
New Pairwise Spanners
Telikepalli Kavitha

Tata Institute of Fundamental Research, India
kavitha@tcs.tifr.res.in

Abstract
Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G is called
an (all-pairs) purely additive spanner with stretch β if for every (u, v) ∈ V × V , distH(u, v) ≤
distG(u, v) + β. The problem of computing sparse spanners with small stretch β is well-studied.
Here we consider the following relaxation: we are given P ⊆ V ×V and we seek a sparse subgraph
H where distH(u, v) ≤ distG(u, v) + β for each (u, v) ∈ P. Such a subgraph is called a pairwise
spanner with additive stretch β and our goal is to construct such subgraphs that are sparser
than all-pairs spanners with the same stretch. We show sparse pairwise spanners with additive
stretch 4 and with additive stretch 6. We also consider the following special cases: P = S × V
and P = S × T , where S ⊆ V and T ⊆ V , and show sparser pairwise spanners for these cases.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases undirected graphs, spanners, approximate distances, additive stretch

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.513

1 Introduction

Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G
is called a spanner with multiplicative stretch α and additive stretch β if for every pair
(u, v) ∈ V × V , we have δH(u, v) ≤ α · δG(u, v) + β, where δG(u, v) (similarly, δH(u, v))
is the u-v distance in G (resp., H). The objective in spanner problems is to construct a
subgraph H that is as sparse as possible, however for each pair of vertices (u, v), the u-v
distance in H is close to the u-v distance in G, i.e., the stretch is small.

When the multiplicative stretch α is 1 and the additive stretch β is O(1), the span-
ner H is said to be purely additive. We currently know purely additive spanners only for
additive stretches 2, 4, and 6. The additive stretch 2 spanner has size O(n3/2) [1], the
additive stretch 4 spanner has size Õ(n7/5) [10], and the additive stretch 6 spanner has size
O(n4/3) [6]. In this paper we consider the problem of obtaining sparser subgraphs for the
following relaxed problem: distances for all pairs in V × V need not be well-approximated
in the subgraph – here we have a subset P ⊆ V ×V of critical pairs and we seek a subgraph
H where δH(u, v) ≤ δG(u, v) +O(1) for every (u, v) ∈ P.

Our goal is to find a subgraph H that is sparser (for a large range of values of |P|)
than the all-pairs spanner with the same additive stretch. This problem was first studied by
Coppersmith and Elkin [12] who sought subgraphs where distances for pairs in P were exactly
preserved. They called such subgraphs pairwise preservers and showed such subgraphs of
size O(min{n

√
|P|, n + |P|

√
n}) for any P ⊆ V × V . They left it as an open question to

study the approximate variants of pairwise preservers.
This question was studied by Cygan et al. [15] who called such subgraphs pairwise span-

ners or P-spanners. A trade-off between the additive stretch and size of a P-spanner
was shown in [15], where the least stretch P-spanner had additive stretch 4 with size
O(n4/3|P|1/6) and the sparsest P-spanner had size Õ(n|P|1/4) with additive stretch 4 logn.

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 513–526

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.513
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

514 New Pairwise Spanners

Subsequently, a pairwise spanner of size Õ(n|P|1/3) and additive stretch 2 was shown in
[20]. We show the following results here.

I Theorem 1. Let G = (V,E) be an undirected unweighted graph. Then for any P ⊆ V ×V ,
the following subgraphs can be constructed in polynomial time (where |V | = n):
1. a P-spanner of size Õ(n · |P|2/7) and additive stretch 4,
2. a P-spanner of size O(n · |P|1/4) and additive stretch 6.

Comparing our pairwise spanners with pairwise preservers and all-pairs spanners: the
pairwise spanner in Theorem 1.1 is sparser than the Õ(n7/5)-sized all-pairs spanner with
additive stretch 4 when |P| is o(n7/5) and it is sparser than the O(n+ |P|

√
n)-sized pairwise

preserver when |P| is ω(n7/10). The pairwise spanner in Theorem 1.2 is sparser than the
above pairwise preserver when |P| is ω(n2/3) and it is sparser than the O(n4/3)-sized all-pairs
spanner with additive stretch 6 when |P| is o(n4/3).

A natural setting for P ⊆ V × V is when the set P of relevant pairs is S × T , where S
is one set of endpoints or sources and T is another set of endpoints or destinations and we
seek a subgraph where s-t distances are well-approximated for every (s, t) ∈ S × T . The
case where S = T was considered earlier and an (S × S)-spanner of size O(n

√
|S|) with

additive stretch 2 is known [15, 25]. Here we seek (S × T)-spanners that are sparser than
an (S ∪T)× (S ∪T)-spanner or an (S×V)-spanner (for instance, when |S| � |T | � n). To
the best of our knowledge, (S×T)-spanners are being studied for the first time here and we
will refer to them as ST -spanners. We show the following result on ST -spanners.

I Theorem 2. For any subsets S and T of V , an ST -spanner of size O(n · (|S| |T |)1/4) and
additive stretch 4 can be constructed in polynomial time.

Thus the above result combines the size of the pairwise spanner in Theorem 1.2 with the
stretch of the one in Theorem 1.1, in other words, we get a P-spanner of size O(n|P|1/4)
with additive stretch 4 when P = S × T . Our next theorem shows that Theorem 1 can be
further improved for sourcewise spanners, i.e., when P = S × V . Sourcewise spanners form
a natural and interesting class of general P-spanners and ST -spanners.

I Theorem 3. The following subgraphs can be constructed in polynomial time for any S ⊆
V :
1. an (S × V)-spanner of size Õ(n · (n|S|)2/9) and additive stretch 4,
2. an (S × V)-spanner of size O(n · (n|S|)1/5) and additive stretch 6.

Sourcewise spanners of size Õ(n · (n|S|)1/4) and additive stretch 2 were shown in [20].
Trade-off results between the size and additive stretch of sourcewise spanners were shown
in [15, 21]. We show a size vs additive stretch trade-off for ST -spanners in Theorem 4.

I Theorem 4. For any integer k ≥ 1 and S, T ⊆ V , an ST -spanner with additive stretch
2k and size Õ(n · (|S|γ |T |)1/(2γ+1)), where γ = k+ 1, can be constructed in polynomial time.

By setting T to be the set of cluster centers (defined in Section 2) in Theorem 4, we
get for k ≥ 2, sourcewise spanners with additive stretch 2k and size Õ(n1+1/r|S|k/r), where
r = 2k + 2. This matches the current best trade-off for sourcewise spanners (from [21]).
An advantage with our construction is that it is deterministic, hence the bound is on the
worst case size of the sourcewise spanner constructed here while the construction in [21] was
randomized, hence the bound there was on the expected size of the sourcewise spanner.

An all-pairs purely additive spanner of size O(n1+ 2δ
2δ+1) can be obtained from a P-spanner

with additive stretch O(1) and size O(n · |P|δ) by taking P = T × T , where T = {cluster
centers}; thus if δ < 1/4, we get an all-pairs purely additive spanner of size O(n1+ε), where
ε < 1/3. No such purely additive spanners are currently known.

T. Kavitha 515

1.1 Background and Related Results
Graph spanners were introduced by Peleg and Schaffer [23] in 1989. The problem of effi-
ciently constructing sparse spanners with a small multiplicative stretch is well-understood:
Althöfer et al. [2] in 1993 showed that in any weighted graph G on n vertices and for any
integer k ≥ 1, there is a spanner of size O(n1+1/k) with multiplicative stretch 2k − 1. More
efficient constructions of spanners in weighted graphs can be found in [8, 27, 26]. There are
several applications in graph/network algorithms that use spanners: for instance, approxim-
ate shortest paths [3, 11, 17], approximate distance oracles [28, 7, 5], labeling schemes [22, 19],
network design [24], routing [4, 13, 14].

For unweighted graphs, we seek spanners with purely additive stretch – the first such
spanner was by Aingworth et al. [1] (with followup work in [16, 18]) which showed a spanner
with additive stretch 2 and size O(n3/2). The additive stretch 6 spanner is due to Baswana
et al. [6] and the additive stretch 4 spanner is due to Chechik [10]. The current best trade-
off between sparsity and additive stretch is from [10]: for any δ ∈ [3/17, 1/3), there is a
subgraph of size Õ(n1+δ) and additive stretch Õ(n(1−3δ)/2).

Bollobás et al. [9] were the first to study a variant of pairwise preservers – they studied
D-preservers where the problem was to compute a sparse pairwise preserver for the set
P = {(u, v) : δG(u, v) ≥ D}. As mentioned earlier, Coppersmith and Elkin [12] studied the
general problem of pairwise preservers for any P ⊆ V × V .

The study of pairwise spanners was initiated by Cygan et al. [15] who showed the fol-
lowing trade-off for pairwise spanners – for any P ⊆ V × V and integer k ≥ 1: additive
stretch 4k and size O(n1+1/r · (k|P|)k/2r), where r = 2k + 1 and the following trade-off
between size and additive stretch for sourcewise spanners – for any subset S and any integer
k ≥ 1: additive stretch 2k and size O(n1+1/r(k|S|)k/r), where r = 2k+1. Parter [21] showed
sparse multiplicative sourcewise spanners and a lower bound of Ω(n|S|1/k/k) on the size of
a sourcewise spanner with additive stretch 2(k − 1), for any integer k ≥ 1.

1.2 Techniques
All our algorithms start with the clustering step where vertices are grouped into clusters and
at the end of this step, we are left with a post-clustering subgraph that contains all edges of
G, except some inter-cluster edges. In each of our algorithms, the rest of the algorithm has
to decide which of these missing inter-cluster edges should get added to the post-clustering
subgraph. We use the steps of path-buying and path-hitting to make these decisions.

The path-buying step was introduced in [6] and has been used in several spanner al-
gorithms [15, 20, 21]; here each shortest path is “evaluated” and if it is affordable, the path
is bought, i.e., its missing edges are added to the current subgraph. Otherwise it will have
to be the case that the path is already well-approximated in the current subgraph. We
use path-buying with appropriate value functions in our algorithms for pairwise/sourcewise
spanner with additive stretch 6 and ST -spanner with additive stretch 4.

We use path-hitting in our other algorithms. Path-hitting was first seen in the near-
quadratic time algorithm in [29] for an Õ(n4/3)-sized spanner with additive stretch 6. This
technique aims at hitting the neighborhood of each shortest path: this was done in [29]
by randomly sampling vertices and appropriate near-shortest paths between the sampled
vertices and other vertices were added to form the spanner. In our path-hitting subroutines
here, we select a small number of clusters so that certain critical subpaths of all our relevant
shortest paths are hit, i.e., for each such subpath, there will be some cluster among our
selected ones that intersects it. Finally, our subgraph will contain shortest paths between

STACS 2015

516 New Pairwise Spanners

appropriate pairs of selected clusters.
Section 2 describes the clustering step and other preliminaries. Theorems 1 and 2 are

shown in Section 3. Section 4 has our results on sourcewise spanners and Section 5 has the
trade-off result for ST -spanners. Due to space constraints, the proofs of some lemmas are
omitted; they will be included in the full version of the paper.

2 Preliminaries

A clustering of a graph G = (V,E) is a collection {C1, . . . , Cr} where each Ci is a subset of
vertices and Ci ∩ Cj = ∅ for i 6= j. Note that we do not require ∪iCi to be equal to V ; the
vertices in V − ∪iCi will be called unclustered. Associated with each cluster Ci is a vertex
called its center, denoted by center(Ci), with the following property: every vertex in Ci is a
neighbor of center(Ci). Note that center(Ci) /∈ Ci.

Given a graph G and an integer h, where 1 ≤ h ≤ n, the following simple procedure
constructs a clustering Ch = {C1, . . . , Cr} and returns 〈Ch, U〉, where U = V − ∪iCi is the
set of unclustered vertices.

– Initially all vertices are unclustered and Ch is empty. While there is a vertex v with at
least h unclustered neighbors, we form a new cluster C by picking any h of these neighbors
of v and these vertices are now clustered; v becomes center(C) and C gets added to Ch.
When no vertex has h or more unclustered neighbors, this procedure terminates and returns
〈Ch, U〉, where U is the set of unclustered vertices.

It is easy to see that every pair of clusters is disjoint and each cluster C is a collection
of h vertices. So |Ch|, the number of clusters, is at most n/h. Associated with Ch is a
post-clustering subgraph Gh that consists of all the edges incident to unclustered vertices,
all intra-cluster edges (i.e., edges (u, v) where both u and v belong to the same cluster), as
well as the edges (v, c), where v is a clustered vertex and c is the center of v’s cluster. It
can be shown that Gh has O(nh) edges. We define the cost of a path below.

I Definition 5. For any path ρ in G, let cost(ρ) denote the number of edges of ρ that are
missing in the post-clustering subgraph Gh.

The following lemma from [15] gives a lower bound on the number of distinct clusters
that are incident on a shortest path ρ whose cost is t or more. We say a cluster C and a
shortest path ρ intersect each other if C and ρ have at least one vertex in common.

I Lemma 6 (from [15]). Let ρ be a shortest path in G with cost(ρ) ≥ t. Then there are at
least t/2 distinct clusters of Ch that intersect ρ.

Another subroutine that our algorithms will use is that of efficiently computing a small-
sized “hitting set” A ⊆ Ch for a set Q of paths. We define such a set A below.

I Definition 7. Let Q be a set of paths. Then A ⊆ Ch is a hitting set for Q if for every path
q ∈ Q, there is at least one cluster in A that intersects q.

When each q ∈ Q has several clusters incident on it, a small-sized hitting set can be
computed easily by the greedy algorithm. We know from Lemma 6 that if a shortest path
has many missing edges in Gh, then it has several distinct clusters incident on it. Lemma 8
uses this property to obtain a small-sized hitting set for such a set Q of paths.

I Lemma 8. Let Q be a set of shortest paths such that each q ∈ Q has at least λ missing
edges in Gh. Then the greedy algorithm finds a hitting set A ⊆ Ch of size O(n/(hλ) · log |Q|)
for Q.

T. Kavitha 517

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

u v

C ′′
x y

a b

C ′

Figure 1 If δH(a, b) > δG(a, b) + 4 before Step 5 of our algorithm, then we would have bought a
path SP (x, y) of length at most δG(a, b) between C′ and C′′ in Step 5. The u-v path u−a−x−y−b−v
has length at most δG(u, v) + 4.

It will be convenient to assume that there is a unique shortest path between any pair of
vertices. So for every pair of vertices u and v, we will choose one u-v shortest path in G

as the u-v shortest path (denoted by SP (u, v)) and we will ensure that every subpath of a
chosen shortest path is again a chosen shortest path. Let F = {ρ1, . . . , ρ(n2)} be the set of
all these chosen shortest paths in G.

Let Q ⊆ F be the set of shortest paths p such that cost(p) ≥ (n logn)/h2. Lemma 8
tells us that Q has a hitting set Xh of size O(h). Consider the step of augmenting the post-
clustering subgraph Gh with the edges of BFS trees rooted at the centers of clusters in Xh.
As there are only O(h) such trees, the total number of edges added by this augmentation is
O(nh). The following lemma from [20] is a useful consequence of this augmentation.

I Lemma 9. Let u and v be a pair of vertices such that cost(SP (u, v)) ≥ (n logn)/h2. Then
the augmented post-clustering graph has a u-v path of length at most δG(u, v) + 2.

3 Pairwise Spanners

In this section we prove Theorems 1 and 2 stated in Section 1. We first describe the
construction of a P-spanner of size Õ(n|P|2/7) with additive stretch 4. The input is an
undirected unweighted graph G = (V,E) along with P ⊆ V × V .

Our algorithm starts by running the clustering step with an appropriate parameter h and
augments the post-clustering graph Gh by adding BFS trees rooted at the centers of clusters
in Xh, where Xh is an O(h)-sized hitting set for Q = {ρ ∈ F : cost(ρ) ≥ (n logn)/h2}. Call
the resulting graph H.

We are ready to buy 2` new edges for each (u, v) ∈ P, for an appropriate parameter `. If
p = SP (u, v) is expensive, i.e., cost(p) > 2`, then we buy only a prefix p′ and a suffix p′′ of
p such that cost(p′) = cost(p′′) = `. The main idea here is path-hitting – we find small-sized
sets A and B of clusters so that there is a cluster C ′ ∈ A that intersects p′ and there is a
cluster in C ′′ ∈ B that intersects p′′.

For each pair of clusters (C0, C1) ∈ A× B, we add to H at most one shortest path over
all pairs of vertices in C0 ×C1. Then we have an approximate shortest path between u and
v of the form u − C ′ C ′′ − v, where C ′ ∈ A and C ′′ ∈ B, and we will show that this
resulting u-v path has additive stretch 4 (see Figure 1).

Our algorithm is presented below, let h = d|P|2/7 log3/7 ne and ` = d(n log3/2 n)/h5/2e.

1. Run the clustering step with the above h and let Gh be the post-clustering subgraph.
Augment Gh with O(h) BFS trees as described above. Let H be the resulting graph.

2. For each (u, v) ∈ P do: (let ρ = SP (u, v))
(a) if cost(ρ) ≤ 2` then add all the missing edges of ρ to H.

STACS 2015

518 New Pairwise Spanners

(b) else add to H all the missing edges of prefix(ρ) and suffix(ρ), where prefix(ρ) (simil-
arly, suffix(ρ)) is the minimal prefix (resp., suffix) of ρ that has ` edges missing in
Gh.

3. For each p ∈ F such that cost(p) > 2` do: {recall that F is the set of all shortest paths}
let Q0 = {prefix(p) : p ∈ F} and Q1 = {suffix(p) : p ∈ F}.

4. Determine A and B greedily, where A = hitting set for Q0 and B = hitting set for Q1.
5. For each C0 ∈ A and C1 ∈ B do:

if there is a pair (x, y) ∈ C0 × C1 such that δH(x, y) > δG(x, y) + 4, then find such
a pair (x′, y′) ∈ C0 × C1 with least δG(x′, y′) and add to H all the missing edges in
SP (x′, y′).

Lemma 10 shows that H is a P-spanner with additive stretch 4 and Lemma 11 bounds
the size of the subgraph H. Thus Theorem 1.1 follows.

I Lemma 10. Let H be the subgraph computed by the algorithm above. Then δH(u, v) ≤
δG(u, v) + 4 for each (u, v) ∈ P.

Proof. Consider any pair (u, v) ∈ P and let ρ = SP (u, v). If cost(ρ) ≤ 2` then by Step 2(a),
the entire path ρ is present in H and so δH(u, v) = δG(u, v) in this case. If cost(ρ) > 2`
then there is a cluster C ′ ∈ A incident on the prefix ρ′ of ρ and a cluster C ′′ ∈ B incident
on the suffix ρ′′ of ρ.

Let a be the first vertex of C ′ incident on ρ and b be the last vertex of C ′′ incident on ρ
(see Figure 1). If δH(a, b) > δG(a, b) + 4 before Step 5 of our algorithm, then we would have
bought a path of length at most δG(a, b) between C ′ and C ′′ in Step 5. Thus after Step 5,
we have δH(a, b) ≤ diameterH(C ′) + δH(C ′, C ′′) + diameterH(C ′′) ≤ δG(a, b) + 4.

In Step 2(b) of our algorithm, we would have added all edges in the u-a subpath and
the b-v subpath of ρ, so δH(u, a) = δG(u, a) and δH(b, v) = δG(b, v). Thus at the end of the
algorithm, we have δH(u, v) ≤ δH(u, a) + δH(a, b) + δH(b, v) ≤ δG(u, v) + 4. J

I Lemma 11. The size of the final subgraph H is O(nh), where h = d|P|2/7 log3/7 ne.

Proof. Initially the size of H is the size of the post-clustering graph Gh, which is O(nh).
The size of H remains O(nh) after the augmentation with O(h) BFS trees. We buy at most
2` edges per pair in P in Step 2, so this adds to 2`|P|. For each (C0, C1) ∈ A×B, we buy at
most one shortest path – also such a shortest path has at most (n logn)/h2 missing edges in
Gh; otherwise it would already have been approximated within an additive stretch of 2 in H
by some BFS tree (by Lemma 9). So we buy at most (n logn)/h2 edges per (C0, C1) ∈ A×B.

It follows from Lemma 8 that |A| and |B| are at most O(n logn/(h`)). Thus the total
number of edges bought in Step 5 is O((n logn)/h2 · (n logn/h`)2). This is O(nh) since
` = d(n log3/2 n)/h5/2e. Thus the total size of H is O(nh+ `|P|). Substituting the values of
` and h, it follows that the size of H is O(n |P|2/7 log3/7 n). J

A pairwise spanner with additive stretch 6. We now show a simple algorithm to construct
a P-spanner of size O(n|P|1/4) and additive stretch 6. The main step here is path-buying –
for each shortest path ρ whose endpoints are in P, if ρ is “affordable”, then we buy ρ, i.e.,
add to H all the missing edges of ρ.

Definition 12 captures the value of a path. For any pair of clusters C1, C2 in a subgraph
H, let δH(C1, C2) = min{δH(a, b) : a ∈ C1, b ∈ C2}. Similarly, for any pair of clusters C1, C2
incident on a path p, let δp(C1, C2) be the minimum value of δp(x, y), where x ∈ C1 and
y ∈ C2 lie on path p.

T. Kavitha 519

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

a b v

C1
C ′C0

u

Figure 2 We have δH(C0, C
′) ≤ δρ(C0, C

′) and δH(C′, C1) ≤ δρ(C′, C1). Since the diameter of
each cluster is 2, this implies δH(a, b) ≤ δG(a, b) + 6.

I Definition 12. For any subgraph H of G and path p in G, let valueH(p) be the number
of pairs of clusters (C1, C2) incident on p such that δp(C1, C2) < δH(C1, C2).

Thus valueH(p) is the number of pairs of clusters incident on p whose distance in H

would improve upon adding p to H. We also extend the cost function used in our earlier
algorithm to costH(): for any path p, let costH(p) be the number of edges of p that are
missing in H. Our algorithm is described below. Let h = d|P|1/4e and ` = dn/h3e.

1. Run the clustering step with parameter h. Let H be the post-clustering subgraph Gh.
2. For each (u, v) ∈ P do: (let ρ = SP (u, v))

(a) if costH(ρ) ≤ max{4`, 8 valueH(ρ)/`} then buy ρ.
(b) else buy prefix(ρ) and suffix(ρ).

[prefix(ρ) is the minimal prefix of ρ such that costH(prefix(ρ)) = ` and similarly,
suffix(ρ) is the minimal suffix of ρ such that costH(suffix(ρ)) = `.]

I Lemma 13. For every pair (u, v) ∈ P, we have δH(u, v) ≤ δG(u, v) + 6.

Proof. Let ρ ∈ F be the u-v shortest path, where (u, v) ∈ P. This path ρ gets considered in
Step 2 of our algorithm. If we buy ρ in Step 2(a), then δH(u, v) = δG(u, v). Hence assume
ρ was not bought, let costH(ρ) = t when ρ gets considered in Step 2. That is, at the time
of processing ρ in Step 2, there are t edges of ρ missing in the current subgraph H.

We know that t > 4`, otherwise ρ would have been bought in Step 2(a). In Step 2(b),
the prefix and suffix of ρ with ` edges missing in H, i.e., ρ′ = prefix(ρ) and ρ′′ = suffix(ρ),
are bought. Let q = ρ− (ρ′ ∪ ρ′′), this is the middle portion of ρ consisting of t− 2` missing
edges. It follows from Lemma 6 that there are at least `/2 clusters incident on ρ′ and on ρ′′.

Let A0 (similarly, A1) be the set of clusters incident on ρ′ (resp., ρ′′). The subpath q

has at least (t− 2`)/2 incident clusters (call this set of clusters B). We will show Claim 1.

I Claim 1. There are clusters C0 ∈ A0, C ′ ∈ B, and C1 ∈ A1 such that δH(C0, C
′) ≤

δρ(C0, C
′) and δH(C ′, C1) ≤ δρ(C ′, C1).

We will now assume the above claim and finish the proof of Lemma 13. Then we will
prove Claim 1. This claim guarantees that the graph H contains a path C0 C ′ C1
such that the C0 C ′ subpath has length at most δρ(C0, C

′) and the C ′ C1 subpath has
length at most δρ(C ′, C1) (see Figure 2). Thus there are vertices a ∈ ρ′∩C0 and b ∈ ρ′′∩C1
such that δH(a, b) ≤ δG(a, b) + 6 (via the C0 C ′ C1 path in H and diameterH(C) ≤ 2
for all C ∈ Ch). We buy all the missing edges in ρ′ and in ρ′′ in Step 2(b), hence we have
δH(u, a) = δG(u, a) and δH(b, v) = δG(b, v). Since δH(u, v) ≤ δH(u, a) + δH(a, b) + δH(b, v),
we get δH(u, v) ≤ δG(u, v) + 6. J

Proof of Claim 1. Suppose there are no such clusters C0, C
′, and C1. Then for each

cluster C ′ ∈ B, either δρ(C0, C
′) < δH(C0, C

′) for every C0 ∈ A0 or δρ(C ′, C1) < δH(C ′, C1)

STACS 2015

520 New Pairwise Spanners

for every C1 ∈ A1. Since |A0| ≥ `/2, |A1| ≥ `/2, and |B| ≥ (t− 2`)/2, this means that

valueH(ρ) ≥ `

2 ·
t− 2`

2 >
`

2 ·
t

4 = ` · t
8 , (1)

where the second inequality follows from the fact that t > 4`, so ` < t/4, thus t − 2` >
t/2. Since we did not buy ρ in Step 2(a), it must be the case that t > 8 valueH(p)/`, i.e,
valueH(ρ) < ` · t/8. This contradicts Inequality (1). J

I Lemma 14. The size of the final subgraph H is O(n|P|1/4).

Proof. Initially the size of H is O(nh) which is O(n|P|1/4). The total number of edges
added in Step 2(b) is at most 2`|P| since we buy at most 2` edges per element in P. Since
` = dn/h3e where h = d|P|1/4e, it follows that O(`|P|) is O(n|P|1/4). The total number of
edges added in Step 2(a) is

∑
ρ cost(ρ) where the sum is over all the paths ρ that got bought

in this step during the entire algorithm.
Let us evaluate

∑
ρ cost(ρ) for the paths ρ bought in Step 2(a) – this is at most 4`|P|+∑

ρ 8 valueH(ρ)/` since we buy ρ only when costH(ρ) ≤ max{4`, 8 valueH(ρ)/`}. Let us
bound

∑
ρ valueH(ρ)/` where the sum is over all the paths bought.

We say a pair of clusters (C1, C2) ∈ Ch × Ch supports ρ if (C1, C2) contributes positively
to valueH(ρ). Consider all the shortest paths that were supported by a fixed pair (C1, C2).
We claim at most 5 of them could have been bought in our algorithm. This is because once
a shortest path ρ supported by (C1, C2) gets bought, we have δH(C1, C2) ≤ δG(C1, C2) + 4
since this path ρ is SP (x, y) for some (x, y) ∈ C1 × C2. Thereafter, every time a path
supported by (C1, C2) gets bought, δH(C1, C2) (strictly) decreases. Thus

∑
ρ

valueH(ρ)
`

= 1
`

∑
(C1,C2)

number of paths supported by (C1, C2) that got bought ≤ 5 |Ch|2

`
,

where the middle sum is over all pairs of clusters (C1, C2) ∈ Ch × Ch. Substituting |Ch| ≤
n/h and ` = dn/h3e, the right side above is bounded by O(nh). Hence the size of H is
O(n|P|1/4). J

Theorem 1.2 follows from Lemmas 13 and 14. This finishes the proof of Theorem 1
stated in Section 1.

An ST -spanner with additive stretch 4. The input here is G = (V,E) along with S ⊆ V

and T ⊆ V . We assume without loss of generality that |S| ≤ |T |. Our algorithm here again
uses path-buying, however with a new value function that is defined below.

I Definition 15. For any subgraph H of G and any path p in G with one endpoint in S (call
this vertex s) and the other endpoint in T (call this vertex t), define valueH(p) as follows:

valueH(p) = `·|{C0 : δp(s, C0) < δH(s, C0)}| + 2·|{(C1, C2) : δp(C1, C2) < δH(C1, C2)}|,

where all the clusters C0, C1, C2 above have to be incident on p and the value ` = dn/h3e
(the parameter h will be set to d(|S| |T |)1/4e).

In other words, valueH(p) = `α1 + 2α2, where α1 is the number of clusters incident on p
whose distance to s via p is better than the current distance to s in H and α2 is the number
of pairs of clusters incident on p whose distance in p is better than their current distance in
H. Our algorithm is described below. Let h = d(|S| |T |)1/4e.

T. Kavitha 521

1. Run the clustering step with parameter h. Let H be the post-clustering subgraph Gh.
2. For each (s, t) ∈ S × T do: (let p = SP (s, t))

(a) If costH(p) ≤ max{2`, 4 valueH(p)/`} then add to H all the missing edges of p.
(b) Else buy the minimal suffix p′ of p such that costH(p′) = `, i.e., add to H the last `

missing edges of p.

Lemma 16 states the correctness of the above algorithm. Its proof (which is omitted
here) is similar to the proofs of Lemmas 13 and 14. Theorem 2 stated in Section 1 thus
follows.

I Lemma 16. The size of the final subgraph H is O(n · (|S| |T |)1/4). For every pair (s, t) ∈
S × T , we have δH(s, t) ≤ δG(s, t) + 4.

4 Sourcewise spanners

The input here is G = (V,E) along with a subset of V , which is the set of sources. In this
section we will prove Theorem 3. We first show Theorem 3.2 whose proof follows quite easily
from our ST -spanner with additive stretch 4 (shown in the previous section). Let S′ ⊆ V

be the set of sources here – we will be using the symbols S and T for the 2 sets in the
ST -spanner algorithm, so we use the symbol S′ to refer to the set of sources here. Broadly
speaking, we take the sets S and T in the ST -spanner to be the set S′ and the set of all
cluster centers to get a sourcewise spanner.

However we need to be careful about which of S, T becomes S′ and which becomes the
set of cluster centers: recall that our algorithm for ST -spanners assumed |S| ≤ |T |. So we
assign the sets S and T as follows: if |S′| ≤ n2/3 then assign S = S′ else assign T = S′.
More precisely, our algorithm does the following:

1. Run the clustering step with parameter h = d(n|S′|)1/5e. Let H be the post-clustering
subgraph Gh. Let T ′ = {cluster centers}.

2. If |S′| ≤ n2/3 then set S = S′ and T = T ′; else set S = T ′ and T = S′.
3. Run Step 2 of our ST -spanner algorithm with additive stretch 4 (the parameter ` =
dn/h3e); return the ST -spanner H.

It can be shown (proof omitted here) that the subgraph returned by the ST -spanner
algorithm is an (S′ × V)-spanner with additive stretch 6 and that this subgraph has size
O(n · (n|S′|)1/5). Thus Theorem 3.2 stated in Section 1 follows.

We now prove Theorem 3.1 by describing an algorithm to construct a sparse (S × V)-
spanner with additive stretch 4, where S ⊆ V is the set of sources. We run the clustering step
with h = d(|S|n log2 n)2/9e and initialize the subgraph H to the post-clustering subgraph
Gh. Then we augment H with BFS trees rooted at O(h) selected cluster centers so that
every path p ∈ F with cost(p) ≥ (n logn)/h2 has some adjacent cluster center that has been
selected. For every s ∈ S and cluster C, we pick the shortest path between s and its closest
vertex x ∈ C (in case of ties, x is chosen arbitrarily) and call it SP (s, C) henceforth.

Let R ⊆ F be the collection of paths SP (s, C) where s ∈ S and C ∈ Ch. Corresponding
to each ρ ∈ R, we are ready to buy λ new edges, where λ2 = (n logn)2/h5. So if cost(ρ) ≤ λ,
then we buy ρ. For any ρ ∈ R, if cost(ρ) > λ, then let ρ0 to be the minimal suffix of ρ that
has bλc missing edges in the post-clustering subgraph Gh; let Q0 be the set containing all
such suffixes ρ0. We now use path-hitting to determine A0 ⊆ Ch so that for each ρ0 ∈ Q0
there is at least one cluster C0 ∈ A0 that intersects ρ0.

STACS 2015

522 New Pairwise Spanners

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

y z

C0
C

s v
SP (y, z)SP (s, y)

Figure 3 There are at most λ2 missing edges in the path SP (s, y) and at most λ missing edges
in the path SP (y, z). We will buy a path s C0 C, where C is the last cluster on SP (s, v).

1. For each s ∈ S and C0 ∈ A0: if there exists any x ∈ C0 such that cost(SP (s, x)) ≤ λ2 then
buy SP (s, x′) where x′ ∈ C0 is the closest vertex to s that satisfies cost(SP (s, x′)) ≤ λ2

and also run the following step.

1.1. For each C ∈ Ch such that C0 intersects SP (s, u) for some u ∈ C do:
– if there is some path SP (a, b) where (a, b) ∈ C0 × C with cost(SP (a, b)) ≤ λ and

buying this path improves δH(s, C), then buy SP (a, b).

We now deal with ρ ∈ R such that cost(ρ) > λ2. For any such ρ, define ρ1 be the minimal
prefix of ρ with bλ2c missing edges in the current H; let Q1 be the set containing all such
prefixes ρ1. We again use path-hitting to determine A1 ⊆ Ch so that for each ρ1 ∈ Q1 there
is at least one cluster C1 ∈ A1 that intersects ρ1. We run the following two steps now.
2. For each (s, C1) ∈ S×A1: if there exists any w ∈ C1 such that cost(SP (s, w)) ≤ λ2 then

buy SP (s, w′) where w′ ∈ C1 is the closest vertex to s that satisfies cost(SP (s, w′)) ≤ λ2.
3. For each (C1, C) ∈ A1 × Ch: if there is a pair (a, b) ∈ C1 × C such that δH(a, b) >

δG(a, b) + 2 and buying SP (a, b) improves δH(C1, C), then buy SP (a, b).

I Lemma 17. For every pair (s, v) ∈ S × V , we have δH(s, v) ≤ δG(s, v) + 4.

Proof. Consider any pair (s, v) ∈ S×V and let p = SP (s, v). We can assume that cost(p) <
(n logn)/h2, otherwise δH(s, v) ≤ δG(s, v) + 2 due to adding certain BFS trees to H.

Let z be the last clustered vertex on p, i.e., z is the clustered vertex that is closest to v on
this path p. Let C be the cluster containing z. Consider ρ = SP (s, C). If cost(ρ) ≤ λ, then
we would have bought ρ, which means δH(s, z) ≤ δG(s, z) + 2, thus δH(s, v) ≤ δG(s, v) + 2.
So let us assume that cost(ρ) > λ. We have two cases here:

Case(1): Suppose λ < cost(ρ) ≤ λ2. There is a cluster C0 ∈ A0 incident on the suffix ρ0
of ρ. In other words, the path ρ restricted to the subpath C0 C has at most λ missing
edges. Let y be the first vertex of C0 on ρ. Since cost(ρ) ≤ λ2, we have cost(SP (s, y)) ≤ λ2.
So in Step (1) we either buy all the missing edges of SP (s, y) or we already have a path
s C0 in H of length at most δG(s, y). Thus we have δH(s, C0) ≤ δG(s, y).

Now consider the y-z subpath of ρ (see Figure 3). We know that there are at most
λ edges of SP (y, z) that are missing in the subgraph H. Buying these λ edges causes
δH(s, C) ≤ δH(s, C0) + 2 + |SP (y, z)| ≤ δG(s, z) + 2.

So either δH(s, C) is already at most δG(s, z)+2 or we buy the missing edges of SP (y, z)
in Step (1.1) and make δH(s, C) ≤ δG(s, z) + 2. Thus after this step, we have δH(s, v) ≤
δG(s, v) + 4 using the path s C0 C v.

Case(2): We are left with the case when cost(ρ) > λ2. In this case we would have a
cluster C1 ∈ A1 incident on the prefix ρ1 of ρ with at most λ2 missing edges. Let x be the
first vertex of C1 on ρ (see Figure 4). While considering the pair (s, C1), we would have
either bought all the missing edges of SP (s, x) in Step (2) (as there are at most λ2 missing
edges here) or we already have a path s C1 of length at most δG(s, x).

T. Kavitha 523

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

x z

C1

≤ |SP (x, z)|≤ |SP (s, x)|
C

vs

Figure 4 H has an s C1 path of length |SP (s, C1)|. There is also a C1 C path of length
|SP (x, z)|.

Consider the pair (C1, C) ∈ A1 × Ch. Step (3) for the pair (x, z) ∈ (C1, C) ensures
that either δH(x, z) ≤ δG(x, z) + 2 or there is already a C1 C path of length at most
|SP (x, z)|. In either case there is a path C1 z of length at most δG(x, z) + 2. Since
δH(s, C1) ≤ δG(s, x) and δH(C1, z) ≤ δG(x, z)+2, it follows that δH(s, v) ≤ δG(s, v)+4. J

Theorem 3.1 stated in Section 1 follows from Lemma 17 and Lemma 18 stated below.

I Lemma 18. The size of the final subgraph H is O(nh), where h = d(|S|n log2 n)2/9e.

5 ST-spanners: A trade-off result

In this section we present our algorithm to construct a sparse ST -spanner with additive
stretch 2k, for any integer k ≥ 1. We first describe the algorithm and show that for any
(s, t) ∈ S × T , the final subgraph H has an s-t path of length at most |SP (s, t)|+ 2k.

Initialization. We run the clustering step with an appropriate parameter h and the
subgraph H is initialized to the post-clustering subgraph Gh. Then we augment H using
O(h) BFS trees so that for each shortest path p ∈ F with cost(p) ≥ (n logn)/h2, the
subgraph H has a path of length at most |p|+ 2 between p’s endpoints.

Set the parameters ` = nh/(k |S| |T |) and α = (|S| |T | k logn/h3)1/k. Note that these
parameters have been set so that αk` = (n logn)/h2. For (s, t) ∈ S×T , if cost(SP (s, t)) ≤ `,
then we buy SP (s, t). So we now have to deal with approximating shortest paths p ∈ F
with endpoints in S × T that satisfy ` < cost(p) < αk`.

Divide each such path p into critical subpaths as follows. Let αr−1` < cost(p) ≤ αr` for
some r ∈ {1, . . . , k}. Then for each j ∈ {0, 1, . . . , (r − 1)}:

let pj = minimal suffix of p with bαj`c edges missing in the post-clustering graph Gh.

Thus p can be split as p′ ‖ pr−1 for some prefix p′. Split pr−1 into qr−1 ‖ qr−2 ‖ · · · ‖ q0
as follows: let q0 = p0 and for 1 ≤ j ≤ r− 1, let qj be the prefix of pj obtained by removing
pj−1 (a suffix of pj) from pj . For each j, let Qj be the set of all qj ’s. So each p = SP (s, t)
with cost(p) ≥ αr−1` has a subpath qj ∈ Qj , for j = 0, . . . , r − 1.

Determine hitting sets A0, . . . ,Ak−1 for these sets Q0, . . . , Qk−1, respectively. In other
words, Aj is a set of clusters such that for every qj ∈ Qj , there is at least one cluster in Aj
that intersects qj .
1. For each s ∈ S and cluster Cj−1 ∈ Aj−1 (where 1 ≤ j ≤ k) do

for every vertex x in Cj−1: if cost(SP (s, x)) ≤ αj` and buying SP (s, x) improves
δH(s, Cj−1), then buy SP (s, x).

In order to see why this step is useful, consider p = SP (s, t) such that αr−1` < cost(p) ≤
αr` for some 1 ≤ r ≤ k. As described above, we can write p as p′ ‖ qr−1 ‖ qr−2 ‖ · · · ‖ q0. In
each hitting set Aj (for 0 ≤ j ≤ r− 1), we would have at least one cluster that intersects qj :
let Cj be such a cluster. For each j, let uj be the first vertex of cluster Cj on the path p, i.e.,
while traversing p from s to t, the first vertex of Cj that we encounter is uj (see Figure 5).

STACS 2015

524 New Pairwise Spanners

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

s ur−1 ur−2 u0 t

C0Cr−2Cr−1

Figure 5 The subgraph H has a path of length at most |SP (s, ur−1)| between s and Cr−1.

Consider the s−ur−1 subpath of p. The shortest path SP (s, ur−1), being a subpath of p,
has cost at most αr`. Hence while processing the pair (s, Cr−1) when we consider SP (s, ur−1)
in Step (1) above, we either buy SP (s, ur−1) or we already have δH(s, Cr−1) ≤ δG(s, ur−1).
In other words, after Step (1) we have δH(s, Cr−1) ≤ δG(s, ur−1). We would similarly like
to have δH(Ci−1, Cr−2) ≤ |SP (ur−1, ur−2)| and make δH(s, Cr−2) ≤ δG(s, ur−2) + 2 and so
on. In order to accomplish this, we do as follows.
2. For each s ∈ S and for j = k − 1 downto 1 do

for every (Cj , Cj−1) ∈ Aj×Aj−1 so that there is some v ∈ Cj−1 with SP (s, v)∩Cj 6= ∅
– for each (x, y) ∈ Cj×Cj−1: if cost(SP (x, y)) ≤ 2αj` and buying SP (x, y) improves
δH(s, Cj−1), then buy SP (x, y).

In the above step, corresponding to j = r− 1 and the vertex s ∈ S, we consider the pair
(Cr−1, Cr−2) on the path p shown in Figure 5. Since there is a vertex ur−2 ∈ Cr−2 such that
SP (s, ur−2) intersects Cr−1, we run the innermost for loop of Step (2) for (Cr−1, Cr−2).
Also cost(SP (ur−1, ur−2)) ≤ cost(qr−1) + cost(qr−2) ≤ 2αr−1`.

So either we already have δH(s, Cr−2) ≤ δG(s, ur−2) + 2 or we buy SP (ur−1, ur−2) and
make δH(s, Cr−2) ≤ δH(s, Cr−1) + 2 + |SP (ur−1, ur−2)|, which is at most δG(s, ur−2) + 2
since δH(s, Cr−1) ≤ δG(s, ur−1) by the end of Step (1).

It is easy to see that for any 1 ≤ i ≤ r − 1, if δH(s, Ci) ≤ δG(s, ui) + 2(r − i − 1)
when the index j = i + 1, then when the index j = i and the pair (Ci, Ci−1) on path p

gets considered, then δH(s, Ci−1) becomes at most δH(s, Ci) + 2 + |SP (ui, ui−1)| which is
at most δG(s, ui−1) + 2(r − i).

Thus at the end of Step (2), we have δH(s, C0) ≤ δG(s, u0) + 2(r − 1).
3. Finally for each (s, t) ∈ S × T and C0 ∈ A0 such that C0 intersects SP (s, t) do

– for each w ∈ C0: if cost(SP (w, t)) ≤ ` and buying SP (w, t) improves δH(s, t), then
buy SP (w, t).

Thus in Step (3), when we consider the cluster C0 and the pair (s, t), we either buy
SP (u0, t) which ensures δH(s, t) ≤ δH(s, C0) + 2 + |SP (u0, t)| ≤ δG(s, t) + 2r or we already
have δH(s, t) ≤ δG(s, t) + 2r. Since r ≤ k, it follows that H has an additive stretch of 2k
for all distances in S× T . This finishes the description of our algorithm and its correctness.
Lemma 19 (proof omitted here) bounds the size of H.

I Lemma 19. The final subgraph H has O(nh) edges, where h = dk
√

logn·(|S|k+1 |T |)
1

2k+3 e.

We can now conclude Theorem 4 stated in Section 1, i.e., for any integer k ≥ 1 and
S, T ⊆ V , an ST -spanner with additive stretch 2k and size Õ(n · (|S|γ |T |)1/(2γ+1)), where
γ = k + 1, can be constructed in polynomial time.

By running the clustering step with h = dk
√

logn · (|S|k+1 n)1/(2k+4)e and taking T =
{cluster centers}, Theorem 4 gives us an ST -spanner H of size O(nh) and additive stretch
2k. Since T is the set of cluster centers, it is easy to see that H is an (S × V)-spanner with
additive stretch 2k + 2.

T. Kavitha 525

I Corollary 20. For any integer k ≥ 1 and subset S ⊆ V , an (S × V)spanner with addit-
ive stretch 2t and size Õ(n1+1/(2t+2) · |S|t/(2t+2)), where t = k + 1, can be constructed in
polynomial time.

Acknowledgments. Thanks to the reviewers for their helpful comments.

References
1 D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and

shortest paths (without matrix multiplication). SIAM Journal on Computing, 28(4):1167–
1181, 1999.

2 I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete and Computational Geometry, 9:81–100, 1993.

3 B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse
neighborhood covers. SIAM Journal on Computing, 28(1):263–277, 1998.

4 B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-off. SIAM
Journal on Computing, 5(2):151–162, 1992.

5 S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths in
undirected graphs. SIAM Journal on Computing, 39(7):2865–2896, 2010.

6 S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and (α, β)-spanners.
ACM Transactions on Algorithms, 7(1), 2010.

7 S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in o(n2 logn)
time. ACM Transactions on Algorithms, 2(4):557–577, 2006.

8 S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k − 1)-spanner
of o(n1+1/k) size in weighted graphs. Random Structures and Algorithms, 30(4):532–563,
2007.

9 B. Bollobás, D. Coppersmith, and M. Elkin. Sparse distance preservers and additive span-
ners. SIAM Journal on Discrete Math., 19(4):1029–1055, 2005.

10 S. Chechik. New additive spanners. In Proceedings of the 24th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 498–512, 2013.

11 E. Cohen. Fast algorithms for constructing t-spanners and paths of stretch t. In Proceedings
of the 34th IEEE Symp. on Foundations of Computer Science (FOCS), pages 648–658, 1993.

12 D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In
Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
660–669, 2005.

13 L. J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 28:170–183,
2001.

14 L. J. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. Journal
of Algorithms, 50(1):79–95, 2004.

15 M. Cygan, F. Grandoni, and T. Kavitha. On pairwise spanners. In Proceedings of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS), pages 209–
220, 2013.

16 D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2004.

17 M. Elkin. Computing almost shortest paths. ACM Transactions on Algorithms, 1(2):283–
323, 2005.

18 M. Elkin and D. Peleg. (1 + ε, β)-spanner construction for general graphs. SIAM Journal
on Computing, 33(3):608–631, 2004.

19 C. Gavoille, D. Peleg, S. Perennes, and R. Raz. Distance labeling in graphs. In Proceedings
of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 210–219, 2001.

STACS 2015

526 New Pairwise Spanners

20 T. Kavitha and N. M. Varma. Small stretch pairwise spanners. In Proceedings of the 40th
International Colloquium on Automata, Languages and Programming (ICALP), pages 601–
612, 2013.

21 M. Parter. Bypassing Erdős’ girth conjecture: Hybrid spanners and sourcewise spanners.
In Proceedings of the 41st International Colloquium on Automata, Languages and Program-
ming (ICALP), pages 608–619, 2014.

22 D. Peleg. Proximity-preserving labeling schemes. Journal of Graph Theory, 33(3):167–176,
2000.

23 D. Peleg and A. A. Schaffer. Graph spanners. Journal of Graph Theory, 13:99–116, 1989.
24 D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM Journal on

Computing, 18:740–747, 1989.
25 S. Pettie. Low distortion spanners. ACM Transactions on Algorithms, 6(1), 2009.
26 L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of approximate distance

oracles and spanners. In Proceedings of the 32nd Int. Colloq. on Automata, Languages, and
Programming (ICALP), pages 261–272, 2005.

27 L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proceedings of the 12th
Annual European Symposium on Algorithms (ESA), pages 580–591, 2004.

28 M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,
2005.

29 D. P. Woodruff. Additive spanners in nearly quadratic time. In Proceedings of the 37th
Int. Colloq. on Automata, Languages, and Programming (ICALP), pages 463–474, 2010.

	Introduction
	Background and Related Results
	Techniques

	Preliminaries
	Pairwise Spanners
	Sourcewise spanners
	ST-spanners: A trade-off result

