
Improved Streaming Algorithms for Weighted
Matching, via Unweighted Matching
Michael Crouch and Daniel M. Stubbs

University of Massachusetts, Amherst, U.S.

Abstract
We present a (4 + ε) approximation algorithm for weighted graph matching which applies in
the semistreaming, sliding window, and MapReduce models; this single algorithm improves the
previous best algorithm in each model. The algorithm operates by reducing the maximum-weight
matching problem to a polylog number of copies of the maximum-cardinality matching problem.
The algorithm also extends to provide approximation guarantees for the more general problem
of finding weighted independent sets in p-systems (which include intersections of p matroids and
p-bounded hypergraph matching).

1998 ACM Subject Classification F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation – relations between models, F.1.2 [Computation by Abstract Devices]: Modes of Compu-
tation – online computation, G.2.2 [Discrete Mathematics]: Graph Theory – graph algorithms,
hypergraphs

Keywords and phrases Streaming Algorithms, Graph Matching, Weighted Graph Matching,
MapReduce, Independence Systems

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.96

1 Introduction

Finding large matchings (that is, sets of edges which do not have any endpoints in common)
is a pivotal problem in graph algorithms, and has seen significant recent work in a variety
of “big data” models. In particular, there has been a series of papers in the semi-streaming
graph model, where we have one-way read access to a stream of weighted edges, but have only
O(n polylogn) memory (enough to store only a sparse subgraph of the input). The paper
which first introduced this model [9] provided a 6-approximation algorithm for maximum
weighted graph matching. This was improved to a 5.828-approximation in [15]; a 5.585-
approximation in [17]; and finally the current best, a 4.911 + ε-approximation in [8]. Other
work has looked at maximum weighted matching in the MapReduce model [13] and the
sliding-window stream model [6], and has examined more general submodular-function
matching problems in the semistreaming model [2, 5].

We present an algorithm for maximum weighted matching which is applicable in all of
these models and which improves on the best known approximation guarantees in all of them.
Our algorithm also extends to a generalization of maximum weighted graph matching: the
problem of finding maximum-weight independent sets in p-systems. p-systems are a type
of independence system which generalize both matching on p-bounded hypergraphs and
intersections of p matroids.

Our algorithm works by reducing a single maximum weighted matching problem to
a number of unweighted matching problems, then combining the unweighted matchings
according to a simple greedy heuristic. The structure of our reduction is related to an
existing streaming algorithm for maximum weighted matching [8]. That algorithm partitions
incoming edges into multiplicatively-spaced weight classes; it maintains a separate greedy

© Michael Crouch and Daniel M. Stubbs;
licensed under Creative Commons License CC-BY

17th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’14) /
18th Int’l Workshop on Randomization and Computation (RANDOM’14).
Editors: Klaus Jansen, José Rolim, Nikhil Devanur, and Cristopher Moore; pp. 96–104

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Crouch and D.M. Stubbs 97

 Weight-
based

SubstreamsWeighted
Edges

Unweighted
Matching

Unweighted
Matching

Unweighted
Matching

Unweighted
Matching

Greedy
Merge Weighted

Matching

…
…

Figure 1 Block Diagram of the Weighted Matching Algorithm.

matching on the edges in each weight class. At the end of the stream, they greedily merge
the matchings from largest to smallest.

Rather than partitioning the edges into disjoint weight classes, our algorithm uses weight
classes that are unbounded above: classes that admit smaller-weight edges are supersets
of all of the “more exclusive” classes. The stronger relationship between different weight
classes created by this approach allows a more unified and global charging argument, giving
an improved approximation ratio and broader applicability, including to the case of more
general independence systems than just graph matchings.

In §2 we define our model more specifically and state our main results. In §3 we present
the algorithm. In §4 we summarize the improvements that our that our algorithm yields for
weighted matching and weighted independent set problems in the streaming, sliding window,
and MapReduce models. In §6 we comment on improvements for specific cases and outline
future work.

2 Definitions and Results

In this section, we define our model of “streaming reductions”; present our result for maximum
weighted graph matching; recall the definitions of p-systems; and state the extensions of our
results to p-systems.

2.1 Streaming Reductions
Our algorithm will operate by transforming a maximum-weight matching problem into a
polylogarithmic number of maximum-cardinality matching problems (Fig. 1). This is an
example of a class of reductions which we believe may be of particular interest in big data
models: Turing reductions which make a polylogarithmically-bounded number of queries and
which are “nonadaptive” (in the sense that the input to one query does not depend on the
output of any other query).

In this model, a reduction from problem A to problem B consists of processing the
input to problem A into the inputs to polylog instances of B; solving the B instances; then
processing the B outputs into the output to problem A. These models form a restricted class
of the approximation-preserving streaming reductions used in [4].1

1 Other papers introducing reductions in the streaming model defined many-one reductions between
decision problems via a generalization of string homomorphisms [3, 14]; it is not readily apparent how
to apply this work to approximation problems.

APPROX/RANDOM’14

98 Improved Streaming Algorithms for Weighted Matching, via Unweighted Matching

These reductions are natural choices for models where resources of interest are closed
under polylogarithmic blowup, including the semistreaming graph model. Requiring the
subproblems to be nonadaptive allows them to be easily parallelized. The resources used
by the preprocessing and postprocessing steps can be restricted to preserve the classes of
interest; in our case, the preprocessing step is merely testing the weight of each edge, and
the postprocessing step is a greedy merge. Many existing streaming algorithms operate by
reducing to polylog nonadaptive subproblems, including the precision sampling framework [1]
and Indyk/Woodruff Lp norm estimators [10].

We say that a reduction from A to B is p-approximate if, for any α ≥ 1, given an
α-approximate solution to each B subproblem we can generate an αp-approximate solution
to the A problem.

2.2 Main Result
Section 3 presents the proof of our main result:

I Theorem 1. There is a 2(1 + ε)-approximate nonadaptive Turing reduction from the
problem of maximum-weight matching to the problem of maximum-cardinality matching. The
reduction uses O(1

ε logn) copies of maximum-cardinality matching.

The reduction in Theorem 1 uses extremely minimal preprocessing (separating edges by
weight) and minimal postprocessing (performing a greedy merge of the edge sets).

Since greedy matching provides a 2-approximation to maximum-cardinality matching,
from Theorem 1 we immediately find:

I Corollary 2. We can perform a 4(1 + ε)-approximation to maximum-weight matching,
using O(1

ε logn) times the resources necessary to keep a greedy matching.

The consequences of Corollary 2 in specific models are described in Section 4.

2.3 Independence Systems
Our algorithm extends to a class of independence systems called p-systems. An independence
system is a pair (S, I) comprising a finite set S and a set I of subsets of S (the “independent
sets”) such that
1. ∅ ∈ I
2. For X ⊆ X ′, X ′ ∈ S ⇒ X ∈ S.
An independence system (S, I) is called a p-system if, for any A ⊆ S, the ratio between the
largest and smallest maximal independent subsets of A is at most p. Graph matching forms
a 2-system where S is the set of edges and where a set of edges is independent if no two
edges share an endpoint. More generally, p-hypergraph matching is a p-system, as is the
intersection of p matroids. For more detail on p-systems, see e.g. [11].

Given a p-system (S, I), the maximum-cardinality independent set problem is the problem
of finding an independent set with the largest number of elements. Given a weight function
w : S → R≥0, the maximum-weight independent set problem is the problem of finding an
independent set X ∈ I which maximizes

∑
x∈X w(x). These problems naturally extend the

problems of finding maximum matchings on unweighted or weighted graphs.
Section 3.1 shows that Thm. 1 extends to:

I Theorem 3. Let (S, I) be a p-system. Then there is a p(1 + ε)-approximate nonadaptive
Turing reduction from the problem of maximum-weight independent set on (S, I) to the
problem of maximum-cardinality independent set on (S, I). The reduction uses O(1

ε logn)
copies of maximum-cardinality independent set.

M. Crouch and D.M. Stubbs 99

From the definition of p-systems, a greedily maximized set is always a p-approximate
maximum cardinality matching. From Theorem 3 we thus immediately find:

I Corollary 4. We can perform a p2(1 + ε) approximation to maximum-weight independent
set on any p-system, using O(1

ε logn) times the resources necessary to greedily compute a
maximal independent set on that p-system.

The consequences of Corollary 4 in specific models are described in Section 4.

3 Algorithm

In this section we present a proof of Theorem 1.
Consider a graph G on vertex set V . Let n = |V |. Let the input E be a stream of edges

from V × V , where each e ∈ E is annotated with its weight w(e).
For i ∈ Z, we define substreams Ei, each containing all edges with weight above threshold

(1 + ε)i:

Ei , {e ∈ E | w(e) ≥ (1 + ε)i} (1)

Note that i can be negative, but we assume that the range of possible weights w(e) is
polynomially bounded in n, so that we only need to consider substreams for O(1

ε logn) values
of i.2

To perform the reduction, assume that for α > 1 we have for each Ei some matching
Ci ⊆ Ei which contains at least 1

α times as many elements as the maximum-cardinality
matching on Ei. We then greedily construct a matching T by considering the edges in Ci in
descending order of i, and at the end we output T . The top-level structure of the algorithm
is summarized in Figure 1.

Consider a fixed maximum-weight matching Opt on E. For each class Ei let Ti = T ∩Ei
be the set of edges output from Ei.

I Lemma 5. For each i, |Ti| ≥ 1
2α |Ei|.

Proof. For each class Ei let Opti be a maximum-cardinality matching on Ei. Our oracle
returns Ci with |Ci| ≥ 1

α |Opti|, and thus with |Ci| ≥ 1
α |Opt ∩ Ei|.

We greedily add as many edges as possible from Ci to Ti. Since Ti and Ci are both
matchings, each edge in Ti can share endpoints with at most two edges of Ci. Thus, as long
as |Ti| < 1

2 |Ci|, Ci contains at least one edge which is not adjacent to any edge yet in Ti.
The greedy merge can thus always add edges from Ci to Ti until |Ti| ≥ 1

2 |Ci|. Combining
with the above we then have |Ti| ≥ 1

2α |Opt ∩ Ei|. J

We now must argue that the cardinality constraint in Lemma 5 leads to the weight-based
approximation ratio in Theorem 1.

I Lemma 6. There exists a function f from Opt to T such that for each e ∈ Opt,
w(e) ≤ (1 + ε)w(f(e)) and for each t ∈ T , there are at most 2α edges e ∈ Opt such that
f(e) = t.

2 If we do not have this guarantee, we can keep track of the highest-weight edge seen so far, and discard
any items with less than 2ε/n times that weight. A matching made entirely of these discarded edges is
then at most an ε fraction of the output weight (since the weight we output is at least the weight of the
largest edge).

APPROX/RANDOM’14

100 Improved Streaming Algorithms for Weighted Matching, via Unweighted Matching

Proof. We define f inductively, considering Opt ∩Ei in descending order by i and picking
f(e) from among the elements of Ti that have fewer than 2α edges already associated with
them. This restriction will guarantee that f(e) is from at least as high a class as e, which
gives us that w(e) ≤ (1 + ε)w(f(e)). By Lemma 5 there are always enough elements in Ti to
avoid overcrowding.3 J

Lemma 6 leads immediately to a charging argument which proves Theorem 1: every edge
e ∈ Opt is an element of the preimage f−1(t) for some t, and for each t∑

e∈f−1(t)

w(e) ≤
∣∣f−1(t)

∣∣(1 + ε)w(t) ≤ 2α(1 + ε)w(t) (2)

so we have

w(Opt) =
∑
e∈Opt

w(e) =
∑

e∈f−1(t)
t∈T

w(e) ≤
∑
t∈T

2α(1 + ε)w(t) = 2α(1 + ε)w(T) (3)

3.1 Extension to p-Systems
The algorithm operates similarly for reducing maximum-weight independent sets in arbitrary
p-systems to copies of the problem of finding maximum-cardinality independent sets (The-
orem 3). Most of the proof is similar, with independent sets replacing matchings and with p
replacing the multiplicative factor 2. The equivalent of Lemma 5 is somewhat more involved
to prove:

I Lemma 7. For each i, |Ti| ≥ 1
αp |Ei|.

Proof. For each class Ei let Opti be a maximum-cardinality independent set on Ei; we
again consider an oracle which returns an independent set Ci of cardinality |Ci| ≥ 1

α |Opti| ≥
1
α |Opt ∩ Ei|.

Ei is a subset of a p-system and thus also forms a p-system. Now consider maximal
independent sets on Ci ∪Ti (recall Ci ∪Ti ⊆ Ei). We have that Ci is a maximal independent
set of size |Ci|. Thus, by the definition of p-systems, no maximal independent subset of
Ci ∪ Ti can have size less than 1

p |Ci|.
The greedy merge can thus always add elements from Ci until |Ti| ≥ 1

p |Ci|, yielding
|Ti| ≥ 1

αp |Opt ∪ Ei|. J

The remainder of the proof of Theorem 3 proceeds similarly to the proof of Theorem 1.

4 Extensions

The results of Corollaries 2 and 4 improve the best known algorithms for many matching
problems. These are summarized in Fig. 2.

Maximum weighted graph matching (MWM) has been studied in a variety of models;
the algorithm of Theorem 1 provides an approximation guarantee in any big data model
where we are capable of performing greedy matching on weight-based substreams of the data.
Several of these applications are explained below; each of these is an improvement of the
previous best results in these models.

3 In the case where 2α is fractional, we allow edges from Opt to be mapped “partially” to multiple edges
from T so long as this doesn’t result in more than 2α total Opt edges mapped to any edge of T .

M. Crouch and D.M. Stubbs 101

Problem Model Previous This Paper
MWM One-pass streaming 4.911 [8] 4
MWM One-pass sliding window 9.027 [6] 6
MWM MapReduce 8 [13] 4

3-MWM One-pass streaming 9.899 [5] 9
2-MWIS One-pass streaming 5.828 [2] 4
3-MWIS One-pass streaming 9.899 [2] 9

Figure 2 Approximation factor improvements over previous results. ε factors have been omitted.

The semi-streaming model (defined in [9]) allows one-way access to a stream of weighted
edges on a machine limited to O(n polylogn) memory. A series of papers has provided
improved approximation guarantees in this model [9, 15, 17, 8]; the current best is a 4.911 +
ε approximation [8]. Keeping a maximal matching in the semistreaming model is trivial (see
e.g. [9]) and the machine has enough memory space to store one maximal matching for each
of the O(logn) many weight classes, thus we find

I Corollary 8. There is a 4 + ε approximation algorithm for maximum weighted matching in
the semistreaming model.

Ashwinkumar 2011 [2] extended semistreaming matching algorithms to the more general
case of finding maximum-weight independent sets in p-intersection systems (p-MWIS);
this was further developed by Chakrabarti et al. 2013 to include weighted matching on
hypergraphs of degree p (p-MWM). Our algorithm improves their approximation ratio of
2(p+

√
p(p− 1)− 1 for the most practical p = 2 and p = 3 cases (see Figure 2).

I Corollary 9. There is a semistreaming algorithm for finding the Maximum-Weight Inde-
pendent Set on a p-system with approximation ratio p2 + ε.

I Corollary 10. There is a semistreaming algorithm for finding the Maximum-Weight Match-
ing on a degree p hypergraph with approximation ratio p2 + ε.

In the related semi-streaming “sliding window” graph model [7, 6], there is a fixed window
length L ∈ ω(n polylogn), and we are interested in maintaining (at all times) a maximum
matching over the most recent L edges. We are again limited to O(n polylogn) memory
space. In this model, only a 3 + ε approximation to unweighted matching is known [6], and
we thus find:

I Corollary 11. There is a 6 + ε approximation algorithm for maximum weighted matching
in the semi-streaming sliding window model.

The classMRC0 [12] is a theoretical model for MapReduce computations achievable with
a constant number of rounds. In this model, even though the edge set does not fit on any
individual processor, it is possible to find a maximal matching [13] (and thus a 2-approximation
of the maximum unweighted matching). This immediately yields an improvement over the
previous best-known 8-approximation algorithm for maximum weighted matching [13], with
no additional communication cost (since the merge can be performed on a single processor).

I Corollary 12. There is a constant-round 4 + ε approximation algorithm for maximum
weighted matching in the MapReduce modelMRC0.

APPROX/RANDOM’14

102 Improved Streaming Algorithms for Weighted Matching, via Unweighted Matching

1− ε

1− ε

1

1− ε

1− ε

1 1

Figure 3 Graph with output weight 1 and optimum matching weight 4− 2ε. In the weight class
[1,∞) the double-lined edge is remembered; in the weight class [1− ε,∞) the two single-lined edges
are remembered. The double-lined edge is output. The dashed edges are the optimum matching
(and are not remembered in either class).

5 Lower Bounds for Graph Matching

In this section we consider the case of maximum weighted graph matching, and we present
graph constructions which prove lower bounds on the approximation ratios achievable by our
algorithm. These constructions extend to a general family of techniques which also includes
previous weight-class-based approaches to maximum weighted matching.

The algorithm presented in §3 computes its output matching by performing a greedy
matching on remembered edges, in decreasing order of weight. Our analysis showed that
this was a (4 + ε)-approximation. In Fig. 3 we present a graph where the algorithm’s
approximation ratio is 4− 2ε, showing that our analysis is tight to within 1 + ε factors.

In the graph of Fig. 3, the greedy matching on the remembered edges has weight 1,
but the maximum weight matching on remembered edges has weight 2 − 2ε. In practice,
many applications may be able to spend the post-processing time necessary to find the
maximum-weight matching on the remembered edges (which are, after all, a sparse subgraph
of the original graph). An obvious question is whether this post-processing can provide a
stronger approximation guarantee.

The graph of Fig. 4 shows that our algorithm cannot achieve better than a 3.5 approxim-
ation, even when we output the maximum-weight matching on all of the remembered edges.
Only remembered edges are drawn. Edges arrive in increasing order by weight, with the
remembered edges appearing before other edges of the same weight. When the graph of Fig. 4
is extended upwards, any algorithm which uses greedy matchings on weight-based substreams
cannot do better than a 3.5-approximation, because it is incapable of remembering any
edge from Opt. This class of algorithms includes our algorithm and also the previous best
algorithm of [8].

6 Conclusion

For specific systems of interest, we may be able to obtain stronger approximation guarantees,
particularly by being more clever in our post-processing of memory. The case of one-pass
streaming algorithms for graph matching is of particular interest. An obvious improvement
to our algorithm is to calculate the maximum matching on all edges held in memory (via e.g.
the Blossom algorithm [16]) rather than performing a greedy matching on edges held. We
conjecture that this improvement yields a (3.5 + ε)-approximation, tight to the lower bound
shown in Fig. 4.

M. Crouch and D.M. Stubbs 103

4

8 8

4

2

6 6

2

1
3 3

1

4 48

6 6

42 2

3 3

21 1

Figure 4 A graph which, when extended upwards, approaches approximation ratio 3.5. The
dotted-line edges form the optimal matching, but are not remembered in any weight class. Solid
edges are remembered but not output; double-lined edges are remembered and output. These
remembered edges are produced by a stream where the edges arrive in order of increasing weight,
with to-be-remembered edges arriving first. The reader can verify that within each weight class, the
set of remembered edges is maximal.
On this graph, the output has weight 14, and the optimum matching has weight 48, for an
approximation ratio of ≈3.429. The graph can be extended upwards, with each new layer including
a single new output edge which decreases in weight by a power of 2; the approximation ratio quickly
approaches 3.5.

Since each edge in our stream may fall in multiple weight classes, we may need to update
Ω(logn) matchings to process each incoming edge, leading to an Ω(logn) sequential processing
time. In contrast, the previous best semistreaming algorithm [8] used non-overlapping weight
classes and required time O(1), but obtained a worse approximation ratio. The trade-off
between approximation quality and per-element processing time may be worth further study.

References

1 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via
precision sampling. FOCS, 2011.

2 B.V. Ashwinkumar. Buyback problem - approximate matroid intersection with cancellation
costs. In ICALP, pages 379–390, 2011.

3 Ajesh Babu, Nutan Limaye, J Radhakrishnan, and Girish Varma. Streaming algorithms
for language recognition problems. Theoretical Computer Science, 494:13–23, 2013.

4 Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In SODA, pages 623–632, January 2002.

5 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: Matchings,
matroids, and more. IPCO, 2014. To appear.

6 Michael Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. ESA, 2013.

7 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing, 31(6):1794, 2002.

APPROX/RANDOM’14

104 Improved Streaming Algorithms for Weighted Matching, via Unweighted Matching

8 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation
guarantees for weighted matching in the semi-streaming model. SIAM Journal on Discrete
Mathematics, 25(3):1251–1265, January 2011.

9 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207–
216, December 2005.

10 Piotr Indyk and David P Woodruff. Optimal approximations of the frequency moments of
data streams. In STOC, pages 202–208. ACM, 2005.

11 Thomas A Jenkyns. The efficacy of the “greedy” algorithm. Proceedings of the 7th South-
eastern Conference on Combinatorics, Graph Theory and Computing, pages 341–350, 1976.

12 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
MapReduce. In SODA, pages 938–948, 2010.

13 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a
method for solving graph problems in MapReduce. In SPAA, New York, New York, USA,
2011. ACM Press.

14 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized
expressions in the streaming model. In STOC, pages 261–270. ACM, 2010.

15 Andrew McGregor. Finding graph matchings in data streams. APPROX-RANDOM, 2005.
16 Silvio Micali and Vijay V. Vazirani. An O(sqrt(|V|) |E|) algorithm for finding maximum

matching in general graphs. In FOCS, pages 17–27, 1980.
17 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, pages

669–680, 2012.

	Introduction
	Definitions and Results
	Streaming Reductions
	Main Result
	Independence Systems

	Algorithm
	Extension to p-Systems

	Extensions
	Lower Bounds for Graph Matching
	Conclusion

