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Abstract
We show new results about the garden-hose model. Our main results include improved lower
bounds based on non-deterministic communication complexity (leading to the previously un-
known Θ(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(n · log3 n)
upper bound for the Distributed Majority function (previously conjectured to have quadratic
complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the
garden-hose model, which implies that lower bounds on the garden-hose complexity GH (f) of
the order Ω(n2+ε) will be hard to obtain for explicit functions. Furthermore we study a time-
bounded variant of the model, in which even modest savings in time can lead to exponential
lower bounds on the size of garden-hose protocols.
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1 Introduction

1.1 Background: The Model
Recently, Buhrman et al. [4] proposed a new measure of complexity for finite Boolean
functions, called garden-hose complexity. This measure can be viewed as a type of distributed
space complexity, and while its motivation is mainly in applications to position based quantum
cryptography, the playful definition of the model is quite appealing in itself. Garden-hose
complexity can be viewed as a natural measure of space, when two players with private
inputs compute a Boolean function cooperatively. Space-bounded communication complexity
has been investigated before [2, 7, 9] (usually for problems with many outputs), and recently
Brody et al. [3] have studied a related model of space bounded communication complexity
for Boolean functions (see also [17]). In this context the garden-hose model can be viewed as
a memoryless model of communication that is also reversible.

To describe the garden-hose model let us consider two neighbors, Alice and Bob. They
own adjacent gardens which happen to have s empty water pipes crossing their common
boundary. These pipes are the only means of communication available to the two. Their
goal is to compute a Boolean function on a pair of private inputs, using water and the pipes
across their gardens as a means of communication.1

∗ This work is funded by the Singapore Ministry of Education (partly through the Academic Research
Fund Tier 3 MOE2012-T3-1-009) and by the Singapore National Research Foundation.

1 It should be mentioned that even though Alice and Bob choose to not communicate in any other way,
their intentions are not hostile and neither will deviate from a previously agreed upon protocol.
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A garden-hose protocol works as follows: There are s shared pipes. Alice takes some
pieces of hose and connects pairs of the open ends of the s pipes. She may keep some of the
ends open. Bob acts in the same way for his end of the pipes. The connections Alice and
Bob place depend on their local inputs x, y, and we stress that every end of a pipe is only
connected to at most one other end of a pipe (meaning no Y-shaped pieces of hose may be
used to split or combine the flow of water). Finally, Alice connects a water tap to one of
those open ends on her side and starts the water. Based on the connections of Alice and
Bob, water flows back and forth through the pipes and finally ends up spilling on one side.

If the water spills on Alice’s side we define the output to be 0. Otherwise, the water spills
on Bob’s side and the output value is 1. It is easy to see that due to the way the connections
are made the water must eventually spill on one of the two sides, since cycles are not possible.

Note that the pipes can be viewed as a communication channel that can transmit log s
bits, and that the garden-hose protocol is memoryless, i.e., regardless of the previous history,
water from pipe i always flows to pipe j if those two pipes are connected. Furthermore
computation is reversible, i.e., one can follow the path taken by the water backwards (e.g.
by sucking the water back).

Buhrman et al. [4] have shown that it is possible to compute every function f : {0, 1}n ×
{0, 1}n → {0, 1} by playing a garden-hose game. A garden-hose protocol consists of the
scheme by which Alice chooses her connections depending on her private input x ∈ {0, 1}n
and how Bob chooses his connections depending on his private input y ∈ {0, 1}n. Alice also
chooses the pipe that is connected to the tap. The protocol computes a function f , if for all
inputs with f(x, y) = 0 the water spills on Alice’s side, and for all inputs with f(x, y) = 1
the water spills on Bob’s side.

The size of a garden-hose protocol is the number s of pipes used. The garden-hose
complexity GH (f) of a function f(x, y) is the minimum number of pipes needed in any
garden-hose game that computes the value of f for all x and y such that f(x, y) is defined.

The garden-hose model is originally motivated by an application to quantum position-
verification schemes [4]. In this setting the position of a prover is verified via communications
between the prover and several verifiers. An attack on such a scheme is performed by several
provers, none of which are in the claimed position. [4] proposes a protocol for position-
verification that depends on a function f : {0, 1}n × {0, 1}n → {0, 1}, and a certain attack
on this scheme requires the attackers to share as many entangled qubits as the garden-hose
complexity of f . Hence all f with low garden-hose complexity are not suitable for this task,
and it becomes desirable to find explicit functions with large garden-hose complexity.

Buhrman et al. [4] prove a number of results about the garden-hose model:
Deterministic one-way communication complexity can be used to show lower bounds of
up to Ω(n/ logn) for many functions.
For the Equality problem they refer to a bound of GH (Equality) = Θ(n) shown by Pietrzak
(the proof implicitly uses the fooling set technique from communication complexity [10]
[personal communication]).
They argue that super-polynomial lower bounds for the garden-hose complexity of a
function f imply that the function cannot be computed in Logspace, making such bounds
hard to prove for ‘explicit’ functions.
They define randomized and quantum variants of the model and show that randomness
can be removed at the expense of multiplying size by a factor of O(n) (for quantum larger
gaps are known).
Via a counting argument it is easy to see that most Boolean functions need size GH (f) =
2Ω(n).
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Very recently Chiu et al. [5] have improved the upper bound for the Equality function to
1.359n from the previously known 2n bound [4].

1.2 Our Results

We study garden-hose complexity and establish several new connections with well studied
models like communication complexity, permutation branching programs, and formula size.

We start by showing that non-deterministic communication complexity gives lower bounds
on the garden-hose complexity of any function f . This improves the lower bounds of Ω( n

logn )
for several important functions like Inner Product, Disjointness to Ω(n).

We observe that any 2-way deterministic communication protocol can be converted to
a garden-hose protocol so that the complexity GH (f) is upper bounded by the size of the
protocol tree of the communication protocol.

We then turn to comparing the model to another nonuniform notion of space complexity,
namely branching programs. We show how to convert any permutation branching program to
a garden-hose protocol with only a constant factor loss in size.

The most important application of this simulation is that it allows us to find a garden-hose
protocol for the distributed Majority function, DMAJ (x, y) = 1 iff

∑n
i=1(xi · yi) ≥ n

2 , that
has size O(n · log3 n), disproving the conjecture in [4] that this function has complexity Ω(n2).

Using the garden-hose protocols for Majority, Parity, AND, OR, we show upper bounds
on the composition of functions with these.

We then show how to convert any Boolean formula with AND, OR, XOR gates to a
garden-hose protocol with a small loss in size. In particular, any formula consisting of
arbitrary fan-in 2 gates only can be simulated by a garden-hose protocol with a constant
factor loss in size. This result strengthens the previous observation that explicit super-
polynomial lower bounds for GH (f) will be hard to show: even bounds of Ω(n2+ε) would
improve on the long-standing best lower bounds on formula size due to Nečiporuk from 1966
[12]. We can also simulate formulae including a limited number of Majority gates of arbitrary
fan-in, so one might be worried that even super-linear lower bounds could be difficult to
prove. We argue, however, that for formulae using arbitrary symmetric gates we can still get
near-quadratic lower bounds using a Nečiporuk-type method. Nevertheless we have to leave
super-linear lower bounds on the garden-hose complexity as an open problem.

Next we define a notion of time in garden-hose protocols and prove that for any function
f , if we restrict the number of times water can flow through pipes to some value k, we have
GH k(f) = Ω(2Dk(f)/k), where GH k denotes the time-bounded garden-hose complexity, and
Dk the k-round deterministic communication complexity. This result leads to strong lower
bounds for the time bounded complexity of e.g. Equality, and to a time-hierarchy based on
the pointer jumping problem.

Finally, we further investigate the power of randomness in the garden-hose model by
considering private coin randomness ([4] consider only public coin randomness).

1.3 Organization

Most proofs are contained only in the full version of the paper, which is available on the
arXiv.
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2 Preliminaries

2.1 Definition of the Model
We now describe the garden-hose model in graph terminology. In a garden-hose protocol
with s pipes there is a set V of s vertices plus one extra vertex, the tap t.

Given their inputs x, y Alice and Bob want to compute f(x, y). Depending on x Alice
connects some of the vertices in V ∪{t} in pairs by adding edges EA(x) that form a matching
among the vertices in V ∪ {t}. Similarly Bob connects some of the vertices in V in pairs by
adding edges EB(y) that form a matching in V .

Notice that after they have added the additional edges, a path starting from vertex t is
formed in the graph G = (V ∪ {t}, EA(x) ∪ EB(y)). Since no vertex has degree larger than
2, this path is unique and ends at some vertex. We define the output of the game to be the
parity of the length of the path starting at t. For instance, if the tap is not connected the
path has length 0, and the output is 0. If the tap is connected to another vertex, and that
vertex is the end of the path, then the path has length 1 and the output is 1 etc.

A garden-hose protocol for f : X × Y → {0, 1} is a mapping from x ∈ X to matchings
among V ∪ {t} together with a mapping from y ∈ Y to matchings among V . The protocol
computes f(x, y) if for all x, y the path has even length iff f(x, y) = 0. The garden-hose
complexity of f is the smallest s such that a garden-hose protocol of size s exists that
computes f .

We note that one can form a matrix Gs that has rows labeled by all of Alice’s matchings,
and columns labeled by Bob’s matchings, and contains the parity of the path lengths. A
function f has garden-hose complexity s iff its communication matrix is a sub-matrix of Gs.
Gs is called the garden-hose matrix for size s.

2.2 Communication Complexity, Formulae, Branching Programs
I Definition 1. Let f : {0, 1}n × {0, 1}n → {0, 1}. In a communication complexity protocol
two players Alice and Bob receive inputs x and y from {0, 1}n. In the protocol players
exchange messages in order to compute f(x, y). Such a protocol is represented by a protocol
tree, in which vertices, alternating by layer, belong to Alice or to Bob, edges are labeled with
messages, and leaves either accept or reject. See [10] for more details. The communication
matrix is the matrix containing f(x, y) in row x and column y.

We say a protocol P correctly computes the function f(x, y) if for all x, y the output of
the protocol P (x, y) is equal to f(x, y). The communication complexity of a protocol is the
maximum number of bits exchanged for all x, y.

The deterministic communication complexity D(f) of a function f is the complexity of
an optimal protocol that computes f .

I Definition 2. The non-deterministic communication complexity N(f) of a Boolean func-
tion f is the length of the communication in an optimal two-player protocol in which
Alice and Bob can make non-deterministic guesses, and there are three possible outputs
accept, reject, undecided. For each x, y with f(x, y) = 1 there is a guess that will make
the players accept but there is no guess that will make the players reject, and vice versa for
inputs with f(x, y) = 0.

Note that the above is the two-sided version of non-deterministic communication com-
plexity. It is well known [10] that N(f) ≤ D(f) ≤ O(N2(f)), and that these inequalities are
tight.
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I Definition 3. In a public coin randomized protocol for f the players have access to a public
source of random bits. For all inputs x, y it is required that the protocol gives the correct
output with probability 1− ε for some ε < 1/2. The public coin randomized communication
complexity of f , Rpubε (f) is the complexity of the optimal public coin randomized protocol.
Private coin protocols are defined analogously (players now have access only to private
random bits), and their complexity is denoted by Rε(f).

I Definition 4. The deterministic communication complexity of protocols with at most k
messages exchanged, starting with Alice, is denoted by Dk(f).

I Definition 5. In a simultaneous message passing protocol, both Alice and Bob send
messages mA,mB to a referee. The referee, based on mA,mB, computes the output. The
simultaneous communication complexity of a function f , R||(f), is the cost of the best
simultaneous protocol that computes the function f using private randomness and error 1/3.

Next we define Boolean formulae.

I Definition 6. A Boolean formula is a Boolean circuit whose every node has fan-out 1
(except the output gate). A Boolean formula of depth d is then a tree of depth d. The nodes
are labeled by gate functions from a family of allowed gate functions, e.g. the class of the
16 possible functions of the form f : {0, 1} × {0, 1} → {0, 1} in case the fan-in is restricted
to 2. Another interesting class of gate functions is the class of all symmetric functions (of
arbitrary fan-in). The formula size of a function f (relative to a class of gate functions) is
the smallest number of leaves in a formula computing f .

Finally, we define branching programs. Our definition of permutation branching programs
is extended in a slightly non-standard way.

I Definition 7. A branching program is a directed acyclic graph with one source node and
two sink nodes (labeled with accept and reject). The source node has in-degree 0. The
sink nodes have out-degree 0. All non-sink nodes are labeled by variables xi ∈ {x1, · · · , xn}
and have out-degree 2. The computation on an input x starts from the source node and
depending on the value of xi on a node either moves along the left outgoing edge or the right
outgoing edge of that node. An input x ∈ {0, 1}n is accepted iff the path defined by x in the
branching program leads to the sink node labeled by accept. The length of the branching
program is the maximum length of any path, and the size is the number of nodes.

A layered branching program of length l is a branching program where all non-sink nodes
(except the source) are partitioned into l layers. All the nodes in the same layer query the
same variable xi, and all outgoing edges of the nodes in a layer go to the nodes in the next
layer or directly to a sink. The width of a layered branching program is defined to be the
maximum number of nodes in any layer of the program. We consider the starting node to be
in layer 0 and the sink nodes to be in layer l.

A permutation branching program is a layered branching program, where each layer has the
same number k of nodes, and if xi is queried in layer i, then the edges labeled with 0 between
layers i and i+ 1 form an injective mapping from {1, . . . , k} to {1, . . . , k}∪{accept, reject}
(and so do the the edges labeled with 0). Thus, for permutation branching programs if we fix
the value of xi, each node on level i+ 1 has in-degree at most 1.

We call a permutation branching program strict if there are no edges to accept/reject
from internal layers. This is the original definition of permutation branching programs.
Programs that are not strict are also referred to as loose for emphasis.

We denote by PBP(f) the minimal size of a permutation branching program that
computes f .

FSTTCS 2014
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We note that simple functions like AND, OR can easily be computed by linear size
loose permutation branching programs of width 2, something that is not possible for strict
permutation branching programs [1].

3 Garden-Hose Protocols and Communication Complexity

3.1 Lower Bound via Non-deterministic Communication
In this section we show that non-deterministic communication complexity can be used to lower
bound GH (f). This bound is often better than the bound GH (f) ≥ Ω(D1(f)/ log(D1(f)))
shown in [4], which cannot be larger than n/ logn.

I Theorem 8. GH (f) ≥ N(f)− 1.

The main idea is that a nondeterministic protocol that simulates the garden-hose game
can choose the set of pipes that are used on a path used on inputs x, y instead of the path
itself, reducing the complexity of the protocol. The set that is guessed may be a superset
of the actually used pipes, introducing ambiguity. Nevertheless we can make sure that the
additionally guessed pipes form cycles and are thus irrelevant.

As an application consider the function IP(x, y) =
∑n
i=1(xi · yi) mod 2. It is well known

that N(IP) ≥ n + 1 [10], hence we get that GH (IP) ≥ n. The same bound holds for
Disjointness. These bounds improve on the previous Ω(n/ logn) bounds for these functions
[4]. Furthermore note that the fooling set technique gives only bounds of size log2 n for the
complexity of IP (see [10]), so the technique previously used to get a linear lower bound for
Equality fails for IP.

3.2 GH (f) At Most The Size of a Protocol Tree for f

Buhrman et al. [4] show that any one way communication complexity protocol with com-
plexity D1(f) can be converted to a garden-hose protocol with 2D1(f) + 1 pipes. One-way
communication complexity can be much larger than two-way communication [16].

I Theorem 9. For any function f , the garden-hose complexity GH (f) is upper bounded by
the number of edges in a protocol tree for f .

The construction is better than the previous one in [4] for problems for which one-way
communication is far from the many-round communication complexity.

4 Relating Permutation Branching Programs and the Garden-Hose
Model

I Definition 10. In a garden hose protocol a spilling-pipe on a player’s side is a pipe such
that water spills out of that pipe on the player’s side during the computation for some input
x, y.

We say a protocol has multiple spilling-pipes if there is more than one spilling-pipe on
Alice’s side or on Bob’s side.

We now show a technical lemma that helps us compose garden-hose protocols without
blowing up the size too much.

I Lemma 11. A garden-hose protocol P for f with multiple spilling pipes can be converted
to another garden-hose protocol P ′ for f that has only one spilling pipe on Alice’s side and
one spilling pipe on Bob’s side. The size of P ′ is at most 3 times the size of P plus 1.
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Next we are going to show that it is possible to convert a (loose) permutation branching
program into a garden-hose protocol with only a constant factor increase in size. We are
stating a more general fact, namely that the inputs to the branching program we simulate
can be functions (with small garden-hose complexity) instead of just variables. This allows
us to use composition.

I Lemma 12. GH (g(f1, f2, . . . , fk)) = O(s · max(Ci)) + O(1), where PBP(g) = s and
GH (fi) = Ci and fi : {0, 1}n × {0, 1}n → {0, 1}. The fi do not necessarily have the same
inputs x, y.

A first corollary is the following fact already shown in [4]. Nonuniform Logspace is equal
to the class of all languages recognizable by polynomial size families of branching programs.
Since reversible Logspace equals deterministic Logspace [11], and a reversible Logspace
machine (on a fixed input length) can be transformed into a polynomial size permutation
branching program, we get the following.

I Corollary 13. Logspace ⊆ GH (poly(n)). This holds for any partition of the variables
among Alice and Bob.

5 The Distributed Majority Function

In this section we investigate the complexity of the Distributed Majority function.

I Definition 14. Distributed Majority: DMAJ (x, y) = 1 iff
∑n
i (xi · yi) ≥ n

2 , where x, y ∈
{0, 1}n.

Buhrman et al. [4] have conjectured that the complexity of this function is quadratic,
which is what is suggested by the naïve garden-hose protocol for the problem. The naïve
protocol implicitly keeps one counter for i and one for the sum, leading to quadratic size.
Here we describe a construction of a permutation branching program of size O(n · log3 n) for
Majority, which can then be used to construct a garden-hose protocol for the Distributed
Majority function. Note that the Majority function itself can be computed in the garden-hose
model using O(n) pipes (for any way to distribute inputs to Alice and Bob), since Alice
can just communicate

∑
i xi to Bob. The advantage of using a permutation branching

program to compute Majority is that by Lemma 12 we can then find a garden-hose protocol
for the composition of Majority and the Boolean AND, which is the Distributed Majority
function. Our construction of a permutation branching program adapts a branching program
construction by Sinha and Thathachar [19].

I Lemma 15. PBP(MAJ ) = O(n · log3 n)).

We can now state our result about the composition of functions f1, . . . , fk with small
garden-hose complexity via a Majority function.

I Lemma 16. For (f1, f2, . . . , fk), where each function fi has garden-hose complexity GH (fi),
GH (MAJ (f1, . . . , fk)) = O(

∑
GH (fi)) · log3 k).

The lemma immediately follows from combining Lemma 15 with Lemma 12. Considering
fi = xi ∧ yi we get

I Corollary 17. The garden-hose complexity of distributed Majority is O(n log3 n).

FSTTCS 2014
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6 Composition and Connection to Formula Size

We wish to relate GH (f) to the formula size of f . To do so we examine composition of
garden-hose protocols by popular gate functions.

I Theorem 18. For (f1, f2, . . . , fk), where each function fi has garden-hose complexity
GH (fi)

GH (
∨
fi) = O(

∑
GH (fi)).

GH (
∧
fi) = O(

∑
GH (fi)).

GH (⊕fi) = O(
∑

GH (fi)).
GH (MAJ (fi)) = O(

∑
GH (fi) · log3 k).

This result follows from Lemma 16 and Lemma 12 combined with the trivial loose
permutation branching programs for AND, OR, XOR.

We now turn to the simulation of Boolean formulae by garden-hose protocols. We use
the simulation of formulae over the set of all fan-in 2 function by branching programs due to
Giel [6].

I Theorem 19. Let F be a formula for a Boolean function g on k inputs made of gates
{∧,∨,⊕} of arbitrary fan-in. If F has size s and GH (fi) ≤ c for all i, then for all constants
ε > 0 we have GH (g(f1, f2, . . . , fk)) ≤ O(s1+ε · c).

Proof. Giel [6] shows the following simulation result:

I Fact 1. Let ε > 0 be any constant. Assume there is a formula with arbitrary fan-in 2
gates and size s for a Boolean function f . Then there is a layered branching program of size
O(s1+ε) and width O(1) that also computes f .

By inspection of the proof it becomes clear that the constructed branching program is in
fact a strict permutation branching program (an exponential increase in the width would
yield this property in any case). The theorem follows by applying Lemma 12. J

I Corollary 20. When the fi’s are single variables GH (g) ≤ O(s1+ε) for all constants ε > 0.
Thus any lower bound on the garden-hose complexity of a function g yields a slightly smaller
lower bound on formula-size (all gates of fan-in 2 allowed).

The best lower bound of Ω(n2/ logn) known for the size of formulae over the basis of all
fan-in 2 gate function is due to Nečiporuk [12]. The Nečiporuk lower bound method (based
on counting subfunctions) can also be used to give the best general branching program lower
bound of Ω(n2/ log2 n) (see [20]).

Due to the above any lower bound larger than Ω(n2+ε) for the garden-hose model
would immediately give lower bounds of almost the same magnitude for formula size and
permutation branching program size. Proving super-quadratic lower bounds in these models
is a long-standing open problem.

Due to the fact that we have small permutation branching programs for Majority, we can
even simulate a more general class of formulae involving a limited number of Majority gates.

I Theorem 21. Let F be a formula for a Boolean function g on n inputs made of gates
{∧,∨,⊕} of arbitrary fan-in. Additionally, on any path from the root to the leaves there
may be up to O(1) Majority gates. If F has size s, then for all constants ε > 0 we have
GH (g) ≤ O(s1+ε).
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Proof. Proceeding in reverse topological order we can replace all sub-formulae below a
Majority gate by garden-hose protocols with Theorem 19, increasing the size of the sub-
formula. Then we can apply Lemma 16 to replace the sub-formula including the Majority
gate by a garden-hose protocol. If the size of the formula below the Majority gate is s̃, then
the garden-hose size is O(s̃1+ε′), where the poly-logarithmic factor of Lemma 16 is hidden in
the polynomial increase. Since every path from root to leaf has at most c = O(1) Majority
gates, and we may choose the ε′ in Theorem 19 to be smaller than ε/c, we get our result. J

6.1 The Nečiporuk Bound with Arbitrary Symmetric Gates
Since garden-hose protocols can even simulate formulae containing some arbitrary fan-in
Majority gates, the question arises whether one can hope for super-linear lower bounds at
all. Maybe it is hard to show super-linear lower bounds for formulae having Majority gates?
Note that very small formulae for the Majority function itself are not known (the currently
best construction yields formulae of size O(n3.03) [18]), hence we cannot argue that Majority
gates do not add power to the model. In this subsection we sketch the simple observation
that the Nečiporuk method [12] can be used to give good lower bounds for formulae made of
arbitrary symmetric gates of any fan-in. Hence there is no obstacle to near-quadratic lower
bounds from the formula size connection we have shown. We stress that nevertheless we do
not have any super-linear lower bounds for the garden-hose model.

We employ the communication complexity notation for the Nečiporuk bound from [8].

I Theorem 22. Let f : {0, 1}n → {0, 1} be a Boolean function and B1, . . . , Bk a partition
of the input bits of f . Denote by Dj(f) the deterministic one-way communication complexity
of f , when Alice receives all inputs except those in Bj, and Bob the inputs in Bj. Then the
size (number of leaves) of any formula consisting of arbitrary symmetric Boolean gates is at
least

∑
Dj(f)/ logn.

The theorem is as good as the usual Nečiporuk bound except for the log-factor, and can
hence be used to show lower bounds of up to Ω(n2/ log2 n) on the formula size of explicit
functions like IndirectStorageAccess [20].

7 Time Bounded Garden-Hose Protocols

We now define a notion of time in garden-hose complexity.

I Definition 23. Given a garden-hose protocol P for computing function f , and an input
x, y we refer to the pipes that carry water in P on x, y as the wet pipes. Let TP denote the
maximum number of wet pipes for any input (x, y) in P .

The number of wet pipes on input x, y is equal to the length of the path the water takes
and thus corresponds to the time the computation takes. Thus it makes sense to investigate
protocols which have bounded time TP . Furthermore, the question is whether it is possible
to simultaneously optimize TP and the number of pipes used.

I Definition 24. We define GH k(f) to be the complexity of an optimal garden-hose protocol
P for computing f where for any input (x, y) we have that TP is bounded by k.

As an example consider the Equality function (test whether x = y). The straightforward
protocol that compares bit after bit has cost 3n but needs time 2n in the worst case. On the
other hand one can easily obtain a protocol with time 2, that has cost O(2n): use 2n pipes
to communicate x to Bob. We have the following general lower bound.

FSTTCS 2014
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I Theorem 25. For all Boolean functions f we have GH k(f) = Ω(2Dk(f)/k), where Dk(f)
is the deterministic communication complexity of f with at most k rounds (Alice starting).

Proof. We rewrite the claim as Dk(f) = O(k · log GH k(f)).
Let P ′ be the garden-hose protocol for f that achieves complexity GH k(f) for f . The

deterministic k-round communication protocol for f simulates P ′ by simply following the
flow of the water. In each round Alice or Bob (alternatingly) send the name of the pipe used
at that time by P ′. J

Thus for Equality we have for instance that GH√n(Equality) = Ω(2
√
n). There is an

almost matching upper bound of GH√n(Equality) = O(2
√
n ·
√
n) by using

√
n blocks of 2

√
n

pipes to communicate blocks of
√
n bits each.

We can easily deduce a time-cost tradeoff from the above: For Equality the product of
time and cost is at least Ω(n2/ logn), because for time T < o(n/ logn) we get a super-linear
bound on the size, whereas for larger T we can use that the size is always at least n.

7.1 A Time-Size Hierarchy
The Pointer Jumping Function is well-studied in communication complexity. We describe a
slight restriction of the problem in which the inputs are permutations of {1, . . . , n}.

I Definition 26. Let U and V be two disjoint sets of vertices such that |U | = |V | = n.
Let FA = {fA|fA : U → V and fA is bijective} and FB = {fB |fB : V → U and fB is

bijective}. For a pair of functions fA ∈ FA and fB ∈ FB define f(v) =
{
fA(v) if v ∈ U
fB(v) if v ∈ V .

Then f0(v) = v and fk(v) = f(fk−1(v)).
Finally, the pointer jumping function PJk : FA × FB → {0, 1} is defined to be the XOR

of all bits in the binary name of fk(v0), where v0 is a fixed vertex in U .

Round-communication hierarchies for PJk or related functions are investigated in [15].
Here we observe that PJk gives a time-size hierarchy in the garden-hose model. For simplicity
we only consider the case where Alice starts.

I Theorem 27. 1. PJk can be computed by a garden-hose protocol with time k and size kn.
2. Any garden-hose protocol for PJk that uses time at most k − 1 has size 2Ω(n/k) for all

k ≤ n/(100 logn).

We note that slightly weaker lower bounds hold for the randomized setting.

8 Randomized Garden-Hose Protocols

We now bring randomness into the picture and investigate its power in the garden-hose
model. Buhrman et al [4] have already considered protocols with public randomness. In this
section we are mainly interested in the power of private randomness.

I Definition 28. Let RGH pub(f) denote the minimum complexity of a garden-hose protocol
for computing f , where the players have access to public randomness, and the output is
correct with probability 2/3 (over the randomness). Similarly, we can define RGH pri(f), the
cost of garden-hose protocols with access to private randomness.

By standard fingerprinting ideas [10] we can observe the following.

I Claim 1. RGH pub(Equality) = O(1).
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I Claim 2. RGH pri(Equality) = O(n), and this is achieved by a constant time protocol.

Proof. The second claim follows from Newman’s theorem [13] showing that any public coin
protocol with communication cost c can be converted into a private coin protocol with
communication cost c+ logn+O(1) bits on inputs of length n together with the standard
public coin protocol for Equality, and the protocol tree simulation of Theorem 9. J

Of course we already know that even the deterministic complexity of Equality is O(n),
hence the only thing achieved by the above protocol is the reduction in time complexity.
Note that due to our result of the previous section computing Equality deterministically in
constant time needs exponentially many pipes.

Buhrman et al. [4] have shown how to de-randomize a public coin protocols at the cost
of increasing size by a factor of O(n), so the factor n in the separation between public
coin and deterministic protocols above is the best that can be achieved. This raises the
question whether private coin protocols can ever be more efficient in size than the optimal
deterministic protocol. We now show that there are no very efficient private coin protocols
for Equality.

I Claim 3. RGH pri(Equality) = Ω(
√
n/ logn)

Proof. To prove this we first note that RGH pri(f) = Ω(R||(f)/ logR||(f)), where R||(f) is
the cost of randomized private coin simultaneous message protocols for f (Alice and Bob
can send their connections to the referee). Hence, RGH pri(f) = Ω(R||pri(f)/ logR||pri(f)),
but Newman and Szegedy [14] show that RGH pri(Equality) = Ω(

√
n). J

9 Open Problems

We show that getting lower bounds on GH (f) larger than Ω(n2+ε) will be hard. But we
know of no obstacles to proving super-linear lower bounds.
Possible candidates for quadratic lower bounds could be the Disjointness function with
set size n and universe size n2, and the IndirectStorageAccess function.
Consider the garden-hose matrix Gs as a communication matrix. How many distinct
rows does Gs have? What is the deterministic communication complexity of Gs? The
best upper bound is O(s log s), and the lower bound is Ω(s). An improved lower bound
would give a problem, for which D(f) is larger than GH (f).
We have proved RGH pri(Equality) = Ω(

√
n/ logn). Is it true that RGH pri(Equality) =

Θ(n)? Is there any problem where RGH pri(f) is smaller than GH (f)?
It would be interesting to investigate the relation between the garden-hose model and
memoryless communication complexity, i.e., a model in which Alice and Bob must send
messages depending on their input and the message just received only. The garden-hose
model is memoryless, but also reversible.
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