
Communication Complexity of Approximate
Matching in Distributed Graphs
Zengfeng Huang1, Božidar Radunović2, Milan Vojnović3, and
Qin Zhang4

1 MADALGO, Aarhus University, Denmark
huangzf@cse.ust.hk

2,3 Microsoft Research, Cambridge, UK
{bozidar,milanv}@microsoft.com

4 Indiana University Bloomington, USA
qzhangcs@indiana.edu

Abstract
In this paper we consider the communication complexity of approximation algorithms for max-
imum matching in a graph in the message-passing model of distributed computation. The input
graph consists of n vertices and edges partitioned over a set of k sites. The output is an α-
approximate maximum matching in the input graph which has to be reported by one of the sites.
We show a lower bound on the communication complexity of Ω(α2kn) and show that it is tight
up to poly-logarithmic factors. This lower bound also applies to other combinatorial problems on
graphs in the message-passing computation model, including max-flow and graph sparsification.
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1 Introduction

Massive data volumes require scaling out computations using distributed clusters of machines
which are nowadays commonly deployed in data centres. The data is typically stored
distributively across different machines (we refer to as sites) which are interconnected with
a communication network. It is desired to process such distributed data with a limited
communication among sites which avoids the communication network becoming a bottleneck.
A particular interest has been devoted to data in the form of a graph that arises in many
applications including online services, online social networks, biological and other networks.
There has been a surge of interest in distributed iterative computations using graph input
data and resolving queries in distributed graph databases. In practice, the size of a graph
can be as large as in the order of a billion of vertices and a trillion of edges, e.g. semantic
web knowledge graphs and online social networks [12]. An important research direction is to
design efficient algorithms for processing of large-scale graphs in distributed systems which
has been one of the focuses of the theoretical computer science community, e.g. [25, 23, 5, 4].

In this paper we consider the problem of approximate computation of a maximum matching
in a graph that is stored edge-partitioned across different sites. There are several performance
measures of interest in computations over distributed data including the communication
complexity in terms of the number of bits or messages, the time complexity in terms of the
number of time units or rounds, and the storage complexity in terms of the number of bits.
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In this paper we focus on the performance measure of the communication complexity in
the number of bits required to approximately compute a maximum matching in a graph.
Our main result is a tight lower bound on the communication complexity for computing an
approximate maximum matching in a graph.

We consider the distributed computation model known in the literature as the message-
passing model, see, e.g., [27, 10]. A message-passing model consists of k sites, P 1, . . . , P k.
Each site P i holds a piece of input data xi and the sites want to jointly compute a given
function f(x1, . . . , xk). The sites are allowed to have point-to-point communications between
each other. At the end of the computation, at least one site should return the answer. Our
goal is to minimize the total communication cost between the sites. For technical convenience,
we introduce another special party called the coordinator. The coordinator does not have
any input. We require that all sites can only talk with the coordinator, and at the end of the
computation, the coordinator should output the answer. We call this model the coordinator
model. Note that we have essentially replaced the clique communication topology with the
star topology, which increases the total communication cost only by a factor of 2, which does
not affect the order of the asymptotic communication complexity.

1.1 Our Results and Techniques
We study the approximate maximum matching problem in the message-passing model which
we refer to as Distributed Matching Reporting (DMR). Given a set of k > 1 sites and an
input graph G = (V,E) with |V | = n vertices and the set of edges E = E1 ∪ E2 ∪ · · · ∪ Ek
such that the set of edges Ei is assigned to site P i, at the end of the computation, the
coordinator is required to report an α-approximation of the maximum matching in graph G.
In this paper show the following main theorem.

I Theorem 1. Any approximation algorithm for computing an α-approximation for DMR
in the message-passing model with error probability 1/4 has the communication complexity
of Ω(α2kn) bits, under assumption that k ≤ n. This communication complexity holds for
bipartite graphs.

It is noteworthy that a simple greedy algorithm solves DMR for α = 1/2 with the
communication cost of O(kn logn) bits. This greedy algorithm is based on computing a
maximal matching by using a straightforward sequential procedure which we define as follows.
Let G(E′) be the graph induced by a subset of edges E′ ⊆ E. Site P 1 computes a maximal
matching M1 in G(E1), and sends it to P 2 via the coordinator. Site P 2 then computes a
maximal matching M2 in G(E1 ∩E2) by greedily adding edges in E2 to M1, and then sends
M2 to site P 3. This procedure continues until site is reached P k, which after computing Mk

sends it to the coordinator. The matching Mk is a maximal matching in the graph G, hence
it is a 1/2-approximation of a maximum matching in G. The communication cost of this
protocol is O(kn logn) bits because the size of each M i is at most n. This shows that our
lower bound it tight up to a logn factor. In Section 3.4, we show that our lower bound is
also tight with respect to the approximation factor α for any α ≤ 1/2 up to a logn factor.
It was showed by Woodruff and and Zhang [30] that many statistical estimation problems
and combinatorial graph problems require Ω(kn) bits of communication to obtain an exact
solution. Our lower bound shows that for DMR even computing a constant approximation
requires this amount of communication.

Our lower bound is also of wider applicability to other combinatorial problems on graphs.
Since a bipartite maximum matching problem can be find by solving a max-flow problem,
our lower bound also holds for approximate computation of a max-flow problem. Our lower
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bound also implies a lower bound for graph sparsification problem, see the definition of graph
sparsification, e.g., in [5]. This is because in our lower bound construction (see Section 3), the
bipartite graph under consideration contains many cuts of size 1 which have to be included in
a sparsifier. By our construction these edges form a good approximate maximum matching.
In Ahn, Guha, and McGregor [5], it is shown that there is a sketch-based O(1)-approximate
graph sparsification algorithm with the sketch size of Õ(n), which directly translates to an
approximation algorithm of Õ(kn) communication in our model. Thus, our lower bound is
tight up to a polylogarithmic factor.

We briefly discuss the main ideas and techniques of our proof of the lower bound for
DMR. As a hard instance, we use a bipartite graph G = (U, V,E) with |U | = |V | = n/2.
Each site P i holds a set of q = n/(2k) vertices which is a partition of the set of left vertices
U . The neighbors of each vertex in U is determined by a two-party set-disjointness instance
(DISJ, defined formally in Section 3.2). In total there are q×k = n/2 DISJ instances, and we
want to perform a direct-sum type of argument on these n/2 DISJ instances. We show that
due to symmetry, the answer of DISJ can be recovered from a reported matching, and then
we use information complexity to establish the direct-sum theorem. For this purpose, we also
need to give a new definition of the information cost of a protocol in the message-passing
model. We believe that our techniques could prove useful in establishing communication
complexity for other graph problems in the message-passing model. One reason is that for
many graph problems whose solution certificates "span" the whole graph (e.g., connected
components, vertex cover, dominating set, etc), it is natural that hard instances would be
like for the matching problem, i.e., each of the k sites holds roughly n/k vertices and the
neighborhood of each vertex defines an independent instance of a two-party communication
problem.

1.2 Related Work
The approximate maximum matching problem has been studied extensively in the literature
in various settings. In this section we only review the results obtained in some most
related models, namely the streaming computation model [6], the MapReduce model [19, 14],
and the traditional distributed model of computation (which is different from ours, see
discussions below). In the streaming computation model, the maximum matching problem
was presented as one of the open problems by McGregor [1] and a number of results have
been established, e.g., by McGregor [26], Epstein et al. [13], Ahn and Guha [2, 3], Ahn, Guha
and McGregor [4], Zelke [32], Konard, Magniez and Mathieu [21], Kapralov [17], Kapralov,
Khanna and Sudan [18]. Much of the previous work was devoted to the semi-streaming
model that allows for Õ(n) space, and these algorithms can be directly used to obtain an
Õ(kn) communication cost for O(1)-approximate matching in the message-passing model.
The maximum matching problem was also studied in the MapReduce model, e.g., by Lattanzi
et.al. [23]. Under certain assumptions, they obtain a 1/2-approximation algorithm in O(1)
rounds and Õ(m) communication bits where m is the number of edges in the graph. In the
context of traditional distributed computation models, Lotker et al [25, 24] considered the
problem of approximate solving of maximum matching problem in a synchronous distributed
computation model. In this computation model, each vertex is associated with a processor
and edges represent bidirectional communication. The time is assumed to progress over
synchronous rounds where in each round each processor may send messages to its neighbors,
which are then received and processed in the same round by their recipients. This computation
model is different from the message-passing computation model considered in this paper.
In their model the input graph and the communication topology are the same while in the



Z. Huang, B. Radunović, M. Vojnović, Q. Zhang 463

message-passing model considered here the communication topology is essentially a complete
graph which is different from the input graph and in general sites are not vertices in the
topology graph. Lotker et al. [24] (built on Wattenhofer and Wattenhofer [28], Lotker et
al. [25]) showed existence of (1− ε)-approximation algorithms for the maximum matching
problem with O(logn) rounds. This implies the communication cost of Õ(m) bits.

The message-passing computation model has recently attracted quite some attention by
the research community, e.g. Phillips, Verbin and Zhang [27], Woodruff and Zhang [29],
Braverman et al [10], Woodruff and Zhang [30], Klauck et al [20], and Woodruff and Zhang [31].
A wide set of statistical and graph problems has been shown to be hard in the sense of
requiring Ω(kn) bits of communication, including the graph-connectivity problem [27, 30],
exact computation of the number of distinct elements [30], k-party set-disjointness [10], and
some were even showed to be hard for random order inputs [20]. A similar but different
input distribution from ours was used in [10] to show an Ω(kn) communication lower bound
for the k-party set-disjointness problem. The work presented in this paper was obtained
independently and concurrently with [10] with the first version of the paper made online
as a technical report [15] in April 2013. Similar distributions were also used previously in
[27, 29] which appears to be natural because of the nature of the message-passing model.
There may exist a reduction between the k-party set-disjointness studied in [10] and DMR
but this is not clear unless one would establish a rigorous proof of this claim. Our proof is
different from that in [10]: we use a reduction of the k-party DMR problem to a 2-party
set-disjointness problem using symmetrisation, while [10] use a coordinative-wise direct-sum
theorem to reduce the k-party set-disjointness problem to a k-party 1-bit problem.

2 Preliminaries

Conventions. Let [n] = {1, 2, . . . , n}. All logarithms are with base of 2. We use capital
letters X,Y, . . . to denote random variables or sets, and the lower case letters x, y, . . . to
denote specific values of random variables X,Y, . . .. We write x ∼ µ to mean that x is chosen
randomly according to the distribution µ. We ofter refer to a player as a site which is suitable
in the coordinator model under consideration.

Information Theory. For two random variables X and Y , we use H(X) to denote the
Shannon entropy of the random variable X, and H(X|Y ) to denote the conditional entropy
of X given Y . Let I(X;Y ) = H(X) − H(X|Y ) denote the mutual information between
X and Y , and I(X;Y |Z) be the conditional mutual information given Z. We know that
I(X;Y ) ≥ 0 for any X,Y . We will need the following inequalities from the information
theory.

Data processing inequality: If random variables X and Z are conditionally independent
given Y , then I(X;Y | Z) ≤ I(X;Y ) and I(X;Z) ≤ I(X;Y ).

Super-additivity of mutual information: If X1, · · · , Xt are independent, then
I(X1, · · · , Xt;Y ) ≥

∑t
i=1 I(Xi;Y ).

Sub-additivity of mutual information: If X1, · · · , Xt are conditional independent given
Y , then I(X1, · · · , Xt;Y ) ≤

∑t
i=1 I(Xi;Y ).

Communication Complexity. In the two party communication complexity, we have two
players Alice and Bob. Alice is given x ∈ X and Bob is given y ∈ Y, and they want to
jointly compute some function f : X × Y → Z, by exchanging messages according to a
randomized protocol Π. We use Πxy to denote the random transcript (i.e., the concatenation
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of messages) when Alice and Bob run Π on the input (x, y), and Π(x, y) to denote the output
of the protocol. When the input (x, y) is clear from the context, we will simply use Π to
denote the transcript. We say Π is a δ-error protocol if for all (x, y), the probability that
Π(x, y) 6= f(x, y) is no larger than δ, where the probability is over the randomness used in Π.
Let |Πxy| be the length of the transcript. The communication cost of Π is maxx,y |Πxy|. The
δ-error randomized communication complexity of f , denoted by Rδ(f), is the minimal cost
of any δ-error protocol for f . The multi-party NIH communication complexity model is a
natural generalization of the two-party model, where we have k parties and each has a piece
of input, and they want to compute some function together by exchanging messages. For
more information about the communication complexity we refer readers to [22].

Information Complexity. The communication complexity measures the number of bits
needed to be exchanged by multiple players in order to compute some function together,
while the information complexity studies the amount of information of the inputs that must
be revealed by the protocol. It was extensively studied in the last decade, e.g., [11, 7, 8, 29, 9].
There are several definitions of information complexity. In this paper, we will follow the
definition used in [7]. In the two-party case, let µ be a distribution on X × Y, we define
the information cost of Π measured under µ as ICµ(Π) = I(XY ; Π | R), where (X,Y ) ∼ µ
and R is the public randomness used in Π. For any function f , we define the information
complexity of f parameterized by µ and δ as ICµ,δ(f) = minδ-error Π ICµ(Π).

Information Complexity in the Coordinator Model. We can indeed extend the above
definition of information complexity to k-party coordinator model. That is, let Xi be the
input of i-th player with (X1, . . . , Xk) ∼ µ and Π be the whole transcript, then we could
define ICµ(Π) = I(X1, . . . , Xk; Π | R). However, such a definition does not fully explore the
point-to-point communication feature of the coordinator model. Indeed, the lower bound
we can prove using such a definition is at most what we can prove under the blackboard
model and our problem admits a simple algorithm with communication O(n logn + k) in
the blackboard model. In this paper we give a new definition of information complexity for
the coordinator model, which allows us to prove higher lower bounds compared with the
simple generalization. Let Πi be the transcript between i-th player and the coordinator,
thus Π = Π1 ◦ Π2 ◦ . . . ◦ Πk. We define the information cost of a problem f with respect
to input distribution µ and error parameter δ (0 ≤ δ ≤ 1) in the coordinator model as
ICµ,δ(f) = minδ-error Π

∑k
i=1 I(X1, · · · , Xk; Πi).

I Theorem 2. Rδ(f) ≥ ICµ,δ(f) for any distribution µ.

Proof. For any protocol Π, the expected size of its transcript is (we abuse the notation
by using Π also for the transcript) E[|Π|] =

∑k
i=1 E[|Πi|] ≥

∑k
i=1H(Πi) ≥ ICµ,δ(Π). The

theorem then follows since the worst-case cost is at least the average. J

I Lemma 3. If Y is independent of the random coins used by the protocol Π, then ICµ,δ(f) ≥
minΠ

∑k
i=1 I(Xi, Y ; Πi).

Proof. It follows directly from the data processing inequality, since Π and Y are conditionally
independent given X1, . . . , Xk. J

3 The Complexity of DMR

In this section we first prove the lower bound in Theorem 1 and then establish its tightness.
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An outline of the proof of the lower bound is given as follows. The lower bound is
established by constructing a hard distribution on the set of bipartite graphs G = (U, V,E)
with |U | = |V | = n/2. For the purpose of this outline, we consider the special case in which
the number of sites is such that k = n/2. Each site is assigned one node in U together with
all its adjacent edges. A natural idea to approximately compute a maximum matching in a
graph is to randomly sample a few edges from each site, and hope that we can find a good
matching using these edges. To rule out such strategies, we create many noisy edges: we
randomly pick a small set of nodes V0 ⊂ V of size roughly αn/10 and connect each node in
U to each node in V0 randomly with a constant probability. There are Θ(αn2) such edges
and the size of the matching formed by these edges is at most αn/10 ≈ α/2 · OPT where
OPT is the size of the optimal solution. We next create a set of important edges between
U and V \ V0 such that each node in U is adjacent to at most one random node in V \ V0.
These edges are important in the sense that although there are only Θ(|U |) = Θ(n) of such
edges, the size of the matching they can form is Θ(OPT). Therefore, to compute a matching
of size at least α ·OPT, it is necessary to find and include Θ(α ·OPT) = Θ(αn) important
edges. We then show that finding an important edge is in some sense equivalent to solving
a set-disjointness (DISJ) instance, and thus we have to solve many DISJ instances. The
concrete implementation of this intuition is via an embedding argument. In the general case,
we create n/(2k) copies of the random bipartite graph, each of size 2k. Each site gets n/(2k)
nodes. We then prove a direct-sum theorem using information complexity.

The lower bound is established by characterizing the information cost of the DISJ problem
for specific input distributions. Before doing this we first characterize the information
complexity of a primitive problem AND. We next reduce DISJ to DMR and prove an
information cost lower bound for DMR.

3.1 The AND Problem
In the AND problem, Alice and Bob hold bits x and y, respectively, and they want to
compute AND(x, y) = x ∧ y. Let A be Alice’s input and B be Bob’s input. We define two
input distributions ν1 and µ1 for (A,B) as follows. Let p = c · α ∈ (0, 1/2], where c is a
constant to be chosen later.
ν1: Choose a random bit W ∈ {0, 1} such that Pr[W = 0] = p and Pr[W = 1] = 1− p. If

W = 0, we set B = 0, and A = 0 or 1 with equal probability. If W = 1, we set A = 0,
and set B = 1 with probability 1− p and B = 0 with probability p. Thus, we have

(A,B) =


(0, 0) with probability 3p/2− p2,

(0, 1) with probability 1− 2p+ p2,

(1, 0) with probability p/2.
W here serves as an auxiliary random variable to break the dependence between A and
B, since ν1 is not a product distribution. The use of W will be clear in the reduction.
Let τ be the distribution of W . Note that τ partitions ν1, i.e, given τ , ν1 is a product
distribution.

µ1: Choose W according to τ , and then choose (A,B) according to ν1 given W . Next, we
reset A to be 0 or 1 with equal probability. Let δ1 be the probability that (A,B) = (1, 1)
under distribution µ1. We have δ1 = (1− 2p+ p2)/2.

For p = 1/2, it is proved in [7] that if a private coin protocol Π has worst case error
1/2− β, then I(A,B; Π | W ) ≥ Ω(β2), where the information cost is measured with respect
to ν1. Here we extend this to any p ≤ 1/2 and distributional error. We say a protocol has a
one-sided error δ for AND under a distribution if it is always correct when AND(x, y) = 0,
and is correct with probability at least 1− δ when AND(x, y) = 1.

STACS 2015



466 Communication Complexity of Approximate Matching in Distributed Graphs

I Theorem 4. Let Π be the transcript of any public coin protocol for AND on input
distribution µ1 with error probability δ1 − β for a β ∈ (0, δ1). We have I(A,B; Π | W,R) =
Ω(β2p/δ1

2), where the information is measured when W ∼ τ , (A,B) ∼ ν1, and R is the
public randomness. If Π has a one-side error 1− β, then I(A,B; Π | W,R) = Ω(βp).

Proof. Our proof follows [7]. To handle a general p ≤ 1/2, we explore the convexity of
mutual information. To extend the result to distributional error, we give a more careful
analysis and show that the information cost is high as long as the average error is small. The
proof is somewhat technical and is deferred to the full version of the paper. J

3.2 The DISJ Problem
In the DISJ problem, Alice holds s = {s1, . . . , sk} ∈ {0, 1}k and Bob holds t = {t1, . . . , tk} ∈
{0, 1}k, and they want to compute DISJ(s, t) =

∨k
`=1 AND(s`, t`). Let S = {S1, . . . , Sk} be

Alice’s input and T = {T1, . . . , Tk} be Bob’s input. We define two input distributions νk and
µk for (S, T ) as follows.
νk: Choose W = {W1, . . . ,Wk} ∼ τk, and then choose (S`, T`) ∼ ν1 given W`, for each

1 ≤ ` ≤ k. For notation convenience, let νk|∗w be the distribution of S conditioned on
W = w, and let νk|w∗ be the distribution of T conditioned on W = w.

µk: Choose W = {W1, . . . ,Wk} ∼ τk, and then choose (S`, T`) ∼ ν1 given W`, for each
1 ≤ ` ≤ k. Next, we pick a special coordinate D uniformly at random from {1, . . . , k},
and reset SD to be 0 or 1 with equal probability. Note that (SD, TD) ∼ µ1, and the
probability that DISJ(S, T ) = 1 is also δ1. For notation convenience, let µk|S=s be the
distribution of T conditioned on S = s, and let µk|T=t be the distribution of S conditioned
on T = t.

We define the one-sided error for DISJ similarly: A protocol has a one-sided error δ for DISJ
if it is always correct when DISJ(x, y) = 0, and is correct with probability at least 1 − δ
when DISJ(x, y) = 1.

I Theorem 5. Let Π be the transcript of any public coin protocol for DISJ on input distri-
bution µk with error probability δ1 − γ for a γ ∈ (0, δ1). We have I(S, T ; Π | W,R) =
Ω(γ2pk/δ1

2), where the information is measured when W ∼ τk, (S, T ) ∼ µk, and R

is the public randomness used by the protocol. If Π has a one-sided error 1 − γ, then
I(S, T ; Π | W,R) = Ω(γpk).

Proof. The proof is deferred to the full version of the paper. J

3.3 Proof of the Main Theorem
To give a proof for Theorem 1, we first reduce DISJ to DMR. Before going to the detailed
reduction, we provide an overview of the hard input distribution that we construct for
DMR. The whole graph is a random bipartite graph consisting of q = n/(2k) i.i.d. random
bipartite graphs G1, . . . , Gq, where Gj = (U j , V j , Ej) with U j = {uj,1, . . . , uj,k} and V j =
{vj,1, . . . , vj,k}. The set of neighbors of each vertex uj,i ∈ U j , for i ∈ [k], is determined
by a k-bit random vector Xj,i, that is, (uj,i, vj,`) ∈ Ej if Xj,i

` = 1. The k (k-bit) random
vectors {Xj,1, . . . , Xj,k} are chosen as follows: we first choose (Xj,1, Y j) ∼ µk, and then
independently choose for each i ∈ {2, . . . , k}, a k-bit vector Xj,i according to the conditional
distribution µk|T=Y j . Finally, the input for the i-th site is simply vertices {u1,i, . . . , uq,i}
and all their incident edges, which is actually determined by Xi = {X1,i, . . . , Xq,i}. Note
that Y = {Y 1, . . . , Y k} is not part of the input for DMR; it is used to construct Xj,i (i ∈
[k], j ∈ [q]).
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Input Reduction. Let s ∈ {0, 1}k be Alice’s input and t ∈ {0, 1}k be Bob’s input for DISJ.
Alice and Bob construct an input {X1, . . . , Xk} for DMR, where Xi = {X1,i, . . . , Xq,i} with
Xj,i ∈ {0, 1}k (j ∈ [q]) is the input for site i.
1. Alice and Bob use public coins to sample an index I uniformly at random from {1, . . . , k}.

Alice constructs the input XI for the I-th site, and Bob constructs the inputs
X1, · · · , XI−1, XI+1, · · · , Xk for the other k − 1 sites.

2. Alice and Bob use public coins to sample an index J uniformly at random from {1, . . . , q}.
3. Alice sets XJ,I = s, and Bob sets Y J = t. For each i ∈ [k] ∧ i 6= I, Bob privately samples

XJ,i according to µk|T=t. This finishes the construction of GJ .
4. For each j ∈ [q] ∧ j 6= J , they construct Gj as follows,

(a) Alice and Bob first use public coins to sample W j = {W j
1 , . . . ,W

j
k} ∼ τk (see the

definition of τ in Section 3.1).
(b) Alice and Bob privately sample Xj,I and Y j according to conditional distributions

νk|∗W j and νk|W j∗, respectively. Bob also privately samples Xj,1, . . ., Xj,I−1, Xj,I+1,
. . ., Xj,k independently according to the conditional distribution νk|T=Y j .

(c) Alice privately samples Dj,I uniformly at random from {1, . . . , k}, and resets Xj,I
Dj,I

to be 0 or 1 with equal probability. This makes {Xj,I , Y j} ∼ µk. Bob does the
same for all i ∈ [k] ∧ i 6= I. That is, for each i ∈ [k] ∧ i 6= I, he privately samples
Dj,I uniformly at random from {1, . . . , k}, and resets Xj,i

Dj,I to be 0 or 1 with equal
probability.

Note that the I-th site’s input XI is determined by the public coins, Alice’s input s and
her private coins. And the remaining k − 1 sites’ inputs {X1, · · · , XI−1, XI+1, · · · , Xk}
are determined by the public coins, Bob’s input t and his private coins. Let φ denote the
distribution of {X1, . . . , Xk} when (s, t) is chosen according to the distribution µk. We have
included Figure 1 for the illustration purpose.

In this reduction, in each bipartite graph Gj , we carefully embed k instances of DISJ in
random positions, and the output of a DISJ instance determines whether a specific edge in
the graph exists or not. In the whole graph, we embed a total of k× q = n/2 DISJ instances.
The input of one such DISJ instance is just the original input of Alice and Bob, and the
other (n/2− 1) instances are sampled by Alice and Bob using public and private random
coins. Such a symmetric construction can be used to argue that if the original DISJ instance
is solved, then with a good probability, at least Ω(n) of embedded DISJ instances are solved.
We will see the proof that the original DISJ instance can be solved by solving DMR also
relies on the symmetric property.

Let p = α/20 ≤ 1/20, where recall that p is a parameter in distribution µk and α

is the approximation parameter. Now, given a protocol P ′ for DMR that achieves an α-
approximation and error probability 1/4 with respect to φ, we construct a protocol P for
DISJ with one-sided error probability 1− α/10 with respect to µk, as follows.

Protocol P
1. Given an input (S, T ) ∼ µk, Alice and Bob construct an input {X1, . . . , Xk} ∼ φ for

DMR as described by the input reduction above. Let Y = {Y 1, . . . , Y q} be the set
sampled during the construction of {X1, . . . , Xk}. Let I, J be the two indices sampled
by Alice and Bob during the reduction.

2. Alice plays the I-th site, and Bob plays the other k − 1 sites and the coordinator. They
run P ′ for DMR. Any communication between the I-th site and the other k − 1 sites
and the coordinator will be exchanged between Alice and Bob. For any communication
between the other k − 1 sites and the coordinator, Bob just simulates it without any
actual communication. At the end the coordinator (that is, Bob) gets a matching M .
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DISJ(·, ·) = 1

DISJ(·, ·) = 0

G1

GJ

Gk

neighbors decided by XJ,I

uJ,1 uJ,2 uJ,k

vJ,1 vJ,2 vJ,k

uJ,I

vJ,`

Figure 1 Each edge corresponds to a DISJ instance where a solid edge indicates an instance
with output 1 and a dashed edge indicates an instance with output 0. Solid thick edges are the
important edges. A good approximate matching has to output many important edges, thus a solid
thick edge needs to be in the output matching with sufficiently large probability. The thick edge
(uJ,I , vJ,`) corresponds to DISJ(XJ,I , Y J ) = DISJ(s, t), that is to the original 2-party disjointness
problem embedded by Alice and Bob. If DISJ(s, t) = 1, then (uJ,I , vJ,`) is a solid edge and needs to
be included in the output matching with a sufficiently large probability.

3. Bob outputs 1 if and only if there exists an edge (uJ,I , vJ,`) in the matching M for some
` ∈ [k], such that Y J` ≡ T` = 1, and 0 otherwise.

Correctness. First, suppose DISJ(S, T ) = 0, i.e., S` ∧ T` = 0 for all ` ∈ [k]. Then, for each
` ∈ [k], we must have either Y J` ≡ T` = 0 or XJ,I

` ≡ S` = 0, but XJ,I
` = 0 means no edge

between uJ,I and vJ,`. Thus P will always answer correctly when DISJ(S, T ) = 0, i.e., it has
a one-sided error.

Now suppose that S` = T` = 1 for a certain ` ∈ [k] (note that there is at most one
such ` according to our construction), which we denoted by L. The output of P is correct
if (uJ,I , vJ,L) ∈ M . In the rest of the analysis we estimate the probability that this event
happens.

For each Gj = {U j , V j} (j ∈ [q]), let U j1 = {uj,i | DISJ(Xj,i, Y j) = 1} and U j0 = U j \U j1 .
Let V j1 = {vj,` | Y j` = 1} and V j0 = V j \ V j1 . Let U0 = ∪qj=1U

j
0 , U1 = ∪qj=1U

j
1 , V0 = ∪qj=1V

j
0

and V1 = ∪qj=1V
j
1 . Intuitively, edges between U0 ∪ U1 and V0 can be seen as noisy edges,

since the total number of such edges is large but the maximum matching they can form is
small (at most |V0| ≤ 2pn according to Lemma 6, see below). On the contrary, we say the
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edges between U1 and V1 the important edges, since the maximum matching they can form is
large, though the total number of such edges is small. Note that there is no edge between U0
and V1. Therefore, to find a good matching we must choose many edges from the important
edges. A key feature here is that all important edges are symmetric, that is, each important
edge is equally likely to be the edge (uJ,I , vJ,L). Thus with a good probability (uJ,I , vJ,L) will
be included in the matching returned by P ′. Using this we can answer whether XJ,I (= S)
and Y J (= T ) intersect or not, thus solving the original DISJ problem.

We first estimate the size of the maximum matching in graph G = {G1, . . . , Gq}. Recall
we set p = α/20 ≤ 1/20 and δ1 = (1− 2p+ p2)/2, thus 9/20 < δ1 < 1/2.

I Lemma 6. With probability 0.99, the following events happen.
1. |V0| ≤ 2pn. In this case the size of the maximum matching formed by edges between V0

and U0 ∪ U1 is no more than 2pn.
2. The maximum matching of the graph G is at least 0.2n.

Proof. The first item follows simply by a Chernoff bound. Note that each vertex in
⋃
j∈[q] V

j

is included in V0 independently with probability (2p − p2), and E[|V0|] = (2p − p2)n/2,
therefore Pr[|V0| ≥ 2pn] ≤ Pr[|V0| − E[|V0|] ≥ pn] ≤ e−Ω(p2n).

For the second item, we first consider the size of the matching in Gj for a fixed j ∈ [q],
that is, a matching between vertices in U j and V j . For each i ∈ [k], let Li be the coordinate
` where Xj,i

` = Y j` = 1 if such an ` exists (note that by our construction at most one such
coordinate exists), and NULL otherwise.

We use a greedy algorithm to construct a matching between U j and V j . For i from 1 to k,
we connect uj,i to vj,Li if Li is not NULL and vj,Li is not connected by any uj,i′ (i′ < i). At
the end, the size of the matching is essentially the number of distinct elements in {L1, . . . , Lk},
which we denote by R. We have the following claim.
I Claim 1. It holds R ≥ 0.25k with probability 1−O(1/k).

Proof. The proof is similar to Lemma 4 in [29]. By our construction, we have E[|U j1 |] = δ1k

and E[|V j1 |] = (1 − 2p + p2)k. Similar to the first item we have that with probability(
1− e−Ω(k)), |V j1 | ≥ 0.9 · E[|V j1 |] = 0.9 · (1 − 2p + p2)k ≥ 0.8k (recall p ≤ 1/20) and
|U j1 | ≥ 0.9 · E[|U j1 |] ≥ 0.4k. Therefore with probability

(
1− e−Ω(k)), R must be at least the

value R′ of the following bin-ball game: We throw each of 0.4k balls to one of the 0.8k bins
uniformly at random, and then count the number of non-empty bins at the end of the process.
By Fact 1 and Lemma 1 in [16], we have E[R′] = (1 − λ) · 0.4k for some λ ∈ [0, 1/4] and
Var[R′] < 4(0.4k)2/(0.8k) = 0.8k. Thus by Chebyshev’s Inequality we have

Pr[R′ < E[R′]− 0.05k] ≤ Var[R′]
(0.05k)2 < 320/k.

Thus with probability 1−O(1/k), we have R ≥ R′ ≥ 0.25k. J

Therefore, for each j ∈ [k], with probability 1−O(1/k), we can find a matching in Gj of
size at least 0.25k. If q = n/(2k) = o(k), then by a simple union bound it holds that with
probability at least 0.99, the size of the maximum matching in G = {G1, . . . , Gq} is at least
0.25n. Otherwise, since G1, . . . , Gq are constructed independently, by another application of
Chernoff bound, we have that with probability 1− e−Ω(q) ≥ 0.99, the size of the maximum
matching in G = {G1, . . . , Gq} is at least 0.2n. J

Now let us make our intuition above more precise. First, if P ′ is an α-approximation
protocol with error probability 1/4, then by Lemma 6 we have that with probability at
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least 3/4 − 0.01 ≥ 2/3, P ′ will output a matching M containing at least (α · 0.2n − 2pn)
important edges. We know that there are at most n/2 important edges and the edge
(uJ,I , vJ,L) is one of them. We say (i, j, `) is important for G, if (uj,i, vj,`) is an important
edge in G. Since our construction is totally symmetric, for any G in the support, we have
Pr[I = i, J = j, L = ` | G] = Pr[I = i′, J = j′, L = `′ | G]. for any (i, j, `) and (i′, j′, `′)
which are important in G. In other words, given an input G, the protocol can not distinguish
between any two important edges. Then we can apply the principle of deferred decisions to
decide the value (I, J) after the matching has already been computed, i.e., the probability
(uJ,I , vJ,L) ∈M is at least 2/3 · α·0.2n−2pn

n/2 ≥ α/10. Recall that we have chosen p = α/20. To
sum up, protocol P solves DISJ correctly with one-sided error at most 1− α/10.

Information Cost. Now we analyze the information cost of DMR. Let Π = Π1 ◦Π2 ◦· · ·◦Πk

be the best protocol for DMR with respect to input distribution φ and one-sided error
probability 1 − α/10. By Lemma 3, we have ICφ,δ(DMR) ≥

∑k
i=1 I(Xi, Y ; Πi). Let

W−J = {W 1, . . . ,W q} \ W J , and W = W JW−J . Recall that in our input reduction
I, J,W−J are public coins used by Alice and Bob.

2/n · ICφ,δ(DMR) ≥ 1/(qk) ·
k∑
i=1

I(Xi, Y ; Πi)

≥ 1/(qk) ·
k∑
i=1

I(Xi, Y ; Πi | W ) (data processing inequality)

≥ 1/(qk) ·
k∑
i=1

q∑
j=1

I(Xj,i, Y j ; Πi | W−j ,W j) (super-additivity) (1)

= 1/(qk) ·
k∑
i=1

q∑
j=1

I(S, T ; Πi | I = i, J = j,W−j ,WS,T ) (2)

= I(S, T ; ΠI | I, J,W−J ,WS,T )
≥ I(S, T ; Π∗ | WS,T , R) (3)
= Ω(α2k), (4)

where
1. WS,T ∼ τk is the random variable used to sample (S, T ) from µk. Eq. (2) holds because

the distribution of W j is the same as that of WS,T , and the conditional distribution of
(Xj,i, Y j ,Πi | W−j ,W j) is the same as (S, T,Πi | I = i, J = j,W−j ,WS,T ).

2. In Eq. (3), Π∗ is the best protocol for DISJ with one-sided error probability at most
1 − α/10 and R is the public randomness used in Π∗. The information is measured
according to µk.

3. Eq. (4) holds by Theorem 5. Recall that we have set p = α/20.
Therefore, we have R1/4(DMR) ≥ ICφ,1/4(DMR) ≥ Ω(α2kn), proving our Theorem 1.

3.4 Tightness of the Lower Bound
In this section we present an α-approximation algorithm with an upper bound on the
communication complexity which matches the lower bound for α ≤ 1/2 up to polylogarithmic
factors.

The algorithm consists of two steps. In the first step, each site computes a local maximum
matching and sends its size to the coordinator. The coordinator compares these sizes, and
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then sends a message to the site that has the largest local maximum matching. This site
then sends the local maximum matching to the coordinator. We can assume that the size
of this matching is not larger than αn, as otherwise, the local matching of that site can be
declared to be the output of the algorithm, since it is already an α-approximation. Note that
the communication cost of this step is at most O((k + αn) logn) bits. In the second step,
the coordinator picks each site randomly with probability α′ = 8α, and computes a maximal
matching among the sites picked using the straightforward algorithm that we described in
the introduction. The communication cost of this step is at most O((k + α2kn) logn) bits in
expectation. We next show correctness of the algorithm.

Let Xi be a random variable indicating the event that the i-th site is picked in the second
step, and we have E[Xi] = α′ and Var[Xi] = α′(1 − α′). Let M be the global maximum
matching and m = |M |. We use mi to denote the number of edges in M which belong
to the i-th site, thus

∑
imi = m (recall that we assume edge partitioning where edges

are partitioned disjointly across the set of k sites). For the same reason as in the first
step, we can again assume that mi ≤ αm for all i ∈ [k], since otherwise, we will already
get an α-approximation. Let Y be the size of the maximal matching that is obtained in
the second step. Recall that a maximal matching is at least 1/2 of a maximum matching,
thus we have Y ≥ 1

2 ·
∑k
i=1miXi. Let Y ′ =

∑k
i=1miXi. So we have E[Y ′] = α′m and

Var[Y ′] = α′(1 − α′)
∑k
i=1m

2
i ≤ α′ · αm2 = 8α2m2. The inequality holds since we assume

that mi ≤ αm for all i ∈ [k]. Now, we can apply Chebyshev’s inequality to bound the error
probability. We have Pr[|Y ′ − α′m| ≥ 6αm] ≤ 8/36 < 1/4. Therefore, with probability at
least 3/4, it holds Y ≥ 1/2 · Y ′ ≥ 1/2 · 2αm = αm.

I Theorem 7. For every given α ≤ 1/2, there exists a randomized algorithm that computes
an α-approximation of the maximum matching in a graph with probability at least 3/4 at the
communication cost of O((k + α2nk + αn) logn) bits.

Note that Ω(αn) is a trivial lower bound, simply because the size of the output could be
as large as Ω(αn). Obviously, Ω(k) is a lower bound, since the coordinator has to talk to
each of the sites at least once. Thus, together with the lower bound Ω(α2kn) in Theorem 1,
the upper bound above is tight up to a logn factor.

4 Concluding Remarks

In this paper we showed a tight lower bound on the communication complexity for the
approximate maximum matching problem in the message-passing model. An interesting open
problem is the complexity of the counting version of the problem, i.e., the communication
complexity if we only want to compute an approximation of the size of a maximum matching
in a graph. Note that our proof of the lower bound relies on the fact that the algorithm
has to return a certificate of the matching. Hence, in order to prove a lower bound for the
counting version of the problem one may need to use new ideas and it is also possible that
a better upper bound exists. In a recent work [18], the counting version of the matching
problem was studied in the random-order streaming model. They proposed an algorithm
that uses one pass and polylog space, which computes a polylog approximation of the size of
the maximum matching. A general interesting direction for future research is to investigate
the communication complexity for other combinatorial problems on graphs, for example,
connected components, minimum spanning tree, vertex cover and dominating set. The
techniques used for approximate maximum matching problem in the present paper could be
of use here.
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