
On the Information Carried by Programs about
the Objects They Compute∗

Mathieu Hoyrup1 and Cristóbal Rojas2

1 Inria Nancy Grand Est
615 rue du jardin botanique, 54600 Villers-lès-Nancy, France
hoyrup@inria.fr

2 Departamento de Matemáticas, Universidad Andres Bello
República 220, Santiago, Chile.
crojas@mat-unab.cl

Abstract
In computability theory and computable analysis, finite programs can compute infinite objects.
Presenting a computable object via any program for it, provides at least as much information as
presenting the object itself, written on an infinite tape. What additional information do programs
provide? We characterize this additional information to be any upper bound on the Kolmogorov
complexity of the object. Hence we identify the exact relationship between Markov-computability
and Type-2-computability. We then use this relationship to obtain several results characterizing
the computational and topological structure of Markov-semidecidable sets.

1998 ACM Subject Classification F.1.1 Models of Computation/Computability theory

Keywords and phrases Markov-computable, representation, Kolmogorov complexity, Ershov to-
pology

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.447

1 Introduction

We assume that the reader is familiar with Turing machines and basic computability theory
over the natural numbers. To define computability over infinite objects, one still uses Turing
Machines but has to set up a way for them to access such objects. In any case, the input of
the machine is a finite or infinite sequence of symbols written on the input tape and one has
to choose a suitable way to describe infinite objects by such symbolic sequences. We now
briefly describe the two main approaches that have been developed.

The first one was introduced and studied by Turing [20], Grzegorczyk [5], Lacombe [9]
and later Kreitz and Weihrauch [21] and is nowadays known as Type-2-computability. In
this model, the description itself is completely written on the input tape of the machine.
At any time, the machine can read a finite portion of this description. We will call this
the Type-2-model. The second approach, promoted by the Russian school led by Markov
[10, 8], gives an alternative. In this model one restricts the action of the machine to operate
on computable (infinite) objects only, in the sense that they have computable descriptions.
Instead of having access to the description itself as in the Type-2-model, the machine here
has access to a program computing a description. We will call this the Markov-model.

∗ This work was partially supported by Inria program “Chercheur invité”. CR was partially supported by
FONDECYT project 11110226 and BASAL PFB-03 CMM, Universidad de Chile.

© Mathieu Hoyrup and Cristóbal Rojas;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 447–459

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.447
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

448 On the Information Carried by Programs about the Objects They Compute

Table 1 Some celebrated results comparing Markov-computability to Type-2-computability.

Objects Decidability Semidecidability
Partial computable functions Markov ≡ Type-2

Rice

Markov ≡ Type-2
Rice−Shapiro

Total computable functions Markov ≡ Type-2
Kreisel et al/Ceitin

Markov > Type-2
F riedberg

These two approaches provide a priori different computability notions, and their comparison
has been an important subject of study [13, 11, 18, 7, 1, 4, 12, 6, 19].

It is clear that the Markov-model is at least as powerful as the Type-2-model, so the
question is: does it allow to compute strictly more than the Type-2-model? The answer
depends on the objects that we consider, and the algorithmic tasks we want to perform on
them. The computational power of these models can therefore be classified according to
these parameters. Table 1 summarizes the most celebrated results in this direction. The
computable objects considered are the partial computable functions and the total computable
functions. The algorithmic tasks considered are decidability and semidecidability of properties
about these objects.

Kreisel-Lacombe-Shœnfield/Ceitin’s Theorem [7, 1] for instance, states that over total
computable functions, Markov-decidability is equivalent to Type-2-decidability1. This means
that the machine trying to decide a property, when provided with a program p for a function
f , cannot do better than just running p to evaluate f . The machine gains no additional
information about f from p. We note that Ceitin’s version of this result shows that over the
real line, Markov-computable functions and Type-2-computable functions coincide.

On the other hand, Friedberg [4] exhibited properties about total computable functions
that are Markov-semidecidable but not Type-2-semidecidable. So that for semidecidability, a
program p for a function f does give some additional information that can be exploited by
the machine. The main question we raise in this paper is the following:

Can we characterize the additional useful information contained in a program computing an
object, as compared to having the object itself ?

To get some intuition, consider the following fundamental difference between the two
models. In the Type-2-model, at any given time only a finite portion of the description of x
is provided, which corresponds to a finite approximation of x. Clearly, this approximation
is also good for infinitely many other objects – all the ones that are “close enough” to x.
In particular, x is never completely specified. In the Markov-model on the other hand, the
program provided to the machine completely specifies x from the beginning of the calculation!
This increases the predictive power of M , which might therefore be able to perform stronger
calculations. The point is to understand in which situations this fact can be exploited. A
trivial example is obtained when one considers the relativized setting: every function is
Markov-computable relative to an appropriate (powerful enough) oracle. Whereas whatever
oracle A we consider, Type-2-computable functions relative to A must always be continuous.

This observation takes us to another interesting point that separates the Markov-model
from the Type-2-model, namely their topological structure. It is well known that Type-2-
computability and topology are closely related: e.g. the Type-2-computable functions are

1 In its original form, this theorem is stated for functionals.

M. Hoyrup and C. Rojas 449

exactly the effectively continuous ones, and the Type-2-semidecidable properties exactly
correspond to the effectively open sets. The connection between Markov-computability
and topology, on the other hand, appears to be much less clear. In particular, Friedberg’s
construction provides a Markov-semidecidable set which is not open (for the standard topology
restricted to computable elements).

An obvious solution to relate Markov-computability to topology is to consider precisely
the topology generated by all the Markov-semidecidable sets – the so called Ershov’s topology.
The question then becomes:

How do Markov-semidecidable sets look like? can we characterize Ershov’s open sets ?

In the present paper we make use of Kolmogorov Complexity to provide a fairly complete
answer to these and other questions in different settings. Our main result is a characterization
of the additional information provided by a program, when the class of objects considered
are the computable points of an effective topological space. It can be informally stated as
follows (see Section 3):

I Theorem A. Over effective topological spaces, a program computing x provides as much
information as a description of x itself together with any upper bound on the Kolmogorov
complexity of x.

Here, the Kolmogorov complexity K(x) of a computable infinite object x is to be
understood as the size of the shortest program computing a description of x (Kolmogorov
complexity of infinite objects was first defined by Schnorr [15]). Obviously, any program for x
trivially provides, in addition to a description, an upper bound on its Kolmogorov complexity.
Theorem A says that this bound is all the exploitable additional information it provides.

Thus, we have a third model to deal with computable infinite objects. In this model,
input x is presented to the machine as a pair (d, k), where d is a description for x and k a
bound on the Kolmogorov complexity of x. We shall call this the K-model. In these terms,
a particular case of Theorem A can be stated as follows: if X , Y are effective topological
spaces (not necessarily metric) and Xc, Yc are the corresponding sets of computable points,
then a function f : Xc → Yc is Markov-computable if and only if it is K-computable.

A simple observation shows that one can not in general compute a program for x from
a K-description of x, meaning that the two notions are not fully equivalent. Despite this
fact, Theorem A is valid in great generality: it holds for decidability, semidecidability and
also higher in the hierarchy. In proving this we make a fundamental use of the Recursion
Theorem. Interestingly, although the Recursion Theorem does not relativize (a well known
fact), Theorem A does in many cases.

The K-model also sheds light into the structure of the open sets of Ershov’s topology,
providing a nice characterization in terms of Kolmogorov complexity, at least in the particular
case of the extended natural numbers N = N ∪ {∞}.

I Theorem B. On the extended natural numbers, the Ershov topology is generated by the
sets {n} and {x ∈ N : K(x) < h(x)} for some computable order h.

With the same techniques, we are able to prove several other related results that are
interesting on their own. For example, we show that there is no effective enumeration of the
Markov-semidecidable sets of N and that there is a Markov-semidecidable subset of {0, 1}N
that is not Σ0

2.
Finally, in the search of the limitations of our techniques, we turn our attention to

more general spaces and analyze functions with values on topological spaces that have an

STACS 2015

450 On the Information Carried by Programs about the Objects They Compute

Table 2 Some results comparing Markov-computability, K-computability, and Type-2-
computability. S = {⊥,>} is the Sierpiński space whose topology is generated by {>}.

Space X Semidecidable ∅′-Semidecidable F: X → O(B)
S Markov ≡ K ≡ Type-2 Markov > K ≡ Type-2 Markov > K ≡ Type-2

Partial functions Markov ≡ K ≡ Type-2 Markov > K ≡ Type-2 Markov > K > Type-2
Total functions Markov ≡ K > Type-2 Markov ≡ K > Type-2 Markov ? K > Type-2

admissible representation but are not countably-based. In particular, when this is the space
of open subsets of Baire space O(B), we show that Markov-computability can be strictly
stronger than K-computability:

I Theorem C. For functions from the partial computable functions with values on O(B) one
has that:

Markov-computability > K-computability > Type-2-computability.

One of the main question that remains open is whether the first strict inequality in
Theorem C holds if we replace the partial computable functions by the total ones. The
situation is summarized in Table 2.

The paper is organized as follows. We start by providing the basic notions and definitions
in Section 2. In Section 3 we introduce the K-model and present our main results. Section 4
contains several results that shed light on the structure of Markov-semidecidable sets and
in Section 5 we present the announced negative results. Finally, Section 6 contains a list of
related problems for possible future work.

2 Background

2.1 Notations and basic definitions.
We assume the reader is familiar with computability theory. Let {ϕe}e∈N be an effective
enumeration of the set of computable partial functions. We denote by Pc(N) the collection
of c.e. subsets of N and We = dom(ϕe) the induced effective enumerations of its elements. If
A ∈ Pc(N), an index of A is a number e such that We = A. If A is a c.e. set, implicitly given
by an index, A[s] is the finite subset of A enumerated by stage s, so that A[s] ⊆ A[s + 1]
and A =

⋃
s A[s]. We use the notation A[at s] = A[s] \A[s− 1] if s ≥ 1 and A[at 0] = A[0].

If F is a finite subset of N then [F] is the collection of supersets of F . B = NN will denote
Baire space.

2.2 Effective topological spaces.
An effective topological space is a tuple (X , τ,B) where (X , τ) is a non-empty topological
space, B = {Bi}i∈N is numbered basis such that there exists a computable function f :
N× N→ N satisfying Bi ∩ Bj =

⋃
k∈Wf(i,j)

Bk.
Given an effective topological space X , the standard representation is defined as a

surjective map ρ : dom(ρ) ⊆ B→ X satisfying ρ(f) = x whenever {f(n) : n ∈ N} = {i : x ∈
Bi}. We will call any f ∈ ρ−1(x), a Type-2-name of x. An element x is computable if
it has a computable Type-2-name. We denote by Xc the set of computable points. The
countable set Xc has a canonical numbering ν defined by ν(e) = x if ϕe is a name of x. We

M. Hoyrup and C. Rojas 451

will call such an e a Markov-name of x. To facilitate the reading of the paper, we will use
the font A,N,U when working on the space Xc, and the fonts A,N ,U when working on X .

2.2.1 Type-2-computability and Markov-computability
Let (X , τ,B) and (Y, τ ′,B′) be effective topological spaces. In what follows R stands for
both Type-2 and Markov. A set A ⊆ Xc is R-semidecidable if there is a Turing machine
M which, when provided with an R-name of x, halts if and only if x ∈ A. A function
f : Xc → Yc is R-computable if there is a Turing machine M which, when provided with
an R-name of x, writes an R-name for f(x) on its one-way output tape. It is not hard to see
that a function f : Xc → Yc is R-computable if and only if the sets f−1(B′i) are uniformly
R-semidecidable.

I Remark. It is worth noting that for a function f : Xc → Yc, being Markov-computable
is equivalent to having a Machine M which, provided with a Markov-name of x, outputs a
Type-2-name of f(x). Indeed, combining the program for x with the program for M gives a
program for f(x). We also note that a function f : Xc → Yc which is Type-2-computable
does not necessarily extend to a Type-2-computable function f : X → Y.

A numbering η of Xc is admissible if it is equivalent to the canonical numbering ν in
the sense that there exists partial computable functions f and g such that ν = η ◦ f on
dom(ν) and η = ν ◦ g on dom(η). The Markov-computability notions do not depend on the
choice of the admissible numbering. We will often use the admissible numbering η of Xc

defined by η(e) = x whenever We = {i ∈ N : x ∈ Bi}.
Type-2-computability and topology are closely related. A set U ⊆ X is an effective

open set if there exists e ∈ N such that U =
⋃

i∈We
Bi. If A = U ∩Xc, we will then say that

A is effectively open in Xc. The connection is established by the following result (see [21]).

I Theorem 1. A set A ⊆ Xc is Type-2-semidecidable if and only if it is effectively open in
Xc. Therefore, a function f : Xc → Yc is Type-2-computable if and only if it is effectively
continuous, i.e. the sets f−1(B′i) are uniformly effectively open in Xc.

As mentioned in the introduction, in order to have an analogous result for Markov-
computability, we have to use Ershov’s topology on Xc, which may be different from the
topology of X restricted to Xc.

I Example 2. Let B = NN be the Baire space. For each finite sequence u, let [u] be the set
of infinite extensions of u, called a cylinder. We endow B with the topology generated by the
cylinders, which is an effective topology. The standard numbering ϕe of partial computable
functions, restricted to the indices of total functions is an admissible numbering of Bc.

I Example 3. Let P(N) be space of subsets of N. For each finite set F ⊆ N, let [F] be the
set of supersets of F . We endow P(N) with the Scott topology, generated by the sets [F],
which is an effective topology. The standard numbering We = dom(ϕe) of c.e. sets is an
admissible numbering of P (N)c.

3 Main results

In this section, (X , τ,B) is always an effective topological space and Xc is the subset of
computable elements. We start by explaining the main idea behind our results. Let x ∈ Xc

be a fixed element. From a machine Type-2-semideciding a set A containing x, one can

STACS 2015

452 On the Information Carried by Programs about the Objects They Compute

compute a neighborhood N of x such that for every element y ∈ Xc the following implication
holds:

y ∈ N =⇒ y ∈ A. (1)

Now assume that A has the weaker property of being Markov-semidecidable, and still
contains x. From a machine Markov-semideciding A one cannot in general compute such
a neighborhood, which may not exist as shown by Friedberg’s example. However, from
the Markov-name of any other element y ∈ Xc one can still compute a neighborhood Ny

of x such that implication (1) holds. Further, as a finite intersection of neighborhoods is
still a neighborhood, one can compute a neighborhood N satisfying implication (1) for all
y in a given finite set. Using this argument we can show that the problem x ∈ A can be
Type-2-semidecided as soon as we know, in addition, a finite list of programs containing at
least one for x. This additional information is equivalent to having any upper bound on the
Kolmogorov complexity of x, which leads us to the notion of K-computability that we now
introduce.

3.1 K-computability
I Definition 4. The Kolmogorov complexity K(x) of a computable element x ∈ Xc is
the length of a shortest program computing a Type-2-name of x.

In this paper, whether we use prefix-free, monotone or plain machines will not make any
difference so we do not need to specify the definition any further.

I Definition 5. A K-name of a computable element x ∈ Xc consists of a pair (k, f) where
k ≥ K(x) and f is a Type-2-name of x.

I Remark. Note that k is only an upper bound on the Kolmogorov complexity of x and not
necessarily of f , which may even be non computable. Note also that knowing any such k is
effectively equivalent to knowing any upper bound on a Markov-name of x. This is what we
will rather use in our proofs.

The K-computability notions are defined in the same way as in the previous section. We
will denote by Xc(k) the set of computable elements whose Kolmogorov complexity is at most
k. Note that Xc =

⋃
k Xc(k) and that K-computability is the same as Type-2-computability

on Xc(k), uniformly in k. In particular, a set A ⊆ Xc is K-semidecidable iff there exists
uniformly effective open sets Uk such that A ∩Xc(k) = Uk ∩Xc(k).

Thus, for each notion of computability we have so far three versions, depending on the
way the objects are represented.

It is clear that one can compute K-names from Markov-names. An important first
observation is the fact that the converse does not necessarily hold. In other words, the
representations underlying Markov-computability and K-computability are not equivalent.

I Proposition 6. In general, it is not possible to compute Markov-names from K-names.

One can show that on Cantor space, Markov-names are limit-computable (can be learned)
from K-names: given x and k ≥ K(x), one can compute a sequence of natural numbers
converging to an index of x (this problem was investigated in the context of inductive
inference [3]). One can moreover show that relative to the halting set, Markov-names are
uniformly computable from K-names. A c.e. set, however, cannot be learned. Actually one
can prove a stronger statement.

M. Hoyrup and C. Rojas 453

I Proposition 7. There is no Turing functional Φ that, given an index e and a Type-2-name
of a set W which is either N or We, computes a sequence of numbers converging to an index
of W .

The rest of this section is devoted to show that, despite the facts above, the notions of
Markov-computability and K-computability are indeed equivalent to a large extent.

3.2 Equivalence between Markov-computability and K-computability
We will use the Recursion Theorem. See [14].

I Theorem 8 (Recursion Theorem). For every computable total function f , there exists e
such that ϕe = ϕf(e). Moreover, e can be computed from an index of f .

The following Lemma contains the main technical arguments.

I Lemma 9. Let A be a c.e. subset of N. There exist uniformly effective Scott open sets
Uk ⊆ P(N), such that for every c.e. set E the following hold:
(i) if all the indices of E belong to A then E ∈ Uk for every k,
(ii) if no index of E belongs to A then E /∈ Uk for every k ≥ K(E).

The argument is uniform: the open sets Uk are effective, uniformly in a c.e. index of A.

Proof. Using the Recursion theorem, there is a computable function e(a, b) such that for all
a, b ∈ N,

We(a,b) =
{
Wa if e(a, b) /∈ A,
Wa[t] ∪Wb if e(a, b) ∈ A[at t].

Let k ∈ N. We define an effective open set Uk. Compute bk such that every element
whose complexity is less than k has an index less than bk. If a is such that for all b ≤ bk,
e(a, b) ∈ A then let t be minimal such that e(a, b) ∈ A[t] for all b ≤ bk, enumerate [Wa[t]]
into Uk.

We now check the two announced conditions. i) Let E ⊆ N be a c.e. set. Assume that
every index of E belongs to A and let a be an index of E. For all b, e(a, b) ∈ A (otherwise
e(a, b) is an index of Wa = E but e(a, b) /∈ A, contradiction), so Uk contains [Wa[t]] for some
t, which contains E. ii) Assume that K(E) ≤ k, that no index of E belongs to A and that
E ∈ Uk. Let b ≤ bk be an index of E. As E ∈ Uk, E belongs to some [Wa[t]] enumerated into
Uk (here a is not the same as above and is not assumed to be an index of E). As e(a, b) ∈ A,
We(a,b) = Wa[t′] ∪Wb for some t′ ≤ t. As Wa[t′] ⊆Wa[t] ⊆Wb, e(a, b) is an index of E that
belongs to A, contradicting the assumption. J

We now state the main explicit versions of Theorems A and B.

I Theorem 10. Let X be an effective topological space. A set A ⊆ Xc is Markov-semidecidable
iff it is K-semidecidable. The equivalence is uniform.

Proof. Every effective topological space is Type-2-computably homeomorphic to a subspace
of P(N): to x ∈ X , associate {i ∈ N : x ∈ Bi} where Bi is enumeration of the basis of X .
Hence we can assume that X is a subspace of P(N). Let I ⊆ N be a c.e. set such that for
all e ∈ N for which We ∈ Xc, it holds We ∈ A ⇐⇒ e ∈ I. Each c.e. set E ∈ Xc either has
all its indices in I or has no index in I, so the effective open sets Uk provided by Lemma 9
coincide with A on the set of elements of Xc whose complexity is at most k. Now, a machine
K-semideciding A works as follows: given a Type-2-name of E ∈ Xc and k ≥ K(E), it tests
whether E ∈ Uk and halts in this case only. J

STACS 2015

454 On the Information Carried by Programs about the Objects They Compute

I Corollary 11. Let X ,Y be effective topological spaces. A function f : Xc → Yc is Markov-
computable iff f is K-computable. The equivalence is uniform.

Proof. Let Bi be the numbered basis of Y. f is Markov-computable iff the sets f−1(Bi)
are uniformly Markov-semidecidable iff these sets are K-semidecidable (Theorem 10) iff f is
K-computable. J

We now show that the argument in the proof of Lemma 9 can be extended from semi-
decidability to weaker classes of properties, showing that for most algorithmic tasks, the
additional information given by programs is indeed just an upper bound on the Kolmogorov
complexity.

Hierarchies. Let X be an effective topological space. We consider the finite levels of the
effective Borel hierarchy, defined as follows. The class Σ0

1 consists of the effective open sets.
The class Σ0

n+1 consists of the effective unions of differences of Σ0
n-sets. The classes Π0

n

consists of complements of Σ0
n-sets. The class ∆0

n is the intersection of Σ0
n and Π0

n. Inside the
class ∆0

2 we consider the finite levels of the effective difference hierarchy. For n ∈ N, the class
Dn consists of the differences of n effective open sets, i.e. the sets (U0 \U1)∪ . . . (Un−2 \Un−1)
if n is even and the sets (U0 \ U1) ∪ . . .Un−1 if n is odd. In the case X = N with the discrete
topology, the effective Borel hierarchy is exactly the arithmetical hierarchy, the class Dn of
effective difference hierarchy is exactly the class of n-c.e. sets.

I Theorem 12. A set A ⊆ Xc is Markov-n-c.e. iff it is K-n-c.e. More precisely, the set of
indices of elements of A is n-c.e. on the set of indices of Xc iff there exist uniformly effective
open sets U1

k , . . . ,Un
k such that A ∩Xc(k) = Dn(U1

k , . . . ,Un
k) ∩Xc(k).

It is known from [17] that there exists a Markov-2-c.e. subset of P(N) that is not even
Π0

2. Hence Markov-2-c.e. sets are not the differences of Markov-semidecidable sets.
In the following theorem, we need to assume an additional property on the space X .

Namely, that the domain of the standard representation on X is a Π0
2 set. This is the case

for example for the so called quasi-Polish spaces (see [2]).

I Theorem 13. A set A ⊆ Xc is Markov-Σ0
2 iff it is K-Σ0

2. More precisely, the set of indices
of elements of A is Σ0

2 on the set of indices of Xc iff there exist uniformly effective open sets
Un

k ,Vn
k such that A ∩Xc(k) =

⋃
n(Un

k \ Vn
k) ∩Xc(k).

I Remark. In case X is a Polish space, the sets Vk are not needed and therefore the last part
of the statement reads A ∩Xc(k) =

⋃
n Un

k ∩Xc(k).

4 Structure of Markov-semidecidable sets

Here we provide several results that shed light on the computational and topological structure
of Markov-semidecidable sets. Our first result shows that Markov-semidecidable sets share
some of the nice properties of Type-2-semidecidable sets.

I Proposition 14. Assume that X contains a dense computable sequence. Given a Markov-
semidecidable set A, it is semi-decidable whether A is non-empty. If A is non-empty, one
can compute a sequence of points {xi} ⊆ A which is dense in A.

Proof. Using the Recursion theorem, there is a computable function e(a) such that xe(a) = xa

if e(a) /∈ A, or xe(a) is some point from the dense sequence in some neighborhood of xa if
e(a) ∈ A at time t. A is non-empty iff there is a such that e(a) ∈ A. When A is non-empty,

M. Hoyrup and C. Rojas 455

one can compute an element in A: look for a such that e(a) ∈ A, xe(a) is such a point. To
get a computable dense sequence, apply this argument in parallel to the intersection of A
with each basic open set Bi. J

The following result provides an upper bound on the effective Borel complexity of
Markov-semidecidable sets.

I Proposition 15. Let A ⊆ Xc be Markov-semidecidable. There exist uniformly effective
open sets Uk ⊆ X such that A =

⋂
k Uk ∩Xc.

Proof. Let Uk be the effective open sets from the proof of Theorem 10 and define S =
⋂

k Uk.
We already know that A ⊆ Uk for all k. If x ∈ Xc ∩ S then let k ≥ K(x). Since
x ∈ Xc(k) ∩ Uk = Xc(k) ∩A, we conclude that x ∈ A. J

The result above is actually tight, as the following theorem shows. For a finite string
u, let us define the monotone complexity Km(u) of u as the length of a shortest program
computing a (finite or infinite) binary sequence extending u. The program writes its output
on a one-way output tape and may never halt. Again the precise definition of Km(u) (Levin
or Schnorr monotone or process complexity) does not make any difference for our purposes.
The only important property is that for a computable sequence x, Km(x�n) ≤ Km(x) for
all n. For the sake of completeness, let us recall original Friedberg’s example. We present it
in a way that is more convenient for our purposes.

I Theorem 16 (Friedberg). On the Cantor space, the set

A = {0ω} ∪
⋃

n:Km(0n1)<log(n)−1

[0n1].

is Markov-semidecidable but not open. Hence the Ershov topology is strictly stronger than
the Cantor topology.

Proof. We show that A is K-semidecidable. Given an infinite binary sequence x (a Type-2-
description) and a bound k on K(x), we only need to read the first e = 2k+2 bits of x. If
we see only zeros, we accept. Otherwise one gets 0n1 . . . for some n < e, then test whether
Km(0n1) < log(n)− 1. J

I Remark. Friedberg’s example happens to be Σ0
2. It is an effective open set appended with

a limit point. We strengthen Friedberg’s example by constructing a Markov-semidecidable
set which is far from being open.

I Theorem 17. There is a Markov-semidecidable subset of {0, 1}Nc that is not Σ0
2. It is a

non-empty closed subset of {0, 1}Nc with empty interior, defined by

A = {x ∈ {0, 1}Nc : ∀n,Km(x�n) < n/2 + c} for some sufficiently large c ∈ N.

For the following results, we restrict our attention to the space X = N = N ∪ {∞} whose
topology is generated by the singletons {n} and the semi-lines [n,∞], for n ∈ N. Note that
every point in this space is computable, so that X = Xc.

Friedberg’s example translated to this space reads {x ∈ N : K(x) < log(x)− 1}, which
inspires the following definition.

I Definition 18. We define the Friedberg sets of N to be the ones of the form {x ∈ N :
K(x) < h(x)}, where h : N → N is any computable order, namely, any non decreasing
unbounded computable function.

STACS 2015

456 On the Information Carried by Programs about the Objects They Compute

Note that a computable order can always be extended to a computable function h : N→ N,
with h(∞) =∞.

Friedberg sets are Markov-semidecidable just like the original set. The next two results
show that, unlike Cantor space, the only Markov-semidecidable sets over N which are not
Type-2-semidecidable are essentially the Friedberg sets.

I Proposition 19. If A ⊆ N is Markov-semidecidable and contains ∞ then there is a
computable order h such that A contains a Friedberg set.

Proof. Since A is K-semidecidable, for each k one can compute p(k) such that [p(k),∞]∩{x :
K(x) ≤ k} ⊆ A. One can assume that p(k) is increasing. Let h(n) = min{i : p(i) > n}. If
n /∈ A then p(K(n)) > n (just take k = K(n)), so one has h(n) ≤ K(n). J

I Remark. Observe that K(x) here coincides with the usual notion of Kolmogorov complexity
of natural numbers.

Proposition 19 provides a nice characterization of the Ershov’s open sets.

I Corollary 20. The Ershov topology is generated by the singletons {n} and the Friedberg
sets.

I Remark. Note that the sets [n,∞] can be expressed as the Friedberg sets {x ∈ N : K(x) <
h(x)} where h(x) = 0 for x < n and h(x) = c(x + 1) for x ≥ n, where c is such that
K(n) ≤ c(n+ 1) for all n ∈ N.

Whether or not one can find such a characterization on other spaces such as the Cantor
space is an interesting question.

We end this section by observing that, unlike Type-2-semidecidable sets, Markov-
semidecidable sets cannot be effectively enumerated.

I Proposition 21. There is no effective enumeration of the Markov-semidecidable subsets of
N.

5 When Markov beats Kolmogorov

In this section we explore the limits of our methods. We first look at the relativized case, and
show that there are simple cases that separate Markov-computability from K-computability.
However, we also show that, interestingly, the equivalence persists if the space has a Polish
structure.

5.1 Relativization
Let S = {⊥,>} be the Sierpiński space with topology given by {∅, {>}, {⊥,>}}. Note that
as S is finite, K-computability is trivially equivalent to Type-2-computability simply because
all the elements share a common upper bound on their Kolmogorov complexities, which
therefore provides no interesting information. Relativizing w.r.t. the Halting set, we can then
separate Markov-decidability from Type-2-decidability, and therefore from K-decidability.

I Remark 22. The set {⊥} ⊆ S is Markov-decidable relative to the Halting set but is not
Type-2-decidable relative to any oracle.

Proof. It is not decidable relative to any oracle simply because it is not clopen. J

M. Hoyrup and C. Rojas 457

Similarly, over P(N), ∅′′ separates K-semidecidability from Type-2-semidecidability
(without oracle, the two notions coincide with Markov-semidecidability by Rice-Shapiro
theorem).

I Proposition 23. The set {N} ⊆ P(N) is K-semidecidable relative to ∅′′ but is not Type-2-
semidecidable relative to any oracle.

However, metric spaces behave differently. Although stated on Cantor space, the next
result extends to any computable metric space [21].

I Proposition 24. Let O ⊆ N. A subset of {0, 1}Nc is Markov-semidecidable relative to O if
and only if it is K-semidecidable relative to O.

Proof. There are two cases, depending on whether O computes the halting set or not.
If O computes the halting set then by the remark following Proposition 6, Markov-names

can be uniformly computed from K-names relative to O, which gives the result. This part
only works in the case of the Cantor space.

If O does not compute the halting set then we show that Lemma 9 and Theorem 10 still
hold relative to O on any effective topological space. We show an alternative proof of Lemma
9 avoiding the Recursion theorem. There is a computable function e(a, b, c) such that

We(a,b,c) =
{
Wa if ϕc(c) does not halt,
Wa[t] ∪Wb if ϕc(c) halts in time t.

Let A ⊆ N be c.e. relative to O. Given k ∈ N we define an effective open set Uk. Compute
bk such that every element whose complexity is less than k has an index less than bk. If a is
such that for all b ≤ bk, there exists c = c(a, b) such that e(a, b, c) ∈ A and ϕc(c) halts then
let t be the minimal halting time of ϕc(c) for c = c(a, b) with b ≤ bk.

By the same argument as in the proof of Lemma 9, if no index of E belongs to A then
E /∈ Uk for all k ≥ K(E). If all the indices of E ⊆ N belong to A but E /∈ Uk for some k
then let a be an index of E. For each b, c, if ϕc(c) does not halt then We(a,b,c) = Wa = E so
e(a, b, c) ∈ A. As E /∈ Uk, there is b ≤ bk such that for all c, if ϕc(c) halts then e(a, b, c) /∈ A.
As a result, for all c, ϕc(c) halts iff e(a, b, c) /∈ A, so the complement of the halting set is
many-one reducible to A so it is Turing reducible to O, a contradiction. J

5.2 Functions to non-effective topological spaces
In this section we provide results that strictly separate our three notions of computability:
Markov-computability, K-computability and Type-2-computability. The idea of the construc-
tions is to build uniform versions of the examples given in Remark 22 and Proposition 23. For
this, one can imagine a function with two arguments, where the second argument f ∈ B is
always provided to the machine by a Type-2-name and plays the role of the oracle. The only
difficulty is then to make the computation work in a uniform way in the oracle parameter. In
order to get a well defined function w.r.t. our models, we express it as a function of the first
argument only, but with values on O(B), which is the set of open subsets of the Baire space
endowed with the topology generated by the following sets: given a compact set K ⊆ B, the
class of open subsets of B containing K is open. This topology is not countably-based, and
hence it is not an effective topology. However it does have an admissible representation [16].

We now present the details of the simplest case, a uniform version of Remark 22. This
result contrasts with Corollary 11.

STACS 2015

458 On the Information Carried by Programs about the Objects They Compute

I Theorem 25. There exists a Markov-computable function F : S → O(B) that is not
K-computable.

Proof. We use the admissible numbering νS of S defined by νS(e) = > if ϕe(e)↓, νS(e) = ⊥
otherwise. We define two effective open sets U⊥, U> and define F (⊥) = U⊥ and F (>) = U>.
First, let U⊥ = B. Let T : N → N be defined as follows: T (n) is the halting time of
ϕn(n) if it halts, T (n) = 0 otherwise. The open set U> := B \ {T} happens to be effective.
First the function F is not Lacombe computable because it is not continuous: indeed, F
is not monotonic as ⊥ ≤ > but U⊥ = B is not contained in U> (B. As S is finite, F is
not K-computable neither. However F is Markov-computable. Given an index e of s ∈ S,
enumerate U> and enumerate the set of functions f such that ϕe(e) does not halt in exactly
f(e) steps. The latter set of functions is effectively open, uniformly in e. If ϕe(e)↑ then the
whole space B is enumerated. If ϕe(e)↓ then nothing more than U> is enumerated. Intuitively,
given e and f , from T one can decide whether ϕe(e) halts, i.e. whether νS(e) = ⊥. J

A similar construction, based on Proposition 23, yields a function F : P(N) → O(B)
which is K-computable but not Type-2-computable by replacing the function T from Theorem
25 by a function T ′ computing ∅′′ and such that B \ {T ′} is effectively open.

Combining all these results, and using that fact that Theorem 25 can clearly also be
realized using P(N) in place of S, we obtain our announced Theorem C.

I Theorem 26. For functions from P(N) with values on O(B) one has that:

Markov-computability > K-computability > Type-2-computability.

While Type-2-computable functions are always Scott continuous (i.e. monotone and
compact), one can show that K-computable functions are always monotone but not necessarily
compact. Markov-computable functions may even not be monotone.

Let us now briefly discuss whether Theorem 26 holds for functions from the Cantor
space to O(B). Friedberg’s example of a Markov (hence K)-semidecidable set that is not
Type-2-semidecidable directly implies the second inequality. However the idea behind the
proof of the first inequality cannot be applied on Cantor space. Indeed, using Proposition 24
one can show that the analog of the function of Theorem 25 is actually K-computable.

I Proposition 27. The function G : {0, 1}N → O(B) mapping 0ω to B and any other sequence
to B \ {T} is K-computable.

Proof. Given x, k and f , apply the algorithm given by Proposition 24 to semi-decide, if
f = T , whether x = 0ω. In parallel, semidecide whether f 6= T . J

We leave the following question open: is there a Markov-computable function from the
Cantor space to O(B) that is not K-computable?

6 Future work

We list a few problems for future work.
Find a characterization of the Ershov topology on other spaces than N, like the Cantor
space.
Determine for which levels of the effective difference hierarchy the Markov-model and the
K-model are equivalent. We know from Theorem 12 that the equivalence holds for the
finite levels. What about the level ω?

M. Hoyrup and C. Rojas 459

All our results hold when the space X is an effective topological space. However the three
models also make sense on any represented space. It seems like an interesting research
program to study the extent to which our results are valid in this case.
Compare the effective Borel hierarchy induced by the Markov-semidecidable sets, the
hierarchy induced by the arithmetical hierarchy on the indices and the effective Borel
hierarchy induced by the standard topology.

References
1 G. S. Ceitin. Algorithmic operators in constructive metric spaces. Trudy Matematiki

Instituta Steklov, 67:295–361, 1962. English translation: American Mathematical Society
Translations, series 2, 64:1-80, 1967.

2 Matthew de Brecht. Quasi-polish spaces. Ann. Pure Appl. Logic, 164(3):356–381, 2013.
3 Rusins Freivalds and Rolf Wiehagen. Inductive inference with additional information.

Journal of Information Processing and Cybernetics, 15:179–185, 1979.
4 Richard M. Friedberg. Un contre-exemple relatif aux fonctionnelles récursives. Comptes

Rendus de l’Académie des Sciences, 247:852–854, 1958.
5 Andrzej Grzegorczyk. On the definitions of computable real continuous functions. Funda-

menta Mathematicae, 44:61–71, 1957.
6 Peter Hertling. Computable real functions: Type 1 computability versus Type 2 comput-

ability. In CCA, 1996.
7 G. Kreisel, D. Lacombe, and J.R. Schœnfield. Fonctionnelles récursivement définissables et

fonctionnelles récursives. Comptes Rendus de l’Académie des Sciences, 245:399–402, 1957.
8 Boris A. Kushner. The constructive mathematics of A. A. Markov. Amer. Math. Monthly,

113(6):559–566, 2006.
9 Daniel Lacombe. Extension de la notion de fonction récursive aux fonctions d?une

ou plusieurs variables réelles I-III. Comptes Rendus Académie des Sciences Paris,
240,241:2478–2480,13–14,151–153, 1955.

10 A. A. Markov. On the continuity of constructive functions (russian). Uspekhi Mat. Nauk,
9:226–230, 1954.

11 J. Myhill and J. C. Shepherdson. Effective operations on partial recursive functions. Math-
ematical Logic Quarterly, 1(4):310–317, 1955.

12 Marian B. Pour-El. A comparison of five “computable” operators. Mathematical Logic
Quarterly, 6(15-22):325–340, 1960.

13 H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical Society, 74(2):pp. 358–366, 1953.

14 Hartley Jr. Rogers. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, USA, 1987.

15 C.P. Schnorr. Optimal enumerations and optimal gödel numberings. Mathematical systems
theory, 8(2):182–191, 1974.

16 Matthias Schröder. Extended admissibility. Theoretical Computer Science, 284(2):519–538,
2002.

17 Victor L. Selivanov. Index sets in the hyperarithmetical hierarchy. Siberian Mathematical
Journal, 25:474–488, 1984.

18 N. Shapiro. Degrees of computability. Transactions of the American Mathematical Society,
82:281–299, 1956.

19 Dieter Spreen. Representations versus numberings: on the relationship of two computability
notions. Theoretical Computer Science, 262(1):473–499, 2001.

20 Alan Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2, 42:230–265, 1936.

21 Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.

STACS 2015

	Introduction
	Background
	Notations and basic definitions.
	Effective topological spaces.
	Type-2-computability and Markov-computability

	Main results
	K-computability
	Equivalence between Markov-computability and K-computability

	Structure of Markov-semidecidable sets
	When Markov beats Kolmogorov
	Relativization
	Functions to non-effective topological spaces

	Future work

