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Abstract
We study the approximability of computing the partition function for ferromagnetic two-state
spin systems. The remarkable algorithm by Jerrum and Sinclair showed that there is a fully
polynomial-time randomized approximation scheme (FPRAS) for the special ferromagnetic Ising
model with any given uniform external field. Later, Goldberg and Jerrum proved that it is #BIS-
hard for Ising model if we allow inconsistent external fields on different nodes. In contrast to
these two results, we prove that for any ferromagnetic two-state spin systems except the Ising
model, there exists a threshold for external fields beyond which the problem is #BIS-hard, even
if the external field is uniform.
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1 Introduction

Spin systems are well studied in statistical physics and applied probability. We focus
on two-state spin systems in this paper. An instance of a spin system is described by
a graph G(V,E), where vertices are particles and edges indicate neighborhood relation
among them. A configuration σ : V → {0, 1} assigns one of the two states to every vertex.
The contribution of local interactions between adjacent vertices is quantified by a matrix

A =
[
A0,0 A0,1
A1,0 A1,1

]
=
[
β 1
1 γ

]
, where β, γ ≥ 0. The contribution of vertices in different

spin states is quantified by a vector b =
[
b0
b1

]
=
[
µ

1

]
, where µ > 0. This µ is also called

the external field of the system, which indicates a priori preference of an isolate vertex.
The partition function Z(β,γ,µ)(G) of a spin system G(V,E) is defined to be the following
exponential summation:

Z(β,γ,µ)(G) ,
∑

σ∈{0,1}V

∏
v∈V

bσv

∏
(u,v)∈E

Aσu,σv
.

We call such a spin system parameterized by (β, γ, µ). If the parameters are clear from the
context, we shall write Z(G) for short. Although originated from statistical physics, the
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spin model is also accepted in computer science as a framework for counting problems. For
example, with β = 0, γ = 1 and µ = 1, Z(β,γ,µ)(G) is the number of independent sets (or
vertex covers) of the graph G.

Given a set of parameters (β, γ, µ), it is a computational problem to compute the partition
function Z(β,γ,µ)(G) with input G. We denote this computation problem as Spin(β, γ, µ)
and want to characterize its computational complexity in terms of β, γ and µ. For exact
computation, polynomial time algorithms only exist for the very restricted settings that
βγ = 1 and (β, γ) = (0, 0). For all other settings, the problem is known to be #P-hard [2].
Therefore, the main focus becomes to study its approximability. The notion of the fully
polynomial-time approximation scheme (FPTAS) is defined as follows: A algorithm A is an
FPTAS for Spin(β, γ, µ) if for any given parameter ε > 0, A outputs a number Ẑ such that
Z(G) exp(−ε) ≤ Ẑ ≤ Z(G) exp(ε) and runs in time poly(n, 1/ε), where n is the size of the
graph G. The randomized relaxation of FPTAS is called fully polynomial-time randomized
approximation scheme (FPRAS), which uses random bits and only requires the final output
be within the required accuracy with high probability.

The spin systems (β, γ, µ) are classified into two families with distinct physical and
computational properties: ferromagnetic systems (βγ > 1) and anti-ferromagnetic systems
(βγ < 1). We shall denote the corresponding computation problems by Ferro(β, γ, µ) and
Anti-Ferro(β, γ, µ) respectively, so as to emphasize which family these parameters belong
to. Systems with βγ = 1 are degenerate and trivial both physically and computationally. As
a result, we only study systems with βγ 6= 1.

Great progress has been made recently for approximately computing the partition func-
tion for anti-ferromagnetic two-spin systems: it admits an FPTAS up to the uniqueness
threshold [20, 12, 13, 16], and is NP-hard to approximate in the non-uniqueness range [18, 6].
The uniqueness threshold is a phase transition boundary in physics. It is widely conjectured
that the computational difficulty is related to the phase transition point in many problems;
this is one of the very few examples where a rigorous proof is obtained.

For ferromagnetic systems, the picture is quite different. The uniqueness condition does
not coincide with the transition of computational difficulty and it is not clear whether
they have any relation. In a seminal paper [10], Jerrum and Sinclair gave an FPRAS for
ferromagnetic Ising model β = γ > 1 with any external field µ. Thus, there is no transition
of computational difficulty for ferromagnetic Ising model, which contrasts the situation for
anti-ferromagnetic Ising model β = γ < 1. For general ferromagnetic spin systems with
external field, the approximability is less clear. Since the Ising model (β = γ) is solved, in
this paper, we focus on the case β 6= γ and always assume β < γ by symmetry. It is known
that, an FPRAS exists for µ ≤

√
γ/β [9], by a reduction to Ising model.

On the other hand, a hardness result was obtained for Ising model with inconsistent
external fields [7]. This is a generalization of the spin system where the external fields
for vertices are no longer required to be uniform and are arbitrarily taken from a set V.
We use Spin(β, γ,V) (Ferro(β, γ,V) or Anti-Ferro(β, γ,V) ) to denote this computation
problem. It is proved that the Ising model with arbitrary external fields Ferro(β, β, (0,+∞))
is #BIS-hard, namely the problem is at least as hard as counting independent sets on bipartite
graphs (#BIS). #BIS is a problem of intermediate hardness and has been conjectured to
admit no FPRAS [5]. The reduction used here is called approximation-preserving reduction
as introduced in [4]: Let A,B : Σ∗ → R be two functions. An approximation-preserving
reduction from A to B is a randomized polynomial-time algorithm that approximates A while
using an oracle for B. We write A ≤AP B for short if an approximation-preserving reduction
exists from A to B. To make use of the aforementioned #BIS-hardness result, one needs to
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use (or simulate) both arbitrarily small and large external fields. As β < γ, one can always
simulate a arbitrarily small external field with a gadget. However, simulating a arbitrarily
large external field is only possible when βµ+ 1 > µ+ γ, in which case a #BIS-hardness is
immediate. If this is not the case, and in particular if β ≤ 1 < γ, no hardness result was
known for any bounded external fields. These systems have certain monotonicity property,
so all external fields that can be simulated by gadgets are inherently bounded above. It was
not even clear whether problems in this regime is hard. As our first result, we show that the
problem is already hard as long as we allow sufficiently large (yet still bounded above) and
vertex-dependent external fields.

I Theorem 1. For any β < γ with βγ > 1, there exists a bounded set V such that
Ferro(β, γ,V) is #BIS-hard.

The main difficulty to establish the theorem is for the case of β ≤ 1, for which we cannot
simulate any external field larger than the upper bound of V. We overcome this difficulty
by making use of a recent beautiful result in [3]. Instead of starting with the independent
set problem on arbitrary bipartite graphs, we start with a soft (βγ > 0) anti-ferromagnetic
two-spin system on bipartite graphs of bounded degree. As a result, all the external fields
needed for the reduction are bounded.

However, in the above reduction, we do need vertices to have different external fields
to make the reduction go through. This gives a hardness result for Ferro(β, γ,V) but not
for Ferro(β, γ, µ) for a single µ. It is more interesting and intriguing (both physically and
computationally) to understand the computational complexity of a uniform spin system
(β, γ, µ) with the same external field µ on all vertices. As our main result of this paper, we
prove #BIS-hardness for this uniform case for sufficiently large single external field µ. We
prove that when µ is sufficiently large, we can realize by sufficient precision of all the external
fields which is smaller than µ∗(µ, β, γ), where µ∗(µ, β, γ) < µ is a function of µ, β and γ, and
approaches infinity as µ goes to infinity. Then by choosing large enough µ and making use
of Theorem 1, we obtain our main theorem.

I Theorem 2. For any β < γ with βγ > 1, there exist a µ0 such that Ferro(β, γ, µ) is
#BIS-hard for all µ ≥ µ0.

Our main technical contribution is the construction of a family of gadgets to simulate
a given target external field. We use a reverse idea of correlation decay to achieve this.
Correlation decay is proved to be a very powerful technique to design FPTAS for counting
problems (see for examples [20, 1, 13, 16, 14, 15]). In those correlation decay based FPTASes,
one first constructs a tree structure and hopes to compute the marginal probability of the
root. With a recursive relation, one writes the marginal probability of the root as a function
of that of its sub-trees, then truncates the computation tree at certain depth and applies a
rough guess at the leaf nodes. The correlation decay property ensures that the error for the
root is exponentially small with respect to the depth of the tree, although there might be
constant error for the leaves. To establish Theorem 2, we use a similar idea to construct a
tree gadget so that the marginal probability (effective external field) for the root is very close
to the target value. Using a tree recursion, one translates the target marginal probability
for the root to that of its sub-trees. In the leaf nodes, we simply use some basic gadgets to
approximate the target external field. Again, although these approximations for leaves may
have constant gaps, the error at the root is exponentially small thanks to the correlation
decay property. We believe that this idea of using an algorithm design technique to construct
gadgets to establish hardness result is of independent interest and may find applications in
other problems.

APPROX/RANDOM’14
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We also make some improvements on the algorithm side showing that there is an FPRAS if
µ ≤ γ/β. We remark that all the computational problem Ferro(β, γ, µ) and Ferro(β, γ,V)
is no more difficult than #BIS, as we can use the standard transformation to transform any
ferromagnetic two-spin system to ferromagnetic Ising model with possibly different external
fields and use the #BIS-easiness result in [7]. Thus, the two #BIS-hardness theorems can
also be stated as #BIS-equivalent. We believe that the conjecture here is that for any fixed
β < γ, there exists a critical µc such that it admits an FPRAS if the external field µ < µc,
and it is #BIS-equivalent if µ > µc. The result of this paper is an important step towards
this dichotomy.

Related Works and Organization of the Paper
The approximation for partition function of spin system and other similar models has been
studied extensively [1, 19, 8, 11]. For the anti-ferromagnetic two-state spin model, the
problem is known to be tractable up to the uniqueness threshold [16, 13, 18, 6], this includes
the hard-core model as a special case [20, 17]. For the ferromagnetic two-state spin model,
FPRAS was known for Ising model with arbitrary external field [10] and this was later
extended to the whole ferromagnetic regime [9]. Besides the FPRASes, there is also a recent
deterministic FPTAS for certain range of the parameters based on correlation decay and
holographic reduction [15].

The remainder of the paper is organized as follows. We apply a reduction from a recent
established hardness in [3] to prove Theorem 1 in Section 2. Based on this, we construct
gadgets that can realize sufficiently small external field and prove Theorem 2 in Section 3.
Finally, we present our improved tractable result in Section 4.

2 Bounded Local Fields

In this section, we show that spin systems with bounded local fields are already hard. The
following theorem is a formal statement of Theorem 1.

I Theorem 3. Let β < γ, βγ > 1, ∆ = b 2
√
βγ√

βγ−1
c+ 1 and µ >

(√
γ
β

)∆
.

Then Ferro (β, γ, [1, µ]) is #BIS-hard.1

We first introduce our starting point from anti-ferromagnetic Ising model on bipartite graphs
in Section 2.1, and show the reduction in Section 2.2.

2.1 Anti-ferromagnetic Spin Systems on Bipartite Graphs
#BIS is a special anti-ferromagnetic two-state spin system. Similar to #BIS, one can also
study other anti-ferromagnetic two-state spin systems on bipartite graphs. We use a prefix Bi-
to emphasize that input graphs are bipartite, and a subscript ∆ to indicate that maximum
degree is ∆. For instance, the problem of Anti-Ferro(β, γ, µ) on bipartite graphs with
maximum degree ∆ is denoted shortly by Bi-Anti-Ferro∆(β, γ, µ). The following theorem
from [3] is the starting point of our reduction.

1 Technically, we should only define the problem by a finite set of external fields. In this paper and as in
many others, we adopt the following convention: when we say a problem with an infinite set of external
fields is hard, it means that there exists a finite subset of external fields to make the problem hard
already.
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I Theorem 4 ([3]). Suppose a set of anti-ferromagnetic parameters (β, γ, µ) lies in the
non-uniqueness region of the infinite ∆-regular tree T∆. Then Bi-Anti-Ferro∆(β, γ, µ) is
#BIS-hard except for the case (β = γ, λ = 1).

For simplicity, we use the special anti-ferromagnetic Ising model β = γ < 1 in our
reduction, for which the non-uniqueness condition is easy to state.

I Proposition 5. If β < ∆−2
∆ , then there is a critical activity µc(β,∆) > 1 such that the

Gibbs measure of Ising model (β, β, µ) on infinite ∆-regular tree T∆ is unique if and only if
| logµ| ≥ logµc(β,∆).

Proposition 5 is folklore, a proof can be found in, e. g. [16]. Combining the two results
we get

I Corollary 6. For all 0 < β < 1, there is ε > 0 such that for any µ ∈ (1, 1 + ε),
Bi-Anti-Ferro∆(β, β, µ) is #BIS-hard, where ∆ = b 2

1−β c+ 1.

Proof. As ∆ = b 2
1−β c+ 1, we know that β < ∆−2

∆ . Then by Proposition 5, we can choose
ε = µc(β,∆) − 1 to ensure that (β, β, µ) is in the non-uniqueness region of the infinite
∆-regular tree T∆ for all µ ∈ (1, 1 + ε). Then the corollary follows from Theorem 4. J

2.2 The Reduction
I Lemma 7. For any β < γ with βγ > 1, µ > 1 and integer ∆ > 1, we have

Bi-Anti-Ferro∆

(
1√
βγ

,
1√
βγ

, µ

)
≤AP Bi-Ferro∆

(
β, γ,

[
1
µ

√
γ

β
, µ

(√
γ

β

)∆
])

.

Proof. Let bipartite graph G(L∪R,E) be an instance of Bi-Anti-Ferro∆

(
1√
βγ
, 1√

βγ
, µ

)
.

We construct an instance of ferromagnetic system with exactly the same graph. Each vertex
u ∈ L with degree du has weight µ

(√
γ
β

)du

, and each vertex v ∈ R has weight 1
µ

(√
γ
β

)dv

.

Then the maximum possible external field is µ
(√

γ
β

)∆
while the minimum one is 1

µ

√
γ
β .

Therefore, it is indeed an instance of Bi-Ferro∆

(
β, γ,

[
1
µ

√
γ
β , µ

(√
γ
β

)∆
])

.

Let Z1(G) be the partition function of the anti-ferromagnetic Ising instance, and Z2(G)
be that for the ferromagnetic system. We shall prove that Z1(G) = γ−|F |µ|R|Z2(G). Let

V , L∪R, A =

 1√
βγ

1

1 1√
βγ

, A′ =

 √ γ
β γ

γ
√

γ
β

, Â′ =
[

1 β

γ 1

]
and Â =

[
β 1
1 γ

]
.

Then

Z2(G) =
∑

σ∈{0,1}V

∏
(u,v)∈E

Âσu,σv

∏
u∈L

(
µ

(√
γ

β

)du
)1−σu ∏

v∈R

(
1
µ

(√
γ

β

)dv
)1−σv

=
∑

σ∈{0,1}V

∏
(u,v)∈E

Â′σu,σv

∏
u∈L

(
µ

(√
γ

β

)du
)1−σu ∏

v∈R

(
1
µ

(√
γ

β

)dv
)σv

=
∑

σ∈{0,1}V

∏
(u,v)∈E

A′σu,σv

∏
u∈L

µ1−σu

∏
v∈R

1
µσv

= µ−|R|γ|F |
∑

σ∈{0,1}V

∏
(u,v)∈E

Aσu,σv

∏
u∈L

µ1−σu

∏
v∈R

µ1−σv

= µ−|R|γ|F |Z1(G).

APPROX/RANDOM’14
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Thus we can get an approximation for the anti-ferromagnetic Ising model by an oracle call
to the ferromagnetic two-spin system. This concludes the proof. J

Now, for the target µ >
(√

γ
β

)∆
in Theorem 3, we simply choose µ′ close enough to

1 in Lemma 7 and Corollary 6, such that
[

1
µ′

√
γ
β , µ

′
(√

γ
β

)∆
]
⊆ [1, µ] and #BIS ≤AP

Bi-Anti-Ferro∆

(
1√
βγ
, 1√

βγ
, µ′
)
. Then we can conclude that Bi-Ferro∆(β, γ, [1, µ]) is

#BIS-hard and complete the proof of Theorem 3.

3 Uniform Local Field

We establish Theorem 2 in this section. We distinguish between β ≤ 1 and β > 1 cases, in
Section 3.1 and 3.2 respectively.

3.1 The β ≤ 1 case
We introduce a function h(x) = βx+1

x+γ which is used throughout this section. Note that since
βγ > 1, h(x) is monotonically increasing and 1

γ < h(x) < β ≤ 1 for x ∈ (0,+∞). We shall
prove the following key reduction.

I Lemma 8. Let β ≤ 1, βγ > 1, d be an integer such that β(βγ)d > 1, µ∗ be the largest
solution of x to x = µh(x)d, and µ > γd(βγ−1)

β

(
1 + d+1

ln(β(βγ)d)

)
. Then Ferro (β, γ, [1, µ∗])

≤AP Ferro(β, γ, µ).

As µ∗ = µh(µ∗)d and 1
γ < h(µ∗) < β, we have the following bound for µ∗.

I Proposition 9. µ
γd < µ∗ < βdµ.

With this bound and Lemma 8, we can choose sufficiently large µ so that this µ∗ is large
enough to apply the hardness result (Theorem 3) of Ferro(β, γ, [1, µ∗]) to get the hardness
result for Ferro(β, γ, µ). Formally, we have

I Theorem 10. Let β ≤ 1, βγ > 1, d be an integer such that β(βγ)d > 1, ∆ = b 2
√
βγ√

βγ−1
c+ 1,

and µ > γd max
{(√

γ
β

)∆
, βγ−1

β

(
1 + d+1

ln(β(βγ)d)

)}
. Then Ferro(β, γ, µ) is #BIS-hard.

We remark that there always exists such integer d since β > 0 and βγ > 1. Different ds
give different bounds for µ and it is not necessarily monotone. For a given β, γ, one can
choose a suitable d to get the best bound2.

In the remaining of this section, we prove the key reduction stated in Lemma 8. The
main idea is to simulate any external field in [1, µ∗] by a vertex weight gadget. In Section
3.1.1 , we state the general framework of such simulation. Then in Section 3.1.2, we present
the detailed construction of a gadget.

2 We give one numerical example here to get some idea of this bound: if β = 1 and γ = 2, we can get
∆ = 7 and choose d = 1; then the theorem tells us that the problem Ferro(1, 2, µ) is #BIS-hard if
µ > 16

√
2.
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⇒
Figure 1 Result of S5 ⇒ comb ({S5,S5}), the output vertex is marked as unfilled.

3.1.1 Vertex Weight Gadget
I Definition 11 (Vertex weight gadget). Let G(V,E) be a graph with a special output vertex
v∗, define µ(G) = ZG(v∗=0)

ZG(v∗=1) where ZG(v∗ = 0) (resp. ZG(v∗ = 1)) is the partition function of
G(V,E) in (β, γ, µ)-system conditioned on v∗ = 0 (resp. v∗ = 1). We call G a vertex weight
gadget that realizes µ(G).

We also use a family of graphs to approach a given external field. Let {Gi}i≥1 be a family
of vertex weight gadgets. We say {Gi} realizes µ if limi→∞ µ(Gi) = µ.

Vertex weight gadgets can be used to simulate external fields. Formally, we have the
following reductions.

I Lemma 12. Let G be a vertex weight gadget of (β, γ,V). Then Spin(β, γ,V∪{µ(G)}) ≤AP
Spin(β, γ,V).

Let {Gi} be a sequence of vertex weight gadget of (β, γ,V) to realize µ such that
for any ε > 0 there is a Gi of size poly

(
ε−1) with exp(−ε) ≤ µ(Gi)

µ ≤ exp(ε). Then
Spin (β, γ,V ∪ {µ}) ≤AP Spin(β, γ,V).

Proof. The proof of the first part is straightforward. For any instance H of Spin(β, γ,V ∪
{µ(G)}) and a vertex of H with external field µ(G), we use one copy of G and identify the
output vertex of G with that chosen vertex of H. After the identification, the external field
in that vertex is that of output vertex of G. Therefore, after the modification, the new
instance is an instance of Spin(β, γ,V) and the partition function is equal to the partition
function of H scaled by a polynomial-time computable global factor

(
Z(G)

1+µ(G)

)j
, where j is

the number of vertices with external field µ(G) in H.
For the second part, for an instance H of Spin(β, γ,V ∪ {µ}) and required approximation

parameter ε, choose a gadget Gi which is ε′ = ε
2n close to realize µ; do the same modification

as above using this Gi and call the oracle for the new instance with approximation parameter
ε′. This gives the desired approximation for the original instance. J

3.1.2 The Construction
We first define a gadget operation comb as follows: for a given list of graphs G = {G1, . . . , Gk},
each with output v∗i for i ∈ [k], comb(G) is a new graph G(V,E) that combines the graphs
and joins their outputs. Fig. 1 is an illustration of comb. Formally, we define V = {u} ∪⋃
i∈[k] V (Gi) and E = {(u, v∗i ) | i ∈ [k]} ∪

⋃
i∈[k]E(Gi), where u is the output of G. It is

easy to verify that µ(G) = µ
∏
i∈[k] h (µ(Gi)).

We also define two basic gadgets. Let Sw be a w-star graph, with output being its center.
In particular, S0 is the singleton graph. Note that µ(Sw) = µh(µ)w. We also define Tt be a
d-ary tree with depth t. For any external field µ̂ ∈ (0, µ∗], we shall construct a list of gadgets
to simulate it. The two boundaries are approached by Sw and Tt respectively.

APPROX/RANDOM’14
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I Proposition 13. Let Sw be a w-star and Tt be a d-ary tree with depth t. Then
1. {Sw}w≥1 realizes 0, or formally, µ(Sw) = µh(µ)w < µβw.

2. {Tt}t≥0 realizes µ∗, or formally, there exist two positive constants ι and c < 1 depending
on µ, β, γ and d such that 1 < µ(Tt)

µ∗ ≤ exp(ctι).

Proof. (1) is obvious, we only prove (2).
Note that µ(Tt) = µh(µ(Tt−1))d, we denote f(x) = µh(x)d. Recall that µ∗ is the largest

fixed point of f(x) and f(µ) < µ, we have 0 < f ′(µ∗) < 1. Define g(x) = xf ′(x)
f(x) , then

g(µ∗) = f ′(µ∗). Since g(x) is a continuous function, we can choose some η > 0 such that
0 < g(x) ≤ c < 1 for all x ∈ (µ∗ − η, µ∗ + η).

We now define a sequence {xi}i≥0 such that x0 = µ and xi = f(xi−1) for all i ≥ 1.
We claim that {xi} converges to µ∗ as i approaches infinity. To see this, note that xi+1 =
f(xi) < xi and xi > µ∗ for all i ≥ 0. This implies {xi} converges to some z ≥ µ∗. Moreover,
since f is continuous, the sequence {f(xi)}i≥0 also converges to z. These two facts together
imply z = limi→∞ f(xi) = f(limi→∞ xi) = f(z). In other word, z is a fixed point of f and
thus z = µ∗. The claim implies that for some integer t0, xt0 ∈ (µ∗, µ∗ + η).

We define another sequence {yi}i≥0 such that y0 = µ(Tt0) and yi = f(yi−1) for all i ≥ 1.
It holds that yi ∈ (µ∗, µ∗ + η) and thus g(yi) ≤ c < 1 for all i ≥ 0. Therefore for all t ≥ 1,

ln yt − lnµ∗ = ln f(yt−1)− ln f(µ∗)

= ỹf ′(ỹ)
f(ỹ) · |ln yt−1 − lnµ∗| for some y ∈ [µ∗, yt−1]

= g(ỹ) · |ln yt−1 − lnµ∗|
≤ c · |ln yt−1 − lnµ∗|
≤ ctη.

We denote ι = max {lnµ, ηc−t0} and conclude the proof. J

Let d be the one that satisfies the requirement in the statement of Lemma 8. Our main
idea to realize a target external field µ̂ is to construct a list of gadgets G = {G1, . . . , Gd}
such that µ (comb(G)) ≈ µ̂ or more concretely µ̂ ≈ µ

∏
i∈[d] h (µ(Gi)). All but one of these

Gi are basic gadgets of the following three types:

1. isolate point S0 with µ(S0) = µ;
2. Sw with large enough w such that µ(Sw) ≈ 0; and
3. Tt with large enough t such that µ(Tt) ≈ µ∗.

The remaining one Gi is recursively constructed with a new target µ̂′ so that ideally
µ̂ = µ

∏
i∈[d] h (µ(Gi)) holds. The combination of these basic gadgets are carefully chosen

so that the new target µ̂′ is also in the range (0, µ∗]. Then we recursively simulate this µ̂′
by a subtree. We terminate the recursion after enough steps, and use a basic star gadget
which is closest to the desired value as an approximation in the leaf. With a correlation
decay argument, we show that the error in the root can be exponentially small in terms
of the depth, although there may be a constant error in the leaf. A detailed construction
with special treatment for the boundary cases are formally given in Algorithm 1. In the
description of the algorithm and the analysis below, we denote α ,

√
βγ−1√
βγ+1

< 1.
Before we prove that the construction is correct, we obtain a few observations which will

be used in the proof. The condition on µ in Lemma 8 is due to the following property we
need.
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Algorithm 1: Constructing G`
function construct(`, µ̂) :

input : Recursion depth `; Target 0 < µ̂ ≤ µ∗ to simulate;
output : Graph G` constructed.
begin

if ` = 0 then
Let k be the positive integer such that µh(µ)k+1 < µ̂ ≤ µh(µ)k;
return Sk;

else
Let k be the non-negative integer with µ∗h(µ)k+1 < µ̂ ≤ µ∗h(µ)k ;
Y ′ ← k · S0; // a set of k copies of S0.
µ1 ← µ̂

h(µ)k ;
// Invariant: µh(x′)d−i+1 = µi has a solution 0 < x′ ≤ µ∗.
for i← 1 to d− 1 do

if µh(µ∗)h(0)d−i ≥ µi then
yi ← 0; w ← b `·lnα−ln(dµ)

ln β c+ 1; Yi ← Sw;

else
yi ← µ∗; t← b `·lnα−ln d−ln ι

ln c c+ 1; Yi ← Tt;
µi+1 ← µi

h(yi) ;

Let µ̂′ be the solution of µh(x) = µd in (0, µ∗];
Y ← Y ′ ∪ {Yi}d−1

i≥1 ;
δ ← exp(− ln γ lnα

ln β `+ ln γ ln(dµ)
ln β + ln µ

γ );
if µ̂′ ≤ δ then

Choose the largest integer w such that µ
(

1
γ

)w
> δ;

return comb(Y ∪ {Sw});
else

return comb(Y ∪ construct(`− 1, µ̂′));

I Proposition 14. Let µ > γd

β (βγ − 1)
(

1 + d+1
ln(β(βγ)d)

)
, for any µ1 with µ∗h(µ) < µ1 ≤ µ∗,

the equation µh(x)d = µ1 always has a solution with 0 < x ≤ µ∗.

Proof. It suffices to show µ · h(0)d ≤ µ∗h(µ) and µ · h(µ∗)d ≥ µ∗. Since µ∗ = µh(µ∗)d, the

second part is trivial. As for the first part, it is sufficient to show
(
h(µ∗)
h(0)

)d
h(µ) > 1. Note

that
(
h(µ∗)
h(0)

)d
h(µ) > γdh(µ∗)d+1 > γd

(
β − βγ−1

µ∗

)d+1
,

γd
(
β − βγ − 1

µ∗

)d+1
> 1 ⇐⇒ ln

(
β(βγ)d

)
+ (d+ 1) ln

(
1− βγ − 1

βµ∗

)
> 0,

(d+ 1) ln
(

1− βγ − 1
βµ∗

)
(♣)
> −(d+ 1)

βγ−1
βµ∗

1− βγ−1
βµ∗

(♠)
> − ln

(
β(βγ)d

)
,

where (♣) is due to ln(1− x) > − x
1−x for x ∈ (0, 1), and (♠) is by the fact that β(βγ)d > 1

and the choice of µ such that −βγ−1
βµ∗ >

ln(β(βγ)d)+d+1
β ln(β(βγ)d) . J
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I Proposition 15. For every x, t ≥ 0, it holds that h(x+ t) ≤ (1 + t)h(x) and h ((1 + t)x) ≤
(1 + t)h(x).

Proof. Note that x, t ≥ 0,

h(x+ t) ≤ (1 + t)h(x) ⇐⇒
(
β(x+ t) + 1
x+ t+ γ

)
≤ (1 + t)

(
βx+ 1
x+ γ

)
⇐⇒ t2(1 + βx) + t

(
1 + γ (1 + β(x− 1)) + x+ βx2) ≥ 0.

Since
(
1 + γ (1 + β(x− 1)) + x+ βx2) > 0, the inequality always holds.

h ((1 + t)x) ≤ (1 + t)h(x) ⇐⇒ x(1 + t)β + 1
x(1 + t) + γ

≤ (1 + t)βx+ 1
x+ γ

⇐⇒ t2(x+ βx2) + t(γ + 2x+ βx2) ≥ 0

Again every term is non-negative, the last inequality is always true. J

We first verify that the algorithm is well defined, namely µh(x) = µd does have a solution
µ̂′ in (0, µ∗]. This can be done by verifying the loop invariant “µh(x′)d−i+1 = µi has a
solution 0 < x′ ≤ µ∗" inductively.

Initialization. For i = 1, by Proposition 14, for some 0 < x̃ ≤ µ∗ it holds that µh(x̃)d−i+1 =
µi.

Maintenance. Assuming µh(x̃)d−i+1 = µi has solutions x̃ ∈ (0, µ∗], we verify that µh(x′)d−i =
µi+1 ≡ µi

h(yi) has solutions x′ ∈ (0, µ∗] for i ∈ [1, d− 1].
Case µh(µ∗)h(0)d−i ≥ µi. By assumption we have µh(0)d−i+1 < µi, also note that
µi ≤ µh(µ∗)h(0)d−i ≤ µh(0)h(µ∗)d−i, hence µh(0)d−i < µi

h(0) ≤ µh(µ∗)d−i. Then by
continuity, µh(x′)d−i = µi

h(0) has solutions 0 < x′ ≤ µ∗.
Case µh(µ∗)h(0)d−i < µi. By assumption µh(µ∗)d−i+1 ≥ µi, thus µh(0)d−i < µi

h(µ∗) ≤
µh(µ∗)d−i, hence µh(x′)d−i = µi

h(µ∗) has solutions 0 < x′ ≤ µ∗.
Termination. After the loop completes, µh(x′) = µd has solutions 0 < x′ ≤ µ∗.

Now we verify the vertex weight gadget returned by the construction satisfies our require-
ment by choosing ` = O(− log ε).

I Lemma 16. For 0 < µ̂ ≤ µ∗(β, γ, µ), and let G(V,E) be the graph returned by construct(`, µ̂),
we have the following:
1. exp(−(c+ `) · α`) ≤ µ(G)

µ̂ ≤ exp((c+ `) · α`), where c = ln γ and α =
√
βγ−1√
βγ+1

< 1;
2. |G| = exp(O(`)).

Proof. We apply induction on ` for both statements. We prove for (1) first. For the base
case ` = 0, we have

|lnµ(G)− ln µ̂| ≤
∣∣lnµh(µ)k − lnµh(µ)k+1∣∣ = − ln h(µ) ≤ ln γ.

Assume that the statement holds for smaller `. Let k, {yi}1≤i≤d−1 and {Yi}1≤i≤d−1 be
parameters chosen in the algorithm. Define

F (z) = ln
(
µh(µ)k

d−1∏
i=1

h(yi)h(exp(z))
)
, F̃ (z) = ln

(
µh(µ)k

d−1∏
i=1

h(µ(Yi))h(exp(z))
)
.

We note that F (z) is the correct recursion to compute ln(µ(G)) and F̃ (z) is our approximate
recursion used in the algorithm.

In the following, we distinguish between µ̂′ ≤ δ and µ̂′ > δ.
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If µ̂′ ≤ δ, then lnµ(G) = F̃ (lnµ(Sw)) and ln µ̂ = F (ln µ̂′). We have

F (ln µ̂′) ≤ F̃ (lnµ(Sw)) = ln
(
µh(µ)k

d−1∏
i=1

h(µ(Yi))h(µ(Sw))
)

(♥)
≤ α` + ln

(
µh(µ)k

d−1∏
i=1

h(yi)h(µ̂′)
)

= α` + F (ln µ̂′)),

where (♥) follows from the following facts derived from Proposition 15:
(i) If yi = 0, then 0 ≤ µ(Yi) ≤ α`

d , which implies h(µ(Yi)) ≥ h(yi) and h(µ(Yi)) ≤(
1 + α`

d

)
h(yi) ≤ exp

(
α`

d

)
h(yi).

(ii) If yi = µ∗, then µ∗ ≤ µ(Yi) ≤ exp
(
α`

d

)
µ∗, which implies h(µ(Yi)) ≥ h(yi) and

h(µ(Yi)) ≤ exp
(
α`

d

)
h(yi).

(iii) We claim that µ̂′ < µ
(

1
γ

)w
≤ µ(Sw) ≤ µβw ≤ α`

d . The only nontrivial part is to

verify that µβw ≤ α`

d . Since w is the largest integer that µ̂′ < µ
(

1
γ

)w
, we have

µ
(

1
γ

)w+1
≤ µ̂′, which gives w ≥ lnµ−ln δ

ln γ − 1. Plug this into µβw ≤ α`

d and let

δ = exp(− ln γ lnα
ln β `+ ln γ ln(dµ)

ln β + ln µ
γ ), the inequality holds. Thus h(µ(Sw)) ≥ h(µ̂′)

and h(µ(Sw)) ≤ h(α
`

d ) ≤
(

1 + α`

d

)
h(µ̂′) ≤ exp

(
α`

d

)
h(µ̂′).

If µ̂′ > δ, define x = µ(construct(`− 1, µ̂′)), then by induction hypothesis, it holds that
|ln x− ln µ̂′| ≤ (c+ (`− 1)) · α`−1.
Then similarly by Proposition 15 and the choice of w and t, we have F (ln x) ≤ F̃ (ln x) ≤
F (ln x) + α`. Thus by construction, we have

|lnµ(G)− ln µ̂| =
∣∣F̃ (ln x)− F (ln µ̂′)

∣∣
≤ α` + |F (ln x)− F (ln µ̂′)|
≤ α` + |F ′(ln x̃)| · |ln x− ln µ̂′| (for some x̃ ∈ [µ̂′, x].)
≤ α` + (`− 1) |F ′(ln x̃)|α`−1 + c |F ′(ln x̃)|α`−1

Thus it is sufficient to show that |F ′(ln x̃)| ≤ α. In fact, F ′(ln x) = x·h′(x)
h(x) = (βγ−1)x

(x+γ)(βx+1) ≤
βγ−1(√
βγ+1

)2 = α.

Now we prove (2) of the Lemma. We denote s(`) = maxµ̂ |construct(`, µ̂)| and show
that s(`) = ` exp(O(`)) = exp(O(`)).

If ` = 0, since µ̂ is either the eventual external field (which is a constant bounded away
from 0), or µ̂ > δ, we have s(`) = |Sk| = O(1).

If ` > 0, then |Yi| = exp(O(`)) and thus |Y| = exp(O(`)). By our choice of δ, it holds
that w = O(`) and thus |Sw| = O(`). Therefore,

s(`) = exp(O(`)) + max {s(`− 1), O(`)} = ` exp(O(`)) = exp(O(`)).

This concludes the proof. J

3.2 The β > 1 case
The β > 1 case follows a similar argument as that in [7] and is known as a folklore. We
include a formal proof here to be self-contained.
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I Theorem 17. Let γ > β > 1 and µ > γ−1
β−1 . Then Ferro(β, γ, µ) is #BIS-hard.

We follow the same idea of simulating external field and make use of Theorem 3. In the
case β > 1, it is easy to see that we can simulate all positive external fields.

I Lemma 18. For every µ̂ > 0, there is a family of vertex weight gadgets {Gm}m≥1 that
realizes µ̂. Moreover, Gm is constructible in time mO(1) and

exp(− 1
m

) ≤ µ(Gm)
µ̂

≤ exp( 1
m

). (1)

Proof. For any m ≥ 1, we add x self-loops and y bristles to a single vertex v, where x and y
are integers to be determined. Let v be the output of Gm, then µ(Gm) = µ

(
β
γ

)x (
µβ+1
µ+γ

)y
.

Denote a = ln γ
β , b = ln µβ+1

µ+γ and c = ln µ̂
lnµ , then (1) is equivalent to

|(y · b− x · a)− c| ≤ 1
m
.

We can use a procedure similar to extended Euclidean algoroithm to find such integers x, y
in time O(lnm), such that it also guarantees x, y = mO(1). J

4 Improved Tractable Result

In this section, we establish the following tractable result:

I Theorem 19. Let β < γ, βγ > 1 and µ ≤ γ/β. Then there is an FPRAS for
Ferro(β, γ, µ).

The proof of this theorem follows by refining the proof in [9], where they establish the
tractable result for µ ≤ (γ/β)δ/2 for δ being the minimum degree of vertices in the graph.
Specifically, we first contract all vertices with degree one and modify the external fields of
their neighboring vertices, this only scales the partition function by a constant. Next, just as
in [9], we shall reduce a (β, γ, µ) instance to a ferromagnetic Ising instance and apply the
following celebrated result, which is first introduced in [10] for uniform external fields and
refined for non-uniform external fields in [9]:

I Theorem 20 ([10] and [9]). There is an FPRAS for Ising system (a, a,V) provided that
a > 1 and all external fields in V are at most one.

LetG(V,E) be an instance of (β, γ, µ) system, we repeatedly apply the following operations
until no degree one vertices can be found:

1. Pick a vertex u of degree one. Denote its incident edge by e = (u, v). Let µu and µv be
external fields on u and v respectively.

2. Remove u and edge (u, v), update µv ← µvh(µu).

Let G′(V ′, E′) be the remaining graph. G′ either has no vertices of degree one, or it only
contains a single vertex. Moreover, for every v ∈ V ′, the external fields µ′v satisfies µ′v ≤ µ.
This can be easily verified given that µ ≤ γ/β. Let U = {µ′v | v ∈ V ′}, consider G′ as an
instance of (β, γ,U) system, clearly Z(β,γ,µ)(G) = Z∗ · Z(β,γ,U)(G′) where Z∗ is an easily
polynomial-time computable factor.
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Let V =
{
µ′v

(
β
γ

)dv/2 ∣∣∣v ∈ V ′} where dv is the degree of v in G′. Let Ĝ(V̂ , Ê) be a copy

of G′ with µ̂v = µ′v

(
β
γ

)dv/2
for every v ∈ V̂ . We are going to verify that Z(β,γ,U)(G′) =√

γ
β

|E′|
· Z(a,a,V)(Ĝ) for a =

√
βγ.

Define A =
[
β 1
1 γ

]
, A′ =

[
γ

√
γ/β√

γ/β γ

]
and Â =

[√
βγ 1
1

√
βγ

]
. Then,

Z(β,γ,U)(G′) =
∑

σ∈{0,1}V ′

∏
(u,v)∈E′

Aσu,σv

∏
v∈V ′

µ′
1−σv

v

=
∑

σ∈{0,1}V ′

∏
(u,v)∈E′

A′σu,σv

∏
v∈V ′

(√β

γ

)dv

µ′v

1−σv

=
√
γ

β

|E′| ∑
σ∈{0,1}V ′

∏
(u,v)∈E′

Âσu,σv

∏
v∈V ′

(√β

γ

)dv

µ′v

1−σv

=
√
γ

β

|E′| ∑
σ∈{0,1}V̂

∏
(u,v)∈Ê

Âσu,σv

∏
v∈V ′

µ̂1−σv
v

=
√
γ

β

|E′|

· Z(a,a,V)(Ĝ)

Finally, to apply Theorem 20, we only need µ̂v ≤ 1 for all v ∈ V̂ . Recall that Ĝ has δ ≥ 2,
hence µ ≤ γ/β implies µ̂v ≤ 1. This concludes the proof.
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