
Playing Safe∗

Thomas Colcombet1, Nathanaël Fijalkow1,2, and Florian Horn1

1 LIAFA, Université Paris 7 – Denis Diderot, France
2 University of Warsaw, Poland

Abstract
We consider two-player games over graphs and give tight bounds on the memory size of strategies
ensuring safety conditions. More specifically, we show that the minimal number of memory states
of a strategy ensuring a safety condition is given by the size of the maximal antichain of left
quotients with respect to language inclusion. This result holds for all safety conditions without
any regularity assumptions, and for all (finite or infinite) graphs of finite degree.

We give several applications of this general principle. In particular, we characterize the
exact memory requirements for the opponent in generalized reachability games, and we prove the
existence of positional strategies in games with counters.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Game Theory, Synthesis, Safety Specifications, Program Verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.379

1 Introduction

Graphs games provide a mathematical framework to automatically address many questions,
for instance they are used to model reactive systems (we refer to [9] for a survey on the
topic). We focus here on the Synthesis Problem to motivate the problem we consider, which
is to characterize the amount of memory required in games with safety conditions.

The Synthesis Problem. The inputs of the Synthesis Problem are a system and a specific-
ation. The expected output is a controller for the system, that ensures the specification.

We describe here an approach to solve the Synthesis Problem through Game Theory. We
model the system as a graph, whose vertices represent states and edges represent transitions.
Its evolution consists in interactions between a controller and an environment, which is
turned into a game on the graph between two players, Eve and Adam. If in a given state, the
controller can choose the evolution of the system, then the corresponding vertex is controlled
by Eve. If the system evolves in an uncertain way, we consider the worst-case scenario, where
Adam controls those states.

A pebble is initially placed on the vertex representing the initial state of the system, then
Eve and Adam move this pebble along the edges. The sequence built describes a run of the
system: Eve tries to ensure that it satisfies the specification.

So, in order to synthesize a controller, we are interested in whether Eve can ensure this
objective and what resources she needs. In particular, the most salient question is: what
is the size of a minimal controller satisfying the specification? Since a controller is here

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no 259454 (GALE) and no 239850 (SOSNA).

© Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 379–390

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.379
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

380 Playing Safe

given by a strategy for Eve, this is equivalent to the following question: what is the minimal
amount of memory used by a winning strategy?

The following diagram shows the correspondence between the notions from the Synthesis
Problem (left-hand side) and the game-theoretical notions (right-hand side).

S︸︷︷︸
system

, C︸︷︷︸
controller

|= Φ︸︷︷︸
specification

⇐⇒ A︸︷︷︸
arena (graph)

, σ︸︷︷︸
strategy

|= W︸︷︷︸
condition

Safety Specifications. Since we consider non-terminating sequences, a specification is given
by a language of infinite words. Of special interest are the specifications asserting that
“nothing bad” ever happens; such specifications are called safety specifications. A safety
specification is induced by a (possibly infinite and non-regular) set of bad prefixes P , and
the specification is met by a run if no prefixes belong to P .

Although quite simple, the safety specifications proved useful in both theory and practice,
and are actively studied (we refer to [12] for a survey).

Our contribution. In this paper, we show the following general principle:

For a safety condition W , the minimal number of memory states of a winning strategy
is exactly the cardinal of the maximal antichain of left quotients of W .

We refer to Section 3 for the missing definitions. Note that this result holds for all safety
conditions, without any regularity assumption. The only assumption made is that graphs
have finite degree: we prove that this is necessary, by providing a counter example not
satisfying this property. The Section 3 is devoted to the proof of this main result. We give
several examples and applications in Section 4. For instance, it allows to characterize the
memory requirements for the opponent in generalized reachability games, and to prove the
existence of positional strategies in games with counters.

Related Works: Evaluating Memory Requirements. Characterizing the amount of memory
required by winning strategies according to the winning conditions has been widely studied,
in different frameworks.

The first result in this direction is about Muller conditions: in [5], the authors show how
to compute the exact memory requirements by looking at the so-called Zielonka tree of a
Muller condition. This is orthogonal to our results, as the Muller conditions only specify the
limit behaviour (what is seen infinitely often), whereas we consider here only the behaviours
in the finite.

In a different direction, Hugo Gimbert and Eryk Kopczyński independently investigated
necessary and sufficient conditions for positional determinacy. We refer to their respective
PhD theses [8, 11] for more details. A submitted result of Eryk Kopczyński [10] shows that
one can compute the exact chromatic memory requirements of ω-regular conditions. Our
results are also orthogonal to this result, as we characterize the exact memory requirements
for all safety conditions, including non-regular ones.

2 Definitions

The games we consider are played on an arena A = (V, (V∃, V∀), E, c), consisting of a (finite
or infinite) graph (V,E), a partition (V∃, V∀) of the vertex set V : a vertex in V∃ belongs to

T. Colcombet, N. Fijalkow, and F. Horn 381

Eve and in V∀ to Adam, and a coloring function c : E → A mapping edges to a color from a
finite alphabet A. When drawing arenas, we will use circles for vertices owned by Eve and
squares for those owned by Adam. Throughout this paper, we make two assumptions:

There are no dead-ends: for every vertex v ∈ V , there exists an edge (v, v′) ∈ E;
The degree is finite: for every vertex v ∈ V , the set {v′ | (v, v′) ∈ E} is finite.

The first assumption is cosmetic. The second assumption, however, will be crucial: in
particular, we will give a counter-example showing that our results do not hold without this
assumption.

Game. A play π is an infinite word of edges e0 · e1 · · · that are consecutive: for all i,
ei = (_, v) ∈ E and ei+1 = (v,_) ∈ E for some v ∈ V . We denote πk the prefix of length k
of π. A play π induces an infinite sequence of colors c(π), obtaining by applying the coloring
function c component-wise. We define winning conditions for a player by giving a set of
infinite sequences of colors W ⊆ Aω. As we are interested in zero-sum games, i.e. where the
winning conditions of the two players are opposite, if the winning condition for Eve is W ,
then the winning condition for Adam is Aω \W . A game is a couple G = (A,W) where A is
an arena and W a winning condition.

Strategy. A strategy for a player is a function that prescribes, given a finite history of
the play, the next move. Formally, a strategy for Eve is a function σ : E∗ · V∃ → E such
that for all π ∈ E∗ and v ∈ V∃ we have σ(π · v) = (v,_) ∈ E. Strategies for Adam are
defined similarly, and usually denoted τ . Once a game G = (A,W), a starting vertex v0 and
strategies σ for Eve and τ for Adam are fixed, there is a unique play π(v0, σ, τ), which is
said winning for Eve if its image by c belongs to W . A strategy σ for Eve is winning if for
all strategies τ for Adam, π(v0, σ, τ) is winning. We say that Eve wins the game G from v0 if
she has a winning strategy from v0, and denote WE(G) the set of vertices from where Eve
wins; we often say that v ∈ WE(G) is winning. We define similarly WA(G) for Adam to be
the set of vertices from where Adam wins.

Memory. A memory structure is a deterministic state machine that reads the sequence
of edges and abstracts its relevant informations into a memory state. Formally, a memory
structure M = (M,m0, µ) for an arena consists of a set M of memory states, an initial
memory statem0 ∈M and an update function µ : M×E →M . The update function takes as
input the current memory state and the chosen edge to compute the next memory state. It can
be extended to a function µ∗ : E∗ →M by defining µ∗(ε) = m0 and µ∗(π · e) = µ(µ∗(π), e).
Given a memory structureM and a next-move function ν : V∃ ×M → E, we can define a
strategy σ for Eve by σ(π · v) = ν(v, µ∗(π · v)). A strategy with memory structureM has
finite memory if M is a finite set. It is memoryless, or positional if M is a singleton: it only
depends on the current vertex. Hence a memoryless strategy can be described as a function
σ : V∃ → E. We denote mem(σ) the number of memory states used by the strategy σ.

An arena and a memory structure induce an expanded arena where the current memory
state is computed online. Formally, the arena A = (V, (V∃, V∀), E, c), the memory structure
M for A and a new coloring function c′ : E ×M → A induce an expanded arena A×M =
(V ×M, (V∃ ×M,V∀ ×M), E × µ, c′), where E × µ is defined by: ((v,m), (v′,m′)) ∈ E × µ
if (v, v′) ∈ E and µ(m, (v, v′)) = m′. From a memoryless strategy in A×M, we can build a
strategy in A usingM as memory structure, which behaves as the original strategy. This
key observation will be used several times in the paper.

FSTTCS 2014

382 Playing Safe

3 Tight Bounds on the Memory for Safety Conditions

In this section, we consider a safety condition1 W and compute the following quantity:

mem(W) .= sup
G=(A,W) game

inf
σ winning
strategy

mem(σ) .

In words, mem(W) is the necessary and sufficient number of memory states for constructing
a winning strategy in games with condition W . Equivalently:

upper bound: for all games G = (A,W), if Eve wins, then she has a winning strategy
using at most mem(W) memory states,
lower bound: there exists a game G = (A,W) when Eve wins but she has no winning
strategy using less than mem(W) memory states.

The reader with a background in game theory may be surprised, as it is well known that
“safety games are positionally determined”, implying that the quantity above is constant
equal to one. The subtlety here is that our setting is (much) more general than the classical
notion of safety games. Specifically, consider an arena A:

an internal safety condition is given by a subset B ⊆ A of forbidden colors, inducing the
winning condition

Safe(B) = {a0 · a1 · · · ∈ Aω | for all i, ai /∈ B} ,

an external safety condition is given by a subset P ⊆ A∗ of forbidden prefixes of colors,
inducing the winning condition

Safe(P) = {a0 · a1 · · · ∈ Aω | for all i, a0a1 · · · ai /∈ P} .

The term “internal” refers to the idea that the set B can be thought of as a set of
forbidden edges in the graph, giving rise to the classical notion of safety games, where Eve
tries to ensure never to reach the forbidden parts in the graph.

I Lemma 1 (Folklore). Let G be a game with an internal safety condition. If Eve has a
winning strategy, then she has a positional winning strategy.

On the other hand, the external safety conditions describe much more, as we will
demonstrate in Section 4.

From now on, as we are mostly interested in external safety conditions, we will drop the
prefix “external”. The notion of safety condition originates from topological studies of the set
of infinite words: the safety conditions are the closed sets for the Cantor topology, denoted
Π1 in the corresponding Borel hierarchy.
For the remainder of this section, we fix a safety condition W = Safe(P) induced by P ⊆ A∗.

A First Upper Bound
We first give an upper bound on mem(W). Let w ∈ A∗, define its left quotient as:

w−1W = {ρ ∈ Aω | w · ρ ∈W}.

1 To be defined in this section.

T. Colcombet, N. Fijalkow, and F. Horn 383

We denote Res(W) the set of left quotients of W . We mention some special left quotients:
the initial one, ε−1W (equal to W), and the empty one, obtained as w−1W for any w ∈ P .
From a left quotient w−1W and a letter a ∈ A, we define (w−1W) · a as (w · a)−1W : it is
easy to check that this is well defined (independent of the representant w chosen). Recall
that Res(W) is finite if and only if W is regular, and in such case it can be used to describe
the set of states of the minimal deterministic automaton recognizing W .

I Lemma 2. Let G = (A,W) be a game with a safety condition W . If Eve wins, then she
has a winning strategy using at most |Res(W)| memory states.

Consequently, for all safety conditions W ,

mem(W) ≤ |Res(W)| .

Proof. We construct a memory structure M, as follows: M = (Res(W),W, ν), where
ν(w−1W,a) = (w−1W) · a. At any point in the game, the memory state computed byM
is the current left quotient. We construct the expanded arena A ×M equipped with the
coloring function c′ : E × Res(W)→ {0, 1} defined by:

c′(_, w−1W) =
{

0 if w−1W = ∅ (equivalently, w ∈ P) ,
1 otherwise .

We attach to A×M the internal safety condition induced by B = {0}, giving rise to the
game G ×M = (A×M,Safe(B)). First observe that by construction, a play in A×M is of
the form

(e0, c(e0)−1W) · (e1, c(e0 · e1)−1W) · · · (ek, c(e0 · e1 · · · ek)−1W) · · · ,

so by definition of c′ a play is winning is G ×M if and only if its projection (on the first
component) is winning in G.

It follows that a winning strategy for Eve in G from v0 induces a winning strategy in
G×M from (v0,W). Now, thanks to Lemma 1, since Eve wins in G×M, she has a positional
winning strategy. This induces a winning strategy in G using M as memory structure,
concluding the proof of Lemma 2. J

The game G ×M defined above will be an important tool in the proofs to follow. We
will also rely on the following remark: let G = (A,W) be a game with a safety condition W ,
and assume we want to prove that a strategy σ in G is winning. Then it is enough to show
that for all plays π consistent with σ, for all k, c(πk)−1W 6= ∅, where πk is the prefix of π of
length k. This simple observation follows from the definition of safety conditions.

A Tighter Upper Bound
The memory structureM defined above is not optimal. A first remark is that the empty
left quotient (which exists if W 6= Aω) can be removed from the memory states as the game
is lost. From now on by “left quotient” we mean “non-empty left quotient of W”, and in
particular Res(W) denotes the set of non-empty left quotients of W .

The second remark is the following: let L1 and L2 be two left quotients of W , such that
L1 ⊆ L2. With the same notations as above, consider a vertex v in the arena A. If Eve wins
from (v, L1) in G ×M, then she also wins from (v, L2): indeed, she can play as she would
have played from (v, L1). Since this ensures from v that all plays are winning for L1, then a
fortiori they are winning for L2.

This suggests to restrict the memory states only to minimally winning left quotients with
respect to inclusion. Two issues arise:

FSTTCS 2014

384 Playing Safe

which left quotients are winning depends on the current vertex, so the semantics of a
memory state can no longer be one left quotient, but rather a left quotient for each
possible vertex,
there may not exist minimally winning left quotients.

For the sake of presentation, we first show how to deal with the first issue, assuming the
second issue does not appear. Specifically, in the following lemma, we assume that Res(W)
is finite (i.e. W is regular), implying the existence of minimally winning left quotients. We
will later drop this assumption.

We define the width of an ordered set (E,≤) as the cardinal of the maximal antichain of
E with respect to ≤, i.e. the cardinal of the largest set of pairwise incomparable elements.

I Lemma 3 (Upper bound in the regular case). Let G = (A,W) be a game with a safety
condition W . Assume that Res(W) is finite, i.e. that W is regular.

If Eve wins, then she has a winning strategy using at most K memory states, where K is
the width of (Res(W),⊆).

Proof. We use the same notations as for the proof of Lemma 2, and construct a smaller
memory structure together with a winning strategy using this memory structure. In this
proof, by winning we mean winning in the game G ×M.

Let K be the cardinal of the maximal antichain of left quotients of W . We construct the
memory structureM∗ = ({1, . . . ,K}, 1, µ), and the strategy σ induced by the next-move
function ν.

Let v be a vertex in A. We consider the set of minimal left quotients L such that
(v, L) is winning. (Here we use the finiteness of Res(W) to guarantee the existence of such
left quotients.) This is an antichain, so there are at most K of them, we denote them by
L1(v), . . . , Lp(v), for some p ≤ K. The key property is that for every left quotient L such
that (v, L) is winning, there exists i such that Li(v) ⊆ L. Furthermore, we choose L1(v0)
such that L1(v0) ⊆W . (Indeed, by assumption (v0,W) is winning.)

We define the update function: µ(i, (v, v′)) is a j such that Lj(v′) ⊆ Li(v) · c(v, v′). Note
that in general, such a j may not exist; it does exist if (v′, Li(v) · c(v, v′)) is winning, and we
will prove that this will always be the case when playing the strategy σ.

We define the next-move function ν (inducing σ). Let v ∈ V∃, and consider (v, Li(v)):
since Eve wins from there, there exists an edge (v, v′) ∈ E such that (v′, Li(v) · c(v, v′)) is
winning. Define ν(v, i) to be this v′.

We show that the strategy σ is winning. Consider a play π = (v0, v1)·(v1, v2) · · · consistent
with σ, and i0 · i1 · · · the sequence of memory states assumed along this play. Denote πk the
prefix of π of length k, we prove that for all k, Lik (vk) ⊆ c(πk)−1W . Note that by definition,
(vk, Lik (vk)) is winning, so Lik (vk) 6= ∅, implying that c(πk)−1W 6= ∅.

We proceed by induction. For k = 0, it follows from L1(v0) ⊆ W . Let k > 0, the
induction hypothesis is Lik−1(vk−1) ⊆ c(πk−1)−1W . We distinguish two cases.

Either vk−1 belongs to Eve, then by construction of σ we have that (vk, Lik−1(vk−1) ·
c(vk−1, vk)) is winning. It follows that the update function is well defined, and Lik (vk) ⊆
Lik−1(vk−1) · c(vk−1, vk), which together with the induction hypothesis implies Lik (vk) ⊆
c(πk)−1W .
Or vk−1 belongs to Adam. Since Adam cannot escape WE(G × M), we have that
(vk, Lik−1(vk−1) · c(vk−1, vk)) is winning, and the same reasoning concludes.

It follows that the strategy σ is winning, concluding the proof of Lemma 3. J

We now get rid of the regularity assumption. This means that for a vertex v, there may
not be a minimal left quotient L such that (v, L) is winning. To get around this difficulty,

T. Colcombet, N. Fijalkow, and F. Horn 385

the semantics of a memory state is not anymore a left quotient for each vertex, but rather a
decreasing sequence of left quotients for each vertex.

Note that the proof of Lemma 4 uses the finite degree assumption, and is the only proof
in the paper to do so. We will show in Section 4 that the result fails without this assumption.

I Lemma 4 (Upper bound). Let G = (A,W) be a game with a safety condition W . If Eve
wins, then she has a winning strategy using at most K memory states, where K is the width
of (Res(W),⊆).

Consequently, for all safety conditions W , mem(W) is smaller than or equal to the width
of (Res(W),⊆).

Proof. We use the same notations as for the proof of Lemma 3, and construct a memory
structure together with a winning strategy using this memory structure.

Let K be the cardinal of the maximal antichain of left quotients of W . We construct the
memory structureM∗ = ({1, . . . ,K}, 1, µ), and the strategy σ induced by the next-move
function ν.

Let v be a vertex in A. We consider the set W(v) of left quotients L such that (v, L)
is winning. We split W(v) into maximal decreasing (finite or infinite) sequences of left
quotients, denoted `1(v), . . . , `p(v), for some p ≤ K. Furthermore, we choose `1(v0) such
that W ∈ `1(v0). (Indeed, by assumption (v0,W) is winning.)

We say that (v, `) is winning if for all L ∈ `, we have that (v, L) is winning. For ` a
sequence of left quotients and a ∈ A, we define ` · a component-wise. Note that even if ` is
infinite, it may be that ` · a is finite.

We define the update function: µ(i, (v, v′)) is a j as follows.
If `i(v) ·c(v, v′) is finite, denote L ·c(v, v′) its last element. Choose j such that L ·c(v, v′) ∈
`j(v′). Note that in general, such a j may not exist; it does exist if (v′, `i(v) · c(v, v′)) is
winning, and we will prove that this will always be the case when playing the strategy σ.
If `i(v) · c(v, v′) is infinite, then choose j such that `j(v′) has an infinite intersection with
`i(v) · c(v, v′). Such a j exists without any assumption.

We define the next-move function ν (inducing σ). Let v ∈ V∃, and consider (v, `i(v)). Let
L ∈ `i(v), Eve wins from (v, L), so there exists an edge (v, v′) ∈ E such that (v′, L · c(v, v′))
is winning, we say that (v, v′) ∈ E is good for L. Since W(v′) is upward closed, if (v, v′) ∈ E
is good for L, then it is good for every L′ such that L ⊆ L′. We argue that there exists an
edge (v, v′) ∈ E that is good for all L ∈ `i(v), i.e. such that (v′, `i(v) · c(v, v′)) is winning;
define ν(v, i) to be this v′. There are two cases:

Either `i(v) is finite, denote L its last element. Since `i(v) is decreasing, an edge good
for L is good for all L′ ∈ `i(v).
Or `i(v) is infinite. The vertex v has finite degree, so there exists an edge which is good
for infinitely many L ∈ `i(v). Since `i(v) is decreasing, it is good for all L′ ∈ `i(v).

We show that the strategy σ is winning. Consider a play π = (v0, v1) · (v1, v2) · · ·
consistent with σ, and i0 · i1 · · · the sequence of memory states assumed along this play.
Denote πk the prefix of π of length k, we prove that for all k, there exists L ∈ `ik (vk) such
that L ⊆ c(πk)−1W . Note that by definition, (vk, `ik (vk)) is winning, so c(πk)−1W 6= ∅.

We proceed by induction. For k = 0, it follows from W ∈ `1(v0). Let k > 0, the
induction hypothesis implies the existence of L ∈ `ik−1(vk−1) such that L ⊆ c(πk−1)−1W .
We distinguish two cases, and denote ck = c(vk−1, vk).

Either vk−1 belongs to Eve, then by construction of σ we have that (vk, `ik−1(vk−1) · ck)
is winning. It follows that the update function is well defined, and:

FSTTCS 2014

386 Playing Safe

v0 ... v′0

v1 · · ·

vi

vK · · ·

...

w1

w2

wK−1

wK

ui,1

ui,2

ui,K−1

ui,K

Figure 1 The lower bound.

1. If `ik−1(vk−1) · ck is finite, denote L′ · ck its last element, we have L′ · ck ∈ `ik (vk).
Since L′ · ck is the last element of `ik−1(vk−1) · ck, it follows that L′ ⊆ L. We have thus
L′ · ck ⊆ L · ck, so L′ ⊆ c(πk)−1W , and L′ · ck ∈ `ik (vk).

2. If `ik−1(vk−1) · ck is infinite, `ik (vk) has an infinite intersection with `ik−1(vk−1) · ck.
So there exists L′ ⊆ L with L′ ∈ `ik−1(vk−1) such that L′ · ck is in this intersection.
We have L′ · ck ∈ `ik (vk) and L′ ⊆ c(πk)−1W .

Or vk−1 belongs to Adam. Since Adam cannot escape WE(G × M), we have that
(vk, `ik−1(vk−1) · ck) is winning, and the same reasoning concludes.

It follows that the strategy σ is winning, concluding the proof of Lemma 4. J

A Matching Lower Bound
I Lemma 5 (Lower bound). Let W be a safety condition. There exists a game G = (A,W)
where Eve wins but she has no winning strategy using less than K memory states where K is
the width of (Res(W),⊆).

Consequently, for all safety conditions W , mem(W) is greater than or equal to the width
of (Res(W),⊆).

Proof. Consider {w−1
1 W, . . . , w−1

K W} an antichain of left quotients of W . For i 6= j, there
exists ui,j ∈ Aω such that ui,j ∈ w−1

i W and ui,j /∈ w−1
j W .

We describe the game, illustrated in Figure 1. A play consists in three steps:
1. From v0 to v′0: Adam chooses a word in {w1, . . . , wK};
2. Eve chooses between K options;
3. say Eve chose the ith option, then Adam chooses between the K − 1 words ui,j for j 6= i.
We first show that Eve has a winning strategy from v0, using K memory states. It consists
in choosing the ith option whenever Adam chooses the word ui: whatever Adam chooses at
the third step, wi · ui,j ∈W .

We now show that there exists no winning strategy using less than K memory states.
Indeed, such a strategy will not comply with the above strategy and for some i 6= j, choose
the jth option if Adam chooses wi. Then Adam wins by playing ui,j , since wi · ui,j /∈W . J

Tight Bounds
Putting together upper and lower bounds, we proved the following result:

I Theorem 6. For all safety conditions W , mem(W) is the width of (Res(W),⊆).

T. Colcombet, N. Fijalkow, and F. Horn 387

ε a a2 a3 a4 a5 . . .

b ab a2b a3b a4b a5b . . .

c

a a a a a

b b b b b b

b b b b b

c

b

c

Figure 2 The outbidding condition: more b’s than a’s.

A conditionW is half-positional if mem(W) = 1. Characterizing half-positional conditions
has been a fruitful topic over the last few years [8, 11]. In the case of safety conditions, we
obtain the following characterization:

I Corollary 7. For all safety conditions W , W is half-positional if and only if the inclusion
is a linear order over Res(W).

4 Examples and Applications

In this section, we instantiate Theorem 6 on different examples. We chose four examples:
The outbidding condition shows the difference between graphs with finite degree and
graphs with infinite degree; in particular, it gives a counter example to Lemma 4 when
dropping the finite degree assumption,
The energy condition is a non-regular half-positional safety condition,
The generalized safety condition is a regular safety condition for which the partially
ordered set of left quotients has a nice well-known combinatorical structure,
The boundedness condition is a central piece in the theory of regular cost functions.

When representing the partial order (Res(W),⊆) for a given W , we use the following
convention: a black edge from L to L′ means that L ⊆ L′, and a red edge labeled a from L

to L′ means that L′ = L · a, so the red structure is the minimal (although possibly infinite)
deterministic automaton recognizing W .

Outbidding Games
Let A = {a, b, c} and W = {an · bp · cω | n ≤ p} ∪ {aω} ∪ a∗ · bω. It is a non-regular safety
condition, called the outbidding condition. Figure 2 represents the partial order (Res(W),⊆).
Its width is three: there are two incomparable infinite increasing sequences of left quotients,
((an)−1W)n∈N and ((b · an)−1W)n∈N, and c−1W .

Hence thanks to Theorem 6, mem(W) = 3. However, there exists an outbidding game
where Eve wins but needs infinite memory for this. This does not contradict Theorem 6, as
this game, represented in Figure 3, has a vertex of infinite degree. It goes as follows: first
Adam picks a number n, and then Eve takes over: she has to pick a number p, higher than
or equal to n. A finite memory strategy can only choose from finitely many options, hence
cannot win against all strategies of Adam.

FSTTCS 2014

388 Playing Safe

v0 v′0

v1

v2

v3

vn

...

...

a

a

b

b2

b3

bn

c

c

c

c

Figure 3 An outbidding game with infinite degree where Eve needs infinite memory to win.

ε a a2 a3 a4 a5 . . .

a a a a a

b b b b b

Figure 4 The energy condition: always more a’s than b’s.

Energy Games
The setup for the energy condition is the following: assume we are monitoring a resource. We
denote by A the set of actions on this resource, which is any monotonic function f : N→ N,
as for instance:

consuming one unit of the resource,
reloading by one unit,
emptying the resource,
consuming half of the current energy level.

Define the energy condition by

W = {w | the energy level in w remains always non-negative} .

It is a non-regular safety condition. Energy games and several variants have been extensively
studied [1, 2, 3]. Figure 4 represents the partial order (Res(W),⊆), with only two actions:
a reloads by one unit, and b consumes one unit. In general, if the actions are monotonic,
then the left quotients are totally ordered by inclusion, so thanks to Theorem 6 we have
mem(W) = 1.

I Corollary 8. The energy games are half-positional.

Generalized Safety Games
This example originates from the study of generalized reachability games [6, 7]. A generalized
reachability condition is a (finite) conjunction of reachability conditions. Here we take the
opponent’s vantage point: a generalized safety condition is a (finite) disjunction of (internal)
safety conditions. Specifically, let A = {⊥, 1, . . . , k}: each letter is a color, and ⊥ is uncolored.
LetW = {w = w0w1 · · · | ∃i ∈ {1, . . . , k},∀n,wn 6= i}, it is satisfied if at least one color is not
seen along the play. It is a safety condition. Figure 4 represents the partial order (Res(W),⊆)
for k = 3. The left quotients are all the strict subsets of {1, . . . , k}. The width of this partial
order is

(
k
bk/2c

)
, according to the well-known Sperner’s Lemma from combinatorics.

T. Colcombet, N. Fijalkow, and F. Horn 389

ε

{1}

{2}

{3}

{1, 2}

{1, 3}

{2, 3}

1

2

3

2

1

3
1

3

2

⊥

⊥, 1

⊥, 2

⊥, 3

⊥, 1, 2

⊥, 1, 3

⊥, 2, 3

Figure 5 The generalized safety condition.

I Corollary 9. For all generalized safety games with k colors, if Eve wins, then she has a
winning strategy with

(
k
bk/2c

)
memory states.

Furthermore, for all k, there exists a generalized safety game with k colors where Eve
wins, but has no winning strategy using less than

(
k
bk/2c

)
memory states.

Games with Counters
This example originates from the theory of regular cost functions [4]. Let N ∈ N, and define
the boundedness condition WN involving a counter as follows:

WN = {w | the counter value in w remains bounded by N} .

For the set of actions, we consider any monotonic action (even non-regular), i.e. function
f : N→ N such that if i ≤ j then f(i) ≤ f(j), as for instance:

leaving the counter value unchanged,
incrementing the counter value by one,
resetting the counter value to zero,
dividing the counter value by two, rounded down,
increasing the counter value to the next power of two.

The condition WN is a regular safety condition.

I Corollary 10. The boundedness games are half-positional.

5 Conclusion and Perspectives

We considered general safety conditions and characterized their memory requirements. Spe-
cifically, the memory requirements of a safety conditionW is the width of the partially ordered
set (Res(W),⊆). This is the first general result characterizing the memory requirements for
some non-regular conditions, based on their topological properties. We hope that this is the
first stone on the path of memory requirements characterizations for much more conditions.

FSTTCS 2014

390 Playing Safe

References
1 Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jirí

Srba. Infinite runs in weighted timed automata with energy constraints. In Franck Cassez
and Claude Jard, editors, FORMATS, volume 5215 of Lecture Notes in Computer Science,
pages 33–47. Springer, 2008.

2 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Re-
source interfaces. In Rajeev Alur and Insup Lee, editors, EMSOFT, volume 2855 of Lecture
Notes in Computer Science, pages 117–133. Springer, 2003.

3 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor. Comput. Sci.,
458:49–60, 2012.

4 Thomas Colcombet. Regular cost functions, part I: Logic and algebra over words. Logical
Methods in Computer Science, 9(3), 2013.

5 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is
needed to win infinite games? In LICS, pages 99–110. IEEE Computer Society, 1997.

6 Nathanaël Fijalkow and Florian Horn. The surprizing complexity of reachability games.
CoRR, abs/1010.2420, 2010.

7 Nathanaël Fijalkow and Florian Horn. Les jeux d’accessibilité généralisée. Technique et
Science Informatiques, 32(9-10):931–949, 2013.

8 Hugo Gimbert. Jeux Positionnels. PhD thesis, Université Paris 7, 2007.
9 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and

Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

10 Eryk Kopczyński. Personal communication.
11 Eryk Kopczyński. Half-Positional Determinacy of Infinite Games. PhD thesis, University

of Warsaw, 2009.
12 Orna Kupferman. Variations on safety. In Erika Ábrahám and Klaus Havelund, editors,

TACAS, volume 8413 of Lecture Notes in Computer Science, pages 1–14. Springer, 2014.

	Introduction
	Definitions
	Tight Bounds on the Memory for Safety Conditions
	Examples and Applications
	Conclusion and Perspectives

