
A Two-Level Logic Approach to Reasoning about
Typed Specification Languages
Mary Southern1 and Kaustuv Chaudhuri2

1 University of Minnesota, USA
marys@cs.umn.edu

2 INRIA and LIX/École polytechnique, France
kaustuv.chaudhuri@inria.fr

Abstract
The two-level logic approach (2LL) to reasoning about computational specifications, as imple-
mented by the Abella theorem prover, represents derivations of a specification language as an
inductive definition in a reasoning logic. This approach has traditionally been formulated with
the specification and reasoning logics having the same type system, and only the formulas being
translated. However, requiring identical type systems limits the approach in two important ways:
(1) every change in the specification language’s type system requires a corresponding change in
that of the reasoning logic, and (2) the same reasoning logic cannot be used with two specifica-
tion languages at once if they have incompatible type systems. We propose a technique based on
adequate encodings of the types and judgements of a typed specification language in terms of a
simply typed higher-order logic program, which is then used for reasoning about the specification
language in the usual 2LL. Moreover, a single specification logic implementation can be used as
a basis for a number of other specification languages just by varying the encoding. We illustrate
our technique with an implementation of the LF dependent type theory as a new specification
language for Abella, co-existing with its current simply typed higher-order hereditary Harrop
specification logic, without modifying the type system of its reasoning logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic: Proof theory

Keywords and phrases Abella theorem prover, two-level logic, typed specification languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.557

1 Introduction

Higher-order abstract syntax (HOAS) [13], also known as λ-tree syntax (λTS) [8], has become
a standard representational style for data structures with variable binding. Such data are
pervasive in the syntax of programming languages, proof systems, process calculi, formalized
mathematics, etc. Variable binding issues are a particularly tricky aspect of the meta-theory
of computational systems given in the form of structural operational semantics (SOS). Such
specifications are nearly always formulated as relations presented in the form of an inference
system; for instance, the typing judgement for the simply typed λ-calculus is a relation
between λ-terms and their types, usually defined in terms of a natural deduction proof system.
Such relations on higher-order data can then be systematically formalized as higher-order
logic programs in languages such asλProlog [9] orTwelf [14], which lets us directly animate the
specifications by means of logic programming interpreters and compilers such as Teyjus [11].

In this paper, we are concerned with proving properties about such higher-order relational
specifications. For example, if the specification is of the typing relation for simply typed λ-
terms, then we may want to prove that a given λ-term has exactly one type (type-uniqueness),

© Mary Southern and Kaustuv Chaudhuri;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 557–569

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.557
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

558 A Two-Level Logic Approach for Typed Specification Languages

or that the type of a λ-term remains stable during evaluation (type-preservation). This kind
of reasoning proceeds by induction on the derivations of the specified relations, so we need a
formalism that supports both inductive definitions and reasoning by induction. The two-level
logic approach (2LL) is a general scheme for such reasoning systems, where the specification
language derivations are viewed as an inductively defined object in a reasoning logic. In
this reasoning logic, the specification language derivations are given a closed world reading,
which is to say that that derivability in the specification language is completely specified: it
can not only establish that certain specification formulas or judgements are derivable, but
also that others are not derivable, or that two specification derivations are (bi)similar. We
focus on the Abella implementation of the 2LL, which is an interactive tactics-based theorem
prover designed to reason about a subset of higher-order λProlog programs seen as the logic
of higher-order hereditary Harrop (HOHH) formulas [20, 19].

We consider an extension of the 2LL that can use a single reasoning logic to reason about a
number of different specification languages in the same development. The HOHH language has
only simple types, which makes both the specifications and the reasoning somewhat verbose
because structural invariants must be separately specified and explicitly invoked in theorems.
Richer type systems can often encode such invariants intrinsically in the types; to illustrate,
dependent types can be used to define a type of (representations of) well-typed λ-terms,
which is not possible with just simple types. Moreover, with such richer type systems one
can often use the inductive structure of the terms themselves to drive the inductive argument
rather than using auxiliary relations.

Unfortunately, the 2LL as currently defined [6] does not sufficiently address these desiderata.
In particular, the specification and reasoning languages are required to have the same type
system because the specification-level constants and their types are directly lifted to reasoning-
level constants with the same type. Thus, if we required a version of Abella based on a
dependent type theory as a specification language, we would need to also change its reasoning
logic G to be dependently typed. This goes against the 2LL philosophy where the reasoning
logic is seen as common, static, and eternal. More importantly, it both breaks portability of
developments and causes duplication of effort.

Our position is that we should extend the 2LL in such a way that the reasoning-level and
specification-level type systems are separated. Indeed, the specification types and judgements
must themselves be encoded as terms and formulas of the reasoning logic. This encoding must
be coherent with that of specification-level terms and formulas, both of which are encoded
as reasoning-level atomic formulas. This is achieved by guaranteeing that our encoding of
the type systems is adequate; that is, the encoding of the specification-level type system
must be able to represent all specification-level typing derivations, and that reasoning about
the specification-level type system should be reducible to reasoning, by induction, on the
encoding. An essential ingredient of adequacy is a right-inverse of the encoding that extracts
a specification-level typing judgement from a reasoning-level formula when the formula is in
the image of the encoding.

To be concrete, we illustrate the extended 2LL in this paper by giving an encoding of the
LF dependent type theory, which is then implemented as a translation layer in Abella. The
reasoning logic of Abella is left untouched, as is the existing HOHH specification language for
reasoning about λProlog programs. Our encoding of LF is based on that of [17, 18], suitably
modified to the context of interactive theorem proving rather than logic programming. Since
both LF and HOHH are based on intuitionistic logic, our extension of Abella uses a core
implementation of an intuitionistic specification language that is shared by both the HOHH
and the LF languages. Interestingly, the details of the encoding into this core language can

M. Southern and K. Chaudhuri 559

almost entirely be obscured for the user; in particular, to use the system the user does not
need to know how the specification language is encoded, since the system uses the right
inverse mentioned above to present the types, terms, and judgements of the specification
language in their native forms.

The rest of the paper is organized as follows. Section 2 presents the two-level logic
approach (2LL) and its implementation in the Abella theorem prover. Section 3 presents LF
and its adequate translation into a simply typed higher-order logic programming language.
This is then used in Section 4 to explain our extension of the 2LL by means of adequate
translations. Related work is surveyed in Section 5.

2 Background

This section sketches the two-level logic approach (2LL) as implemented in theAbella theorem
prover [20]. More details, including the full proof systems and their meta-theory, can be
found in the following sequence of papers: [19, 6].

2.1 The Reasoning Logic G
The reasoning logic ofAbella, G, is a predicative and intuitionistic version of Church’s Simple
Theory of Types. Types are built freely from primitive types, which includes the type prop
of formulas, using the function type constructor →. Intuitionistic logic is introduced into
this type system by means of the constants true, false : prop, binary connectives ∧,∨,⊃:
prop → prop → prop, and an infinite family of quantifiers ∀τ ,∃τ : (τ → prop) → prop
for types τ that do not contain prop. For every type τ not containing prop, we also add
an atomic predicate symbol =τ : τ → τ → prop to reason about intensional (i.e., up to
αβη-conversion) equality. Following usual conventions, we write ∧,∨,⊃, and =τ infix, and
write ∀x : τ . A for ∀τ (λx.A) (and similarly for ∃). We also omit the type subscripts and
type-ascription on variables when unambiguous.

To provide the ability to reason on open λ-terms, which is necessary when reasoning
about HOAS representations, G also supports generic reasoning. This is achieved by adding,
for each type τ not containing prop, an infinite set of nominal constants and a generic
quantifier ∇τ : (τ → prop)→ prop. We also add a weaker form of intensional equality called
equivariance that equates two terms whose free nominal constants may be systematically
permuted to each other. Note that equivariance is only used to match conclusions to
hypotheses in the G proof system; = continues to have the standard λ-conversion semantics.
The support of a term t, written supp(t), is the multiset of nominal constants that occur in
it; whenever we introduce a new eigenvariable, such as using the ∀-right or ∃-left rules, we
raise the eigenvariables over the support of the formula. This raising is needed to express
permitted dependencies on these nominal constants.

To accommodate fixed-point definitions, G is parameterized by sets of definitional clauses.
Each such clause has the form ∀~x. (∇~z.A) , B where A (the head) is an atomic formula
whose free variables belong to ~x or ~z, while B (the body) is any arbitrary formula that
can only mention the variables in ~x, and can additionally have recursive occurrences of the
predicate symbol in the head. Each clause partially defines a relation named by the predicate
in the head. We additionally require that supp(∇~z.A) and supp(B) be both empty, and
that recursive predicate occurrences satisfy a stratification condition [5].1 Finally, some of

1 Roughly, stratification prevents definitions such as p , ¬p, which would lead to inconsistency.

FSTTCS 2014

560 A Two-Level Logic Approach for Typed Specification Languages

seq L (G1 &G2) , seq L G1 ∧ seq L G2

seq L (F ⇒ G) , seq (F :: L) G

seq L (pi F) , ∇x. seq L (F x)

seq L A , mem F L ∧ bch L F A

seq L A , prog F ∧ bch L F A

bch L (F1 & F2) A , bch L F1 A ∨ bch L F2 A

bch L (G⇒ F) A , seq L G ∧ bch L F A

bch L (pi F) A , ∃t. bch L (F t) A

bch L A A , true

Figure 1 EncodingHOHH using definitional clauses in G. F andG range over arbitrary specification
formulas, while A ranges over atomic specification formulas. All clauses are implicitly universally
closed over their capitalized variables.

these definitions in G can be marked as inductive or co-inductive, in which case the set of
definitional clauses for that relation are given least or greatest fixed-point semantics. This is
approximated in Abella by means of size annotations, which are formally defined and proved
correct in [4].

2.2 The Specification Language: HOHH

The essence of the 2LL is to encode the deductive formalism of the specification language in
terms of an inductive definition. However, before this can be done, the terms and formulas –
and types! – of the specification language must be represented in the reasoning logic. This
is trivial if the specification and reasoning logics have the same term and type language,
which is the case for the HOHH language. To encode HOHH formulas, we use a new basic
type o, and formula constructors ⇒,& : o → o → o (written infix), and an infinite family
of specification-level quantifiers piτ : (τ → o) → o (standing for universal quantification,
written prenex) for types τ that do not contain o. To prevent circularity, we disallow the
type prop and the reasoning level formula constructors from occurring inside specification
level types and terms.

The proof system for HOHH is a standard focused sequent calculus for this fragment of
the logic, assuming that all atoms have negative polarity; this is equivalent to saying that
the proof system implements backchaining [19]. This proof system is implemented in G
using two predicates, seq : olist→ o→ prop and bch : olist→ o→ o→ prop, standing
for goal reduction and backward chaining respectively, with the definitional clauses shown
in figure 1. Here, specification contexts have the type olist, the type of lists of o, with
constructors nil : olist and (::) : o→ olist→ olist (written infix), and a membership
relation mem : o→ olist→ prop that has the obvious inductive definition. In Abella, these
two relations are displayed using the more evocative notation {L `G} and {L, [F] `G} for
seq L G and bch L F G. The final clause for seq uses a separate predicate prog : o→ prop
that is true exactly for the clauses in the specification program. It is easy to see that with
this syntax, the definitional clauses of figure 1 are precisely the inductive definition of a
backchaining proof system.

2.3 Example: Type Uniqueness
The need for the two kinds of specification sequents and the mechanism for proving properties
about the specification logic are best described with an example. Consider the simply typed
λ-calculus, itself specified as an object logic in HOHH. The simple type system is represented
using a new basic type ty with two constructors, i : ty (a basic sort), and arr : ty→ ty→ ty
for constructing arrow types. The λ-terms are typed using a different basic type tm with

M. Southern and K. Chaudhuri 561

two constructors: app : tm → tm → tm and abs : ty → (tm → tm) → tm. The λ-term
λx:i. λf :i→ i. fx would be represented as abs i (λx. abs (arr i i) (λf. app f x)). The
relation between terms (of type tm) and types (of type ty) is usually expressed in the form
of an inference system such as:

Γ, x:A `M : B
Γ ` (λx:A.M) : A→ B

→I

Γ `M : A→ B Γ `N : A
Γ `M N : B

→E Γ, x:A ` x : A
var

This relation is succinctly expressed as a pair of HOHH program clauses for the predicate
of : tm→ ty→ o, which is used both for assumptions of the form x:A and for conclusions of
the form M : A in the inference system above.

pi a:ty. pi b:ty. pi m:tm. pi n:tm. of m (arr a b)⇒ of n a⇒ of (app m n) b.
pi a:ty. pi b:ty. pi r:tm→ tm. (pix:tm.of x tm⇒ of (r x) tm)⇒ of (abs a r) (arr a b).

Note that there is no clause for var; rather, it is folded into an assumption in the body
of the abs case, which delimits its scope. It is generally easier to read such clauses when
they are written using the standard λProlog syntactic convention of using capital letters for
universally closed variables, writing implications in the reverse direction with the head first,
and separating assumptions by commas rather than repeated implications. Thus, the above
clauses correspond to:

of (app M N) B ⇐ of M (arr A B), of N A.
of (abs A R) (arr A B) ⇐ pi x\ of (R x) B ⇐ of x A.

The formula pi (λx. F) is rendered as pi x\ F in the concrete syntax, and the scope of x
extends as far to the right as possible. Note that all the types are inferred.

In the reasoning mode of Abella, the above λProlog specification is imported by reflecting
all specification constants and types in the reasoning signature, and by generating a definition
for prog that is true only for the two clauses for of. The typing judgement x:A, y:B `M : C
in the inference system (2.3), for instance, would be represented by seq (of y B :: of x A ::
nil) (of M C). As an example of reasoning on this specification, we can prove that of is
deterministic in its second argument:

forall M A B, { ` of M A} → { ` of M B} → A = B.

This theorem is proved by induction on the derivation of one of the seq assumptions,
such as the first one. This induction would repeatedly match the form seq nil M A against
the left hand sides of the definitional clauses in figure 1; for every successful match, the
corresponding right hand side of the clause would give us new assumptions, which may then
be used in the inductive hypothesis.

Initially, the only clause that matches is the final one for seq corresponding to backchaining
on a program clause. In the case where the clause for abs is selected, the corresponding bch
clause for it would in turn call seq with a different list of assumptions. Thus, the inductive
argument cannot proceed with empty dynamic specification contexts (the first argument to
seq and bch) alone: we must also allow for reasoning under an abstraction. This is achieved
in the reasoning logic by inductively characterizing all such dynamic context extensions with
a new atom, say ctx : olist→ prop, with the following inductive definitional clauses:

ctx nil , true.

∀A.∀G. (∇x. ctx (of x A ::G)) , ctx G.

We can then prove a stronger lemma:
forall G M A B, ctx G → {G ` of M A} → {G ` of M B} → A = B.

FSTTCS 2014

562 A Two-Level Logic Approach for Typed Specification Languages

φ (Πx:A.P) := φ (A)→ φ (P)
φ (a M1 · · · Mn) := lfobj

φ (type) := lftype

〈c〉 := c

〈x〉 := x

〈M1 M2〉 := 〈M1〉 〈M2〉

〈λx:A.M〉 := λx:φ (A). 〈M〉

Figure 2 Encoding of LF types and kinds as simple types and LF objects as simply typed λ-terms.

Now, when the dynamic context does grow when backchaining on the clause for abs, it will
grow exactly by the form in the head of the second clause of ctx, i.e., with a formula of
the form of n A where n is a nominal constant that does not occur in A nor in the original
context G. Thus, when we in turn backchain on the dynamic clauses (using the penultimate
clause for ctx in figure 1), we will know the precise form of the selected clause.

3 An Adequate Translation of LF to HOHH

The Edinburgh Logical Framework (LF) is a dependently typed λ-calculus which is used
for specifying formal systems. Terms of this language belong to one of the following three
syntactic categories:

Kinds K ::= type | Πx:A.K
Types A,B ::= a M1 . . .Mn | Πx:A.B
Objects M,N ::= c | x | λx:A.M | M N

Types, sometimes called families, classify objects and kinds classify types. Here a represents
a type-level constant, c an object level constant, and x an object level variable. Following
standard convention, we will write A → B as a shorthand for Πx:A.B when x does not
appear free in B. We will use U to denote both types and objects and P for both kinds
and types, so U : P will stand either for a typing or a kinding judgement. We will write
U [M1/x1, . . . ,Mn/xn] to denote the capture avoiding substitution of M1, . . . ,Mn for free
occurrences of x1, . . . , xn respectively.

An LF specification is a list of object or type constants together with their types or kinds,
called a signature. Let us revisit the example of the simply typed λ-calculus and its associated
typing relation used in Section 2.3. The λ-terms are encoded using the following signature:

ty : type. tm : type.
i : ty. app : tm → tm → tm.
arr : ty → ty → ty. abs : ty → (tm → tm) → tm.

For the typing relation of, in LF we declare it as a dependent type rather than as a predicate
as inHOHH. The clauses of the of type are then viewed as constructors for the dependent type,
and are therefore also given names. Here, the concrete syntax {x:A} B denotes Πx:A.B.

of : tm → ty → type.
ofApp : {A:ty} {B:ty} {M:tm} {N:tm}

of M (arr A B) → of N A → of (app M N) B.
ofAbs : {A:ty} {B:ty} {R:tm → tm}

({x:tm} of x A → of (R x) B) → of (abs A R) (arr A B).

The LF type system is formally defined in [7] and will not be repeated here. Instead, we
will directly give an adequate encoding of the LF type system in terms of HOHH, based on
the variant of the encoding in [3] defined in [17], with the inverse mapping defined in [18].

The encoding proceeds in two steps. First, we transform our dependently typed terms
into simply typed HOHH terms. The encoding of types and kinds is defined as a mapping,
written φ (−). These types indicate that the term is an encoding of an LF type and an LF
object, respectively. For each constant c : P in the LF signature, we generate a simply typed

M. Southern and K. Chaudhuri 563

{{Πx:A.P}} := λm:φ (Πx:A.P). pi x:φ (A). {{A}}x⇒ {{P}}(m x)
{{a M1 · · · Mn}} := λm:lfobj. hastype m (a 〈M1〉 · · · 〈Mn〉)

{{type}} := λm:lftype. istype m

Figure 3 Encoding of LF types and kinds using the hastype and istype predicates.

term c of type φ (P). Using this mapping, the dependently typed λ-terms are converted
into simply typed λ-terms using the mapping 〈−〉. Figure 2 contains the rules for both 〈−〉
and φ (−). Note that φ (−) erases not just the type dependencies but also the identities
of the types. For an atomic type A = a M1 · · · Mn, we further write 〈A〉 to stand for
a 〈M1〉 · · · 〈Mn〉.

The second pass uses two new predicates, hastype : lfobj→ lftype→ o and istype :
lftype→ o, to encode the type and kind judgements of LF. Whenever M : A is derivable in
LF under a given signature, it must be the case that {{A}}〈M〉 is derivable in HOHH from
the clauses for hastype and istype produced from encoding the signature. Likewise, when
A : K is derivable, it should be the case that {{K}}〈A〉 is derivable. The rules for this
encoding are shown in figure 3.

I Theorem 1 (Adequacy, [17]). The LF hypothetical judgement x1 : P1, . . . , xn : Pn `M : A
is derivable in the LF type theory [7] from an LF signature Σ if and only if the HOHH
formula {{P1}}x1 ⇒ · · · ⇒ {{Pn}}xn ⇒ {{A}}〈M〉 is derivable from the HOHH encoding of
Σ according to the rules in figures 2 and 3. J

Because this encoding is adequate, it is possible to define a right-inverse that maps a
HOHH formula in the image of the translation in figure 3 back to an LF judgement. This
inverse will be very useful in the next section where we will use the encoding of LF to extend
the 2LL via translations. The user of the system will not need to be aware of the details of
the encoding as the HOHH formulas will be inverted into their corresponding LF judgements.

Defining such an inverse requires a small amount of care. We obviously cannot invert
every HOHH formula, just those that correspond to a given signature. However, even for
formulas constructed using the encodings of an LF signature, we may not necessarily be able
to invert them; for instance, the formula may be the translation of a malformed or ill-typed
LF judgement. This inverse will also not necessarily recover exactly the LF judgement used
to construct the HOHH formula in the first place; rather, the inversion will only produce a
unique inverse (if one exists) up to βη-conversion.

The inversion operation is defined in terms of the following four sequent forms:

Γ ` hastype m a −→M : A inverting typing; M , A output
Γ ` istype a −→ A : type inverting kinding; A output
Γ `m : A M inverting canonical terms; M output
Γ `m M : A inverting atomic terms; M , A output

The rules are shown in figure 4. In each case, Γ contains the type and kind information for the
signature constants and the typing assumptions for the bound variables in the input terms.
A and B range over LF types, M and N over LF terms, F and G over HOHH formulas and a,
m and n over simply typed λ-terms produced by 〈−〉. The rules for inverting typing and
kinding are novel, but those for inverting terms are standard from bidirectional type-checking,
and have already been developed in [18] (in a slightly more general form).

I Theorem 2 (Right inverse). If {{P}}〈U〉 = F under the translation of Γ and Γ ` F −→
U ′ : P , then Γ ` U =βη U

′ : P in LF.

FSTTCS 2014

564 A Two-Level Logic Approach for Typed Specification Languages

(a:Πx1:A1. · · ·Πxk:Ak. B) ∈ Γ

Γ `m1 : A1 M1
· · ·

Γ, x1:A1, . . . , xk−1:Ak−1 `mk : Ak Mk

Γ `m : a M1 · · · Mk M

Γ ` hastype m (a m1 · · · mk) −→M : a M1 · · · Mk
inv-has

(a:Πx1:A1. · · ·Πxk:Ak. type) ∈ Γ

Γ `m1 : A1 M1
· · ·

Γ, x1:A1, . . . , xk−1:Ak−1 `mk : Ak Mk

Γ ` istype (a m1 · · · mk) −→ a M1 · · · Mk : type
inv-is

Γ ` F −→ R : A R =η x Γ, x:A `G −→M : B
Γ ` pi x:a. F ⇒ G −→ (λx:A.M) : Πx:A.B inv-nest

. .
Γ, x:A `m : B M

Γ ` (λx:T .m) : (Πx:A.B) λx:A.M inv-lam
Γ `m M : Πx:A.B Γ ` n : A N

Γ `m n M N : B[N/x]
inv-app

Γ `m M : A
Γ `m : A M

inv-switch
(x:A) ∈ G

Γ ` x x : A
inv-hyp

(c:A) ∈ G
Γ ` c c : A inv-const

Figure 4 Inverting the LF encoding of judgements (−→) and terms ().

Proof. By structural induction on the inversion derivation. Note the requirement for η-
contraction of the term to a variable in the second premise of inv-nest is necessary, for
otherwise the rule would produce an unsound abstraction. If the formula F was generated
from the translation of figures 2 and 3, then this η-contraction check will always succeed. J

4 Translational Two-level Logic Approach

We will now use both the translation of LF signatures to HOHH formulas and its inverse to
extend the 2LL in such a way that we can reason about LF signatures just as we were able to
reason on λProlog specifications as shown in the example of Section 2.3.

4.1 Importing the LF Specification
As the type system of LF and G are different, we cannot directly reflect the constants and
types of the LF specification logic like we did with HOHH in Section 2. Instead, for every LF
constant c of LF type or kind P in the LF signature, we do the following: (1) add a constant
c : φ (P) to the G signature; and (2) add the clause {{P}}c to the prog definition. Note that
because the clauses are always of the form {{P}}c for a constant c, there will never be any
redexes in the clauses, i.e., the generated clauses are β-normal. They are also η-long, because
the definition of {{−}} traverses the type or kind until it is atomic.

I Example 3. Consider again the LF signature in Section 3. When it is imported into G,
the following constants are added to the G signature by step (1):

ty : lftype . tm : lftype .
i : lfobj. app : lfobj → lfobj → lfobj.
arr : lfobj → lfobj. abs : lfobj → (lfobj → lfobj) →

lfobj.

of : lfobj → lfobj → lftype .
ofApp : lfobj → lfobj → lfobj → lfobj → lfobj → lfobj → lfobj.
ofAbs : lfobj → lfobj → (lfobj → lfobj) →

(lfobj → lfobj → lfobj) → lfobj.

The following clauses are then added to prog by step (2) described above:

M. Southern and K. Chaudhuri 565

lfisty ty.
lfhas i ty.
lfhas (arr Z1 Z2) ty ⇐ lfhas Z1 ty , lfhas Z2 ty.

lfisty tm.
lfhas (app Z1 Z2) tm ⇐ lfhas Z1 tm , lfhas Z2 tm.
lfhas (abs Z1 Z2) tm ⇐

lfhas Z1 ty , (pi x\ lfhas x tm ⇒ lfhas (Z2 x) tm).

lfisty (of Z1 Z2) ⇐ lfhas Z1 tm , lfhas Z2 ty.
lfhas (ofApp A B M N Z1 Z2) (of (app M N) B) ⇐

lfhas A ty , lfhas B ty , lfhas M tm , lfhas N tm ,
lfhas Z1 (of M (arr A B)), lfhas Z2 (of N A).

lfhas (ofAbs A B R Z1) (of (abs A (x\ R x)) (arr A B)) ⇐
lfhas A ty , lfhas B ty ,
(pi x\ lfhas x tm ⇒ lfhas (R x) tm),
(pi x\ lfhas x tm ⇒ pi z\ lfhas z (of x A) ⇒

lfhas (Z1 x z) (of (R x) B)).

The variables named Zi are generated by the translator for those variables that are omitted
from the input signature by the use of → instead of Π. We write clauses using standard
λProlog syntax for clarity; it is simple to take the output of translation into this form.

It is instructive to compare these clauses to those for the pure HOHH version in Section 2.3.
Although, on the surface, these two look quite different, there are similarities in the kinds of
subgoals that are produced for the three constructors of of. For example, consider the case
of ofApp. Two of the formulas, hastype Z1 (of M (arr A B)) and hastype Z2 (of N A)
are already present in nearly this form in the HOHH specification. The additional assumptions
are just repetitions of the typing assumptions for the arguments to ofApp; indeed, many
of them are redundant since the ofApp term is already assumed to be type-correct. This
kind of redundancy analysis can be used to further improve the translation, making it nearly
identical to the simply typed specification [17, 18].

4.2 Representing LF Hypothetical Judgements
We use the concrete syntax 〈M : A〉 or 〈A : K〉 to depict {{A}}M or {{K}}A, respectively.
In fact, since the LF type system is given in terms of hypothetical derivations, we generalize
this syntax to the form: 〈x1 : P1, ..., xn : Pn ` U : P 〉 as an abbreviation for: seq (〈x1 : P1〉::
· · · :: 〈xn : Pn〉) (〈U : P 〉). As an example,2 the uniqueness theorem for the of relation is
(eliding types):

∀G,M,A,B, P1, P2, ctx G ⊃ 〈G ` P1 : of M A〉 ⊃ 〈G ` P2 : of M B〉 ⊃ A = B. (1)

Here, P1 and P2 are (encodings of) the LF proof-terms for the judgements of M A and
of M B respectively; these proof terms are built out of the constructors for the of relation,
viz. ofApp and ofAbs.

Of course, in order to prove this theorem we would require a suitable ctx definition.
Unlike in the simply typed case, the recursive case for λ-abstractions not only introduces a
new variable but also a proof that it has a given LF type at the same time. This gives us the
following definitional clauses.

ctx nil , true.

∇x:lfobj.∇p:lfobj. ctx (〈x : tm〉 :: 〈p : of x A〉 ::G) , ctx G.

2 The fullAbella/LF development may be interactively browsed online at http://abella-prover.org/lf.

FSTTCS 2014

http://abella-prover.org/lf

566 A Two-Level Logic Approach for Typed Specification Languages

It is interesting to note that, because variables are introduced (bound) in a different place
than their typing assumptions, it would be just as valid to use the following clause instead
for the second clause above:

∇x:lfobj.∇p:lfobj. ctx (〈p : of x A〉 :: 〈x : tm〉 ::G) , ctx G.

This reordering of the context that is not strictly allowed in the LF type system poses no
problems for us. Indeed, when we reason about the elements of the context, we can always
recover these two assumptions that are always simultaneously added to the context.

forall G, nabla p x,
ctx (G x p) → mem 〈 x : tm 〉 (G x p) →

exists A, mem 〈 p : of x A 〉 (G x p) ∧ fresh p A ∧ fresh x A.

The dependency of G on x and p is indicated explicitly using application. For A, this
dependency is implicit, because the exists occurs in the scope of the corresponding nablas,
so we use the predicate fresh : lfobj → lfobj → prop to further assert that its first
arguments are nominal constants that do not occur in its second arguments. This is definable
with the single clause: ∀A. (∇x. fresh x A) , true.

The proof of (1) proceeds by induction on the second assumption, 〈G ` P1 : of M A〉,
using the clauses added to prog when importing the specification. There are exactly three
backchaining possibilities for prog clauses, corresponding to the ofApp and ofAbs cases,
respectively. Finally, when backchaining on the dynamic clauses in G, we use the ctx
definition to characterize the shape of the selected clause: if the selected clause is 〈x : tm〉,
then the branch immediately succeeds since 〈x : tm〉 will not unify with 〈P1 : of M A〉. Thus,
the only backchaining case worth considering is when the selected dynamic clause is of
the form 〈p : of x A′〉. In this case, we continue by case-analysis of the second derivation,
〈P2 : of M B〉, in which case again the only possibility that is not immediately ruled out by
unification is the case of 〈p′ : of x B′〉 being selected from G. In this case, we appeal to a
uniqueness lemma [1] of the following form:

∀G,X,A,B, P1, P2, ctx G ⊃ mem 〈P : of X A〉 G ⊃ mem 〈P2 : of X B〉 G ⊃ A = B.

The rest of the proof is fairly systematic, and largely identical in structure to that of the
HOHH case. It is also worth remarking that once we have shown that the types A and B are
identical in (1), we can then also show that the proof terms P1 and P2 must also be equal
(up to αβη, of course).

forall G M A B P1 P2 , ctx G →
〈 G ` P1 : of M A 〉 → 〈 G ` P2 : of M B 〉 → P1 = P2.

This is expected from the LF type theory, but would be difficult to state in LF itself because
of the lack of equality as a built-in relation.

4.3 The Implementation
The implementation of the translational 2LL can be found in the lf branch of the Abella
repository.3 This implementation also comes with a few examples of reasoning on LF
specifications that can be browsed online without needing to run Abella. We have made the
following observations about these developments:

3 Details for downloading and building this branch can be found in http://abella-prover.org/lf.

http://abella-prover.org/lf

M. Southern and K. Chaudhuri 567

The user of the system never needs to look at the encoding of LF in HOHH directly.
The system always translates LF judgements, written using 〈−〉, transparently to HOHH,
and also inverts any HOHH formulas in the image of the translation back into an LF
(hypothetical) judgement. Hence, the only domain knowledge the user needs to use the
system is the tactics-based proof language of Abella itself.
Our implementation currently does not perform type-checking on the LF judgements
written by the user, either in the specification itself or as part of reasoning. This is not
as such a problem, since we can never prove anything false about well-typed judgements.
However, without type checking we have no way to verify that the theorem which has
been proved is really meaningful since we are allowed to reason about ill-formed LF
judgements. It would also be useful for users to have a type-checker as a sanity check.
For the time being, we run the input specification through the Twelf system [14], both to
type-check it and to get an explicit form of the specification.

5 Related Work and Conclusion

We have proposed here a translational extension to the two-level logic approach for reasoning
about specifications. By adding a translation layer to the Abella theorem prover we have
been able to reason over dependently typed LF specifications without needing to change the
reasoning logic, and allowing LF to co-exist with the HOHH specification logic. We are already
in the process of extending this implementation to arbitrary pure type systems instead of just
LF; in particular, extending the type system with polymorphism, which is the most common
feature request for Abella, should be encodable via our translation that realizes specification
types as reasoning terms.

The translation ofLF toHOHH used in this work is a minor variant of the simple translation
from [17], which is itself based on earlier work [3], while the inversion on terms is similar to
the definition in [18], omitting meta-variables. Various optimized versions of this translation
have been used to use λProlog as an engine for logic programming with LF specifications;
in particular, the Parinati system [17] and its extension to meta-variables in [18]. The
meta-theory of the optimized translation is not as immediate as for the simple translation,
but it would be interesting to investigate its use for the Abella/LF variant in the future.
The combination of Parinati and Abella/LF gives us both an efficient execution model for
dependently typed logic programs and a mechanism to reason about the meta-theory of such
specifications in the extended 2LL. In effect, LF becomes as much a first class citizen of the
Abella ecosystem as HOHH and λProlog have traditionally been.

There are many other systems designed to reason with and about LF specifications.
The most mature implementation is Twelf [14], which has a very efficient type-checker
incorporating sophisticated term and type reconstruction. As mentioned in Section 4.3, we
useTwelf to type-check and elaborate the LF specifications we import inAbella. In addition to
the type-checker, Twelf has a suite of meta-theoretic tools that can verify certain properties
of LF specifications, such as that a declared relation determines a total function. Twelf is,
however, not powerful enough to reason inductively on arbitrary LF derivations. For example,
although Twelf can check coverage, it cannot express the logical formula that corresponds to
the coverage property.

Some of these expressive deficiencies of Twelf have been addressed in theDelphin [16] and
Beluga [15] systems that add a functional programming language that can manipulate and
reason inductively on LF syntax. TheBeluga system, in particular, extends the LF type theory
with contextual modal types [12] that give a type-theoretic treatment for meta-variables

FSTTCS 2014

568 A Two-Level Logic Approach for Typed Specification Languages

and explicit substitutions; in addition, Beluga also allows abstraction over contexts and
substitutions [2]. The type-checker of Beluga is therefore very sophisticated and performs
many kinds of reasoning on contexts automatically that must be done manually inAbella. On
the flip-side, Abella has a small trusted core based on the logic G with a well-understood and
– importantly! – stable proof system [10, 5]. It would be interesting to formally compare the
representational abilities of Abella/LF and Beluga. Moreover, Abella has recently acquired a
Plugin architecture that allows arbitrary (but soundness-preserving) user-written extensions
to its automation capabilities [1], which might help us add more automation in the future.

References
1 Olivier Savary Bélanger and Kaustuv Chaudhuri. Automatically deriving schematic theo-

rems for dynamic contexts. In LFMTP’14, pages 9:1–9:8. ACM, 2014.
2 Andrew Cave and Brigitte Pientka. Programming with binders and indexed data-types. In

POPL, pages 413–424. ACM, 2012.
3 Amy Felty and Dale Miller. Encoding a dependent-type λ-calculus in a logic programming

language. In CADE, volume 449 of LNAI, pages 221–235. Springer, 1990.
4 Andrew Gacek. A Framework for Specifying, Prototyping, and Reasoning about Computa-

tional Systems. PhD thesis, University of Minnesota, 2009.
5 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Information

and Computation, 209(1):48–73, 2011.
6 Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic approach to reasoning

about computations. J. of Automated Reasoning, 49(2):241–273, 2012.
7 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal

of the ACM, 40(1):143–184, 1993.
8 Dale Miller and Gopalan Nadathur. A computational logic approach to syntax and seman-

tics. 10th Symp. of the Mathematical Foundations of Computer Science, May 1985.
9 Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge

University Press, June 2012.
10 Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. on Com-

putational Logic, 6(4):749–783, October 2005.
11 Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus – A compiler and

abstract machine based implementation of λProlog. In CADE, number 1632 in Lecture
Notes in Artificial Intelligence, pages 287–291. Springer, 1999.

12 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual model type theory.
ACM Trans. on Computational Logic, 9(3):1–49, 2008.

13 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In PLDI, pages 199–208.
ACM Press, June 1988.

14 Frank Pfenning and Carsten Schürmann. System description: Twelf – A meta-logical
framework for deductive systems. In 16th Conf. on Automated Deduction (CADE), number
1632 in LNAI, pages 202–206, Trento, 1999. Springer.

15 Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming and reasoning
with deductive systems (system description). In IJCAR, pages 15–21. Springer LNCS 6173,
2010.

16 Adam Poswolsky and Carsten Schürmann. System description: Delphin – A functional
programming language for deductive systems. In LFMTP, volume 228, pages 113–120,
2008.

17 Zachary Snow, David Baelde, and Gopalan Nadathur. A meta-programming approach to
realizing dependently typed logic programming. In PPDP, pages 187–198, 2010.

M. Southern and K. Chaudhuri 569

18 Mary Southern and Gopalan Nadathur. A λProlog based animation of Twelf specifications,
July 2014. Available at http://arxiv.org/abs/1407.1545.

19 Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek, and Gopalan Nadathur. Reasoning
about higher-order relational specifications. In PPDP, pages 157–168, Madrid, Spain,
September 2013.

20 The Abella web-site. http://abella-prover.org/, 2013.

FSTTCS 2014

http://arxiv.org/abs/1407.1545
http://abella-prover.org/

	Introduction
	Background
	The Reasoning Logic G
	The Specification Language: HOHH
	Example: Type Uniqueness

	An Adequate Translation of LFto HOHH
	Translational Two-level Logic Approach
	Importing the LFSpecification
	Representing LFHypothetical Judgements
	The Implementation

	Related Work and Conclusion

