Computing Information Flow Using Symbolic Model-Checking

Rohit Chadha¹, Umang Mathur², and Stefan Schwoon³

- University of Missouri, USA 1
- 2 Indian Institute of Technology - Bombay, India
- 3 LSV, ENS Cachan & CNRS, INRIA Saclay, France

Abstract

Several measures have been proposed in literature for quantifying the information leaked by the public outputs of a program with secret inputs. We consider the problem of *computing* information leaked by a deterministic or probabilistic program when the measure of information is based on (a) min-entropy and (b) Shannon entropy. The key challenge in computing these measures is that we need the total number of possible outputs and, for each possible output, the number of inputs that lead to it. A direct computation of these quantities is infeasible because of the state-explosion problem. We therefore propose symbolic algorithms based on binary decision diagrams (BDDs). The advantage of our approach is that these symbolic algorithms can be easily implemented in any BDD-based model-checking tool that checks for reachability in deterministic non-recursive programs by computing program summaries. We demonstrate the validity of our approach by implementing these algorithms in a tool Moped-QLeak, which is built upon Moped, a model checker for Boolean programs. Finally, we show how this symbolic approach extends to probabilistic programs.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Information leakage, Min Entropy, Shannon Entropy, Abstract decision diagrams, Program summaries

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.505

1 Introduction

It is desirable for a program to never leak any information about its confidential inputs. For example, when an adversary can make *low-security observations* of an execution, these should be independent of the confidential inputs. This property is often too strong in practice, mostly because it clashes with desired functionality. Therefore, many authors (cf. [22, 25]) have proposed to evaluate security by the *amount* of leaked confidential information. This raises foundational questions of (a) how to measure that amount and (b) how to compute it. These challenges have received much attention recently.

A usual approach is to employ information-theoretic tools. In this approach, a program is modeled as an information channel that transforms a random variable taking values from the set of confidential inputs into a random variable taking values from the set of public outputs (i.e., the adversary's observations). Based on this, one quantifies the adversary's uncertainty about the confidential inputs. The amount of information leaked by the program is then modeled as the difference between the initial uncertainty and the uncertainty remaining in the secret inputs after the adversary observes the execution. Commonly used measures of uncertainty are Shannon entropy [22] and min-entropy [25]. Intuitively, leakage based on

© Rohit Chadha, Umang Mathur, and Stefan Schwoon; licensed under Creative Commons License CC-BY

34th Int'l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014). Editors: Venkatesh Raman and S.P. Suresh; pp. 505–516

Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

506 Computing Information Flow Using Symbolic Model-Checking

min-entropy measures vulnerability of the secret inputs to a single guess of the adversary who observes the program execution, while, leakage based on Shannon entropy measures expected number of guesses required for the adversary to guess the secret input having observed the program execution. We refer to [25] for a detailed comparison between these two measures.

Though appealing from a conceptional viewpoint, these measures do not readily lend themselves to feasible computation. For example, it has been shown in [27] that when using Shannon's entropy for measuring uncertainty, the problem of deciding whether the information leaked by a *loop-free* deterministic Boolean program is less than a rational number is harder than *counting* the number of satisfying assignments of a Boolean formula in Conjunctive Normal Form. The hardness of the problem comes from the fact that one has to compute (a) how many outputs are observable to the adversary and (b) for each possible output, how many inputs lead to that particular output.

When Boolean deterministic programs contain loops, computing information leakage becomes PSPACE-complete [28, 6, 26], for both min-entropy and Shannon entropy. Although this is same complexity as checking safety of Boolean programs (or equivalently, reachability), the decision procedures given in [28, 6, 26] are not feasible in practice. Instead researchers have developed heuristics to exploit reachability tools to compute the amount of information leaked. The reachability tools employed come from model checking [3, 18, 8, 9], static analysis [11, 3], SMT solvers [21, 20, 23, 16], and statistical analysis [18, 7].

Contributions. We first consider the problem of evaluating the amount of information leaked by the public outputs of Boolean *deterministic* programs with uniformly distributed secret inputs. We exploit symbolic model-checking techniques to achieve our goals. More precisely, we demonstrate how model checkers based on Binary Decision Diagrams (BDDs) can very easily be enhanced to compute information leakage. As we shall see shortly, our approach is informed by the model-checking algorithms used by these tools.

BDDs [19, 1, 5] are data structures used to store Boolean functions. Their efficiency has led to many applications in program verification. Broadly, in this approach, the program is viewed as a transition system in which a configuration contains the current line number and the values of the variables. Transitions are encoded as BDDs, and reachability is encoded as the least fixed-point solution to a set of Boolean equations. This solution is the result of a fixed-point iteration with efficient BDD operations (Please see [5] for a discussion of complexity of BDD operations). For certain BDD-based tools (cf. [13]), this fixed-point computation yields the relation between the values of global variables at the start of the program and the values of the global variables when the queried location is reached. By querying the exit point, we can thus compute the relation between the inputs and the outputs of the program, henceforth referred to as the *summary* of the program.

Our key observation is that this summary (which is given as a BDD) is indeed all the information we need to quantify information leakage. We give symbolic algorithms that extract information leakage from the summary according to either Shannon entropy or min-entropy. This approach is appealing because these algorithms can be easily plugged into existing BDD-based model-checking tools.

We validate this approach by implementing our algorithms in Moped [13], a BDD-based symbolic model checker that checks for assertion errors in programs modeled as reachability problems. Apart from providing support for Boolean data, Moped also supports integers of variable length, arrays, and C-like structures. Our experience with these implementations are promising, as the computation of information leakage (for both min-entropy and Shannonentropy) comes with little overhead over the reachability computation.

We then turn our attention to probabilistic non-recursive programs. For such programs,

we need to compute, for each possible input-output pair (i, o), the conditional probability that the program outputs o when the input is i. Usually, these quantities are stored as a matrix, also called the *channel matrix*. We compute the channel matrix as the least fixed-point solution to a system of *linear equations* [24], which can be done using Algebraic Decision Diagrams (ADDs) [12], a generalization of BDDs. The summary for probabilistic programs now encodes (symbolically) the channel matrix, and we construct symbolic algorithms to extract the leaked information from the computed summary. We validate this approach by extending the ability of **Moped** to compute the summary for probabilistic non-recursive programs and implementing the symbolic algorithms for computing the information leakage.

The tool implementing the algorithms for entropy calculations is available for download at http://people.cs.missouri.edu/~chadhar/mql/. For space reasons, we have omitted proofs which can be found in the longer version of the paper available at the same site.

Related work. The problem of automatically computing information flow was first tackled in [3]. This approach iteratively constructs equivalence classes on inputs: two inputs are said to be equivalent if they lead to the same output. One starts with a single equivalence class and progressively refines when these inputs lead to different outputs. At each step, the equivalence relation is characterized using logical formulas and refined using experimental runs of the program. Once a fixed point is reached, the sizes of the resulting equivalence classes can be used to compute information leakage. This technique is optimized in [18], where statistical techniques are used to estimate the equivalence classes. The effectiveness of the approach is demonstrated through examples, and the authors suggest that an automated tool based on these techniques can be built. The computation of the size of the equivalence classes is further optimized in [15].

SMT solvers are used in [21, 20, 16, 23] to estimate min-entropy leakage in Boolean *straight-line* programs. In this approach, the program summary is encoded as a SMT formula and various model-counting techniques are used to obtain the information leaked. In [21, 20], an upper bound on min-entropy leakage is computed by estimating an upper bound on the number of feasible outputs. It is easy to construct examples where the computed bound is far from the correct value. Our techniques in contrast yield exact values. [16] provides a toolchain which first computes the program summary as a SAT formula that is then fed to a custom-made #SAT solver to calculate the information leaked. [23] combines model-counting techniques of #SMT solvers with the technique of symbolic executions. This tool can handle real C and Java programs.

For probabilistic programs, the use of model-checking to compute information leakage has been explored in [8, 2, 10, 4]. Please note that the models considered in these papers are more general as they also allow for other observations than just the outputs at the end of the program execution. [8] uses [14] to get the channel matrix and then computes the information leakage by hand, [10] implements an explicit state model-checking algorithm, and [4] computes the information leakage using (forward) symbolic executions. [2] also proposes to compute the channel matrix using fix-point iterations. Once the channel matrix is computed *explicitly* then information leakage can be computed. Our approach is different in that we solve the fix-point iterations *symbolically* and use the *symbolic* representation of the computed matrix directly in the computation of information leakage.

2 Preliminaries

We recall some standard definitions and establish notations. For a finite set A, |A| shall denote the number of elements of A. For a function $f : A \to B$ and $b \in B$, $f^{-1}(b)$ denotes

508 Computing Information Flow Using Symbolic Model-Checking

the set $\{a \mid f(a) = b\}$. We write 2^A to mean both the set of functions $A \to \{\texttt{true}, \texttt{false}\}$ as well as the set of subsets of A. All logarithms are to the base 2 and $0 \log 0 := 0$. The set of real numbers will be denoted by \mathbb{R} and the non-negative reals by \mathbb{R}^+ .

Boolean Programs. We first consider non-recursive Boolean deterministic programs in this paper. The programs that we consider have global and local variables. Usually, it is assumed that the set of global variables is partitioned into two: set of *high-security input-only variables* and the set of *low-security output-only variables*. However, in this paper we will assume that the secret inputs to the program are the *initial* values of the global variables and that the public outputs are the *final* values of the global variables. Thus, we do not explicitly separate high-security input-only variables and low-security output-only variables and low-security output-only variables and low-security output-only variables. This does not cause a loss of expressiveness: if we want to make sure that changes to a high-security input-only variable by a program are not visible to the adversary, we can set them to **false** upon exit. Similarly, if we want to explicitly designate some variables as low-security output-only variables, we can initialize all of them to **false**.

Assuming that local variables are always initialized to **false**, the semantics of a program P with global variables \mathcal{G} can be seen as a function $F_P: S \to O$ where $S = 2^{\mathcal{G}}$ and $O = 2^{\mathcal{G}} \cup \{\bot\}$. $F_P(\bar{g_0}) = \bot$ iff P does not terminate on $\bar{g_o}$, otherwise $F_P(\bar{g_0}) \in 2^{\mathcal{G}}$ is the valuation of the global variables when P stops executing. From now on, we will confuse P with the function F_P . Note that we treat non-termination as an explicit observation of the attacker.

Assuming that the inputs are sampled from a distribution μ , let S be the random variable taking values in S according to μ . μ can be extended to a joint probability distribution on S and O by setting $\mu(\mathcal{O} = o \mid S = s) = 1$ if P(s) = o and 0 otherwise.

Information leakage in programs. Several measures of information leakage have been considered in literature. Of these, we consider Shannon entropy and min-entropy. We assume that the reader is familiar with information theory and introduce some abbreviations and results that we shall need. For this section, we fix a Boolean program P. As discussed above, the semantics of P is a function $P: S \to O$. If S is sampled from a distribution μ , then μ gives rise to a joint probability distribution on S and O.

Leakage based on Shannon entropy: In Shannon entropy, the information leaked by the program P is defined as $\operatorname{SE}_{\mu}(P) \coloneqq \operatorname{I}_{\mu}(\mathcal{S}; \mathcal{O})$, where \mathcal{S} and \mathcal{O} are random variables taking values in S and O respectively according to the joint distribution μ , and $\operatorname{I}_{\mu}(\mathcal{S}; \mathcal{O})$ is the mutual information of random variables \mathcal{S} and \mathcal{O} . When P is deterministic and μ is U, the uniform distribution on inputs, we have [3, 17]: $\operatorname{SE}_{U}(P) = \log |S| - \frac{1}{|S|} \sum_{o \in O} |P^{-1}(o)| \log |P^{-1}(o)|$. Leakage based on Min entropy: In min-entropy [25], the information leaked by the

Leakage based on Min entropy: In min-entropy [25], the information leaked by the program P on uniformly distributed inputs is defined as $\operatorname{ME}_{\mathsf{U}}(P) \coloneqq \log \sum_{o \in \mathcal{O}} \max_{s \in \mathcal{S}} \mu(\mathcal{S} = s \mid \mathcal{O} = o)$. When P is deterministic [25], we get that $\operatorname{ME}_{\mu}(P) \coloneqq \log |\mathcal{O}'|$, where $\mathcal{O}' = \{o \in \mathcal{O} \mid \exists s \in \mathcal{S} : P(s) = o\}$ are the outputs that can actually be realized.

Algebraic Decision Diagrams. We assume that the reader is familiar with Binary Decision Diagrams (BDDs) and merely recall some facts necessary for our presentation. Our presentation follows closely the presentation in [24]. When speaking of BDDs, we always mean their reduced ordered form [5]. BDDs are data structures for storing elements of $2^{\mathcal{V}} \rightarrow \{0, 1\}$, where $\mathcal{V} = \{x_1, \ldots, x_n\}$ is a finite set of Boolean variables. They take the form of a rooted, directed acyclic labeled graph. Non-terminal nodes are labeled by an element of \mathcal{V} , and terminals are either 0 or 1. There are two edges out of a non-terminal node, one labeled *then* and the other labeled *else*. Assuming a fixed strict order < on \mathcal{V} , an edge from a non-terminal

Figure 1 An unreduced decision diagram (left) and a corresponding BDD (right).

labeled x to a non-terminal labeled y satisfies x < y. From now on we will often confuse a function $2^{\mathcal{V}} \to \{0, 1\}$ with its BDD representation.

▶ **Example 1.** Figure 1 shows how a BDD over the set $\mathcal{V} = \{x, y, z\}$ with the order x < y < z would store the Boolean assignments satisfying $x \to (y \leftrightarrow z)$. The figure on the left shows a (non-reduced) diagram exhaustively listing all assignments, and the right-hand side shows the resulting BDD, where for simplicity the terminal 0 and edges leading to it have been omitted. The solid arrows are *then* branches and the dashed arrows are *else* branches.

ADDs generalize BDDs and store elements of the set $2^{\mathcal{V}} \to M$, where $\mathcal{V} = \{x_1, \ldots, x_n\}$ and M is an arbitrary set. The main difference between BDDs and ADDs is that the terminal nodes contain elements of M and not just elements of $\{0, 1\}$. For our purposes, M will be either \mathbb{R} or \mathbb{R}^+ . Analogous to BDDs, the value of a function f represented by an ADD T at $(z_1, \ldots, z_n) \in 2^{\mathcal{V}}$ is given by the label of the terminal node along the unique path from the root to a terminal node such that if a non-terminal node is labeled x_i along the path then the outgoing edge from x_i must be labeled *then* if and only if z_i is **true**.

Note that an BDD is an ADD where all the terminals are either 0 or 1. Henceforth, we will refer to BDDs as 0/1-ADDs. Many efficient operations can be performed on ADDs. We list the most relevant ones for our paper.

- 1. The function $\mathsf{isConst}(T)$ checks if T is a constant function. $\mathsf{val}(T)$ returns the value of T if $\mathsf{isConst}(T)$ is true.
- 2. If op is a commutative and associative binary operator on ℝ and V₁ a subset of variables of V then abstract(op, V₁, T) returns the result of abstracting all the variables in V₁ by applying the operator op over all possible values taken by variables in V₁. abstract(op, V₁, T), thus obtained, is a function with domain as the set V \ V₁ and range as ℝ. For example, if T represents the function f, then abstract(+, {x₁, x₂}, T) returns the ADD which represents the function f(true, true, x₃,...,xn) + f(true, true, x₃,...,xn) + f(true, true, x₃,...,xn).
- **3.** If T is a 0/1-ADD and \mathcal{V}_1 a subset of \mathcal{V} , then orAbstract(\mathcal{V}_1, T) returns the result of abstracting all the variables in \mathcal{V}_1 by applying disjunction over all possible values taken by variables in \mathcal{V}_1 .

3 Leakage in non-probabilistic programs

In this section, we shall describe our ADD-based algorithms for computing the information leaked by deterministic programs when the leakage is measured using (a) min-entropy and (b) Shannon entropy. We fix some notation. Consider a set of variables $\mathcal{G} = \{x_1, \ldots, x_n\}$. Let $\mathcal{G}' = \{x'_1, \ldots, x'_n\}$ be a set of distinct variables disjoint from \mathcal{G} . Note that there is a one-to-one correspondence between elements of $2^{\mathcal{G}}$ and $2^{\mathcal{G}'}$ and every element (z'_1, \ldots, z'_n)

Figure 2 (a) Transition relation of the program P_{ex} . The ordering assumed is $s_1 < s'_1 < s_2 < s'_2 < o_1 < o'_1 < o_2 < o'_2$. (b) All the possible outputs of the program P_{ex} as an ADD. (c) All possible inputs on which P_{ex} terminates represented as an ADD. (d) $T_{eq-size,P}$ for P_{ex} as an ADD. (e) $T_{non-term,P}$ for the program P_{ex} as an ADD.

of $2^{\mathcal{G}'}$ can be identified with a unique element (z_1, \ldots, z_n) of $2^{\mathcal{G}}$ and vice versa. \mathcal{G} shall represent the initial values of the variables of a program and \mathcal{G}' shall represent their final values. In this section, we will assume that all possible valuations of \mathcal{G} are valid inputs to the program (and hence our input domain shall always be a power of 2). We discuss how to restrict the domain in the longer version of the paper.

▶ **Definition 2** (Summary of a Program). Let *P* be a program with $\mathcal{G} = \{x_1, \ldots, x_n\}$ as the set of global variables. Let $\mathcal{G}' = \{x'_1, \ldots, x'_n\}$ be a set of distinct variables disjoint from \mathcal{G} . The summary of *P*, denoted T_P , is a function $T_P : 2^{(\mathcal{G} \cup \mathcal{G}')} \to \{0, 1\}$ such that for every $z_1, \ldots, z_n, z'_1, \ldots, z'_n \in \{\text{true}, \text{false}\}$, we have $T_P(z_1, \ldots, z_n, z'_1, \ldots, z'_n) = 1 \iff P(z_1, \ldots, z_n) = (z'_1, \ldots, z'_n)$.

Observe that thanks to the correspondence between OBDDs and Boolean functions, T_P can be considered as an OBDD on the set of variables $\mathcal{G} \cup \mathcal{G}'$. Now, T_P can be seen as the least fixed point of a system of Boolean equations, which can efficiently be constructed by iterative methods. For our purposes, it suffices to say that BDD-based model-checkers essentially construct this relation for us (and, if not, can be modified to carry out this construction). We assume for our paper that T_P is constructed by a BDD-based model-checker. It remains to show how to exploit T_P to compute the information leaked by P.

Example 3. Consider the following Boolean program P_{ex} with global variables: s1, s2, o1 and o2.

o1 = false; o2 = false; while s1 {}; o1 = false; o2 = s2; s1 = false; s2 = false;

Here, variables s1 and s2 are high-security input-only variables and o1, o2 low-security input variables. This is why we initialized o_1 and o_2 to be false and set s_1 and s_2 false before the end of the program. Observe also that the program does not terminate when s1 is true at

the beginning of the program. Assuming the order $s_1 < s'_1 < s_2 < s'_2 < o_1 < o'_1 < o_2 < o'_2$, the transition relation of P is shown as a 0/1-ADD in Figure 2 (a).

For the rest of the section, unless otherwise stated, we will fix the Boolean program P. We assume that $\mathcal{G} = \{x_1, \ldots, x_n\}$ is the set of global variables of P and that $\mathcal{G}' = \{x'_1, \ldots, x'_n\}$ is a set of distinct variables disjoint from \mathcal{G} . The summary of P will be referred to as T_P .

Leakage measured using min-entropy. The amount of information leaked by the program P when using min-entropy as measure of information is as follows. Let $post(2^{\mathcal{G}}) = \{\bar{g'} \in 2^{\mathcal{G}} \mid \exists \bar{g} \in 2^{\mathcal{G}}. P(\bar{g}) = \bar{g'}\}$. If the program P terminates on all inputs then the min-entropy leakage is log $|post(2^{\mathcal{G}})|$, otherwise it is log $(|post(2^{\mathcal{G}})| + 1)$.

Thus, to compute the min-entropy leakage, we need to compute $|\text{post}(2^{\mathcal{G}})|$ and check if there is an input on which the program P never terminates. The following lemma shows how these two tasks can be achieved using ADDs.

▶ Lemma 4. Let $T_{out,P} = orAbstract(\mathcal{G}, T_P)$ and $T_{term,P} = orAbstract(\mathcal{G}', T_P)$.

1. $|\text{post}(2^{\mathcal{G}})| = val(abstract(+, \mathcal{G}', T_{out, P})).$

2. P terminates on every input iff $isConst(T_{term,P})$ and $val(T_{term,P}) = 1$.

▶ **Example 5.** Consider the program P_{ex} in Example 3 with $\mathcal{G} = \{s_1, s_2, o_1, o_2\}$. Observe that the program terminates only when s_1 is false, in which case the final value of s_1 is also false. The initial values of o_1 and o_2 do not effect the output. The final values of s_2 and o_1 are always false. The value of o_2 is exactly the value of s_2 . Thus, there are two possible outputs (false, false, false, false, true) and (false, false, false, false), both of which happen for exactly 4 inputs. The ADD representing $T_{out,P}$, the set of all possible outputs of P is given in Figure 2 (b). Note that o'_2 does not appear in the picture because the *then* and *else* branches of o'_2 lead to isomorphic subtrees. Observe that $abstract(+, \mathcal{G}', T_{out,P})$ is the constant ADD 2. The ADD $T_{term,P}$ representing all possible inputs on which P terminates is given in Figure 2 (c).

▶ **Theorem 6.** For a program P with global variables $\mathcal{G} = \{x_1, \ldots, x_n\}$, let $\mathcal{G}' = \{x'_1, \ldots, x'_n\}$ be a set of distinct variables disjoint from \mathcal{G} . Let T_P be the summary of P represented as a 0/1-ADD on $\mathcal{G} \cup \mathcal{G}'$. The Algorithm 1 computes $ME_{U}(P)$.

Algorithm 1: Symbolic computation of min-entropy leakage of a deterministic program					
Input : $\mathcal{G}, \mathcal{G}'$ and T_P the summary of P .					
Output : $ME_U(P)$					
1 begin					
$2 \mid T_{out,P} \longleftarrow orAbstract(\mathcal{G}, T_P)$					
$3 num_{out} \longleftarrow val(abstract(+, \mathcal{G}', T_{out, P}))$					
$4 T_{term,P} \longleftarrow orAbstract(\mathcal{G}', T_P)$					
5 if $isConst(T_{term,P}) = false or val(T_{term,P}) = 0 then$					
$6 \left[\begin{array}{c} num_{out} \longleftarrow num_{out} + 1; \end{array} \right]$					
$\tau \ \ \mathbf{return} \ \log num_{out}$					

Leakage measured using Shannon entropy. We now consider information leaked by P when measured using Shannon entropy. We need to compute $\sum_{\bar{g'} \in 2^{g'}} |P^{-1}(\bar{g'})| \log |P^{-1}(\bar{g'})| + |P^{-1}(\perp)| \log |P^{-1}(\perp)|$. In order to compute this sum, we need a new auxiliary definition:

▶ Definition 7. Let $\star : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ be the binary operator defined as $r_1 \star r_2 = r_1 \log r_1 + r_2 \log r_2$.

Algorithm 2: Symbolic computation of Shannon entropy leakage of a deterministic
program
Input : $\mathcal{G}, \mathcal{G}'$ and T_P the summary of P .
Output : $SE_U(P)$
1 Let n be the number of variables in \mathcal{G} .
2 begin
$3 \mid T_{\text{eq-size},P} \longleftarrow \text{abstract}(+, \mathcal{G}, T_P)$
$\texttt{sum} \longleftarrow val(abstract(\star, \mathcal{G}', T_{eq\text{-size}, P}))$
$5 T_{term,P} \longleftarrow orAbstract(\mathcal{G}', T_P)$
$6 T_{non-term,P} \longleftarrow cmpl(T_{term,P})$
$7 num_{non-term} \longleftarrow val(abstract(+,\mathcal{G},T_{non-term,P}))$
$s \qquad sum \longleftarrow sum + num_{non-term} \log(num_{non-term})$
9 $\left[\operatorname{return} \left(n - \frac{\operatorname{sum}}{2^n} \right) \right]$

▶ **Theorem 8.** For a program P with global variables $\mathcal{G} = \{x_1, \ldots, x_n\}$, let $\mathcal{G}' = \{x'_1, \ldots, x'_n\}$ be a set of distinct variables disjoint from \mathcal{G} . Let T_P be the summary of P represented as a 0/1-ADD on $\mathcal{G} \cup \mathcal{G}'$. Algorithm 2 computes $SE_{U}(P)$.

▶ **Example 9.** Consider the program P_{ex} in Example 3. Recall that there are two possible outputs (false, false, false, true) and (false, false, false, false), both of which happen for exactly 4 inputs. The ADD $T_{eq-size,P}$ for the P_{ex} is depicted in Figure 2 (d). The program does not terminate whenever s_1 is false. The ADD $T_{non-term,P}$ is depicted in Figure 2 (e).

4 Experimental evaluation

In this section, we present some results based on our experiments for calculating the different leakage values using the tool Moped-QLeak. It is based on the existing BDD-based symbolic model-checker Moped [13]. Moped, apart from providing support for basic Boolean data, also supports complex data types such as integers of variable length, arrays and C-like structures. Moped uses the CUDD (Colorado University Decision Diagram) package to implement BDDs.

Moped-QLeak performs basic reachability analysis and generates a summary of an input program written in *Remopla*. This summary is then used to calculate the information leakage. Currently, Moped-QLeak only supports non-recursive programs and is currently available for download at: http://people.cs.missouri.edu/~chadhar/mql/

Moped translates Remopla programs into BDDs. Moped-QLeak re-uses this as a frontend, but internally works with the more generic ADDs to carry out the calculations. Other than that, we made the following optimizations with respect to the standard behavior of Moped.

Algebraic operations: The input language of Moped understands expressions using algebraic and Boolean operations. However, Moped was not conceived with large integer operands in mind, and we detected some inefficiencies in these translations for integer operands having large number of bits. These often drastically affected the overall time taken for calculation of the summary, in which cases we improved the translation. Also, for the purpose of experimental evaluation of the efficiency of Moped-QLeak, we encode all the examples with variables having large range as Boolean programs and note a striking change in the running times. Furthermore, Moped does not support integers with bit length > 30. Hence, all examples with bit length > 30 were also coded as Boolean programs.

Size of ADDs and variable orderings: As usual with symbolic methods, their efficiency is highly sensitive to the size of the decision diagrams generated during the course of the reachability analysis, which, in turn, may depend on the variable ordering. (Finding the most efficient ordering is a NP-hard problem). Moped does not automatically determine the

Example	Order	ME	SE	Time	Data types
Illustrative Example	Ι	3	2.03966e-05	0.215	bool
Electronic Purse	D	2	2	0.009	5 bit integers (Restricted)
Mix and Duplicate	\mathbf{S}	16	16	0.041	bool
Binary Search	Ι	16	16	9.307	bool
Sanity Check	Ι	4	1.16797e-7	0.060	bool
Implicit Flow	D	2.80735	1.757 e-07	0.016	30 bit integers
Implicit Flow	D	2.80735	4.67189e-08	0.190	bool
Masked Copy	Ι	16	16	0.038	bool
Sum Query	D	4.80735	4.35132	0.034	5 bit integers (Restricted)
Ten Random Outputs	D	3.32193	2.6355e-07	0.055	30 bit integers
Population Count	I/D			out-of-memory	bool

Table 1 Examples used for evaluation.

best variable ordering and gives the user the flexibility to choose the ordering. Hence, the examples for which the default ordering of variables (which entails the order of declaration of the variables in the source file) was the overhead, have been re-written with supposedly efficient variable orderings. The principal obstacle here is the computation of summary. The computation of leakage itself adds little overhead.

We illustrate our orderings using the variables O (for public outputs) and S (for private inputs). Let O_N (O_1) be the most (least) significant bit of O and likewise S_N (S_1) the most (least) significant bit of S. We primarily used two kinds of orderings:

- Contiguous ordering: This is the default ordering of the tool, where we set $O_1 < O'_1 < O_2 \cdots O'_N < S_1 < S'_1 < S_2 < \cdots < S'_N$.
- Interleaved ordering: In this ordering, we set $O_1 < O'_1 < S_1 < S'_1 < O_2 < O'_2 < S_2 < S'_2 < \cdots > O_N < O'_N < S_N < S'_N$.

The choice of an ordering depends largely on the structure and semantics of the program. The ADDs produced are generally smaller if a variable v_1 is closer to a variable v_2 such that the value of v_1 depends on the value of v_2 . Essentially, as long as variables are compared and assigned to constants in the program, the default ordering works very well and in that case we do not even attempt the interleaved ordering. For other examples, typically, we switch to interleaved ordering as contiguous ordering becomes inefficient very fast with the number of bits as the ADDs become very large. Going by this, we have also reordered variable declarations in an example (see Mix and Duplicate below) so that variables with a constant difference in the *indices* are closer.

Table 1 presents some selected benchmark programs that we used to test Moped-QLeak. The examples have been derived from [21]. The experiments were conducted on a 64-bit Xeon-X5650 2.67GHz Linux machine. Unless otherwise stated, S and O are 32-bit unsigned integers in all the programs. For each example, we give the name, the ordering, the Shannon entropy (SE) and min-entropy (ME) leakage values, the execution time of the tool in seconds, and the data types that occur in the example, which are either all Boolean or integers with a specified number of bits. If the example uses restricted domains then we mention it in the data types. The order is either the contiguous default order (D), the interleaved order (I), or another example-specific order (S). There is one example from [21], Population Count, for which the computation of summary never succeeds as there is no good variable ordering for that example. Note that we run the tool to compute the two leakage values separately and report the worse case. The time difference between the computation of the two values is almost always within a 3-4 microseconds.

Mix and Duplicate. The following program copies the XOR of the i^{th} and the $(i + 16)^{th}$ bit of S to both the i^{th} and the $(i + 16)^{th}$ bit of O.

0 = ((S >> 16) ^ S) & Oxffff; 0 = 0 | 0 << 16;

It is thus that the i^{th} and the $(i+16)^{th}$ bits of S and O are closely related. In fact, the ADDs formed after reordering the variables to $O_{17} < O'_{17} < O_1 < O'_1 < S_{17} < S'_{17} < S_1 \cdots O'_{16} < S_{32} < S'_{32} < S_{16} < S'_{16}$ have drastic reduction in the number of distinct nodes. Note that intuitively, half the input bits are leaked in the example (namely the XOR of i^{th} and $(i+16)^{th}$ bits of S). This intuition is confirmed by the results.

Binary Search. The following program scans the first *b* bits of the input *S* and puts a 1 at the i^{th} bit of *O* iff the i^{th} bit of *S* is 1.

0 = 0; for (i = 0; i < b; i++) {m = 2^(31-i); if (0 + m <= S) 0 += m; }</pre>

For our experiments, we took b = 16. We converted this program to a Boolean program with an interleaved ordering. We also unrolled the loop for b = 16. Also note that since O is 0 to start with and m is a power of 2, the addition of O and m can be modelled as bitwise or of O and m for the purpose of efficiency. It can also be checked (using assertion-checking in **Moped**) that the $(31 - i)^{th}$ bit is false before the i^{th} iteration, and thus the carry-bit is always 0, justifying our simplification. Note that intuitively, half the input bits (the first 16 bits) are leaked by the program. This intuition is confirmed by the results.

Comparison with prototype sqifc [23]. As **sqifc** provides an automated tool (rather than just a method), we ran the examples of Table 1 on **sqifc**. We consistently outperformed the tool (with **sqifc** timing out on several examples). However, we point that it is not exactly a fair comparison as we can guide the efficient computation of the summary by choosing the variable ordering, which has a considerable effect on our timings. The same optimization cannot be applied to **sqifc** because it is based on different concepts.

5 Leakage in probabilistic programs

We also generalized our algorithms for computing information leakage in programs that allow probabilistic choices. The summary of a probabilistic program is the channel matrix. The channel matrix on inputs S and outputs O is the $S \times O$ matrix such that its (s, o)entry is the conditional probability of observing o given s. More precisely, for a probabilistic program P with $\mathcal{G} = \{x_1, \ldots, x_n\}$ as the set of global variables, and $\mathcal{G}' = \{x'_1, \ldots, x'_n\}$ a set of distinct variables disjoint from \mathcal{G} , the summary of program P, denoted by T_P is the function $T_P : 2^{(\mathcal{G} \cup \mathcal{G}')} \to \mathbb{R}^+$ such that for every $z_1, \ldots, z_n, z'_1, \ldots, z'_n \in \{\text{true}, \text{false}\},$ $T_P(z_1, \ldots, z_n, z'_1, \ldots, z'_n)$ is the conditional probability that the programs outputs (z'_1, \ldots, z'_n) given that the input to the program P is (z_1, \ldots, z_n) .

Just as the case for non-probabilistic programs, the summary relation for probabilistic programs can be computed using ADD-based fixed-point algorithms. Once again, we can give symbolic algorithms to compute the information leaked. We have implemented these symbolic algorithms in Moped-QLeak (currently we do not support restricted domains for probabilistic

programs). Moped does not support probabilistic model-checking, so we also implemented the symbolic fixed-point algorithms for computing the summary also in Moped-QLeak. We used Moped-QLeak to compute information leakage in the dining cryptographer's problem. The symbolic algorithms and the results are discussed in detail in the longer version of the paper available at http://people.cs.missouri.edu/~chadhar/mql/.

6 Conclusions and future work

We gave symbolic algorithms for computing the information leaked by Boolean programs when information leakage is measured using min-entropy and Shannon entropy. The advantage of our approach is that these algorithms can be integrated with any BDD-based model checking tool that computes reachability in Boolean programs by computing program summaries. We made such an integration with **Moped**, with promising experimental results. The leakage calculations themselves add little overhead. The main limiting factor in these calculations seems to be the size of the OBDDs constructed in the computation. As is standard with symbolic approaches, the size of BDDs is sensitive to the variable ordering. Since **Moped** by itself does not compute the most efficient ordering (and puts the onus on the user), we sometimes had to rewrite our examples to achieve good performance. We also generalized our symbolic algorithms for computing information leakage in probabilistic programs. These algorithms have also been integrated in **Moped**.

In order to make symbolic model-checking more amenable to automation, many automated abstraction refinement techniques have been proposed in literature. We plan to investigate these techniques for our symbolic algorithms. In particular, we plan to integrate the counterexample guided abstraction-refinement framework in our symbolic algorithms. Currently, our implementation only supports non-recursive programs. However, the algorithms we presented for computing information leakage assume only that program summaries be computed. Thus, in principle, we can support programs that have both recursion and probabilistic choices, and we plan to extend support to such programs in future.

Acknowledgements. Rohit Chadha was supported by NSF grant CNS 1314338. Umang Mathur was supported in part by an INRIA student internship. Stefan Schwoon was supported by an INRIA *chaire d'excellence*.

— References

- 1 S.B. Akers. Binary decision diagrams. *IEEE Trans. Comput.*, 27(6):509–516, 1978.
- 2 M. E. Andrés, C. Palamidessi, P. van Rossum, and G. Smith. Computing the leakage of information-hiding systems. In *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, pages 373–389, 2010.
- 3 M. Backes, B. Köpf, and A. Rybalchenko. Automatic discovery and quantification of information leaks. In *IEEE Symposium on Security and Privacy*, pages 141–153, 2009.
- 4 F. Biondi, A. Legay, L. Traonouez, and A. Wasowski. Quail: A quantitative security analyzer for imperative code. In *Computer Aided Verification*, pages 702–707, 2013.
- 5 R. E. Bryant. Graph-based algorithms for Boolean function manipulation. *IEEE Transac*tions on Computers, C-35(8):677–691, August 1986.
- 6 R. Chadha, D. Kini, and M. Viswanathan. Quantitative information flow in boolean programs. In *Principles of Security and Trust*, pages 103–119, 2014.
- 7 K. Chatzikokolakis, T. Chothia, and A. Guha. Statistical measurement of information leakage. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 390–404, 2010.

516 Computing Information Flow Using Symbolic Model-Checking

- 8 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Probability of error in informationhiding protocols. In *IEEE Computer Security Foundations Symp.*, pages 341–354, 2007.
- **9** K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Anonymity protocols as noisy channels. *Information and Computation*, 206(2-4), 2008.
- 10 T. Chothia, Y. Kawamoto, C. Novakovic, and D. Parker. Probabilistic point-to-point information leakage. In *IEEE Computer Security Foundations Symp.*, pages 193–205, 2013.
- 11 D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information flow in a simple imperative language. *Journal of Computer Security*, 15(3):321–371, 2007.
- 12 E. M. Clarke, K. L. Mcmillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for large boolean functions with applications to technology mapping. *Formal Methods in System Design*, 10(2-3):137–148, 1997.
- 13 J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig interpolation and symbolic pushdown systems. In *International Conference on Tools and Algorithms for* the Construction and Analysis of Systems, LNCS 3920, pages 489–503, 2006.
- 14 A. Hinton, M.Z. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for automatic verification of probabilistic systems. In *International Conference on Tools and Algorithms* for the Construction and Analysis of Systems, pages 441–444, 2006.
- 15 V. Klebanov. Precise quantitative information flow analysis using symbolic model counting. 1st International Workshop on Quantitative Aspects of Security Assurance, 2012.
- 16 V. Klebanov, N. Manthey, and C. J. Muise. SAT-based analysis and quantification of information flow in programs. In *International Conference on Quantitative Evaluation of* Systems, pages 177–192, 2013.
- 17 B. Köpf and D. A. Basin. An information-theoretic model for adaptive side-channel attacks. In ACM Conference on Computer and Communications Security, pages 286–296, 2007.
- 18 B. Köpf and A. Rybalchenko. Approximation and randomization for quantitative information-flow analysis. In *IEEE Computer Security Foundations Symp.*, pages 3–14, 2010.
- 19 C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell System Technical Journal, 38:985–999, 1959.
- 20 Z. Meng and G. Smith. Faster two-bit pattern analysis of leakage. 2nd International Workshop on Quantitative Aspects of Security Assurance, 2013.
- 21 Z. Meng and G. Smith. Calculating bounds on information leakage using two-bit patterns. In Workshop on Programming Languages and Analysis for Security, 2011.
- 22 J. K. Millen. Covert channel capacity. In *IEEE Symposium on Security and Privacy*, pages 60–66, 1987.
- 23 Q. Phan and P. Malacaria. Abstract model counting: a novel approach for quantification of information leaks. In ACM Symposium on Information, Computer and Communications Security, pages 283–292, 2014.
- 24 J. M. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. AMS, 2004.
- 25 G. Smith. On the foundations of quantitative information flow. In *International Conference* on Foundations of Software Science and Computation Structures, pages 288–302, 2009.
- 26 P. Černý, K. Chatterjee, and T. A. Henzinger. The complexity of quantitative information flow problems. In *IEEE Computer Security Foundations Symposium*, pages 205–217, 2011.
- 27 H. Yasuoka and T. Terauchi. Quantitative Information Flow Verification Hardness and Possibilities. In *IEEE Computer Security Foundations Symposium*, pages 15–27, 2010.
- 28 H. Yasuoka and T. Terauchi. Quantitative information flow as safety and liveness hyperproperties. In *Quantitative Aspects of Programming Languages and Systems*, pages 77–91, 2012.