, l2, l∞ norms this means the point moves at most d/2N
with respect to the norm. For a hyperedge to appear or disappear due to this movement,
two points would need to begin at some distance x ∈ [r− d/N, r+ d/N ]. For a given pair
of points uniformly distributed in [0, 1]d, this occurs with probability that depends on the
norm, but is bounded by 4d+1dr/N . Since the total number of points has a Poisson(nµ)
distribution, we can condition, and whp have at most 2nµ points. Taking the union
bound over Θ(n2) pairs of points gives a failure probability of O(n24d+1dr/N) = o(1),
from our choice of N and using the fact that r ≤ d and d2 ≤ 4d.

J

To complete the proof of Theorem 1, we apply the following theorem from Bourgain’s
appendix to Friedgut’s work [10]2. Bourgain’s theorem gives a criteria for a monotone
property on a product measure over the Hamming cube to have a sharp threshold, as opposed
to Friedgut’s result which applies only to random graphs and hypergraphs.

Consider a random subset S ⊆ [N ] with i ∈ S with probability p, independently for all
1 ≤ i ≤ N . Let A be a monotone property of subsets of [N ]. (In the case of the random
graph G(n, p), N =

(
n
2
)
and S is the set of present edges, A might be the property of having

a triangle or connectedness.)

2 For a recent explication of Bourgain’s proof, see [3].
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I Theorem (Bourgain [10]). Assume that Prp[A] = α ∈ (0, 1), p · dPrp(A)/dp ≤ C and
p = o(1). Then there exists δ(C,α) > 0 so that either
1. the probability that S contains a subset H of constant size with H ∈ A is greater than δ,

or
2. there exists a constant-sized subset (e.g. a subgraph in G(n, p)) H /∈ A so that Prp[Q|H ⊆

S] > α+ δ.

In other words, conditioning on the appearance of this constant-sized subset increases the
probability of the property significantly. We apply this theorem directly to the discrete model
above, with the product space {0, 1}LNd and p = µn/LNd. A vertex-monotone property
on random geometric graphs becomes a monotone property in this hypercube. Bourgain’s
theorem is applied as follows: if a property A does not have a sharp threshold, then by the
mean value theorem there must be some µ so that Prµ(A) is bounded away from 0 and
1, and µ · dPrµ(A)/dµ ≤ C, for some constant C. Then Bourgain’s theorem asserts that
either condition (1) or (2) must hold. The two conditions are equivalent in the discrete and
continuous model since the graphs generated are identical with probability 1− o(1).

5.2 Proof of Proposition 2

Let t∗ = (µ∗)c. Fix ε > 0.
First assume p > (1+ε)t∗q(n), and let N = 1

µ∗ (1+ε/2)−cn. The conditions of Proposition
2 say that Pr[Gd(N,µ∗(1 + ε/2)c/2, r(q(N)) ∈ A] = 1− o(1). From the concentration of a
Poisson, with probability 1−o(1), the number of points drawn inGd(N,µ∗(1+ε/2)c/2, r(q(N)))
is bounded above by n. We also have

p > (1 + ε)(µ∗)cq(n)

= (1 + ε)(µ∗)c a logb n
nc

≥ a(1 + ε/2) logb(n/(µ∗(1 + ε/2)−c))
(n/µ∗)c

= q(N)

Since A is both vertex monotone and edge monotone, we have Pr[Gd(n, r(p)) ∈ A] = 1− o(1).
Next assume p < (1 − ε)t∗q(n), and let N = 1

µ∗ (1 − ε/2)−cn. The conditions say that
Pr[Gd(N,µ∗(1 − ε/2)c/2, r(q(N)) ∈ A] = o(1). With probability 1 − o(1), the number of
points drawn in Gd(N,µ∗(1− ε/2)c/2, r(q(N)) is bounded below by n, and

p < (1− ε)(µ∗)cq(n)

= (1− ε)(µ∗)c a logb n
nc

≤ a(1− ε/2) logb(n/(µ∗(1− ε/2)−c))
(n/µ∗)c

= q(N)

And again since A is both vertex monotone and edge monotone, Pr[Gd(n, r(p)) ∈ A] = o(1).
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5.3 k-SAT proofs
Proof of Theorem 4
To prove Theorem 4, we will assume that the threshold is coarse: i.e., there is some α ∈ (0, 1)
so that Prµ(UNSAT) = α, for which µ · dPrµ(UNSAT)/dµ ≤ C. It then suffices to rule out
both possibilities in Theorem 1 to derive a contradiction. We will show: (1) whp there is
no constant-sized set of positioned literals that is by itself unsatisfiable and (2) there is no
constant-sized satisfiable ‘booster’, one that boosts the unsatisfiability probability from α

to α+ ε when conditioned on. Using Proposition 10 (Section 8) we can assume that µ is a
constant bounded from above and away from 0 independent of n.

Notation

We will denote by FH the k-SAT formula generated by a set of positioned literals H ⊂ [0, 1]d.
Let Gµ ⊂ [0, 1]d be a random set of positioned literals chosen according to 2n independent
Poisson processes of intensity µ, one for each of the 2n literals: i.e. Fk(n, µ) has the
distribution FGµ . We will use l∞ distance to simplify calculations, but everything holds for
l2 or l1 distance as well, with αd, the volume of the d-dimensional unit ball replacing 2d in
the calculations below.

Condition 1: For any constant R, we show that whp there is no set of R positioned literals
that form an unsatisfiable formula. We will use the implication graph of a 2-SAT formula:
the directed graph on 2n vertices, each representing a literal in the formula, in which l1 → l2
if the clause (l2 ∨ l1) is in the formula. A bicycle (see eg. [8, 9]) of length L in a 2-SAT
formula is a sequence of clauses

(u,w1), (w1, w2), (w2, w3), . . . , (wL, v)

where the wi’s are literals of distinct variables and u, v ∈ {w1, . . . , wL} ∪ {w1, . . . , wL}. A
2-SAT formula is satisfiable if it does not contain a bicycle. Let YL be the number of bicycles
of length L in FGµ . Then

EYL ≤ nL2L(2L)2 Pr
[

(u,w1), (wL, v) ∈ FGµ ∧
L−1∧
i=1

(wi, wi+1) ∈ FGµ

]
. (1)

I Claim 7. The probability that a specified bicycle of length L appears in FGµ satisfies:

Pr
[

(u,w1), (wL, v) ∈ FGµ ∧
L−1∧
i=1

(wi, wi+1) ∈ FGµ

]
≤ µ2 + 3µ+ 1

µ2

(
2dµ2

n

)L+1

,

where wi’s are literals of distinct variables and u, v ∈ {w1, . . . , wL} ∪ {w1, . . . , wL}.

Proof. The literals in the above event are not all distinct, and so the clauses are not all
independent. There may be two literals that are repeated as u and v, and perhaps u = v.
We consider three different cases for the overlapping clauses:
Case 1: u 6= v, (u, v) 6= (wi, wi+1) for any i.

Say u = wi and v = wj , though the argument will be the same if either or both is a
negation. For k 6= i−1 or j−1, the clauses (wk, wk+1) are independent of all other clauses
in the bicycle. Each has probability of appearing ∼ 2dµ2/n for our choice of µ. Now
consider the pairs of clauses {(u = wi, w1), (wi−1, wi)} and {(wL, v = wj), (wj−1, wj)}.

APPROX/RANDOM’14
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The clauses within each pair are not independent, but the pairs are independent of each
other. Both pairs are of the form (l1, l2), (l1, l3) for distinct literals l1, l2, l3. Conditioning
on the number of appearances of l1, we have

Pr[(l1, l2), (l1, l3) ∈ F ] ∼
∞∑
j=0

e−µµj

j!

(
1− e−2dµj/n

)2

∼
∞∑
j=0

e−µµj

j!
22dµ2j2

n2

= 22dµ2

n2

(
µ+ µ2) . (2)

All together, with the L− 3 independent clauses, this gives that a bicycle of this type
appears with probability at most(

22dµ3(µ+ 1)
n2

)2(2dµ2

n

)L−3

= (µ+ 1)2

µ2

(
2dµ2

n

)L+1

.

Case 2: u 6= v, (u, v) = (wi, wi+1) for some i.
For k 6= i, the clauses (wk, wk+1) are independent of the other clauses in the bicycle. What
remains is the triple {(u = wi, w1), (wi, wi+1), (wL, wi+1)}. (The argument is the same if
u = wi+1 and v = wi). This triple is of the form (l1, l2), (l1, l3), (l4, l3). We calculate the
probability such a triple appears by conditioning on the number of appearances of l1 and
l3:

Pr[(l1, l2), (l1, l3), (l4, l3) ∈ F ] ∼
∞∑
j=0

∞∑
k=0

e−µµj

j!
e−µµk

k!
23dj2k2µ2

n3

and so

Pr[(l1, l2), (l1, l3), (l4, l3) ∈ F ] ∼ 23dµ2

n3

∞∑
j=0

∞∑
k=0

e−µµj

j!
e−µµk

k! j2k2

= 23dµ2

n3 (µ+ µ2)2

= 23dµ4(µ+ 1)2

n3 .

Again all together the probability of the particular bicycle appearing is at most

23dµ4(µ+ 1)2

n3

(
2dµ2

n

)L−2

= (µ+ 1)2

µ2

(
2dµ2

n

)L+1

.

Case 3: u = v.
Say u = v = wi. (The same will work for u = v = wi). The clauses (wk, wk+1) for k 6= i−1
are again independent of all other clauses in the bicycle. What remains are the clauses
(u = wi, w1), (wi−1, wi), (wL, v = wi). This is a triple of the form (l1, l2), (l1, l3), (l1, l4)
and we calculate its probability by conditioning on the number of appearances of l1:

Pr[(l1, l2), (l1, l3), (l1, l4) ∈ F ] ∼
∞∑
j=0

e−µµj

j!
23dµ3j3

n3

= 23dµ3

n3 (µ3 + 3µ2 + µ) = 23dµ4(µ2 + 3µ+ 1)
n3 .
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So the probability of such a bicycle is at most

23dµ4(µ2 + 3µ+ 1)
n3

(
αdµ

2

n

)L−2

= µ2 + 3µ+ 1
µ2

(
2dµ2

n

)L+1

.

The three estimates prove the claim. J

Using the claim and summing from L = 1 to R yields:

R∑
L=1

EYL ≤
R∑
L=1

(2n)L(2L)2µ
2 + 3µ+ 1

µ2

(
2dµ2

n

)L+1

= O(n−1)

for any µ,R constant with respect to n. So whp there is no bicycle in the implication graph
of length ≤ R and thus no set of R literals that form an unsatisfiable formula.

For k ≥ 3 consider an arrangement of R literals that yields an unsatisfiable k-SAT formula.
The configuration of points would also induce an unsatisfiable 2-SAT formula since for each
k-clause, each of the

(
k
2
)

2-clauses from the same set of literals would be present, and a
satisfying assignment to the 2-SAT would also satisfy the k-SAT formula. But whp there is
no set of R unsatisfiable 2-SAT literals, and so no set of R unsatisfiable k-SAT literals.

Condition 2: We want to show that there is no constant-sized set of positioned literals
H, so that FH is satisfiable but conditioning on the presence of H raises the probability of
unsatisfiability of FGµ from α to α+ ε at the µ for which Pr[Fk(n, µ) /∈ SAT ] = α. Assume
|H| ≤ R. We will bound the conditional probability

Pr[FGµ /∈ SAT |H ⊆ Gµ] = Pr[FGµ∪H /∈ SAT ]

where the equality follows from the properties of a Poisson point process. In other words,
we will create a random formula by first placing the positioned literals in H in the cube,
then adding each of the 2n literals independently on top according to a Poisson process of
intensity µ, then forming the k-SAT formula from the entire set of points. Note that in the
probability on the RHS H is a fixed point set, and Gµ a random point set that does not
depend on H.

We now bound Pr[FGµ∪H /∈ SAT ]. Let XH be the set of variables of the literals in H.
By assumption |XH | ≤ kR. First we show that whp the subformula of FGµ∪H consisting
of clauses entirely from XH is satisfiable. By assumption, FH is satisfiable so to create an
unsatisfiable subformula on XH we need the addition of Gµ to add at least one clause with
variables entirely in XH . There are two different ways this could happen - either a clause is
created entirely with randomly placed literals, or a clause is created with some literals from
H and some random literals.

We bound the expected number of clauses in FGµ containing only variables from XH , call
this EYXH ,µ, by bounding the number of literals from XH appearing within distance n−1/d

of each other in Gµ:

EYXH ,µ ≤
(

2kR
2

)
2dµ2

n
= o(1) .

Next, we bound the expected number of literals from XH placed by Gµ within distance
n−1/d of a literal in H. The total volume of the cube within distance n−1/d of H is bounded
by 2dk2R2/n, and so the expected number of literals from XH appearing at random in this
region is bounded by 2dk2R2(2kRµ)/n = o(1).

The remainder of the proof follows the general plan of Section 5 of [10]. We separate
the n variables into two sets XH and X cH , and we have shown that whp after the addition
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of Gµ there is an assignment to XH that satisfies the subformula of clauses entirely in XH ,
call this assignment xH . We now show that with probability at least 1− α − ε/2, we can
extend this assignment on X cH to satisfy FGµ∪H . The remaining formula consists of two
types of clauses: clauses which contain variables from XH (overlapping clauses) and clauses
that contain only variables from X cH (non-overlapping). With probability at least 1− α, the
set of non-overlapping clauses in FGp is satisfiable, from the definition of µ. We will show
that adding the overlapping clauses decreases this probability by at most ε/2.

Step 1: The overlapping clauses created with the addition of Gµ are dominated (in terms
of inducing unsatisfiability) by adding a constant number of independent random unit
clauses.
We can assume that FH is maximal in the sense that it admits exactly one satisfying
assignment, xH . Adding H to Gµ has two effects: it adds the constraint that XH = xH
and it may create some new clauses involving positioned literals from H and Gµ. We
have shown above that whp these new clauses all contain at least one variable from X cH .
Consider the following modification of FGµ : call the set of literals from X cH that fall
within distance n−1/d of a literal from XH (either in H or in Gµ) L. Note that the literals
in L are uniformly random over all literals in X cH . Remove the set L from Gµ to form
the random point set G−µ . Create the formula F ∗

G−
µ
by forming k-clauses according to the

usual rules for G−µ , but add a unit clause (l) for every literal l ∈ L that was removed from
Gµ. Critically the k-clauses of F ∗

G−
µ
are independent of the unit clauses of F ∗

G−
µ
since they

are formed from points from disjoint regions of the cube. Note that if there is a satisfying
assignment to F ∗

G−
µ
, then the same assignment satisfies FGµ . The inequality goes in the

correct way: we progress to a formula which has less probability of being satisfied.
The expected number of literals from Gµ that fall within distance n−1/d of a literal in
XH is bounded by 2d/n · (µ+ 1)2kR(2nµ) = 2d+2kRµ(µ+ 1), so with probability 1− ε/4
the size of L is at most 2d+4kRµ(µ+ 1)/ε.
Now consider the random formula F ′ which is formed by sampling a copy of FGµ and
adding to it 2d+4kRµ(µ + 1)/ε independent, uniformly random unit clauses from all
2n literals. With probability 1 − o(1) this is the same as adding the same number of
uniformly random unit clauses chosen from X cH , and FGµ stochastically dominates the
k-clauses of F ∗

G−
µ
(formed from a Poisson process on a larger region), so Pr[F ′ ∈ SAT ] ≤

Pr[F ∗
G−
µ
∈ SAT ] + ε/4 ≤ Pr[FGµ∪H ∈ SAT ] + ε/4 + o(1).

Step 2: Pr[F ′ ∈ SAT ] ≥ Pr[FGµ ∧ C1 ∧ · · · ∧ C√n ∈ SAT ], where the Ci’s are a collection
of
√
n independent, uniformly random k-clauses. This is Lemma 5.7 from [10].

Step 3: Pr[FGµ∧C1∧· · ·∧C√n ∈ SAT ] ≥ Pr[FGµ∪Gµs ∈ SAT ], where Gµs is an independent
sprinkling of random positioned literals with intensity µs = n−δ for each of the 2n literals.
We will sprinkle literals independently, adding each literal as a Poisson process of intensity
µs. Split the cube into n disjoint small cubes with side length n−1/d. The probability
that a single small cube has at least k sprinkled literals is ∼ (2µs)k/k! = 2kn−kδ/k!. The
expected number of boxes with k literals is Θ(n1−kδ) and whp there are at least n1−2kδ

such boxes. If we pick one k-clause at random from each box that has one, we will get
a set of at least n1−2kδ uniform and independent random k-clauses. Picking δ = 1/5k
suffices.

Step 4: Increasing µ to µ′ = µ + µs lowers the probability of satisfiability by at most
Cn−δ = Cn−1/5k, from the assumption of a coarse threshold (bounded derivative of the
probability with respect to µ, µ · dPrµ(UNSAT)/dµ ≤ C).
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All together we have:

Pr[FGµ ∈ SAT |H ⊆ Gp] ≥ Pr[FGµ∪H ∈ SAT ]
≥ Pr[F ∗

G−
µ
∈ SAT ] + o(1)

≥ Pr[F ′ ∈ SAT ]− ε/4 + o(1)
≥ Pr[FGµ ∧ C1 ∧ · · · ∧ C√n ∈ SAT ]− ε/4 + o(1)
≥ Pr[FGµ∪Gµs ∈ SAT ]− ε/4 + o(1)
≥ Pr[FGµ ∈ SAT ]− Cn−δ − ε/4 + o(1)

This contradicts condition 2 in Theorem 1, leading to the conclusion that the threshold must
in fact be sharp.

6 Clause Density

The clause density in each k-SAT model is as follows:

I Proposition 8. The number of clauses in Fk(n, γ) is 2kγd(k−1)kd

k! n+ o(n) whp. The number
of clauses in Fk(n, µ) is (2µ)kkd

k! n+ o(n) whp.

Proof. Let X be the number of clauses in the random formula. To compute EX, note that
the probability that k given points, distributed uniformly at random in [0, 1]d lie in an `∞-ball
of diameter γn−1/d is the probability that the smallest and largest of k independent uniform
[0, 1] random variables differ by at most γn−1/d, raised to the dth power. This probability,
pk, can be computed by conditioning on the position of the smallest value:

pk =
∫ 1

0
k(1− t)k−1 min

{
1,
(
γn−1/d

1− t

)k−1}
dt

= k(γn−1/d)k−1
∫ 1−γn−1/d

0
dt+ k

∫ 1

1−γn−1/d
(1− t)k−1dt

= kγk−1

n(k−1)/d

(
1− k − 1

k
γn−1/d

)
= kγk−1

n(k−1)/d (1 + o(1)) .

So in the Fk(n, γ) model,

EX =
(

2n
k

)
pdk ∼

2kγd(k−1)kd

k! n .

Standard estimates show that var(X) = O(n), and so Chebyshev’s inequality gives

X = 2kγd(k−1)kd

k! n+ o(n)

whp.
The result for the Fk(n, µ) model follows from conditioning on the total number of literals

that appear in the cube and applying the result for Fk(n, γ). As this number is concentrated
around its expectation, 2µn, we have, whp,

X = (2µ)kkd

k! n+ o(n) .

J
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7 A Coarse Threshold for F̃ (n, r)

Here we show that the model F̃ (n, r) in which variables are placed in [0, 1]d and signs of
clauses drawn uniformly at random has a coarse threshold.

I Proposition 9. Let r = γn−
U(k)

d(U(k)−1) , where U(k) is the minimal number of variables u so
that there exists an unsatisfiable k-SAT formula on u variables so that no two clauses share
the same set of k variables. Then

lim
n→∞

Pr[F̃ (n, r) ∈ SAT ] = g(γ)

for a function g(γ) ∈ (0, 1). Further, limγ→0 g(γ) = 1 and limγ→∞ g(γ) = 0.

Proof. Claim: U(k) ≤ (ln 2)1/(k−1)(2k)k/(k−1). In particular, U(k) is finite.
Proof: Let u ≥ (ln 2)1/(k−1)(2k)k/(k−1). Now consider a random formula formed by taking

a clause for each of the
(
u
k

)
distinct sets of k variables from the set of variables x1, . . . xu, and

then assigning signs uniformly at random. The expected number of satisfying assignments is:

2u(1− 2−k)(
u
k) < 1

for our choice of u (using basic estimates). So there exists some unsatisfiable formula on u
variables in which each clauses has a distinct set of variables.

Now we show that satisfiability undergoes a coarse threshold at r = n−
U(k)

d(U(k)−1) . The
general idea of the proof is that for r = γn−

U(k)
d(U(k)−1) , the probability that there is a set of

U(k) variables in a ball of diameter r is bounded away from 0 and 1. The probability that
each such set forms an unsatisfiable formula is also bounded away from 0 and 1. We then
show that for this choice of r, if there is no such set of variables, the formula is satisfiable
whp.

For r = γn−
U(k)

d(U(k)−1) the expected number of sets of U(k) variables that form an unsatis-
fiable formula tends to a constant as n→∞. To see this note that the expected number of
sets of U(k) variables that fall in a ball of diameter r is a constant, and that any such set of
variables is unsatisfiable with probability at least 2−U(k) from the definition of U(k). To see
that it is at most a constant, note that the expected number of connected components of
U(k) variables is constant. A modification of Theorem 3.4 of [19] shows that the number of
such unsatisfiable sets of variables has a Poisson distribution asymptotically. The mean of
this Poisson random variable tends to ∞ as γ →∞ and to 0 as γ → 0. Finally, if there is
no such set, then the formula is satisfiable whp, since whp the RGG for this r consists of
connected components of size at most U(k). For a component of size < U(k), there must be
a satisfying assignment, by the definition of U(k). J

8 Bounds on the Satisfiability Threshold

For k ≥ 3 we give bounds on the satisfiability threshold, showing in particular that the
transition from almost certain satisfiability to almost certain unsatisfiability occurs when the
number of clauses is linear in the number of variables:

I Proposition 10. For all k ≥ 3 there exist functions γ(k), γ(k), µ(k), µ(k) so that for any
ε > 0,
1. For γ < γ(k)− ε, whp Fk(n, γ) ∈ SAT . For γ > γ(k) + ε, whp Fk(n, γ) /∈ SAT .
2. For µ < µ(k)− ε, whp Fk(n, µ) ∈ SAT . For µ > µ(k) + ε, whp Fk(n, µ) /∈ SAT .
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We can take γ(k) = 2−(1+1/d), µ(k) = 2−(d+1)/2, γ(k) = (k − 1)1/d, and µ(k) = k + ln 2. In
particular, all functions are independent of n and so the threshold for satisfiability occurs
with a linear number of clauses.

For Fk(n, γ), the lower bound follows from the lower bound in Theorem 5. For the same
set of points in the cube, form both the corresponding 2-SAT formula and the k-SAT formula.
For each k-clause the 2-SAT formula will include each of the

(
k
2
)
subclauses of length 2. If

there is a satisfying assignment to the 2-SAT formula, the same assignment will satisfy the
k-SAT formula.

For an upper bound, we will show that the probability that any assignment is satisfying is
0. Fix an assignment σ, and consider the set of n false literals under σ. Set γ > (k−1)1/d+ ε.
Tile [0, 1]d by (dn1/d/γe)d boxes of side length γn1/d (with boxes along the boundary possibly
smaller). For large enough n (depending on ε), the number of boxes is strictly less than
n/(k − 1). By the pigeonhole principle there must be a box with at least k points, and so
with probability 1, an unsatisfied clause is formed. This is true for any set of n literals, and
so with probability 1 there is no satisfying assignment.

For Fk(n, µ), the lower bound again follows from the k = 2 case and Theorem 5. For
the upper bound, we bound the expected number of satisfying assignments. There are 2n
possible assignments, so it is enough to show that the probability a given assignment σ is
satisfying is at most qn for some q < 1/2 independent of n. Tile [0, 1]d by n boxes of side
length n−1/d. The probability that there is no k-clause of negative literals under σ is bounded
by the probability that none of these boxes contain k negative literals. The nodes in the
different boxes are independent, so we need to show that for large enough µ, the probability
there are fewer than k negative literals in a single cube of side length n−1/d is strictly less
than 1/2. The number of negative literals in a single such cube has distribution Poiss(µ).
The median of a Poisson with mean λ is at least λ− ln 2, so if we pick µ(k) > k + ln 2, then
Pr[Poiss(µ) < k] < 1/2 and via a first-moment argument whp Fk(n, µ) is unsatisfiable.
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