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Abstract
We present an explicit pseudorandom generator for oblivious, read-once, width-3 branching pro-
grams, which can read their input bits in any order. The generator has seed length Õ(log3 n).
The previously best known seed length for this model is n1/2+o(1) due to Impagliazzo, Meka, and
Zuckerman (FOCS ’12). Our work generalizes a recent result of Reingold, Steinke, and Vadhan
(RANDOM ’13) for permutation branching programs. The main technical novelty underlying
our generator is a new bound on the Fourier growth of width-3, oblivious, read-once branching
programs. Specifically, we show that for any f : {0, 1}n → {0, 1} computed by such a branching
program, and k ∈ [n], ∑

s⊆[n]:|s|=k

∣∣∣f̂ [s]
∣∣∣ ≤ n2 · (O(logn))k,

where f̂ [s] = E
U

[
f [U ] · (−1)s·U

]
is the standard Fourier transform over Zn2 . The base O(logn) of

the Fourier growth above is tight up to a factor of log logn.
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1 Introduction

1.1 Pseudorandom Generators for Space-Bounded Computation
A major open problem in the theory of pseudorandomness is to construct an “optimal”
pseudorandom generator for space-bounded computation. That is, we want an explicit
algorithm that stretches a uniformly random seed of length O(logn) to n bits that cannot be
distinguished from uniform by anyO(logn)-space algorithm (which receives the pseudorandom
bits one at a time, in a streaming fashion, and may be nonuniform). Such a generator would
imply that every randomized algorithm can be derandomized with only a constant-factor
increase in space (RL = L), and would also have a variety of other applications, such as in
streaming algorithms [24], deterministic dimension reduction and SDP rounding [35, 15],
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hashing [12], hardness amplification [21], almost k-wise independent permutations [25], and
cryptographic pseudorandom generator constructions [20].

To construct a pseudorandom generator for space-bounded algorithms using space s, it
suffices to construct a generator that is pseudorandom against ordered branching programs
of width 2s. A branching program1 B is a non-uniform model of space-bounded computation
that reads one input bit at a time, maintaining a state in [w] = {1, . . . , w}, where w is called
the width of B. At each time step i = 1, . . . , n, B can read a different input bit xπ(i) (for
some permutation π) and uses a different state transition function Ti : [w]× {0, 1} → [w].
It is often useful to think of a branching program as a directed acyclic graph consisting of
n+ 1 layers of w vertices each, where the ith layer corresponds to the state at time i. The
transition function defines a bipartite graph between consecutive layers, where we connect
state s in layer i− 1 to states Ti(s, 0) and Ti(s, 1) in layer i (labeling those edges 0 and 1,
respectively). Most previous constructions of pseudorandom generators for space-bounded
computations consider ordered branching programs, where the input bits are read in order –
that is, π(i) = i.

The classic work of Nisan [30] gave a generator with seed length O(log2 n) that is
pseudorandom against ordered branching programs of polynomial width. Despite intensive
study, this is the best known seed length for ordered branching programs even of width 3,
but a variety of works have shown improvements for restricted classes such as branching
programs of width 2 [33, 4], and regular or permutation branching programs (of constant
width) [8, 9, 26, 13, 37]. For width 3, hitting set generators (a relaxation of pseudorandom
generators) have been constructed [39, 17]. The vast majority of these works are based on
Nisan’s original generator or its variants by Impagliazzo, Nisan, and Wigderson [23] and
Nisan and Zuckerman [31], and adhere to a paradigm that seems unlikely to yield generators
against general logspace computations with seed length better than log1.99 n (see [9]).

All known analyses of Nisan’s generator and its variants rely on the order in which the
output bits are fed to the branching program (given by the permutation π). The search for
new ideas leads us to ask: Can we construct a pseudorandom generator whose analysis does
not depend on the order in which the bits are read? A recent line of work [5, 22, 32] has
constructed pseudorandom generators for unordered branching programs (where the bits are
fed to the branching program in an arbitrary, fixed order); however, none match both the
seed length and generality of Nisan’s result. For unordered branching programs of length
n and width w, Impagliazzo, Meka, and Zuckerman [22] give seed length O((nw)1/2+o(1))
improving on the linear seed length (1− Ω(1)) · n of Bogdanov, Papakonstantinou, and Wan
[5].2 Reingold, Steinke, and Vadhan [32] achieve seed length O(w2 log2 n) for the restricted
class of permutation branching programs, in which Ti(·, b) is a permutation on [w] for all
i ∈ [n] and b ∈ {0, 1}.

Recently, a new approach for constructing pseudorandom generators has been suggested
in the work of Gopalan et al. [17]; they constructed pseudorandom generators for read-once
CNF formulas and combinatorial rectangles, and hitting set generators for width-3 branching
programs, all having seed length Õ(logn) (even for polynomially small error). Their basic
generator (e.g. for read-once CNF formulas) works by pseudorandomly partitioning the bits
into several groups and assigning the bits in each group using a small-bias generator [29]. A

1 In this work and the definition we give here, we consider read-once, oblivious branching programs, and
refer to them simply as branching programs for brevity.

2 A generator with seed length Õ(
√
n logw) is given in [32]. The generator in [22] also extends to branching

programs that read their inputs more than once and in an adaptively chosen order, which is more
general than the model we consider.
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key insight in their analysis is that the small-bias generator only needs to fool the function
“on average,” where the average is taken over the possible assignments to subsequent groups,
which is a weaker requirement than fooling the original function or even a random restriction
of the original function. (For a more precise explanation, see Section 4.)

The analysis of Gopalan et al. [17] does not rely on the order in which the output bits
are read, and the previously mentioned work by Reingold, Steinke, and Vadhan [32] uses
Fourier analysis of branching programs to show that the generator of Gopalan et al. fools
unordered permutation branching programs. In this work we further develop Fourier analysis
of branching programs and show that the pseudorandom generator of Gopalan et al. with
seed length Õ(log3 n) fools width-3 branching programs:

I Theorem 1 (Main Result). There is an explicit pseudorandom generator
G : {0, 1}O(log3 n·log logn) → {0, 1}n fooling oblivious, read-once (but unordered), branching
programs of width 3 and length n.

The previous best seed length for this model is the aforementioned length of O(n1/2+o(1))
given in [22]. The construction of the generator in Theorem 1 is essentially the same as the
generator of Gopalan et al. [17] for read-once CNF formulas, which was used by Reingold et
al. [32] for permutation branching programs. In our analysis, we give a new bound on the
Fourier mass of width-3 branching programs.

1.2 Fourier Growth of Branching Programs
For a function f : {0, 1}n → R, let f̂ [s] = E

U

[
f [U ] · (−1)s·U

]
be the standard Fourier transform

over Zn2 , where U is a random variable distributed uniformly over {0, 1}n and s ⊆ [n] or,
equivalently, s ∈ {0, 1}n. The Fourier mass of f (also called the spectral norm of f), defined
as L(f) :=

∑
s6=∅ |f̂ [s]|, is a fundamental measure of complexity for Boolean functions (e.g.,

see [18]), and its study has applications to learning theory [27, 28], communication complexity
[19, 1, 38, 34], and circuit complexity [7, 10, 11]. In the study of pseudorandomness, it is
well-known that small-bias generators3 with bias ε/L (which can be sampled using a seed
of length O(log(n · L/ε)) [29, 2]) will ε-fool any function whose Fourier mass is at most L.
Width-2 branching programs have Fourier mass at most O(n) [4, 33] and are thus fooled by
small-bias generators with bias ε/n. Unfortunately, such a bound does not hold even for
very simple width-3 programs. For example, the ‘mod 3 function,’ which indicates when the
hamming weight of its input is a multiple of 3 has Fourier mass exponential in n.

However, a more refined measure of Fourier mass is possible and often useful: Let
Lk(f) =

∑
|s|=k |f̂ [s]| be the level-k Fourier mass of f . A bound on the Fourier growth of f ,

or the rate at which Lk(f) grows with k, was used by Mansour [28] to obtain an improved
query algorithm for polynomial-size DNF; the junta approximation results of Friedgut [16]
and Bourgain [6] are proven using approximating functions that have slow Fourier growth.
This notion turns out to be useful in the analysis of pseudorandom generators as well:
Reingold et al. [32] show that the generator of Gopalan et al. [17] will work if there is a
good bound on the Fourier mass of low-order coefficients. More precisely, they show that for
any class C of functions computed by branching programs that is closed under restrictions
and decompositions and satisfies Lk(f) ≤ poly(n) · ck for every k and f ∈ C, there is a

3 A small-bias generator with bias µ outputs a random variable X ∈ {0, 1}n such that
∣∣∣E

X

[
(−1)s·X

]∣∣∣ ≤ µ
for every s ⊂ [n] with s 6= ∅.

APPROX/RANDOM’14
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pseudorandom generator with seed length Õ(c · log2 n) that fools every f ∈ C. They then
bound the Fourier growth of permutation branching programs (and the even more general
model of “regular” branching programs, where each layer is a regular bipartite graph) to
obtain a pseudorandom generator for permutation branching programs:

I Theorem 2 ([32, Theorem 1.4]). Let f : {0, 1}n → {0, 1} be computed by a length-n, width-
w, read-once, oblivious, regular branching program. Then, for all k ∈ [n], Lk(f) ≤ (2w2)k.

In particular, the mod 3 function over O(k) bits, which is computed by a permutation
branching program of width 3, has Fourier mass 2Θ(k) a level k. However, the Tribes function,4
which is also computed by a width-3 branching program, has Fourier mass Ω(logn/ log k)k
at level k, so the bound in Theorem 2 does not hold for non-regular branching programs
even of width 3.

The Coin Theorem of Brody and Verbin [9] implies a related result: essentially, a function
computed by a width-w, length-n branching program cannot distinguish product distributions
on {0, 1}n any better than a function satisfying Lk(f) ≤ (logn)O(wk) for all k. To be more
precise, if X ∈ {0, 1}n is n independent samples from a coin with bias β (that is, each bit has
expectation (1 + β)/2), then E

X
[f [X]] =

∑
s f̂ [s]β|s|. If Lk(f) ≤ (logn)O(wk) for all k, then

∣∣∣E
X

[f [X]]− E
U

[f [U ]]
∣∣∣ =

∣∣∣∣∣∣
∑
s6=0

f̂ [s]β|s|
∣∣∣∣∣∣ ≤

∑
k∈[n]

Lk(f)|β||s| ≤ O(|β|(logn)O(w)),

assuming |β| ≤ 1/(logn)O(w). Brody and Verbin prove that, if f is computed by a length-n,
width-w branching program, then |E

X
[f [X]] − E

U
[f [U ]] | ≤ O(|β|(logn)O(w)). Since distin-

guishing product distributions captures much of the power of a class of functions, this leads
to the following conjecture.

I Conjecture 3 ([32, Conjecture 8.1]). For every constant w, the following holds. Let
f : {0, 1}n → {0, 1} be computed by a width-w, read-once, oblivious branching program. Then

Lk(f) ≤ nO(1) · (logn)O(k),

where the constants in the O(·)s may depend on w.

In this work, we prove this conjecture for w = 3:

I Theorem 4 (Fourier Growth of Width 3). Let f : {0, 1}n → {0, 1} be computed by a width-3,
read-once, oblivious branching program. Then, for all k ∈ [n],

Lk(f) :=
∑

s:|s|=k

|f̂ [s]| ≤ n2 · (O(logn))k .

This bound is the main contribution of our work and, when combined with the techniques of
Reingold et al. [32], implies our main result (Theorem 1).

The Tribes function of [3] shows that the base of O(logn) of the Fourier growth in
Theorem 4 is tight up to a factor of log logn. (See the full version of this paper for a proof.)

We also prove Conjecture 3 with k = 1 for any constant width w:

4 The Tribes function (introduced by Ben-Or and Linial [3]) is a DNF formula where all the terms are
the same size and every input appears exactly once. The size of the clauses in this case is chosen to give
an asymptotically constant acceptance probability on uniform input.
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I Theorem 5. Let f : {0, 1}n → {0, 1} be computed by a width-w, length-n, read-once,
oblivious branching program. Then

L1(f) =
∑
i∈[n]

|f̂ [{i}] ≤ (O(logn))w−2.

1.3 Techniques
The intuition behind our approach begins with two extreme cases of width-3 branching
programs: permutation branching programs and branching programs in which every layer is
a non-permutation layer. Permutation branching programs “mix” well: on a uniform random
input, the distribution over states gets closer to uniform (in `2 distance) in each layer. We
can use this fact with an inductive argument to achieve a bound of 2O(k) on the level-k
Fourier mass (this is the bound of Theorem 2).

For branching programs in which every layer is a non-permution layer, we can make
use of an argument from the work of Brody and Verbin [9]: when we apply a random
restriction (where each variable is kept free with probability roughly 1/k) to such a branching
program, the resulting program is ‘simple’ in that the width has collapsed to 2 in many of the
remaining layers. This allows us to use arguments tailored to width-2 branching programs,
which are well-understood. In particular, we can use the same concept of mixing as used for
permutation branching programs.

To handle general width-3 branching programs, which may contain an arbitrary mix
of permutation and non-permutation layers, we group the layers into “chunks” containing
exactly one non-permutation layer each. Instead of using an ordinary random restriction,
we consider a series of restrictions similar to those in Steinberger’s “interwoven hybrids”
technique [36] (in our argument each chunk will correspond to a single layer in [36]). In
Section 3.1, we use such restrictions to show that the level-k Fourier mass of an arbitrary
width-3 program can be bounded in terms of the level-k Fourier mass of a program D which
has the following “pseudomixing” form: D can be split into r ∈ [n] branching programs
D1 ◦D2 ◦ · · · ◦Dr, where each Di has at most 3k non-regular layers and the layer splitting
consecutive Dis has width 2.

We then generalize the arguments used for width-2 branching programs to “pseudomixing”
branching programs. We can show that each chunk Di is either mixing or has small Fourier
growth, which suffices to bound the Fourier growth of D.

2 Preliminaries

2.1 Branching Programs
We view a length-n, width-w branching program as a function B : {0, 1}n × [w] → [w],
which takes a start state u ∈ [w] and an input string x ∈ {0, 1}n and outputs a final state
B[x](u). We can view B as computing a Boolean function by fixing a start state and set
of accept states in [w]. In this work we consider branching programs with random (or
pseudorandom) inputs, in which case a program can be viewed as a Markov chain randomly
taking initial states to final states. That is, B can be viewed as a matrix-valued function
B : {0, 1}n → {0, 1}w×w where B[x]u,v = 1 if and only if B[x](u) = v. For a random variable
X on {0, 1}n, we have E

X
[B[X]] ∈ [0, 1]w×w, where the entry in the uth row and vth column

E
X

[B[X]]u,v is the probability that B takes the initial state u to the final state v when given
a random input from the distribution X. The matrix E

X
[B[X]] is stochastic, that is, its

APPROX/RANDOM’14



890 Pseudorandomness and Fourier Growth Bounds for Width-3 Branching Programs

rows give probability distributions (i.e., they are non-negative and sum to 1). A regular
program B has the property that the uniform distribution is a stationary distribution of the
Markov chain E

U
[B[U ]], whereas, if B is a permutation program, the uniform distribution

is stationary for E
X

[B[X]] for any distribution X.
We write B1 ◦B2 to denote the concatenation of two branching programs, where the start

state of B2 is determined by the final state of B1 on the input. Thus the matrix representation
of B1 ◦ B2[x1 ◦ x2] is given by B1[x1] · B2[x2]. A length-n, width-w, ordered branching
program (abbreviated OBP) is a program B that can be written B = B1 ◦B2 ◦ · · · ◦Bn,
where each Bi is a length-1 width-w program. We refer to Bi as the ith layer of B. We denote
the subprogram of B from layer i to layer j by Bi···j := Bi ◦Bi+1 ◦ · · · ◦Bj . We sometimes
consider branching programs of varying width – some layers have more vertices than others.
The overall width of the program is the maximum width of any layer. This means that the
edge layers Bi may give non-square matrices. For i ∈ [n], if Bi[x] ∈ {0, 1}w×w′ , then we refer
to w as the width of layer i− 1 and w′ as the width of layer i.

2.2 Fourier Analysis
Let B : {0, 1}n → Rw×w′ be a matrix-valued function (such as given by a length-n, width-w
branching program). Then we define the Fourier transform of B as a matrix-valued
function B̂ : {0, 1}n → Rw×w′ given by

B̂[s] := E
U

[B[U ]χs(U)] ,

where s ∈ {0, 1}n (or, equivalently, s ⊂ [n]) and

χs(x) = (−1)
∑

i
xi·si =

∏
i∈s

(−1)x(i).

We refer to B̂[s] as the sth Fourier coefficient of B, which has order (or degree) |s|.
Note that this is equivalent to taking the real-valued Fourier transform of each of the w · w′
entries of B[x] separately, but we see in the following lemma that this matrix-valued Fourier
transform is nicely compatible with matrix algebra.

I Lemma 6. Let A : {0, 1}n → Rw×w′ and B : {0, 1}n → Rw′×w′′ be matrix valued functions.
Let X, Y , and U be independent random variables over {0, 1}n, where U is uniform. Let
s, t ∈ {0, 1}n. Then we have the following.

Decomposition: If C[x ◦ y] = A[x] ·B[y] for all x, y ∈ {0, 1}n, then Ĉ[s ◦ t] = Â[s] · B̂[t].
Fourier Inversion for Matrices: B[x] =

∑
s B̂[s]χs(x).

Parseval’s Identity:
∑
s∈{0,1}n

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣2

Fr
= E

U

[
||B[U ]||2Fr

]
.

The Decomposition property is what makes the matrix-valued Fourier transform more
convenient than separately taking the Fourier transform of the matrix entries as done by
Bogdanov et al. [5]. If B is a length-n, width-w, ordered branching program, then, for all
s ∈ {0, 1}n,

B̂[s] = B̂1[s1] · B̂2[s2] · · · · · B̂n[sn].

The Fourier mass of a matrix-valued function B is L(B) :=
∑
s6=0

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣

2
, and

the Fourier mass at level-k is Lk(B) :=
∑
s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣

2
. We define L≥k(B) :=∑

k′≥k L
k′(B) and L≤k(B), L>k(B), L<k(B) are defined analogously. The Fourier mass is

unaffected by order:
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I Lemma 7. Let B,B′ : {0, 1}n → Rw×w be matrix-valued functions satisfying B[x] =
B′[π(x)], where π : [n]→ [n] is a permutation. Then, for all s ∈ {0, 1}n, B̂[s] = B̂′[π(s)]. In
particular, L(B) = L(B′) and Lk(B) = Lk(B′) for all k.

Lemma 7 implies that the Fourier mass of any read-once, oblivious branching program is
equal to the Fourier mass of the corresponding ordered branching program.

3 Fourier Analysis of Width-3 Branching Programs

In this section we sketch the proof of our bound on the low-order Fourier mass of width-3,
read-once, oblivious branching programs (Theorem 4). This is key to the analysis of our
pseudorandom generator. See the full version of our paper (which is available online) for a
complete proof.

To prove Theorem 4 we will consider the matrix valued function B of the branching
program computing f . Note that |f̂ [s]| ≤ ||B̂[s]||2 for all s so Lk(f) ≤ Lk(B). We may also
assume without loss of generality that the first and last layers of the program have width 2
(there is only one start state, and there are at most 2 accept states otherwise the program is
trivial). The proof proceeds in two parts. The first part reduces the problem to one about
branching programs of a special form, namely ones where many layers have been reduced
to width-2. The second part uses the mixing properties of width-2 programs to bound the
Fourier mass.

3.1 Part 1 – Reduction of Width by Random Restriction
First some definitions:

For g ⊂ [n] and x ∈ {0, 1}n, define the restriction of B to g using x – denoted
B|g←x – to be the branching program obtained by setting the inputs (layers of edges) of B
outside g to values from x and leaving the inputs in g free. More formally,

B|g←x[y] = B[Select(g, y, x)], where Select(g, y, x)i =
{
yi i ∈ g
xi i /∈ g

}
.

Our reduction can be stated as follows.

I Proposition 8. Let B be a length-n width-3 ordered branching program (abbreviated 3OBP),
m ≥ k, and k ∈ [n] with the first and last layers having width at most 2. Then

Lk(B) ≤ n ·
(
m

k

)∑
`≥0

2−`(m−k)Lk(D6(`+1)k)

where each D6(`+1)k = D
6(`+1)k
1 ◦D6(`+1)k

2 ◦ · · · ◦D6(`+1)k
r , where r ∈ [n], each D6(`+1)k

i is
a 3OBP with at most 6(`+ 1)k non-regular layers, and the first and last layers of each Di

have width at most 2.

In Section 3.2, we will prove Lk(D6(`+1)k) ≤ n · O(`)k. Taking m = 2k, this implies
Lk(B) ≤ n2 ·O(k)k. Finally, we show that we may assume k ≤ O(logn), so we get a Fourier
growth bound of Lk(B) ≤ n2 ·O(logn)k. Here we focus on the proof of Proposition 8.

Define a chunk to be a 3OBP with exactly one non-regular layer. An l-chunk 3OBP
is a 3OBP B such that B = C1 ◦ C2 ◦ · · · ◦ Cl, where each Ci is a chunk. Equivalently,
an l-chunk 3OBP is a 3OBP with exactly l non-regular layers. The partitioning of B into
chunks is not necessarily unique. But we fix one such partitioning for each 3OBP and simply

APPROX/RANDOM’14
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refer to the ith chunk Ci. If B is an l-chunk length-n 3OBP, let ci ⊂ [n] be the coordinates
corresponding to Ci.

We will compute a bound on the level-k Fourier weight of B via a series of “interwoven”
restrictions similar to Steinberger’s technique [36]. Lemma 9 below tells us that we may
obtain a bound by bounding, in expectation, the level-k weight of a restricted branching
program. We then argue that with high probability over this restriction, the width of the
resulting program will be essentially reduced. In particular, there is a layer of width 2 after
every O(m) non-regular layers.

We now describe some notation that will be used for the interwoven restrictions. For
t ⊂ [m], define

gt :=
⋃

(i mod m)+1∈t

ci and Gkt := {s ⊂ gt : |s| = k}.

We refer to gt as the tth group of indices and Gkt as the tth group of (order k) Fourier
coefficients. The following simple lemma tells us that we may bound the level-k Fourier
weight by considering a fixed subset t ⊂ [m] of size k and the level-k Fourier weight of the
branching program that results by randomly restricting the variables outside of gt:

I Lemma 9. Let B be a length-n 3OBP, k ∈ [n], m ≥ k and gt as above. Then

Lk(B) ≤
(
m

k

)
max

t⊂[m]:|t|=k
E
U

[
Lk(B|gt←U )

]
.

Given Lemma 9, we may now prove Proposition 8 by giving an upper bound on
E
U

[
Lk(B|gt←U )

]
for a fixed t ⊂ [m] with |t| = k. To do this, we prove that a random

restriction to gt will, with high probability, result in a branching program of the desired form.

I Lemma 10. Let B be a length-n 3OBP, k, ` ∈ [n], m ≥ k and fix t ⊆ [m] with |t| = k.
Then with probability at least 1− n · 2−`(m−k) over a random choice of x ∈ {0, 1}n,

B|gt←x = D1 ◦D2 ◦ · · · ◦Dr,

where r ∈ [n] and each Di is a 3OBP with at most 6`k non-regular layers and the layer of
vertices between Di−1 and Di have width at most 2.

3.2 Part 2 – Mixing in Width-2
Now it remains to bound the Fourier mass of 3OBPs of the form given by Proposition 8.

I Proposition 11. Let D` be a length-n 3OBP such that

D` = D`
1 ◦D`

2 ◦ · · · ◦D`
r,

where each D`
i is a 3OBP with at most ` non-regular layers and width 2 in the first and last

layers. Then Lk(D`) ≤ 2n · (6000(`+ 1))k for all k.

A key notion in our proof is a measure of the extent to which a branching program (or
subprogram) mixes, and the way this is reflected in the Fourier spectrum. For an ordered
branching program D of width w, define

λ(D) = max
x∈Rw:

∑
i
xi=0

∣∣∣∣∣∣xE
U

[D[U ]]
∣∣∣∣∣∣

2
||x||2

.
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The quantity λ(D) is a measure of the mixing of D. If D is regular, we have λ(D) ∈ [0, 1],
where 0 corresponds to perfect mixing and 1 to no mixing. If D is not regular, it is possible
that λ(D) > 1. However, for width-2 – where E

U
[D[U ]] is a 2× 2 matrix – it turns out that

λ(D) ≤ 1 even if D is non-regular. In particular,

if E
U

[D[U ]] =
(

1− α α

β 1− β

)
, then λ(D) =

∣∣∣∣∣∣(1,−1)E
U

[D[U ]]
∣∣∣∣∣∣

2
||(1,−1)||2

= |1− α− β|.

The rows of E
U

[D[U ]] must sum to 1 and have non-negative entries (as they are a probability
distribution). So α, β ∈ [0, 1], which implies λ(D) ≤ 1. This fact is crucial to our analysis
and is the main reason our results do not extend to higher widths.

Note that for any s 6= 0, the rows of D̂[s] sum to zero. Thus for any branching program
D = D1 ◦D2 and coefficient D̂[s] with s = (s1, s2) satisfying s2 = 0, we have∣∣∣∣∣∣D̂[s]

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣D̂1[s1]

∣∣∣∣∣∣
2
· λ(D2).

For branching programs B in which every layer is mixing – that is λ(Bi) ≤ C < 1 for all
i – this fact can be used with an inductive argument (simpler than the proof below) to
obtain a O(n)/(1− C)O(k) bound on the level-k Fourier mass. We show that any Di in the
branching program of the form given by Proposition 8 will either mix well or have small
Fourier mass after restriction. More precisely, define the p-damped Fourier mass of a
branching program B as

Lp(B) =
∑
k>0

pkLk(B) =
∑
s6=0

p|s|
∣∣∣∣∣∣B̂[s]

∣∣∣∣∣∣
2
.

Note that Lk(B) ≤ Lp(B)p−k for all k and p. The main lemma we prove in this section is
the following.

I Lemma 12. If D is a length-d 3OBP with k ≥ 1 non-regular layers that has only two
vertices in the first and last layers, then

λ(D) + Lp(D) ≤ 1

for any p ≤ 1/6000(k + 1).

First, we show that Lemma 12 implies Proposition 11:

Proof of Proposition 11. We inductively show that

Lp(D`
1 ◦ · · · ◦D`

i ) ≤ 2i,

and hence Lp(D) ≤ 2r ≤ 2n. For i = 0 this is trivial. Now suppose it holds for i. By
decomposition (Lemma 6), we have

Lp(D`
1 · · ·D`

i ◦D`
i+1) ≤Lp(D`

1 · · ·D`
i ) · Lp(D`

i+1) + Lp(D`
1 · · ·D`

i )λ(D`
i+1)

+
∣∣∣∣∣∣ ̂D`

1 · · ·D`
i [0]
∣∣∣∣∣∣

2
· Lp(D`

i+1)

≤Lp(D`
1 · · ·D`

i ) · 1 +
√

2Lp(D`
i+1) ≤ 2i+ 2.

The first inequality follows from mixing and the second from Lemma 12. Thus, we have that
Lk(D`) ≤ p−kLp(D`) ≤ 2n · (6000(`+ 1))k, as required J

APPROX/RANDOM’14
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Now we turn our attention to Lemma 12. We split into two cases: If λ(D) is far from 1
i.e. λ(D) ≤ 0.99, then we need only ensure Lp(D) ≤ 1/100. This is the ‘easy case’ which
proceeds much like the analysis of regular branching programs [32]. If λ(D) = 1, then D is
trivial – i.e. Lp(D) = 0 – and we are also done. The ‘hard case’ is when λ(D) is very close
to 1. i.e. 0.99 ≤ λ(D) < 1.

Easy Case – Good Mixing
The argument used by Reingold et al. [32] for regular branching program can be extended to
give the following.

I Lemma 13. Let D be a 3OBP with at most k non-regular layers. If p ≤ 1/6000(k + 1),
then Lp(D) ≤ 1/100.

It immediately follows that λ(D)+Lp(D) ≤ 1 when p ≤ 1/6000(k+1), assuming λ(D) < 0.99.
This covers the ‘easy’ case of Lemma 12.

Hard Case – Poor Mixing
Now we consider the case where λ(D) ∈ [0.99, 1].

I Lemma 14. Let D be a 3OBP with at most k non-regular layers where the first and
last layers of vertices have width 2. Suppose λ(D) ∈ [0.99, 1]. If p ≤ 1/(24k + 12), then
Lp(D) + λ(D) ≤ 1.

This covers the ‘hard’ case of Lemma 12 and, along with Lemma 13 completes the proof of
Lemma 12.

Since D has width 2 in the first and last layers, we view D[x] as a 2× 2 matrix. We can
write the expectation (which is stochastic) as

E
U

[D[U ]] =
(

1− α α

β 1− β

)
.

We can assume (by permuting rows and columns) that λ(D) = 1−α−β and α, β ∈ [0, 1/100].
Now write

D[x] =
(

1− f(x) f(x)
g(x) 1− g(x)

)
,

where f, g : {0, 1}d → {0, 1}. Then α = E
U

[f(U)] and β = E
U

[g(U)]. We can view D has
having two corresponding start and end states. The probability that, starting in the first start
state, we end in the first end state is 1− α ≥ 0.99. Likewise, the probability that, starting
in the second start state, we end in the second end state is 1 − β ≥ 0.99. The function f
is computed by starting in the first start state and accepting if we end in the second end
state – that is, if we “cross over”. Likewise, g computes the function telling us whether we
will cross over from the second start state to the first end state. Intuitively, there is a low
(1/100) probability of crossing over, so the program behaves like two disjoint programs.

We will show that Lp(f) ≤ (12k+ 6)pα and Lp(g) ≤ (12k+ 6)pβ for p ≤ 1/(6k+ 3), from
which the result follows by choosing p such that Lp(f) ≤ α/2 and Lp(g) ≤ β/2.

The plan is as follows.
1. Show that we can partition the vertices of D into two sets with O(k) edges crossing

between the sets such that each layer has at least one vertex in each set. Intuitively, this
partitions D into two width-2 branching programs with a few edges going between them.
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2. Using this partition, show that we can write f(x) =
∑
s

∏
j fs,j(xj), where each fs,j is a

{0, 1}-valued function computed by a regular width-2 branching program, the product is
over O(k) terms and the xjs are a partition of x.

3. Let fs(x) =
∏
j fs,j(xj) and αs = E

U
[fs(U)]. Show that Lp(fs) ≤ (12k + 6)pαs for

p ≤ 1/(6k + 3). Then

Lp(f) ≤
∑
s

Lp(fs) ≤
∑
s

(12k + 6)pαs ≤ (12k + 6)pα.

The same holds for g, which gives the result. Formally, these steps proceed as follows. See
the full version of this paper for proofs of these lemmas.

Step 1

I Lemma 15. Let D be a 3OBP with at most k non-regular layers and width-2 in the first
and last layers of vertices. Suppose λ(D) ∈ [0.99, 1]. Then there is a partition of the vertices
of D such that each layer has at least one vertex in each side of the partition and there are
at most 2k + 1 layers with an edge that crosses the partition.

There are two possible start states in the first layer. We partition the vertices based on
whether they are more likely to be reached if we start at the first start state versus starting
from the second start state. The λ(D) ≥ 0.99 assumption tells us that this partition is very
strong, in the sense that most vertices are much more likely to be visited from one start state
than from the other. Consequently there are few edges crossing the partition.

Step 2

I Lemma 16. Let D be a length-d 3OBP with at most k non-regular layers and width-2
in the first and last layers of vertices. Suppose λ(D) ≥ 0.99. If f : {0, 1}n → {0, 1} is
the function computed by D, then we can write f(x) =

∑
s

∏
j fs,j(xj), where each fs,j is

computed by a regular width-2 ordered branching program and the xj’s are a partition of x
into at most 6k + 3 parts.

To prove this, we use the partition of Lemma 15. Intuitively, D is partitioned into two
width-2 branching programs. The problem is the O(k) layers where D is either non-regular
or there is an edge crossing the partition – call these critical layers. We condition on what
happens at the critical layers, which we can express with a width-2 program, and finally,
we express f by summing over all possibilities for what happens in the critical layers. The
product appears because we must use an AND that the event we are conditioning on is true.

Step 3

Now we have reduced the problem to analysing functions of a very simple form. We can use
the basic properties of width-2 branching programs to prove the following, which suffices to
prove Lemma 14.

I Lemma 17. Let f : {0, 1}n → {0, 1} be of the form f(x) =
∏
j∈[k] fj(xj), where the xjs

are a partition of x and each fj is computed by a width-2 ordered regular branching program.
Then Lp(f) ≤ 2kp · E

U
[f(U)] for any p ≤ 1/k.

APPROX/RANDOM’14
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4 The Pseudorandom Generator

Our main result Theorem 1 follows from plugging our Fourier growth bound (Theorem 4)
into the analysis of [32]. We include a general statement here for completeness:

I Theorem 18. Let C be a set of ordered branching programs of length at most n and width at
most w that is closed under restrictions and subprograms – that is, if B ∈ C, then B|t←x ∈ C
for all t and x and Bi···j ∈ C for all i and j. Suppose that, for all B ∈ C and k ∈ [n], we
have Lk(B) ≤ abk, where b ≥ 2. Let ε > 0.

Then there exists a pseudorandom generator Ga,b,n,ε : {0, 1}sa,b,n,ε → {0, 1}n with seed
length sa,b,n,ε = O

(
b · log(b) · log(n) · log

(
abwn
ε

))
such that, for any length-n, width-w, read-

once, oblivious (but unordered) branching program B that corresponds to an ordered branching
program in C,5 ∣∣∣∣∣

∣∣∣∣∣ E
Usa,b,n,ε

[
B[Ga,b,n,ε(Usa,b,n,ε

)]
]
− E
U

[B[U ]]

∣∣∣∣∣
∣∣∣∣∣
2

≤ ε.

Moreover, Ga,b,n,ε can be computed in space O(sa,b,n,ε).

To prove Theorem 1 we set C to be the class of all 3OBPs of length at most n. Theorem
4 gives a bound corresponding to a = poly(n) and b = O(logn). This gives the required
generator. The statements of Theorems 1 and 18 differ in that Theorem 18 bounds the error
of the pseudorandom generator with respect to a matrix-valued function, while Theorem 1
bounds the error with respect to a {0, 1}-valued function. These statements are equivalent
as the {0, 1}-valued function is simply one entry in the matrix-valued function.

The pseudorandom generator is formally defined as follows.

Algorithm for Ga,b,n,ε : {0, 1}sa,b,n,ε → {0, 1}n.
Parameters: n ∈ N, ε > 0.
Input: A random seed of length sa,b,n,ε.

1. Compute appropriate values of p ≤ 1/2b, ε′ = εp/14w log2(n), k ≥ log2
(
8an4w/ε′

)
,

δ ≤ ε′(p/2)2k, and µ ≤ ε′/2abk. 6

2. If n ≤ 320 · dlog2(1/ε′)e/p, output n truly random bits and stop.
3. Sample T ∈ {0, 1}n where each bit has expectation p and the bits are δ-almost

2k-wise independent.
4. If |T | < pn/2, output 0n and stop.
5. Recursively sample Ũ ∈ {0, 1}bn(1−p/2)c. i.e. Ũ = Ga,b,bn(1−p/2)c,ε(U).
6. Sample X ∈ {0, 1}n from a µ-biased distribution.
7. Output Select(T,X, Ũ) ∈ {0, 1}n.7

The analysis of this generator can be found in the full version of this paper.

5 That is, there exists B′ ∈ C and a permutation of the bits π : {0, 1}n → {0, 1}n such that B[x] = B′[π(x)]
for all x.

6 For the purposes of the analysis we assume that ε′, k, p, δ, and µ are the same at every level of recursion.
So if Ga,b,n,w,ε is being called recursively, use the same values of ε′, p, k, δ, and µ as at the previous
level of recursion. We pick values within a constant factor of these constraints.

7 Technically, we must pad Ũ with zeros in the locations specified by T (i.e. Ũi = 0 for i ∈ T ) to obtain
the right length.
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5 Further Work

Our results hinge on the fact that “mixing” is well-understood for regular branching programs
[8, 32, 26, 13, 37] and for (non-regular) width-2 branching programs [4]. We are able to use
random restrictions to reduce from width 3 to width 2 (Section 3.1), where we can exploit our
understanding of mixing (Section 3.2). Indeed, this understanding underpins most results for
these restricted models of branching programs.

What about width 4 and beyond? Using a random restriction we can reduce analysing
width 4 to “almost” width 3 – that is, Proposition 8 generalises. Unfortunately, the reduction
does not give a true width-3 branching program and thus we cannot repeat the reduction
to width 2. Moreover, we have a poor understanding of mixing for non-regular width-3
branching programs, which means we cannot use the same techniques that have worked for
width-2 branching programs.

Our results provide some understanding of mixing in width-3. We hope this understanding
can be developed further and will lead to proving Conjecture 3 and other results.

The biggest obstacle to extending our techniques to w > 3 is Lemma 12. The problem
is that the parameter λ(D) is no longer a useful measure of mixing for width-3 and above.
In particular, λ(D) > 1 is possible if E

U
[D[U ]] is a 3× 3 matrix. To extend our techniques,

we need a better notion of mixing. Using λ(D) is useful for regular branching programs
(it equals the second eigenvalue for regular programs), but is of limited use for non-regular
branching programs. Our proof uses a different notion of mixing – collisions: To prove
Proposition 8, we used the fact that a random restriction of a non-regular layer will with
probability at least 1/2 result in the width of the right side of the layer being reduced. This
is a form of mixing, but it is not captured by λ. Ideally, we want a notion of mixing that
captures both λ and width-reduction under restrictions.

Our proofs combine the techniques of Braverman et al. [8] and those of Brody and Verbin
[9] and Steinberger [36]. We would like to combine them more cleanly – presently the proof
is split into two parts (Proposition 8 and Lemma 12). This would likely involve developing a
deeper understanding of the notion of mixing.

Our seed length Õ(log3 n) is far from the optimal O(logn). Further improvement would
require some new techniques:

We could potentially relax our notion of Fourier growth to achieve better results. Rather
than bounding Lk(f), it suffices to bound Lk(g), where g approximates f :

I Proposition 19 ([14, Proposition 2.6]). Let f, f+, f− : {0, 1}n → R satisfy f−(x) ≤ f(x) ≤
f+(x) for all x and E

U
[f+(U)− f−(U)] ≤ δ. Then any ε-biased distribution X gives∣∣∣E

X
[f(X)]− E

U
[f(U)]

∣∣∣ ≤ δ + ε ·max {L(f+), L(f−)} .

The functions f+ and f− are called sandwiching polynomials for f . This notion of
sandwiching is in fact a tight characterisation of small bias [14, Proposition 2.7]. That is,
any function f fooled by all small bias generators has sandwiching polynomials satisfying
the hypotheses of Proposition 19.

Gopalan et al. [17] use sandwiching polynomials in the analysis of their generator for
CNFs. This allows them to set a constant fraction of the bits at each level of recursion
(p = Ω(1)), while we set a 1/O(logn) fraction at each level. We would like to similarly exploit
sandwiching polynomials for branching programs to improve the seed length of the generator.

A further avenue for improvement would be to modify the generator construction to
have Θ(1/p) levels of recursion, rather than Θ(log(n)/p). This would require a significantly
different analysis.

APPROX/RANDOM’14
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