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Abstract
The Mallows model is a classical model for generating noisy perturbations of a hidden permuta-
tion, where the magnitude of the perturbations is determined by a single parameter. In this
work we consider the following reconstruction problem: given several perturbations of a hidden
permutation that are generated according to the Mallows model, each with its own parameter,
how to recover the hidden permutation? When the parameters are approximately known and sat-
isfy certain conditions, we obtain a simple algorithm for reconstructing the hidden permutation;
we also show that these conditions are nearly inevitable for reconstruction. We then provide an
algorithm to estimate the parameters themselves. En route we obtain a precise characterization
of the swapping probability in the Mallows model.
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1 Introduction

The Mallows model [16] is a classical exponential model for generating random perturbations
of a fixed but hidden permutation. In this model, the perturbation noise is determined
by a single parameter, which induces a distribution on the space of all permutations. The
magnitude of the perturbation is measured by the Kendall tau distance, which is the number
of pairwise disagreements between two permutations. When the parameter is large, the
induced distribution is highly concentrated (in terms of the Kendall distance) around the
hidden permutation whereas when the parameter is close to zero, the distribution is essentially
uniform on all permutations. The model can be though of as a Gaussian-like distribution
on permutations but with less nice properties. It easy to see that the permutation that
maximizes the likelihood under the Mallows model is in fact the hidden permutation [25].

In a typical setting, the perturbations of an underlying latent permutation are modeled
using a Mallows model and the goal is to reconstruct the hidden permutation using a few
(independent) perturbed samples. For example, consider the problem of (inferring the hidden
true) restaurant ranking in a neighborhood. If we assume that the user behavior corresponds
to a Mallows model, then by using the individual restaurant rankings of a few users, one can
hope to reconstruct the true ranking. Ever since its introduction more than half a century
ago, the Mallows model has been extensively studied in diverse areas including statistics,
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machine learning, information retrieval, combinatorics, and social choice theory. Many of
the reconstruction methods used in practice are often based on heuristics with no provable
guarantees or on a careful but exhaustive search.

Even though the Mallows model is a simple and elegant way to model the perturbations of
permutation, it many settings, it is oversimplified. In the above example, the classical setting
assumes that each user has the same noise parameter. A more realistic setting is the following.
Each user comes with his/her own noise parameter that determines how much they perturb
the true ranking: a conformist might have a small noise parameter whereas a maverick
might choose to vastly differ from the true ranking and hence might have a bigger noise
parameter [24]. Thus, it becomes important to study the Mallows reconstruction problem
where each sample perturbation is generated with a possibly different noise parameter.

In this paper we consider this reconstruction problem for permutations on n elements,
where each permutation is generated by a Mallows model with its own parameter. We
first show that perfect reconstruction is achievable (with high probability) in polynomial
time if the parameters are (approximately) known and their Euclidean norm is Ω(logn).
In contrast, we show that such a reconstruction is information-theoretically impossible if
this norm is smaller than a constant. En route, we obtain a precise characterization of the
probability of swapping the order of two elements in a permutation generated by the Mallows
model. We then complement the reconstruction algorithm, which requires the parameters
or their approximations to be explicitly given, by providing an algorithm that estimates
the parameters. By using these two algorithms together, we can show for instance that if
there are at least Ω(logn) parameters that are more than some constant, then reconstruction
is possible even if the parameters are not explicitly given. We also consider the setting of
approximate reconstruction and provide upper and lower bounds in terms of the parameters.

There has been some theoretical work on the Mallows reconstruction problem, especially
by Braverman and Mossel [3], who considered reconstruction in the classical setting. Our
work, however, is different from theirs in a few ways. First, we go beyond the classical
case, i.e., we do not require all the parameters to be equal to each other. Second, we
give approximate reconstruction bounds that can guarantee an arbitrarily small maximum
displacement, while they can only guarantee a maximum displacement of at least Ω(logn).
Third, in the classical case their algorithm requires super-polynomial time if the parameter
is o(1/

√
logn), while ours runs in polynomial time for any choice of the parameter.

Combinatorial properties of the permutations generated in the Mallows model have
been studied in the past. The partition function, mean, and variance of the model were
computed by Diaconis and Ram [5] and Starr [22]. Tail bounds on the displacement of an
element in a Mallows permutation was studied by Braverman and Mossel [3] and Gnedin
and Olshanski [11]; these bounds were further tightened in a very recent work by Bhatnagar
and Peled [2]. The latter also studied the length of the longest increasing subsequence in a
Mallows permutation, improving upon the earlier work of Mueller and Starr [19]. Finding the
maximum likelihood permutation is equivalent to the well-known rank aggregation problem.
This is in general NP-hard [1, 7] and has a polynomial-time approximation scheme [13].

The Mallows model has also been generalized in a different way by generalizing the Kendall
distance to weigh the number of inversions with respect to each element differently [9, 10, 8];
Meila et al. [18] studied the inference problem in this model. Qin et al. [21] defined a
coset-permutation distance based model that generalizes the Mallows model to general
distances and yet remains computationally efficient. A few other generalizations have also
been studied in machine learning; see [15, 14]. Mukherjee [20] studied the consistency of
likelihood estimators of the parameters.
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2 Preliminaries

Let [n] = {1, . . . , n} be the universe of n elements and let Sn be the symmetric group on [n].
Permutations in Sn are denoted by Greek symbols. For a permutation σ and an element i,
let π(i) denote the position (or the rank) of the ith element. For two permutations π and σ,
let κ(π, σ) denote the Kendall tau distance (the number of inversions) between them.

Let β ∈ (0,∞) be a parameter and let σ ∈ Sn be a fixed permutation. In the Mallows
model M(σ, β) of generating permutations [16], the parameter β and the permutation σ

induce a distribution on Sn as follows:

Pr
M(σ,β)

[π] = e−β·κ(π,σ)
Zβ

,

where Zβ is the normalization constant defined as Zβ =
∏
j≤n

1−e−βj
1−e−β . We use π ∼M(σ, β)

to denote that π is generated according toM(σ, β). Clearly, as β → 0, the distribution gets
closer to uniform on Sn and as β →∞, the distribution becomes more concentrated around
σ. In the classical Mallows reconstruction problem, the goal is to recover σ, given a set {πi}
of independent samples where each πi ∼ M(σ, β); the algorithm may or may not know β

and the goal is to use as few samples as possible.
In a generalization of the Mallows model, there are m parameters β1, . . . , βm where each

βu ∈ (0,∞) and a fixed permutation σ ∈ Sn. In the corresponding reconstruction problem,
given independent samples π1, . . . , πm where each πu ∼M(σ, βu), the goal is to reconstruct
σ. The algorithm may or may not know the βu’s. Note the two key differences from the
classical setting: (i) each sample is generated by a different noise parameter and (ii) exactly
one sample is produced for each parameter. If we assume σ to be the identity permutation,
we denote the Mallows model simply byM(β) and the Kendall tau metric by κ(π) = κ(σ, π).

Let [p] denote 1 if the binary predicate p holds and 0 otherwise. We use the following
form of tail inequality [12]:

I Theorem 1 (Hoeffding’s inequality). If X1, . . . , Xn are independent r.v.’s, with `i ≤ Xi ≤ ui,
then

Pr
[∑

i

Xi ≤ E[X]− λ
]
≤ exp

(
− 2λ2∑

i(ui − `i)2

)
.

3 Swapping Probability

In this section we precisely characterize the probability that two elements are out of order in
the Mallows model. We express this probability in terms of the parameter β and the distance
between the two elements. For the remainder of this section, without loss of generality, we
assume that σ is the identity permutation.

Let π ∼M(β). For 1 ≤ i ≤ n− k, let

sβ,k,i = Pr
π∼M(β)

[π(i) > π(i+ k)],

i.e., the probability that the ordering of the elements i and i + k is not preserved. The
following result [2] shows that sβ,k,i is independent of i.

Let I = (i1, . . . , ik) be an increasing sequence of indices. For a permutation π, let πI ∈ Sk
denote the induced relative ordering of π when restricted to the indices in I. For an integer
b, let I + b denote (i1 + b, . . . , ik + b).
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I Lemma 2 (Translation invariance [2]). Let I = (i1, i2, . . . , ik) be an increasing sequence and
π ∼ M(β). Then for any integer 1 ≤ b ≤ n− ik, πI and πI+b have the same distribution,
i.e., for any ω ∈ Sk, Pr[πI = ω] = Pr[πI+b = ω].

Using this it is easy to see that sβ,k,i is independent of i, henceforth we denote this probability
as sβ,k. We now obtain an exact expression for it.

I Lemma 3.

sβ,k = keβ(k+1) + 1− (k + 1)eβk(
eβ(k+1) − 1

)
(eβk − 1)

.

Proof. In order to prove the above lemma, we will use a result from [5] that describes two
different insertion processes to create a Mallows permutation. The following two processes
define a series of permutations π1, . . . , πn such that πn = π ∼M(β). For the purpose of this
proof, we use the shorthand q = e−β .

Insertion process P 1. Consider the elements 1, . . . , n in this order. For each i, define πi
to be a permutation over the elements 1 to i. Define π1(1) = 1. Also define πi in terms of
πi−1 as follows. First sample πi(i) as following:

Pr[πi(i) = j] = (1/q)j−1

1 + 1/q + · · ·+ (1/q)i−1 , for j ∈ {1, . . . , i}. (1)

Then, for s such that πi−1(s) < πi(i), πi(s) = πi−1(s) and else πi(s) = πi−1(s) + 1. Finally,
π = πn.

Insertion process P 2. Here, we consider the elements in the order n, n − 1, . . . , 1. The
permutation π′i is defined as a permutation over elements n, n − 1, . . . , i and is defined as
follows. We start with π′n(n) = 1. The random variable π′i(i) is defined as

Pr[π′i(i) = j] = qj−1

1 + q + · · ·+ qn−i−1 , for j ∈ {1, . . . , n− i}. (2)

Thus, for s such that π′i+1(s) < π′i(i), we have π′i(s) = π′i+1(s) and otherwise π′i(s) =
π′i+1(s) + 1. Finally, π = π′1.

Now, we try to compute the probability that π(1) > π(k + 1). Consider that the
permutation π is being formed by the process P1.

Pr[π(1) > π(k + 1)] = Pr[πk(1) > πk+1(k + 1)]

=
k∑
j=1

Pr[πk+1(k + 1) < j | πk(1) = j] Pr[πk(1) = j]

=
k∑
j=1

(1/q)j − 1
(1/q)k+1 − 1 Pr[πk(1) = j].

Now, πk is a permutation on {1, . . . , k} that is again distributed according to Mallows model
with parameter β. If we use process P2 to generate it, the element 1 is inserted last, and
hence the probability of πk(1) = j can be written as

Pr[πk(1) = j] = qj−1

1 + q + · · ·+ qk−1 = (1− q)qj−1

1− qk .

APPROX/RANDOM’14
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Hence, we have

Pr[π(1) > π(k + 1)] =
k∑
j=1

(1/q)j − 1
(1/q)k+1 − 1

(1− q)qj−1

1− qk

= 1− q
q((1/q)k+1 − 1)(1− qk)

k∑
j=1

(1− qj)

= (1− q)qk

(1− qk+1)(1− qk)

(
k − q − qk+1

1− q

)
= qk(qk+1 − q − kq + k)

(1− qk+1)(1− qk) .

Substituting q = e−β , the proof is complete. J

Next, we obtain a simpler approximation of the swapping probability.

I Lemma 4. For each 0 < β ≤ β′ and 1 ≤ k′ ≤ k such that βk = β′k′, we have sβ,k ≥ sβ′,k′ .
Moreover, if τ = βk for β > 0, k ≥ 1, then we have

1
eτ + 1 ≤ sβ,k <

τ + e−τ − 1
eτ + e−τ − 2 ,

where the lower bound occurs at k = 1 and the upper bound is attained in the limit as k
increases.

Proof. We consider the function fτ (β) = sβ, τβ . We start by showing that its derivative with
respect to β is negative in (0, τ ]. The derivative can be written as:

f ′τ (β) = −τe
τ+2β + (τ + βτ + β2)eτ+β + (τ − βτ − β2)eβ − τ

β2 (1− e−τ ) (eτ+β − 1)2 . (3)

Since the denominator in (3) is a product of positive factors, we only need to focus on the
numerator in (3), which can be rewritten as β(τ + β) (eτ − 1) eβ − τ

(
eτ+β − 1

) (
eβ − 1

)
=

Xβ(τ)− Yβ(τ), where Xβ(τ) = β(τ + β) (eτ − 1) eβ and Yβ(τ) = τ
(
eτ+β − 1

) (
eβ − 1

)
. We

will show that Xβ(·) is pointwise smaller than Yβ(·) in (0, τ), thus proving that f ′τ (β) is
negative in this range.

To prove Xβ(τ) < Yβ(τ), we express the two functions as power series in the variable τ
and show that for each term in the series, the corresponding coefficients obey the inequality.
We have

Xβ(τ) = β2eβτ + eβ
∞∑
n=2

β + β2/n

(n− 1)! τ
n and Yβ(τ) =

(
eβ − 1

)2
τ + eβ

∞∑
n=2

eβ − 1
(n− 1)!τ

n.

Indeed, the ratio of coefficients corresponding to τ satisfy

β2eβ

(eβ − 1)2 = β2

eβ − 2 + e−β
= β2∑∞

i=1
2β2i

(2i)!

= β2

β2 + 2
∑∞
i=2

β2i

(2i)!

< 1,

and the ratio of coefficients corresponding to τn, n ≥ 2, satisfy

eβ β+β2/n
(n−1)!

eβ eβ−1
(n−1)!

=
β + β2

n

eβ − 1 =
β + β2

n∑∞
i=1

βi

i!

=
β + β2

n

β + β2

2 +
∑∞
i=3

βi

i!

< 1.
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Thus, we conclude that fτ (β) is decreasing in 0 < β ≤ τ . The minimum is attained at k = 1:

sτ,1 = e2τ + 1− 2eτ

(e2τ − 1) (eτ − 1) = (eτ − 1)2

(eτ + 1) (eτ − 1)2 = 1
eτ + 1 .

Likewise, the upper bound is achieved by the limiting value at β → 0+:

lim
β→0+

sβ, τβ = τ + e−τ − 1
eτ + e−τ − 2 .

J

Using this, we obtain simpler bounds on sβ,k that will be useful.

I Corollary 5. Let βk = τ . Then,

sβ,k ≤


1/2−Θ(τ) if τ = o(1),
1/2− c if τ = Θ(1),
τ/eτ if τ = ω(1),

where c = c(τ) is a positive constant.

An interesting consequence of the bounds on sβ,k is that if β is moderately large, then the
hidden permutation can be guessed reasonably well. The following result was also obtained
in [2, Proposition 1.9]; we give a proof only for completeness.

I Corollary 6. If β = lnn+ ln 1
ε , then PrM(σ,β)[σ] ≥ 1− ε.

Proof. For this value of β, any two adjacent elements in σ will swap with probability at most
e−β = ε/n. By a union bound on all the n− 1 adjacent pairs, we get that the probability of
no swaps is at least 1− ε. J

4 Reconstruction when Parameters are Given

In this section we present an algorithm to reconstruct the hidden permutation σ, assuming
we know an approximation to the noise parameters β1, . . . , βm; let the corresponding approx-
imations be β̂1, . . . , β̂m. Let α be the approximation factor, i.e., the smallest number such
that

β̂u
α
≤ βu ≤ αβ̂u, for all u = 1, . . . ,m.

The quality of the reconstructed permutation will depend on α and the magnitude of
β1, . . . , βm; the latter should be hardly surprising since the closer is β to 0, the lesserM(σ, β)
has information about σ (as β → 0,M(σ, β) converges to the uniform distribution on Sn).

The basic step considers two elements i 6= j with the promise that |σ(i)− σ(j)| ≥ k and
aims to determine if i should be ranked above j or vice versa. Our algorithm decides this bit
according to the following rule:

i’s position < j’s position⇐⇒
(

m∑
u=1

(−1)[πu(i)>πu(j)] ·min(β̂u, 1/k)
)
> 0. (4)

I Lemma 7. Let k ≥ 1 be an integer and assume that for a large enough constant c1 > 0,∑m
u=1 min

(
k2β2

u, 1
)
≥ c1α2 ln 1/δ. If i and j are such that |σ(i)−σ(j)| ≥ k, then the ordering

of i and j determined by (4) is consistent with σ, with probability at least 1− δ.

APPROX/RANDOM’14
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Proof. Without loss of generality, let σ(i) < σ(j). Define Xu = (−1)[πu(i)>πu(j)]. We have

E[Xu] = Pr
πu∼M(σ,β)

[πu(i) > πu(j)]− Pr
πu∼M(σ,β)

[πu(i) < πu(j)].

Let Mu = min
(
βu,

1
k

)
, M̂u = min

(
β̂u,

1
k

)
. By Corollary 5, we have E[Xu] ≥ c0kMu,

where c0 is a sufficiently small constant. Let Yu = M̂uXu and Y =
∑m
u=1 Yu. Note that

−M̂u ≤ Yu ≤ M̂u. Now,

E[Y ] ≥ c0k
m∑
u=1

M̂uMu = ∆.

If Y > 0, then (4) correctly identifies the ordering of i and j. We bound the probability
of the incorrect event to be at most δ using Theorem 1:

Pr[Y ≤ 0] ≤ Pr[Y ≤ E[Y ]−∆] ≤ exp
(
− ∆2

2
∑m
u=1 M̂

2
u

)
= exp

−c20k2
(∑m

u=1 M̂uMu

)2

2
∑m
u=1 M̂

2
u

 .

(5)

We now apply a converse of the Cauchy–Schwarz inequality due to Cassel [23]: if two
sequences a = (a1, . . . , am), b = (b1, . . . , bm) of real numbers satisfy c ≤ au

bu
≤ C for each

u = 1, . . . ,m, then 〈a, b〉2 ≥ (c/C)||a||22||b||22.
Setting au = M̂u, bu = Mu, c = 1

α , and C = α and applying Cassel’s inequality in (5),

Pr[X ≤ 0] ≤ exp
(
−
c20k

2α−2∑m
u=1 M̂

2
u ·
∑m
u=1M

2
u

2
∑m
u=1 M̂

2
u

)
= exp

(
−1

2c
2
0k

2α−2
m∑
u=1

M2
u

)

≤ exp
(
−1

2c
2
0k

2α−2 · c1α2k−2 ln 1
δ

)
≤ δ,

as long as c1 ≥ 2/c20. J

From Lemma 7, we can obtain the precise condition that guarantees the exact reconstruction
of σ.

I Theorem 8 (Exact reconstruction). If
∑m
u=1 min

(
β2
u, 1
)
≥ cα2 lnn for some fixed constant

c, then with probability at least 1− n−Θ(1) we can reconstruct σ in polynomial time.

Proof. We apply Lemma 7 with k = 1. Our condition on the βu’s guarantees that, with
probability 1 − n−Θ(1), rule (4) correctly identifies the ordering of each pair of elements.
Therefore we can use any sorting algorithm to produce σ. J

Let ~β = 〈β1, . . . , βm〉. We next show that for exact reconstruction, the above requirement
on ‖~β‖2 is close to optimal, off only by a factor of logn.

I Theorem 9. Let n = 2, and let c > 0 be a small enough constant. If max βu ≤ c and
‖~β‖2 ≤ c, then with probability Ω(1) we cannot reconstruct σ.

Proof. Let S2 = {σ, σR} and let σ be the unknown permutation chosen uniformly at random
in S2. By Corollary 5, for any u ∈ [m],

Pr
M(σ,βu)

[σR] = 1
2 − εu,
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with εu = Θ(βu). If bu = (−1)[πu 6=σ], then E[bu] = 2εu. The likelihood of σ given π1, . . . , πm
is

X =
m∑
u=1

ln
1
2 + bu · εu
1
2 − bu · εu

= 4
m∑
u=1

(
(1 +O(ε2u))bu · εu

)
. (6)

It is easy to see that E[X] = Θ(||~β||2) and Var[X] = Θ(||~β||2). Since the terms of the sum
in (6) are independent, and ||~β||2 ≤ c for a small enough constant c > 0, the probability that
the likelihood of σ will be negative is at least some constant. Therefore, any algorithm will
be incorrect with probability at least Ω(1). J

We now make another observation on reconstruction using Corollary 6.

I Corollary 10. There exists a constant c > 0 such that if ||~β|| ≥ cα2 lnn, then with
probability 1− n−Θ(1) we can reconstruct σ in polynomial time.

Proof. If there exists one β̂u larger than cα lnn, for some large enough c > 0, then by
Corollary 6, πu = σ with high probability. Otherwise, all the β̂u’s will be smaller than cα lnn
and hence all the βu’s will be smaller than cα2 lnn. This implies that

∑m
u=1 min

(
β2
u, 1
)
≥∑m

u=1
β2
u

cα2 lnn . Sincet ||~β||
2 ≥ c2α4 ln2 n, we obtain

m∑
u=1

min
(
β2
u, 1
)
≥ ||~β||2

cα2 lnn = cα2 lnn.

By applying Theorem 8, σ can be obtained with probability 1 − n−Θ(1) in polynomial
time. J

5 Estimating the Parameters

In this section we deal with the problem of estimating the parameters β1, . . . , βm. Again,
without loss of generality, we assume the unknown permutation σ is the identity permutation.

Recall that for each βu, we only have one sample permutation πu ∼ M(βu). Our aim
is to estimate the βu values by looking only at the set {π1, . . . , πm}. Before presenting our
algorithm, we first state a result that bounds the deviation of each element from its position
in the hidden permutation.

I Theorem 11 ([2]). For all β > 0,

Pr
π∼M(β)

[|π(i)− i| > t] ≤ 2e−tβ ,

and

c ·min
(

e−β

1− e−β , n− 1
)
≤ E[|π(i)− i|] ≤ min

(
2e−β

1− e−β , n− 1
)
,

for some absolute constant c > 0.

The expected Kendall tau distance of π can also be calculated exactly.

I Corollary 12 ([4, 2]). If π ∼M(β), then

E[κ(π)] = ne−β

1− e−β −
n∑
j=1

je−βj

1− e−βj .

APPROX/RANDOM’14
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Furthermore, if β > 0, then for some constant c > 0,

c ·min
(

ne−β

1− e−β , n(n− 1)
)
≤ E[κ(π)] ≤ min

(
ne−β

1− e−β , n(n− 1)
)

;

if β = Θ(1) and n = Ω(1/β), then c = 1− o(1).

Our estimate β̂u for the parameter βu is obtained by simply looking at the pairwise distances
κ(πu, πv), and then using the minimum of those to estimate β̂u. Formally, β̂u is defined as
following:

β̂u = ln
(
k̃u + 1
k̃u

)
, where k̃u = min

v∈[m]

κ(πu, πv)
n

. (7)

In order to show that (7) gives a reasonable estimate of the βu parameters, we first need
to show that if π ∼M(β) and π′ ∼M(β′) are two sample permutations from two different
Mallows models, then the Kendall distance between π and π′ is related to a function of β
and β′. For this, we first relate κ(π, π′) to κ(π) + κ(π).

Define
cβ = 1− β + e−β − 1

eβ + e−β − 2 >
1
2 .

From Lemma 4 for k = 1 and β > 0, we get the following.

I Corollary 13. If i, j ∈ [n] such that i > j, then Prπ∼M(β)[π(i) > π(j)] ≥ cβ.

The above corollary can then be used to show the following lower bound on the expectation
of the Kendall distance between any two random permutations. Note that an upper bound
on κ(π, π′) in terms of κ(π) and κ(π′) is trivial by the triangle inequality.

I Lemma 14. If π ∼ M(β) and π′ ∼ M(β′), then E[κ(π, π′)] ≥ cβ′E[κ(π)] + cβE[κ(π′)].
In particular, for all β, β′ > 0, E[κ(π, π′)] ≥ (E[κ(π)] + E[κ(π′)])/2.

Proof. For two permutations τ and τ ′, define the inversion vector inv(τ, τ ′) as

inv(τ, τ ′)τ(i) =
∑

j:τ(j)<τ(i)

1[τ ′(j) > τ ′(i)].

Define x = inv(σ, π), x′ = inv(σ, π′), w = inv(π, π′) and z = inv(π′, π). By definition,

wπ(i) =
∑

j:π(j)<π(i)

1[π′(j) > π′(i)].

Then, κ(π, π′) =
∑
i wi =

∑
i zi, and similarly for the others. Since π and π′ are independent,

E[wπ(i)] =
∑
j

E [1[π(j) < π(i)]1[π′(j) > π′(i)]] =
∑
j

Pr[π(j) < π(i)] Pr[π′(j) > π′(i)],

and therefore,

E

[∑
i

wπ(i)

]
=
∑
i

∑
j<i

Pr[π(j) < π(i)] Pr[π′(j) > π′(i)]

+
∑
i

∑
j>i

Pr[π(j) < π(i)] Pr[π′(j) > π′(i)].
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Now, using Corollary 13, we have that for j < i, Pr[π(j) < π(i)] ≥ cβ . Using the same
argument, for j > i, Pr[π′(j) > π′(i)] ≥ cβ′ . Hence,

E

[∑
i

wπ(i)

]
≥ cβ

∑
i

∑
j<i

Pr[π′(j) > π′(i)] + cβ′
∑
i

∑
j>i

Pr[π(j) < π(i)].

The proof is completed by just noting that
∑
i

∑
j<i Pr[π′(j) > π′(i)] = E[

∑
i x
′
i] = E[κ(π′)]

and
∑
i

∑
j>i Pr[π(j) < π(i)] = E[

∑
i xi] = E[κ(π)]. J

Thus, E[κ(π, π′)] is both upper and lower bounded by E[κ(π)] +E[κ(π′)] to within constant
factors. We next show that κ(π, π′) is concentrated around its expectation. We will use the
following concentration theorem (proved in [17] and expressed in this form in [6]).

I Theorem 15 ([17]). Let f be a function of n random variables X1, . . . , Xn, each Xi taking
values in a set Ai, such that E[f ] is bounded. Assume that

m ≤ f(X1, . . . , Xn) ≤M.

Let B be any event and let ci be maximum effect of f assuming B, i.e.,

|E[f | Xi−1, Xi = ai,B]− E[f | Xi−1, Xi = a′i,B]| ≤ ci.

Then
Pr[f > E[f ] + t] ≤ exp

(
− 2t2∑

i c
2
i

)
+ Pr[Bc],

and
Pr[f < E[f ]− t] ≤ exp

(
− t2∑

i c
2
i

)
+ Pr[Bc].

In order to apply the above tail bound to show that κ(π, π′) is concentrated, we will first
need a result showing that each element does not move too much from its original position
with high probability. Define ∆(β) = 1

β ln(5n4). The following is easily obtained from
Theorem 11.

I Lemma 16. If π ∼M(β), π′ ∼M(β′), and ∆′ = ∆(β′) + ∆(β), then

Pr[ ∀i |π(i)− i| ≤ ∆′ and |π′(i)− i| ≤ ∆′] ≥ 1− n−4.

Proof. By applying Theorem 11 and then taking a union bound over all positions. J

We next show that κ(π, π′) does not deviate from its expectation with high probability.

I Lemma 17. If π ∼M(β′), π′ ∼M(β), and ∆′ = ∆(β′) + ∆(β), then

Pr[|κ(π, π′)− E[κ(π, π′)]| > 2∆′
√
n logn] ≤ 4n−4.

Proof. We use the tail inequality in Theorem 15 to bound κ(π, π′). LetX2i denote the random
variable that contains the position π(i) and let X2i+1 contain π′(i). Let f(X1, . . . , X2n) =
κ(π, π′).

Let B be the event: “∀i, |π(i)− i| ≤ ∆′ and |π′(i)− i| ≤ ∆′”. Using Lemma 16, Pr[Bc] ≤
n−4. Let ~x, ~x′ denote a vector of size n− i− 1 and ~b denote a vector of size i− 1. Define
f~b,c(xi+1, . . . , xn) = f(~b,Xi = c, xi+1, . . . , xn). Since only the ith element causes different
transpositions in the two cases, we have

|f~b,c(xi+1, . . . , xn)− f~b,c′(xi+1, . . . , xn)| ≤ |c− c′|.
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Using the insertion process P1 (Lemma 3), the probability of Xi+1, . . . , Xn assuming any set
of values remains the same, irrespective of the exact values realized by the random variables
X1, . . . , Xi. That is,

Pr[(Xi+1, . . . , Xn) = ~x | (X1, . . . , Xi−1) = ~b,Xi = c]

= Pr[(Xi+1, . . . , Xn) = ~x | (X1, . . . , Xi−1) = ~b′, Xi = c′].

Combining these two facts, we have that

|E[f ~Xi−1,c
]− E[f ~Xi−1,c′

]| ≤ |c− c′|,

where ~Xi−1 = X1, . . . , Xi−1. Conditioned on the event Bc, we then have

|c− c′| ≤ 2∆′.

Furthermore 0 ≤ f ≤ n2. Hence using Theorem 15, we have that

Pr[f > E[f ] + t] ≤ exp
(
− 2t2

4n∆′2

)
+ 1
n4 and Pr[f < E[f ]− t] ≤ exp

(
− t2

4n∆′2

)
+ 1
n4 .

By choosing t = 4∆′
√
n logn, we have Pr[|f − E[f ]| > t] ≤ 4n−4. J

Finally, we show that we can get a good estimate of β if n is large enough.

I Lemma 18. Let β1 ≥ · · · ≥ βm > 0 and let c > 0 be the constant in Corollary 12. If
n = ω

(
eβ1

β2
m ln(1/βm)

)
, then for each u > 1, (7) returns an estimate β̂u such that

βu − ln 2− o(1) ≤ β̂u ≤ βu + ln 1
cβmc

+ o(1).

Proof. Note that (7) computes κ(πu, πv) for each pair u, v, u 6= v. Applying Lemma 17
and taking a union bound over all pairs (u, v), with probability 1− 1

n2 , the following event
happens:

∀u 6= v, |κ(πu, πv)− E[κ(πu, πv)]| ≤ ∆′, (8)

where ∆′ = 2 maxu∈[m] ∆(βu).
Since k̃uv = κ(πu, πv), using Lemma 14 for the lower bound and the triangle inequality

for the upper bound, we have

cβvE[κ(πu)] + cβuE[κ(πv)] ≤ E[k̃uv] ≤ E[κ(πu)] + E[κ(πv)]. (9)

Since cβ is an increasing function of β for all u > 1, (9) implies

cβmE[κ(πu)] ≤ min
v
E[k̃uv] ≤ E[κ(πu)] + E[κ(π1)]. (10)

Plugging in the values of the expectations from Corollary 12, (10) implies

nc
cβme

−βu

1− e−βu ≤ min
v
E[k̃uv] ≤ n

(
e−βu

1− e−βu + e−β1

1− e−β1

)
.

Hence for all u > 1,

nc
cβme

−βu

1− e−βu ≤ min
v
E[k̃uv] ≤ 2n e−βu

1− e−βu .
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Now, we condition on the event described in (8). For u > 1, we have that

nc · cβm
e−βu

1− e−βu − 2∆′ ≤ min
v
k̃uv ≤ 2n e−βu

1− e−βu + 2∆′.

Hence, k̃u = minv k̃uv
n ∈

[
cβmc

e−βu

1−e−βu −
2∆′
n , 2e−βu

1−e−βu + 2∆′
n

]
. Under the assumption that

n = ω
(

4∆′
cβmc

eβ1
)
, we have that k̃u ∈

[
(1− o(1))cβmc e−βu

1−e−βu ,
2(1+o(1))e−βu

(1−e−βu )

]
. Since β̂u =

ln
(
k̃u+1
k̃u

)
, the upper and lower bounds on β̂u in the statement follows. The constraints

on n boil down to saying that n = ω
(

logn
βmcβm

eβ1
)
. Simplifying, n = ω

(
eβ1

β2
m ln(1/βm)

)
is

sufficient. J

An easy corollary is the following: a multiplicative reconstruction of the βu’s is possible for
the βu that are Θ(1) and there is at least one (unknown) permutation generated with a
parameter that is large, and hence is close to the identity.

I Corollary 19. If β1 is such that β1 = ω(βu) for some u > 1, then

(1 + o(1))cβmE[κ(πu)] ≤ min
v
E[k̃uv] ≤ (1 + o(1))E[κ(πu)],

and hence for each u > 1, (7) returns an estimate β̂u such that

βu − o(1) ≤ β̂u ≤ βu + ln 1
cβmc

+ o(1).

In particular, if βu = Θ(1), then β1 = ω(1) and the constants c = 1−o(1) and cβm = 1−o(1).

6 Approximate Reconstruction

Next, we show a result on approximate reconstruction of σ. We first show that if the sum
of squares of β` is Ω(lnn), i.e., the average is Ω( lnn

n ), then we can learn an estimate σ̂ of σ
where the displacement of each element is bounded. We then show a simple lower bound
that says that is

∑
` β

2
` is really small, then we cannot recover anything meaningful.

I Theorem 20 (Approximate reconstruction). Let k? = arg mink
∑m
`=1 min

(
k2β2

` , 1
)
≥

cα2 lnn for some fixed constant c and let k? be known to the algorithm. Then with probability
at least 1 − n−Θ(1) we can construct a permutation σ̂ such that |σ̂(i) − σ(i)| ≤ 2k? for all
i ∈ [n].

Proof. Using (4) for every pair of elements, with probability at least 1−n−Θ(1), we determine
the rank of each element to within an additive error of k?, i.e., for each element i, Lemma 7
guarantees that all elements j such that |σ(i)− σ(j)| ≥ k? will be correctly compared to i.
We now need to find out a feasible permutation σ̂ out of this set of comparisons such that
the maximum displacement in σ̂ is bounded.

Define the score of element i to be the number of other elements such that the right
hand side of (4) holds. We define the permutation σ̂ as the permutation that results from
sorting the elements according to this score (ascending). We show that the displacement
of every element is bounded by 2k?. Consider any element i. By Lemma 7, the score
of element i is at least max(1, i − k?) and at most min(i + k?, n). Therefore, σ̂(i) ∈
[max(1, i− 2k?),min(i+ 2k?, n)]. J

We now show a simple lower bound for approximate reconstruction.
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616 On Reconstructing a Hidden Permutation

I Theorem 21. Let ε > 0 be a small enough constant and let
√∑m

`=1 β` ≤ ε/n. If σ is
chosen uniformly at random in Sn, then any σ̂ that is output by any algorithm satisfies
E[κ(σ̂, σ)] ≥

( 1
4 − ε

)
n2.

Proof. Consider the probability of the generic sequence of independent samples π1, . . . , πm:

Pr[π1, . . . , πm | σ] =
m∏
`=1

e−β`κ(π`,σ)

Zβ`
= e−

∑m

`=1
β`κ(π`,σ) ·

m∏
`=1

Z−1
β`
. (11)

Since for each `, 0 ≤ κ(π`, σ) ≤
(
n
2
)
, we have

0 ≤
m∑
`=1

β`κ(π`, σ) ≤
(
n

2

) m∑
`=1

β` ≤ ε. (12)

It follows that for each sequence of samples π1, . . . , πm, using (11) and (12), we have

e−ε
m∏
`=1

Z−1
β`
≤ Pr[π1, . . . , πm|σ] ≤

m∏
`=1

Z−1
β`
.

Thus, the probabilities of obtaining a set of m permutations are all within e−ε factor of
each other. For a set S of input permutations, let S ∼ Um mean that each permutation is
chosen uniformly at random, let S ∼Mm mean that the permutations are chosen according
to the Mallows model with the parameters as in the Lemma statement, and let σ̂(S) be the
solution returned by the algorithm on input S. We have

E[κ(σ̂(S), σ) | S ∼ Um] ≥ 1
2

(
n

2

)
,

as otherwise we can work with σR instead. Since under the given assumptions, the probability
of obtaining each set S is within e−ε of the uniform distribution,

|E[κ(σ̂(S), σ) | S ∼Mm]− E[κ(σ̂(S), σ) | S ∼ Um]| ≤ (1− e−ε)E[κ(σ̂(S), σ) | S ∼ Um].

Hence, E[κ(σ̂(S), σ)|S ∼Mm] ≥ ( 1
4 − ε)n

2. J

I Corollary 22. If σ̂ is the output of an algorithm, then κ(σ̂, σ) = Ω(n/
√∑m

`=1 β`).

To interpret these lower bounds, we consider a concrete special case. Suppose m = ω(logn)
and β1 = · · · = βm = β. Then, Theorem 20 guarantees a maximum element displacement of
O(
√

(logn)/(β2m)), which means that the total Kendall distance is O(n
√

(logn)/(β2m)).
On the other hand, for this setting, Theorem 21 obtains a Kendall distance lower bound
of Ω(n

√
1/(βm)). Thus, the gap between the upper bound and the lower bound is

O(
√

(logn)/β).
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