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—— Abstract

Hashing is one of the main techniques in data processing and algorithm design for very large data

sets. While random hash functions satisfy most desirable properties, it is often too expensive
to store a fully random hash function. Motivated by this, much attention has been given to
designing small families of hash functions suitable for various applications. In this work, we
study the question of designing space-efficient hash families H = {h : [U] — [N]} with the
natural property of covering: H is said to be covering if any set of Q(Nlog N) distinct items
from the universe (the coupon-collector limit) are hashed to cover all N bins by most hash
functions in H. We give an explicit family #H of size poly(N) (which is optimal), so that hash
functions in H can be specified efficiently by O(log N) bits.

We build covering hash functions by drawing a connection to dispersers, which are quite well
studied and have a variety of applications themselves. We in fact need strong dispersers and we
give new constructions of strong dispersers which may be of independent interest. Specifically,
we construct strong dispersers with optimal entropy loss in the high min-entropy, but very small
error (poly(n)/2™ for n bit sources) regimes. We also provide a strong disperser construction
with constant error but for any min-entropy. Our constructions achieve these by using part of
the source to replace seed from previous non-strong constructions in surprising ways. In doing so,
we take two of the few constructions of dispersers with parameters better than known extractors
and make them strong.
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1 Introduction

Hashing is one of the main techniques in data processing and algorithm design for handling
large data sets. When processing data from a universe U, to avoid various computational
bottlenecks such as storage and load distribution it is often helpful to hash down to a smaller
universe (aka bins), via a hash family H = {h : h: U — [N]}. Different applications call for
different requirements of the hash family H and there is a rich body of work on constructions
of families with various properties starting with the seminal work of Carter and Wegman [6].

One such prominently studied property is load-balancing where one desires no bin to
receive too many items. In this paper, we consider the related property of covering. Besides
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being a natural and desirable property by itself, the covering property is also useful in
achieving load balancing. A classical question in probability theory is the coupon collector
problem. Suppose that there are N different coupons and at each trial you get one random
coupon. How many trials do you need in expectation before you collect all N coupons?
The answer of course is ©(Nlog N). An implication of this is that if we randomly hash
(N log N) distinct objects from a universe to N bins, then with high probability, the objects
cover all the bins. This motivates the following definition formulated by Alon et al. [2]!.

» Definition 1. A family of hash functions H = {h : U — [N]} is e-covering if there exists a
constant C such that for all subsets S C U, |S| > CNlog N,

JPr h(S) =[N 21-c

We say H is covering if it is 1/2-covering.

The coupon collector argument shows that fully random functions satisfy e-covering
property with e = N~ However, fully random hash functions are inefficient in practice as
we need space |U| to describe them and space is critical in many scenarios where hashing is
helpful. We address the question of designing efficient hash families with covering property as
above which are small or equivalently can be sampled with, and hence described by, few bits.
As the covering property of fully random hash functions follows from the coupon collection
problem, one can intuitively view our end goal as a derandomization of the classical coupon
collection process.

Standard families like O(log N)-wise independent hash functions (see preliminaries for
formal definition) which are known to have strong load-balancing properties are also N ~2(1)-
covering. However, such hash families have size N9 ) Similar parameters were achieved
by Alon et al. [2] by using random linear hash functions. The work of Celis et al. [7] gives
efficient covering hash families of size NO(oglog N)  Here, we solve the problem by giving the
first polynomial size, efficient (logarithmic evaluation time?) hash family:

» Theorem 2. Let N > 0 and ¢ > 0. Then, there exists an N~ ¢-covering family of hash
functions H = {h : U — [N]} with |H| = ((log |U]) - N)°M). Moreover, each h € H can be
evaluated in time O(log N) from a description of length O(log N).

Our construction of such hash families relies on a simple connection between covering
hash families and the well studied concept of randomness dispersers. While the connection
itself is not surprising, the strong dispersers we need were not known before and we give new
explicit constructions which are interesting by themselves. In the following subsection, we
first briefly recall the basic notions of randomness extractors and dispersers, and introduce
our new constructions of dispersers. We then describe the relation to covering hash families.

1.1 Extractors and Dispersers

Extractors and dispersers are important combinatorial objects with many applications
throughout computer science. Informally, an extractor is a function which takes a biased
source of randomness with some entropy and outputs (“extracts”) a distribution that is close
to the uniform distribution. To achieve this, we are allowed to use a few additional random

! Throughout, z €, X denotes a uniformly random element from a multi-set X.
2 In the standard unit-cost RAM model.
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bits (seed), which is necessary. Here, the entropy is quantified by the notion of min-entropy:
for any random variable X over a universe U, the min-entropy of X is defined by

Hoo(X) = min log (Pr[XI:a]) .

We quantify closeness between random variables via the standard statistical distance denoted

A ).

» Definition 3 (Extractor, [20]). For k,e > 0, a (k, €)-extractor? is a function Ext : {0,1}" x
{0,1}* = {0,1}"™ such that for any random variable X over {0,1}" with Hao(X) > k, we
have A(X,U,) < et
We say the extractor is strong if the extractor output is close to uniform even given the
seed:
A((Ext(X,Uyg),Uyg), (U, Uy)) <ee.

We refer to the parameter d as the seed-length of the extractor and say the extractor is
explicit if the function Ext can be computed in time which is polynomial in n. We refer to
k + d —m as the entropy loss of the extractor as this corresponds intuitively to the number
of random bits we lose in the extraction process; for strong extractors, the entropy loss is
defined to be k — m.

Closely related to extractors are dispersers, which can be seen as a relaxation of extractors
where instead of requiring the output distribution to be close to uniform, we only require the
output distribution to have large support.

» Definition 4 (Disperser). For k,e > 0, a (k,¢)-disperser is a function Dsp : {0,1}" x
{0,1}* = {0,1}™ such that for any random variable X over {0,1}" with Hu(X) > k, we
have |Supp(Dsp(X,Uyg))| > (1 —€)2™.

We say the disperser is strong if the output of the disperser has large support for most
seeds:

|Supp((Dsp(X, Ug), Ug))| > (1 — )2

Similar to extractors, we refer to the parameter d as the seed-length of the disperser and say
the disperser is explicit if the function Dsp can be computed in time which is polynomial
in n. We refer to k + d — m as the entropy loss of the disperser; for strong dispersers, the
entropy loss is defined to be k — m.

Over the past few decades, extractors and dispersers have been the focus of intense
study. In particular, because of their many pseudo-random properties, extractors and
dispersers have by now become standard tools in complexity theory and algorithm design
with numerous applications: e.g., error-correcting codes (e.g., [27]), cryptography (e.g., [9],
[17]) and pseudorandom generators (e.g., [20], [5]). We refer to the recent survey of Vadhan
[28], and the references therein for more details.

It can be shown by the probabilistic method that a) there exist strong extractors with
seed-length d = log(n — k) 4+ 21og(1/¢) + O(1) and entropy loss of 2log(1/¢) + O(1); b) there
exist strong dispersers with seed-length d = log(n — k) +log(1/€) + O(1) and entropy loss of
loglog(1/€) + O(1). These bounds were also shown to be tight up to additive O(1) terms by
Radhakrishnan and Ta-Shma [21]. However, most applications of extractors and dispersers
require explicit constructions and most effort in the area has been towards giving explicit

3 'We often omit n, m as they will be clear from context.
4 Throughout, U, denotes the uniform distribution on {0,1}".
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constructions matching the above bounds. Indeed, we do have several strong and nearly
optimal constructions in many important parameter regimes (see [14], [10] for some of the
most recent constructions). However, we do not yet have the best constructions in many
other regimes and this is especially so when dealing with very small errors, which is what we
need. Here we address the construction of strong dispersers with very small error and show
the following.

» Theorem 5. For all n,0 < € < 1/2,¢ > 1, there exists an explicit (n — c,€)-strong
disperser Dsp : {0,1}" x {0,1}* — {0,1}™ with d = O(2°log(1/€)) and entropy loss
(n—c¢) —m =loglog(l/e) + c+ O(1).

The main feature of the above construction is the optimal (up to an additive constant)
bound on entropy loss for any error parameter ¢, in particular, even for error as small as
27" /poly(n)). Previously, explicit dispersers with optimal entropy loss as above were known
[13], but they were not strong. Being able to handle very small errors and having strong
dispersers will both be important for the application to covering hash families.

In addition, using a different set of ideas, we also build a strong disperser with small
entropy loss for all min-entropies but for constant error e.

» Theorem 6. For all n, k, and constant €, there exists an explicit (k,€)-strong disperser
Dsp: {0,1}" x {0,1}* — {0,1}™ with d = O(logn) and entropy loss k —m = 3logn + O(1).

While we do not use the above construction here, it follows a similar theme as in Theorem 5
and could be of independent interest.

2  Techniques

Let us first examine the connection between covering hash families and strong dispersers.

Let # = {h : U — [N]} be a e-covering family of hash functions. Let U = {0,1}"
and [N] = {0,1}"". Then, we can define a function Dsp : {0,1}" x H — {0,1}"" by
Dsp(x,h) = h(z). Clearly, Dsp can be viewed as a plausible disperser with seed-length
d = log(|H|) and conversely, any disperser with these parameters defines a corresponding
hash family H from {0,1}" to {0,1}".

By setting up the definitions appropriately, it is not hard to show that e-covering hash
families imply (k, €)-strong dispersers for k& = logy(Nlog N) + O(1) = m + logo m + O(1)

and € = N=9M)_ Similarly, (k, ¢)-strong dispersers as above imply e-covering hash families.

However, note that the entropy loss of the dispersers we want is
kE —m =logym+ O(1) = loglogy(1/€) £ O(1).

Therefore, e-covering hash functions necessitate strong dispersers with optimal entropy
loss (up to O(1) additive term) and very small error. We achieve such hash functions by
appealing to Theorem 5. The actual construction proceeds in two steps.

We first hash the universe U to [CN log N] bins for a sufficiently large constant C' so
that the number of distinct bins hit is Q(N log N). We do so by using almost O(1)-wise
independent hash functions. In the terminology of extractors and dispersers, this step can
be seen as condensing the source so as to boost the relative min-entropy of the source. In
particular, to obtain covering hash families from strong dispersers as outlined in the above
argument, we now only need a disperser which works for entropy deficiency at most

log(CN log N) —log(2(Nlog N)) = O(1),

875

APPROX/RANDOM’14



876

Deterministic Coupon Collection and Better Strong Dispersers

as exactly achieved in Theorem 5. Thus, to get our final covering hash family, we hash from
[C'Nlog N] to [N] bins using the strong disperser from Theorem 5.
We next discuss our constructions of dispersers.

2.1 Strong Dispersers

As remarked earlier, the main problem with using existing constructions for the dispersers
we want is that the known constructions are not strong. This difference is not crucial for
extractors as most known constructions are either strong or can be made strong via the
reduction of Raz, Reingold and Vadhan [23]. No such generic reductions are known for
dispersers.

The main insight in our constructions is to use the source to replace part of the seed
from the previous non-strong constructions. We will shortly discuss why this is useful. This
usually does not work with some notable exceptions being the works of Gabizon, Raz, Shalitel
[11] and Barak et al. [3], Barak et al. [4]. Each of our constructions achieve this in a different
way and a different analysis.

For the high entropy construction (Theorem 5), we use the techniques of Gradwohl et
al. [13] which in turn rely on the classical expander walk theme. Roughly speaking, the
disperser of Gradwohl et al. is obtained as follows. They first associate the source strings
with the vertices of an expander and then compute the output of the disperser by taking a
certain walk as specified by the seed on the expander graph. However, their construction
implicitly involves a guess for how many steps to take in the random walk and this makes
their constructions non-strong. We in turn use a part of the source to determine how many
steps to take. This causes two problems. Firstly the part of the source we use is not fully
random. Secondly, and perhaps more seriously, this also induces probabilistic dependencies
between the starting point of the walk and the edge labels for the random walk. However,
we show that the expander walk we take is robust enough to handle these issues.

For the general entropy disperser, our construction relies on the basic idea of splitting
the source into a block-wise source which has been used in many constructions of extractors
and dispersers. However, most previous constructions guessed a good splitting point for the
source and this is the reason why they seem inherently non-strong as most of the guesses
are usually wrong. Our approach is to first extract logn bits from the n-bit source and use
them to determine the splitting point. We then argue that, despite the subtle dependencies
introduced by this step, known constructions of extractors and dispersers for block-wise
sources are robust enough to still work.

We give more details of our constructions along with the previous ones we build on in
the corresponding sections.

3 Preliminaries

We start with some basic notations and definitions from probability.
We use U, to denote the uniform distribution over {0,1}".
Given a discrete random variable X, we use Supp(X) to denote the support of X, i.e.
the set of elements a such that Pr[X = a] > 0. We call a distribution X flat if X is the
uniform distribution over Supp(X).
The statistical or variational distance between random variables X,Y over a universe U
is defined as
A(X,Y) = max |[Pr[X € A] — Pr[Y € 4]|.
ACU
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We say that X, Y are e-close (or X is e-close to Y) if A(X,Y) <e.
We shall use the following easy fact.
» Fact 7. If X is e-close to U,, then |Supp(X)| > (1 — €)2™.

We shall also use the following basic tools from pseudorandomness.

3.1 Expander Graphs

» Definition 8 (Expander Graphs). Let G = (V, E) be a regular graph with normalized
adjacency matrix A. We call G a (D, A)-expander if G is D-regular and the second largest
eigenvalue (in absolute value) of A is at most \. We say G is explicit if there exists an
algorithm that, given any vertex v € V, and an index ¢ € [D], computes the i-th neighbor of
v in time poly log |V].

Explicit expanders with almost optimal trade-off between degree D and expansion A are
constructed (see, e.g. the work by Lubotzky, Philips and Sarnak [18]). In this paper, we only
use the fact that for every constant A, there exists a constant D and explicit (D, \)-expanders
for every V. Explicit constructions of such expanders where the evaluation can be done with
O(1) word operations are known (for example Margulis’s expander, see [16]).

We will use the following sampling lemma essentially from [12] (the version we state with
better constants and different sets Si,...,.S; follows easily from [15]).

» Theorem 9. Let G = (V,E) be a (D, \)-ezpander on V. Consider a random walk
X0, X1,...,Xs on G, where Xy is a random start vertex in V. Then, for all S1,Ss,...,5; C

V with p = (2221 |Si|/|V|) /t,

Pr[Vi, X; ¢ S;] <exp (—p*(1—A\)t/4).

3.2 Hash Functions with Limited Independence

» Definition 10 (k-wise independent Hash Functions). A hash family H ={h : h: U — [N]}is
d-almost k-wise independent if for all distinct uy,...,u € U, and h €, H, (h(u1),..., h(ug))
is d-close to the uniform distribution on [N]¥. We say the hash family is explicit if the
elements of H can be sampled efficiently.

Using e-biased distributions ([19]) one can design efficient hash families as above of small
size.

» Theorem 11 ([19]). For all U, N, there exists an explicit d-almost k-wise independent hash
family H = {h : [U] = [N]} withlog(|H]) = O((loglog U)+klog N +log(1/8)). Further, for a
given input, the output of any function in the family can be evaluated in O(klog N +log(1/9))
word operations in the unit cost RAM model.

3.3 Known Extractors

Our constructions rely on some previous constructions of extractors which we review next.

The following constructions of Ta-Shma, Umans and Zuckerman [26] and Srinivasan
and Zuckerman [25] give extractors with nearly optimal entropy losses but sub-optimal
seed-lengths.

» Theorem 12 ([26]). For every n,k, and constant €, there exist explicit (k,€)-extractors
E:{0,1}" x {0,1}* = {0,1}™ with d = O(log n + log? k(loglog k)?) and m = k +d — O(1).
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» Theorem 13 ([25]). For every n,k, e, there exists explicit (k,e¢)-strong extractors E :
{0,1}" x {0, 1} = {0,1}™ with d = O(k + logn + log(1/€)) and m =k — O(log(1/e)).

The following theorem gives a way to convert explicit extractors to explicit strong
extractors.

» Theorem 14 ([24]). Any eplicit (k,e)-extractor E : {0,1}" x {0,1}* — {0,1}™ can
be transformed into an explicit (k, O(\/€))-strong extractor E' : {0,1}" x {0,1}"** —
{0, 13" HAD here d = poly log(d/e) and L = 2log(1/e) + O(1).

Applying Theorem 14 to Theorem 12, we get the following corollary.

» Corollary 15. For every n,k and constant €, there exist explicit (k,€)-strong extractors
E:{0,1}" x {0,1}* = {0,1}™ with d = O(log n + log? k(loglog k)2) and m = k — O(1).

We shall also need the well-studied notion of block-wise sources [8].

» Definition 16 (block-wise source). Two (possibly correlated) distributions X5, X5 form a
(K1, k2) block-wise source if Hoo(X1) > k1 and for every x1, Hoo(X2|X1 = x1) > ko. X is
called a (ki1, ko) block-wise source if X = X; o Xy where X7, X5 form a (k1, k2) block-wise
source.

» Definition 17 (subsource). A distribution X’ over domain {0,1}" is a subsource of a
distribution X (over the same domain {0,1}") if there exists an event A C {0,1}" such that
X'’ is the probability distribution obtained by conditioning on X being in A.

The following simple lemma says that any source has a subsource which is a block-wise
source with high min-entropy.

» Lemma 18. Let X be a flat distribution over {0,1}" with Hyo(X) > k. For every ko < k,
there exists a subsource X' = X7 o Xo of X which is a (k — ko — logn — 3, ko) block-wise
source.

Proof. Let X be uniformly random over A C {0,1}" where |[A| > 2%, For each 0 <i <n
and each u € {0,1}", let A, be the set of elements in A whose i-prefix is u. Let

T

S={(i,u):1<i<n,ue{0,1}, and 2" < |A4,| < 2"F < |4,

where uy . (;—1) is the (i — 1)-prefix of u. Also let
Si ={u: (i,u) € S}

for each 1 < i < n. One can show that > ; eq[Aul = |A|/2 = 2k=1_ Therefore |S| >
2k=ko=2 Thus there exists an i such that |S;| > 2k=ko=logn=2 "anqd by letting A = Uyes, Au,
X' = (X]A) is the desired block-wise subsource. <

4 Strong Disperser for High Min-Entropy Sources

We now prove Theorem 5. Our construction builds on the work of Gradwohl et al. [13] and
amplifies their construction by using a part of the source as a seed. As remarked in the
introduction such approaches often do not work or at the very least are quite subtle. We
first briefly review the main constructions of Gradwohl et al.

The starting point for the work of Gradwohl et al. is the classical expander walk theme
for constructing pseudorandom objects as used for example in [1], [12]. However, they
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introduced a twist of the standard expander walk — the reversed walk. Let Dsp : {0,1}" x
0,1} x {0,1}'°5" — {0,1}™ be the disperser we are aiming for. Let G be an expander
graph with degree D on {0,1}" and constant spectral gap. Let us also associate the seeds
{0,1}% % {0, 1}'°# with tuples ([D], ¢) for ¢ € [t] and suitable parameters D, t. The disperser
of [13] takes a f-step walk on the expander with edge-labels as given by the seed, but in the
reverse order: for x € {0,1}", y = (e1,...,e) € [D]', £ € [t], Dsp(z,y) = vertex reached by
taking the walk (eg,ep—1,...,€1) in G starting at x.

The idea of taking the walk in reverse order in comparison to the works of [1], [12], which
may seem to be of little significance at first look is in fact important for the (simple) analysis
of [13]. The final analysis is based on an application of Theorem 9. Unfortunately, the
disperser obtained by this approach is not strong and we need some new ideas to make it
strong.

Observe that in the above construction, by looking at the ¢-step random walk for all
¢ € [t], we indirectly allow ourselves to look at a random intermediate point of a t-step
random walk. This enables [13] to decrease the error probability even further (compared
to standard expander walk constructions) to the desired bound. However, doing so costs at
least logt additional random bits which is too much of a loss for us. We instead use a part
of the source string itself, say the last logt bits, to get these additional logt bits. Note that
this introduces problematic (probabilistic) dependencies between the starting point of the
walk and the number of steps of the walk. We argue that the expander walk construction is
robust enough to handle such dependencies to get our final construction for sources with
O(1) entropy deficiency ((n — k)).

Proof of Theorem 5. Our simple construction and analysis follow the above sketch closely.
We first set up some parameters. Let t = 223 1og(1/¢), m = n—logt = n—loglog(1/e)—2c—3.
Let D be a sufficiently large constant to be chosen later and G = ({0,1}™, E') be an explicit
(D, 1/2)-expander. Finally, let d = tlog D.

Given input (X,Y) € {0,1}" x {0,1}%, we split X as (X; o) where Xy € {0,1}",
and i € {0,1}'°®" which we will view as an integer in [t]. We also view the seed Y as
Y = (e1,...,e) € [D] in lieu of performing a random walk on G.

Define Dsp(X,Y) as follows. For £ € [t], let X, € {0,1}" be the vertex in G reached by
traversing the edges (eg,ep—1,...,e1) (in that order) from the vertex Xy. Then,

DSp((Xo, Z), (61, SRS ,et)) = Xz

We next argue that Dsp as defined above is a (n — ¢, €)-strong disperser. To see this,
fix a set S C {0,1}" with |S| > 2"¢. For y € {0,1}" and z € {0,1}", call (y,z) bad if
z ¢ Dsp(S,y), i.e., there is no « € S such that Dsp(z,y) = z. We will show that the fraction
of bad pairs (y,z) € {0,1}% x {0,1}" is at most €.

» Claim 19. We have [{(y, z) € {0, l}d x {0,1}™ : (y,2) bad| < e-24.2m.

Proof. Recall that n = m + logt. For each i € [t], let S; C {0,1}™ be the first m bits of the
strings in S whose last logt bits equal ::

S;={ve{0,1}":voie S}

Note that, p:= (3, [Si])/t2™ > |S|/t2™ > 27¢.

Let (y,z) € {0, l}d x {0,1}"™ be bad, where y = (e1,...,¢e;). Then, by the definition
of Dsp, it means that the i-step walk (e;,e;_1,...,e1) starting from any element of v € S;
does not end at the vertex z € {0,1}". This is equivalent to saying that the i-step walk
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(é1,...,€;) starting at 2z does not end at an element of S; for all i. As for 2z €, {0,1}",
y €4 {0, 1}d the above corresponds to a t-step random walk in G, by applying Theorem 9 to
the walk, we get

Pr[(y, z) bad] = Pr[Vi, Starting at z, Walk(es,...,e;) does not land in S;)
< exp (—p*t/8)
< exp (—272/8) = exp(—log(1/e)) < e.

<

To prove the theorem, let X C {0,1}" be a (n—c) min-entropy source. Then, |Supp(X)| >
2"~¢. And, by applying the above arguments to S = Supp(X), we get

Supp((Dsp(X,Ua),Ua))| = {(y,2) : 2 € Dsp(S,y)} > (1 — €)2™*%.

5 Covering Hash Families

We now prove Theorem 2. Recall that the goal is to hash from a universe U to [N] so as to
satisfy e-covering property. As described in the introduction, the construction proceeds in
two steps. For the first step, we shall use the following simple property of almost O(1)-wise
independent hash functions.

» Lemma 20. For any integer d > 1, let H = {h : U — [N]} be a family of N~2-almost
2d-wise independent hash functions. Then for any S C U such that |S| > N, we have,

1
< < — .
PN < 8741 < 0 (735
Proof. For any set S C U of cardinality N, let the random variable 7" be the number of
distinct pair (4,7)’s such that 4,5 € S and h(i) = h(j), where h is a random element from #.
One can show that

E[T? < 04(N).
Therefore
T¢ 1

The lemma follows by the fact that when |h(S)| < N/4, the T value for h is at least N. <«

We are now ready to construct the family of hash functions in Theorem 2, proving our
main result.

Proof of Theorem 2. We start with the construction of the set of hash functions. We will
only work with N = 2" for some integer n > 0. It is easy to extend the construction to
general N’s. The construction proceeds in two stages.

Let Dsp : {0,132 540,1}¢ — {0,1}" be a (n+log n+a—2,1/20e+2D4D)) gtrong
disperser as constructed in Theorem 5. We know that « = O(1) and d = O(n). Further, as
the disperser takes an O(n) walk on an expander, it can be computed with O(n) = O(log N)
word operations.
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Let G:{g:U — [2*Nlog N]} be a family of (2*N log N)~2l¢*+2l_almost 2[c + 2]-wise
independent functions constructed in Theorem 11. A random hash function h : U — [N] € H
is defined as follows. Pick a random ¢ € G, and pick a random r € {0, 1}d. Let

h(x) = Dsp(g(x),T).

By Theorem 11, any g € G can be described with O((loglogU) + clog N) bits and
computed with O(log N) word operations. Therefore, we have |H| < ((logU) - N)°™) and
each function in H can be computed with O(log N) word operations.

Now we will prove that for any S C U such that |S| > 2¢N log N, the probability (over
a random h € H) that h(S) # [N] is at most N~°. By Lemma 20, the probability that
l9(9)] < 2°72Nlog N is at most O(N~°"!) < N=¢/2 (for sufficiently large N). When
l9(S)| > 242N log N, by the definition of Dsp, with probability at least (1 — 1/2¢1(»+1)) >

1 — N7¢/2 over the random choice of r, we have |Dsp(g(S),r)] > (1 — 1/2"t1)2"  je.

Dsp(g(S),r) = {0,1}". By applying a union bound over these two events, we prove the
desired statement. |

6 Strong Disperser for General Sources

In this section we will prove Theorem 6. We first construct a strong disperser for block-wise
sources and reduce the general case to that of block-wise sources. The high-level idea is as
follows: we first apply an extractor on the second source X5 to get a short string, which we
then use as a seed for applying a strong extractor to the first source X;. This approach has
been used in many other works and is in fact central to many constructions of extractors
and dispersers, see [22] for a recent example. We present it here for completeness.

» Lemma 21. For all n,i,ky <i ks <n—i, let X1 0Xy € {0,1}" x {0,1}" 7" be a (ky, k2)
block-wise source. Suppose that log®n < ko < exp(logl/?’ n). Then, for all constant € > 0,
there exists an explicit strong disperser Dsp : {0,1}" x {0,1}"7" x {0,1}* = {0,1}™ with
error €, where d = O(logn) and the entropy loss ki + ko —m = O(1).

Proof. Let § = ¢/2. Let E; : {0,1}" % x {0,1}* — {0, l}d/ be a (ka,§)-strong extractor as

in Corollary 15, where d = O(logn + log® ko (loglog k3)?) = O(logn) and d’ = ko — O(1).

Since log®n < ky < exp(log?®n), d' = Q(log®n). Let E, : {0,1}" x {0, 1}d’ — {0, 1}m, be
a (k1,d)-strong extractor in Corollary 15, where m’ = k; — O(1). This is possible since

d’ = Q(log®n) has more bits than required for Corollary 15 (O(logn + log? ki (loglog k2)?)).

Now, we construct our disperser Dsp : {0,1} x {0,1}" 7" x {0,1}* — {0,1}™, where
m=m'+d =k +ky—O(1):

Dsp(x1,x2,7) = Eo (21, E1(22,7)) 0 Eq(22,7).
Now we show that
|Supp (Dsp(X1, X2, Ug) 0 Ug)| > (1 — 28)2™H4,

and therefore Dsp is a strong disperser with error at most 26 = e.

Fix an x; from the distribution X;. Let Y = Ej(X2|X; = x1,r) be a distribution,
where r is uniformly chosen from Uy. By the definition of block-wise source, we know that
H(X2| X1 = x1) > ko. Therefore, by the definition of strong extractors, (Y, r) is d-close to
Uy 4q. In particular,

A[(Ea(z1,Y),Y,r), (E2(x1,Uq ), Uq, Ug)] <6
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holds for every x1, where the two copies of Uy denote the same random variable. Therefore,
by taking the (weighted) average over z1, we have

A[(EQ(Xla Y)a K T)7 (EQ(X17 Ud’)7 Ud’aUd>] S 6)

where the two copies of Uy denote the same random variable. By the definition of F5 we
have

A[(EQ(XD Ud/)v Ua, Ud)y (Um’+d’a Ud)] < 5,
where the two copies of Uy denote the same random variable. Therefore,
A[(EQ(XD Y)a K T)a Um’+d’+d] < 20.

Our claim is proved by observing that Dsp(X1, Xa,7) = (E2(X1,Y),Y), m=m'+ d’, and
Fact 7.
<

6.1 Proof of Theorem 6

Now we are ready to prove Theorem 6.

Proof of Theorem 6. We will assume that the min-entropy k is at least log” n, otherwise
the extractor defined in Corollary 15 is good enough to be our disperser.

Let E : {0,1}" x {0,1}°05™ _ [n] be an (Qlogn),§/(2n))-strong extractor as in
Theorem 13. For i < n, let D; : {0,1} x {0,1}" 7" x {0,1}¥ — {0,1}™ be a disperser
described in Lemma 21 with k; = k — log®n — 3logn — 5,k = log®n. Observe that
d' = O(logn) and m = k1 + ko — O(1) = k — 3logn — O(1).

Now we define the disperser Dsp as follows. Given input (z,r) € {0,1}" x {0,1}d7
we break r into ry o ro where each of 1 and 7y has Q(logn) bits. Let i = E(z,r1). Let
Dsp(x,r) = D;(x,13).

We now prove that Dsp is the desired disperser. Without loss of generality, we can
assume that the source is a flat distribution, i.e., assume that X is uniform on A C {0,1}"
where |A] > 2F.

By the definition of F, with probability at least (1 — §) over the random choice of ry, the
distribution E(X,r1) is 1/(2n)-close to the uniform distribution over [n]. We fix such an 7y
in the following analysis.

By Lemma 18, there exists an ig such that there exists X; o X5 being a (k — log®n —
2logn —4,log® n +logn + 1) subsource of X, where X; has the first ig bits of the string and
Xo has the remaining (n — ig) bits. Now, as i = F(x,71) is (1/2n)-close to being uniform
on [n], Pr[i =i¢] > 1/(2n). Let X; o X, be the random variable obtained by conditioning
X1 0 X5 on the event i = 4. Then, each of X;, X, have at most logn bits less entropy
compared to X1, Xo (respectively). Therefore, from the above observations and our choice
of parameters we get that X 10 XQ is a (kq, k2) block-wise source.

By Lemma 21, we know that

|Supp(Di, (X1, Xa,79),72)| > (1 — §)2mHIm2l)
therefore

ISupp(D; (X1, Xo,72),72)| > (1 — §)2m 2],
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Since X7 o X5 is a subsource of X, we have

|[Supp(D;(X,r2),7r2)| > (1 — 5)2m+|7’2\'

To summarize, we have proved that with probability at least (1 — d) over the random

choice of 71,

|Supp(D; (X, 72),72)| > (1 — §)2m 172,

which implies that

Supp(D; (X, 72),71,72)| > (1 — §)2mHInltiral,

Our claim is proved by observing that Dsp(X,rq,r2) = D;(X,72). <
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