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—— Abstract

We consider the problem of testing small set expansion for general graphs. A graph G is a (k, ¢)-
expander if every subset of volume at most k has conductance at least ¢. Small set expansion has
recently received significant attention due to its close connection to the unique games conjecture,
the local graph partitioning algorithms and locally testable codes.

We give testers with two-sided error and one-sided error in the adjacency list model that
allows degree and neighbor queries to the oracle of the input graph. The testers take as input
an n-vertex graph G, a volume bound k, an expansion bound ¢ and a distance parameter € > 0.
For the two-sided error tester, with probability at least 2/3, it accepts the graph if it is a (k, ¢)-
expander and rejects the graph if it is e-far from any (k*, ¢*)-expander, where k* = O(ke)

and ¢* = O Tloa (@ /‘7;)71% YTy ). The query complexity and running time of the tester are

5(\/ﬁ¢*45*2), where m is the number of edges of the graph. For the one-sided error tester, it
accepts every (k, ¢)-expander, and with probability at least 2/3, rejects every graph that is e-far
from (k*, ¢*)-expander, where k* = O(k'~¢) and ¢* = O(£¢?) for any 0 < ¢ < 1. The query
complexity and running time of this tester are O( =+ %)

We also give a two-sided error tester in the rotation map model that allows (neighbor, index)
queries and degree queries. This tester has asymptotically almost the same query complexity
and running time as the two-sided error tester in the adjacency list model, but has a better
performance: it can distinguish any (k, ¢)-expander from graphs that are e-far from (k*, ¢*)-
expanders, where k* = O(ke) and ¢* = @(mm{logum/‘i)’log PYR(EYa) ).

In our analysis, we introduce a new graph product called non-uniform replacement product
that transforms a general graph into a bounded degree graph, and approximately preserves the
expansion profile as well as the corresponding spectral property.
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1 Introduction

Graph property testing is an effective algorithmic paradigm to deal with real-world networks,
the scale of which has become so large that it is even impractical to read the whole input. In
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the setting of testing a graph property P, we are given as input a graph G and we want to
design an algorithm (called tester) to distinguish the case that G has property P from the
case that G is “far from” the property P with high success probability (say 2/3). Here, the
notion of being “far from” is parameterized by a distance parameter €. In most situations, a
graph G is said to be e-far from property P if one has to modify at least an e fraction of the
representation (or edges) of G to obtain a graph G’ with property P. We assume the input
graph G can be accessed through an oracle Og and the goal is to design property testers
that make as few queries as possible to Og.

Since the seminal work of Goldreich and Ron [17], many testers have been developed for
different graph properties, such as k-colorability, bipartiteness, acyclicity, triangle-freeness
and many others. Most of these testers apply only to the adjacency matrix model or the
adjacency list model, depending on the types of queries the testers are allowed to ask the
oracle. The former model is most suitable for dense graphs and general characterizations on
the testability of a property in this model has been given (e.g., [2]). The latter model is most
suitable for sparse graphs, and several property testers using the techniques of local search
or random walks are known, while it is not well understood what properties are testable in
constant time in this model. Even less is known about testers, testability results or even
models for general graphs (see recent surveys [36, 14]).

In this paper, we focus on property testers for general graphs. We will consider the
adjacency list model that allows degree queries and neighbor queries to the oracle of the
graph [31]. For the degree query, when specified a vertex v, the oracle returns the degree of
v; for the neighbor query, when specified a vertex v and an index ¢; the oracle returns the
ith neighbor of v. The adjacency list model also applies to the bounded degree graphs with
an additional restriction that a fixed upper-bound was assumed on the degrees [17]. We will
also consider a new model which we call rotation map model that allows degree queries and
(neighbor, index) queries to the oracle [24]. For the (neighbor, index) query, when specified a
vertex v and an index 4, the oracle returns a pair (u,j) such that u is the ith neighbor of v
and j is the index of u as a neighbor of v. Note that the rotation map model is at least as
strong as the adjacency list model.

We study the problem of testing small set expansion for general graphs. Given a graph
G = (V, E) with n vertices and m edges, and a set S C V| let the volume of S be the sum of
degree of vertices in S, that is, vol(S) := ) g degs(v), where degg(v) denotes the degree
of vertex v. Define the conductance of S as ¢(S) := e(vsc;lil(/g)S)’ where e(S, V\S) is the number
of edges leaving S; and define the k-expansion profile of G as ¢(k) := ming.oi(s)<k #(5). A
graph G is called a (k, ¢)-expander if ¢(k) > ¢, that is, all the subsets in G with volume at
most k have conductance at least ¢. We will refer to small set expander as (k, ¢)-expander
and refer to small set expansion as ¢(k).

Besides of the relation to the mixing time of random walks [26], small set expansion has
been of much interest recently for its close connection to the unique games conjecture [32, 7],
the design of local graph partitioning algorithms in massive graphs [39, 5, 6, 30, 22], and
locally testable codes that are testable with linear number of queries [8]. Approximation
algorithms and spectral characterizations for the small set expansion problem have been
studied [7, 25, 23, 22, 30, 29]. It is natural to ask if one can efficiently (in sublinear time)
test if a graph is a small set expander.

1.1 Our results

We give testers for small set expansion in the adjacency list model as well as the rotation

map model for general graphs. We use the common definition of distance between graphs.
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More precisely, a graph G with m edges is said to be e-far from a (k, ¢)-expander if one
has to modify at least em edges of G so that it becomes a (k, ¢)-expander. We will assume
throughout the paper that m = Q(n) (and a brief discussion is given in Section 2), while the
algorithm is not given as input the number of edges m.

1.1.1 Testers in adjacency list model

Our first result is a property tester for small set expansion with two-sided error in the
adjacency list model.

» Theorem 1. Given degree and neighbor query access to an n-vertex graph, a volume bound
k, a distance parameter € and a conductance bound ¢, there exists an algorithm that with
probability at least 2/3, accepts any graph that is a (k, ¢)-expander, and rejects any graph that
. 4

is e-far from any (k*, ¢*)-expander, where k* = ©(ke) and ¢* = 6(min{log(4m,/k),logn}~(ln k)),
where m is the number of edges of G. The query complexity and running time of the algorithm

are O(y/m¢4e72).

Note that the running time of the tester matches the best known algorithms for testing
the conductance of G which corresponds to the case k = m (see further discussions below).

As a byproduct of our analysis for the above two-sided error tester, we obtain a one-sided
error tester (that accepts every (k, ¢)-expander) by invoking a local algorithm for finding
small sparse cuts. We show the following result.

» Theorem 2. Given degree and neighbor query access to an n-vertex graph, a volume
bound k, a conductance bound ¢, and a distance parameter ¢, there exists an algorithm that
always accepts any graph that is a (k, ¢)-expander, and with probability at least 2/3 rejects
any graph that is e-far from any (k*, ¢*)-expander, where k* = O(k'~%) and ¢* = O(£4?)
for any 0 < £ < 1. Furthermore, whenever it rejects a graph, it provides a certificate that
the graph is not a (k, ¢)-expander in the form of a set of volume at most k and expansion at
most ¢. The query complexity and running time of the algorithm are 6( =+ ﬁ)

Note that £ is not necessarily a constant, and the running time of the above algorithm is
sublinear in m for k = O(loggﬁ) and constant ¢.

1.1.2 Tester in rotation map model

We also give a two-sided error tester in the rotation map model. Note that the gap of the
conductance value in completeness and soundness here is smaller than the corresponding gap
in the tester in adjacency list model.

» Theorem 3. Given degree and (neighbor, index) query access to an n-verter graph,
a volume bound k, a distance parameter € and a conductance bound ¢, there exists an
algorithm that with probability at least 2/3, accepts any graph that is a (k, $)-expander,
and rejects any graph that is e-far from any (k*, ¢*)-expander, where k* = O(ke) and

2

o* = @(min{log(4m/(§:) oz ] (n k)), where m is the number of edges of G. The query complezity
and running time of the algorithm are O(y/me¢2e72).

1.1.3 Graph transformation

The analysis of the above two-sided error tester involves analyzing random walks on a
bounded degree graph by the spectral property of small set expander and a new graph
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product which we call non-uniform replacement product that transforms every graph (with
possible multiple edges and self-loops) into a bounded degree graph, and in the process, the
expansion profile of the resulting graph does not differ by much from that of the original
graph. This transformation may be of independent interest, and we present the formal result
below. Let L& be the normalized Laplacian matrix of a graph G and let \;(G) denote the
ith smallest eigenvalues of Lg.

» Theorem 4. Let ¢ < 1 and k < m. For any graph G = (V, E) with n vertices and m
edges, there exists a 16-reqular graph G' with ©(m) vertices such that
1. If S CV(G) is a subset in G with ¢c(S) < ¢, then there exists a set S' C V(G'), such
that |S’| = ©(volg(S)) and ¢ (S") < ¢/16;
2. If for any set S C V(G) with volg(S) <k, ¢pc(S) > ¢, then
(a) for any S C V(G') with |S'] < O(k), der(5") = Ae?).
(b) for any o> 0, it holds that )\(H(;)zm (G") = Qab¢?(log 22)71), and Azmyita(G) =
Q(ag? log, Z2). Furthermore, if k = m, then A2(G') = Q(¢?).

Note that by recent spectral characterization of small set expansion of G and the
preconditions of the Item 2 of Theorem 4, we have )\M(G) = Q(ab¢?(log QTm)’l),
Azzmyire (G) = Q(ag?log,, (2m/k)), and if k = m, A(G) = Q(¢?) (see Section 2.2). Also
we stress that Item 2b above is not a direct consequence of Item 2a and inequalities in
Section 2.2, and its proof involves a more refined spectral analysis. The main point from G
to G’ is that the property of small set expansion is well preserved and the maximum degree
is also greatly reduced, which is comparable to work on constructions from high degree
expanders to constant degree expanders (see eg.,[33, 4]).

1.2 Other related work

There is an interesting line of research on testing the special case of the (k, ¢)-expander for
k = m, which is often abbreviated as ¢-expander. The corresponding quantity ¢(m) is often
called the ezpansion (or conductance) of G [19]. Goldreich and Ron [16] have proposed an
expansion tester for bounded degree graphs in the adjacency list model. The tester (with
different setting parameters) has later been analyzed by Czumaj and Sohler [11], Nachmias
and Shapira [28], and Kale and Seshadhri [20], and it is proven that the tester can distinguish
d-regular ¢-expanders from graphs that are e-far from any d-regular Q(nqﬁ2) expanders for
any 1 > 0. The query complexity and running time of the tester are O(2=o— (=1 logn)°M),
which is almost optimal by a lower bound of Q(y/n) given by Goldrelch and Ron [17]. Li,
Pan and Peng [24] give an expansion tester in the rotation map model with query complexity
and running time O( ¢2+n( ~11ogn)©M) for general graphs that matches the best known
tester for bounded degree graphs. We remark that when k& = m, our two-sided tester in the
rotation map model can be also guaranteed to test the conductance ¢(m) of G with the same

running time and approximation performance. In [24], a product called non-uniform zig-zag
product was proposed to transfer an arbitrary graph into a bounded degree graph. However,
the analysis there is more involved and does not seem to generalize to the k-expansion profile
for any k < m as considered here. Our analysis here is both simple and applicable to the
broader case.

The techniques of random walks have also been used to test bipartiteness under different
models [15, 21, 10]. In particular, Kaufman et al. extend the bipartiteness tester in bounded
degree graphs to general graphs [21] and they also used the idea of replacing high degree
vertices by expander graphs. Furthermore, we will also use their techniques for emulating
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random walks (by performing queries to the oracle of the original graph) and sampling
vertices almost uniformly in the transformed graph. However, the transformed graph in [21]
may still have large maximum degree (that may be twice the average degree of the original
graph), which is not applicable to our case. Ben-Eliezer et al. studied the strength of different
query types in the context of property testing in general graphs [9]. The analysis for the
expansion of the replacement product (and the zig-zag product) of two regular graphs are
introduced in [35, 33, 37, 34].

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we give some basic definitions
and introduce the tools for our analysis. Then we introduce the non-uniform replacement
product and show its property in Section 3. In Section 4, we give all our testers and prove
the performance of these testers. Finally, we give a short conclusion in Section 5. All missing
proofs can be found in the full version of the paper’.

2 Preliminaries

Let G = (V, E) be an undirected and simple graph with |V| = n and |E| = m. Let degq(v)
denote the degree of a vertex v. As mentioned in the introduction, we consider the adjacency
list model and the rotation map model. In the adjacency list model, the graph is represented
by its adjacency list, which is also accessible through an oracle access O¢, and the algorithm
is allowed to perform degree and neighbor queries to Og. In the rotation map model, the
graph is represented by its rotation map that for each vertex u and an index ¢ < degq(u),
in the (u,i)th location of the representation the pair (v, j) is stored such that v is the ith
neighbor of v and u is the jth neighbor of v. We are given an oracle access Og to the rotation
map of G and allowed to perform degree queries and (neighbor, index) queries to Og. We
remark that the rotation map model is at least as strong as the adjacency list model. For a
graph with maximum degree bounded by d, we assume that d is a constant independent of n.

For a vertex subset S C V, let eq(S,V\S) be the number of edges leaving S. Let
volg(S) == Y, cs degq(v) and ¢ (S) := e (S, S)/vola(S) be the volume and the conductance
of S in G, respectively. Note that volg(G) := volg(V) = 2|E|. In the following, when it
is clear from context, we will omit the subscript G. Define the k-expansion profile of G
as ¢(k) := ming.o1(s)<k #(S). In particular, ¢(m) is often referred to the conductance (or
expansion) of G and we let ¢(G) := ¢p(m). A graph is called a ¢-expander if ¢(G) > ¢.

» Definition 5. A graph G is a (k, ¢)-expander if ¢p(k) > ¢. Equivalently, G is a (k, ¢)-
expander if for every S C V with volume vol(S) < k has conductance ¢(S) > ¢.

We have the following definition of graphs that are e-far from (k, ¢)-expanders.

» Definition 6. A graph G is e-far from any (k, ¢)-expander if one has to modify at least
em edges of G to obtain a (k, ¢)-expander.

As mentioned before, we will assume that m = Q(n), as otherwise, there exists n — o(n)
isolated vertices in G, and the graph cannot be a (k, ¢)-expander even for constant k and
any ¢ > 0. Furthermore, since we will only sample a constant number of vertices (as we do

L Full version available at http://arxiv.org/abs/1209.5052
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in all our testers), then with high probability, the sampled vertices are all isolated, and in
this case, we can safely reject the graph.

We will use bold letters to denote row vectors. For any vector p € RV, let p(S) :=
S es P() and let [l = ey, [P Ipll2 = /S5,cy P(0)? denote the Iy, ls-norm of p,
respectively. Let supp(p) be the support of p. Let 1 be the characteristic vector of S, that
is, 15(v) = 1if v € S and 1g5(v) = 0 otherwise. Let 1, := 1y,y.

2.1 Lazy random walks

We now introduce some tools that will be used in the design and analysis of our algorithms.
The following also applies to graphs with possible multiple edges and/or self-loops. First,
we define the lazy random walks on G. In a lazy random walk, if we are currently at vertex
v, then in the next step, we choose a random neighbor u with probability 1/2 deg,(v) and
move to u. With the remaining probability 1/2, we stay at v.

For a given graph G, let A denote its adjacency matrix and let D denote the diagonal
matrix such that D, , = deg(u) for any u. Let I denote the identity matrix. Then
W := (I + D~1A)/2 is the probability transition matrix of the lazy random walk of G. Note
that if py is a probability distribution on V', then p,W* denotes distribution of the endpoint
of a length ¢ lazy random walk with initial distribution p,. In particular, we let p! = 1, W?*
be the probability distribution of the endpoint of a walk of length ¢ starting from vertex v.
Furthermore, we let ||p||2 denote the collision probability of such a walk.

For any lazy random walk matrix W = %, it is well known that all its eigenvalues
are real (see eg. [30]). Furthermore, if we let 71 (W) > --- > n,, (W) denote the eigenvalues

of W, then 0 < 7;(W) < 1 for any i < n.

2.2 Spectral characterization of expansion profile

For a graph G, let £ := I — D='/2AD~1/2 be the normalized Laplacian matrix of G. Let
0 =X < X <o < Ay <2 be eigenvalues of L. It is straightforward to verify that
o =1— % for any 1 < i < n, where 7; is the ith largest eigenvalue of the lazy random
walk matrix W of G. We have the following lemmas relating the expansion profile and the
eigenvalues of L.

» Lemma 7 (Cheeger inequality, [3, 1, 38]). For every graph G, we have % < H(G) < V2A,.

» Lemma 8 ([23, 25]). For every graph G, h € N and any o > 0, we have (ﬁ(%) <

O(Zsv/AnTogh).
» Lemma 9 ([40, 30, 29]). For every graph G, h € N and any a > 0, we have d)(,ﬁ—’?) <

O(v/ (/@) logy, n). -

We remark that in some of references (eg. [23]), the k-expansion profile is defined to be
the minimum conductance over all possible subsets of size at most k, rather than the volume
measurement as defined here. However, their proofs imply that Lemma 8 and 9 also hold for
our case.

2.3 A local algorithm for finding small sparse sets

We will need the following local algorithm for finding small sparse set to give a one-sided
error tester in general graphs as well as to analyze the soundness of our testers. Here, the
local algorithm takes as input a vertex v and only explores a small set of the vertices and
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edges that are “close” to v, if the volume k of the target set is small. It only needs to perform
degree queries and neighbor queries to the oracle of the input graph.

LocalSS(G,v,T,4)
1. Let q, =1,. For each time 0 <t < T
a. Define p, such that p,(u) = q,(u) if q,(u) > ddeg(v) and p,(u) = 0 if
q;(u) < d deg(v). Compute q,,, := p,W.

b. Let s, = |supp(p,)|- Order the vertices in supp(p,) so that itg(&ll)) >
B(va) ~ . Py (vsy)
deg(v2) = = deg(vsy) "

c. For each 1 <i < s¢, let S; ¢ be the first ¢ vertices in this ordering.

2. Output the subgraph X with the smallest conductance among all the sets

St> 4,13t

The performance of the above algorithm is guaranteed in the following lemma, which follows
by combining Proposition 8 in [30] and Theorem 2 [22]. (More specifically, the first part of
the lemma is Proposition 8 in [30] and the “Furthermore” part of the lemma follows from
the proof of Theorem 2 [22]. See also the paragraph “Independent Work” in [22])

» Lemma 10. Let G = (V,E) andt > 1. If S C V satisfies that ¢(S) < 1, then there exists
a subset S C S such that vol(S) > vol(S)/2, and for any v € S, we have p,(S) > c1(1 — 39yt
for some constant ¢c; > 0. Furthermore, if vol(S) < k, then the algorithm LocalSS, with
parameters G,v,T = O(Cl‘;—gk),(s = O(’f;c) for any ¢ > 0, will find a set X such that
vol(X) < O(k'™¢) and ¢(X) < O(\/¥/C). The algorithm can be implemented in time

5(/&*241/1’2),

3  Non-uniform replacement product

In this section, we give the definition of non-uniform replacement product and also show its
property, which will be used in our testers for general graphs. Let G = (V, E) be a graph with
possible multiple edges or self-loops and with minimum degree 6 > d. Let H = {H, }uev be
a family of |V| graphs. The graph family H is called a proper d-regular graph family of G
if for each w € V, H, is a d-regular graph (with possible parallel edges or self-loops) with
vertex set [degqs(u)] := {1,...,degs(u)}. For any graph G and its proper d-regular graph
family H, the non-uniform replacement product of G and H, denoted by GR®™H, is defined as
follows.

1. For each vertex u in V(G), the graph G®H contains a copy of a H,.

2. For any edge (u,v) € E(G), for each i € [degs(u)], we specify a unique but arbitrary
index j € [degs(v)], and place d parallel edges between the ith vertex in H,, and the jth
vertex in H,.

Now that GRH is a 2d-regular graph with 2| F| vertices. We will use (u,%) to index the
vertices in G®H. We have the following lemma that formally characterize the intuition
that if all the graphs in H are expanders, that is, for any H € H, ¢(H) is larger than some
universal constant, then the expansion profile of G’ will not differ by too much from the
expansion profile of G.

» Lemma 11. Let G = (V, E) be a graph with minimum degree 6(G) > d. Let H be a proper
d-regular graph family of G, and let G' = GRH. We have that
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If S CV(QG) is a subset with ¢(S) < ¢ then the set 8" := {(u,) € V(G)|u e 5,1 <i <
degq(u)} € V(G') satisfies that |S'| = vol(S) and ¢ (S") < ¢/2.

If for any set S C V(G) with vol(S) < k, ¢(S) > ¢ and for any u, the conductance of Hy,
satisfies ¢(H,) > 6, then for any set S' C V(G') with |S"| < O(k), ¢c/ (") = Q(5¢?).

When the rotation map of the graph G is explicitly given, we define the non-uniform
replacement product with rotation map of G and H, denoted as G @®H, as follows.
1. For each vertex u in V(G), the graph G"@®%H contains a copy of a H,,.
2. For any edge (u,v) € E(G) such that v is the ith neighbor of u and w is the jth neighbor
of v, we place d parallel edges between the ith vertex in H, and the jth vertex in H,.

Note that the above replacement product with rotation map is a special case of the
(general) replacement product defined before. Thus, it not only satisfies the combinatorial
property of expansion profile given in Lemma 11, bust also satisfies the following nice spectral
properties.

» Lemma 12. Let G = (V, E) be a graph with minimum degree 6(G) > d. Let H be a proper
d-reqular graph family of G, and let G' = GU)®H. be the replacement product with rotation
map of G and H. We have that
G’ satisfies the two properties in Lemma 11.
If for any set S C V(G) with vol(S) < k, ¢(S) > ¢ and for any u, na(Wg,) < 1-196
for some 6 > 0, then for any a > 0, JEET (Wer) < 1 — Q(6%a5¢%(log Z2)~1),
Nem/m+e(Wer) < 1 — Q(ad?¢?log, (2m/k)). Furthermore, when k = m, we have
772(WG/) < 1-— 9(527]2).

Theorem 4 can be proved directly once we have Lemma 12.

Proof of Theorem 4. For any graph G = (V, E), we first turn it into a graph G>g with
minimum degree 8 by adding an appropriate number of self-loops to vertices with degree
smaller than 8. Note that this only changes the conductance of a set by a factor of 8. Now we
let H be a proper 8-regular graph family for G'>g such that for any v € V, H,, is a Margulis
expander with degg_ (u) vertices [27, 13]. Therefore, each H, is an expander such that

¢(Hy) and 1 —n9(Wp, ) are larger than some universal constants. Then we let G’ = G(;g@?-[,

d = 8 and specify J to be a constant in Lemma 12. By definition, G’ is a 16-regular graph.

Finally, the theorem follows by Lemma 12 and the fact that n; =1 — % <

4 Testers for small set expansion

In this section, we give all our testing algorithms for small set expansion. We first show a
property of graphs that are far from small set expander in Section 4.1, which will be useful for
all our testers. Then in Section 4.2, we give a two-sided error tester in bounded degree model,
which illustrates basic ideas underlying our algorithms. Finally, we give testers in adjacency
list model and in the rotation map for general graphs in Section 4.3, 4.4, respectively.

4.1 A property of graphs that are far from small set expander

The following lemma shows that if a general graph G is far from (k, ¢)-expander, then there
exist disjoint subsets such that each of them is of small size and small conductance, and the
total volume of these sets are large. This lemma will be useful for the analysis of all the
testers.
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» Lemma 13. Let ¢y be some constant and let ¢* < 201@ . If a graph G is e-far from (k*, ¢*)-

expander, then there exist disjoint subsets S1,---,S, €V such that vol(Sy U ---US,) > §%,
and for each i < g, vol(S;) < 2k*, #(S;) < 1lcad*.

4.2 A tester for bounded degree graphs

Now we give a two-sided error tester for bounded degree graphs. This tester is very intuitive
and simple: we sample a small number of vertices, and for each sampled vertex v, we perform
independently a number of random walks from v and calculate the number of collisions Z,
between the endpoints of these random walks. We accept the graph if and only if Z, is
small for every sampled vertex v. We remark that this idea originates from the tester for
expansion for bounded degree graphs [16, 11, 20, 28]. The main difference between our small
set expansion tester and the previous expansion testers is the choice of parameters.

Given a d-bounded degree graph G, we define the following d-regularized random walk on

G: at each vertex v, with probability deg.(v)/2d, we jump to a randomly chosen neighbor
of v, and with the remaining probability 1 — deii‘fiv), we stay at v. This random walk is
equivalent to the lazy random walk on the virtually constructed d-regular graph Giee that is
obtained by adding an appropriate number of self-loops on each vertex in G. Note that to
perform such a random walk, we only need to perform neighbor queries to the oracle of G.
Our tester for bounded degree graphs is as follows.

SSETester2-Bound(G, s, 1, ¢, 0)
1. Repeat s times:
a. Select a vertex v uniformly at random from V.
b. Perform r independent d-regularized random walks of length ¢ starting
from v.
c. Let Z, be the number of pairwise collisions among the endpoints of these
r random walks.
d. If Z, > o then abort and output reject.

2. Output accept.

We can show that by choosing appropriate parameters, the above algorithm is a property
tester for small set expansion for bounded degree graphs. We have the following theorem.

» Theorem 14. Given neighbor query access to a d-bound-degree graph G, a volume bound

k, a distance parameter € and a conductance bound ¢, then the algorithm SSETester2-Bound

with parameters s = ©(1/e), r = O(y/n/e), L = @(M)‘lf’w) and o = (5) 22, accepts

any (k, §)-expander graph G with degree bounded by d and rejects any graph that is e-far from
2

(k*, ¢*)-expander with degree bounded by d, where k* = ©(ke/d), ¢* = @(Mm),

with probability at least 2/3. The query complexity and running time are O(y/n¢=2c72).

4.3 Testers in the adjacency list model for general graphs

In this section, we give testers for small set expansion for general graphs in the adjacency
list model.

4.3.1 A two-sided error tester

To give a two-sided error tester for general graphs, we first note that the tester for bounded
degree graphs given in Section 4.2 does not apply to general graph, which may have an
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arbitrary large degree. For example, in a star graph the collision probability of a lazy random
walk will be very large on the “central” vertex, however, the conductance of star graph is
large and it is thus a small set expander. This implies that we cannot directly apply our
tester for bounded degree graphs to general graphs.

In the following, we show that we can use the non-uniform replacement product (without
rotation map) defined in Section 3 to first turn our input graph G into a bounded degree
graph G’, and then we perform independent random walks on the newly transformed graphs
G’ to determine whether to accept or reject the input graph G. We should keep in mind
that we are only given degree and neighbor query access to G rather than G’.

We first define G’. To do so, we first specify a proper d-regular graph family H for G.
We will let d = 8, and first turn G into a graph G>g with minimum degree 8 by adding
an appropriate number of self-loops on vertices with degree smaller than 8. Note that this
modification only changes the conductance of a set by a factor of 8. Now we let H be
the graph family that for any u € G, H,, is a Margulis expander with degq__ (u) vertices.
We stress that such expanders are explicitly constructible [27, 13]. Furthermore, given any
vertex ¢ € H,, we can determine the neighborhood of ¢ in constant time. Now we define
G = G>s®H.

By definition of G, we can specify a vertex (u,4) to connect to a vertex in Uy.(y,u)e s Ho
in an arbitrary manner. This important property allows us to construct G’ when we go along
and emulate random walks in G’ very efficiently by performing degree and neighbor queries
to G. We stress here that if the non-uniform replacement product with rotation map of G is
used (see Section 4.4), then the neighbor of (u,4) in the final graph is fixed, and we do not
know how to efficiently emulate the corresponding (lazy) random walks by only using degree
and neighbor queries to G.

Now we briefly introduce a process for emulating random walks on G’. The argument is
very similar to the analogous case given in Section 4.2 in [21]. We give a brief description here.
To emulate random walks on G, if we are currently at a vertex (u, i), then with probability
1/2, we stay at (u,1); with probability 1/4, we jump to a randomly chosen neighbor (u, j)
in H,, which can be done in constant time since H, is explicitly constructible; with the
remaining probability 1/4, we need to jump to the outside of H,. Now if we have already
specified its neighbor outside of H,, say (v, j), then we directly jump to (v, j). Otherwise, we
have to specify the outside neighbor of (u,4) first. The specification can be done by recording
a set A(u) of neighbors that has already been specified to some vertex in H, and then either
sampling new neighbors or attaching unspecified vertices arbitrarily according to A(u). The
amortized number of required degree and neighbor queries to G is O(log? n). We refer to [21]
for more details.

There is one more issue that we should take care of: how to sample vertices (almost)
uniformly at random from G’. This issue is almost equivalent to sampling edges almost
uniformly from G, and has also been analyzed in [21]. In particular, Kaufman et al. have
proved the following lemma.

» Lemma 15 ([21]). Let i > 0. There exists a procedure Sample-Edges—Almost-Uniformly-
-in-G that performs O(y/n/plogm) degree and neighbor queries and for all but (u/4)m of
edges e in G, the probability that the procedure outputs e is at least 1/(64m). In particular,
the output edge e is in the form of (v,4) for 1 <i < deg(v).

By setting p = €/c3 in the above lemma, for a sufficiently large constant cs, we will
directly invoke Sample-Edges-Almost-Uniformly-in-G to sample a vertex (v,i) in G'.
Finally, to specify the number of random walks 7, to be O(y/m), we should have an estimate

631

STACS 2015



632

Testing Small Set Expansion in General Graphs

of m or the average degree dq,q of G. This can be achieved by Feige’s algorithm [12, 18],
which gives a constant factor estimate of dq.y by performing O(y/n) queries to G.
Now we give a description of our two-sided error tester.

SSETester2-List(G, s, 7, ¢, 0)
1. Repeat s times:
a. Sample an edge (v,4) by calling the procedure Sample-Edges-Almost-
-Uniformly-in-G with u = ¢/cs, where c3 is a sufficiently large constant.
b. Perform r independent lazy random walks in G>s®%H of length ¢ starting
from v by the above emulation process.
c. Let Z, be the number of pairwise collisions among the endpoints of these
r random walks.
d. If Z, > o then abort and output reject.

2. Output accept.

By setting s = ©(1/¢), r = ©(y/m/e), £ = 6(mm{log@m/ﬁ’logn}'(l“ M) and o = (5)%2 in
the algorithm SSETester2-List, we can prove Theorem 1 using similar analysis to the proof

of Theorem 14.

4.3.2 A one-sided error tester

Now we present our property testing algorithm SSETester1-List with one-sided error for
small set expansion. This tester invokes a local algorithm LocalSS introduced in Section 2.3
and applies to the adjacency list model.

SSETester1-List(G, s, T, J)
1. Repeat s times:
a. Sample an edge (v,4) by calling the procedure Sample-Edges-Almost-
-Uniformly-in-G with u = ¢/cs, where c3 is a sufficiently large constant.
b. If LocalSS(G, v, T, §) finds a set X with volume at most k and conductance
at most ¢, then abort and output reject.

2. Output accept.

For any 0 < £ < 1, we set parameters s = O(1/¢e), T = O(k;ik), and § = O(Kl;g/?) in
the above algorithm, which will then be used to prove Theorem 2.

4.4 A tester in the rotation map model for general graphs

In this section, we give a tester in the rotation map model, in which we assume that the
rotation map of G is explicitly given, that is, when specified a vertex v and an index ¢,
the oracle returns a pair (u,j) such that w is the ith neighbor of v and j is the index of
u as a neighbor of v. We use the non-uniform replacement product with rotation map to
transform G into a 16-regular graph G’. To perform this transformation, we also need first
to turn G into a graph G'>g with minimum degree 8, and specify H to be a proper 8-regular
Margulis expanders, and then let G’ = Gg@?—[. Now the tester first samples a number
of vertices almost uniformly in G’ and then performs independent random walks on G’ to
decide whether to accept G or not, as we did before.

Our tester in rotation map model is almost the same as the two-sided tester in adjacency
model in Section 4.3.1, and with information of the rotation map of G, we are actually able to
give a better tester by using the spectral property of G’ given in Lemma 12 (see Theorem 3).
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However, as we mentioned before, since now we cannot specify the neighbor of a vertex (u, 1)
in an arbitrary manner, we do not know how to emulate random walks efficiently by only
performing degree and neighbor queries to G. That is why we introduced (neighbor,index)
query and the rotation map model.

Here we emulate random walks on G’ by performing degree and (neighbor, index) queries
to G: if we are currently at a vertex (u, %), then with probability 1/2, we stay at (u,); with
probability 1/4, we jump to a randomly chosen neighbor (u,j) in H,; with the remaining
probability 1/4, we jump to vertex (v, j) such that v is the ith neighbor of u and u is the
jth neighbor of v in G. Note that only in the last case, we need to perform (neighbor, index)
queries to the oracle of G.

SSETester2-Map(G, s, 1,4, 0)
1. Repeat s times:
a. Sample an edge (v,4) by calling the procedure Sample-Edges-Almost-
-Uniformly-in-G with p = ¢/cs, where c3 is a sufficiently large constant.
b. Perform r independent lazy random walks in G (>T;®H of length ¢ starting
from v by using rotation map of G. N
c. Let Z, be the number of pairwise collisions among the endpoints of these
r random walks.
d. If Z, > o then abort and output reject.

2. Output accept.

Theorem 3 can now be proven by using the above algorithm SSETester2-Map with

parameters s = O(1/¢), r = O(y/m/e), { = G)(min{log"’loggm/k)}'(lnk)) and o = ()92,

5 Conclusions

We give property testers for small set expansion in general graphs, including a two-sided
error tester and a one-sided error tester in adjacency list model, and a two-sided error tester
in rotation map model in which the algorithm can perform (neighbor, index) queries as well
as degree queries. Our analysis for two-sided error testers uses a non-uniform replacement
product to transform an arbitrary graph into a bounded degree graph that well preserves
expansion profile.

It is unclear if the rotation map model is strictly stronger than the adjacency list model.
In particular, we do not know if the newly introduced (neighbor, index) query is necessary
for us to obtain a tester with at most quadratic loss in the conductance parameter. It will
be interesting to give a two-sided error tester in the adjacency list model that distinguishes
(k, ¢)-expanders from graphs that are e-far from any (©(ke), ©(¢?))-expander, as we obtained
in the rotation map model. It is also left open if the query complexity and/or running time
of the two-sided testers could be improved to O(y/n(¢1e=1)°M), without dependency on
the number of edges m.

Acknowledgements We would like to thank anonymous referees of RANDOM 2014 for
their very detailed and helpful comments to an earlier version of this paper.

633

STACS 2015



634

Testing Small Set Expansion in General Graphs

—— References

1
2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96, 1986.

N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the
testable graph properties: it’s all about regularity. SIAM Journal on Computing, 39(1):143—
167, 2009.

N. Alon and V. Milman. A1, isoperimetric inequalities for graphs, and superconcentrators.
Journal of Combinatorial Theory, Series B, 38(1):73-88, 1985.

N. Alon, O. Schwartz, and A. Shapira. An elementary construction of constant-degree
expanders. Comb. Probab. Comput., 17(3):319-327, May 2008.

R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In
Symposium on Foundations of Computer Science, 2006.

R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In Symposium
on Theory of Computing, STOC ’09, 2009.

S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique games and
related problems. In Foundations of Computer Science (FOCS), pages 563-572, 2010.

B. Barak, P. Gopalan, J. Hastad, R. Meka, P. Raghavendra, and D. Steurer. Making the
long code shorter. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on, pages 370-379. IEEE, 2012.

I. Ben-Eliezer, T. Kaufman, M. Krivelevich, and D. Ron. Comparing the strength of query
types in property testing: the case of testing k-colorability. In Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 1213-1222, 2008.

A. Czumaj, M. Monemizadeh, K. Onak, and C. Sohler. Planar graphs: Random walks
and bipartiteness testing. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd
Annual Symposium on, pages 423-432. IEEE, 2011.

A. Czumaj and C. Sohler. Testing expansion in bounded-degree graphs. Combinatorics,
Probability and Computing, 19(5-6):693-709, 2010.

U. Feige. On sums of independent random variables with unbounded variance and estim-
ating the average degree in a graph. SIAM Journal on Computing, 35(4):964-984, 2006.
O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. Journal
of Computer and System Sciences, 22(3):407-420, 1981.

O. Goldreich. Property testing: current research and surveys, volume 6390. Springer-Verlag
New York Inc, 2010.

O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs.
Combinatorica, 19(3):335-373, 1999.

O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. FElectronic
Colloquium on Computational Complexity (ECCC), 7(20), 2000.

0. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302-343, 2002.

0. Goldreich and D. Ron. Approximating average parameters of graphs. Random Structures
& Algorithms, 32(4):473-493, 2008.

S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439-561, 2006.

S. Kale and C. Seshadhri. An expansion tester for bounded degree graphs. SIAM J.
Comput., 40(3):709-720, 2011.

T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in general
graphs. SIAM Journal on computing, 33(6):1441-1483, 2004.

T. C. Kwok and L. C. Lau. Finding small sparse cuts by random walk. In APPROX-
RANDOM, pages 615-626, 2012.

J.R. Lee, S. Oveis Gharan, and L. Trevisan. Multi-way spectral partitioning and higher-
order cheeger inequalities. ACM symposium on Theory of computing, 2012.



A. Li and P. Peng

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

A.Li, Y. Pan, and P. Peng. Testing conductance in general graphs. In Electronic Colloguium
on Computational Complexity (ECCC), volume 18, page 101, 2011.

A. Louis, P. Raghavendra, P. Tetali, and S. Vempala. Many sparse cuts via higher eigen-
values. ACM symposium on Theory of computing, 2012.

L. Lovasz and R. Kannan. Faster mixing via average conductance. In ACM symposium on
Theory of computing, pages 282-287, 1999.

G. A. Margulis. Explicit constructions of expanders. Problemy Peredachi Informatsii, 9:71—
80 (in Russian), 1973.

A. Nachmias and A. Shapira. Testing the expansion of a graph. Information and Compu-
tation, 208(4):309-314, 2010.

R. O’Donnell and D. Witmer. Improved small-set expansion from higher eigenvalues. Arziv
preprint arXiv:1204.4688, 2012.

S. Oveis Gharan and L. Trevisan. Approximating the expansion profile and almost optimal
local graph clustering. In Foundations of Computer Science, 2012.

M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures & Algorithms,
20(2):165-183, 2002.

P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In
ACM symposium on Theory of computing, pages 755-764, 2010.

O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55:17:1-17:23,
2008.

O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom walks on regular digraphs and
the rl vs. 1 problem. In Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pages 457-466. ACM, 2006.

O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Annals of Mathematics, 155:157-187, 2002.

D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends
in Theoretical Computer Science, 5(2):73-205, 2010.

E. Rozenman and S. Vadhan. Derandomized squaring of graphs. In Approximation, Ran-
domization and Combinatorial Optimization. Algorithms and Techniques, pages 436-447.
Springer, 2005.

A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing
markov chains. Information and Computation, 82(1):93-133, 1989.

D.A. Spielman and S.H. Teng. A local clustering algorithm for massive graphs and its
application to nearly-linear time graph partitioning. arXiv:0809.3232, 2008.

D. Steurer. On the complexity of unique games and graph expansion. PhD diss., Princeton
University, 2010.

635

STACS 2015



	Introduction
	Our results
	Testers in adjacency list model
	Tester in rotation map model
	Graph transformation

	Other related work
	Organization of the paper

	Preliminaries
	Lazy random walks
	Spectral characterization of expansion profile
	A local algorithm for finding small sparse sets

	Non-uniform replacement product
	Testers for small set expansion
	A property of graphs that are far from small set expander
	A tester for bounded degree graphs
	Testers in the adjacency list model for general graphs
	A two-sided error tester
	A one-sided error tester

	A tester in the rotation map model for general graphs

	Conclusions

