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Abstract
Traditionally quantitative games such as mean-payoff games and discount sum games have two
players – one trying to maximize the payoff, the other trying to minimize it. The associated
decision problem, “Can Eve (the maximizer) achieve, for example, a positive payoff?” can be
thought of as one player trying to attain a payoff in the interval (0,∞). In this paper we consider
the more general problem of determining if a player can attain a payoff in a finite union of
arbitrary intervals for various payoff functions (liminf/limsup, mean-payoff, discount sum, total
sum). In particular this includes the interesting exact-value problem, “Can Eve achieve a payoff
of exactly (e. g.) 0?”
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1 Introduction

Quantitative two-player games on graphs have been extensively studied in the verification
community [8, 6, 14, 10, 18]. Those models target applications in reactive system synthesis
with resource constraints. In these games two players, Eve and Adam, interact by moving
a token around a weighted, directed graph, for a possibly infinite number of moves. This
interaction results in a play which is an infinite path in the graph. The value of the play is
computed by applying a payoff function to the sequence of weights of the edges traversed
along the path. Typical payoff functions are (lim)sup, (lim)inf, mean-payoff, (total) sum,
and discounted sum.

In the literature is usual to assume that Eve is attempting to maximize the payoff and
Adam is attempting to minimize it. In this context all these games are determined, that is the
maximum that Eve can ensure is equal to the minimum that Adam can ensure, and this value
can be computed in polynomial time for (lim)inf and (lim)sup [5], and in pseudo-polynomial
time for mean-payoff, discounted sum, and total sum [18, 10]. The associated decision
problem is the threshold problem: Given a game graph, a payoff function and a threshold ν
does Eve have a strategy to ensure all consistent plays have payoff at least ν? The threshold
problems for the aforementioned payoff functions are all closely related, and it is known
that Eve and Adam can play optimally in those games with memoryless strategies [11].
Consequently the decision problem for all those games is in NP ∩ coNP. In fact, it can be
shown in UP ∩ coUP for mean-payoff, discounted sum, and total sum, and in PTIME for
(lim)inf and (lim)sup.

The threshold problem can be seen as game in which Eve is trying to force the payoff to
belong to the interval of values [ν,∞). In this paper we consider the more general problem
of determining if a player can attain a payoff in a finite union of arbitrary intervals for
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Table 1 Complexity of deciding the winner in interval games.

Payoff type Single interval Multiple intervals
Binary Unary

Liminf/limsup PTIME NP ∩ coNP Parity game-c
Mean-payoff NP ∩ coNP PSPACE Parity game-hard
Discounted sum (non-singleton) PSPACE-c PTIME
Discounted sum (exact value) PSPACE-hard ?
Total sum EXPSPACE-c PSPACE-c

Table 2 Memory requirements for interval games.

Payoff type Single interval Multiple intervals
(Eve/Adam)

Liminf/limsup Positional
Mean-payoff Finite/Positional Infinite
Discounted sum (non-singleton) Finite
Discounted sum (exact value) Infinite
Total sum Finite/Infinite Infinite

the classical payoff functions mentioned above. That is, we are interested in the following
question: Given a weighted arena G and a finite union of real intervals, what is the complexity
of determining if Eve has a winning strategy to ensure the payoff of any consistent play lies
within the interval union? In particular this includes the interesting exact-value problem:
Can Eve achieve a payoff of exactly ν? Such objectives arise when considering efficiency
constraints, for example can a system achieve a certain payoff without exceeding a certain
target? We consider two versions of our problem depending on whether the numeric inputs
(weights, interval bounds and discount factor) are given in binary or unary. We also consider
the memory requirements for a winning strategy both for Eve and Adam. Our games are a
natural subclass of multi-dimensional quantitative games (see e. g. [6]), however our results
are largely incomparable with that paper as we consider a wider array of payoff functions
and our objective corresponds to disjunctions of multi-dimensional objectives which were not
considered.

Tables 1 and 2 summarize the results of this paper: the first table highlights the complexity
results and the second table highlights the memory requirements for playing optimally. While
the classical threshold problems for weighted games can be solved in PTIME for (lim)inf and
(lim)sup and in NP ∩ coNP for mean-payoff, discounted sum and total sum, and memoryless
strategies always suffice, the situation for our interval objectives is far richer:

For liminf and limsup, we provide a polynomial time algorithm in the case of a single
interval. For a union of intervals, we show that these games are polynomially equivalent
to parity games: so we can solve them in NP ∩ coNP, and a polynomial time algorithm
for interval liminf games would provide a polynomial time algorithm for parity games (a
long-standing open question in the area). Optimal strategies are memoryless for both
players.
For interval mean-payoff games, we provide a recursive algorithm that executes in
polynomial space. This algorithm leads to a NP ∩ coNP algorithm in the case of single
interval objectives. While mean-payoff games can be solved in polynomial time when
weights are given in unary, we show here that interval mean-payoff games are at least as
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hard as parity games even when weights are given in unary. So, a pseudo-polynomial
time algorithm for interval mean-payoff games would lead to a polynomial algorithm for
parity games. For a union of intervals, infinite memory may be necessary for both players,
and for single interval exponential memory may be necessary for Eve while Adam can
always play a memoryless strategy.
Interval discounted sum games are complete for polynomial space when singleton intervals
(and singleton gaps between intervals) are forbidden. The decidability for the case when
singletons are allowed is left open and it generalizes known open problems in single player
discounted sum graphs [7, 1]. Finite memory suffices for both players in the non-singleton
case and infinite memory is needed for both players when singletons are allowed.
For the total sum payoff, we establish a strong link with one counter parity games that
leads to a PSPACE-complete result for unary encoding and an EXPSPACE-complete result
for binary encoding. For single interval games Eve need only play finite memory strategies,
while she may need infinite memory in the general case. In both cases, Adam may require
infinite memory.

Structure of the paper. Section 2 introduces the necessary preliminaries. In Sections 3, 4,
5, and 6 we consider the decision problems and memory requirements for the liminf/limsup,
mean-payoff, discounted sum, and total sum payoff functions, respectively. Due to space
restrictions the full details of several proofs are left for the full version.

2 Preliminaries

A game graph is a tuple G = (V, V∃, E, w, q0) where (V,E,w) is an edge-weighted graph,
V∃ ⊆ V , and q0 ∈ V is the initial state. Without loss of generality we will assume all weights
are integers. In the sequel we will depict vertices in V∃ with squares and vertices in V \ V∃
with circles. In complexity analyses we will denote the maximum absolute value of a weight
in a game graph by W . If V ′ ⊆ V , we denote by G \ V ′ the game graph induced by V \ V ′.

A play in a game graph is an infinite sequence of states π = v0v1 · · · where v0 = q0 and
(vi, vi+1) ∈ E for all i. Given a play π = v0v1 · · · and integers k, l we define π[k..l] = vk · · · vl,
π[..k] = π[0..k], and π[l..] = vlvl+1 · · · . We extend the weight function to partial plays by
setting w(π[k..l]) =

∑l−1
i=k w((vi, vi+1)). A strategy for Eve (Adam) is a function σ that

maps partial plays ending with a vertex v in V∃ (V \ V∃) to a successor of v. A strategy has
memory M if it can be realized as the output of a finite state machine with M states. A
memoryless (or positional) strategy is a strategy with memory 1, that is, a function that
only depends on the last element of the given partial play. A play π = v0v1 · · · is consistent
with a strategy σ for Eve (Adam) if whenever vi ∈ V∃ (vi ∈ V \ V∃), σ(π[..i]) = vi+1.

2.1 Payoff functions
A play in a game graph defines an infinite sequence of weights. We define below several
common functions that map such sequences to real numbers.

Liminf/limsup. The liminf (limsup) payoff is determined by the minimum (maximum)
weight seen infinitely often. Given a play π = v0v1 · · · we define:

lim inf(π) = lim inf
i→∞

w(vi, vi+1) lim sup(π) = lim sup
i→∞

w(vi, vi+1).

Note that by negating all weights and the endpoints of the intervals we transform a limsup
game to a liminf game and vice-versa.
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Mean-payoff. The mean-payoff value of a play is the limiting average weight, however
there are several suitable definitions because the running averages might not converge. The
mean-payoff values of a play π we are interested in are defined as:

MP (π) = lim inf
k→∞

1
k
w(π[..k]) MP (π) = lim sup

k→∞

1
k
w(π[..k]).

As with liminf/limsup games we can switch between definitions by negating weights and
interval endpoints, so we will only consider the MP function.

Discounted sum. The discounted sum is defined by a discount factor λ ∈ (0, 1). Given a
play π = v0v1 · · · , we define:

DSλ(π) =
∞∑
i=0

λi · w(vi, vi+1).

Total sum. The total sum condition can be thought of as a refinement of the mean-payoff
condition, enabling discrimination between plays that have a mean-payoff of 0. Given a play
π we define:

Total(π) = lim inf
k→∞

w(π[..k]) Total(π) = lim sup
k→∞

w(π[..k]).

As with liminf/limsup games we can switch between definitions by negating weights and
interval endpoints, so we will only consider the Total function.

2.2 Interval games
For a fixed payoff function F , an interval F game consists of a finite game graph and a finite
union of real intervals I = I1 ∪ · · · ∪ Ir (given as a list of finitely presentable end-points).
Given an interval F game (G, I), a play π in G is winning for Eve if F (π) ∈ I and winning
for Adam if F (π) /∈ I. We say a player wins the interval game if he or she has a strategy σ
such that all plays consistent with σ are winning for that player. For convenience we will
assume the intervals are non-overlapping and ordered such that sup Ii ≤ inf Ii+1 for all i.

2.3 Parity games
A parity game is a pair (G,Ω) where G is a game graph (with no weight function) and
Ω : V → N is a function that assigns a priority to each vertex. Plays and strategies are
defined as with interval games. A play defines an infinite sequence of priorities, and we say
it is winning for Eve if and only if the minimal priority seen infinitely often is even.

3 Liminf games

The first payoff function we consider is the lim inf function. Note that as this always takes
integer values, we can assume all intervals are closed or open as necessary. We show below
that deciding interval liminf games is polynomially equivalent to deciding parity games. In
particular the number of intervals is equal to the number of even priorities required, so single
interval liminf games are equivalent to parity games with at most three priorities and can
therefore be solved in polynomial time [15]. Further, the range of the priorities is determined
by range of the weight function and vice versa, so this equivalence also holds for unary
encoded interval liminf games.
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I Theorem 1. The following problems are polynomially equivalent:
(i) Deciding if Eve wins a unary encoded interval liminf game;
(ii) Deciding if Eve wins a binary encoded interval liminf game; and
(iii) Deciding if Eve wins a parity game.

Proof. (i)⇒(ii): Trivial.
(ii)⇒(iii): For this reduction, we use the following function which will also be used in

Section 6. Let I = I1 ∪ I2 ∪ · · · ∪ Ir be a finite union of closed integer intervals such that
sup Ii < inf Ii+1 for all i. Define ΩI : Z→ [1, 2r + 1] as follows:

ΩI(n) =


2i if n ∈ Ii,
1 if n < inf I1, and
max{1 + 2i : sup Ii < n} otherwise.

Now suppose (G, I) is an interval liminf game. We transform the game graph G to G′ as
follows. Every edge e is sub-divided and the subdividing vertex is given priority ΩI(w(e)).
The original vertices of G are all given priority 2r + 1.

It is not difficult to see that there is a 1-1 correspondence between plays in G and plays
in G′, and that for any play in G, lim inf w(e) ∈ Ii for some i if and only if the minimum
priority in the corresponding play in G′ seen infinitely often is even.

(iii)⇒(i): To go the other direction, given a parity game played on G we transform it
to an interval liminf game played on G′ as follows. G′ is the weighted graph obtained by
setting the weight of an edge to be the priority at the vertex at the tail of the edge (that is,
the vertex for which the edge is outgoing). The intervals are singleton intervals containing
each of the even priorities that occur in G. Clearly any play in G is a play in G′ and it is
not difficult to see that for a play in G the minimum priority seen infinitely often is even if
and only if the lim inf of the weights of all edges in a play of G′ lie in a given interval. J

It follows from our reduction and the positional determinacy of parity games [17], that:

I Corollary 2. Positional strategies suffice for interval liminf games.

4 Mean-payoff games

In this section we investigate interval mean-payoff games. We give a recursive algorithm
that repeatedly asks for a solution for the mean-payoff threshold problem. As mentioned
earlier this problem is known to be in NP ∩ coNP, and solvable in time O(|V | · |E| ·W ) and
space O(|V | · log(|E| ·W )) [4]. We denote this problem by MP∼ν(G) where ∼∈ {≥, >,≤, <}
depending on whether Eve is maximizing or minimizing1 the payoff and whether or not a
payoff of ν is winning for Eve. It is well known [8] that the strict threshold problem can
be reduced to a non-strict threshold problem – this follows from the fact that mean-payoff
values are restricted to a finite set of rationals.

Our algorithm implies that for a fixed number of intervals the problem reduces to the
classic threshold problem (under polynomial-time Turing reductions). In the sequel we
consider the memory requirements of single interval mean-payoff games in more detail. In
particular we show that in this case finite memory strategies (indeed, positional strategies

1 Note that by positional determinacy of mean-payoff games [8], MP and MP compute the same values
when one player is maximizing the payoff. Hence our decision to use MP is not affected by whether
Eve is maximizing or minimizing.
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q0 q1

1

2

1

0

Figure 1 Interval mean-payoff game (I = {1} ∪ {2}) which requires infinite memory.

for Adam) suffice for winning strategies. However, our first observation of this section is that
in general, interval mean-payoff games may require infinite memory.

I Lemma 3. Finite memory winning strategies are insufficient in interval mean-payoff
games.

Proof. Consider the game in Figure 1 where I = {1} ∪ {2}. Eve has an infinite memory
winning strategy in this game as follows. First she plays to q1. Then she counts how many
times Adam takes the loop (q1, q1). If Adam returns to q0 then Eve takes the loop (q0, q0) the
same number of times before returning to q1. Clearly any play consistent with this strategy
will either have MP = 2 (if it eventually remains in q1), or MP = 1 (otherwise). Therefore
the strategy is winning for Eve. Now suppose Eve plays a finite memory strategy σ with
memory M . We observe that under this strategy Eve cannot stay at q0 for more than M
turns without staying there indefinitely. Adam’s strategy is thus to stay at q1 for 2M turns
before returning to q0. It is not difficult to see that any play consistent with this strategy and
σ will yield a mean-payoff of either 0 or in the range (1, 2), and so the strategy is winning
for Adam. J

Upper bounds

We present an algorithm for computing the winning regions in an interval mean-payoff game
in Algorithm 1. The correctness of the algorithm is given by Lemma 4.

Algorithm 1 MPI(G)
Input: A game graph G = (V, V∃, E, w, q0) and a finite union of real intervals I.
Output: (X∃, X∀) where X∃ (X∀) are the vertices from which Eve (Adam) has a winning strategy.

if I = ∅ then
return (∅, V )

end if
a← inf I

if a = −∞ then
(X, X ′)←MPR\I(G) {G is G with V∃ and V \ V∃ swapped}

else
X ← ∅
repeat

(A, A′)←MP�a(G) {If a ∈ I then �=≥, otherwise �=>}
(B, B′)←MP(−∞,a]∪I(G)
X ← X ∪A′ ∪B′

G← G \ (A′ ∪B′)
until A′ ∪B′ = ∅

end if
return (V \X, X)
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I Lemma 4. Let (G, I) be an interval mean-payoff game. MPI(G) correctly computes the
winning regions for Adam and Eve.

Proof sketch. We observe that at each iteration of the loop we remove vertices from which
Adam can either ensure the mean-payoff lies below I or from which he can (recursively)
win on the larger set (with fewer interval end-points) I ′ = (−∞, inf I] ∪ I. Thus it is clear
that Adam has a winning strategy from any vertex removed. We now argue that Eve has
a winning strategy on any vertex remaining. Observe that from these vertices she has two
strategies: a positional strategy σ> which ensures MP � inf I and σ< which wins with the
larger objective I ′. We combine these into a winning strategy for I as follows. Eve chooses
any t in the first interval and keeps track of the current average weight. Whenever the
average weight lies below t she plays σ>, and whenever it lies above t she plays σ<. As the
mean-payoff objective is a tail objective and therefore independent of an initial play prefix, it
is not difficult to see that if she eventually plays only one strategy then the mean-payoff will
lie in I. If she changes strategy infinitely often, then the fact that σ> is positional means she
will never deviate too far below inf I so the lim inf average will lie between inf I and t, and
thus in I. J

The running time for Algorithm 1 is |V |2r−1 ·MP, where MP is the running time for an
algorithm to solve the mean-payoff threshold problem. It is straightforward to see that the
algorithm can be implemented in polynomial space.

I Theorem 5. Let G be a game graph and I a finite union of r real intervals. Whether Eve
wins the interval mean-payoff game (G, I) can be decided in time O(|V |2r · |E| ·W ) and space
O(r · |V | · log(|E| ·W )).

I Corollary 6. Determining if Eve wins an interval mean-payoff game for a fixed number of
intervals is in NP ∩ coNP.

We observe that although the players may require infinite memory for a winning strategy,
Algorithm 1 shows that a winning strategy can be succinctly represented by 2r positional
sub-strategies. It is not clear that given such a certificate whether there exists an efficient
algorithm for computing the winning region, however we believe that this is the case. By
the symmetry of the roles of the players, such an algorithm would show that the interval
mean-payoff game is both in NP and coNP.

I Conjecture 1. Determining if Eve wins an interval mean-payoff game is in NP ∩ coNP.

Lower bound

The above conjecture would hold if we could solve interval mean-payoff games with only
polynomially many calls to the mean-payoff threshold problem. We now give a lower bound
for the complexity of deciding interval mean-payoff games which suggests any such algorithm
would yield quite remarkable results: we reduce parity games to interval mean-payoff games
with small weights and interval bounds. In particular this implies that any pseudo-polynomial
time algorithm (including polynomially many calls to the threshold problem) would yield a
polynomial time algorithm for parity games.

I Theorem 7. There is a polynomial time reduction from parity games to unary encoded
interval mean-payoff games.
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v0
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v−
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p

p + 1
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p − 1

p p

p

Figure 2 Vertex gadget for vertex v ∈ V \ V∃ with even priority p.

Proof sketch. Intuitively, we replace each vertex in the original game with the gadget shown
in Figure 2. If the priority of the vertex is even then the gadget is controlled by Eve, and
if it is odd then it is controlled by Adam. The last vertex in the gadget is controlled by
the player that controlled the original vertex. Given a winning strategy in the parity game,
Eve’s corresponding strategy is to play the same on the original vertices, and whenever the
play reaches a gadget corresponding to an even priority p she remains in the gadget until the
current average lies in the interval [p, p+ 1

2 ]. This ensures that the minimum average seen
infinitely often corresponds to the minimum priority seen infinitely often and so, with the
interval set I =

⋃
p even[p, p+ 1), the strategy will be winning for Eve. Conversely, Adam

can translate winning strategies from the parity game in the same manner. J

Memory requirements for single interval mean-payoff games

The strategies for Adam and Eve described in the proof of Lemma 4 require infinite memory.
We now show, with a careful analysis, that in the case of a single interval this can be improved.
Note that as we can replace any strict threshold call with a non-strict threshold we can
assume without loss of generality that I is closed.

I Theorem 8. Let (G, I) be a single interval mean-payoff game. If Adam has a winning
strategy then he has a positional winning strategy. If Eve has a winning strategy then she has
a strategy that requires finite memory.

Proof sketch. The fact that Adam only requires positional strategies follows from [13] and
the observation that in the single interval case the winning condition is convex.

The idea behind Eve’s finite memory strategy on X∃ is to keep track of the total weight
seen so far (rather than the average as in Lemma 4) modulo cycles with average weight in I.
The intuition is that such cycles do not affect whether the overall mean-payoff will lie in the
interval, so we can safely ignore them. As σ< and σ> are both positional in this case, by
ignoring these cycles the total weight will never deviate too far from a central value, so finite
memory suffices. J

5 Discount sum games

In this section we consider interval discount sum games. Here we make a distinction between
whether or not singleton intervals (and singleton gaps between intervals) are permitted,
because unlike other payoff functions considered in this paper there is a marked difference
between the corresponding games. We show that for non-singleton intervals the problem
of determining the winner is PSPACE-complete and as a consequence of our algorithm we
show that finite memory strategies suffice. For singleton intervals (including the exact value
problem) our PSPACE-hardness result holds, but is not even known if determining the winner
is decidable.
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a′2
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Figure 3 Reduction from subset sum games to interval discount sum games.

5.1 Single, non-singleton intervals
Lower bound

To show PSPACE-hardness we reduce from the subset sum game defined in [9]. A subset sum
game is specified by a target t ∈ N and a list of pairs of natural numbers (a1, a

′
1), . . . , (an, a′n).

The game takes n rounds, in round i, one player (Adam if i is odd, Eve if i is even) chooses
ai or a′i. After n rounds Eve wins if and only if the sum of the selected numbers is t. Given
an instance of the subset sum game we construct the interval discount sum game shown in
Figure 3, with interval [t, t+ 1).

It is clear that a play in this game corresponds to a selection of elements from the pairs,
and the discounted sum of the play is equal to the sum of the corresponding elements. As
this sum is always an integer, the discounted sum lies in the interval [t, t+ 1) if and only if
the selected sum is equal to t.

Upper bound

Given v ∈ V and strategies σ and τ for Eve and Adam respectively, we define vvστ to be
the payoff of the unique play from v consistent with σ and τ . Two important (memoryless)
strategies for Eve are σmax and σmin, the strategies which, for all states v, maximize minτ vvστ
and minimize maxτ vvστ respectively.

The idea behind the upper bound centres around the observation that after sufficiently
many steps the remainder of any play does not contribute much to the overall discounted
sum. If the target interval is non-singleton then the problem reduces to the classical threshold
problem. Thus we can stop the game after finitely many steps when it becomes a trivial
matter to determine if the overall discounted sum will lie in the interval or not. The key
lemma for the result, the proof of which we defer to the full paper, is the following:

I Lemma 9. Let (G, I, λ) be an interval discount sum game that Eve wins, and let

N =
⌊

log(sup I − inf I) + log(1− λ)− log(2W )
log λ

⌋
.

Then Eve has a winning strategy that agrees with either σmax or σmin after N steps.

Note that whether the strategy agrees with σmax or σmin depends on the play up to the
N -th step. It is feasible that against one strategy of Adam this strategy will agree with σmax
but against another strategy it will agree with σmin.

I Corollary 10. Finite memory strategies suffice in non-singleton interval discount sum
games.

The algorithm for determining the winner of a non-singleton interval discount sum game
is straightforward. We run an alternating Turing Machine for N steps to guess an initial play.
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Note that N is polynomial in the size of the input, so this can be done in PSPACE. Suppose
the play ends in state v with the current discounted sum S. We compute the four values:

M = max
τ

vvσmaxτ M = min
τ

vvσmaxτ m = max
τ

vvσminτ m = min
τ

vvσminτ .

These are computable in NP ∩ coNP using an algorithm that computes values in classic
discount sum games [18]. Finally we check if either:

S + λN+1 ·M ∈ I and S + λN+1 ·M ∈ I, or
S + λN+1 ·m ∈ I and S + λN+1 ·m ∈ I.

It is clear that one of the above conditions holds if and only if σmax or σmin is winning from
the current position. Therefore, from Lemma 9, one of the above conditions holds if and
only if Eve has a winning strategy.

I Theorem 11. Let G be a game graph, I ⊆ R a non-singleton interval, and λ ∈ (0, 1).
Deciding if Eve wins the interval discount sum game (G, I, λ) is PSPACE-complete.

We observe that if the weights, interval bounds and discount factor are all encoded
in unary then N is logarithmic in the size of the input and M , M , m, and m can all be
computed in polynomial time using a pseudo-polynomial time algorithm for discount sum
games [18]. Thus the above algorithm runs in polynomial time.

I Theorem 12. Let G be a game graph, I ⊆ R a non-singleton interval and λ ∈ (0, 1).
Deciding if Eve wins the unary encoded interval discount sum game (G, I, λ) is in P.

5.2 Multiple intervals
The algorithm of the previous section also applies to multiple intervals as long as the gaps
between the intervals are also non-singleton. This follows from the observation that after
sufficiently many steps the overall discount payoff will not deviate too far from the current
value, so at that point the game reduces to the single interval case.

I Theorem 13. Let G be a game graph, I a finite union of real intervals such that neither
I nor R \ I contains singleton elements, and λ ∈ (0, 1). Deciding if Eve wins the interval
discount sum game (G, I, λ) is PSPACE-complete.

5.3 Singleton intervals
When the set of intervals (or their complement) include singleton intervals, the situation is
more complicated. Following the same argument as the previous section, after sufficiently
many steps the problem reduces to the exact value problem: Given a discount sum game
(G,λ) and a target t ∈ Q, does Eve have a strategy to ensure the discounted sum is exactly
t?

It is currently open whether this problem is even decidable, however the PSPACE-hardness
result from the previous section (using the interval {t} rather than [t, t+ 1)) gives a lower-
bound. The problem is related to the universality problem for discount sum automata [2], a
well-known problem for which decidability remains open [1]. The problem was also studied
for Markov Decision Processes and graphs (i.e. one-player games) in [7] where it was shown
to be decidable for discount factors of the form λ = 1

n , and that in general infinite memory
is required for winning strategies.

I Lemma 14 ([7]). There exist exact value discount sum games for which an infinite memory
is required for a winning strategy.
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Figure 4 Edge gadget for edge e = (v, v′), v /∈ V∃, v′ ∈ V∃.

6 Total sum games

Total sum games refine mean-payoff games and can be seen as a special case of discount
sum games where the discount factor is 1. Assuming the graph has integer weights, Total
will always be an integer (or ±∞), thus we can assume all intervals are closed or open as
necessary.

In this section we show that determining the winner of such games is PSPACE-complete
for unary encoded games and EXPSPACE-complete for binary encoded games. Our bounds
are obtained by relating interval total sum games with various one-counter games, that is,
games played on the transition graph of a one-counter machine (equivalently, one-dimensional
vector addition systems with states). Intuitively a one-counter game graph is a game graph
augmented with a counter which is incremented or decremented by weights on traversed
edges. A special set of edges are activated only if the counter has value 0. We give a reduction
from one-counter reachability games, studied in [3, 14, 12] to establish lower bounds, and a
reduction to one-counter parity games, studied in [16], for the upper bounds.

Lower bounds

We give a reduction from counter reachability games to (singleton) interval total sum games.
This establishes the necessary lower bounds because determining the winner in such games
was shown to be PSPACE-complete for unary encoded games in [14] and EXPSPACE-complete
for binary encoded games in [12], even for the restricted one-counter game graphs considered
here.

Given a one-counter reachability game with no zero-activated edges and target set F ⊆ V∃,
we construct a game graph as follows. We double the weights of all edges; add a new initial
vertex with an edge of weight +1 to the original initial vertex; and add a new global sink with
a self loop of weight 0 and edges of weight −1 from all vertices in F . By parity arguments
the new vertices are the only vertices where the total sum can be 0, and Eve has a strategy
to reach the global sink if and only if she can reach F in the original game with counter
value 0. Thus Eve wins the interval total sum game with interval {0} if and only if she wins
the original one-counter reachability game.

Upper bounds

We now show that interval total sum games can be solved in EXPSPACE by reducing them
to parity games on infinite graphs defined by the transition graphs of one-counter machines.
Such games were considered in [16], where a PSPACE algorithm was given for unary weighted
one-counter games (equivalently, single alphabet pushdown processes). As a binary one-
counter graph can be described by an exponentially larger unary one-counter graph, our
reduction yields an EXPSPACE algorithm.

The key observation for the reduction is that interval total sum games can be viewed as
parity games on V × Z, where the second component indicates the total sum so far. The
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Figure 5 Interval total sum game (I = R \ {0}) which requires infinite memory.

priority of a vertex (v, c) is determined by which interval (or gap between intervals) contains
c, in the same manner used in the equivalence between liminf games and parity games in
Section 3. However, we cannot use the result of [16] directly because for those games the
priorities are defined by the states of the counter-machine and not the values of the counter.
Instead, we have Eve assert which interval (or gap between intervals) the counter is in, and
give Adam the ability to punish her if she claims falsely.

Let (G, I) be an interval total sum game. Recall from Section 3 the definition of ΩI . Let
us define mi := min Ω−1

I (i) and Mi := max Ω−1
I (i). Intuitively, the reduction creates 2r + 1

copies of the G (one for each interval and one for each gap), but we replace edges with the
edge gadget shown in Figure 4. The priority of a vertex (v, i) is i, and for each gadget vertex
it is 2r + 1 except for v0 which has priority 2r.

We now show that Eve has a winning strategy in this parity game if and only if she has a
winning strategy in the interval total sum game. We first observe that if the play reaches
the predecessor of (v, i) and the counter value is outside [mi,Mi] then Adam can win by
playing to v⊥ if the counter is < mi or to v> if the counter is > Mi. On the other hand, if
the counter is in the range [mi,Mi] then Eve wins if Adam plays to either of these vertices.
Thus the gadget defined by the vertices {v⊥, v>, v0} allows Adam to punish Eve if and only
if the counter is not in the asserted interval. Now, assuming Eve plays correctly, it is easy
to see that the minimal priority seen infinitely often corresponds to the lowest interval or
interval gap visited infinitely often by the counter. Thus Eve has a winning strategy in the
parity game if and only if she has a winning strategy in the interval game.

I Theorem 15. Deciding if Eve wins a binary (unary) encoded interval total sum game is
EXPSPACE-complete (PSPACE-complete).

Memory requirements

We now consider memory requirements for winning strategies in interval total sum games.
Figure 5 shows that, in general, infinite memory is required for winning strategies.

I Lemma 16. Finite memory winning strategies are insufficient in interval total sum games.

By swapping the roles of the players and complementing the interval, we see that even
for single interval games Adam may require infinite memory. We now show this is not the
case for Eve. Indeed, using König’s lemma, we can show a more general result.

I Lemma 17. Let (G, I) be an interval total sum game where I ∩ Z is finite. If Eve has a
winning strategy then she has a finite memory winning strategy.

To complete the argument for single interval total sum games, we observe that if the
interval is infinite then we are considering the classical threshold problem for total sum
games. Positional strategies for these games were shown to be sufficient in [11].

I Theorem 18. Let (G, I) be a single interval total sum game. If Eve has a winning strategy
then she has a finite memory winning strategy.
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