
Parameterized Complexity of Fixed-Variable
Logics
Christoph Berkholz1 and Michael Elberfeld2

1 RWTH Aachen University, Aachen, Germany
berkholz@cs.rwth-aachen.de

2 RWTH Aachen University, Aachen, Germany
elberfeld@cs.rwth-aachen.de

Abstract
We study the complexity of model checking formulas in first-order logic parameterized by the
number of distinct variables in the formula. This problem, which is not known to be fixed-
parameter tractable, resisted to be properly classified in the context of parameterized complexity.
We show that it is complete for a newly-defined complexity class that we propose as an analog
of the classical class PSPACE in parameterized complexity. We support this intuition by the
following findings: First, the proposed class admits a definition in terms of alternating Turing
machines in a similar way as PSPACE can be defined in terms of polynomial-time alternating
machines. Second, we show that parameterized versions of other PSPACE-complete problems,
like winning certain pebble games and finding restricted resolution refutations, are complete for
this class.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Parameterized complexity, polynomial space, first-order logic, pebble
games, regular resolutions

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.109

1 Introduction

The main goal of computational complexity theory is to distinguish between tractable and
intractable problems. In classical complexity theory tractable problems are those that can
be solved in polynomial time, whereas intractable problems require exponential time (most
notably NP-complete problems, but also problems complete for higher levels of the polynomial
hierarchy, PSPACE, and EXPTIME). In parameterized complexity theory, tractable problems
are in FPT and can be solved in time f(k) · nO(1), whereas intractable problems require a
running time of nf(k).

Beside distinguishing between just tractable and intractable problems, looking at different
levels of intractability for NP-hard problems (by comparing them with respect to polynomial-
time reductions) led to understanding the importance of the polynomial hierarchy as well
as polynomial-space, and exponential-time computations. Already during the incubation
of parameterized complexity theory different levels of parameterized intractability were
observed based on comparing problems with respect to fixed-parameter tractable reduction
(fpt-reductions). This turned into a flourishing research area where classes that were initially
defined in an adhoc way by considering yet unclassified problems and their closures under
fpt-reductions turned out to be definable using descriptive characterizations in terms of
first-order logic.

© Christoph Berkholz and Michael Elberfeld;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 109–120

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.109
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

110 Parameterized Complexity of Fixed-Variable Logics

Paper’s Issue. The class XP of parameterized problems that can be solved in time nf(k) is
the analog of EXPTIME in parameterized complexity as both classes contain all problems
of intractable running time. Indeed, it turned out that parameterizations of EXPTIME-
complete problems tend to be complete for XP [2, 3, 4]. Several classes are proposed as
parameterized analogs of PSPACE. This includes the classes AW[SAT] and AW[∗], which
both admit alternative characterizations in terms of model checking first-order formulas, as
well as AW[P], which can be defined based on deterministic Turing machines that access a
certificate containing blocks of existential (nondeterministic) bits and blocks of universal
(nondeterministic) bits. For all of these PSPACE-analogs the alternation used to solve
problems is bounded by a function in terms of the parameter. On the one side, the classes
defined in this way helped to classify parameterized versions of PSPACE-complete problems
where the parameter is used to bound the use of alternation. On the other side, problems
that result from more general parameterizations of PSPACE-complete problems resisted to be
classified using these classes. A prominent example is the problem of evaluating first-order
formulas. It is PSPACE-complete [18] in the classical setting, and known to be in XP when
parameterized by the number of distinct variables in the formula, but not known to be hard
for this class. The importance of the fixed variable fragments of first-order logic stems from
the fact that k-variable formulas can be evaluated in time nO(k). In addition, by reusing
the variables one has access to an unlimited number of quantifier alternations, which makes
this fragment much more expressive than fragments with bound quantifier depth. A similar
observation can be made for determining the winner in a classical acyclic pebble game and
finding linear depth resolution refutations of bounded width; their unparameterized versions
are shown to be complete for PSPACE in [14] and [3], respectively, but they are not complete
for known parameterized analogs of PSPACE as they require unbounded alternation.

Paper’s Contributions. We properly classify the parameterized complexity of these problems
by presenting the following contributions during the course of the present paper: (1) We
consider the closure under fpt-reductions of model checking first-order formulas parameterized
by the number of distinct variables in the formula and sort this class into the hierarchy of
known levels of parameterized intractability. (2) We prove that the newly defined class SXP,
which stands for shallow XP, has a natural characterization in terms of alternating Turing
machines (with unbounded alternation) in a similar way as PSPACE can be characterized in
terms of alternating polynomial time. For this result, we apply techniques from descriptive
complexity theory [13] to simulate the behavior of alternating machines using first-order
formulas. (3) We show that other PSPACE-complete problems are complete for this class
under fpt-reductions when parameterized in a natural and very general way. We first
simulate the model checking game for k-variable logic within the acyclic k + 2-pebble game
of Kasai, Adachi and Iwata, which was introduced to simulate PSPACE machines, to show
that the pebble game is complete for our new class when parameterized by the number of
pebbles. Afterwards, we use a known reduction from the acyclic pebble game to regular
resolution of bounded width to show that finding resolution refutations of linear depth
and width k is another PSPACE-complete problem that fits in our parameterized analog of
PSPACE when parameterized by the width. Interestingly, the pebble game and bounded
width resolution have more general versions that are EXPTIME-complete, classically, and
XP-complete, parameterized.

Paper’s Organization. The next section defines concepts and terminology related to param-
eterized complexity and first-order logic. The subsequent Sections 3, 4, 5 present, respectively,

C. Berkholz and M. Elberfeld 111

the definition of our newly proposed parameterized analog of PSPACE, a machine characteri-
zation for the class, and complete problems.

2 Background

The present section provides background from parameterized complexity and first-order logic
as well as establishes notation related to parameterized versions of model checking first-order
formulas. The used definitions and notations closely follow the book of Flum and Grohe [12];
see also this book for standard results in parameterized complexity mentioned below.

Parameterized complexity. A parameterized problem is a pair (P, κ) consisting of a (classi-
cal) problem P ⊆ {0, 1}∗ and a parameterization κ : {0, 1}∗ → {1}∗ that is polynomial-time
computable; we commonly denote it by p-κ-P . Given an instance x ∈ {0, 1}∗, we use the
shorthands n := |x|, its size, and k := |κ(x)|, its parameter. We denote by FPT the class of
parameterized problems (P, κ) that are solvable by a deterministic Turing machine (dtm)
whose runtime is at most f(k) · nO(1) for a computable function f : N→ N; (parameterized)
problems in FPT are fixed-parameter tractable. The class XP is defined like FPT, but using
time bounds nf(k). The deterministic time hierarchy theorem implies that FPT is a proper
subclass of XP.

An fpt-reduction from a parameterized problem (P,κ) to a parameterized problem (P ′,κ′)
is a mapping r : {0, 1}∗ → {0, 1}∗ that is computable by a dtm in time f(k) · nO(1) for a
computable function f : N→ N, such that for every x ∈ {0, 1}∗, we have (1) x ∈ P if, and
only if, r(x) ∈ P ′, and (2) |κ′(r(x))| ≤ |g(κ(x))| for some reduction-dependent function
g : {1}∗ → {1}∗. Given a parameterized problem (P ′, κ′), the closure of (P ′, κ′) under fpt-
reductions, denoted by [(P ′, κ′)]fpt, is the class of all problems (P, κ) with an fpt-reduction
from (P, κ) to (P ′, κ′). Later we study problems that are complete for XP or other complexity
classes of parameterized problems between FPT and XP. In all of these cases, completeness
is defined with respect to fpt-reductions.

First-order logic. We start to define the syntax and semantics of first-order logic: A
vocabulary τ is a nonempty and finite set of relation symbols Ri with arities arity(Ri) ∈ N. A
structure A over τ consists of a finite set A, its universe, and a relation RAi ⊆ Aarity(Ri) for
every relation symbol Ri of τ . Based on (element) variables xi, i ∈ N, first-order formulas
(fo-formulas) over a vocabulary τ are (1) atomic formulas xi = xj and (x1, . . . , xr) ∈ Ri,
and (2) composed formulas ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ, which are based on connectives, and ∃xi ϕ
and ∀xi ϕ, which are based on quantifiers. Given a structure A and a formula ϕ over the
same vocabulary τ , A satisfies ϕ if the usual model relation A |= ϕ holds. Two formulas ϕ
and ψ are equivalent if they are satisfied by exactly the same structures.

In order to define parameterized problems and complexity classes that are based on
first-order formulas, we define classes of formulas and parameters of formulas: First of all, we
only consider fo-formulas in negation normal form, whose ¬-connectives are immediately in
front of atomic formulas. This does not restrict the set of fo-formulas in the sense that every
fo-formula can be turned into an equivalent formula in negation normal form by recursively
applying the rules of De Morgan. We denote this set of formulas by fo. The quantifier
alternation depth of a formula ϕ, denoted by qad(ϕ), is the number of alternations from ∃-
to ∀-quantifiers on any root-to-leaf path in ϕ’s syntax tree plus 1; and plus 2 if the first
quantifier is ∀. For every t ∈ N, the class of formulas ϕ ∈ fo with qad(ϕ) = t is altt. A
formula ϕ is in prenex normal form if ϕ = Q1x1 . . . Q`x` ψ where the Qi are quantifiers and

FSTTCS 2014

112 Parameterized Complexity of Fixed-Variable Logics

ψ does not contain quantifiers. The class of all these formulas is prenex and, for every
t ∈ N, we set Σt := prenex ∩ altt. Let ϕ ∈ fo. We denote the number of distinct variables
of ϕ by var(ϕ). The size of ϕ, denoted by size(ϕ), is the total number of symbols used to
write down ϕ.

Model checking formulas. In order to consider vocabularies, structures, and formulas as
part of instances to computational problems, we encode them using binary strings in a
standard way as done in [12]. We write enc(τ) for the binary string encoding of a vocabulary
τ ; enc(A) and enc(ϕ) are used for the encoding of a structure A and a formula ϕ, respectively.
Given a class of first-order formulas C ⊆ fo, we denote by mc(C) the model checking problem
for formulas from C: A positive instance of mc(C) consists of an encoded vocabulary enc(τ)
as well as an encoded structure enc(A) and an encoded formula enc(ϕ) with (1) ϕ ∈ C, (2)
A and ϕ are both over τ , and (3) A |= ϕ. We consider parameterized versions of model
checking problems with respect to several classes of formulas in the following section, and
their closure under fpt-reductions.

3 Parameterized complexity of first-order logic

Previous studies (mainly subsumed by the book [12]) observed that the parameterized
complexity of model checking first-order formulas with respect to several classes of formulas
and parameterizations is not only interesting from the perspective of solving the problem,
but as a central concept to study parameterized intractability, itself. That means, model
checking formulas in fo-logic is commonly used to define levels of parameterized intractability,
which make up a candidate hierarchy of complexity classes between the, provably distinct,
classes FPT and XP.

A first family of classes are defined as analogs of NP in the parameterized setting: This
spans the W -hierarchy, with its frequently used first level W[1] := [p-size-mc(Σ1)]fpt [7, 9,
11], as well as W[SAT] := [p-var-mc(Σ1)]fpt [7, 16] and the class W[P], whose definition
equals the one of FPT except that the used deterministic Turing machines have access
to a nondeterministic certificate of f(k) · logn nondeterministic bits [7, 6]. These classes
are considered to be analogs of NP in the parameterized world since it is possible to
nondeterministically guess candidate solutions to, say, graph problems of a parameter-
bounded size, and verify the guessed solution. The computational power we have for the
verifying step depends on the particular class. Since we consider FPT as the lowest level, of
tractable problems, the classes are defined by taking the closure of these problems under
fpt-reductions.

In a similar fashion, parameterized analogs of the polynomial-time hierarchy (PH) are
defined based on formulas with constant alternations with the most prominent suggestion
being the A-hierarchy with levels A[t] := [p-size-mc(Σt)]fpt for t ∈ N [10, 11].

A third kind of classes are designed to be analogs of PSPACE in the parameterized
setting: In this case, not only existential, but also universal, nondeterminism is permitted;
still nondeterminism is bounded in terms of the parameter. The most powerful of these
classes is AW[P], which is defined as W[P], but this time the acceptance behavior of the
dtm depends on a length-(f(k) · logn) certificate containing both existential and universal
nondeterministic bits where the number of alternations is bounded by f(k). Classes that are
defined via a less powerful solution verification phase are AW[SAT] := [p-var-mc(prenex)]fpt
and AW[∗] := [p-size-mc(prenex)]fpt. All of the mentioned PSPACE-analogs are originally
defined in terms of Boolean circuits and propositional logic [1]; the definitions based on
machines and model checking first-order formulas are taken from [12, Chapter 8].

C. Berkholz and M. Elberfeld 113

While the parameterized approaches towards mirroring the behavior of PSPACE have
proven to be useful to classify a large number of problems, some problems remained unclassified
and, hence, not well understood. These are parameterized problems whose solutions are
based on existential and universally nondeterministic guesses, but where it seems not possible
to bound the nondeterministic guesses in terms of the parameter. Thus, the parameter seems
to play a different role for these problems. A prominent example of such a problem is model
checking first-order formulas that only use a fixed (parameter-bounded) number of distinct
variables. As the variables can be reused, the quantifier alternation does not depend on
the parameter. This observation leads us to defining the following parameterized analog of
PSPACE with unbounded alternations. In Section 4 we realize that the defined complexity
class has a characterization in terms of alternating Turing machines that is similar to XP,
but using shallow parallel computations; hence, we choose the name SXP with S standing for
“shallow”.

I Definition 1. SXP := [p-var-mc(fo)]fpt

The class SXP is contained in XP and contains AW[P]. Figure 1 shows the relations
between these and other classes from parameterized complexity mentioned above.

I Fact 2. SXP ⊆ XP

I Lemma 3. AW[P] ⊆ SXP

Proof Sketch. Let (P, κ) ∈ AW[P] via a dtm M running in time f(k)·nc for some computable
function f and constant c, and using nondeterministic certificates of length f(k) · logn of
existential and universal bits; with f(k) alternations. The first phase of our fpt-reduction
to p-var-mc(fo) reduces the problem of simulating the computation of M on length-n and
parameter-k instances to the circuit evaluation problem as described in [15] for the classical
class P. The second step replaces the task of evaluating the circuit by model checking a
constant-variable first-order formula that defines the evaluation problem for circuits (the
same approach is commonly used to show that model checking first-order formulas with
just 2 variables is complete for P). To also take the alternating certificate into account,
which is given to the dtm, our formula is enriched by existential quantifiers, which guess
existential bits, and universal quantifiers, which guess universal bits; this construction uses a
single quantifier to handle a length-(logn) substring of the certificate by first applying the
“k · logn”-trick (see [12, Corollary 3.13] for details) to the circuit. Both the circuit and the
formula can be constructed using an fpt-reduction. The number of variables used by the
formula is bounded by a function in the original parameter. J

4 Alternative Characterizations

The classes that are defined via model checking first-order formulas in the previous section
are all defined by first taking a prototypical model checking problem for first-order formulas
of a restricted syntax along with a parameter, which is the formulas size or number of distinct
variables. Then the closures of these problems under fpt-reductions are considered, which
captures certain kinds of parameterized intractable problems. The prototypical problems are
chosen in order to mirror the behavior of a classical class in the parameterized setting. In
this section we present an alternative characterization of SXP in terms of alternating Turing
machines. It shows how the behavior of the class SXP (of parameterized problems) parallels
the behavior of the class PSPACE (of classical problems).

FSTTCS 2014

114 Parameterized Complexity of Fixed-Variable Logics

analogs
of NP

analogs of PH

analogs of PSPACE

FPT

[p-size-mc(Σ1)]fpt
= [p-size-mc(alt1)]fpt
= W[1] = A[1]

[p-var-mc(Σ1)]fpt
= W[SAT]

W[P]

[p-size-mc(Σt)]fpt
= [p-size-mc(altt)]fpt
= A[t]

[p-var-mc(Σt)]fpt [p-size-mc(prenex)]fpt
= [p-size-mc(fo)]fpt
= AW[∗]

[p-var-mc(prenex)]fpt
= AW[SAT]

AW[P]

SXP
= [p-var-mc(fo)]fpt

XP

Figure 1 We have the following inclusions of parameterized complexity classes for every t ∈ N;
where C D indicates C ⊆ D for classes C and D. While FPT is commonly considered to be
the analog of P in parameterized complexity and XP is an analog of EXPTIME, there are several
suggestion to reflect the behavior of the classical classes NP, the levels of PH, and PSPACE. Our
suggestion for a parameterized version of PSPACE is based on parameterizing first-order model
checking via the number of distinct variables in formulas.

An alternating Turing machine (atm) M consists of a set of states Q that is partitioned
into a set of existential states Q∃ and a set of universal states Q∀. Its (nondeterministic)
transitions are encoded by a relation ∆ ⊆ Q × Σk × Q × Σk × {LEFT, RIGHT}k where
(q, σ1, . . . , σk, q

′, σ′1, . . . , σ
′
k, d1, . . . , dk) ∈ ∆ means that if M is in state q and reads the

symbol σi on tape i, for i ∈ {1, . . . , k}, then it can write the symbol σ′i on tape i, for
i ∈ {1, . . . , k}, and moves its heads as defined by the di. We consider only machines M that
halt on every computation path. The acceptance behavior of an atm is defined recursively
(without using accepting and rejecting states explicitly) as follows: A universal configuration
accepts if every immediate successor configuration accepts, an existential configuration accepts
if there exists an immediate successor configuration that accepts. M accepts an input if the
starting configuration accepts.

From the proof of the well known characterization from Chandra et al. [5] of polynomial
deterministic time in terms of alternating logarithmic space, we get the following alternative
definition of XP. This parallels the definition of EXPTIME in terms of atms using polynomial
space.

C. Berkholz and M. Elberfeld 115

I Fact 4. XP is the class of parameterized problems (P, κ) that are accepted by atms using
space at most f(k) · logn.

While for EXPTIME problems we do not hope to lower the run-time substantially by
using alternation, alternation speeds-up the solution of problems in PSPACE since it equals
the class of problems accepted by atms in polynomial time [5]. The following lemma states
that our proposed parameterized version of PSPACE has a similar behavior. Its problems can
be solved by atms using f(k) · logn space, but only running in f(k) · nO(1) time. The proof
of the lemma is based on a refined view on the PSPACE-completeness of model checking
first-order formulas [17, 18] as well as ideas from descriptive complexity theory [13].

I Theorem 5. SXP is the class of parameterized problems (P, κ) that are accepted by atms
using space at most f(k) · logn and running in time at most f(k) · nO(1).

Proof. We start to show how problems in SXP, which are fpt-reducible to p-var-mc(fo), can
be solved by (f(k) · logn)-space- and f(k) · nO(1)-time-bounded atms. Classical results from
Chandra et al. [5] imply that FPT is the class of parameterized problems (P, κ) accepted by
atms using space at most f(k)+O(logn). A similar fact holds for (f(k) ·nO(1))-time-bounded
dtms that compute reductions; in this case we consider the problem of deciding whether
a certain position in the output of the dtm contains a certain symbol. If the reduction is
computed in time f(k) · nO(1), then this problem can be decided by an atm using space
f(k) +O(logn). To finish the proof of the above claim, we (1) consider an atm that model
checks first-order formulas in space at most f(k) · logn and time at most f(k) · nO(1) with
respect to the number of distinct variables as the parameter, and (2) modify it to run the
above machine for the reduction whenever it wants to access an input symbol.

For the other direction, let (P, κ) be solvable by an atm M using time f(κ) · nc and
space f(κ) · logn for a computable function f : N → N and constant c on length-n inputs.
In order to describe the reduction’s construction we consider an input x ∈ Σ∗. We assume,
without loss of generality, that M alternates between existential and universal states in
each transition. That means, if we consider the start configuration as having time stamp 0,
configurations with an even time stamp are always existential and configurations with an
odd time stamp are always universal. Recall that a configuration C of M on input x consists
of the current state, the head positions on the input tape and on the working tape, and the
content of the working tape. Commonly a configuration is encoded as a (binary) string of
length at most cM + f(k) · logn where cM is a constant depending on M .

We present an fpt-reduction from (P, κ) to p-var-mc(fo). A first attempt for the reduction
is to construct the (acyclic) configuration graph GM (x) = (vert,edg) that contains all
possible configurations of M as vertices and (directed) edges representing transitions between
them. Moreover, the initial configuration is colored using a unary predicate I, and the
existential and universal configurations are colored using unary predicates exist and univ,
respectively. Then we state a formula ϕM that defines the acceptance behavior of atms,
which is an alternating reachability query, that run in time at most f(κ) · nc based on
the graph. While we only need a constant number of variables for the formula, the graph
considered in this reduction is too large to be constructible using an fpt-reduction since we
consider all possible 2cM +f(κ)·logn configurations.

To get an fpt-reduction, we trade number of variables of the formula for the size of the
constructed structure: Instead of constructing the graph explicitly, we modify the formula
ϕM to a formula ϕM ′ that not only defines the acceptance behavior of M , but also implicitly
the configuration graph. How to modify the formula as well as how to construct a structure
for this approach is described below.

FSTTCS 2014

116 Parameterized Complexity of Fixed-Variable Logics

Instead of constructing a configuration graph, the second version of our reduction produces
a logical structure A with universe U := {1, . . . , f(κ)·nc}. The only relation on these elements
is the bit predicate bit = {(i, j) | position i in bit-string enc(j) is 1}.

The formula ϕM uses variables to store pointers to whole configurations. In order to
avoid this, we encode configurations of M using substrings for a configuration’s state, head
position, and working tape content. To encode a configuration with the help of a formula’s
element variables, we replace each element variable x in ϕM by a group of variables consisting
of a single variable xstate to contain the index of the state (assuming that the input size is
large enough), a variable xin-head to encode the head position on the input tape, a variable
xwork-head to encode the head position on the work tape, and f(κ) variables xcontent-i to
encode the content of the ith length-logn block on the working tape. Finally, we replace
the predicate symbols that are used to access the edges and vertex colorings of the graph
by subformulas that define these predicates based on the predicate bit. The details of this
well-known approach from descriptive complexity are described in the book of Immerman [13].

Both the formula ϕ′M and the used structure can be constructed in time f(k) · nO(1),
and the number of variables used in ϕ′M is bounded in terms of the machine M and the
parameter of the input instance k. J

Based on translating the alternating Turing machines from Lemma 5 into circuits, it
is possible to get a characterization of SXP in terms of families of Boolean circuits that
are uniform (the building blocks of the circuits can be recognized, for example, by using
a parameterized version of the classical class ALOGTIME where the parameter is given in
an appropriate way to the uniformity machine). These circuits have size nf(k) and depth
f(k) · nO(1). Thus, their shape also supports our intuition that SXP is the right analog of
PSPACE in the parameterized setting.

5 Parameterized polynomial-space-complete problems

Kasai, Adachi and Iwata [14] introduced a simple pebble game to provide a combinatorial
characterization of different complexity classes by playing several variants of that game. An
instance of the pebble game consists of a set of nodes X, a set of start positions S ⊆ X for
k = |S| pebbles, a goal node γ ∈ X and a set R ⊆ X3 of rules which are triples of pairwise
distinct nodes. There are two players in the game, which alternately move a pebble on the
game board according to some rule (u, v, w) ∈ R: if there are pebbles on u and v but not on
w, then the corresponding player can move the pebble from u to w. One player wins the game
if he puts a pebble on the goal node or reaches a position where the other player is unable to
move. The game board is acyclic if the underlying dag with vertex set X and arcs (u,w),
(v, w) for all (u, v, w) ∈ R is acyclic. In the acyclic pebble game the game board is required
to be acyclic. It turns out that determining the winner in the pebble game is complete for
EXPTIME and determining the winner in the acyclic variant is PSPACE-complete [14]. If
one fixes the number of pebbles k, it is possible to determine the winner (in both variants) in
time nO(k). This can easily be verified as the game can be simulated by an alternating Turing
machine that uses O(k logn) space to store the current position of the pebbles. Adachi, Iwata
and Kasai [2] proved a corresponding lower bound in the non-acyclic case. They simulated
single-tape Turing machines of running time O(nk) within the (2k + 1)-pebble game and
used the time hierarchy theorem to obtain a lower bound of nΩ(k). As remarked by Downey
and Fellows [8] it follows that, parameterized by the number of pebbles, this problem is
XP-complete. Thus, the pebble game supports the intuition that natural parameterizations of

C. Berkholz and M. Elberfeld 117

EXPTIME-complete problems tend to be XP-complete. We show that the PSPACE-complete
acyclic variant is complete for SXP under the same parameterization.

I Theorem 6. Playing the pebble game on acyclic boards parameterized by the number of
pebbles is complete for SXP under fpt-reductions.

Proof. As the acyclic k-pebble game ends after a linear number of rounds, it can be simulated
by an alternating Turing machine in space O(k logn) and time O(n). Hence, this problem
is in SXP. For the other direction we reduce from p-var-mc(fo). Let ϕ be a k-variable
first-order formula and A be a structure with universe [n]. First, by allowing negation
everywhere in the formula, we eliminate conjunction and universal quantification. We reduce
the model checking problem to the acyclic (k + 2)-pebble game such that A |= ϕ if, and
only if, Player 1 wins the pebble game. We introduce a special node _ to be used as middle
vertex in the rules (u,_, w). At the beginning of the game there is a pebble on this node,
which cannot be moved during the game. The acyclic game board resembles the structure
of the formula. We use k pebbles to store the current assignment of the k variables and an
additional pebble to control which subformula is evaluated. For every subformula ψ of ϕ we
introduce a control node X[ψ] and in addition nodes X[ψ, x, v], for all variables x ∈ var(ϕ)
and elements v ∈ [n], to store assignments of the variables. These nodes serve as the basic
data structure on the game board. We define the rules and additional nodes by induction on
the structure of the formula to satisfy the following invariant.

For every subformula ψ(x1, . . . , xk), Player 1 wins from the pebble position (X[ψ],
X[ψ, x1, v1], . . ., X[ψ, xk, vk]) iff A |= ψ[v1, . . . , vk].

As the pebble game is symmetric with respect to the players it follows that if the current
pebble position is (X[ψ], X[ψ, x1, v1], . . ., X[ψ, xk, vk]) and it is Player 2’s turn, then Player 1
wins iff A 6|= ψ[v1, . . . , vk]. Initially, the k value pebbles are on the nodes X[ϕ, x1, v], . . .,
X[ϕ, xk, v] for an arbitrary element v and the control pebble is on X[ϕ]. Thus, by the
invariant above, Player 1 wins iff A |= ϕ.

Atoms: For the base case let ψ = R(xi1 , . . . , xir) be an atom. We introduce addi-
tional nodes Y [ψ, a1, . . . , ar] and Yp[ψ, xij , a1, . . . , ar] for every tuple (a1, . . . , ar) ∈ RA,
every variable xij , j ∈ [r] and p ∈ {1, 2}. There are rules (X[ψ],_, Y [ψ, a1, . . . , ar]) that
enable Player 1 to choose a tuple (a1, . . . , ar) from the relation RA that is consistent
with the assignment specified by the pebbles on the nodes X[ψ, xi, vi]. To check this
consistency both players are forced to use the following set of rules in the predefined or-
der. First Player 2 moves the pebble from Y [ψ, a1, . . . , ar] to Y1[ψ, xi1 , a1, . . . , ar] using
(Y [ψ, a1, . . . , ar],_, Y1[ψ, xi1 , a1, . . . , ar]). Then it is Player 1’s turn and both players al-
ternately move the pebble using the rules (Y1[ψ, xij , a1, . . . , ar], X[ψ, xij , aj], Y2[ψ, xij+1 ,

a1, . . . , ar]) and (Y2[ψ, xij+1 , a1, . . . , ar],_, Y1[ψ, xij+1 , a1, . . . , ar]) for j = 1, . . . , r − 1. Fi-
nally, there is a rule (Y [ψ, xir , a1, . . . , ar],_, γ) that allows Player 1 to pebble the goal. By
definition, this sequence of rules can be applied (and thus Player 1 wins the game as the
goal node γ is pebbled) if A |= ψ[v1, . . . , vk]. On the other hand, if A 6|= ψ[v1, . . . , vk], then
Player 1 gets stuck and Player 2 wins.

Disjunction: If ψ = ψ1 ∨ ψ2, then we have to ensure that from the pebble position
(X[ψ], X[ψ, x1, v1], . . . , X[ψ, xk, vk]) Player 1 can move to either (X[ψ1], X[ψ1, x1, v1], . . . ,
X[ψ1, xk, vk]) or (X[ψ2], X[ψ2, x1, v1], . . . , X[ψ2, xk, vk]). To make this decision, we introduce
nodes Xp[ψj], for p, j ∈ {1, 2}, and rules (X[ψ],_, X1[ψj]) and (X1[ψj],_, X2[ψj]) for
j ∈ {1, 2}. Thus, Player 1 can choose an j and move to X1[ψj]. Afterwards, Player 2 is
forced to move to X2[ψj]. It remains to copy the current assignment to the subformula, that

FSTTCS 2014

118 Parameterized Complexity of Fixed-Variable Logics

is, the players have to move the pebbles from X[ψ, x, v] to X[ψj , x, v]. We use nodes X[ψj , i]
for i ∈ [k + 1] to control this process. The first rule is (X2[ψj],_, X[ψj , 1]). For all v ∈ [n]
and i ≤ k there are rules (X[ψ, xi, v], X[ψj , i], X[ψj , xi, v]) for copying the value of xi and
(X[ψj , i], X[ψj , v, xi], X[ψj , i+ 1]) to move the control pebble. Both players must cooperate
and use these rules successively to move the pebbles from X[ψ, x, v] to X[ψj , x, v]. At the
end of this process the pebble position is (X[ψj , k + 1], X[ψj , x1, v1]), . . . , X[ψj , xk, vk]) and
it is Player 2’s turn. He is forced to use the final rule (X[ψj , k + 1],_, X[ψj]). This finishes
the description of the ∨-case.

Negation: Let ψ = ¬ψ′. We simulate negation by changing the role of both players. That
is, from the configuration (X[ψ], X[ψ, x1, v1], . . . , X[ψ, xk, vk]) where it is Player 1’s turn we
want to force both players to reach the configuration (X[ψ′], X[ψ′, x1, v1], . . . , X[ψ′, xk, vk])
where it is Player 2’s turn. Changing is role of the players is rather easy as we just have to
introduce a dummy rule (X[ψ],_, X[ψ′]) to force one move of the control pebble. Afterwards
the players have to move the assignment pebbles from X[ψ, x, v] to X[ψ′, x, v]. This copy
process can be done in the same deterministic way as described in the ∨-case.

Existential quantification: Let ψ = ∃xjψ′. To model the existential quantifier we have
to ensure that from a pebble position (X[ψ], X[ψ, x1, v1], . . . , X[ψ, xj , vj]), . . . , X[ψ, xk, vk])
Player 1 can choose an element w ∈ [n] and reach the new position (X[ψ′], X[ψ′, x1, v1],
. . ., X[ψ′, xj , w]), . . ., X[ψ, xk, vk]). Copying the values of xi for i 6= j (moving the peb-
bles from X[ψ, xi, vi] to X[ψ′, xi, vi]) can be done in the same way as in the previous
cases. Hence, we end up with a configuration where it is Player 1’s turn and the peb-
bles are on X[ψ′, xi, vi] (i 6= j), X[ψ, xj , vj], and the control pebble is on an additional
node X0[ψ]. To change the value of xj we use the following construction. Let X1[ψ] and
X2[ψ] be two additional nodes. There is a rule (X0[ψ],_, X1[ψ]) and for every v ∈ [n]
we add the following three rules: (X[ψ, xj , v], X1[ψ], X2[ψ]), (X1[ψ], X2[ψ], X[ψ′, xj , v]),
(X2[ψ], X[ψ′, xj , v], X[ψ′]). First, Player 1 moves the pebble from X0[ψ] to X1[ψ]. After-
wards, Player 2 is forced to move the pebble from X[ψ, xj , vj] to X2[ψ]. Now Player 1 can
choose some w ∈ [n] and move the pebble from X1[ψ] to X[ψ′, xj , w]. The last move is done
by Player 2, who is forced to move the pebble from X2[ψ] to X[ψ′]. J

Another example that shifts the correspondence between EXPTIME and PSPACE in the
classical world to XP and SXP in the parameterized setting is resolution. Resolution is a
well-known and intensively studied proof system to detect the unsatisfiability of a given
formula in conjunctive normal form. Starting with the clauses from the cnf formula one
iteratively derives new clauses using only one simple rule: The resolution rule for a variable X
takes two clauses γ∪{X}, δ∪{¬X} and resolves γ∪δ. The given cnf formula is unsatisfiable
if, and only if, the empty clause can be derived. The width of a refutation is the maximal
number of literals in every clause of the derivation. A resolution derivation can naturally
be viewed as a directed acyclic graph (dag) where the nodes are labeled with clauses and
arcs pointing from the resolvent to its parents. The depth of a refutation is the length of the
longest path in the corresponding dag. If on every path in this derivation dag no variable has
been used twice by the resolution rule, then the derivation is regular. Note that the depth of
every regular resolution refutation is at most linear in the number of variables, thus linear
depth resolution generalizes regular resolution.

A resolution refutation of width k can be found be an alternating O(k logn)-space Turing
machine as follows: In each step, the machine stores one clause (using k logn bits) and tries
to justify that this clause can be derived. Starting from the empty clause, the machine
existentially guesses its parents and then universally chooses a parent to justify that it can
be derived. The machine accepts the input, if the current clause is from the cnf formula

C. Berkholz and M. Elberfeld 119

Table 1 To compare the correspondence between tractable and intractable in classical and
parameterized complexity we denote by poly and exp polynomial and exponential growth, and by fpt
and xp growth of the form f(k) · nO(1) and nf(k), respectively.

Alternating
Turing
machines

EXPTIME Alternating PSPACE machines of exp running time.
PSPACE Alternating PSPACE machines of poly running time.
XP Alternating SPACE(f(k) log n) machines of xp running time.
SXP Alternating SPACE(f(k) log n) machines of fpt running time.

Pebble games

EXPTIME Pebble game.
PSPACE Acyclic pebble game.
XP Pebble game, parameter: the number of pebbles.
SXP Acyclic pebble game, parameter: the number of pebbles.

Resolution

EXPTIME Bounded width resolution.
PSPACE Bounded width linear depth resolution.
XP Bounded width resolution, parameter: the width.
SXP Bounded width linear depth resolution, parameter: the width.

and rejects after (2n)k steps (which upper bounds the depth of width-k refutations). If
we additionally require the depth to be linear, the alternating machine is able to find a
refutation of width k in linear time. It follows that finding resolution refutations of width
k is in EXPTIME, if k is part of the input, and in XP, if k is the parameter. Furthermore,
finding linear depth refutations of width k is in PSPACE, if k is part of the input, and in
SXP, if k is the parameter. By reducing the pebble game to bounded width resolution [3] it
was shown that the corresponding problems are complete for EXPTIME, XP and PSPACE.
We now show that the same reduction, stated in Fact 7, can be used to show that finding
linear depth resolution refutations of bounded width is SXP-complete.

I Fact 7 ([3]). There is an fpt-reduction that takes an instance of the k-pebble game and
produces a 3-cnf formula Γ such that Player 1 wins the k-pebble game iff Γ has a resolution
refutation of width k + 1. If in addition the game board is acyclic, then Γ has a regular
resolution refutation of width k + 1.

I Lemma 8. Finding linear depth resolution refutations of width k is complete for SXP.

Proof. We already have observed that this problem is contained in SXP. Note that the
reduction stated in Fact 7 reduces the parametrized acyclic pebble game to parameterized
linear depth resolution, as every regular refutation has always linear depth. By Theorem 6 it
follows that finding linear depth refutations is complete for SXP when parameterized by the
width. J

6 Conclusion

We placed the model checking problem for fixed variable first-order logic within the hierarchy
of intractable problems in parameterized complexity. As a consequence we exhibited a new
parameterized complexity class, SXP, that corresponds to PSPACE in the same way as XP
corresponds to EXPTIME. To support this intuition we gave characterizations in terms
of alternating Turing machines, pebble games, and resolution refutations. The results are
summarized in Table 1.

FSTTCS 2014

120 Parameterized Complexity of Fixed-Variable Logics

References
1 Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter

tractability and completeness IV: On completeness for W[P] and PSPACE analogues. An-
nals of Pure and Applied Logic, 73(3):235–276, 1995.

2 Akeo Adachi, Shigeki Iwata, and Takumi Kasai. Some combinatorial game problems require
Ω(nk) time. J. ACM, 31:361–376, March 1984.

3 Christoph Berkholz. On the complexity of finding narrow proofs. In Foundations of Com-
puter Science, IEEE Annual Symposium on, pages 351–360, Los Alamitos, CA, USA, 2012.
IEEE Computer Society.

4 Christoph Berkholz. Lower bounds for existential pebble games and k-consistency tests.
Logical Methods in Computer Science, 9(4), 2013.

5 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

6 Yijia Chen, Jörg Flum, and Martin Grohe. Machine-based methods in parameterized
complexity theory. Theoretical Computer Science, 339(2–3):167–199, 2005.

7 R. Downey and M. Fellows. Fixed-parameter tractability and completeness I: Basic results.
SIAM Journal on Computing, 24(4):873–921, 1995.

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

9 Rodney G. Downey, Michael R. Fellows, and Ken Regan. Descriptive complexity and the
W-hierachy. In Proof Complexity and Feasible Arithmetic, volume 39 of AMS-DIMACS,
pages 119–134. AMS, 1998.

10 Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-
checking. SIAM J. Comp., 31(1):113–145, 2001.

11 Jörg Flum and Martin Grohe. Model-checking problems as a basis for parameterized in-
tractability. Logical Methods in Computer Science, 1(1), 2005.

12 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
13 Neil Immerman. Descriptive complexity. Springer, New York, 1999.
14 Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete

problems. SIAM J. Comput., 8(4):574–586, 1979.
15 Richard E Ladner. The circuit value problem is log space complete for P. SIGACT News,

7:18–20, 1975.
16 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.

Journal of Computer and System Sciences, 58(3):407–427, 1999.
17 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–

22, 1976.
18 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC 1982),
pages 137–146. ACM, 1982.

	Introduction
	Background
	Parameterized complexity of first-order logic
	Alternative Characterizations
	Parameterized polynomial-space-complete problems
	Conclusion

