
Summary-Based Inter-Procedural Analysis via
Modular Trace Refinement
Franck Cassez1, Christian Müller2, and Karla Burnett1

1 NICTA and UNSW, Australia
2 TU Munich, Germany

Abstract
We propose a generalisation of trace refinement for the verification of inter-procedural programs.
Our method is a top-down modular, summary-based approach, and analyses inter-procedural
programs by building function summaries on-demand and improving the summaries each time
a function is analysed. Our method is sound, and complete relative to the existence of a mod-
ular Hoare proof for a non-recursive program. We have implemented a prototype analyser that
demonstrates the main features of our approach and yields promising results.

1998 ACM Subject Classification D.2.4 [Software Engineering] Software/Program Verification,
D.3.1[Programming Languages] Formal Definitions and Theory, F.3.1 [Logics and Meanings of
Programs] Specifying and Verifying and Reasoning about Program

Keywords and phrases Program verification, Hoare Logic, Refinement, Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.545

1 Introduction

Automated software verification has made tremendous progress in the last decade. Static
analysis tools are routinely used to analyse source code and have revealed many subtle bugs.

We address the problem of designing a context-sensitive, scalable inter-procedural analysis
framework. Our method is fully modular, and analyses each function without in-lining
function calls but rather by using an input/output summary for the functions. This provides
scalability. Context-sensitivity provides accuracy and is achieved by building function
summaries in a top-down manner and being able to refine these summaries (on-demand)
during the analysis. The result of our algorithm (when it terminates) is either a proof that a
program is error-free or an inter-procedural counter-example that witnesses the error.

Our method is a modular inter-procedural extension of refinement of trace abstraction [13]
and inherits the main features of this approach: it is sound and complete w.r.t. the existence
of a modular Hoare proof for the non-recursive program and strictly more powerful than
predicate abstraction refinement. Due to space limitation, technical proofs that were part of
the submitted version are now omitted.

2 Example

We consider inter-procedural programs like P1 in Listing 1. The variables in each function
(or procedure) are either input (read-only), output or local (read-write) integer variables. The
variable m is local to main and n is an output variable. The variables p,q are input variables
of inc and r is the output variable. The semantics of a function call like n = inc(1, m)
(line 3) is that the left-hand-side variables (n) are assigned the values of the corresponding
output variables (r) at the end of the computation of the callee (inc).

© Franck Cassez, Christian Müller, and Karla Burnett;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 545–556

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.545
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


546 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

2 3

E

40

5

Amain
m >= 1

error1,n = inc(1,m)

error1 == 0

error1 == 1

n >= 0

!(n >= 0)

error1 = 1

8

9

10
12

0

13

Ainc

p >= 0

!(p >= 0)

p >= 1
!(p >= 1)

r = q + 1 r = q

error2 = 1

Figure 1 Function automata for program P1.

Functions can be annotated with assume statements (e. g., m >= 1 holds after line 2)
and assert statements which assert predicates that should not be violated, otherwise the
program contains an error. The objective is to check whether a program contains an execution
that violates an assert statement. A function f is mapped to a function automaton, Af ,
which is an extended control flow graph (CFG) with a single entry (green) and a single exit
(red) node. To track assert statement violations across function boundaries in a modular
manner, we introduce an extra1 output variable, error, together with additional edges in
the CFG of a function: i) a call like n = inc(1,m) is virtually expanded in (error, n) =
inc(1,m) i. e., each function returns its internal error status; ii) each statement assert(ϕ)
is viewed as an if statement, such that if ϕ does not hold the variable error is set to 1 and
the control jumps to the exit node of the function; this is exemplified by edges 8 to 0 and 0
to 13 in automaton Ainc; iii) as errors may occur during function calls, the status of the
caller’s error variable is checked after each function call: if it is set the control goes to the
exit (red) node otherwise to the next instruction; this is exemplified by node E and edge E
to 5 in automaton Amain.

Program P1 has two possible causes of error: one
1 proc main () returns (n) {
2 assume (m >= 1);
3 n = inc (1, m);
4 assert (n >= 0);
5 }
6
7 proc inc(p,q) returns (r) {
8 assert (p >= 0);
9 if (p >= 1)

10 r = q + 1;
11 else
12 r = q;
13 endif ;
14 }

Listing 1 Program P1

is to call inc with a negative value for parameter
p (violating the assertion at line 8), and the other
is to violate the assertion on n at line 4 in main.
The (partial) correctness of inc can be expressed by
the Hoare triple2 {¬error2} inc {¬error2}. To check
whether the Hoare triple {¬error2} inc {¬error2}
holds we try to find a counter-example trace: if
we succeed we disprove the Hoare triple, if we fail
the triple is valid. To do so, we view Ainc as a
language acceptor with initial state entry (green)
and final state exit (red) and the existence of a
counter-example amounts to finding a feasible trace
in L(Ainc), the language accepted by Ainc. Determining whether such a feasible trace exists
can be achieved using an iterative trace refinement algorithm [13, 15]: 1) Pick a trace3
w ∈ L(Ainc); 2) Add the pre/post conditions ¬error2/error2 to the trace w and check whether

1 We introduce one indexed errork variable per function to simplify the technical developments. We can
equivalently use a global error variable to track the error status of a complete program.

2 We use error (resp. ¬error) as a shorthand for “every valuation such that error is 1 (resp. 0)”.
3 Traces of length n are written a1 · a2 · · · an−1 · an.



F. Cassez, C. Müller, and K. Burnett 547

the extended trace w′ = ¬error2 · w · error2 is feasible; 3) If it is, we have found a counter-
example and the triple is not valid. Otherwise, we look for a new trace in L(Ainc) \ {w}.
If L(Ainc) \ {w} is empty, the triple is valid; otherwise we start again at step 1 using a
refined language L(Ainc) \ {w} which does not contain w. Notice that this process may not
terminate4. A key result of [13] is that, for each infeasible trace w, a rejecting automaton,
A(w), can be computed that accepts traces that are infeasible for the same reasons as w.
Thus in the refinement step 3), we can remove all the traces accepted by automaton A(w)
and not only {w}.

The outcome of the iterative trace refinement algorithm (when it terminates) is either a
counter-example path or a confirmation that a triple holds. Our first result (Section 4) is that,
when we establish that {P} f {Q} holds, we get a better triple {P ′} f {Q′} with P =⇒ P ′

(weaker assumption on input) and Q′ =⇒ Q (stronger constraint on input/output relation).
Our main result (Section 5) is the extension of the trace refinement approach [13] to check
whether triples hold for inter-procedural programs without in-lining function calls.

The main idea of our extension is illustrated next. A function call is viewed as a standard
instruction: the call r = f(m) defines a relation between the input variables5 m and the
output variables r. The only difference to a standard instruction is that we do not exactly
know this relation, which is the strongest postcondition operator for the function.

This can be remedied as follows: for each function call to f, we use a summary which is
an over-approximation of the strongest postcondition of the function f. A summary for inc
could be p ≥ 1 =⇒ r ≤ q + 1 or, if we do not know anything about inc, True =⇒ True,
which means that the output variables can be assigned any value. To determine the status
of triple (H) {¬error1} main {¬error1}, we try to find a witness trace in main invalidating it,
i. e., starting in ¬error1 and ending in error1:
1. let w1 = m >= 1 · error1,n = inc(1,m) · error1 be a trace in L(Amain).
2. Using the semantics of each statement, and the over-approximate summary semantics

(True, True) for the function call, check whether w′1 = ¬error1 · w1 · error1 is feasible.
It is and we get a witness assignment for the values of the variables in w′1 that implies a
pre/postcondition π1 : p = 1 ∧ q = 1 ∧ ¬error2/error2 for inc to make w′1 feasible.

3. To determine whether π1 can be satisfied, we can establish the status of the opposite
triple {p = 1 ∧ q = 1 ∧ ¬error2} inc {¬error2}.
This triple holds and thus the corresponding witness pre/postcondition π1 in main is
infeasible. While establishing this, we have computed a stronger valid triple, {p ≥
0∧¬error2} inc {¬error2} that can, from now on, be used as a valid summary (G1, S1) =
(p ≥ 0 ∧ ¬error2,¬error2) for inc.

4. We again check the feasibility of w′1, this time with the new summary (G1, S1). Using
(G1, S1), w′1 becomes infeasible and thus w1 can be ruled out.

5. We pick a different trace w2 = m >= 1 · error1,n = inc(1,m) · ¬error1 · !(n >= 0) ·
error1 = 1 and check whether the extended trace w′2 = ¬error1 · w2 · error1 is feasible.
It is provided the call to inc can realise an input/output constraint given by a witness
assignment for w′2. Function inc cannot realise this witness assignment and the result of
this check is a new valid triple for inc, (G2, S2) = (p ≥ 1 ∧ q ≥ 1, r ≥ q + 1).

6. We again check the feasibility of w′2 with (G1, S1) and (G2, S2). w′2 is now declared
infeasible with (G1, S1) and (G2, S2) and this enables us to rule out w2 in main.

7. There is only one trace left to explore in main but it cannot set error1. The final result is
a triple {¬error1} main {¬error1 ∧ n ≥ m + 1} that is stronger than the initial one.

4 Verifying C-like programs is undecidable.
5 m and r are vectors of variables, however for clarity we omit vector notation.

FSTTCS 2014



548 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

3 Preliminaries

Programs are written in a simple inter-procedural programming language as commonly
assumed [2, 18]. There are no pointers, no global variables, and we restrict to integer
variables. This last restriction is not important as integer variables are expressive enough
to encode a very large class of errors in imperative programs e. g., array-out-of-bounds,
NULL pointer dereferences, etc. We assume a set of predicates over a set of variables e. g., in
Quantifier-Free Linear Integer Arithmetic. Given a predicate ϕ, Var(ϕ) is the set of variables
appearing in ϕ. We freely use the logical notation or set notation depending on which is
best suited, e. g., given two predicates P and Q, we use P ∧Q (logical and) or P ∩Q (set
intersection). False corresponds to the empty set and True to the set of all possible values.

The set of program statements Σ is comprised of: (i) simple assignments e. g., y = t
where y is a variable and t a linear term on variables, (ii) assume statements which are
predicates over the variables and (iii) function calls of the form r1,· · · ,rk = f(d1,· · · ,dn)
where f is a function and r1,· · · ,rk and d1,· · · ,dn are the input and output variables.

Given a simple assignment st and a predicate ϕ, post(st, ϕ) is the strongest condition that
holds after executing st from ϕ. For an assume statement st, the semantics are post(st, ϕ) =
ϕ ∧ st. The semantics of each function call are given by the strongest postcondition operator
post for the function (although we may not explicitly have it). The post operator extends
straightforwardly to traces in Σ∗.

A trace t satisfies a pre/post condition (P,Q) if post(t, P ) ⊆ Q. A trace t is (P,Q)-feasible
if post(t, P ) ∩Q 6⊆ False, otherwise it is infeasible. We let Infeas(P,Q) be the set of traces
over Σ∗ that are (P,Q)-infeasible. A trace t is infeasible if it is (True, True)-infeasible (or if
it satisfies (True, False)), otherwise it is feasible; Infeas is the set of infeasible traces.

A trace automaton [13, 15] is a tuple A = (L, δ,Linit,Lexit) where L is a finite set of
locations, δ ⊆ L× Σ× L is the transition relation, and Linit,Lexit ⊆ L are the initial and
final (accepting) locations. The language accepted by A is L(A).

A function f is represented by a function automaton which is a trace automaton Af =
(Lf, δf, {initf}, {exitf}). It is obtained from the CFG of f by adding the edges setting the
error variable to encode assert statement violations (see Amain and Ainc in Figure 1).

4 Checking Intra-Procedural Partial Correctness

We assume in this section that functions do not contain function calls. We show how to
construct automata that accept traces that satisfy Hoare triples. This extends the results
of [13]. A similar development is accounted for in [15] but we establish here a new useful
result in Theorem 5. Given a trace automaton A and two predicates P,Q (over the variables
of A), the Hoare triple {P} A {Q} is valid iff ∀t ∈ L(A), post(t, P ) ⊆ Q. Program (or
function) correctness [13] is defined by: {P} f {Q} is valid iff {P} Af {Q} is valid. The
validity of a Hoare triple {P} Af {Q} can be expressed in terms of language inclusion:

I Theorem 1. {P} Af {Q} is valid iff L(Af) ⊆ Infeas(P,¬Q).

We also extend the notion of inductive interpolants [13] for infeasible traces to (P,Q)-
interpolants for (P,Q)-infeasible traces. Let t = st1 · · · stk be a (P,Q)-infeasible trace.
A sequence of predicates I0, I1, · · · , Ik is a (P,Q)-interpolant for t if: 1) P =⇒ I0, 2)
∀1 ≤ i ≤ k, post(sti, Ii−1) ⊆ Ii and 3) Ik ∧Q = False. For t ∈ Infeas(P,Q), we let itpP,Q(t)
be the set of (P,Q)-interpolants for t. For t ∈ Infeas, we let itp(t) be the set of interpolants
for t. By Craig’s interpolation theorem [10], we know that itp(t) 6= ∅. It follows that:



F. Cassez, C. Müller, and K. Burnett 549

I Lemma 2. If t ∈ Infeas(P,Q) then itpP,Q(t) 6= ∅.

Notice that the ability to compute actual interpolants (e. g., using SMT-solvers) is
inessential as inductive interpolant can always be obtained using weakest preconditions for t.

Let t = st1 · · · stk be an infeasible trace and I = I0, I1, · · · , Ik be an interpolant for
t. The canonical interpolant automaton [13] for (t, I) is a trace automaton At

I = (LI ,
δI , {initI}, {exitI}). An important property of canonical interpolant automata is that they
accept sets of infeasible traces:

I Theorem 3 ([13]). If t ∈ Infeas and I ∈ itp(t) then L(At
I) ⊆ Infeas.

We extend the definition of canonical interpolant automata to (P,Q)-interpolant automata.
Let t = st1 · st2 · · · stk ∈ Infeas(P,Q) and I = I0, I1, · · · , Ik ∈ itpP,Q(t). Then t is also in
Infeas(I0, Q). Let t′ = assume(I0) · t · assume(Q) (in the sequel we write such a trace I0 · t ·Q
omitting the assume statements). As t ∈ Infeas(I0, Q), we have t′ ∈ Infeas and moreover I ′ =
True, I0, · · · , Ik, False is an interpolant for t′. We can then build the canonical interpolant
automaton At′

I′ = (LI′ , δI′ , {initI′}, {exitI′}) for (t′, I ′). We define the corresponding (P,Q)-
interpolant automaton for (t, I) as the tuple A(P,Q)t

I = (LI , δI ,Linit
I ,Lexit

I ) where: 1)
LI = LI′ \ {initI′ , exitI′}, 2) Linit

I = {` ∈ LI′ | (initI′ , P, `) ∈ δI′} and Lexit
I = {` ∈

LI′ | (`,Q, exitI′) ∈ δI′} and 3) δI = δI′ ∩ (LI × Σ × LI). (P,Q)-interpolant automata
accept sets of (P,Q)-infeasible traces:

I Theorem 4. If t ∈ Infeas(P,Q) and I ∈ itpP,Q(t) then L(A(P,Q)t
I) ⊆ Infeas(P,Q).

We can now introduce Algorithm 1, Hoare1, that can establish the status of a Hoare triple.
If the triple is valid, it returns a new stronger triple and otherwise a witness counter-example.
Algorithm 1 works as follows: the family of automata Ai, i ≥ 1 accept only infeasible traces.
If the condition of the while loop (line 1) is True, there is a trace t in the CFG of Af that has
not been declared (P,¬Q)-infeasible yet. This (P,¬Q)-infeasibility of trace t is investigated:
if it is feasible, the triple {P} Af {Q} does not hold and t is a witness (line 4). If it is
infeasible, an interpolant automaton An is built from t (lines 6 to 9) and added to the family
Ai, i ≥ 1. If the condition of the while loop (line 1) is False, all the traces of the CFG of Af

have been declared (P,¬Q)-infeasible and hence {P} Af {Q} holds. Moreover, as stated by
Theorem 5 the interpolants collected at each step during the refinement can be used to build
a stronger triple (line 10).

A triple {P ′} f {Q′} is stronger than {P} f {Q} if P =⇒ P ′ and Q′ =⇒ Q.
Line 9 of Algorithm 1 stores the interpolants each time a trace t is declared (P,¬Q)-

infeasible. It collects the interpolants I0 and Ik and stores them in the arrays Pn and Qn

(each interpolant automaton An is also stored). If the triple is valid, the interpolant automata
Ai cover the set of traces of Af, and Af satisfies the triple {∩n

i=1Pi} Af {∪n
i=1Qi}.

I Theorem 5. If Algorithm 1 terminates and returns itp(P ′, Q′) then {P ′} Af {Q′} is valid
and stronger than {P} Af {Q}.

If Algorithm 1 terminates it either returns: i) path(t), and then {P} f {Q} does not
hold and t is such that post(t, P ) ∩ ¬Q 6⊆ False, or ii) itp(P ′, Q′) then {P ′} f {Q′} holds
and P =⇒ P ′ and Q′ =⇒ Q. Claim i) holds because there are no function calls and
the trace t selected at line 2 is such that post(t, P ) ∩ ¬Q 6⊆ False. As post is exact for
statements which are not function calls, t is a counter-example. For ii), if Hoare1 returns
itp(P ′, Q′), Theorem 5 holds proving correctness in this case. Termination of Algorithm 1
is of course not guaranteed as the verification problem for C-like programs is undecidable.

FSTTCS 2014



550 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

Algorithm 1: Hoare1(Af, P,Q)
Input : A function automaton Af, two predicates P and Q.
Result : itp(P ′, Q′) with P =⇒ P ′ and Q′ =⇒ Q if {P} Af {Q} holds,

path(t) with post(P, t) ∩ ¬Q 6⊆ False otherwise.
Var :A: arrays of interpolant automata, initially empty

P ,Q: arrays of predicates, initially empty
n : integer, initially 0

1 while L(Af) 6⊆ ∪n
i=1L(Ai) do

/* There is a trace t from entry to exit in L(Af) \ ∪n
i=1L(Ai) */

2 Let t = st1 · · · stk ∈ L(Af) \ ∪n
i=1L(Ai);

3 if post(t, P ) ∩ ¬Q 6⊆ False then
/* post(t, P ) ⊆ Q does not hold, t is a counter-example */

4 return path(t);
5 else

/* t is (P,¬Q)-infeasible, we refine and iterate */
6 Let I = I0, · · · , Ik ∈ itpP,¬Q(t);
7 Let n := n+ 1;
8 Let An = A(P,¬Q)t

I ;
9 let Pn := I0 and Qn := Ik;

10 return itp(∩n
i=1Pi,∪n

i=1Qi);

However, similar to the trace refinement algorithm of [13], we can ensure incrementality
and progress. Incrementality is relative to the Hoare triple we are checking, and means
that once a (P,¬Q)-interpolant automaton has been computed it holds during the call to
Hoare1(f, P,Q) and we never have to withdraw it. Progress is ensured because if we discover
a (P,¬Q)-infeasible trace t at the n-th iteration of the while loop, it is accepted by the
corresponding automaton An and thus cannot be found in subsequent rounds. As pointed
out in [13], soundness of the algorithm i. e., if it terminates and declares a program error-free
the program is actually error-free, is implied by Theorem 5. Completeness i. e., if a program
is error-free, Hoare1 can declare it error-free, holds (as usual) for a trivial reason [13] and we
do not detail this.

5 Inter-Procedural Trace Refinement

Let f be a function with (formal) input parameters x = x1, . . . , xk and output parameters
y = y1, · · · , yn. We assume that input variables are not modified by a function and there are no
global variables6. A summary S(x, y) for f is a set of pairs of predicates (Pi(x), Qi(x, y))1≤i≤n

where ϕ(z) indicates that Var(ϕ) = {z1, · · · , zn}. A summary can equivalently be viewed as
a predicate ∧n

i=1
(
Pi(x) =⇒ Qi(x, y)

)
.

The exact post operator is not explicitly available for functions. We want to over-
approximate it while retaining enough information to prove a property of interest. We
approximate the post operator for functions using summaries. A context C is a mapping from
functions to summaries such that for each function f in the program, C(f) is a summary for

6 These limitations are not compulsory but are commonly admitted [2, 18].



F. Cassez, C. Müller, and K. Burnett 551

f. Given a context C we define an associated summary post operator p̂ost as follows:

p̂ost(C, st, ϕ) =
{

post(st, ϕ) if st is not a function call, or
∃r.ϕ ∧ C(f)(m, r) if st is the function call r = f(m).

In other words, only function call post operators are computed using summaries while other
statements’ strongest postcondition operators are preserved. As a function call r = f(m) only
alters the output variables r, the projection of the predicate ϕ on the other variables, ∃r.ϕ,
remains true after the execution of r = f(m). Moreover the target result variable r should
satisfy the constraints between the formal input and output variables C(f)(m, r) of f. C is an
over-approximating context (in short over-approximation) if for every function automaton
Af, every trace t ∈ L(Af) and every predicate ϕ, post(t, ϕ) ⊆ p̂ost(C, t, ϕ). The definitions
we introduced so far are also valid for the p̂ost operator: a trace t is (P,Q)-infeasible in
context C if p̂ost(C, t, P ) ∩Q ⊆ False, otherwise it is feasible (in this context). We write t
is C-(P,Q)-feasible (resp. infeasible) for t is (P,Q)-feasible (resp. infeasible) in context C
If a context is an over-approximation, infeasibility in C implies infeasibility with the exact
strongest postcondition post operators for the functions called. However, a trace may be
(P,Q)-feasible in C, but not (P,Q)-feasible with the exact post operator for each function.
Valid Hoare triples can be used as over-approximations for functions:

I Proposition 6. Let (P,Q) be two predicates on the input and input/output variables of f
such that {P} Af {Q} holds. Then post(r = f(m), ϕ) ⊆ p̂ost(C : f 7→ {(P,Q)}, r = f(m), ϕ).

Proposition 6 generalises to summaries that are sets of pairs of predicates:

I Theorem 7. Let C be an over-approximation, f a function and (P,Q) be two predicates
on the input and input/output variables of f such that {P} Af {Q} holds. The context C′
defined by C′(h) = C(h) for h 6= f and C′(f) = C(f) ∪ {(P,Q)} is an over-approximation.

We can now propose our new modular trace refinement algorithm (Algorithms 2 and 3).
The main difference between Algorithm 1 and Algorithm 2 is in how feasibility of a trace
is checked using the summaries (call to Status at line 3). This step is more involved
and is detailed in Algorithm 3. Algorithm 2 determines the status of a candidate triple
{P} Af {Q} and either returns an inter-procedural (counter-example) path or a stronger
triple {P ′} Af {Q′}. An inter-procedural path for a trace t of function g is inductively defined
by a mapping path such that:

for statements st in t that are not function calls, path(st) = st,
for st a function call r = f(m), path(st) is an inter-procedural path for f.

n Algorithm 2, we assume that the context variable C is a global variable and is initialised
with default summaries e. g., (True, True) for each function. In Algorithm 2, line 3, the call
to Status(t, P,¬Q) (Status is defined in Algorithm 3) returns the status of t: it is either
(P,¬Q)-feasible and (True, path(t)) is returned or C-(P,¬Q)-infeasible and (False,⊥) is
returned (⊥ stands for the void path). Hoare2 is very similar to Algorithm 1 once the status
of a trace t is determined:

if t is C-(P,¬Q)-infeasible i. e., Status(t, P,¬Q) = (False,⊥), then it is (P,¬Q)-infeasible
(C is an over-approximation) and we can compute an interpolant automaton to reject
similar traces (lines 7 to 10 in Algorithm 2). Note also that the summary for the currently
analysed function is updated (line 11).
otherwise t is (P,¬Q)-feasible i. e., Status(t, P,¬Q) = (True, path(t)) and t is an inter-
procedural counter-example.

FSTTCS 2014



552 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

Algorithm 2: Hoare2(Af, P,Q)
Global : C: context with summaries for each function, initially (True, True)
Input : A function automaton Af, two predicates P and Q.
Result : If {P} Af {Q} holds, itp(P ′, Q′) with P =⇒ P ′ and Q′ =⇒ Q

Otherwise an inter-procedural path path(t) with post(P, t) ∩ ¬Q 6⊆ False.
Local : A: arrays of interpolant automata, initially empty

P ,Q: arrays of predicates, initially empty
n: integer, initially 0

/* Main refinement loop */
1 while L(Af) 6⊆ ∪n

i=1L(Ai) do
/* There is a trace from entry to exit in L(Af) \ ∪n

i=1L(Ai) */
2 Let t = st1 · · · stk ∈ L(Af) \ ∪n

i=1L(Ai);
/* Determine the status of t (and update summaries C) */

3 R, path(t) := Status(t, P,¬Q);
/* Status of t is settled */

4 if R then
/* {P} Af {Q} is not valid and path(t) a counter-example */

5 return path(t);
6 else

/* t is (P,¬Q)-infeasible, we refine and iterate */
7 Let I = I0, · · · , Ik ∈ itpP,¬Q(t);
8 n := n+ 1;
9 An := A(P,¬Q)t

I ;
10 Pn := I0 and Qn := Ik;

/* {P} Af {Q} is valid. Add to C and returns a stronger summary */
11 C(f) := C(f) ∪ {(∩n

i=1Pi,∪n
i=1Qi))};

12 return itp(∩n
i=1Pi,∪n

i=1Qi);

Status(t, P,¬Q) is defined in Algorithm 3 and determines the (P,¬Q)-feasibility status of a
trace t, and in doing so may recursively call Algorithm 2 (line 8). Algorithm 3 determines
the status of a trace t = st1 · st2 · · · stk as follows:

function call statements are collected and stored into FCall (line 2). Then path is initialised
with the default values for the statements that are not function calls (line 3).
the (P,¬Q)-feasibility status of t is determined in an iterative manner:

if t is C-(P,¬Q)-infeasible, the condition of line 5 is false and the else statement on
line 16 is executed. This implies t is (P,¬Q)-infeasible as C is an over-approximation,
and we can return (False,⊥).
if t is C-(P,¬Q)-feasible, we obtain some before/after witness values for the variables
for each function call and store them in pairs (νi, µi), i ∈ FCall. The for-loop at line 8
checks each function call w.r.t. to the feasibility of its before/after witness values. This
is done by recursively calling Hoare2 (Algorithm 2) on the callees by claiming that the
witness assignment is not realisable by the function. The result of these recursive calls
to Hoare2 are either a witness trace path(u) or a pair of predicates itp(P ′, Q′). If we
get a witness trace we store it in path(sti) (line 12), otherwise we do nothing (but the
context C has been updated by the call to Hoare2).

I Remark. One important feature of the algorithm to build the canonical interpolant
automata [13, 15] is the ability to add back edges (thus defining loops) to the initial
automaton that encodes the infeasible trace. An (back) edge labelled st can be added from



F. Cassez, C. Müller, and K. Burnett 553

Algorithm 3: Status(t, P,¬Q)
Global : C: context with summaries for each function
Input : A trace t, two predicates P and ¬Q
Result : (False,⊥) if t is C-(P,¬Q)-infeasible and thus (P,¬Q)-infeasible

(True, path(t)) with path(t) a (P,¬Q)-feasible full inter-procedural path.

1 Let t = st1st2 · · · stk;
2 Let FCall = {1 ≤ i ≤ k | sti is a function call};

/* Initialise path(t) for regular statements */
3 foreach i ∈ {1, · · · , k} \ FCall do path(sti) := sti;
4 while True do
5 if p̂ost(C, t, P ) ∩ ¬Q 6⊆ False then

/* t is (P,¬Q)-feasible under C */
6 Let {(νi, µi), i ∈ FCall} be the set of witness before/after values;

/* Check whether each function call step is feasible */
7 foreach i ∈ FCall do path(sti) = ⊥;
8 foreach i ∈ FCall(t) do
9 Let sti be a call to f with f defined by f(x):y ;

10 switch Hoare2(x = νi, Af,¬(y = µi)) do
11 case path(u)

/* u s.t. post(u, x = νi) = y = µi */
12 path(sti) := path(u);
13 case itp(P ′, Q′)

/* f satisfies {x = νi} Aq {¬(y = µi)} */
/* (P ′, Q′) has been added to summary of f */

14 if
∧

l∈FCall path(stl) 6= ⊥ then
15 return (True, path(t))

16 else
/* t is (P,¬Q)-infeasible under C and thus (P,¬Q)-infeasible */

17 return (False,⊥);

a location associated with an interpolant I to another associated with J if post(st, I) ⊆ J .
As the contexts contain only over-approximations for function calls we can safely check
whether a back edge can be added or not. Checking whether post(st, I) ⊆ J still requires an
SMT-solver even if we use inductive interpolants computed using weakest preconditions.

The following Theorem establishes the (partial) correctness of Algorithm 2:

I Theorem 8. Let C be an initial over-approximation. If Hoare2(Af, P,Q) terminates and
there are less than n calls to Hoare2, then:
a) the result of Hoare2(Af, P,Q) is correct i. e.,

1. if it returns itp(P ′, Q′), {P ′} Af {Q′} holds, with P =⇒ P ′, Q′ =⇒ Q,
2. if it returns path(t) then path(t) is a finite inter-procedural path and post(P, path(t))∩
¬Q 6⊆ False,

b) during the computation C is always an over-approximation.

Theorem 8 proves that Hoare2 is sound by a.1). If the Hoare triple is not valid, and if
the post operator is exact then the returned counter-example is also feasible by a.2). The
algorithm is also trivially complete (as in [13]) relative to the existence of a modular Hoare
proof for the non-recursive program: if a program is error-free, there exists a context C such
that we can establish correctness.

FSTTCS 2014



554 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

The assumption that the post operator is exact for simple statements can be lifted while
still preserving soundness. An over-approximation for post (e. g., for programs with non linear
assignments, we can compute a linear over-approximation) ensures soundness. However, we
may return a witness counter-example which is infeasible, and get some false positives.

Finally, as trace refinement is strictly more powerful [13] refinement-wise than predicate
abstraction refinement, we obtain a modular inter-procedural analysis technique that is
strictly more powerful than predicate abstraction refinement based modular inter-procedural
analysis [2, 18].

6 Implementation and Experiments

We have implemented Algorithms 2 and 3 in a prototype iProc (written in Scala). The
input language of iProc is a simple inter-procedural language and we use SMT-Interpol [9]
as the back-end solver to check feasibility and generate inductive interpolants when needed.
We have implemented our own algorithm to build interpolant automata. An initial Hoare
triple {P} main {Q} is specified using assume and assert (e. g., Program P1, Listing 1).

We have experimented with small test cases inspired from industrial case studies submitted
by Goanna [8] customers and users. We focussed on array-out-of-bounds and NULL pointer
dereferences detection as this can be encoded in our programming language with integers.
We specifically analysed inter-procedural programs that were generating false positives with
the tool Goanna. The results show that we correctly analyse all the programs removing all
the false positives generated by the latest release of Goanna. This clearly demonstrates an
improvement with regard to accuracy.

We are now building a more versatile version of our prototype to be able to parse and
analyse C programs and properly demonstrate scalability compared to other tools. Extensions
to support arrays and pointer aliasing [7] are currently being investigated.

7 Related Work

Algorithms for inter-procedural (data flow) analysis of imperative programs can be traced
back to 1978 with the seminal work of Sharir and Pnueli [19], and later by Reps et al. [17].
However, practical techniques and tools have only been discovered in the last decade.
Slam [4] is certainly the best known tool and has been successfully applied to large case
studies (e. g., checking violations of API rules in device drivers.) It relies on powerful
automated predicate abstraction refinement techniques. Blast [5] and CpaChecker [6]
have been successfully applied to medium size projects. The previous tools perform predicate
abstraction (and refinement) rather than trace abstraction (and refinement), and to the
best of our knowledge they do not fully support modular inter-procedural computation of
increasingly precise summaries, but rather perform (some form of) function call in-lining.

The use of interpolants to extract summaries has been the subject of some recent papers.
Two approaches are close in spirit to our work: Whale [2] and FunFrog [18]. There are
fundamental differences between the algorithm in Whale and FunFrog and ours. Whale
builds under-approximations of functions which has a major drawback: an already computed
summary is valid provided the summaries of other functions are valid; if it turns out that
an existing summary is invalidated (which can happen as only an under-approximation of
a function has been explored), all the dependent computed summaries are invalidated as
well. FunFrog [18] is based on bounded model-checking and thus proves properties of
functions upto a bounded unrolling for loops and recursive calls. The summaries computed



F. Cassez, C. Müller, and K. Burnett 555

by FunFrog are thus valid only for the bounded unrolling of the function (e. g., this might
prevent this approach from discovering loop invariants). Moreover, the computation of the
summaries themselves is not modular: if a trace is feasible using the currently available
summaries, and must be further investigated, this is done by in-lining suspicious calls to check
whether they are actually feasible. Smash [12] is another tool using function summaries.
However, it relies on quantifier elimination to compute the summaries, which is expensive
and performs parallel computation of may and must summaries which increases complexity.
Saturn [1, 11] has been applied successfully to find bugs in the Linux kernel. It is summary-
based but bottom-up, and the sizes of summaries are bounded in order to ensure termination.
An extension of Saturn, Calysto [3] can extract counter-examples.

Finally, the intra-procedural trace refinement approach of [13] that we build on is
implemented in Ultimate Automizer [20]. It has been extended to inter-procedural programs
in [14]. The extension is very elegant and uses nested words to model inter-procedural traces
and the corresponding notion of nested interpolant automata to prove partial correctness of
recursive programs. However, it requires trace in-lining and thus is not modular. Designing
a fully modular approach based on trace refinement is thus a challenge and the method we
propose in this paper is a non obvious extension.

8 Conclusion

We have proposed a new algorithm which performs inter-procedural analysis in a fully
modular way. Our algorithm extends the intra-procedural trace refinement algorithm of [13].
It analyses a function using available summaries for other functions and never performs any
form of function or trace in-lining; it refines a function’s summary each time the function is
analysed; it is top-down, context-sensitive and provides a counter-example when a program
is incorrect. We have implemented the algorithm in a prototype analysis tool. We have
analysed small non-recursive programs inspired from industrial case studies that contain
inter-procedural defects or are hard to prove correct. The results are promising, and the next
step is to demonstrate that the approach is scalable, which we believe is the case. Indeed, we
can easily obtain a parallel version of our algorithm, as checking whether each function call
(line 8 in Algorithm 3) satisfies a pre/postcondition can be done concurrently. Our method is
also robust and independent of the technique to establish the validity of Hoare triples. Any
suitable analysis technique e. g., abstract interpretation, bounded model-checking, etc. can
be used.

Finally, the method we presented also suggests we break existing functions into smaller
parts (almost out-lining), e. g., sequences, while loops, if statements. This makes units to
analyse smaller, increases independence and enables us to compute valid Hoare triples that
are often re-usable like loop invariants.

Acknowledgments. The authors would like to thank the anonymous referees for their most
valuable comments that helped in preparing the final version of this paper.

NICTA is funded by the Australian Government through the Department of Communica-
tions and the Australian Research Council through the ICT Centre of Excellence Program.

References
1 Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and Peter Hawkins.

An overview of the saturn project. In Manuvir Das and Dan Grossman, editors, PASTE,
pages 43–48. ACM, 2007.

FSTTCS 2014



556 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

2 Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An interpolation-based
algorithm for inter-procedural verification. In Viktor Kuncak and Andrey Rybalchenko,
editors, VMCAI, volume 7148 of LNCS, pages 39–55. Springer, 2012.

3 Domagoj Babic and Alan J. Hu. Calysto: scalable and precise extended static checking.
In Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors, ICSE, pages 211–220.
ACM, 2008.

4 Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software model
checking with SLAM. Commun. ACM, 54(7):68–76, 2011.

5 Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast. STTT, 9(5-6):505–525, 2007.

6 Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, CAV, volume 6806 of
LNCS, pages 184–190. Springer, 2011.

7 Sebastian Biallas, Mads Chr. Olesen, Franck Cassez, and Ralf Huuck. Ptrtracker: Prag-
matic pointer analysis. In SCAM, pages 69–73. IEEE, 2013.

8 Mark Bradley, Franck Cassez, Ansgar Fehnker, Thomas Given-Wilson, and Ralf Huuck.
High performance static analysis for industry. ENTCS, 289:3–14, 2012.

9 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An Interpolating
SMT Solver. In Alastair F. Donaldson and David Parker, editors, SPIN, volume 7385 of
LNCS, pages 248–254. Springer, 2012.

10 William Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory
and Proof Theory. J. Symb. Log., 22(3):269–285, 1957.

11 Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable path-sensitive
analysis. In Rajiv Gupta and Saman P. Amarasinghe, editors, PLDI, pages 270–280. ACM,
2008.

12 Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep Tetali. Compositional
may-must program analysis: unleashing the power of alternation. In Hermenegildo and
Palsberg [16], pages 43–56.

13 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement of trace abstrac-
tion. In Jens Palsberg and Zhendong Su, editors, SAS, volume 5673 of LNCS, pages 69–85.
Springer, 2009.

14 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested interpolants. In
Hermenegildo and Palsberg [16], pages 471–482.

15 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software model checking for
people who love automata. In Natasha Sharygina and Helmut Veith, editors, CAV, volume
8044 of LNCS, pages 36–52. Springer, 2013.

16 Manuel V. Hermenegildo and Jens Palsberg, editors. Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,
Madrid, Spain, January 17-23, 2010. ACM, 2010.

17 Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco, California,
USA, January 23-25, 1995, pages 49–61, 1995.

18 Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Interpolation-based function
summaries in bounded model checking. In Kerstin Eder, João Lourenço, and Onn Shehory,
editors, HVC, volume 7261 of LNCS, pages 160–175. Springer, 2011.

19 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.
Technical report, 1978. Dpt. Of Computer Science, Courant Institute, NY, USA.

20 Ultimate Automizer. http://ultimate.informatik.uni-freiburg.de/automizer/.

http://ultimate.informatik.uni-freiburg.de/automizer/

	Introduction
	Example
	Preliminaries
	Checking Intra-Procedural Partial Correctness
	Inter-Procedural Trace Refinement
	Implementation and Experiments
	Related Work
	Conclusion

