Flip Distance Is in FPT Time O(n + k - c)

Iyad Kanj!' and Ge Xia?

1 School of Computing, DePaul University
Chicago, USA
ikanj@cs.depaul.edu

2 Department of Computer Science
Lafayette College
Easton, USA, xiag@lafayette.edu

—— Abstract

Let T be a triangulation of a set P of n points in the plane, and let e be an edge shared by two
triangles in 7 such that the quadrilateral @ formed by these two triangles is convex. A flip of e
is the operation of replacing e by the other diagonal of @ to obtain a new triangulation of P from
T. The flip distance between two triangulations of P is the minimum number of flips needed to
transform one triangulation into the other. The FLIP DISTANCE problem asks if the flip distance
between two given triangulations of P is k, for some given k£ € N. It is a fundamental and a
challenging problem.

In this paper we present an algorithm for the FLIP DISTANCE problem that runs in time O(n+
k-c*), for a constant ¢ < 2-14!', which implies that the problem is fixed-parameter tractable. The
NP-hardness reduction for the FLIP DISTANCE problem given by Lubiw and Pathak can be used
to show that, unless the exponential-time hypothesis (ETH) fails, the FLIP DISTANCE problem
cannot be solved in time O*(2°(%)). Therefore, one cannot expect an asymptotic improvement in
the exponent of the running time of our algorithm.

1998 ACM Subject Classification F.2.2 Geometrical Problems and Computations, G.2.1 Com-
binatorial Algorithms

Keywords and phrases triangulations, flip distance, parameterized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.500

1 Introduction

Let P be a set of n points in the plane. A triangulation of P is a partitioning of the convex
hull of P into triangles such that the set of vertices of the triangles in the triangulation is P.
Note that the convex hull of P may contain points of P in its interior.

A flip to an (interior) edge e in a triangulation of P is the operation of replacing e by
the other diagonal of the quadrilateral formed by the two triangles that share e, provided
that this quadrilateral is convex; otherwise, flipping e is not permissible. The flip distance
between two triangulations Tinitiar and Trine of P is the length of a shortest sequence of
flips that transforms Tinitiar into Tfinar. This distance is always well-defined and is O(|P|?)
(e.g., see [8]). The FLIP DISTANCE problem is: Given two triangulation Tinitiar and Tfinar of
P, and k € N, decide if the flip distance between Tinitias and Trinar is k.

Triangulations are a very important subject of study in computational geometry, and
they have applications in computer graphics, visualization, and geometric design (see [17,
19, 20, 24], to name a few). Flips in triangulations and the FLIP DISTANCE problem have
received a large share of attention (see [3] for a review). The FLIP DISTANCE problem is
a very fundamental and challenging problem, and different aspects of this problem have
1@.) Iyad Kanj and Ge .Xia;) N SYMPOSIUM

Bv icensed under Creative Commons License CC-BY V \ ON THEORETICAL
32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015). m ASPECTS
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 500-512 » 7 / OF COMPUTER

\\v Leibniz International Proceedings in Informatics SCIENCE
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.500
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I. Kanj and G. Xia

been studied, including the combinatorial, geometrical, topological, and computational
aspects [1, 2, 3, 4, 7, 8, 10, 18, 21, 22]. We can define the triangulations graph of P, whose
vertex-set is the set of all triangulations of P, and in which two triangulations/vertices
are adjacent if and only if their distance is 1. It is well-known that the triangulations
graph has diameter O(n?) [8], and hence, we can transform any triangulation into another
by a sequence of O(n?) flips. Moreover, it is known that the number of vertices in the
triangulations graph is ©(2.33™) [1]. Therefore, solving the FLIP DISTANCE problem by
finding a shortest path between the two triangulations in the triangulations graph is not
feasible. A very similar problem to the FLIP DISTANCE was studied by Wagner [23] in 1936,
who considered triangulated planar graphs instead.

The complexity of the FLIP DISTANCE problem was resolved very recently (2012) by
Lubiw and Pathak [10, 11] who showed the problem to be NP-complete. Simultaneously,
and independently, the problem was shown to be APX-hard by Pilz [18]. Very recently,
Aichholzer et al. [2] showed the problem to be NP-complete for triangulations of a simple
polygon. Resolving the complexity of the problem for the special case when P is in a convex
position (i.e., triangulations of a convex polygon) remains a longstanding open problem for at
least 25 years (see [22]); this problem is equivalent to the problem of computing the rotation
distance between two rooted binary trees [4, 22]. Cleary and St. John [4] showed that this
special case (convex polygon) is fixed-parameter tractable (FPT): They gave a kernel of size
5k for the problem and presented an O*((5k)¥)-time FPT algorithm based on this kernel
(the O*() notation suppresses polynomial factors in the input size). The upper bound on the
kernel size for the convex case was subsequently improved to 2k by Lucas [12], who also gave
an O*(k*)-time FPT algorithm for this case. The kernelization approaches used in [4, 12]
for the convex case are not applicable to the general case. In particular, the reduction rules
used in [4, 12] to obtain a kernel for the convex case, and hence the FPT algorithms based
on these kernels, do not generalize to the problem under consideration in this paper.

In this paper we present an O(n + k - cF)-time algorithm (¢ < 2 - 14!!) for the Frip
DISTANCE problem for triangulations of an arbitrary point-set in the plane, which shows that
the problem is FPT. Our result is a significant improvement over the O* (k*)-time algorithm
by Lucas [12] for the simpler convex case. The NP-hardness reduction by Lubiw and Pathak
can be used to show that, unless the exponential-time hypothesis (ETH) fails [9], the FLIP
DISTANCE problem cannot be solved in time O*(2°(%)). Therefore, one should not expect an

asymptotic improvement in the exponent of the running time of the presented algorithm.

While it is not very difficult to show that the FLiP DISTANCE problem is FPT based on some
of the structural results in this paper, obtaining an O*(c¥)-time algorithm, for some constant
¢, is quite involved, and requires a deep understanding of the structure of the problem.

Our approach is as follows. For any solution to a given instance of the problem, we can
define a directed acyclic graph (DAG), whose nodes are the flips in the solution, that captures
the dependency relation among the flips. We show that any topological sorting of this DAG
corresponds to a valid solution of the instance. The difficult part is how, without knowing
the DAG, to navigate the triangulation and perform the flips in an order that corresponds to
a topological sorting of the DAG. We present a very simple nondeterministic algorithm that
performs a sequence of “flip/move"-type local actions in a triangulation, where each local
action has constant-many choices. The key is to show that there exists such a sequence of
actions that corresponds to a topological sorting of the DAG associated with a solution to the

instance, and that the length of this sequence is linear in the number of nodes in the DAG.

This will us to simulate the nondeterministic algorithm by an O*(c*)-time deterministic
algorithm. To achieve the above goal, we develop structural results that reveal some of the
structural intricacies of this fundamental and challenging problem.

501

STACS 2015

502

Flip Distance Is in FPT Time O(n + k - c¥)

Even though the triangulations considered in the paper are triangulations of a point-set
in the plane, the presented algorithm works as well for triangulations of any polygonal region
(even with points in its interior). Moreover, using a reduction in [11] from the FLIP DISTANCE
of triangulations of a polygonal region with holes to the FLIP DISTANCE of triangulations
of a polygonal region with points in its interior, the algorithm presented in this paper can
solve the (more general) FLIP DISTANCE problem of triangulations of a polygonal region
with (possible) holes within the same time upper bound.

2 Preliminaries

Let P be a set of n points in the plane, and let T be a triangulation of P. Let e be an
interior (non-boundary) edge in 7. The quadrilateral associated with e in T is defined to be
the quadrilateral formed by the two adjacent triangles in 7 that share e as an edge. Let e
be an edge in 7 such that the quadrilateral @ in 7 associated with e is convex. A flip f
with underlying edge e is an operation performed to e in triangulation 7 that removes e and
replaces it with the other diagonal of @, thus obtaining a new triangulation of P from 7.
We use the notation (f) to denote the underlying edge e of a flip f in 7, and the notation
©(f) to denote the new diagonal/edge resulting from flip f. Note that ¢(f) is not in 7. We
say that a flip to an edge e is admissible in triangulation 7 if e is in T and the quadrilateral
associated with e is convex. We say that two distinct edges e and e’ in T share a triangle if
e and e’ appear in the same triangle in 7. We say that two distinct edges e and €’ between
points in P cross if e and €’ intersect in their interior.

Let 7 be a triangulation. A sequence of flips F' = (f1,..., f-) is valid with respect to
T if there exist triangulations 7y, ..., 7, such that 7o = T, f; is admissible in 7;_1, and
performing flip f; in 7;_1 results in triangulation 7;, for s = 1,...,r. In this case we say
that 7, is the outcome of applying F to T and that F transforms T into 7., and we write
75 T-. The length of F, denoted |F|, is the number of flips in it. Many flips in a sequence
F may have the same underlying edge, but all those flips are distinct flips. For two flips f;
and f of F' such that ¢ < h, a flip f, in F is said to be between f; and fp, if i <p < h.

For two triangulations Tinitiqr and Trine of P, the flip distance between Tinitiar and
Tfinai is the smallest d € N such that there is a sequence F' of length d satisfying that

Tinitial z, Tfinal- The FLIP DISTANCE problem is defined as follows:

Frip DISTANCE

Given: Two triangulation Tinitiqr and Tina of P.

Parameter: k.

Question: Is the flip distance between Tinitiar and Trina equal to k7

Let G be a graph. V(G) and E(G) denote the vertex-set and the edge-set of G, respectively,
and |G| denotes the size of G, which is |[V(G)| + |E(G)|. For a directed graph G, a weakly
connected component of G is a (maximal) connected component of the underlying undirected
graph of G; for simplicity, we will use the term component of a directed graph G to refer
to a weakly connected component of G. Otherwise, we assume familiarity with basic graph
theory, and refer to [5] for more information.

A parameterized problem is a set of instances of the form (z, k), where x is the input
instance and k € N is the parameter. A parameterized problem is fized-parameter tractable,
shortly FPT, if there is an algorithm that solves the problem in time f(k)|z|¢, where f is a

I. Kanj and G. Xia

computable function and ¢ > 0 is a constant. We refer to [6, 16] for more information about
parameterized complexity.

3 Structural results

Let 7 be a triangulation and let F' = (f1,..., f,) be a valid sequence of flips with respect to
T. We denote by T;, for i = 1,...,r, the triangulation that is the outcome of applying the
(valid) subsequence of flips (f1,..., fi;) to T.

» Definition 1. Let f; and f; be two flips in F such that 1 <i < j <r. Flip f; is said to

be adjacent to flip f;, denoted f; — f;, if:

(1) either o(f;) = e(f;) or ¢(f;) and (f;) share a triangle in triangulation 7;_1; and

(2) ©(f:) is not flipped between f; and f;, that is, there does not exist a flip f, in F', where
i < p < j, such that e(fp) = ¢(fi).

The above adjacency relation defined on the flips in F' can be naturally represented by a
directed acyclic graph (DAG), denoted D, where the nodes of Dp are the flips in F', and its

arcs represent the (directed) adjacencies in F. Note that by definition, if f; — f; then i < j.
For simplicity, we will label the nodes in Dp with the labels of their corresponding flips in F'.

» Lemma 2. Every node in Dp has indegree at most 5. Therefore, |E(Dp)| <5 -|V(Dr)|
and |Dp| <6 -|V(Dr)|.

» Lemma 3. Let Ty be a triangulation and let F' = (f1,..., f.) be a sequence of flips such

that Ty £ T.. Let w(F) be a permutation of the flips in F' such that w(F') is a topological

sorting of Dp. Then 7(F) is a valid sequence of flips such that Ty —>7T(F) 7.

Proof. Proceed by induction on |F|. If |F| < 1, then the statement obviously holds true.

Suppose that the statement is true for any F such that |F| < r, where r > 1, and consider a
sequence F' such that |F| =r.

Let fs be the last flip in w(F). Since #(F) is a topological sorting of D, fs; must be
a sink in Dp. It follows that no flip after fs in F' is adjacent to fs in Dp. Let @Q be the
quadrilateral associated with ¢(fs) in triangulation 7. Then no flips after fs in F' has its
underlying edge in @ (i.e., as a boundary edge of @ or as a diagonal of @), which means that
the two adjacent triangles forming @ in 75 remain unchanged throughout the flips after fs in
F. Therefore, we can safely move the flip fs to the end of the sequence F' without affecting
the other flips in F' nor the validity of F'. Let this new sequence be F’; then it follows from

the previous argument that 7o KN T.. Since f, appears at the end of F', F' — f, is a valid

sequence with respect to 7y that transforms 7j into some triangulation 7 such that T ELN T

Note that since f; is a sink in Dp, 7(F) — fs is a permutation of the flips in F’ — f; that is
a topological sorting of D — fs. By the inductive hypothesis, 7(F) — {fs} transforms To

into 7. Since 7 22 T, appending fs to the end of w(F') — {fs} results in 7(F') such that
To ﬂ> T.-. This completes the inductive proof. <

» Corollary 4. Let Ty be a triangulation and let F = (f1,..., fr) be a sequence of flips such
that To EiN T.. For any given ordering (Ci,...,C¢) of the components in Dg, there is a
permutation 7(F) of the flips in F such that Ty ﬂ> T, and such that for any two flips
fi € Cy and f; € C, where 1 <t < s <, f; appears before f; in w(F). That is, all the flips
in the same component appear as a consecutive block in w(F'), and the order of the blocks in
w(F) is the same as the given order of their corresponding components.

503

STACS 2015

504

Flip Distance Is in FPT Time O(n + k - c¥)

» Definition 5. Let (Tinitiat, Tfinal, k) be an instance of FLIP DISTANCE. An edge in Tinitial
that is not in Tfina is called a changed edge. If a sequence F' is a solution to the instance
(Tinitiatls Tfinal, k), we call a component in D essential if the component contains a flip f
such that £(f) is a changed edge, otherwise, the component is called nonessential.

» Lemma 6. Let (Tinitiais Trinai, k) be an instance of FLIP DISTANCE, and suppose that F'
s a solution to the instance. Then every component of Dp is essential.

Proof. Suppose, to get a contradiction, that Dp contains a nonessential component C. Let
F¢ be the subsequence of F' consisting of the flips that are in C'. We will show that F' — F¢
is a solution to the instance (Tinitiat; Trinats k). This will contradict the minimality of F
because the number of flips in F is the flip distance between Tinitiar and Trinal-

By Corollary 4, we can assume that all the flips in Fo appear consecutively (i.e., as a
single block) at the end of F. Let 7' be the outcome of applying F — F¢ to Tinitiar- It
suffices to show that 7’ = Tfine. Suppose that this is not the case. Since the number of
edges in 7’ and Tfina is the same, there must exist an edge e € 7’ such that e € Tyina-
Therefore, C' must contain a flip f such that £(f) = e; assume that f is the first such flip
in C. Since C' is nonessential, e ¢ Tinitial, otherwise e would be a changed edge. Therefore,
there must exist a flip f’ in F' — Fo such that ¢(f’) = e; we can assume that f’ is the last
such flip in F' — F. By the definition of adjacency in Dp, there is an arc from node f’ in
Dr — C to node f in C, contradicting the assumption that C is a component of Dp. <

Let (Tinitial, Trinal, k) be an instance of FLIP DISTANCE, and suppose that F' is a solution
for (Tinitiats Tfinat, k). By Lemma 6, Dr does not contain nonessential components, and by
Corollary 4, we can assume that all the flips in the same component of D appear as a
consecutive block in F. We shall call such a solution F' satisfying the above properties a
normalized solution. Suppose that F' = (f1,..., fx) is a normalized solution to an instance
(Tinitial, Tfinal, k) of FLIP DISTANCE, and let C' be a component of Dg. The following lemma
provides several sufficient conditions for a directed path to exist between two flips in C:

» Lemma 7. Let f; and fr, where i < h, be two flips in C. If one of the following conditions
is true, then there is a directed path from f; to fy, in C:

(1) o(fn) crosses (f;).

(2) o(fn) =e(fi)-

(3) e(fi) = e(fn)-

(4) o(fi) = e(fn), or w(fi) and e(fn) share a triangle T in T;, for some j satisfying
i<j<h.

4 The algorithm

Using the structural results in Section 3, it is not difficult to obtain an FPT algorithm for
FLIP DISTANCE that runs in O*(c¥”) time, for some constant ¢. For instance, starting from
an edge in the current triangulation (which corresponds to a flip in the DAG representing

* searching for the next edge to

the remaining solution), we can grow a BFS-like tree of size ¢
flip (corresponding to a source node in the DAG), and flip this edge. Repeating this process
k times gives an (’)*(ckz)-time algorithm for the problem. Our goal, however, is to obtain an
O*(c*)-time algorithm for the problem, for some constant c. Achieving this goal turns out to
be quite challenging, and requires a deep understanding of the structure of the problem. We
did so by analyzing the relation between the DAG associated with a solution to a problem

instance and the changing structure of the underlying triangulations.

I. Kanj and G. Xia

4.1 Overview of the algorithm

In this subsection we give an intuitive description of how our algorithm works. Let
(’Enitiab’]}inahk) be an instance of FLiP DISTANCE. In order to solve the instance, by
Lemma 3, it suffices for the algorithm to perform a sequence of k flips that is a topological
sorting of the DAG Dy associated with a normalized solution F' to the instance. Needless
to say, the difficulty is that we do not know F, nor do we know Dp. By Lemma 6, each
component of D is essential, and hence, must contain a changed edge. The algorithm starts
by picking a changed edge e in Tinitiar- There must exist a flip f in Dp such that e = (f);
let us refer to the component of Dp containing f by C'. We explain next how the algorithm,
starting at e in T;pniiar, performs a sequence of flips that is a topological sorting of C'; this
can be easily extended to a sequence of flips that is a topological sorting of Dp.

Clearly, the algorithm cannot start by performing f because other flips may precede
f in the solution. Instead, the algorithm searches for an edge e(fs) in Tinitia that is the
underlying edge of a source node f, in C, and flips £(f;). Now we explain how the algorithm
searches for e(fs) in Tinitiar Without having access to C. The algorithm starts at edge e in
Tinitiar and nondeterministically “takes a walk" in which each step/action consists of moving
to an edge that shares a triangle with the edge that the algorithm is currently at; the number
of such local actions is the length of the walk. We show (Lemma 10) that there exists a
source node fs in C such that, starting at the changed edge e, the algorithm can walk in
the current triangulation Tinitiar from e to €(fs), and that the length of this walk is at most
the length of the path from f, to f in C. Suppose that the algorithm nondeterministically
guessed the right walk, and walked to e(fs) in Tinitiar- The algorithm then flips e(fs), thus
performing flip fs in C, to obtain a new triangulation Teyrrent, and stays at the edge ¢(fs)
in Teyrrent- To continue the sequence of flips that corresponds to a topological sorting of
C, the algorithm should flip next an edge in Teyrrent that corresponds to a source node
in the resulting DAG Ciyrrent = C — fs. Hence, the algorithm needs to walk from ¢(fs)
in Teyrrent t0 a source node in Clyprent, and to flip the edge corresponding to that source
node in Teyrrent, and so on and so forth. To show how to perform this desired sequence
of nondeterministic actions so that total number of actions remains linear in k, we define
a spanning subgraph J¢o of the underlying graph of C. We then show that there exists a
sequence of local actions by the algorithm, in which the edge-flips is a topological sorting of
C, that simulates a recursive traversal of Jo. This mapping of the actions of the algorithm
to a specific traversal of Jo will allow us to “charge" the actions of the algorithm to the
nodes and edges of J¢o, thus obtaining the desired linear upper bound on the number of
actions of the algorithm in terms of the size of Jo, and hence the size of C.

4.2 The nondeterministic actions of the algorithm

The algorithm is a nondeterministic algorithm that starts from a changed edge in a triangu-
lation Tipitiar and performs a sequence of actions. The algorithm is equipped with a stack.
Each action o of the algorithm acts on some edge e in a triangulation that we refer to as the
current triangulation (before o), denoted Teyrrent Initially Teurrent = Tinitiats a0d Tourrent
before action o is the triangulation resulting from applying the sequence of actions preceding
0 t0 Tinitial- Each action o of the algorithm is of the following possible types:

(i) Move to one of the (at most 4) edges that share a triangle with e in Teyrrent-

(ii) Flip e, and move to one of the 4 edges that shared a triangle with e in Toyrrent-

(iii) Flip e, push the edge created by the flip into the stack, and move to one of the 4 edges

that shared a triangle with e in Teyrrent-

505

STACS 2015

506

Flip Distance Is in FPT Time O(n + k - c¥)

(iv) Flip e, jump to the edge on the top of the stack.
(v) Flip e, jump to the edge on the top of the stack, and pop the stack.

A walk starting from an edge e in a triangulation is a sequence of actions all of which are
of type (i). Since there are 4 choices for each action of types (i)-(iii) and 1 choice for each
action of types (iv)-(v), we have:

» Proposition 8. The number of choices for any action by the algorithm is at most 14.

4.3 The sequence of actions on a component of Dy

Let F' = (f1,..., fr) be a normalized solution to an instance of FLIP DISTANCE. Let C
be a component of Dr. By Corollary 4, we can assume that all the flips in C' appear at
the beginning of F, that is, form a prefix of F; let Fo = (f1,..., f:) be the prefix of F
corresponding to the flips in C. This subsection is dedicated to proving the following theorem:

» Theorem 9. Let C' be a component of Dr. There is a sequence of actions for the
nondeterministic algorithm of length at most 11|V (C)| that, starting from a changed edge
e(fn) for some fr € C, performs the flips in C in a topologically-sorted order.

To prove the above theorem, we define a spanning subgraph J¢ of the underlying graph of
C recursively. We then exhibit a sequence of actions of the algorithm that can be depicted by
a recursive traversal of Jo. By that we mean that the actions performed by the algorithm in
the triangulations correspond to a traversal of the edges and nodes of J¢, and such that the
sequence of edge-flips performed by the algorithm is a topological sorting of C'. We initialize
Je to be empty, and we start the recursive definition of Jo at a node in C' that corresponds
to a changed edge in the current triangulation. We will then add edges and nodes to Jo, and
recurse on the connected components of the graph resulting from C' after a source node in
C has been removed. Since during the recursion nodes and edges get removed from C, the
resulting graph of C' may consist of several connected components that we will refer to as
chunks, in order to distinguish them from the components of Dgr. Assume that the current
triangulation is 7 when we are recursing on a chunk H to define its spanning subgraph J .
The recursive call starts at a node f;, in H that we call the entry point of H. At the top
level of the recursion, C' is the only chunk (in the recursive definition), and the entry point
of H = C is a node in C corresponding to a changed edge in the current triangulation. We
will define in Lemma 10 a directed path B = (by = fs,...,by = fr) in H from a source node
fs in H to the entry point f; of H. With the path B, we correspond a walk W, defined in
Lemma 10, that the algorithm performs in the current triangulation from e(fy,) to e(fs). We
add B to Jg, we add the edges between fs; and the entry point of each chunk in H — f
to Jg, and we recurse on the chunks of H — fs to complete the recursive definition of Jg.
The corresponding actions of the algorithm (with the recursive definition of Jy) consist of
performing the walk W, flipping e(fs), and recursively performing the sequence of actions
corresponding to the traversals of the chunks in H — f,. Note that to flip a single edge,
the algorithm takes a walk in the current triangulation to a source node in C. Therefore,
if we are not careful in how we do the traversal of C, the length of all these walks could
be quadratic in k. To ensure that when the algorithm is done performing the sequence of
actions in a chunk it can go back to continue with the other chunks, the algorithm uses a
stack to store the edge ¢(fs), resulting from flipping the “connecting node" f; of all these
chunks, so that the algorithm, after performing all the flips in a chunk of H — f,, can go
back by a single action to ¢(fs). We start with the following lemma:

I. Kanj and G. Xia

» Lemma 10. Let fj, be a node in a chunk H such that €(fy) is an edge in the current
triangulation T. There is a walk W in T from e(fr) to an edge e(fs) in T, where fs is a
source node of H, such that there is a directed path B from fs to fy in H that we refer to as
the backbone of H. Moreover, the length of the walk W is at most the length of B.

Proof. If fj is a source in H then f, = f,, the path B consists of fs, and the length of the
walk W is 0. The statement is trivially true in this case. Now assume that f is not a source
node in H.

Since e(fr) is an edge in T, let @ be the quadrilateral associated with (fp,) in 7. Since
fr is not a source in H and F' is a minimal solution, one of the edges on the boundary of @
must be flipped before fy; let f, be the first such flip in H. Since (f,,) and e(f) share a
triangle in 7,_1, ¢(fp) and e(f;) share a triangle in 7,,, and by Lemma 7, there is a directed
path from f, to f5 in the component C of Dg. Since the nodes removed from C' during the
recursive definition are always source nodes in their current chunks, there is a directed path
from f, to f5 in the current chunk H. The edges (f;,) and (f,) share a triangle in 7, and
hence, in one action (of type (i)) the algorithm can go from e(f,) to e(f;) in T.

If f, is a source node in H, then we are done; otherwise, applying the above argument
to fp, we can find a flip f; such that e(f,) and e(f,) share a triangle in 7 and there is a
directed path from f; to f, in H. We can repeat this process until we reach a source node
fs in H. Going from &(f) to e(fs) in T involves only actions of type (i), and hence, defines
a walk W from e(f5,) to e(fs) in 7. The length of W is at most the total number of flips in
a directed path B from f; to f; in H, which is composed of the directed paths defined in
the process described above (from f,, to fr, fq to fp, and so on). |

We now formally give the recursive definition of Jg, described for a chunk H with entry
point f of a graph resulting from C' during the recursion. Recall that at the top level of
the recursion H = C, and fj, is a node in C corresponding to changed edge in the starting
triangulation.

» Definition 11. Let H be a chunk with entry point f,. The subgraph Jy of H is defined

recursively as follows.

(1) Let B= (fs =b1,...,be = fn), where f; is a source node in H (possibly f; = fs), be
the backbone of H defined in Lemma 10.

(2) Remove f; from H and let Hy,..., H, be the chunks of H~ = H — f; define f; to be
the connecting point to each of the chunks Hy,..., H,.

(3) For each chunk H,, p=1,...,x, if H, contains nodes from previously-defined backbones
during the recursive definition, then let f,:, be the node in H,, of minimum index (with
respect to F') that belongs to a previously-defined backbone; define the entry point of H,
to be the node fp,, in Hy, that is adjacent to fs and that has a path to fy,i, in Hp, and
in case more than one neighbor of f satisfies this property pick the neighbor with the
minimum index with respect to F' (we will prove in Lemma 12 that the node f,, is well
defined). Otherwise (H,, does not contains nodes from previously-defined backbones),
define the entry point of H, to be the flip fj, in H, with the minimum index h, (with
respect to F') that is adjacent to fs. (See Figure 1 for illustration.)

(4) Define the subgraph .J,, of H, with entry point fp, recursively, for p =1,..., .

(5) Define Jy to be the union of the edges in B, the edges in J, and the edges between f;
and each entry point of H,, forp=1,..., 2.

Let Jo be the subgraph of the underlying graph of C resulting from applying the above
recursive definition to C' starting at a flip corresponding to a changed edge in C. We have:

507

STACS 2015

508

Flip Distance Is in FPT Time O(n + k - c¥)

H,

Hy

by :fs

Figure 1 Illustration of the definition of entry points, where backbone nodes are colored gray.
The entry point of H; is the node fp, in H; adjacent to fs that has a path to the backbone node
fmin with the minimum index (node b2 in this case). The entry point of Hz, which does not contain
backbone nodes in this case, is the node fp, of minimum index (h2) that is adjacent to fs.

» Lemma 12. All the backbones, defined during the recursive definition of Jo, that exist in
the same chunk are edge disjoint, and belong to a single (simple) path in the chunk; on this
path the (remaining) nodes from each backbone appear consecutively. Moreover, the entry
node of a chunk, defined in step 3 of Definition 11, is well-defined.

Proof. The proof is by induction on the number of recursive steps (depth of the recursion)
taken to form a chunk. The statement is clearly true at the top level of the recursion where
the only chunk is C, whose entry point is defined to be a flip corresponding to a changed
edge, and there is only one defined backbone. Suppose now that chunk H, resulted from a
chunk H in one recursive step, and that the statement is true for H (inductive hypothesis).

H,, was obtained by removing a source node f; from H, which is a backbone node. By
the inductive hypothesis, all the backbones in H are edge-disjoint and belong to a path P
in H. Since f, is a source node in H, fs; must be the tail of P. If H,, does not contain any
previously-defined backbone nodes, then the entry point f;,, of Hj, is defined to be the node
in H, with the minimum index that is adjacent to fs, and in this case fp,, is well-defined.
Moreover, there is only one backbone in H,,. Therefore, the statement of the lemma is true
in this case. Suppose now that H, contains at least one node from a previously-defined
backbone. Because the underlying graph of H,, is connected and P~ = P — f, is a path, it
follows that H,, contains P~. Let b be the node adjacent to fs on P~, i.e., the tail of P~.
~ contains all the previously-defined backbone nodes in Hy,
and in particular, P~ contains the node fy,;, in H, of minimum index (the minimum index
is with respect to F') that belongs to a previously-defined backbone. Since b is adjacent to
s, it follows from the preceding that node fp, is well-defined because b satisfies that it is

By the inductive hypothesis, P

I. Kanj and G. Xia

adjacent to fs; and there is a path from b to the backbone node in H with the minimum
index, namely f;, (possibly b itself). Now let B H, be the backbone of H,. Since By, is a
path whose head is fp,,, and since — by the choice of f, — there is a path from f;,, to fimin,
the indices of the nodes in B H, are not larger than the index of finin, which is the backbone
node on P~ of the minimum index. Therefore, the set of edges in By, is disjoint from the
set of backbone edges on P~ (and hence, from the set of backbone edges in H),) that belong
to previously-defined backbones. Since By, is a path in H),, and since there is a path from
Jn, t0 fmin in Hp, all the backbone edges in H), form a path in which all the (remaining)
nodes of each backbone appear consecutively. This completes the inductive proof. <

» Corollary 13. All the backbones defined in the recursive definition of Jo are edge-disjoint.

Proof. It suffices to show that when a backbone B of a chunk H is defined during the
recursive definition of J¢, the edges of B are different from the edges of all previously-defined
backbones. Clearly, the edges of B are different from those of the backbones in chunks
other than H, and from the edges of previously-defined backbones that have been previously
removed during the recursive definition of Jo. By Lemma 12, the edges of B are different
from those of the backbones other than B that (may) exist in H. The statement follows. <

» Lemma 14. Let C be a component of Dr. The subgraph Jo formed by applying Defini-
tion 11 to C is a spanning subgraph of the underlying graph of C.

Proof. The statement follows from the connectedness of C' and Definition 11 by a simple
inductive argument: Jo contains a source node fs of C' and an edge from f, to each chunk

in C — fs. <

We define next a sequence of actions that the algorithm performs starting at a changed
edge (corresponding to a node in C') in the current triangulation and that corresponds to
a traversal of Jo. Let f;, fi be the connecting and the entry points to a chunk H # C,
respectively. At the top level of the recursion, where H = C is a component of D, define f,
to be a flip in C' whose underlying edge £(f;) is a changed edge (f; need not be defined).

» Definition 15. Let H be a chunk with entry point f;. The sequence of actions of the

nondeterministic algorithm on H is defined as follows.

(a) The nondeterministic algorithm performs the walk W from e(fp,) to e(fs) (in the current
triangulation 7)) defined in Lemma 10 that corresponds to the backbone B = (fs =
bl,...,bg :fh> of H.

(b) The nondeterministic algorithm flips the edge e(fs).

(c) The algorithm nondeterministically pushes (fs) into the stack if there is more than
one chunk in H~ = H — f,, and moves to the entry point of the first chunk in H~.

(d) The nondeterministic algorithm recursively performs the sequence of actions on each
chunk of H~, nondeterministically moving to the edge ¢(fs) on the top of the stack
when performing the last action in each chunk, and following that with a move (if
needed) to the underlying edge of the entry point of a new chunk, which shares a triangle
with ¢(fs) (or is identical to it) by Lemma 16 below.

(e) The algorithm nondeterministically moves to the top of the stack and pops the stack
after performing the last action in the last chunk of H~ (in case there is more than one).

» Lemma 16. Let f;, fr be the connecting and entry points to a chunk H # C, respectively.
Suppose that the current triangulation is T when the sequence of actions of the algorithm
defined in Definition 15 is applied on H. Then either o(f;) = e(frn), or o(f;) and e(fr) share
a triangle in T .

509

STACS 2015

510

Flip Distance Is in FPT Time O(n + k - c¥)

Proof (Theorem 9). It is clear that the order of the flips performed by the algorithm in
the sequence of actions described in Definition 15 corresponds to a topological sorting of C
because every flip corresponds to the removal of a source node from a DAG resulting from C
in the recursive definition of J¢, and because J¢ is a spanning subgraph of C' by Lemma 14.
Therefore, it suffices to show that this sequence has length at most 11|V(C)|. To do so, we
charge the actions of the algorithms to the nodes and edges of J¢.

When invoked on a chunk H, the algorithm starts at an entry node f, of H; initially
H = C and f, is a node in C whose underlying edge is a changed edge in the current
triangulation 7. In Lemma 10 we showed that there is a path B = (fs = b1,...,b¢ = fr)
from a source node fs in H to f, that corresponds to a walk by the algorithm from edge €(f)
to (fs) in T; moreover, the length of this walk is at most the length of B. The algorithm
can perform this walk using actions of type (i) (as defined in Subsection 4.2), and the number
of such actions is at most the length of B. When the algorithm is at edge e(fs) in T, it flips
edge e(fs), which is one action either of type (ii) or (iii). Next, the algorithm recurses on
each chunk H, of H — f;, starting at the entry point f;,, of H,. In Lemma 16, we showed
that the edges o(fs) and £(fp,) are either identical, or they share a triangle in the current
triangulation when the algorithm is recursively called on H,. Hence, in at most one action
the algorithm can move from ¢(fs) to €(fp,). If there is more than one chunk in H — f
(the algorithm nondeterministically decides), the algorithm pushes ¢(fs) into the stack after
flipping fs. In case there is only one chunk left, the algorithm also pops the stack after
jumping to the top of the stack. It is not difficult to see that each of the steps corresponds
to one action of the algorithm from types (i)-(v).

To prove that the length of the sequence of actions is at most 11|V (C')|, we charge these
actions to the nodes and edges of Jo. The sequence of actions can be classified into two
categories: actions with flips and actions without flips. The number of actions with flips is
at most the number of nodes in J¢, which is |[V(C)|. Note that actions that involve moving
to the top of the stack, or popping the stack, or both, are combined with flips, and hence
have been accounted for. The actions without flips are all of type (i), and can be further
divided into two groups: (I) those done in a walk W corresponding to a backbone B of a
chunk H, and (IT) those done when the algorithm moves from an underlying edge ¢(fs) (on
the top of the stack) of a source node fs in a chunk H to an edge whose corresponding node
is an entry point of a chunk resulting from removing f; from H. The number of actions in
group (I) is at most |E(C)][; this is because, by Corollary 13, the edges of different backbones
are distinct, and hence the total number of such edges (and hence actions in group (I)) is at
most |E(J¢)| < |E(C)]. To bound the number of actions in group (II), observe that each
such action corresponds to an edge in C from fs to the entry point of a chunk resulting
from removing fs from H. Since fs is removed from Jo upon making the recursive calls
to the resulting chunks, we can charge each such action in a one-to-one fashion to edges
of E(J¢). Therefore, the number of actions in group (II) is at most |E(J¢)| < |E(C)].
Therefore, the total number of actions of type (i) is at most 2|E(J¢)| < 2|E(C)|. It follows
that the total number of actions performed by the algorithm when applied to C' is at most
[V(C)| +2|E(Jc)| < 11|V(C)] (by Lemma 2).

<

4.4 Putting all together: the whole algorithm

Let F' be a normalized solution to the instance (Tinitial, Tfinal, k). Order the changed edges
arbitrarily, and denote this ordering by O. The algorithm starts by guessing the number
of components t, where t < k, in Dp. The algorithm then guesses the number of flips

I. Kanj and G. Xia

ki,...,k; in the components C4, ..., Cy, respectively, of Dy satisfying kq,..., %k > 1 and
k1 + ko + ...+ k = k. Fix such a guess (k1,..., k).

The algorithm performs t iterations: ¢ = 1,...,t. We define 'Emtml, {=1,...,t to
be the triangulation that resulted from Tinitial after the flips in the first £ iterations are
performed. We define Tz?Lm(Ll = Tinitial- For each £ = 1,...,t, do the following' Pick the
next edge e € O. If e is not a changed edge anymore w1th respect to ’Emtml and Trinal,
then skip to the next edge in @. Otherwise (e is in 7;mtml but not in Tyina), perform a
sequence of actions starting from e in 7;fmlwl until either the number of flips performed is kg,
or the number of actions performed reaches 11k;g Let Fy be the sequence of flips performed

in the current iteration, and note that 7;7”” al 7;nmal After the last iteration £ = ¢, if
’Tifmial = Ttinal then accept; otherwise reject.

» Theorem 17. Let (Tinitial, Tfinat, k) be an instance of FLIP DISTANCE. The above non-
deterministic algorithm decides (ﬁnitz‘alﬂ}mal, k) correctly, and it can be simulated by a
deterministic algorithm that runs in time O(n + k- c*).

Proof. It is easy to see that the correctness of the algorithm follows from the following: (1)
there is a guess for the algorithm of the correct number of components ¢, and of (kq,..., k)
such that k; is the exact number of flips in Cy, i = 1,...,¢; and (2) by Theorem 9, there is a
nondeterministic sequence of actions by the algorithm of length at most 11k; that, starting
from a changed edge in C;, performs the k; flips in C; in a topologically-sorted order.

We only need to analyze the deterministic running time needed to simulate the non-
deterministic algorithm. The initial processing of the triangulations to find the changed
edges takes O(n) time. The total number of sequences (ki, ..., k), for t = 1,..., k, satisfying
ki+...+k =kand kq,...,k > 1, is known as the composition number of (integer) k, and is
equal to 2°~1. For each such sequence (ky, ..., k), we iterate through the numbers ki, ..., k;
in the sequence. For a number k;, 1 <1 < t, by Theorem 9, we need to try every sequence
of at most 11k; actions, and in which each action is one of 14 choices (by Proposition 8).
Therefore, the number of such sequences is at most 14'%:_ It follows that the total number
of sequences that the algorithm needs to enumerate to find a witness to the solution (if it
exists) is at most: Zf:l Z(kly_._’k,t)(lélllkl X ... x 141k = O(2k=11411K) = O(cF), where
¢ < 2-1411. Since each sequence of actions can be carried out in time O(k), and the resulting
triangulation at the end of the sequence can be compared to Tfina in O(k) time as well,
the running time for each enumerated sequence is O(k). It follows from the above that the
running of the deterministic algorithm is O(n+k-c¥). Finally we point out that the algorithm
needs to decide whether £ is the flip distance between Tinitiar and Tfinar, which means that
no sequence of flips of length smaller than k exists that transforms 7initiar t0 Trinar. This
can be decided by invoking the algorithm on each of the instances (Tinitiats Tinal, k'), for

’

k' =0,...,k. The running time remains O(n+k-c*) because ZZ,:O O(K'-c*) = O(k-ck). =

5 Concluding remarks

Improving the upper bound 2- 14" on the constant ¢ in the running time of our algorithm to
a small value is an important open problem. Another important open problem is investigating
the kernelization of FLIP DISTANCE. One can obtain an exponential-size kernel based on
the results in this paper, but the question of whether there is a polynomial-size kernel is
important and challenging. Recall that a kernel of size 2k was given by Lucas [12] for
the convex case. Finally, we note that FLIP DISTANCE falls broadly into the category of
reconfiguration problems, for which several parameterized complexity results appeared very
recently (see [13, 14, 15]).

511

STACS 2015

512

Flip Distance Is in FPT Time O(n + k - c¥)

—— References

1

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

O. Aichholzer, F. Hurtado, and M. Noy. A lower bound on the number of triangulations
of planar point sets. Computational Geometry, 29(2):135-145, 2004.

O. Aichholzer, W. Mulzer, and A. Pilz. Flip distance between triangulations of a simple
polygon is NP-complete. In Proceedings of ESA, volume 8125 of Lecture Notes in Computer
Science, pages 13-24. Springer, 2013.

P. Bose and F. Hurtado. Flips in planar graphs. Computational Geometry, 42(1):60-80,
2009.

S. Cleary and K. St. John. Rotation distance is fixed-parameter tractable. Information
Processing Letters, 109(16):918-922, 2009.

R. Diestel. Graph Theory. Springer, Berlin, 4th edition, 2010.

R. Downey and M. Fellows. Parameterized Complexity. Springer, New York, 1999.

S. Hanke, T. Ottmann, and S. Schuierer. The edge-flipping distance of triangulations.
Journal of Universal Computer Science, 2(8):570-579, 1996.

F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. Discrete & Compu-
tational Geometry, 22(3):333-346, 1999.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences, 63(4):512-530, 2001.

A. Lubiw and V. Pathak. Flip distance between two triangulations of a point set is NP-
complete. In Proceedings of CCCG, pages 119-124, 2012.

A. Lubiw and V. Pathak. Flip distance between two triangulations of a point set is NP-
complete. arXiv.org e-Print archive, paper ¢s.CG/1205.2425, May 2012.

J. Lucas. An improved kernel size for rotation distance in binary trees. Information
Processing Letters, 110(12):481-484, 2010.

A. Mouawad, N. Nishimura, and V. Raman. Vertex cover reconfiguration and beyond. In
Proceedings of ISAAC, volume 8889 of Lecture Notes in Computer Science, pages 452-463.
Springer, 2014.

A. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki. On the parameterized
complexity of reconfiguration problems. In Proceedings of IPEC, volume 8246 of Lecture
Notes in Computer Science, pages 281-294. Springer, 2013.

A. Mouawad, N. Nishimura, V. Raman, and M. Wrochna. Reconfiguration over tree de-
compositions. In Proceedings of IPEC, volume 8894 of Lecture Notes in Computer Science,
pages 246-257. Springer, 2014.

R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, USA,
2006.

A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. John Wiley & Sons, New York, NY, USA, 1992.

A. Pilz. Flip distance between triangulations of a planar point set is APX-hard. Computa-
tional Geometry, 47(5):589-604, 2014.

A. Saalfeld. Joint triangulations and triangulation maps. In Proceedings of SoCG, pages
195-204. ACM, 1987.

L. Schumaker. Triangulations in CAGD. IEEE Computer Graphics and Applications,
13(1):47-52, 1993.

R. Sibson. Locally equiangular triangulations. The Computer Journal, 21(3):243-245, 1978.
D. Sleator, R. Tarjan, and W. Thurston. Rotation distance, triangulations, and hyperbolic
geometry. In Proceedings of STOC, pages 122-135. ACM, 1986.

K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathema-
tiker- Vereinigung, 46:26-32, 1936.

D. Watson and G. Philip. Systematic triangulations. Computer Vision, Graphics, and
Image Processing, 22(2):310, 1983.

	Introduction
	Preliminaries
	Structural results
	The algorithm
	Overview of the algorithm
	The nondeterministic actions of the algorithm
	The sequence of actions on a component of DF
	Putting all together: the whole algorithm

	Concluding remarks

