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—— Abstract

In the ‘Number-on-Forehead’ (NOF) model of multiparty communication, the input is a k x m
boolean matrix A (where k is the number of players) and Player i sees all bits except those in
the i-th row, and the players communicate by broadcast in order to evaluate a specified function
f at A. We discover new computational power when k exceeds logm. We give a protocol
with communication cost poly-logarithmic in m, for block composed functions with limited block
width. These are functions of the form fog where f is a symmetric b-variate function, and g is a
kr-variate function and (f o g)(A) is defined, for a k x br matrix to be f(g(A),..., g(A")) where
A% is the i-th k x 7 block of A. Our protocol works provided that k > 1+1Inb+2". Ada et al. [2]
previously obtained simultaneous and deterministic efficient protocols for composed functions of
block-width r = 1. The new protocol is the first to work for block composed functions with r > 1.
Moreover, it is simultaneous, with vanishingly small error probability, if public coin randomness
is allowed. The deterministic and zero-error version barely uses interaction.
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1 Introduction

In the Number-on-Forehead (NOF) model of communication, k players collaborate to evaluate
a function f on a k x m boolean matrix X = (z; ;). Player ¢ knows all input bits except those
in row ¢ which is represented metaphorically by saying that row ¢ is on the forehead of Player
i, who sees all foreheads except her own. The players communicate by broadcast. The goal
is to design a communication protocol for evaluating f that minimizes the number of bits of
communication. Every such function can be evaluated with m + 1 bits of communication by
having the kth player broadcast the first row of the matrix; the first player (who then knows
the entire matrix) evaluates the function and announces the result.

Since it was introduced by Chandra, Furst and Lipton [8], the model has been studied ex-
tensively (e. g., [5, 12, 3, 6, 10, 18, 9, 14, 11, 16]), in part because it captures a communication
bottleneck relevant to several models of computation such as branching programs, boolean
circuits, SAT refutation via polynomial calculus etc. For each of these models, proving lower
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bounds for computing some function f reduces to proving communication lower bounds for
a function related to f in the NOF model.

For example, the complexity class ACCY is believed to be rather weak.! This belief
is based on the famous Razborov-Smolensky Theorem [15, 17] stating that ACY circuits
augmented with MOD,, gates, for any fixed prime p, cannot even compute efficiently the
majority function MAJ (which outputs 1 if at least half the input bits are 1). A widely held
conjecture says that ACCY does not contain MAJ, but the only known non-trivial separation
is NEXP ¢ ACCP [19]. Combining results of [13, 7] gives that for any f: {0,1}"* — {0,1}
in ACC° there is a constant C' such that for k = (logn)¢ if the variables of f are arranged
(arbitrarily) in a matrix with &k rows (padding rows with dummy inputs as needed) there is a k-
player NOF protocol for evaluating f that is efficient (uses log(n)°™) bits of communication).
This has inspired researchers to seek an explicit function f on n = mk bits for which there is
provably no efficient NOF k-party protocol as long as k = (log n)o(l). This would separate
ACC? from any complexity class containing f.

For the generalized inner product function GIP}* which outputs 1 if the input matrix has
an odd number of all 1 columns, [5] proves a bound of (m/4*). This lower bound is m?)
if the number of players is less than (1 — €) logm but becomes trivial if k£ > logm. Similarly
all known NOF lower bounds become trivial for & > logm.

One might guess that GIP remains hard for NOF when k& > log(m), but surprisingly
Grolmusz [12] found a protocol for k > log(m) with cost O((logm)?). His protocol relies on
the structure of GIP. For a k-variate boolean function g and an m variate function f the
composition (f o g)(M) has output f(g(A'),...,g(A™)) where A is the i-th column of A.
We call f the outer function and g the inner function. For GIP, f is sum modulo 2, and g is
AND. In fact, Grolmusz’s protocol works if f is symmetric (invariant under any permutation
of the variables).

Babai et al. [4] suggested that the composed function with outer function MAJ,, (the
m bit majority function) and inner function MAJy might be hard for NOF, however Babai,
Gal, Kimmel and Lokam [3] refuted this by giving an efficient simultaneous protocol 2 that
works for a composed function with symmetric outer function and an inner function that is
both symmetric and compressible, provided that the number of players is a sufficiently large
poly-logarithmic function of m. We won’t define compressible here, but we note that MAJ is
compressible and so their protocol applies to MAJ,,, c MAJy.

Babai et al. [3] then suggested that MAJ,, o @ where @ is not compressible, might be
hard for the NOF model. Recently, however, Ada et al.[2] showed that for k slightly larger
than logm, the composition of any symmetric function with any k-variate inner function,
has a very efficient deterministic simultaneous NOF protocol.

Babai et al. also suggested considering composed functions whose inner function depends
on more than 1 bit from each player. More precisely, let b and r be integers and let m = br.
Split the k& x m matrix A into b blocks, A', ..., A, where each block is a k x r matrix.
Consider the composition f o g where f has b variables and g has kr variables. We call r the
block width of g. Specifically, they suggested looking at the function MAJ, o T}"" | where T}""
takes as input a k X r matrix and interprets each row i as an r-bit integer z;, and outputs 1
if 23 + -+ + 2z > t. They suggested b = r as a case of special interest, but noted that even
the case r = 2 is open.

1 ACC? is the class of boolean functions computable by circuits of polynomial size and constant depth
using AND gates, OR gates and MOD,, gates for some fixed positive integer w. A MOD,, gate outputs
1 iff the sum of the input values is divisible by w.

In a simultaneous protocol, all processors simultaneously send one message to a referee who computes
f(A) from the messages.
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Here we give the first efficient NOF protocol for composed functions having block width
above 1. Corollary 2 implies that MAJ o Tt’” has an efficient NOF protocol of only poly-
logarithmic (i. e. log(m)?™)) cost, when the number of players k is Q(log(m))? and the block
width r is at most loglog(m). While our primary interest is in boolean functions, our result
is naturally stated for polynomial functions over a finite field. The set up we work with is:

[F is a finite field.

DCF.

p',...,pP are polynomial functions of the entries of a k x m matrix each of which depends

on at most r variables per row.

p= Z?:1 p'.

A is an assignment to the variables whose entries are all in D.

n = mk.

We consider the k-party NOF complexity of evaluating p(A). A key observation that was
used previously in making the connection between ACC? lower bounds and NOF-complexity,
is that if p is a polynomial of degree strictly less than k, then p has a very efficient k-party
simultaneous protocol: for any monomial of degree less than k there is some player who sees
all the variables of that monomial and so the polynomial p can be decomposed as a sum of
polynomials p! + - - - + p* where Player j sees all of the variables needed to evaluate p’, and
so can simply announce p’(A). However, if the degree of p exceeds k there are no general
methods known. In the above set up, the degree of p is rk. Our main result shows that if r
is not too big then we can get efficient protocols.

» Theorem 1. 1. Let v > 0 and suppose k > 1+ |D|"In(b/v). There is a randomized
simultaneous message NOF protocol that outputs either p(A) or “failure”, where the
probability that it outputs “failure” is at most v. The total communication cost of the
protocol is at most (1 + |D|" In(b/7)) [log(1 + |F|)].

2. Suppose k > (1+|D|"1n(2b)). There is a 2 round deterministic NOF protocol that outputs
p(A) having total communication cost (1 + |D|"1n(20))([rlog|D|] + [log |F|]).

» Remark. As in the work of Babai et al. [3], in public-coin simultaneous message protocols,
all coin-tosses are visible to all players and the referee.

For boolean functions we get:

» Corollary 2. Let g be a boolean function whose variable set is a k x r matriz and let f be
a symmetric b-variate boolean function.
Suppose v >0 and k > 1+ 2"1In(b/v). There is a public-coin randomized simultaneous
message protocol that outputs either (f o g)(A) or “failure”, where the probability that it
outputs failure is at most . The total communication is at most (1+ 2" In(b/7))[log(1 +
2b)].
If k > 1+ 2"In(2b), there is a 2 round deterministic NOF protocol for f o g with
communication (14 2" 1n(2b))(r + [log(20)]).

To deduce the corollary, let ¢ be the smallest prime that is greater than b (so b < ¢ < 2b)
and let F be the field of integers mod ¢. For any boolean function there is a polynomial A
over field F that agrees with g on every 0-1 input. Let A be the kr-variate polynomial over F
that represents the given boolean function g. Let X be a k x rb matrix of variables. For
i € [b], let X? be the ith k x r block of variables and define the polynomial p?(X) by A(X?).
The polynomial p(X) = Z?:1 p'(X) counts the number of X* for which g(X?) = 1 and since
f is a symmetric function, p(X) determines (f o g)(X). Now apply Theorem 1 to p with
D ={0,1}.



A. Chattopadhyay and M. E. Saks

Main ldea for our Protocol

As mentioned earlier, a polynomial p of degree less than k can be evaluated by k players in
the NOF model by decomposing p as a sum of k& polynomials, where the i-th polynomial can

be evaluated privately by Player i. For a polynomial of degree k& or more we can’t do this.

Still every polynomial p can be decomposed as a sum of polynomials gy + g1 + - - - + g where
qgo consists of monomials that depend on every row of A (and thus can’t be evaluated by
any one player) and ¢; consists of all monomials that contain at least one variable from each

of the rows 1,...,7 — 1 and no variable from row ¢, and can thus be evaluated by Player i.

So the problematic part is go, which is identically 0 if p has degree less than k. The first
(simple) idea is that we don’t need ¢y to be identically 0, we only need that ¢o(A) = 0. The
second idea is to consider alternative bases (rather than the standard monomial basis) for
writing polynomials. A natural set of bases to consider are shifted monomial bases, where we
fix a matrix B and consider the B-shifted basis consisting of products of terms of the form
255 — B; ;. Bach such B gives rise to an alternative decomposition @@+ + q{f. A simple
but key observation is that the polynomial ¢ varies depending on B, and it suffices for the
players to agree on B so that ¢/’(A) = 0. Furthermore for our set up, the polynomial p is

initially given as a sum of polynomials p* each depending on only a few variables per row.

The players can choose a different shift B* for each polynomial p* and decompose p* with
respect to that basis. Hence, the problem becomes to find a way for the players to identify
and agree upon a sequence (B : u € [b]) of shift matrices such that for every u € [b] when
pu
turns out that, using the fact that each p* depends on only a few variables per row, this is
easy to do.

To give a simple illustration of this idea, we give a short reformulation of the proof
of Gromulsz’ result that GIP/"(A) = 1", Hle A; j has a very efficient protocol if k£ >
1 + log(m). We work over the field F, where p is a prime larger than m (which we can
assume is less than 2m), which does not change the answer.

Here’s the protocol: Since k > 1+ log(m) the number of columns is less than 2¥~1 and
Player k (who sees all rows but the last row) can identify a vector v of length k£ — 1 that
disagrees with every column he sees. He announces this vector. The players define the k x m
matrix B to have all columns equal to the vector v (the vector obtained by complementing v)
followed by a 0. All players can rewrite GIP[" in terms of the decomposition @+ + q,’f
described above. For 1 < i < k, Player i is able to evaluate ¢”(A4) and announce the
result, and the output of the protocol is then Zle qP(A). The correctness of the protocol
follows from the observation that ¢ (A) = 0 since the monomials appearing in ¢ are of
the form Hle(A}L — BY) and for each column of A, there is an entry that agrees with the
corresponding entry of B. The total cost of the protocol is k — 1 + k[log(p)].

The previous protocols for composed functions by Grolmusz [12], Babai et al. [3] and
Ada et al. [2] did not use this polynomial view. In his Ph.D. thesis, Ada ([1]) gave an

is decomposed with respect to B* the associated polynomial ¢{ evaluated at A is 0. It

interpretation of the protocol of [2] in terms of polynomials, but not in terms of shifted bases.

The use of shifted bases is the main technical innovation of this paper.

2 Some definitions

Flx1,...,2,] denotes the ring of polynomials over field F. The set of monomials z7' ... zJr
where (j1,...,jn) € N™ is a basis. More generally, for ¢ = (¢1,...,¢,) € F™ the set of
c-shifted monomials (1 — ¢1)% ... (z,, — ¢,)7" comprise a basis, called the c-shifted basis. A

polynomial p is independent of x; if no monomial in the monomial expansion of p includes x;.
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In the NOF setting, the variables are (x” :1<i<k,1<j<m). An assignment is a
k x m matrix A. A polynomial p which contains no variable of row 4 is said to be independent
of row i. The row-by-row decomposition of p relative to assignment B expresses p as the sum
@@ +qP + -+ P, as follows. Expand p in the B-shifted basis and let ¢& be the sum of
those (shifted) monomials in the expansion (with coefficients) that depend on every row, and
fori>1let qf be the sum of all monomials that are independent of row ¢ and dependent on
rows 1,...,7 — 1. Note each monomial is included in one and only one of the polynomials.

3 Proof of Theorem 1

The goal is to evaluate p(A). Suppose the players are all given some fixed auxiliary assignment
B. All of them can compute the row-by-row decomposition &+ - -—|—qf . Player ¢ can evaluate
qP(A) and announce the result with total cost k[log [F|]. If it happens that ¢&(A) = 0 then
this is enough to determine p(A). It therefore suffices to show how the players agree on a
matrix B such that ¢Z(A) = 0.

To do this, we use the hypothesis of the theorem that p = p! + - - - + p® where p/ depends
on at most r variables per row. We define a simultaneous protocol Il which depends on
a k x r matrix C. We’ll show that this protocol works provided that C satisfies certain
properties. We will also show that the players can agree on a C' to satisfy these properties
(either using shared randomness, or deterministically by having Player & choose C).

The matrix C is used to define k& x m matrices B(C), ..., B*(C) as follows: For each
u € [b], let X* be the sequence of (at most r) variables in row ¢ on which p* depends. In
B*(C), assign the variables of X from left to right according to row i of C. Other variables
in row ¢ are set to 0. Let ¢j 4+ ¢}' + - - - + g} be the row-by-row decomposition of p* relative
to B*(C). Given C, the matrices B*(C) and the decomposition of p* can be computed
privately by each player.

Now in Il each player ¢ announces a; = 2221 q*(A) and the output of the protocol is
>; @;. The cost is k[log [F|].

The difference of the output of the protocol and the correct answer is p(A) — 22:1 qi(A),
so it suffices to select C' so that ¢f(A) = 0 for all u. The following definitions will be helpful
to achieve this.

For polynomial p* and row index 4, and for matrices A and B we write B =p«; A if A
and B agree on all variables of row ¢ on which p* depends.

For u € [b] and j € [k] we say that C satisfies property Q“(j) if there is an index i* # j
such that B*(C) =pu ju A.

For j € [k] we say that C' satisfies property Q(j) if it satisfies Q“(j) for every u € [b].

Observe that if C satisfies property Q(k), then for each u € [b] there is an index i* < k
such that B*(C) agrees with A on all variables of row i* that appear in p*. Each B“(C)-
shifted monomial of ¢{ contains a variable from each row so in particular it contains a
variable from row ¢* and thus the monomial vanishes at A. Thus ¢} (A) = 0 for all u and
so Il will give the correct answer. Observe also that Player k is able to privately check
whether a matrix C satisfies Q(k).

» Claim 3. Letv>0,1<j<kand k > In (b/’y)|D|T + 1. If C is chosen uniformly at
random from among k X r matrices with entries in D, the probability that the matriz C does
not satisfy Q(j) is at most ~.
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Proof. By hypothesis, p* depends on at most r variables from row ¢. Thus, for i # j,
the probability that B*(C) =,u; A is at least 1/|D|". Hence, the probability that Q“(j)
does not hold (which is the probability that for all i # j, B* #u; A), is at most
(1 —1/|D[")k=1 < e~ (k=D/IPI"  Taking a union bound over u € [b] gives that the probability
that Q(j) fails is at most be~(k=D/IDI" < pe=(k=D/IPI" < ~ using the hypothesized lower
bound on k. <

We now state our randomized simultaneous message protocol: players use public coins to
uniformly sample C'. Every player other than player k runs I1o. Player k first checks whether
C satisfies Q(k) (which can be done privately). If it does then he runs Il and makes the
appropriate announcement. If C' does not satisfy Q(k), Player k announces “failure”. By
Claim 3, assuming that k > 1 + In(b/v)|D|", this happens with probability at most v. Each
player sends at most [log |F| + 1] bits (where the “+1” includes the possibility of failure), for
a total of k[log |F + 1|] bits.

For the deterministic protocol, if we take v = 1/2 in the Claim, then for k¥ > 1+1n(2b)|D|",
there is a matrix C satisfying Q(k). Player k can select such a C privately satisfying Q(k)
and announce it (using kr[log|D|] bits). The players then run II. The total communication
is at most k(r[log|D|] + [log |F|]).

The communication costs of these randomized and deterministic protocols grow linearly
with k. To reduce the communication cost to the cost claimed in the theorem, let & =
[1 4 |D|"In(b/7)]. Without any communication, each player 1,...,k" can simplify the
polynomial p by substituting in the variables appearing in rows after k’. This gives a
polynomial p’ that depends only on the first &’ rows. The polynomial p’ and the number &’
satisfy the hypotheses for the above arguments for both the randomized and deterministic

protocols. So players 1,...%" can evaluate p’ with the rest of the players remaining silent.
Thus, replacing k by k' in the cost of the protocols above, completely establishes Theorem 1.

4 Conclusion and Open Problems

We give the first efficient NOF protocol for composed functions of block width greater than

1. Some further questions suggested by our work are stated below:
To de-randomize our simultaneous message protocol, we used interaction in a very
limited way. Can it be made a simultaneous deterministic protocol? The protocol IIg
is simultaneous, so the non-simultaneity only comes from having to choose C' satisfying
Claim 3. In our protocol this is done by Player k but it seems possible that this can be
done simultaneously. Player j can privately determine the set of all matrices C' that satisfy
Q(j). Claim 3 can be easily modified to show that (for & a bit larger than 2" 41n(b)) there
are several matrices C that satisfy Q(i) for all i. Consider the simultaneous protocol in
which each player j announces every C' that satisfies Q(j) together with his announcement
for the protocol II¢. For C that satisfies Q(j) for all j, the players will have all run ¢
from which p(A4) can be deduced. The problem with this protocol is that if there are
many matrices that satisfy Q(j) for some j then it may be very costly. This gives rise to
the following problem: is it possible for each player j to (privately) select a small subset
C, of matrices satisfying Q(j) in such a way that N;C; is non-empty. If so, then Player j
can announce only those matrices in C;, thereby giving an efficient simultaneous NOF
protocol.
Our protocol works for all inner functions of block width 7. The number of players and
the communication needed is exponential in r. Can the dependence on r be improved?
The only lower bound on the communication we know is linear in r, which comes from a
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simple counting argument (which is essentially the same argument which shows that for
general functions on mk variables there is a function that requires communication (m).)
If we restrict the inner function to a specific interesting function, such as Ttk’r, then the
counting lower bounds don’t work. Are there protocols that handle larger block width
for this function?

Acknowledgements. We are grateful to anonymous referees for their many valuable com-
ments and suggestions that helped improve readability of the paper. In particular, it has
resulted in a simplification of the proof of Theorem 1.
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