Generalized Data Automata and Fixpoint Logic*

Thomas Colcombet and Amaldev Manuel

LIAFA, Université Paris-Diderot
{thomas.colcombet, amal}@liafa.univ-paris-diderot.fr

—— Abstract

Data w-words are w-words where each position is additionally labelled by a data value from an
infinite alphabet. They can be seen as graphs equipped with two sorts of edges: ‘next position’
and ‘next position with the same data value’. Based on this view, an extension of Data Automata
called Generalized Data Automata (GDA) is introduced. While the decidability of emptiness of
GDA is open, the decidability for a subclass class called Biichi GDA is shown using Multicounter
Automata. Next a natural fixpoint logic is defined on the graphs of data w-words and it is shown
that the p-fragment as well as the alternation-free fragment is undecidable. But the fragment
which is defined by limiting the number of alternations between future and past formulas is shown
to be decidable, by first converting the formulas to equivalent alternating Biichi automata and
then to Biichi GDA.

1998 ACM Subject Classification F.4.1 Mathematical Logic
Keywords and phrases Data words, Data Automata, Decidability, Fixpoint Logic

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2014.267

1 Introduction

Data words are words that can use symbols ranging over an infinite alphabet of ‘data values’
Data values are meant to be tested for equality only. Hence, one is typically interested in
languages such as ‘no data value appears twice’, or ‘all consecutive data values in the word
are distinct’, etc. We can already see in these examples one specificity of data words, which
is that the exact domain of data values does not matter, and these can be permuted without
affecting the membership to a language.

Data values are particularly interesting in several modelling contexts. In particular, data
values can be understood as identifiers in a database. The exact content of an identifier does
not really matter. What is interesting is to be able to refer easily to the other places in
the database/document where this identifier occurs. Another situation in which the data
abstraction particularly makes sense is when considering the log of a system, say a server [1].
Such a log is a sequence (potentially infinite) of events that are generated by the different
clients. The events produced by the various clients can be interleaved in any manner. Hence,
a standard language theoretic approach does not help in verifying meaningful properties
of such a log. Indeed, if the events of the sequence are anonymous — in the sense that the
identity of the client that has produced it is not retained — then the interleaving obfuscates
all relevant behavior of a specific client. Data languages, by annotating each action in this
sequence by the unique identifier (the data) representing the client that has produced this
action, give access to much more precise information. An interesting way to analyze the
structure of the log is then the ability to navigate in its structure. Properties that we are

* The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 259454.

© Thomas Colcombet and Amaldev Manuel;

37 licensed under Creative Commons License CC-BY
34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S.P. Suresh; pp. 267-278

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.267
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

268

Generalized Data Automata and Fixpoint Logic

interested to express would typically consists of combinations of queries such as ‘what is
the next event in the log?’, ‘what is the next event in the log generated by the same user?’,
‘what is the last event that the client has generated?’, ‘has this client ever generated a given
event before?’; etc.

There are many different formalisms for describing properties of data words, i.e., for
defining data languages. They include Data Automata [3], Register Automata [13, 7], Pebble
Automata [17], Class Memory Automata [1], Class Automata [4], Walking Automata [16],
Variable Automata [11], First-Order logic with two variables [3], Monadic Second Order logic
[5], DataLTL [14], Freeze-LTL [7] and Freeze-y [12], Logic of Repeating Values [6], XPath
[8, 9], Regular expressions [15], Data Monoids [2], among others. As opposed to the case
of the classical theory of regular languages, none of these formalisms can be considered to
be a faithful data word counterpart of the notion of regular languages. This is due to the
fact that undecidability arises very quickly in this context, and that many formalisms that
turn out to be equivalent for standard words happen to have distinct expressiveness in the
case of data words (a typical example is — data monoids [2], deterministic register automata
and non-deterministic register-automata [13], that all have different expressiveness). In
this contribution we are more interested in the kind of formalisms following the temporal
logic approach. Temporal logics (LTL, CTL, CTL* and the p-calculus) are formalisms that
can describe properties of graphs (Kripke structures), by using operators that ‘walk’ in the
structure, and can use all the Boolean connectives. This approach is particularly suitable for
instance when one is interested in analysing the log of a system as described above: basic
walking constructs are ‘go to the next event’, ‘go to the next event of the same client’, ‘go to
the previous event’, and ‘go to the previous event of the client’. More complex properties have
also to be expressible such as ‘go to the first event generated by the client’. Such advanced
navigation can be achieved either using dedicated constructs (such as the ‘since’ and ‘until’
modalities of LTL), or using explicit fixpoints as done in p-calculus. In practice, a data
word consists of a linear order of positions together with an equivalence relation expressing
that two given positions in the word carry the same data values (i.e., a binary relation that
expresses that two events were generated by the same client). The walking modalities are
then ‘next’; ‘previous’ (that we call the global modalities), ‘next in the same class’, and
‘previous in the same class’ (that we call the class modalities).

Formalisms that describe properties of data languages using temporal logics have been
introduced in [7] and [14]. These two incomparable formalisms, namely DataLTL and Freeze-
LTL, are related to two well-studied notions of automata, respectively Data Automata [3]
and Register Automata[13, 7]. The logic in this paper is a notion along the lines of DataLTL.
It is subsumed by Freeze-u (which is undecidable over data w-words) and is incomparable
with the logics in [7, 6]. DataLTL is equipped with the four modalities described above, as
well as until and since operators that can be used either with respect to global modalities
or class modalities. Satisfiability of this logic is decidable by reduction to the decidability
of the emptiness of Data Automata. This work was itself a continuation of another one [3]
in which the satisfiability of first-order with two variables is shown, and Data Automata
are introduced for this purpose. Though this logic is not syntactically a temporal logic, its
behavior is in fact the one of a temporal logic.

Contribution. Our contributions are two fold. First, we introduce a generalization of Data
Automata, called Generalized Data Automata. While the emptiness problem of GDA is
open, we prove the decidability of a subclass of automata, namely the class of Biichi GDA
via a reduction to Multicounter Automata. Secondly we generalize the notion of DataLTL by

T. Colcombet and A. Manuel

introducing a natural fixpoint logic. It is shown that the u-fragment, as well as alternation-
free fragment, of this logic is undecidable. For this reason, we restrict our attention to
the class of formulas in which the alternation between backward and forward modalities is
bounded (this can be syntactically enforced very easily). It is shown that the satisfiability of
the alternation-free fragment of this subclass is decidable by first translating the formula
into an alternating automaton and then by simulating the alternating automaton by a Biichi
GDA using games.

Organization of the paper. In Section 2 we introduce the basics of data w-words and
languages. In Section 3 we introduce generalized data automata and discuss their closure
properties and subsequently prove the decidability of the emptiness problem for Biichi
GDA. In Section 4 we define p-calculus on data words and introduce the bounded-reversal
alternation-free fragment. We then introduce alternating parity automata and prove the
simulation theorem, which is followed by the decidability of the bounded reversal alternation-
free fragment. Finally in Section 5 we discuss future work and conclude.

2 Data w-words and Data Automata

We begin by recalling the basics of data words and Data Automata. Let 3 be a finite alphabet
of letters and D be an infinite set. The elements of D, often denoted by di,ds, etc., are
called data values. A data word is a finite sequence of pairs from the product alphabet ¥ x D.
Likewise a data w-word is a sequence of length w of pairs from ¥ x D. A data language is a
set of data words and likewise a data w-language is a set of data w-words.

We recall some standard notions related to data words. Let w= (a1, d1)(az,dz2).. .(an,dn)
be a data word. The data values impose a natural equivalence relation ~ on the positions
in the data word, namely positions ¢ and j are equivalent, i.e. i ~ j, if d; = d;. An
equivalence class of the relation ~ is called simply a class. The set of all positions in a data
word is partitioned into classes. The global successor and global predecessor of a position
i are the positions i + 1 and ¢ — 1 respectively (if they exist). For convenience we use g(7)
and g~ !(i) to denote the global successor and global predecessor of position i. The class
successor of a position ¢ (if it exists), denoted as ¢(7), is the leftmost position after ¢ in its
class. Symmetrically class predecessor of a position i (if it exists), denoted as ¢1(i), is the
rightmost position before i in its class. These notions are naturally extended to the case of
data w-words.

To simplify the discussion we assume that all classes in a data w-word are infinite. This
assumption is similar to the one on infinite trees (that all maximal paths are infinite); by
this assumption global successor and class successor relations become total functions. All
the results presented later hold without this proviso as well.

Next we recall the notion of Data Automaton (DA for short) introduced in [3]. Originally
it is formulated as a composition of two finite state automata. The definition here follows
an equivalent presentation due to [1]. Intuitively it is a finite state machine that reads
input pairs from ¥ x D and updates the state as follows. During the run the state after
reading the pair at position ¢ depends on the state at the class predecessor position of i
in addition to the state and input letter at the position 7. Formally a Data Automaton
A is a tuple (Q,X,A,I, F,, F,;) where @ is a finite set of states, ¥ is the finite alphabet,
ACQx(QU{L}) x X x Q is the transition relation, I is the set of initial states, F is the
set of class Biichi states, and Fj; is the set of global Biichi states.

Next we define the run of a Data Automaton. A run p € (Q X D)% of the automaton

269

FSTTCS 2014

270

Generalized Data Automata and Fixpoint Logic

A on a data w-word w = (a1,d1)(az,ds) ... is a relabelling of w by the states in @, i.e.
p=(q1,d1)(g2,dz) ... such that the tuple (qo, L,a1,q1) is a transition in A for some ¢ € T
and, for each position ¢ > 1 with a class predecessor, say j, the tuple (gi—1,¢;,ai,¢) is
a transition in A, otherwise if ¢ > 1 does not have a class predecessor, then the tuple
(¢i—1,L,a4,q;) is in A. The run p is accepting if there is a global Biichi state that occurs
infinitely often in the sequence ¢1qs ..., and for every class {i1,i2,...} there is a class Biichi
state occurring infinitely often in the sequence g¢;, i, The data w-word w is accepted if
the automaton A has an accepting run on w. The set of all data w-words accepted by the
automaton A is called the language of A.

3 Generalized Data Automata

In this section we introduce a generalization of Data Automaton. For this purpose we view
a data w-word as a directed graph with positions as vertices and the global successor and
class successor relations as edges. For convenience we refer to these edges as global and class
edges. Since both global successor and class successor relations are functions any path in this
graph is completely specified by the starting position and a sequence over the alphabet {g, c}
denoting which edge is taken. Formally a path m = ejes...e, € {g,c}* from the position i
connects the sequence of vertices i, e1 (%), ea(e1(i)),...en(...e1(7)). Similarly an infinite path
is an w-sequence over the alphabet {g, c}.

A given run of the Data Automaton is accepted or rejected based on two w-regular
conditions; one on the global path (composed only of global edges) and one on each class
(composed only of class edges). Next we introduce a generalization of Data Automaton where
an w-regular condition is checked on all paths.

First we need the following definition. Let w = (aj,d1)(az,ds2) ... be a data w-word
and ™ = ejey... € {g,c}* be an infinite path starting from the first position. Let ig =
1,41,12,13,... be the sequence of positions that lie along the path m. The path projection of
the data w-word w w.r.t. the path 7 is the w-word a;,a;, ai, The marked path projection
of the data w-word w w.r.t. the path 7, denoted as mpp,, (7) € (X x {e,g,c})”, is obtained
by annotating the path projection of w w.r.t. @ by the path 7, that is to say

amie= () () (5)-

Next we introduce the notion of Generalized Data Automaton that has the same transition
structure as that of a Data Automaton but a more general acceptance criterion. A generalized
data automaton A (for short GDA) A is a tuple (Q, 3, A, I, L) where @ is the finite set of
states, ¥ is the finite alphabet, A C Q x (QU {L}) x ¥ x @ is the transition relation, and I
is the set of initial states and L C (Q x {¢,g,c})” is an w-regular language.

Given a data w-word w = (a1,d1)(ag,ds2) ... arun p € (Q x D)* of the automaton A
on w is a relabelling (q1,d1)(q2,ds2) ... of w with states in @ that obeys all the consistency
conditions as in the case of Data Automaton. The only difference is in the criterion of
acceptance. The run p is accepting if for all paths 7 in the data w-word p, the marked path
projection mpp p<71') is in L. The set of all data w-words on which A has an accepting run is
called the language of A.

The definition of GDA presented above is not concrete, however the acceptance criterion
L can be presented as a Biichi automaton which we recall next. A Biichi automaton B is a
tuple (S, A, T, $in, G) where S is a finite set of states, A is the input alphabet, T C S x A x S
is the transition relation, s;, is the initial state and G is the set of Biichi states. A run r

T. Colcombet and A. Manuel

of the automaton B on an w-word ajas ... € A¥ is a sequence of states sps; ... € Q¥ such
that so = s, and for each ¢ € N the tuple (s;_1,a;,s;) is a transition in 7. The run r is
accepting if there is a state in G that occurs infinitely often in it. To finitely present the
GDA A it is enough to provide a Biichi automaton over the alphabet Q X {e, g,c} that
accepts the language L. Next we introduce an important subclass of GDA, namely the class
of Biichi GDA. A Biichi GDA is a special case of GDA where the acceptance criterion L
is an w-regular language that is furthermore accepted by a deterministic Biichi automaton;
a deterministic Biichi automaton is a Biichi automaton whose transition relation 7' is a
function, i.e. T : S x A — S. By definition Biichi GDA are subsumed by GDA. Our next
lemma says that for every Data Automaton there is an equivalent Biichi GDA (hence a GDA
as well).

» Lemma 1. For every Data Automaton there is an equivalent Biichi GDA.

In the following we briefly discuss the closure properties of GDA and Biichi GDA. The
class of data languages accepted by Data Automata are closed under union, intersection (but
not under complementation). The class of languages accepted by GDA and Biichi GDA also
exhibit similar closure properties. The union of two GDA (as well as Biichi GDA) accepted
languages is recognized by the disjoint union of the respective (Biichi) GDA. Closure under
intersection is by usual product construction. (Both GDA and Biichi GDA are not closed
under complementation, this follows from the fact that over finite data words GDA are
equivalent to Data Automata.)

Two additional closure properties that are relevant for GDA (as well as for DA) are the
closure under renaming and closure under composition which we recall now. For a map
h:¥ — T and a data w-word w over ¥ x D, the renaming of w under h, denoted as h(w), is
obtained by replacing each letter a € ¥ occurring in w by h(a). For a language L of data
w-words over ¥ X D, the renaming of L under h, in notation h(L), is simply the set of all
renamings h(w) of each word w € L.

Assume A, B, C are letter alphabets. A GDA over the alphabet (A x B) x D can be
thought of as a machine that reads a data w-word over the alphabet A x D and applying
a labelling of each position by a letter from the set B. In other words the machine can
be thought of as a letter-to-letter transducer. The composition of languages correspond
to the operation of cascading (feeding the output label of one machine into the input of
another) the respective automata. Let L and Ly be two data w-languages over the alphabets
(A x B) x D and (B x C) x D respectively. The composition Comp(L1, Ls) of L1 and
L is the set of data w-words ((a1,¢1),d1), ((az,¢2),d2) ... over the alphabet (A x C) x D
such that there exists a data w-word ((a1,b1),d1), ((az,b2),d2)... € (AXx B) x D in Ly and
((b1,c1),d1), ((ba,¢2),d2) ... € (BxC)xDin Ly. The closure of GDA and Biichi GDA under
renaming and composition can be shown by standard constructions (renaming of transitions
and product construction respectively) as in the case of finite state automata. The following
lemma summarizes the closure properties discussed above.

» Lemma 2. GDA as well as Biichi GDA are closed under union, intersection, renaming
and composition.

3.1 Emptiness of Biichi GDA

The rest of this section is devoted to the emptiness problem of GDA, namely is the language
of a given GDA empty?. We don’t know if the emptiness of GDA is decidable. However, by
extending the decidability proof of emptiness problem of Data Automata it can be shown

271

FSTTCS 2014

272

Generalized Data Automata and Fixpoint Logic

that the emptiness problem for Biichi GDA is decidable. As in the case of Data Automata
[3], the emptiness problem of GDA is reduced to the emptiness problem of Multicounter
Automata which is decidable.

The general idea is as follows. Given a Biichi GDA A we construct a Multicounter
Automaton that guesses a data w-word w and simulates the automaton A on w and accepts
if and only if A accepts w. Since a data w-word is an infinite object the Multicounter
Automaton cannot guess the whole word w. Instead it guesses a finite data word satisfying
certain conditions that guarantees the existence of a data w-word in the language of the
automaton A.

Now we proceed with the proof. Fix a Biichi GDA A = (Q, X, A, I, L) and a deterministic
Biichi automaton B = (S, A = Q x {¢,9,¢}, T, sin, G) accepting the language L.

Let w = (a1,d1)(as,ds) ... be a data w-word accepted by the automaton A and let
p = (q1,d1)(ge,d2) ... be a successful run of A on w. Therefore for every infinite path 7 the
w-word mpp,(7) is accepted by the Biichi automaton B. Let 7; and 72 be two infinite paths.
Their respective marked path projections agree on the common prefix of 771 and 75. Since
the automaton B is deterministic the (unique) runs of B on mpp,(m1) and mpp,(72) agree
on the common prefix as well. This allows us to represent the runs of the automaton B on
the marked path projections of p by a labelling by subsets of S in the following way.

Let m =e;...,€{g,c}* be a finite path connecting the sequence of positions jo =1,
Ji,-- - Jn=1%. The marked path projection of p w.r.t. m is the word (gj,, €)(¢;,,€1)--- (g, ,€n)
over the alphabet @ x {¢, g, c}. By P(S) we denote the power set of S. Let S15> ... € (P(S5))¥
be such that S; is the set of all states ¢ such that there is a finite path = € {g,c}* ending in
position ¢ and the unique partial run of the automaton B on the marked path projection
of 7 ends in state ¢. The w-word S152... € (P(S))¥ can be seen as the superposition
runs of the automaton B on each of the marked string projections. We call the data word
¢ = ((g1,51),d1)((g2,52),d2) ... € ((Q x P(S)) x D)* the annotated run.

As we mentioned earlier a witness for non-emptiness of the language of the automaton A
is an infinite object. Hence it is not possible to compute the witness algorithmically. Instead
one has to define a finite object that witnesses the non-emptiness. In the case of a Biichi
automaton over infinite words this finite object is a word of the form u - v such that w - v is
in the language of the automaton. In the case of Biichi GDA, u and v are two finite data
words such that u - vy - v ... is in the language of the automaton where v, v, va, ... all have
the same string projections and identical classes, in other words vy, v, ... are obtained from
v by renaming of data values.

We fix some notation. Let w = (a1, dy) ... (an,d,) be a finite data word over the alphabet
3. A position with no class successor is called a class-maximal position. Similarly a position
with no class predecessor is called a class-minimal position. The class vector of w is vector
C(w) : ¥ — N that maps each letter a in X to the number of class-maximal positions labelled
by a.

Next we formally define the notion of the finite witness in the case of Biichi GDA. Let
u,v € (X xD)* be two finite data words and let w = u-v. Let p = py-p, € (AXD)* be a partial
run of the Biichi GDA on the finite data word w (A partial run is a finite prefix/infix/suffix
of some run of the automaton under consideration). Let { = (, - (, € ((Q x P(S)) x D)*
be the annotated run of the automaton A on the data word w. (Note that the definition of
annotation extends to finitely data words naturally). We aim at constructing a data w-word
in the language of the automaton A by repeatedly appending the data word v (with possible
renaming of data values) to the end of w. Therefore the ‘configuration’ of the automata A
and B, namely the states at which the partial runs of both automata end, have to be the same

T. Colcombet and A. Manuel

at the end of the data words u and w. Moreover the number of class-maximal positions in
Cw annotated with a pair (¢, 5’) € @ x P(S) has to be at least the number of class-maximal
positions in {, annotated with the same pair for the pumping to work correctly. Finally for
the acceptance criterion to be satisfied every partial run of the automaton B on the marked
path projection of p w.r.t a path starting from a class-maximal position in u and ending in a
class-maximal position in v (including the last position) has to see a Biichi state (in G). All
these conditions are summarized below;
The triple w, p, ¢ forms a reqular witness if the following conditions are met.
(i) The state at the end of the partial runs p, and p,, are the same.

(i) Sy, = Sy where S, and S, are annotations at the last positions of {, and (, respectively.

(iii) Let C, and C,, be the class vectors of (,, and (,respectively. Then,
(a) Cy < Cy in the componentwise ordering,
(b) for all (¢,5") € @ xP(S), if Cy((g,5")) = 0 then it is the case that C\,((¢g,5")) =0
(c) Every partial run of the automaton B on the marked path projection of p w.r.t a
path starting from a class-maximal position in v and ending in a class-maximal
position in v (including the last position) has to see a Biichi state (in G).
In the subsequent lemma we prove the necessity and sufficiency of regular witnesses for
deciding the nonemptiness. The proof rests on the following two standard lemmas.

» Lemma 3 (Dickson's lemma). Fiz a k € N. Every infinite sequence of vectors vy, vy, ...
where v; € (Ng)¥ contains an infinite nondecreasing subsequence v, < vi, < ... where the
ordering < is componentwise.

» Lemma 4 (Konig's lemma for words). If A is a finite set and L C A* is infinite then there
exists x € AY such that x has infinitely many prefizes in L.

» Lemma 5. Automaton A accepts some data w-word if and only if there is a reqular witness
for the non-emptiness of A.

Using Lemma 5 it is possible to decide if a given GDA accepts a non-empty language.

This is achieved by a reduction to the non-emptiness problem of Multicounter Automata. A
Multicounter Automata is a finite state machine equipped with a finite set [k] of counters
which hold positive integer values. During each step the machine reads a letter from the
input and depending on the letter just read and the current state it performs a counter
action and moves to a new state. The allowed operations on the counters are increment
counter i and decrement counter i, but no zero tests are allowed. During the execution if a
counter holding a zero value is decremented then the machine halts erroneously. Initially
the machine starts in a designated initial state with all the counters set to value zero. An
execution is accepting if the machine terminates in a state which belongs to a designated set
of final states with all the counters being zero. We will be crucially making use of this final
zero test. Non-emptiness of Multicounter Automata is decidable which implies by virtue of
the following theorem that non-emptiness of Biichi GDA is decidable.

» Theorem 6. Given a Biichi GDA A one can effectively construct an exponentially-sized

Multicounter Automaton which accepts a word if and only if A has a reqular witness.

4 p-calculus on data w-words

In this section, we introduce p-calculus over data words. Let Prop = {p,q,...} be a set of
propositional variables. The formulas in the logic are the following. The atomic formulas are,
p € Prop, —p, and S, P, first®, first? which are zeroary modalities. Also, X9, X%p, Y9, Yo

273

FSTTCS 2014

274

Generalized Data Automata and Fixpoint Logic

[p]w = £(p) [-p
[Pl ={ilg (@) =c'(i)} [S

lo =\ €(p)
Lo = {i] 9(i) = c(i)}
[first']., = {1} [first]w = {i | 3j = 1 (i)}
[Xelw = {i € wlg(i) € [elw} [Xplw = {i € w | c(i) € [elw}
[¥/elu = {i € w| g7 () € e} [Yelo = {i € w | () € [plu}
[ipelo ={S Cw | [lupwr=s1 €5} Ter Aol = [prdu N 2l
]

[vp-elw = {S Cw | SC Hw]]w[e(py:m} 1V p2lw = [p1]w U [@2]w

Figure 1 Semantics of p-calculus on a w-word w = (w, ¥, g, ¢).

are formulas whenever ¢ is a formula, and @1 V g, 1 A w9 are formulas whenever ¢; and
o are formulas. Finally, up.p, vp.p are formulas whenever ¢ is a formula and the variable p
occurs positively in ¢ (i.e. —p is not a subformula of).

Next we disclose the semantics; as usual, on a given structure each formula denotes the
set of positions where it is true. The modality first? holds (only) on the first position and
first® holds exactly on all the first positions of classes. The modality S is true at a position i
if the successor and class successor of ¢ coincide. Similarly P is true at i if the predecessor
and class predecessor of ¢ coincide. The modalities X9, X¢p, Y9, Y¢p hold if ¢ holds on the
successor, class successor, predecessor and class predecessor positions respectively. Coming to
the fix-point formulas, each formula ¢(p), where p occurs positively, defines a function from
sets of positions to sets of positions that is furthermore monotone. We define the semantics
of up.p(p) and vp.p(p) to be the least and greatest fix-points of ¢(p) that exists due to
Knaster-Tarski theorem. To formally define the semantics we consider a data w-word as a
Kripke structure w = (w, ¢, g, c) where ¢ : Prop — P(w) is valuation function giving for each
p € Prop the set of positions where p holds, g is the global successor relation and c is the
class successor relation. For S € P(w) by w[l(p) := S] we mean w with the new valuation
function ¢’ that is defined as ¢'(p) = S and ¢'(q) = ¢(q) for all ¢ € Prop, q¢ # p. The formal
semantics], of a formula ¢ over a data word w is described in Figure 1.

Note that we allow negation only on atomic propositions. However it is possible to negate
a formula in the logic. For this, define the dual modalities X9, Y9, X¢, Y¢ of X9, Y9, X°,Y°¢
respectively and such that Mp = —M—¢, where — stands for set complement. Since successor
and class successor relations are total functions it follows that X9¢p = X9¢, X°p = Xp.
Similarly since predecessor and class predecessor relations are partial functions it follows
that Y9 = first? V Y9, Y = first® V Y¢p. To negate a formula ¢ we take the dual of ¢; this
means exchanging in the formula A and V, p and v, p and —p, and all the modalities with
their dual.

If o(p1,...,pn) is a formula then by ©(¢1,...,%,) we mean the formula obtained by
substituting 1; for each p; in ¢. As usual the bound variables of ¢(p1,...,p,) may require a
renaming to avoid the capture of the free variables of v;’s. For a formula ¢ and a position 4
in the word w, we denote by w,i = ¢ if i € [¢],. The notation w = ¢ abbreviates the case
when ¢ = 1. The data language of a sentence ¢ is the set of data words w such that w | ¢,
while the data w-language of a sentence ¢ is the set of data w-words w such that w [¢.

Unfortunately, even the fragment of the logic containing only p-fixpoints itself is undecid-
able.

T. Colcombet and A. Manuel

» Theorem 7. Satisfiability of the p-fragment is undecidable.

This also implies the undecidability of the alternation-free fragment (recalled below). One of
the sources of undecidability is the presence of both future and past modalities, or in other
words the two-way-ness of the logic. Therefore we can reclaim decidability of the logic if we
restrict the number of times a formula is allowed to change direction. Next we formally define
this fragment, namely the bounded reversal alternation-free fragment. We first recall the
operation of composition of formulas. Let ¥ be a set of formulas. Define the set C’ompi(\Il)
inductively as Comp”(¥) = () and

Compi(\ll) ={(p1,. ., 0n) | V(P1,...,0n) €Y, ©1,...,0n € Compi_l(\ll)} .

The set of formulas Comp(¥) is defined as Comp(¥) = U,y Comp'(¥). For a formula
¥ € Comp(¥) we define the Comp-height of ¢ in Comp(¥) as the least ¢ such that ¢ €
Comp' ().

For A € {p,v} let Formulas(A) denote the formulas which uses only the fixpoint op-
erator A\. Then the alternation-free fragment, denoted as AF, is the set of formulas
AF = Comp (Formulas (1) U Formulas (v))); intuitively there does not exist a p-subformula
and a v-subformula with intersecting scope in any formula of AF. We call the set of all
p-calculus formulas which does not use the modalities {Y¢, Y9} (resp. {X¢,X9}) the forward
(resp. backward) fragment. Forward (resp. backward) alternation-free fragment, denoted as
AFy (resp. AFy) is the set of all formulas in the alternation-free fragment which are also in
the forward (resp. backward) fragment. The bounded reversal alternation-free fragment of
p-calculus, denoted as BR, is the set of formulas BR = Comp(AFx U AFy). An example of a
formula in AF but not expressible in the fragment BR (we do not prove it) is px.aVY9X°x. It
tests whether an a-letter is reachable by successive steps of advancing to the next in the class,
and going backward globally. An example of a formula that is in BR is py.(vz.a V X°z) V Y9y.

Next we prove that the fragment BR is decidable by reducing the satisfiability problem
for BR to the emptiness problem for Biichi GDA. Since both BR and Biichi GDA are closed
under composition it is enough to prove that for every formula in the fragment AFy and AFy
there is a Biichi GDA that labels each position with the set of (sub)formulas true at that
position.

» Lemma 8. Given a formula ¢ in the backward fragment there is a Data Automaton that
labels each position with the set of subformulas of ¢ true at that position.

Next we show that for every formula in the forward alternation-free fragment there is
a Biichi GDA that labels each position with the set of satisfied subformulas. For this, we
recall the notion of alternating parity automaton over graphs (See [10] for a comprehensive
presentation). First we need the basics of two player (namely Adam and Fve) games played on
graphs. An arena A = (V, E) is a set of positions V' = Vg UV, partitioned into those of Adam
(V) and those of Eve (Vg) along with a set of moves E C (V4 x Vg)U (Vg x Vy4) (we assume
that there are no dead-ends in the game). A partial play (vo, v1)(v1,v2) ... (Vk, vp41) C E* is
a finite sequence of moves performed by the players. The position vy is the starting position
of the play and vgy1 is the ending position of the play. A strategy for a player Eve (resp.
Adam) o maps a partial play ending in a position in Vg (resp. V4) to a move in E. A play
7 = (vo,v1)(v1,v2) ... € E¥ is an w-sequence of moves. We say 7 is a play according to
the strategy o of Eve if on all finite prefixes of 7 ending in Vg she plays according to o.
A winning condition W C E¥ is a set of plays which are winning for Eve. A game G is a
triple G = (A = (V, E),v, W) where A is an arena, v € V is the initial position and W is the
winning condition. The strategy o is a winning strategy for Eve if all the plays according

275

FSTTCS 2014

276

Generalized Data Automata and Fixpoint Logic

to o are winning for Eve. The strategy is positional if for all partial plays ending on the
same vertex the strategy o agrees on the next move. A parity game is a game where W is
presented by means of a parity condition Q: V' — {0, ..., k} for some k € N. Given (, the
winning condition W is defined as the union of all plays m = (vg,v1)(v1,v2) ... such that
the maximal number occurring infinitely often in the sequence Q(vg), Q2(v1), ... is even. It
is well-known that parity games are positionally determined. i.e. one of the players has a
positional winning strategy.

Let P be a set of propositional variables. A positive conjunction p1 Aps... Apg, k>1
over P is identified with the subset {p1,...,px} of P. A DNF formula over P is a disjunction
@1 V...Vl > 1, where each ¢; is a positive conjunction over P, which is identified with
a subset of the powerset of P, namely {¢1,...,%;}. The set of all DNF formulas over P is
denoted by DNF*(P). Let M be the set {S, =S, P, ~P}. For a given a data w-word w and
a position ¢ in w the type of 7, denoted by tp (7), is the subset of M satisfied at position .

An alternating parity automaton on data w-words A is a tuple (Q, 2, A, go,) where Q
is the finite set of states, 3 is the alphabet, go is the initial state, A : Q@ X X x P(M) —
DNFT({X9p,X°p | p € Q}) is the transition relation and Q : Q@ — {0,...,k} is the parity
condition. When 2 is such that all states have parity either 1 or 2 the automaton is called
Biichi.

Fix an automaton A. Given a data w-word w = (w,\, g,c¢) (for convenience we let
the labelling function A : w — ¥ map each position to its label), the acceptance of w by
A is defined, as usual, in terms of a two-player parity game G4, (sometimes called the
membership game) played between Adam and Eve on the arena with positions V = Vg U Vy
where Vg = Q X w and V4 = co-Dom(A) x w. The moves E are the following. On every Eve
position (p,4) she can make a move to an Adam position (¢, %) where @ is a conjunction over
the set {X9p,X°p | p € Q} such that ¢ € A(p, A(¢), tp (i)). On every Adam position (p,7) he
can make a move to an Eve position (p, j) if j is the successor (resp. class successor) of i and
X9p (resp. X°p) is in ¢. Observe that there are no dead-ends in the game. The parity of the
game positions are defined as follows. For all Adam positions the parity is 0 and for all Eve
positions (p,) the parity is Q(p). We say the automaton A accepts the data word w if in
the game G4 4, the player Eve has a winning strategy from the position (go,1).

The following lemma follows from canonical connection between p-calculus and alternating
parity automata on any fixed class of graphs ([10]).

» Fact 9. For every formula in the forward (resp. alternation-free) fragment there is an
equivalent (which is effectively obtained) alternating parity (resp. Biichi) automaton. Moreover
the states of the automaton are precisely the subformulas of the given formula.

If a data w-word w is accepted by A then there is a winning strategy for Eve in the
game G 4 ,, which in turn implies that Eve has a positional winning strategy for the game.
A positional strategy for Eve in G4, is a function o : w — (Q — co-Dom(A)) such that
for all ¢ and for all p € Q, (0(i))(p) € A(p, (i), tp(i)). Once a strategy o for Eve is
fixed the game G4, can be seen as a game played by a single player (namely Adam) in
the following way. Define G ,, as the subgame where the moves of Eve are limited to
{(p,i) = ((¢(9))(p),7) | @ € w}. Since the moves of Eve are fixed in the game G% ,, (%)
she wins if and only all the infinite paths in the graph G , are winning. A local strategy
is a partial function f : @ — co-Dom(A) such that there exist a € X,7 € P(M) such
that for all p € Dom(f), f(p) = A(p,a,7). A local strategy f is consistent at position ¢ if
f(p) € A(p, \(v), tp (2)) for all p € Dom(f). Observe that a positional strategy for Eve is
a sequence of local strategies (f;)ic. such that each f; is consistent at position i. Now we
restate (%) in terms of local strategies. Let F' be the set of local strategies.

T. Colcombet and A. Manuel

A local strategy annotation of a data w-word w is a sequence of local strategies (f;),,,
which are consistent at each position 7 and furthermore satisfy the following conditions. Let
(Di);c,, be the sequence of subsets of states @ (called the set of reachable states) such that

the local strategy f; has domain D;.

1. D1 = {qO}

2. q € Dy iff there exists p € D; such that fi(p) = ¢ and Mg € ¢ [When M = X9 (resp.
M = X¢) we use M(7) to denote the successor (resp. class successor) of i|. In this case we
say that there is an edge between (p,¢) and (¢,M(¢)) in the strategy annotation.

A path in the strategy annotation is a sequence (p1,1) ... (Pn,in) such that each successive

tuples has an edge between them. The local strategy annotation (f;),.,, is accepting if for

all infinite paths (starting from (go, 1)) it is the case that the maximal infinitely occurring
parity is even.
It is straight-forward to see that Eve has a (positional) winning strategy o in the game

Ga,w iff all the paths in the G ,, are winning iff there is a local strategy annotation in which

all paths are accepting. Thus we get,

» Lemma 10. A data w-word w is accepted by the automaton A if and only if there exist a

local strategy annotation (f;);c,, of w which is accepting.

Next we show the goal of this section namely that for every alternating Biichi automaton
there is an equivalent Biichi GDA. Since we are converting an alternating automata to a
non-deterministic automata (though not of the same kind) it can be seen as an analogue
of the simulation theorem for alternating tree automata. A technicality here is that in the
definition of GDA we don’t have access to the type of a position. Therefore the GDA has
to synthesize the type of every position. This is achieved by the following lemma due to
Schwentick and Bjorklund.

» Lemma 11 ([1]). There is a Data automaton A which reads a data w-word and outputs
the type of each position.

Now we present the simulation theorem. The proof is using the standard technique. The
GDA guesses a local strategy annotation and verifies that all paths in the annotation are
accepting. The only technicality is that the automaton has to rely on the marked path
projection to verify that the paths are accepting.

» Proposition 12. Given an alternating parity (resp. Biichi) automaton A there is an
equivalent (resp. Biichi) GDA A’.

Finally we prove the main theorem of this section.

» Theorem 13. Satisfiability of bounded-reversal alternation-free p-calculus is decidable on
data w-words.

5 Conclusion and future work

In this paper we have introduced a generalization of Data Automata. While the emptiness
problem for GDA is open it is shown that the decidability of emptiness of a subclass, namely
the class of Biichi GDA, is decidable. Next, a natural fixpoint logic on data words is defined
and it is shown that the py-fragment as well as the alternation-free fragment is undecidable.
Then, by limiting the number of change of directions of formulas the class of bounded reversal
alternation-free fragment is defined which subsumes other logics such DataLTL and FOZ2.

277

FSTTCS 2014

278

Generalized Data Automata and Fixpoint Logic

It is shown that satisfiability problem for the bounded-reversal alternation-free fragment is
decidable by extending the results for Data automata. In fact the latter result easily extends
to the case of formulas with alternation depth vpu.

Regarding future work, there are two interesting questions; namely the decidability of

the non-emptiness problem for GDA and the satisfiability problem of the forward fragment.
However these two problems are effectively equivalent since given a GDA A (resp. Biichi)

there is an effectively constructed universal parity (resp. Biichi) automaton A’ accepting the

accepting runs of automaton A. It is also interesting to know if DA is strictly included in
(Biichi) GDA.

—— References

1

10

11

12

13

14

15

16

17

H. Bjorklund and T. Schwentick. On notions of regularity for data languages. Theor.
Comput. Sci., 411(4-5):702-715, 2010.

M. Bojanczyk. Data monoids. In STACS, pages 105-116, 2011.

M. Bojariczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

M. Bojanczyk and S. Lasota. An extension of data automata that captures xpath. In Logic
in Computer Science (LICS), 2010, pages 243-252, July 2010.

T. Colcombet, C. Ley, and G. Puppis. On the use of guards for logics with data. In MFCS,
volume 6907 of LNCS, pages 243-255. Springer, 2011.

S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter
systems. In Logic in Computer Science (LICS), 2013, pages 33-42, June 2013.

S. Demri and R. Lazi¢. LTL with the freeze quantifier and register automata. ACM
Transactions on Computational Logic, 10(3), April 2009.

D. Figueira. Alternating register automata on finite data words and trees. Logical Methods
in Computer Science, 8(1), 2012.

D. Figueira. Decidability of downward XPath. ACM Transactions on Computational Logic,
13(4), 2012.

E. Griadel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite Games: A
Guide to Current Research. Springer-Verlag New York, Inc., New York, NY, USA, 2002.
O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite alphabets.
In Language and Automata Theory and Applications, pages 561-572. Springer, 2010.

M. Jurdzinski and R. Lazic. Alternating automata on data trees and xpath satisfiability.
ACM Trans. Comput. Log., 12(3):19, 2011.

M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329-
363, 1994.

A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple data values.
In FSTTCS, volume 8 of LIPIcs, pages 481-492, 2010.

L. Libkin and D. Vrgoc. Regular expressions for data words. In LPAR, volume 7180, pages
274-288, 2012.

A. Manuel, A. Muscholl, and G. Puppis. Walking on data words. In Computer Science
Theory and Applications, volume 7913 of LNCS, pages 64-75. 2013.

F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite
alphabets. 5(3):403-435, 2004.

	Introduction
	Data -words and Data Automata
	Generalized Data Automata
	Emptiness of Büchi GDA

	-calculus on data -words
	Conclusion and future work

