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Abstract
Several measures have been proposed in literature for quantifying the information leaked by
the public outputs of a program with secret inputs. We consider the problem of computing
information leaked by a deterministic or probabilistic program when the measure of information
is based on (a) min-entropy and (b) Shannon entropy. The key challenge in computing these
measures is that we need the total number of possible outputs and, for each possible output, the
number of inputs that lead to it. A direct computation of these quantities is infeasible because of
the state-explosion problem. We therefore propose symbolic algorithms based on binary decision
diagrams (BDDs). The advantage of our approach is that these symbolic algorithms can be easily
implemented in any BDD-based model-checking tool that checks for reachability in deterministic
non-recursive programs by computing program summaries. We demonstrate the validity of our
approach by implementing these algorithms in a tool Moped-QLeak, which is built upon Moped,
a model checker for Boolean programs. Finally, we show how this symbolic approach extends to
probabilistic programs.
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1 Introduction

It is desirable for a program to never leak any information about its confidential inputs. For
example, when an adversary can make low-security observations of an execution, these should
be independent of the confidential inputs. This property is often too strong in practice,
mostly because it clashes with desired functionality. Therefore, many authors (cf. [22, 25])
have proposed to evaluate security by the amount of leaked confidential information. This
raises foundational questions of (a) how to measure that amount and (b) how to compute it.
These challenges have received much attention recently.

A usual approach is to employ information-theoretic tools. In this approach, a program is
modeled as an information channel that transforms a random variable taking values from the
set of confidential inputs into a random variable taking values from the set of public outputs
(i. e., the adversary’s observations). Based on this, one quantifies the adversary’s uncertainty
about the confidential inputs. The amount of information leaked by the program is then
modeled as the difference between the initial uncertainty and the uncertainty remaining in
the secret inputs after the adversary observes the execution. Commonly used measures of
uncertainty are Shannon entropy [22] and min-entropy [25]. Intuitively, leakage based on
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min-entropy measures vulnerability of the secret inputs to a single guess of the adversary who
observes the program execution, while, leakage based on Shannon entropy measures expected
number of guesses required for the adversary to guess the secret input having observed the
program execution. We refer to [25] for a detailed comparison between these two measures.

Though appealing from a conceptional viewpoint, these measures do not readily lend
themselves to feasible computation. For example, it has been shown in [27] that when
using Shannon’s entropy for measuring uncertainty, the problem of deciding whether the
information leaked by a loop-free deterministic Boolean program is less than a rational
number is harder than counting the number of satisfying assignments of a Boolean formula
in Conjunctive Normal Form. The hardness of the problem comes from the fact that one has
to compute (a) how many outputs are observable to the adversary and (b) for each possible
output, how many inputs lead to that particular output.

When Boolean deterministic programs contain loops, computing information leakage
becomes PSPACE-complete [28, 6, 26], for both min-entropy and Shannon entropy. Although
this is same complexity as checking safety of Boolean programs (or equivalently, reachability),
the decision procedures given in [28, 6, 26] are not feasible in practice. Instead researchers
have developed heuristics to exploit reachability tools to compute the amount of information
leaked. The reachability tools employed come from model checking [3, 18, 8, 9], static analysis
[11, 3], SMT solvers [21, 20, 23, 16], and statistical analysis [18, 7].

Contributions. We first consider the problem of evaluating the amount of information
leaked by the public outputs of Boolean deterministic programs with uniformly distributed
secret inputs. We exploit symbolic model-checking techniques to achieve our goals. More
precisely, we demonstrate how model checkers based on Binary Decision Diagrams (BDDs)
can very easily be enhanced to compute information leakage. As we shall see shortly, our
approach is informed by the model-checking algorithms used by these tools.

BDDs [19, 1, 5] are data structures used to store Boolean functions. Their efficiency has
led to many applications in program verification. Broadly, in this approach, the program is
viewed as a transition system in which a configuration contains the current line number and
the values of the variables. Transitions are encoded as BDDs, and reachability is encoded
as the least fixed-point solution to a set of Boolean equations. This solution is the result
of a fixed-point iteration with efficient BDD operations (Please see [5] for a discussion of
complexity of BDD operations). For certain BDD-based tools (cf. [13]), this fixed-point
computation yields the relation between the values of global variables at the start of the
program and the values of the global variables when the queried location is reached. By
querying the exit point, we can thus compute the relation between the inputs and the outputs
of the program, henceforth referred to as the summary of the program.

Our key observation is that this summary (which is given as a BDD) is indeed all the
information we need to quantify information leakage. We give symbolic algorithms that
extract information leakage from the summary according to either Shannon entropy or
min-entropy. This approach is appealing because these algorithms can be easily plugged into
existing BDD-based model-checking tools.

We validate this approach by implementing our algorithms in Moped [13], a BDD-based
symbolic model checker that checks for assertion errors in programs modeled as reachability
problems. Apart from providing support for Boolean data, Moped also supports integers of
variable length, arrays, and C-like structures. Our experience with these implementations are
promising, as the computation of information leakage (for both min-entropy and Shannon-
entropy) comes with little overhead over the reachability computation.

We then turn our attention to probabilistic non-recursive programs. For such programs,
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we need to compute, for each possible input-output pair (i, o), the conditional probability that
the program outputs o when the input is i. Usually, these quantities are stored as a matrix,
also called the channel matrix. We compute the channel matrix as the least fixed-point
solution to a system of linear equations [24], which can be done using Algebraic Decision
Diagrams (ADDs) [12], a generalization of BDDs. The summary for probabilistic programs
now encodes (symbolically) the channel matrix, and we construct symbolic algorithms to
extract the leaked information from the computed summary. We validate this approach
by extending the ability of Moped to compute the summary for probabilistic non-recursive
programs and implementing the symbolic algorithms for computing the information leakage.

The tool implementing the algorithms for entropy calculations is available for download
at http://people.cs.missouri.edu/~chadhar/mql/. For space reasons, we have omitted
proofs which can be found in the longer version of the paper available at the same site.

Related work. The problem of automatically computing information flow was first tackled
in [3]. This approach iteratively constructs equivalence classes on inputs: two inputs are
said to be equivalent if they lead to the same output. One starts with a single equivalence
class and progressively refines when these inputs lead to different outputs. At each step, the
equivalence relation is characterized using logical formulas and refined using experimental
runs of the program. Once a fixed point is reached, the sizes of the resulting equivalence
classes can be used to compute information leakage. This technique is optimized in [18],
where statistical techniques are used to estimate the equivalence classes. The effectiveness of
the approach is demonstrated through examples, and the authors suggest that an automated
tool based on these techniques can be built. The computation of the size of the equivalence
classes is further optimized in [15].

SMT solvers are used in [21, 20, 16, 23] to estimate min-entropy leakage in Boolean
straight-line programs. In this approach, the program summary is encoded as a SMT formula
and various model-counting techniques are used to obtain the information leaked. In [21, 20],
an upper bound on min-entropy leakage is computed by estimating an upper bound on the
number of feasible outputs. It is easy to construct examples where the computed bound is
far from the correct value. Our techniques in contrast yield exact values. [16] provides a
toolchain which first computes the program summary as a SAT formula that is then fed to a
custom-made #SAT solver to calculate the information leaked. [23] combines model-counting
techniques of #SMT solvers with the technique of symbolic executions. This tool can handle
real C and Java programs.

For probabilistic programs, the use of model-checking to compute information leakage
has been explored in [8, 2, 10, 4]. Please note that the models considered in these papers
are more general as they also allow for other observations than just the outputs at the end
of the program execution. [8] uses [14] to get the channel matrix and then computes the
information leakage by hand, [10] implements an explicit state model-checking algorithm,
and [4] computes the information leakage using (forward) symbolic executions. [2] also
proposes to compute the channel matrix using fix-point iterations. Once the channel matrix
is computed explicitly then information leakage can be computed. Our approach is different
in that we solve the fix-point iterations symbolically and use the symbolic representation of
the computed matrix directly in the computation of information leakage.

2 Preliminaries

We recall some standard definitions and establish notations. For a finite set A, |A| shall
denote the number of elements of A. For a function f : A→ B and b ∈ B, f−1(b) denotes
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the set {a | f(a) = b}. We write 2A to mean both the set of functions A→ {true, false} as
well as the set of subsets of A. All logarithms are to the base 2 and 0 log 0 := 0. The set of
real numbers will be denoted by R and the non-negative reals by R+.

Boolean Programs. We first consider non-recursive Boolean deterministic programs in
this paper. The programs that we consider have global and local variables. Usually, it is
assumed that the set of global variables is partitioned into two: set of high-security input-only
variables and the set of low-security output-only variables. However, in this paper we will
assume that the secret inputs to the program are the initial values of the global variables
and that the public outputs are the final values of the global variables. Thus, we do not
explicitly separate high-security input-only variables and low-security output-only variables.
This does not cause a loss of expressiveness: if we want to make sure that changes to a
high-security input-only variable by a program are not visible to the adversary, we can set
them to false upon exit. Similarly, if we want to explicitly designate some variables as
low-security output-only variables, we can initialize all of them to false.

Assuming that local variables are always initialized to false, the semantics of a program P

with global variables G can be seen as a function FP : S → O where S = 2G and O = 2G∪{⊥}.
FP (ḡ0) = ⊥ iff P does not terminate on ḡo, otherwise FP (ḡ0) ∈ 2G is the valuation of the
global variables when P stops executing. From now on, we will confuse P with the function
FP . Note that we treat non-termination as an explicit observation of the attacker.

Assuming that the inputs are sampled from a distribution µ, let S be the random variable
taking values in S according to µ. µ can be extended to a joint probability distribution on S
and O by setting µ(O = o | S = s) = 1 if P (s) = o and 0 otherwise.

Information leakage in programs. Several measures of information leakage have been
considered in literature. Of these, we consider Shannon entropy and min-entropy. We assume
that the reader is familiar with information theory and introduce some abbreviations and
results that we shall need. For this section, we fix a Boolean program P. As discussed above,
the semantics of P is a function P : S → O. If S is sampled from a distribution µ, then µ
gives rise to a joint probability distribution on S and O.

Leakage based on Shannon entropy: In Shannon entropy, the information leaked by the
program P is defined as SEµ(P ) := Iµ(S;O), where S and O are random variables taking
values in S and O respectively according to the joint distribution µ, and Iµ(S;O) is the mutual
information of random variables S and O. When P is deterministic and µ is U, the uniform
distribution on inputs, we have [3, 17]: SEU(P ) = log |S| − 1

|S|
∑

o∈O |P−1(o)| log |P−1(o)|.
Leakage based on Min entropy: In min-entropy [25], the information leaked by the

program P on uniformly distributed inputs is defined as MEU(P ) := log
∑
o∈O max

s∈S
µ(S =

s | O = o). When P is deterministic [25], we get that MEµ(P ) := log |O′|, where O′ = {o ∈
O | ∃s ∈ S : P (s) = o} are the outputs that can actually be realized.

Algebraic Decision Diagrams. We assume that the reader is familiar with Binary Decision
Diagrams (BDDs) and merely recall some facts necessary for our presentation. Our presen-
tation follows closely the presentation in [24]. When speaking of BDDs, we always mean
their reduced ordered form [5]. BDDs are data structures for storing elements of 2V → {0, 1},
where V = {x1, . . . , xn} is a finite set of Boolean variables. They take the form of a rooted,
directed acyclic labeled graph. Non-terminal nodes are labeled by an element of V, and
terminals are either 0 or 1. There are two edges out of a non-terminal node, one labeled then
and the other labeled else. Assuming a fixed strict order < on V , an edge from a non-terminal
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Figure 1 An unreduced decision diagram (left) and a corresponding BDD (right).

labeled x to a non-terminal labeled y satisfies x < y . From now on we will often confuse a
function 2V → {0, 1} with its BDD representation.

I Example 1. Figure 1 shows how a BDD over the set V = {x, y, z} with the order x < y < z

would store the Boolean assignments satisfying x→ (y ↔ z). The figure on the left shows a
(non-reduced) diagram exhaustively listing all assignments, and the right-hand side shows
the resulting BDD, where for simplicity the terminal 0 and edges leading to it have been
omitted. The solid arrows are then branches and the dashed arrows are else branches.

ADDs generalize BDDs and store elements of the set 2V →M , where V = {x1, . . . , xn}
andM is an arbitrary set. The main difference between BDDs and ADDs is that the terminal
nodes contain elements of M and not just elements of {0, 1}. For our purposes, M will be
either R or R+. Analogous to BDDs, the value of a function f represented by an ADD T at
(z1, . . . , zn) ∈ 2V is given by the label of the terminal node along the unique path from the
root to a terminal node such that if a non-terminal node is labeled xi along the path then
the outgoing edge from xi must be labeled then if and only if zi is true.

Note that an BDD is an ADD where all the terminals are either 0 or 1. Henceforth, we
will refer to BDDs as 0/1-ADDs. Many efficient operations can be performed on ADDs. We
list the most relevant ones for our paper.
1. The function isConst(T ) checks if T is a constant function. val(T ) returns the value of T

if isConst(T ) is true.
2. If op is a commutative and associative binary operator on R and V1 a subset of variables

of V then abstract(op,V1, T ) returns the result of abstracting all the variables in V1 by ap-
plying the operator op over all possible values taken by variables in V1. abstract(op,V1, T ),
thus obtained, is a function with domain as the set V \ V1 and range as R.
For example, if T represents the function f , then abstract(+, {x1, x2}, T ) returns the ADD
which represents the function f(true, true, x3, . . . , xn) + f(true, false, x3, . . . , xn) +
f(false, true, x3, . . . , xn) + f(false, false, x3, . . . , xn).

3. If T is a 0/1-ADD and V1 a subset of V, then orAbstract(V1, T ) returns the result of
abstracting all the variables in V1 by applying disjunction over all possible values taken
by variables in V1.

3 Leakage in non-probabilistic programs

In this section, we shall describe our ADD-based algorithms for computing the information
leaked by deterministic programs when the leakage is measured using (a) min-entropy and
(b) Shannon entropy. We fix some notation. Consider a set of variables G = {x1, . . . , xn}.
Let G′ = {x′1, . . . , x′n} be a set of distinct variables disjoint from G. Note that there is a
one-to-one correspondence between elements of 2G and 2G′ and every element (z′1, . . . , z′n)
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Figure 2 (a) Transition relation of the program Pex. The ordering assumed is s1 < s′
1 < s2 <

s′
2 < o1 < o′

1 < o2 < o′
2. (b) All the possible outputs of the program Pex as an ADD. (c) All

possible inputs on which Pex terminates represented as an ADD. (d) Teq-size,P for Pex as an ADD.
(e) Tnon-term,P for the program Pex as an ADD.

of 2G′ can be identified with a unique element (z1, . . . , zn) of 2G and vice versa. G shall
represent the initial values of the variables of a program and G′ shall represent their final
values. In this section, we will assume that all possible valuations of G are valid inputs to
the program (and hence our input domain shall always be a power of 2). We discuss how to
restrict the domain in the longer version of the paper.

I Definition 2 (Summary of a Program). Let P be a program with G = {x1, . . . , xn} as
the set of global variables. Let G′ = {x′1, . . . , x′n} be a set of distinct variables disjoint
from G. The summary of P , denoted TP , is a function TP : 2(G∪G′) → {0, 1} such that for
every z1, . . . , zn, z

′
1, . . . , z

′
n ∈ {true, false}, we have TP (z1, . . . , zn, z

′
1, . . . , z

′
n) = 1 ⇐⇒

P (z1, . . . , zn) = (z′1, . . . , z′n).

Observe that thanks to the correspondence between OBDDs and Boolean functions, TP
can be considered as an OBDD on the set of variables G∪G′. Now, TP can be seen as the least
fixed point of a system of Boolean equations, which can efficiently be constructed by iterative
methods. For our purposes, it suffices to say that BDD-based model-checkers essentially
construct this relation for us (and, if not, can be modified to carry out this construction).
We assume for our paper that TP is constructed by a BDD-based model-checker. It remains
to show how to exploit TP to compute the information leaked by P .

I Example 3. Consider the following Boolean program Pex with global variables: s1, s2, o1
and o2.

o1 = false; o2 = false;
while s1 {};
o1 = false; o2 = s2;
s1 = false; s2 = false;

Here, variables s1 and s2 are high-security input-only variables and o1, o2 low-security input
variables. This is why we initialized o1 and o2 to be false and set s1 and s2 false before the
end of the program. Observe also that the program does not terminate when s1 is true at
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the beginning of the program. Assuming the order s1 < s′1 < s2 < s′2 < o1 < o′1 < o2 < o′2,

the transition relation of P is shown as a 0/1-ADD in Figure 2 (a).

For the rest of the section, unless otherwise stated, we will fix the Boolean program P. We
assume that G = {x1, . . . , xn} is the set of global variables of P and that G′ = {x′1, . . . , x′n}
is a set of distinct variables disjoint from G. The summary of P will be referred to as TP .

Leakage measured using min-entropy. The amount of information leaked by the program
P when using min-entropy as measure of information is as follows. Let post(2G) = {ḡ′ ∈ 2G |
∃ḡ ∈ 2G . P (ḡ) = ḡ′}. If the program P terminates on all inputs then the min-entropy leakage
is log |post(2G)|, otherwise it is log (|post(2G)|+ 1).

Thus, to compute the min-entropy leakage, we need to compute |post(2G)| and check if
there is an input on which the program P never terminates. The following lemma shows
how these two tasks can be achieved using ADDs.

I Lemma 4. Let Tout,P = orAbstract(G, TP ) and Tterm,P = orAbstract(G′, TP ).
1. |post(2G)| = val(abstract(+,G′, Tout,P )).
2. P terminates on every input iff isConst(Tterm,P ) and val(Tterm,P ) = 1.

I Example 5. Consider the program Pex in Example 3 with G = {s1, s2, o1, o2}. Observe
that the program terminates only when s1 is false, in which case the final value of s1 is
also false. The initial values of o1 and o2 do not effect the output. The final values of
s2 and o1 are always false. The value of o2 is exactly the value of s2. Thus, there are
two possible outputs (false, false, false, true) and (false, false, false, false), both of
which happen for exactly 4 inputs. The ADD representing Tout,P , the set of all possible
outputs of P is given in Figure 2 (b). Note that o′2 does not appear in the picture because the
then and else branches of o′2 lead to isomorphic subtrees. Observe that abstract(+,G′, Tout,P )
is the constant ADD 2. The ADD Tterm,P representing all possible inputs on which P

terminates is given in Figure 2 (c).

I Theorem 6. For a program P with global variables G = {x1, . . . , xn}, let G′ = {x′1, . . . , x′n}
be a set of distinct variables disjoint from G. Let TP be the summary of P represented as a
0/1-ADD on G ∪ G′. The Algorithm 1 computes MEU(P ).

Algorithm 1: Symbolic computation of min-entropy leakage of a deterministic program
Input: G,G′ and TP the summary of P.
Output: MEU(P )

1 begin
2 Tout,P ←− orAbstract(G, TP )
3 numout ←− val(abstract(+,G′, Tout,P ))
4 Tterm,P ←− orAbstract(G′, TP )
5 if isConst(Tterm,P ) = false or val(Tterm,P ) = 0 then
6 numout ←− numout + 1;
7 return log numout

Leakage measured using Shannon entropy. We now consider information leaked by P

when measured using Shannon entropy. We need to compute
∑
ḡ′∈2G′ |P−1(ḡ′)| log|P−1(ḡ′)|

+|P−1(⊥)| log|P−1(⊥)|. In order to compute this sum, we need a new auxiliary definition:

I Definition 7. Let ? : R+ ×R+ → R be the binary operator defined as r1 ? r2 = r1 log r1 +
r2 log r2.
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Algorithm 2: Symbolic computation of Shannon entropy leakage of a deterministic
program

Input: G,G′ and TP the summary of P.
Output: SEU(P )

1 Let n be the number of variables in G.

2 begin
3 Teq-size,P ←− abstract(+,G, TP )
4 sum←− val(abstract(?,G′, Teq-size,P ))
5 Tterm,P ←− orAbstract(G′, TP )
6 Tnon-term,P ←− cmpl(Tterm,P )
7 numnon-term ←− val(abstract(+,G, Tnon-term,P ))
8 sum←− sum + numnon-term log(numnon-term)
9 return (n− sum

2n )

I Theorem 8. For a program P with global variables G = {x1, . . . , xn}, let G′ = {x′1, . . . , x′n}
be a set of distinct variables disjoint from G. Let TP be the summary of P represented as a
0/1-ADD on G ∪ G′. Algorithm 2 computes SEU(P ).

I Example 9. Consider the program Pex in Example 3. Recall that there are two possible
outputs (false, false, false, true) and (false, false, false, false), both of which happen
for exactly 4 inputs. The ADD Teq-size,P for the Pex is depicted in Figure 2 (d). The program
does not terminate whenever s1 is false. The ADD Tnon-term,P is depicted in Figure 2 (e).

4 Experimental evaluation

In this section, we present some results based on our experiments for calculating the different
leakage values using the tool Moped-QLeak. It is based on the existing BDD-based symbolic
model-checker Moped [13]. Moped, apart from providing support for basic Boolean data, also
supports complex data types such as integers of variable length, arrays and C-like structures.
Moped uses the CUDD (Colorado University Decision Diagram) package to implement BDDs.

Moped-QLeak performs basic reachability analysis and generates a summary of an input
program written in Remopla. This summary is then used to calculate the information leakage.
Currently, Moped-QLeak only supports non-recursive programs and is currently available for
download at: http://people.cs.missouri.edu/~chadhar/mql/

Moped translates Remopla programs into BDDs. Moped-QLeak re-uses this as a frontend,
but internally works with the more generic ADDs to carry out the calculations. Other than
that, we made the following optimizations with respect to the standard behavior of Moped.

Algebraic operations: The input language of Moped understands expressions using algebraic
and Boolean operations. However, Moped was not conceived with large integer operands in
mind, and we detected some inefficiencies in these translations for integer operands having
large number of bits. These often drastically affected the overall time taken for calculation
of the summary, in which cases we improved the translation. Also, for the purpose of
experimental evaluation of the efficiency of Moped-QLeak, we encode all the examples with
variables having large range as Boolean programs and note a striking change in the running
times. Furthermore, Moped does not support integers with bit length > 30. Hence, all
examples with bit length > 30 were also coded as Boolean programs.

Size of ADDs and variable orderings: As usual with symbolic methods, their efficiency
is highly sensitive to the size of the decision diagrams generated during the course of the
reachability analysis, which, in turn, may depend on the variable ordering. (Finding the
most efficient ordering is a NP-hard problem). Moped does not automatically determine the

http://people.cs.missouri.edu/~chadhar/mql/
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Table 1 Examples used for evaluation.

Example Order ME SE Time Data types

Illustrative Example I 3 2.03966e-05 0.215 bool
Electronic Purse D 2 2 0.009 5 bit integers (Restricted)
Mix and Duplicate S 16 16 0.041 bool
Binary Search I 16 16 9.307 bool
Sanity Check I 4 1.16797e-7 0.060 bool
Implicit Flow D 2.80735 1.757e-07 0.016 30 bit integers
Implicit Flow D 2.80735 4.67189e-08 0.190 bool
Masked Copy I 16 16 0.038 bool
Sum Query D 4.80735 4.35132 0.034 5 bit integers (Restricted)
Ten Random Outputs D 3.32193 2.6355e-07 0.055 30 bit integers
Population Count I/D out-of-memory bool

best variable ordering and gives the user the flexibility to choose the ordering. Hence, the
examples for which the default ordering of variables (which entails the order of declaration
of the variables in the source file) was the overhead, have been re-written with supposedly
efficient variable orderings. The principal obstacle here is the computation of summary. The
computation of leakage itself adds little overhead.

We illustrate our orderings using the variables O (for public outputs) and S (for private
inputs). Let ON (O1) be the most (least) significant bit of O and likewise SN (S1) the most
(least) significant bit of S. We primarily used two kinds of orderings:

Contiguous ordering: This is the default ordering of the tool, where we set O1 < O′1 <

O2 · · ·O′N < S1 < S′1 < S2 < · · · < S′N .

Interleaved ordering: In this ordering, we set O1 < O′1 < S1 < S′1 < O2 < O′2 < S2 <

S′2 < · · ·ON < O′N < SN < S′N .
The choice of an ordering depends largely on the structure and semantics of the program.
The ADDs produced are generally smaller if a variable v1 is closer to a variable v2 such that
the value of v1 depends on the value of v2. Essentially, as long as variables are compared and
assigned to constants in the program, the default ordering works very well and in that case
we do not even attempt the interleaved ordering. For other examples, typically, we switch to
interleaved ordering as contiguous ordering becomes inefficient very fast with the number
of bits as the ADDs become very large. Going by this, we have also reordered variable
declarations in an example (see Mix and Duplicate below) so that variables with a constant
difference in the indices are closer.

Table 1 presents some selected benchmark programs that we used to test Moped-QLeak.
The examples have been derived from [21]. The experiments were conducted on a 64-bit
Xeon-X5650 2.67GHz Linux machine. Unless otherwise stated, S and O are 32-bit unsigned
integers in all the programs. For each example, we give the name, the ordering, the Shannon
entropy (SE) and min-entropy (ME) leakage values, the execution time of the tool in seconds,
and the data types that occur in the example, which are either all Boolean or integers with a
specified number of bits. If the example uses restricted domains then we mention it in the
data types. The order is either the contiguous default order (D), the interleaved order (I),
or another example-specific order (S). There is one example from [21], Population Count,
for which the computation of summary never succeeds as there is no good variable ordering
for that example. Note that we run the tool to compute the two leakage values separately
and report the worse case. The time difference between the computation of the two values is
almost always within a 3-4 microseconds.
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Mix and Duplicate. The following program copies the XOR of the ith and the (i+ 16)th
bit of S to both the ith and the (i+ 16)th bit of O.

O = ((S >> 16) ^ S) & 0xffff;
O = O | O << 16;

It is thus that the ith and the (i+16)th bits of S and O are closely related. In fact, the ADDs
formed after reordering the variables to O17 < O′17 < O1 < O′1 < S17 < S′17 < S1 · · ·O′16 <

S32 < S′32 < S16 < S′16 have drastic reduction in the number of distinct nodes. Note that
intuitively, half the input bits are leaked in the example (namely the XOR of ith and (i+16)th
bits of S). This intuition is confirmed by the results.

Binary Search. The following program scans the first b bits of the input S and puts a 1 at
the ith bit of O iff the ith bit of S is 1.

O = 0;
for (i = 0; i < b; i++)

{m = 2^(31-i);
if (O + m <= S) O += m; }

For our experiments, we took b = 16. We converted this program to a Boolean program with
an interleaved ordering. We also unrolled the loop for b = 16. Also note that since O is 0 to
start with and m is a power of 2, the addition of O and m can be modelled as bitwise or
of O and m for the purpose of efficiency. It can also be checked (using assertion-checking
in Moped) that the (31 − i)th bit is false before the ith iteration, and thus the carry-bit is
always 0, justifying our simplification. Note that intuitively, half the input bits (the first 16
bits) are leaked by the program. This intuition is confirmed by the results.

Comparison with prototype sqifc [23]. As sqifc provides an automated tool (rather than
just a method), we ran the examples of Table 1 on sqifc. We consistently outperformed the
tool (with sqifc timing out on several examples). However, we point that it is not exactly a
fair comparison as we can guide the efficient computation of the summary by choosing the
variable ordering, which has a considerable effect on our timings. The same optimization
cannot be applied to sqifc because it is based on different concepts.

5 Leakage in probabilistic programs

We also generalized our algorithms for computing information leakage in programs that
allow probabilistic choices. The summary of a probabilistic program is the channel matrix.
The channel matrix on inputs S and outputs O is the S × O matrix such that its (s, o)
entry is the conditional probability of observing o given s. More precisely, for a probabilistic
program P with G = {x1, . . . , xn} as the set of global variables, and G′ = {x′1, . . . , x′n} a
set of distinct variables disjoint from G, the summary of program P , denoted by TP is
the function TP : 2(G∪G′) → R+ such that for every z1, . . . , zn, z

′
1, . . . , z

′
n ∈ {true, false},

TP (z1, . . . , zn, z
′
1, . . . , z

′
n) is the conditional probability that the programs outputs (z′1, . . . , z′n)

given that the input to the program P is (z1, . . . , zn).
Just as the case for non-probabilistic programs, the summary relation for probabilistic

programs can be computed using ADD-based fixed-point algorithms. Once again, we can give
symbolic algorithms to compute the information leaked. We have implemented these symbolic
algorithms in Moped-QLeak (currently we do not support restricted domains for probabilistic
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programs). Moped does not support probabilistic model-checking, so we also implemented
the symbolic fixed-point algorithms for computing the summary also in Moped-QLeak. We
used Moped-QLeak to compute information leakage in the dining cryptographer’s problem.
The symbolic algorithms and the results are discussed in detail in the longer version of the
paper available at http://people.cs.missouri.edu/~chadhar/mql/.

6 Conclusions and future work

We gave symbolic algorithms for computing the information leaked by Boolean programs when
information leakage is measured using min-entropy and Shannon entropy. The advantage of
our approach is that these algorithms can be integrated with any BDD-based model checking
tool that computes reachability in Boolean programs by computing program summaries. We
made such an integration with Moped, with promising experimental results. The leakage
calculations themselves add little overhead. The main limiting factor in these calculations
seems to be the size of the OBDDs constructed in the computation. As is standard with
symbolic approaches, the size of BDDs is sensitive to the variable ordering. Since Moped
by itself does not compute the most efficient ordering (and puts the onus on the user), we
sometimes had to rewrite our examples to achieve good performance. We also generalized
our symbolic algorithms for computing information leakage in probabilistic programs. These
algorithms have also been integrated in Moped.

In order to make symbolic model-checking more amenable to automation, many au-
tomated abstraction refinement techniques have been proposed in literature. We plan to
investigate these techniques for our symbolic algorithms. In particular, we plan to integrate
the counterexample guided abstraction-refinement framework in our symbolic algorithms.
Currently, our implementation only supports non-recursive programs. However, the algo-
rithms we presented for computing information leakage assume only that program summaries
be computed. Thus, in principle, we can support programs that have both recursion and
probabilistic choices, and we plan to extend support to such programs in future.
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