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Abstract
We study generalisations of a simple, combinatorial proof of a Chernoff bound similar to the one
by Impagliazzo and Kabanets (RANDOM, 2010).

In particular, we prove a randomized version of the hitting property of expander random
walks and use it to obtain an optimal expander random walk concentration bound settling a
question asked by Impagliazzo and Kabanets.

Next, we obtain an upper tail bound for polynomials with input variables in [0, 1] which are
not necessarily independent, but obey a certain condition inspired by Impagliazzo and Kabanets.
The resulting bound is applied by Holenstein and Sinha (FOCS, 2012) in the proof of a lower
bound for the number of calls in a black-box construction of a pseudorandom generator from a
one-way function.

We also show that the same technique yields the upper tail bound for the number of copies of
a fixed graph in an Erdős–Rényi random graph, matching the one given by Janson, Oleszkiewicz,
and Ruciński (Israel J. Math, 2002).
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1 Introduction

Motivation and previous work

Concentration bounds are inequalities that estimate the probability of a random variable
assuming a value that is far from its expectation. They have a multitude of applications all
across the mathematics and theoretical computer science. See, e.g., textbooks [26, 25, 4, 10]
for uses in complexity theory and randomised algorithms.

A typical setting is when this variable is a function f(x) of n simpler random variables
x = (x1, . . . , xn) that possess a certain degree of independence and we try to bound said
probability with a function decaying exponentially with n (or, maybe, nε for some ε > 0).

The canonical examples are Chernoff-Hoeffding bounds [7, 13] for the sum of n independent
random variables in [0, 1] and Azuma’s inequality [5] for martingales.

The standard technique to prove Chernoff bounds is due to Bernstein [6]. The idea is to
bound E[etf(x)] for some appropriately chosen t, and then to apply Markov’s inequality.

Recently, Impagliazzo and Kabanets [16] gave a different, combinatorial proof of Chernoff
bound, arguing that its simplicity and nature provide additional insight into understanding
concentration. What is more, their proof is constructive in a certain sense (see [16] for
details).

The proof given by Impagliazzo and Kabanets is related to previous published results: in
[28], Schmidt, Siegel and Srinivasan give a Chernoff bound which is applicable in case the
random variables x = (x1, . . . , xn) are only m-wise independent for some large enough m. It
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turns out that the expressions which appear in their computations have close counterparts in
the proof in [16], but they still bound E[etf(x)], and it seems to us that the approach in [16]
makes the concepts clearer and the calculations shorter.

Another work related to [16] is due to Janson, Oleszkiewicz and Ruciński [17], who give
an upper tail bound (i.e., a one-sided concentration bound) for the number of subgraphs in
an Erdős-Rényi random graph Gn,p. The proof given in [17] bears much relationship to the
proof given in [16]. We elaborate on that in Section 3.2.

Finally, there is a connection to an argument used by Rao to prove a concentration bound
for parallel repetition of two-prover games [27]. As we will see, one of the ideas in the proof
given in [16] is to consider a subset of the variables (x1, . . . , xn). Rao also does this, with a
somewhat different purpose.

Our contributions

In this paper we modify the proof of Impagliazzo and Kabanets and introduce a more general
sufficient condition for concentration which we term growth boundedness (Section 3). Then,
we show some applications of our framework.

First, we prove a randomized version of the hitting property of expander random walks
(Theorem 4.1) and use it to obtain an optimal (up to a constant factor in the exponent)
expander random walk concentration bound settling a question asked in [16] (Theorem 4.2).1
We also show that our method is quite robust: with a little more effort one can improve
the constant factor to the optimal one in case of large number of steps and small deviation
(Theorem 4.3).

Second, we prove an upper tail bound for polynomials with input random variables in
[0, 1] (Theorem 5.2). Contrary to the previous work we are aware of, we do not assume that
those variables are independent, but rather that they obey a condition similar to growth
boundedness.

This bound is used in a proof of a lower bound for the complexity of a black-box
construction of a pseudorandom generator from a one-way function [14]. Although [14] was
published earlier, the proof of the bound is not contained there, but deferred to this paper
instead. We outline how the bound was used in [14] in Section 5.1.

Notation

Throughout the paper we focus on the bounds of the form Pr[f(x) ≥ µ(1 + ε)]). We call such
bounds “(multiplicative) upper tail bounds”.

Typically, we consider a probability distribution Px over some vector of random variables
x = (x1, . . . , xn). We denote a random choice from Px as x ← Px. We try to explicitly
indicate randomness whenever taking probability or expectation, i.e., we write Prx←Px

[. . .]
and so on. For a finite set A, let a← A be a shorthand for a uniform random choice of an
element from A.

For a natural number n, let [n] := {1, . . . , n}. As usual, by
(
n
k

)
we denote

∏k−1
i=0

(n−i)
k! for

n ∈ R and k ∈ N. For n ∈ N and 0 ≤ k ≤ n, we also identify
(
n
k

)
with the set of subsets of

[n] of size k.
In particular, (i1, . . . , im) ← [n]m denotes uniform choice of m elements from [n] with

repetition and M ←
(
n
m

)
uniform choice of a subset of [n] of size m.

1 Of course the bound itself is not new. Impagliazzo and Kabanets asked if such a concentration bound
can be obtained from the hitting property, i.e., using the technique from [16].
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394 Upper Tail Estimates with Combinatorial Proofs

2 A Simple Proof of a Chernoff Bound

We start by presenting a short proof of a Chernoff bound in, arguably, the most basic setting.

I Theorem 2.1. Let x = (x1, . . . , xn) be i.i.d. over {0, 1}n with Pr[xi = 1] = 1
2 and ε ∈ [0, 1

2 ].
Then,

Pr
x←Px

[
n∑
i=1

xi ≥
n

2 (1 + ε)
]
≤ exp

(
−ε

2n

6

)
.

Proof. Let m :=
⌈
εn
3
⌉
. We have

E
x←Px

[(
n∑
i=1

xi

)m]
= nm Pr

x←Px
(i1,...,im)←[n]m

[
∀j ∈ [m] : xij = 1

]
= nm

m∏
j=1

Pr
x←Px

(i1,...,im)←[n]m

[
xij = 1 | ∀k < j : xik = 1

]
≤ nm

(
ε

3 · 1 +
(

1− ε

3

)
· 1

2

)m
=
(n

2

)m (
1 + ε

3

)m
.

Using Markov’s inequality and 1+ε/3
1+ε ≤ exp

(
− ε

2
)
for ε ∈ [0, 1

2 ],

Pr
[(

n∑
i=1

xi

)m
≥
(n

2

)m
(1 + ε)m

]
≤
(1 + ε

3
1 + ε

)m
≤ exp

(
−ε

2n

6

)
.

J

The above is the simplest proof of the most basic Chernoff bound we know of, and we
believe that it is worthwhile to state it explicitly. It can be obtained by adapting the proof
given in [16] for the given setting, although a direct adaptation yields a slightly different
(and probably a bit longer) argument. Alternatively, it can be seen as an instantiation of
the proof given in [17] in case one is interested in counting the number of copies of K2 (i.e.,
the number of edges) in a random graph Gn,p, after rather many simplifications that can be
done for this very special case. Finally, it is a straightforward instantiation of our later proof
given in Section 3.

3 Growth Boundedness

In this section we present the definition of growth-boundedness and prove that it implies
concentration. In Section 3.1 we introduce growth boundedness without repetition: a
variation of our concept that we use to prove the expander random walk bound.

I Definition 3.1. Let δ ≥ 0 and m ∈ [n]. A distribution Px over x = (x1, . . . , xn) ∈ Rn≥0
with µ := E x←Px

i←[n]
[xi] is (δ,m)-growth bounded if

E
x←Px

[(
n∑
i=1

xi

)m]
≤ (µn)m(1 + δ)m .

Equivalently, Px is (δ,m)-growth bounded if and only if

E
x←Px

(i1,...,im)←[n]m

[ m∏
j=1

xij

]
≤ µm(1 + δ)m .
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If random variables are over {0, 1}, this condition reduces to

Pr
x←Px

(i1,...,im)←[n]m

[
∀j ∈ [m] : xij = 1

]
≤ µm(1 + δ)m .

We now state our main theorem:

I Theorem 3.2. Let Px be a distribution over Rn≥0, µ := E x←Px
i←[n]

[xi], µ > 0, ε ≥ 0. If Px is
(δ,m)-growth bounded, then

Pr
x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]
≤
(1 + δ

1 + ε

)m
.

Proof. By Markov’s inequality and growth boundedness of Px,

Pr
x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]

= Pr
x←Px

[( n∑
i=1

xi
)m ≥ (µn)m(1 + ε)m

]
≤
(1 + δ

1 + ε

)m
.

J

There is an interesting connection between this proof (inspired by [17]) and the one used
in [16], for details see Section 3.2.

We obtain more convenient bounds as a corollary:

I Corollary 3.3. Let ε ≥ 0 and Px be an ( ε3 ,m)-growth bounded distribution over Rn≥0 with
µ := E x←Px

i←[n]
[xi], µ > 0.

1. If ε ≤ 1
2 : Pr

x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]
≤ exp

(
− εm

2

)
.

2. If ε ≥ 1
2 : Pr

x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]
≤
(4

5

)m
.

3. If ε ≥ 3: Pr
x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]
≤ 2−m .

Proof. (1) follows because 1+ε/3
1+ε ≤ exp

(
− ε

2
)
for ε ∈ [0, 1

2 ], (2) since 1+ε/3
1+ε ≤

4
5 for ε ≥ 1

2
and (3) due to 1+ε/3

1+ε ≤
1
2 for ε ≥ 3. J

For example, suppose that x1, . . . , xn are independent over {0, 1}n, Pr[xi = 1] = µ > 0,
and ε ∈ [0, 1

2 ].
Using that for each M with |M | ≤ εµn

3 we have

Pr
x←Px
i←[n]

[xi = 1 | ∀j ∈M : xj = 1] =
(
|M |
n

+
(

1− |M |
n

)
µ

)
≤ |M |

n
+ µ ≤ µ

(
1 + ε

3

)
,

we can conclude that Px is ( ε3 , d
εµn

3 e)-growth bounded and

Pr
x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]
≤ exp(−ε2µn/6) .
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396 Upper Tail Estimates with Combinatorial Proofs

3.1 Growth boundedness without repetition
If one looks at the process in the growth boundedness definition as choosing a uniform
m-tuple of indices (i1, . . . , im) (with repetition), it is possible to make a similar argument for
choosing a uniform set of indices of size m instead. In particular, we find it convenient in
the proof of the expander random walk bound.

I Definition 3.4. Let δ ≥ −1 and m ∈ [n]. We say that a distribution Px over {0, 1}n with
µ := Pr x←Px

i←[n]
[xi = 1] is (δ,m)-growth bounded without repetition if

Pr
x←Px

M←(n
m)

[
∀i ∈M : xi = 1

]
≤ µm(1 + δ)m .

I Theorem 3.5. Let Px be a distribution over {0, 1}n, µ := Pr x←Px
i←[n]

[xi = 1], µ > 0, ε ≥ 0,
c ∈ [0, 1]. If Px is (δ, cεµn)-growth bounded without repetition then

Pr
x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]
≤
( 1 + δ

1 + (1− c)ε

)m
,

where m := cεµn.

Proof. Set q := Pr[
∑n
i=1 xi ≥ µn(1 + ε)] and compute:

µm(1 + δ)m ≥ Pr
x←Px

M←(n
m)

[∀i ∈M : xi = 1]

≥ q Pr
x←Px

M←(n
m)

[∀i ∈M : xi = 1 |
∑n
i=1 xi ≥ µn(1 + ε)]

≥ q
m−1∏
i=0

µn(1 + ε)− i
n− i

≥ qµm(1 + (1− c)ε)m .

J

I Corollary 3.6. Let ε ∈ [0, 4
5 ] and Px be a distribution over {0, 1}n that is ( ε3 ,m)-growth

bounded without repetition for some m ≤ εµn
6 with µ := Pr x←Px

i←[n]
[xi = 1], µ > 0. Then,

Pr
x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]
≤ exp

(
− εm

3

)
.

Proof. Apply Theorem 3.5 and note that 1+ε/3
1+5ε/6 ≤ exp

(
− ε

3
)
for ε ∈ [0, 4

5 ]. J

3.2 Connection of [16] and [17]
Recall the proof of Theorem 3.2. In the context of [16] and [17] we find it instructive to give
an alternative proof, restricted to distributions over {0, 1}n (essentially the same as the proof
of Theorem 3.5).

I Theorem 3.7. Let Px be a distribution over {0, 1}n, µ := Pr x←Px
i←[n]

[xi = 1], µ > 0, ε ≥ 0.
If Px is (δ,m)-growth bounded, then

Pr
x←Px

[ n∑
i=1

xi ≥ µn(1 + ε)
]
≤
(1 + δ

1 + ε

)m
.
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Proof. Set q := Pr
[∑n

i=1 xi ≥ µn(1 + ε)
]
, and see that2

µm(1 + δ)m ≥ Pr
x←Px

(i1,...,im)←[n]m

[∀j ∈ [m] : xij = 1]

≥ q Pr
x←Px

(i1,...,im)←[n]m

[∀j ∈ [m] : xij = 1 |
∑n
i=1 xi ≥ µn(1 + ε)]

≥ q µm(1 + ε)m .

J

The basic idea of the proof in [16] is to consider Prx,M [∀i ∈M : xi = 1], where M is a
subset of [n] obtained by including each element in M independently with some probability
q. Then, this is compared with Prx,M [∀i ∈ M : xi = 1 | E ], where E is the event that∑n
i=1 xi ≥ µn(1 + ε). In fact, we have

Pr
x

[E ] ≤ Prx,M [∀i ∈M : xi = 1]
Prx,M [∀i ∈M : xi = 1 | E ] .

It is possible to show that for m := E[|M |] � n we have PrM [∀i ∈ M : xi = 1 | E ] &
µm(1 + ε)m. To see the intuition of this, simply note that this probability roughly equals the
probability of only selecting red balls when one chooses with repetition m times out of n
balls, at least µn(1 + ε) of which are red.3 Thus,

Pr
x

[E ] . Prx,M [∀i ∈M : xi = 1]
µm(1 + ε)m . (1)

Now note that this last argument only uses the probability over M , and so is independent of
the distribution of x. Thus, for any distribution on which we can give a good upper bound
on Prx,M [∀i ∈M : xi = 1], the technique of [16] gives a concentration result.

The argument we use is very similar, but we pick M as an m-tuple whose elements are
picked independently with repetition. However, then we also have

nm Pr
x,M

[∀i ∈M : xi = 1] = E
x,M

[(x1 + . . .+ xn)m] .

By Markov’s inequality,

Pr[E ] = Pr [(x1 + · · ·+ xn)m ≥ (µn(1 + ε))m] ≤ Prx,M [∀i ∈M : xi = 1]
µm(1 + ε)m ,

which is almost the same as (1).
The view in (1) is the one adopted by [16]. Bounding the m-th moment and using Markov

is the view adopted in [17]. The above argument shows that these views are closely related,
and one can argue that the connection is given by growth boundedness.

4 Random Walks on Expanders

Overview and our results

For an introduction to expander graphs, see [15] or [30, Chapter 4]. In short, a λ-expander is
a d-regular undirected graph G with the second largest (in terms of absolute value) eigenvalue
of the transition matrix at most λ.

2 Clearly q = 0 is not a problem.
3 The difference to the actual random experiment is that we do not keep each ball with probability m/n

but instead choose exactly m times.
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398 Upper Tail Estimates with Combinatorial Proofs

We consider a random walk on λ-expander starting in a uniform random vertex. It is a
very useful fact in many applications that such a random walk behaves in certain respects
very similarly to a random walk on the complete graph.

In particular, the so called hitting property [2, 20] states that the probability that an
`-step random walk on a λ-expander G stays completely inside a set W ⊆ V := V (G) with
µ := |W |/|V | is at most (µ+ λ)`. A more general version [3] states that for each M ⊆ [`] the
probability that a random walk stays inside W in all steps from M is at most (µ+ 2λ)|M |.

Our first result, which may be of independent interest, can be considered as a randomized
version of the hitting property. Namely, we show that, given ε > 0, for a relatively small
random subset M ⊆ [`] of size m the probability that a random walk on a λ-expander stays
inside W in all steps from M is at most (µ(1 + ε))m:

I Theorem 4.1. Let G be a λ-expander with a distribution Pr over V ` representing an
(` − 1)-step random walk r = (v1, . . . , v`) (with v1 being a uniform starting vertex) and
W ⊆ V with µ := |W |/|V |. Let ε ≥ 0 and m ≤ min

(
1, 1−λ

λ
εµ
2
)
`. Then,

Pr
r←Pr

M←( `
m)

[
∀i ∈M : vi ∈W

]
≤ (µ(1 + ε))m .

Another important property of random walks on expander graphs is the Chernoff bound
estimating the probability that the number of times a random walk visits W is far from its
expectation. The first Chernoff bound for expander random walks was given by Gillman [11]
and the problem was treated further in numerous works [21, 24, 1, 12, 32, 8].

Impagliazzo and Kabanets [16] apply their technique to obtain a bound for random walks
on expander graphs, but in case of deviations smaller than λ they lose a factor of log

( 1
ε

)
in

the exponent. They then ask if their technique can be modified to avoid this loss.
We answer this question affirmatively: using Theorem 4.1 we immediately obtain a bound

that matches the known ones and does not suffer from the additional log
( 1
ε

)
factor while

preserving the simplicity of the proof.

I Theorem 4.2. Let the setting be as in Theorem 4.1 with µ > 0. Define Px over {0, 1}` as
xi = 1 ⇐⇒ vi ∈W and let ε ∈ [0, 4

5 ]. Then,

Pr
r←Pr

[∑̀
i=1

xi ≥ µ`(1 + ε)
]
≤ 2 exp

(
− (1− λ)ε2µ`

18

)
.

Furthermore, we demonstrate robustness of our method by improving the exponent to
1−λ
1+λ

µ
1−µ

ε2`
2 + o(ε2)`, which is optimal for fixed λ, µ and ε→ 0+ and `→∞:

I Theorem 4.3. Let the setting be as in Theorem 4.1 with µ ∈ (0, 1). Define Px over {0, 1}`
as xi = 1 ⇐⇒ vi ∈W and let ε ∈ [0, 1]. Then, there exists cµ that depends only on µ such
that

Pr
r←Pr

[∑̀
i=1

xi ≥ µ`(1 + ε)
]
≤ 2 exp

(
− 1− λ

1 + λ
· µ

1− µ ·
ε2`

2 + cµε
3 ln(1

ε
)`
)
.

For a proof of Theorem 4.3 see the full paper. In the following we prove Theorems 4.1
and 4.2.
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Proofs

First, we need a coupling argument: let m, ` ∈ N,m ≤ ` be given. We consider the
distribution Dm,` defined by the following process:

Pick uniformly M ←
(
`
m

)
and let M := {x1, . . . , xm} with x1 < . . . < xm.

Let d1 := x1 and di := xi − xi−1 for i > 1.
A bijection shows that d = (d1, . . . , dm) is distributed uniformly on the

(
`
m

)
m-tuples which

satisfy
∑m
i=1 di ≤ ` and di > 0. We now couple Dm,` with independent random variables

(see full paper for the proof):

I Lemma 4.4. Let 0 < m ≤ `. There exists a distribution over (d1, . . . , dm, e1, . . . , em) such
that:

ei ≤ di for 1 ≤ i ≤ m.
(d1, . . . , dm) is distributed according to Dm,`.
(e1, . . . , em) are i.i.d. with ei in N+ and Pr[ei = k] ≤ 2m

` for every k.

Proof of Theorem 4.1. Pick M ←
(
`
m

)
and let (d1, . . . , dm) be as in the definition of Dm,`.

I Lemma 4.5.

Pr
r←Pr

M←( `
m)

[
∀i ∈M : vi ∈W

]
≤ E
M←( `

m)

[ m∏
i=1

(µ+ λdi)
]
.

Proof. Let v := ( 1
n , . . . ,

1
n ) be the vector of the uniform distribution on V and let PW be

a diagonal n× n matrix with (PW )uu = 1 if u ∈ W and (PW )uu = 0 otherwise. Note that
P 2
W = PW .
Let AG be the probability transition matrix of G. Let us denote the spectral norm of a

matrix with || · ||. We bound the probability of a random walk staying in W on indices of M
using a standard technique. In particular, we use (for the proof see [30, Claim 4.21]):

I Claim 4.6.

||PWAkGPW || ≤ µ+ (1− µ)λk .

Fix M . First of all, by induction (and noting that vAG = v):

Pr
r←Pr

[∀i ∈M : vi ∈W ] =
∣∣vPW m∏

i=2
Adi

GPW
∣∣
1 .

Estimate: ∣∣vPW m∏
i=2

Adi

GPW
∣∣
1 ≤
√
µn ·

∣∣∣∣vPW m∏
i=2

Adi

GPW
∣∣∣∣ (2)

≤ √µn ·
∣∣∣∣vPW ∣∣∣∣ m∏

i=2

∣∣∣∣PWAdi

GPW
∣∣∣∣ (3)

= µ

m∏
i=2

∣∣∣∣PWAdi

GPW
∣∣∣∣ (4)

≤
m∏
i=1

(µ+ λdi) , (5)

where (2) is due to Cauchy-Schwarz inequality (note there are at most µn non-zero coordinates
in the final vector), (3) follows from ||AB|| ≤ ||A|| · ||B||, (4) from ||vPW || =

√
µ
n and (5)

from Claim 4.6. J
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400 Upper Tail Estimates with Combinatorial Proofs

The hope is that (d1, . . . , dm) behave “almost” like i.i.d. uniform random variables. This is
indeed true, and by Corollary 4.4 we have (e1, . . . , em) such that ei ≤ di and ei are i.i.d. with
ei in N+ and Pr[ei = k] ≤ 2m

` for each k.
Putting this fact together with Lemma 4.5:

Pr
r←Pr

M←( `
m)

[
∀i ∈M : vi ∈W

]
≤ E

[ m∏
i=1

(
µ+ λei

)]

=
m∏
i=1

(
µ+ E[λei ]

)
≤
(
µ+ 2m

`
· λ

1− λ

)m
≤ µm(1 + ε)m .

J

An immediate corollary of Theorem 4.1 is:

I Corollary 4.7. Let the setting be as in Theorem 4.1. Define Px over {0, 1}` as xi = 1 ⇐⇒
vi ∈W . Then, Px is (ε,min

(
`, b 1−λ

λ
εµ`
2 c)-growth bounded without repetition.

Proof of Theorem 4.2. : Combine Corollary 4.7 with Corollary 3.6 (settingm := b (1−λ)εµ`
6 c).

J

5 Polynomial Concentration

In certain applications it is desired to bound the concentration not only of the sum, but
rather of a (low-degree) polynomial of some random variables.

In the case when (informally) the polynomial is such that the change in its value is
bounded when the value of a single input variable is changed the Azuma’s inequality can be
applied to bound concentration.

If this is not so, one can use techniques that were invented by Kim and Vu [22] and
developed in a body of work that followed (in particular [31, 29]). In the special case of a
multilinear low-degree polynomial p(v) and an independent distribution of input variables
Pv their concentration bound can be expressed, very roughly speaking, as a function of µ0

µ′ ,
where µ0 is the expectation of p(v) and µ′ = maxK 6=∅ E[∂Kp(v)].

We obtain a bound in similar spirit. It is not tight in general, but can be applied to
arbitrary polynomials with positive coefficients over input random variables in [0, 1] and is
tight in the case of elementary symmetric polynomials ek(v) :=

∑
|S|=k

∏
i∈S vi (see the full

paper for a proof).
Most importantly, as opposed to prior results, it does not require the input variables to

be independent, but rather almost independent in a certain sense (for simplicity we limit
ourselves to multilinear polynomials and inputs in {0,1}, full treatment can be found in the
full paper):

I Definition 5.1. Let Pv be a distribution over {0, 1}`, δ ≥ 0 and m ∈ [`]. Pv is (δ,m)-almost
independent if for each M ⊆ [`] with |M | ≤ m

Pr
v←Pv

[∀i ∈M : vi = 1] ≤ (1 + δ)m
∏
i∈M

Pr
v←Pv

[vi = 1] .
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Let us state our main theorem of this section.
Let Pv be a (δ, km)-almost independent distribution. Let p(v) be a multilinear polynomial

of degree k with positive coefficients. Our way to deal with dependencies in Pv is to state
the bound in terms of P∗v which is the distribution of independent variables with the same
marginals as Pv (i.e., each v∗i has the same distribution as vi).

We express the concentration in terms of

µ∗i := max
K⊆[`]
|K|=i

E
v←P∗v

[∂Kp(v)] .

Note that µ∗0 is the expectation of p(v) under P∗v.

I Theorem 5.2. Let the setting be as above and ε > 0. Then,

Pr
v←Pv

[
p(v) ≥ µ∗0(1 + ε)

]
≤
( (1 + δ)k(1 +

∑k

i=1 (km
i )µ∗i

µ∗0
)

1 + ε

)m
.

Proof outline. Write p(v) as a sum of binary random variables (corresponding to the monomi-
als) x1, . . . , xn. Due to Theorem 3.2 it is enough to show that (x1, . . . , xn) are (δ′,m)-growth

bounded, where 1 + δ′ = (1 + δ)k
(
1 +

∑k

i=1 (km
i )µ∗i

µ∗0

)µ∗0
µ .

Since Pv is (δ, km)-almost independent, this task can be further reduced to showing
that if v is distributed according to P∗v instead of Pv, then (x1, . . . , xn) are (δ′′,m)-growth

bounded, where 1 + δ′′ =
(
1 +

∑k

i=1 (km
i )µ∗i

µ∗0

)
.

Fix s < m and (i1, . . . , is) ∈ [n]s and let M be the set of all indices j such that vj
influences at least one of xi1 , . . . , xis (note that |M | ≤ km).

We write p(v) =
∑
K⊆M :|K|≤k pK(v), where pK(v) consists of those monomials whose

variables intersected with M are exactly K. Observe that

E
v←P∗v

[
pK(v) | ∀i ∈M : vi = 1

]
≤ E
v←P∗v

[
∂Kp(v)

]
.

To get growth boundedness for x1, . . . , xn we proceed by induction and bound

Pr
v←P∗v

is+1←[n]

[
xis+1 = 1 | ∀j ∈ [s] : xij = 1

]
= 1
n

E
v←P∗v

[
p(v) | ∀i ∈M : vi = 1

]
≤ 1
n

∑
K⊆M :|K|≤k

E
v←P∗v

[
∂Kp(v)

]

≤ µ∗0
n

(
1 +

∑k
i=1
(
km
i

)
µ∗i

µ∗0

)
.

J

Let µ′ := maxi∈[k] µ
∗
i . Since

∑k
i=1
(
km
i

)
≤ (km)k, we have:

I Corollary 5.3. Let the setting be as in Theorem 5.2. Then,

Pr
v←Pv

[p(v) ≥ µ∗0(1 + ε)] ≤
( (1 + δ)k(1 + (km)kµ′

µ∗0
)

1 + ε

)m
.
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5.1 An application in [14]
In [14] the authors prove a lower bound on the complexity of a black-box construction of a
pseudorandom generator from a one-way function.

Part of their proof consists in using Theorem 5.2 to show a concentration bound for a
certain polynomial. The proof of Theorem 5.2 is not included in [14], but deferred to this
paper instead. Since the input variables of the polynomial are not independent, to the best
of our knowledge no previous work is applicable to this case.4

The following random process is considered: pick a permutation f : {0, 1}n → {0, 1}n
u.a.r. and consider the distribution Pg over 22n random variables g := {gx,y : x, y ∈ {0, 1}n}
defined as gx,y = 1 if f(x) = y and gx,y = 0 otherwise.

The random variables in g are not independent, but it is easy to check that they are
(1, 2n−1)-almost independent. Also, the corresponding independent distribution P∗g has
expectation 2−n for each gx,y.

Fix k ≤ n
100 logn . [14] defines a certain multilinear polynomial p(g) of degree at most k

such that µ∗0 ≤ 2n/15 and µ′ ≤ 2n/15 (we omit the details).
[14] needs to show that (for n big enough):

Pr
g←Pg

[
p(g) ≥ 2n/10

]
≤ 2−2n/100k

.

To this end, calculate using Corollary 5.3 and setting δ := 1, ε := 29n/100/µ∗0 andm := 2n/100k:

Pr
g←Pg

[
p(g) ≥ µ∗0 + 29n/100

]
≤

2k max
(

2, 2kk2n/100µ′

µ∗0

)
29n/100

µ∗0

2n/100k

≤

(
2k+1 max

(
µ∗0, k

k2n/100µ′
)

29n/100

)2n/100k

≤ 2−2n/100k

.

5.2 Other applications
We note that despite the fact that the deviation for which we applied our theorem in Section
5.1 is big relative to the expectation, one can obtain meaningful bounds also for very small
deviations.

This can be seen by taking a restricted version of Theorem 5.2:

I Theorem 5.4. Let Pv be a distribution of independent variables (i.e., Pv = P∗v) over [0, 1]`.
Let p(v) be as in Theorem 5.2 and ε ∈ [0, 1

2 ]. Then:

Pr
v←Pv

[
p(v) ≥ µ(1 + ε)

]
≤ 2 exp

(
− ε

6k

(εµ
µ′

)1/k)
.

Proof. Note that Pv are (0, `)-almost independent. Take m :=
⌊

1
k

(
εµ
3µ′

)1/k⌋
, obtain ( ε3 ,m)-

growth boundedness as in Corollary 5.3 and apply Corollary 3.3.1. J

4 It was pointed out to us that a generalisation of the result of Latała and Łochowski [23] might be
applicable (together with [9]). However, moment bound in [23] is optimal only up to a constant in the
exponent that depends on the degree and the degree is non-constant in our setting.
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For example, in a representative setting when Azuma-like methods fail: consider the
polynomial that counts the triangles in Erdős–Rényi random graph Gn,n−3/4 , i.e., p(v) =∑
{a,b,c}∈(n

3) vabvacvbc. We compute µ = Θ(n3/4) and µ′ = Θ(1).
For ε ∈ [0, 3

16 ] Theorem 5.4 gives:

Pr
v←Pv

[
p(v) ≥ µ(1 + n−ε)

]
≤ exp(−Ω(n1/4−4ε/3)) .

This is comparable to the bound from [22] (which was the first paper to give a good bound
in this setting). Better bounds are known, in particular we revisit the triangle counting in
Section 6.

For some more discussion on the tightness of Theorem 5.2, see the full paper.

6 Counting Subgraphs in Random Graphs

In the proof of the polynomial concentration bound we consider values µ∗i which are maxima
of expectations of ∂Kp(v) over sets K of size i. Each such value yields a contribution5 of(
km
i

)
µ∗i (proportional to the number of partial derivatives of this type in the subset of input

variables of size km) and the “quality” of a concentration bound depends, roughly, on the
maximum such contribution.

In principle, nothing prevents us from considering a different, possibly finer, division of
partial derivatives into a constant number of classes, each with its own contribution.

In particular, it is an obvious fact that the number of occurrences of a fixed subgraph H
in a random Erdős–Rényi graph (for some of the work on the problem see [18, 17, 19]) can
be expressed in terms of a multilinear polynomial. In this setting we may divide the partial
derivatives into classes corresponding to subgraphs of H. Interestingly, this yields an upper
tail bound proof that is basically isomorphic to the famous one of Janson, Oleszkiewicz and
Ruciński [17].

Our result holds in the setting of almost-independent distributions, readily applicable,
for example, to Gn,m random graphs (of course the proof of [17] also generalises to those
settings).

For details, see the full paper.
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