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Abstract
Conjunctive queries are basic and heavily studied database queries; in relational algebra, they
are the select-project-join queries. In this article, we study the fundamental problem of counting,
given a conjunctive query and a relational database, the number of answers to the query on the
database. In particular, we study the complexity of this problem relative to sets of conjunctive
queries. We present a trichotomy theorem, which shows essentially that this problem on a set
of conjunctive queries is either tractable, equivalent to the parameterized CLIQUE problem, or
as hard as the parameterized counting CLIQUE problem; the criteria describing which of these
situations occurs is simply stated, in terms of graph-theoretic conditions.
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1 Introduction

Conjunctive queries are the most basic and most heavily studied database queries. They
can be formalized logically as formulas consisting of a sequence of existentially quantified
variables, followed by a conjunction of atomic formulas; in relational algebra, they are the
select-project-join queries (see e.g. [1]). Ever since the landmark 1977 article of Chandra and
Merlin [2], complexity-theoretic aspects of conjunctive queries have been a research subject
of persistent and enduring interest which continues to the present day (as a sampling, we
point to the works [13, 16, 10, 12, 18, 14, 17, 5]; see the discussions and references therein
for more information). The problem of evaluating a Boolean (closed) conjunctive query on a
relational database is equivalent to a number of well-known problems, including conjunctive
query containment, the homomorphism problem on relational structures, and the constraint
satisfaction problem [2, 13]. That this evaluation problem appears in many equivalent guises
attests to the foundational and primal nature of this problem, and it has correspondingly
been approached and studied from a wide variety of perspectives and motivations.

In this article, we study the fundamental problem of counting, given a conjunctive query
and a relational database, the number of query answers, that is, the number of assignments
that make the query true with respect to the database; we denote this problem by #CQ.
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In addition to being a natural problem in its own right, let us remark that all practical
query languages supported by database management systems have a counting operator. We
study the complexity of #CQ relative to sets of conjunctive queries, that is, we study a
problem family: each set of conjunctive queries gives rise to a restricted version of the general
problem. Our objective is to determine on which sets of conjunctive queries #CQ is tractable,
and more broadly, to understand the complexity behavior of the problem family at hand.
Throughout, we assume that each considered set of conjunctive queries is of bounded arity,
by which we mean that there is a constant bounding the arity of all relation symbols in all
queries in the set.1

Surprisingly, despite the natural and basic character of the counting problem #CQ,
the project of understanding its complexity behavior over varying sets of queries has been
carried out in previous work for only two particular types of conjunctive queries. In the case
of Boolean conjunctive queries, the problem #CQ specializes to the problem of deciding
whether or not such a query evaluates to true or false on a database. A classification of sets
of Boolean conjunctive queries was given by Grohe [12], showing essentially that this decision
problem is either polynomial-time tractable, or is hard under a typical complexity-theoretic
assumption from parameterized complexity, namely, that the parameterized Clique problem
is not fixed-parameter tractable (see Theorem 9).2 It is well-known that a conjunctive query
can be naturally mapped to a relational structure (see Definition 7); the tractable sets of
Grohe’s classification are such queries whose corresponding structures have cores of bounded
treewidth. The core of a structure A is, intuitively, the smallest structure that is (in a certain
sense) equivalent to the structure A, and bounded treewidth is a graph-theoretical condition
that can intuitively be taken as a notion of tree similitude. Following Grohe’s work, Dalmau
and Jonsson [6] studied the case of quantifier-free conjunctive queries (which they phrase as
the problem of counting homomorphisms between a given pair of relational structures). They
proved that bounded treewidth is the property that determines polynomial-time tractability
for this case; in contrast to Grohe’s theorem, the statement of their classification (Theorem 10)
does not refer to the notion of core, and is proved under the assumption that the counting
version #Clique of the parameterized Clique problem is not fixed-parameter tractable.

In this article, we present a trichotomy theorem describing the complexity of the counting
problem #CQ on each possible set of conjunctive queries. Our trichotomy theorem unifies,
generalizes, and directly implies the two discussed prior classifications. This trichotomy yields
that counting on a set of conjunctive queries is polynomial-time tractable, is interreducible
with the Clique problem, or admits a reduction from and is thus as hard as the counting
problem #Clique. In order to prove and state our trichotomy theorem, we work with a
notion of core of a (structure associated with a) conjunctive query whose definition crucially
takes into account which variables of the conjunctive query are free (Definition 12). We
also use a notion of hypergraph of a conjunctive query whose vertices are the free variables
of the query (Definition 21). The properties of a query set that determine which case of
our trichotomy theorem applies are whether or not the cores have bounded treewidth, and
whether or not the just-mentioned hypergraphs have bounded treewidth; these two conditions
correspond, respectively, to the conditions that describe the dichotomies for the Boolean case

1 It is known that when no such bound on the arity is assumed, the complexity of query evaluation can be
highly sensitive to the representation of database relations [4]. In contrast, natural representations are
equivalent under polynomial-time translation; thus, the study of bounded arity queries can be viewed
as the investigation of the representation-independent case.

2 This is equivalent to the assumption that the parameterized complexity class W[1] is not contained in
the parameterized complexity class FPT, which is the phrasing that Grohe employs.
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112 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

and the quantifier-free case. The proof of our trichotomy draws on recent work of Durand
and Mengel [8], who presented a classification for the problem #CQ based on hypergraphs
(see Theorem 11).

Note that it is readily verified that the classes of queries for which we show that #CQ is
tractable are equivalent to those described in recent work by Greco and Scarcello [11]. In
contrast to their work, we show that the promise version of #CQ is not only fixed-parameter
tractable on these classes of queries but can even be solved in polynomial time. Moreover, and
more importantly, we show that these classes are the only classes of queries for which #CQ
can be solved efficiently because all other classes of queries are intractable under standard
complexity assumptions.

In order to prove and present our trichotomy, we introduce a version of the case complexity
framework [3] which is suitable for dealing with counting problems. Among other features,
this framework facilitates the presentation of reductions between parameterized problems
which are restricted in terms of the permitted parameters (or slices); this is the type of
restriction we deal with here, as the parameter of an instance of #CQ is taken to be the
query, and we consider #CQ with respect to various query sets. This framework also allows
the straightforward derivation of complexity consequences as a function of the computability
assumption placed on the query sets; witness the derivation of Theorems 23 and 24 from
Theorem 22.

2 Preliminaries

For an integer i ≥ 1, we define πi to be the operator that, given a tuple, returns the value in
the ith coordinate.

We assume that the reader is familiar with basic graph theoretic notions. In particular,
we will use some very basic properties of treewidth, which can be found, for example, in [9,
Chapter 11] or in [15, Section 2.3].

2.1 Structures, homomorphisms and cores

A relational vocabulary is defined to be a set of relation symbols τ := {R1, R2, . . . , R`} where
each Ri has an arity ri. A relational structure A over τ is a tuple (A,RA

1 , . . . , R
A
` ) where

A is a set called the domain of A and RA
i ⊆ Ari is a relation of arity ri. All vocabularies

and structures in this article are assumed to be relational. We assume each structure in this
article to be finite in that it has a finite domain. We denote structures by the bold letters,
A,B, . . ., and their corresponding domains by A,B, . . ..

We assume each class of structures in this article to be of bounded arity, that is, for
each such class we assume there exists a constant c ≥ 1 such that the arity of each relation
of a structure in the class is at most c. Since in the bounded arity setting the sizes of all
reasonable encodings of a structure are polynomially related, we do not fix a specific encoding
but assume that all structures are encoded in any reasonable way.

I Definition 1. Let A and B be two structures over the same vocabulary τ . A homomorphism
from A to B is a function h : A → B such that for each relation symbol R ∈ τ and each
t = (t1, . . . , t`) ∈ RA we have (h(t1), . . . , h(t`)) ∈ RB. A homomorphism h from A to B
is called an isomorphism if h is bijective and h−1 is a homomorphism from B to A; when
such an isomorphism exists, we say that A and B are isomorphic. An isomorphism from a
structure to itself is called an automorphism.
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I Definition 2. Two structures A and B are homomorphically equivalent if there are
homomorphisms from A to B and from B to A.

A structure is a core if it is not homomorphically equivalent to a proper substructure of
itself. A structure B is a core of a structure a structure A if B is a substructure of A, B is
homomorphically equivalent to A, and B is a core.

We state two basic properties of cores of structures; due to the first, we will speak of the
core of a structure instead of a core. The second seems to be folklore; a proof can be found,
for example, in [9].

I Lemma 3. Every structure A has at least one core. Furthermore, every two cores B1 and
B2 of A are isomorphic.

I Lemma 4. Let A and B be two homomorphically equivalent structures, and let A′ and B′
be cores of A and B, respectively. Then A′ and B′ are isomorphic.

2.2 Complexity theory background
Throughout, we use Σ to denote an alphabet over which strings are formed. All problems to
be considered are viewed as counting problems. So, a problem is a mapping Q : Σ∗ → N. We
view decision problems as problems where, for each x ∈ Σ∗, it holds that Q(x) is equal to 0 or
1. We use FP (as usual) to denote the class of problems (which, again, are mappings Σ∗ → N)
that can be computed in polynomial time. A parameterization is a mapping κ : Σ∗ → Σ∗. A
parameterized problem is a pair (Q, κ) consisting of a problem Q and a parameterization κ.
A partial function T : Σ∗ → N is polynomial-multiplied with respect to a parameterization κ
if there exists a computable function f : Σ∗ → N and a polynomial p : N→ N such that, for
each x ∈ dom(T ), it holds that T (x) ≤ f(κ(x))p(|x|).

I Definition 5. Let κ : Σ∗ → Σ∗ be a parameterization. A partial mapping r : Σ∗ → Σ∗ is
FPT-computable with respect to κ if there exist a polynomial-multiplied function T : Σ∗ → N
(with respect to κ) with dom(T ) = dom(r) and an algorithm A such that, for each string
x ∈ dom(r), the algorithm A computes r(x) within time T (x); when this holds, we also say
that r is FPT-computable with respect to κ via A.

As is standard, we may and do freely interchange among elements of Σ∗, Σ∗ ×Σ∗, and N.
We define FPT to be the class that contains a parameterized problem (Q, κ) if and only if Q
is FPT-computable with respect to κ.

We now introduce a notion of reduction for counting problems, which is a form of Turing
reduction. We use ℘fin(A) to denote the set containing all finite subsets of A.

I Definition 6. A counting FPT-reduction from a parameterized problem (Q, κ) to a second
parameterized problem (Q′, κ′) consists of a computable function h : Σ∗ → ℘fin(Σ∗), and an
algorithm A such that:

on an input x, A may make oracle queries of the form Q′(y) with κ′(y) ∈ h(κ(x)), and
Q is FPT-computable with respect to κ via A.

We use Clique to denote the decision problem where (k,G) is a yes-instance when G is a
graph that contains a clique of size k ∈ N. By #Clique we denote the problem of counting,
given (k,G), the number of k-cliques in the graph G. The parameterized versions of these
problems, denoted by p-Clique and p-#Clique, are defined via the parameterization π1.
We will make tacit use of the following well-known facts: FPT is closed under counting FPT-
reduction; p-Clique is complete for W[1] under counting FPT-reduction; and, p-#Clique
complete for #W[1] under counting FPT-reduction.
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A promise problem is a pair 〈Q, I〉 where Q is a problem and I ⊆ Σ∗. When C is a
complexity class, define prom-C to contain a promise problem 〈Q, I〉 when there exists P ∈ C
such that, for all x ∈ I, it holds that P (x) = Q(x). A parameterized promise problem is
a pair (〈Q, I〉, κ) consisting of a promise problem 〈Q, I〉 and a parameterization κ; such a
problem will also be notated by 〈(Q, κ), I〉. When C is a parameterized complexity class,
define prom-C to contain a promise problem (〈Q, I〉, κ) when there exists a problem P such
that (P, κ) ∈ C and for all x ∈ I, it holds that P (x) = Q(x).

3 Conjunctive Queries and Computational Problems

A conjunctive query is a relational first-order formula (possibly with free variables) of the
form ∃v1 . . . ∃vn

∧m
i=1 αi where each αi is a predicate application, that is, an atomic formula

of the form R(~u) where R is a relation symbol and ~u is a tuple of variables. Since the only
type of queries that we are concerned with in this article are conjunctive queries, we will
sometimes simply use query to refer to a conjunctive query.

I Definition 7. To a conjunctive query φ over the vocabulary τ , we assign a structure
A = Aφ, called the natural model, as follows: the domain of A is var(φ); A is over the
vocabulary τ ; and for each relation symbol R ∈ τ , we set RA := {~a | R(~a) is an atom of φ}.

To each conjunctive query φ we assign the pair (A, S) where A is the natural model
of φ and S the set of its free variables. From such a pair (A, S), it is easy to reconstruct
the corresponding query φ: each tuple of a relation of A is made into an atom, and then,
one existentially quantifies the elements of A not in S to obtain φ. Because of this easy
correspondence between queries and pairs (A, S), in a slight abuse of notation, we do not
differentiate between pairs (A, S) and queries throughout. In particular, we will call a pair
(A, S) a query, and we will use C interchangably for classes of queries and of pairs (A, S).

Let φ be a conjunctive query with assigned pair (A, S) and let B be a structure. Then
a function h : S → B is a satisfying assignment of φ if and only if it can be extended to a
homomorphism from A to B; we denote the set of such functions by hom(A,B, S). In this
article, we are interested in the following counting problem.

#CQ
Input: A query (A, S) and a structure B.
Problem: Compute |hom(A,B, S)|.

In the case of a conjunctive query (A, ∅) without free variables, the problem #CQ amounts
to deciding whether or not there exists a homomorphism from A to B. We define this case
as the problem CQ.

CQ
Input: A query (A, ∅) and a structure B.
Problem: Decide if there exists a homomorphism from A to B.

We define p-#CQ to be the parameterized problem (#CQ, π1), that is, we take the
parameter of each instance ((A, S),B) to be (A, S). (Formally, we view each instance
of p-#CQ as a pair of strings, where the first component encodes the query, and the
second component encodes the structure.) In analogy to #CQ, we define p-CQ to be the
parameterized problem (CQ, π1).

We define the hypergraph of a query (A, S) to be the hypergraph H = (V,E) where
V is the domain of A and E := {dom(t) | t ∈ RA, RA is a relation of A} where dom(t)
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denotes the set of elements appearing in t. The treewidth of (A, S) is defined to be that of
its hypergraph. Dalmau, Kolaitis and Vardi [7] proved that CQ can be solved efficiently,
when the treewidth of the cores of the queries is bounded.

I Theorem 8 ([7]). Let k ∈ N be a fixed constant. Let Ck be the class of all structures with
cores of treewidth at most k. Then the promise problem 〈CQ, Ck × Σ∗〉 is in prom-FP.

Grohe [12] showed that this result is optimal.

I Theorem 9 ([12]). Let C be a recursively enumerable class of structures of bounded arity.
Assume FPT 6= W[1]. Then the following statements are equivalent:
1. 〈CQ, C × Σ∗〉 ∈ prom-FP.
2. 〈p-CQ, C × Σ∗〉 ∈ prom-FPT.
3. There is a constant c such that the cores of the structures in C have treewidth at most c.

Dalmau and Jonsson [6] considered the analogous question for #CQ for quantifier free
queries and found that cores do not help in this setting.

I Theorem 10 ([6]). Let Q be the class of all quantifier free conjunctive queries, i.e., queries
of the form (A, A). Let C be a recursively enumerable class of structures of bounded arity in
Q. Assume FPT 6= #W[1]. Then the following statements are equivalent:
1. 〈#CQ, C × Σ∗〉 ∈ prom-FP.
2. 〈p-#CQ, C × Σ∗〉 ∈ prom-FPT.
3. There is a constant c such that the structures in C have treewidth at most c.

It is common to consider classes of queries defined by restricting their associated hyper-
graph. For #CQ it turns out to be helpful to also encode which vertices of a hypergraph
correspond to free variables, which is formalized in the following definition. A pair (H, S)
where H is a hypergraph and S is a subset of the vertices of H is called an S-hypergraph.
The S-hypergraph of a query (A, S) is (H, S) where H is the hypergraph of A.

In [8], the following version of #CQ is considered.

#CQhyp

Input: An S-hypergraph (H, S) and an instance ((A, S),B) of #CQ where
H is the hypergraph of A.
Problem: Compute |hom(A,B, S)|.

We define p-#CQhyp to be the parameterized problem (#CQhyp, π1); here, an instance of
#CQhyp is viewed as a pair ((H, S), ((A, S),B)), on which the operator π1 returns (H, S).

It turns out that for #CQhyp a parameter called S-star size is of critical importance. Let
H = (V,E) be a hypergraph and S ⊆ V . Let C be the vertex set of a connected component
of H[V −S]. Let EC be the set of hyperedges {e ∈ E | e∩C 6= ∅} and VC :=

⋃
e∈EC

e. Then
H[VC ] is called an S-component of H. The size of a biggest independent set in H[VC ∩ S] is
called the S-star size of the S-component H[VC ]. The S-star size of (H, S) is then defined to
be the maximum S-star size taken over all S-components of (H, S). By the quantified star
size of a query (A, S) we refer to the S-star size of the S-hypergraph associated to (A, S).
For more explanations on these notions and examples see [15, Section 3.2].

I Theorem 11 ([8]). Let G be a recursively enumerable class of S-hypergraphs of bounded
arity. Assume that W[1] 6= FPT. Then the following statements are equivalent:
1. 〈#CQhyp,G × Σ∗〉 ∈ prom-FP.
2. 〈p-#CQhyp,G × Σ∗〉 ∈ prom-FPT.
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116 A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

3. There is a constant c such that for each S-hypergraph (H, S) in G the treewidth of H and
the S-star size of H are at most c.

We have seen that for the problem CQ, cores of structures are crucial, while in the
classification due to Dalmau and Jonsson, they do not matter at all. Thus we introduce a
notion of cores for conjunctive queries that interpolates between these two extreme cases.
The idea behind the definition is that we require the homomorphisms between (A, S) and its
core to be the identity on the free variables, while they may map the quantified variables in
any way that leads to a homomorphism. This is formalized as follows.

I Definition 12. For a conjunctive query (A, S) where A is defined on vocabulary τ , we
define the augmented structure, denoted by aug(A, S), to be the structure over the vocabulary
τ ∪ {Ra | a ∈ S} where Raug(A,S)

a := {a}. We define the core of a conjunctive query of (A, S)
to be the core of aug(A, S).

I Example 13. Let (A, S) be a query without free variables, that is, where S = ∅; then the
core of (A, S) is the core of A. If (A, S) is quantifier-free, that is, where S = A, then the
core of (A, S) equals A.

The cores of conjunctive queries were essentially already studied by Chandra and Merlin
in a seminal paper [2] although the notation used there is different. We give a fundamental
result on conjunctive queries. We call two queries (A1, S) and (A2, S) equivalent queries if
for each structure B we have hom(A1,B, S) = hom(A2,B, S).

I Theorem 14 ([2]). If two conjunctive queries (A1, S) and (A2, S) have the same core (up
to isomorphism), then they are equivalent.

4 Case Complexity

In this section we develop a version of the case complexity framework advocated in [3]
which is suitable for classifying counting problems. A main motivation for this framework
is the growing amount of research on parameterized problems which are restricted by the
permitted values of the parameter. In particular, this kind of problem arises naturally in
query answering problems where one often restricts the admissible queries for the inputs (see
e.g. [12, 6, 3]). An aim of the case complexity framework as introduced in [3] is to facilitate
reductions between the considered restricted parameterized problems and to show results
independent of computability assumptions for the parameter.

The central notion for our framework is the following: A case problem consists of a
problem Q : Σ∗ × Σ∗ → N and a subset S ⊆ Σ∗, and is denoted Q[S]. When Q[S] is a case
problem, we define the following:

param-Q[S] is the parameterized problem (P, π1) where P (s, x) is defined as equal to
Q(s, x) if s ∈ S, and as 0 otherwise.
prom-Q[S] is the promise problem 〈Q,S × Σ∗〉.
param-prom-Q[S] is the parameterized promise problem (prom-Q[S], π1).

The case problem we consider in this paper will nearly exclusively be #CQ[C] where C is
a class a class of conjunctive queries. Nevertheless, we stress the fact that our framework
is fully generic and we believe that it will in the future also be useful for presenting and
proving complexity classifications for other problems.

We now introduce a reduction notion for case problems.
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I Definition 15. A counting slice reduction from a case problem Q[S] to a second case
problem Q′[S′] consists of

a computably enumerable language U ⊆ Σ∗ × ℘fin(Σ∗), and
a partial function r : Σ∗ × ℘fin(Σ∗) × Σ∗ → Σ∗ that has domain U × Σ∗ and is FPT-
computable with respect to (π1, π2) via an algorithm A that, on input (s, T, y), may make
queries of the form Q′(t, z) where t ∈ T ,

such that the following conditions hold:
(coverage) for each s ∈ S, there exists T ⊆ S′ such that (s, T ) ∈ U , and
(correctness) for each (s, T ) ∈ U , it holds (for each y ∈ Σ∗) that

Q(s, y) = r(s, T, y).

As usual in counting complexity, it will often not be necessary to use the full generality
of counting slice reductions. Therefore, we introduce a second, parsimonious notion of
reductions for case problems which is often general enough but easier to deal with.

I Definition 16. A parsimonious slice reduction from a case problem Q[S] to a second case
problem Q′[S′] consists of

a computably enumerable language U ⊆ Σ∗ × Σ∗, and
a partial function r : Σ∗×Σ∗×Σ∗ → Σ∗ that has domain U ×Σ∗ and is FPT-computable
with respect to (π1, π2)

such that the following conditions hold:
(coverage) for each s ∈ S, there exists s′ ∈ S′ such that (s, s′) ∈ U , and
(correctness) for each (t, t′) ∈ U , it holds (for each y ∈ Σ∗) that

Q(t, y) = Q′(t′, r(t, t′, y)).

We give some basic properties of counting slice reductions. Their proofs can be found in
the full version of this paper.

I Proposition 17. If Q[S] parsimoniously slice reduces to Q′[S′], then Q[S] counting slice
reduces to Q′[S′].

I Theorem 18. Counting slice reducibility is transitive.

The next two theorems give the connection between case complexity and parameterized
complexity. In particular, they show that, from a counting slice reduction, one can obtain
complexity results for the corresponding parameterized problems.

I Theorem 19. Let Q[S] and Q′[S′] be case problems. Suppose that Q[S] counting slice
reduces to Q′[S′], and that both S and S′ are computable. Then param-Q[S] counting FPT-
reduces to param-Q′[S′].

I Theorem 20. Let Q[S] be a case problem, and let K : Σ∗×Σ∗ → N be a problem. Suppose
that param-prom-Q[S] is in prom-FPT, S is computably enumerable, and that the case problem
K[Σ∗] counting slice reduces to Q[S]. Then the parameterized problem (K,π1) is in FPT.

In the remainder of the paper, we will show all our reductions in the case complexity
framework and then use Theorem 19 and Theorem 20 to derive parameterized complexity
results. This approach lets us give results on #CQ[C] for different complexity assumptions
on C without having to deal with these assumptions in the proofs. Thus we separate the
technicalities of the reductions from the assumptions on C which in our opinion gives a far
clearer presentation.
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5 Statement of the main results

In this section we present the main results of this paper which we will then prove in the
remainder of the paper. For the statement of the results we will use certain S-hypergraphs
that we get as a contraction of the S-hypergraphs of conjunctive queries. When deleting a
vertex v from a hypergraph, we delete v from the vertex set and all edges it appears in but
keep all edges, unless they become empty after the deletion of v.

I Definition 21. To every S-hypergraph (H, S) we define an S-hypergraph contract(H, S)
as follows: We add an edge {u, v} for any pair of vertices u, v that appears in a common
S-component of H. Then we delete the vertices in V (H) \ S. To a class G of S-hypergraphs
we define contract(G) := {contract(H, S) | (H, S) ∈ G}.

For a conjunctive query (A, S) let contract(A, S) be contract(H, S) where (H, S) is the
S-hypergraph of the core of (A, S). For a class C of conjunctive queries, set contract(C) :=
{contract(A, S) | (A, S) ∈ C}.

We first present a version of our main result using the framework of case complexity.

I Theorem 22. Let C be a class of conjunctive queries.
1. If the cores of C and contract(C) are of bounded treewidth, then prom-#CQ[C] ∈ prom-FP,

and hence param-prom-#CQ[C] ∈ prom-FPT.
2. If the cores of C are of unbounded treewidth but contract(C) is of bounded treewidth, then

#CQ[C] is equivalent to Clique[N] with respect to counting slice reductions.
3. If the treewidth of contract(C) is unbounded, then there is a counting slice reduction from

#Clique[N] to #CQ[C].

We will prove Theorem 22 in Section 7.5. Using the results on case complexity, we derive
from Theorem 22 two versions of the trichotomy phrased in terms of promise problems and
of non-promise problems, depending on whether or not the class C of conjunctive queries is
assumed to be recursively enumerable or computable, respectively.

I Theorem 23. Let C be a class of conjunctive queries which is recursively enumerable. In
the scope of this theorem, let us say that the class C is tractable if 〈#CQ, C ×Σ∗〉 ∈ prom-FP
and 〈p-#CQ, C × Σ∗〉 ∈ prom-FPT.
1. If the cores of C and contract(C) have bounded treewidth, then C is tractable.
2. If the cores of C have unbounded treewidth, then C is not tractable, unless p-Clique is in

FPT (and hence FPT = W[1]).
3. If contract(C) has unbounded treewidth, then C is not tractable, unless p-#Clique is in

FPT (and hence FPT = #W[1]).

Proof. (1) follows directly from item (1) of Theorem 22. (2) and (3) follow directly from the
respective items of Theorem 22 and Theorem 20. J

From Theorem 23, one can immediately derive, as corollaries, Theorem 9 and Theorem 10.
Let us use (p-#CQ � I) to denote the parameterized problem which is equal to #CQ on

I, and is equal to 0 elsewhere (and has the parameterization of p-#CQ).

I Theorem 24. Let C be a class of conjunctive queries which is computable.
1. If the cores of C and contract(C) have bounded treewidth, then (p-#CQ � C × Σ∗) is in

FPT.
2. If the cores of C have unbounded treewidth, and contract(C) has bounded treewidth, then

(p-#CQ � C × Σ∗) is equivalent to p-Clique under counting FPT-reduction.



H. Chen and S. Mengel 119

3. If contract(C) has unbounded treewidth, (p-#CQ � C × Σ∗) admits a counting FPT-
reduction from p-#Clique.

Proof. For (1), the FPT algorithm is to first decide, given an instance (φ,B), whether or
not φ ∈ C; if so, the algorithm invokes the algorithm of Theorem 22, otherwise, it returns 0.
(2) and (3) follow immediately from Theorem 22 and Theorem 19. J

6 Positive complexity results

In this section, we will prove a counting version of Theorem 8. We will use a lemma that is
probably well known, but as we could not find a reference, we give a proof for it in the full
version of this paper.

I Lemma 25. Let k ∈ N be a fixed constant. There exists a polynomial-time algorithm that,
given a structure A whose core has treewidth at most k, outputs a core of A.

Lemma 25 yields a counting version of Theorem 8 as an easy corollary.

I Corollary 26. Let C be a class of conjunctive queries such that the cores of the queries in C
have bounded quantified star size and bounded treewidth. Then prom-#CQ[C] ∈ prom-FP.

Proof. Let ((A, S),B) be an instance of prom-#CQ[C] with domain A. By the promise,
there is a constant c such that the treewidth and the quantified star size of the core of
(A, S) are at most c. We simply compute the core of (A, S) with Lemma 25 and delete from
it the relations Ra introduced when constructing aug(A). Call the resulting query (Â, S).
By construction, (A, S) and (Â, S) have the same core, so by Theorem 14 are equivalent.
Moreover, the treewidth and quantified star size of (Â, S) are bounded by c and thus Theorem
11 lets us solve the instance in polynomial time. J

Let us discuss Corollary 26.
Theorem 8 and thus also Lemma 25 crucially depends on the fact that we know by an

outside promise that the treewidth of the cores we consider is bounded. If this bound is not
satisfied, then the algorithm of Theorem 8 may give false positive results. Consequently, the
algorithm of Lemma 25 may compute a structure that is in fact not the core of the input
and then the algorithm of Corollary 26 gives the wrong count. Unfortunately, deciding if the
core of a conjunctive query has treewidth at most k is NP-complete [7] and even the problem
of deciding if a fixed structure is the core of a given structure is NP-complete. Thus there is
no efficient way of realizing that the core computed by the algorithm of Lemma 25 is wrong.

Consequently, while the result of Corollary 26 is very nice from a theoretical point of view
(we will see in the next section that it is in fact optimal), it is probably of limited value from
a more practical perspective. We see this as evidence that in fact parameterized complexity
is a framework better suited for the type of problem discussed in this paper. Note that in
this more relaxed setting of parameterized complexity, computing the core of a query by
brute force can easily be done in the allowed time, because the core depends only on the
query which is the parameter.

We now present a counting algorithm for #CQ[C] for certain classes C that has oracle
access to CQ, the decision version of #CQ. Let ALL be the class of all conjunctive queries.

I Lemma 27. Let C be a class of queries such that the treewidth of the S-hypergraphs in
contract(C) is bounded by a constant c. Then there is a counting slice reduction from #CQ[C]
to CQ[ALL].
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The idea of the proof is as follows: Since the treewidth of contract(C) is bounded, we know
that the unbounded treewidth of the cores does not originate from the structure of the free
variables but only from the way the quantified variables interact in the S-components. We
use the oracle for CQ[ALL] to solve subqueries of the original query in order to “contract” the
quantified variables into one variable per S-component. This results in an instance with the
same solutions that has bounded treewidth. We then solve this instance with the algorithm
of Theorem 11. The complete proof of Lemma 27 can be found in the full version of this
paper.

7 Hardness results

In this section we will prove the hardness results for Theorem 22. The main idea is reducing
from the hard cases of Theorem 11 in several steps.

7.1 Simulating unary relations

In this section we show that for queries whose augmented structure is a core we can simulate
unary relations on the variables of the query. These additional relations will later allow us to
tell the variables apart such that we can later simulate the case in which all atoms of the
queries have different relation symbols.

I Lemma 28. Let (A, S) be a conjunctive query such that aug(A, S) is a core. Then every
homomorphism h : A→ A with h|S = id is a bijection.

Proof. Clearly, h is also a homomorphism h : aug(A, S) → aug(A, S), because h(a) =
a ∈ R

aug(A,S)
a for every a ∈ S. But by assumption aug(A, S) is a core, so there is no

homomorphism from aug(A, S) to a proper substructure and thus h must be a bijection on
aug(A, S) and consequently also on A. J

We assign a structure A∗ to every structure A:

I Definition 29. To a structure A we assign the structure A∗ over the vocabulary τ ∪ {Ra |
a ∈ A} defined as A∗ := A ∪

⋃
a∈AR

A∗
a where RA∗

a := {a}.

Note that aug(A, S) and A∗ differ in which relations we add: For the structure aug(A, S)
we add Raug(A,S)

a for variables a ∈ S while for A∗ we add RA∗
a for all a ∈ A. Thus, A∗ in

general may have more relations than aug(A, S).
We now formulate the main lemma of this section whose proof uses ideas from [6].

I Lemma 30. Let C be a class of conjunctive queries such that for each (A, S) ∈ C the
augmented structure aug(A, S) is a core. Let C∗ := {(A∗, S) | (A, S) ∈ C}. Then there is a
counting slice reduction from p-#CQ[C∗] to p-#CQ[C].

Proof. Let ((A∗, S),B) be an input for #CQ[C∗]. Remember that A∗ and B are structures
over the vocabulary τ ∪ {Ra | a ∈ A}. For every query (A, S), the relation U of our counting
slice reduction contains ((A∗, S), (A, S)). Obviously, U is computable and satisfies the
coverage property.

We now will reduce the computation of the size |hom(A∗,B, S)| to the computation of
|hom(A,B′, S)| for different structures B′.
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Let D := {(a, b) ∈ A×B | b ∈ RB
a } and define a structure D over the vocabulary τ with

the domain D that contains for each relation symbol R ∈ τ the relation

RD := {((a1, b1), . . . , (ar, br)) |(a1, . . . , ar) ∈ RA, (b1, . . . , br) ∈ RB,

∀i ∈ [r] : (ai, bi) ∈ D}.

Let again π1 : D → A be the projection onto the first coordinate, i.e., π1(a, b) := a. Observe
that π1 is by construction of D a homomorphism from D to A.

We will several times use the following claim:

I Claim 1. Let h be a homomorphism from A to D with h(S) = S. Then π1 ◦ h is an
automorphism of A.

Proof. Let g := π1 ◦ h. As the composition of two homomorphisms, g is a homomorphism
from A to A. Furthermore, by assumption g|S is a bijection from S to S. Since S is finite,
there is i ∈ N such that gi|S = id. But gi is a homomorphism and thus, by Lemma 28, gi is
a bijection. It follows that g is a bijection.

Since A is finite, there is j ∈ N such that g−1 = gl. It follows that g−1 is a homomorphism
and thus g is an automporphism. J

Let N be the set of mappings h : S → D with π1 ◦ h = id that can be extended to a
homomorphism h′ : A→ D.

I Claim 2. There is a bijection between hom(A∗,B, S) and N .

Proof. For each h∗ ∈ hom(A∗,B, S) we define P (h∗) := h by h(a) := (a, h∗(a)) for a ∈ S.
From the extension of h∗ to A we get an extension of h that is a homomorphism and thus
h ∈ N . Thus P is a mapping P : hom(A∗,B, S)→ N .

We claim that P is a bijection. Clearly, P is injective. We we will show that it is
surjective as well. To this end, let h : S → D be a mapping in N and let he be a
homomorphism from A to D that is an extension of h. By definition of N such a he
must exist. By Claim 1 we have that π1 ◦ he is an automorphism, and thus (π1 ◦ he)−1

is a homomorphism. We set h′e := he ◦ (π1 ◦ he)−1. Obviously, h′e is a homomorphism
from A to D, because h′e is the composition of two homomorphisms. Furthermore, for
all a ∈ S we have h′e(a) = (he ◦ (π1 ◦ he))(a) = (he ◦ (π1 ◦ h))(a) = he(a) = h(a), so h′e
is an extension of h. Moreover π1 ◦ h′e = (π1 ◦ he) ◦ (π1 ◦ he)−1 = id. Hence, we have
h′e = id × ĥ for a homomorphism ĥ : A → B̂, where B̂ is the structure we get from B
by deleting the relations RB

a for a ∈ A. But by definition h′e(a) ∈ D for all a ∈ A and
thus ĥ(a) ∈ RB

a . It follows that ĥ is a homomorphism from A∗ to B. We set h∗ := ĥ|S .
Clearly, h∗ ∈ hom(A∗,B, S) and P (h∗) = h. It follows that P is surjective. This proves the
claim. J

Let I be the set of mappings g : S → S that can be extended to an automorphism of A.
Let N ′ be the set of mappings h : S → D with (π1 ◦ h)(S) = S that can be extended to
homomorphisms h′ : A→ D.

I Claim 3.

|hom(A∗,B, S)| = |N
′|
|I|

.
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Proof. Because of Claim 2 it is sufficient to show that

|N ′| = |N ||I|. (1)

We first prove that

N ′ = {f ◦ g | f ∈ N , g ∈ I}. (2)

The ⊇ direction is obvious. For the other direction let h ∈ N ′. Let h′ be the extension
of h that is a homomorphism h′ : A → D. By Claim 1, we have that g := π1 ◦ h′ is an
automorphism of A. It follows that g−1|S ∈ I. Furthermore, h ◦ g−1|S is a mapping from
S to D and h′ ◦ g−1 is an extension that is a homomorphism from A to D. Furthermore
(π1 ◦ h′ ◦ g−1|S)(a) = (g|S ◦ g−1|S)(a) = a for every a ∈ S and hence h′ ◦ g−1|S ∈ N and
h = h ◦ g−1|S ◦ g|S which proves the claim (2).

To show (1), we claim that for every f, f ′ ∈ N and every g, g′ ∈ I, if f 6= f ′ or g 6= g′,
then f ◦ g 6= f ′ ◦ g′. To see this, observe that f can always be written as f = id× f2 and
thus (f ◦ g)(a) = (g(a), f2(g(a)). Thus, if g and g′ differ, π1 ◦ f ◦ g 6= π1 ◦ f ′ ◦ g′ and thus
f ◦ g 6= f ′ ◦ g′. Also, if g = g′ and f 6= f ′, then clearly f ◦ g 6= f ′ ◦ g′. This completes the
proof of (1) and the claim. J

Clearly, the set I depends only on (A, S) and thus it can be computed by an FPT-
algorithm. Thus it suffices to show how to compute |N ′| in the remainder of the proof.

For each set T ⊆ S we define NT := {h ∈ hom(A,D, S) | (π1 ◦ h)(S) ⊆ T}. We have by
inclusion-exclusion

|N ′| =
∑
T⊆S

(−1)|S\T ||NT |. (3)

Observe that there are only 2|S| summands in (3) and thus if we can reduce all of them to
#CQ with the query (A, S) this will give us the desired counting slice reduction.

We will now show how to compute the |NT | by interpolation. So fix a T ⊆ S. Let NT,i
for i = 0, . . . , |S| consist of the mappings h ∈ hom(A,D, S) such that there are exactly i
elements a ∈ S that are mapped to h(a) = (a′, b) such that a′ ∈ T . Obviously, NT = NT,|S|
with this notation.

Now for each j = 1, . . . , |S| we construct a new structure Dj,T over the domain Dj,T . To
this end, for each a ∈ T , let a(1), . . . , a(j) be copies of a which are not in D. Then we set

Dj,T := {(a(k), b) | (a, b) ∈ D, a ∈ T, k ∈ [j]} ∪ {(a, b) | (a, b) ∈ D, a /∈ T}.

We define a mapping B : D → ℘(Dj,T ), where ℘(Dj,T ) is the power set of Dj,T , by

B(a, b) :=
{
{(a(k), b) | k ∈ [j]}}, if a ∈ T
{(a, b)}, otherwise.

For every relation symbol R ∈ τ we define RDT,j :=
⋃

(d1,...,ds)∈RD B(d1)× . . .×B(ds).
Then every h ∈ NT,i corresponds to ij mappings in hom(A,Dj,T , S). Thus for each j

we get
∑|S|
i=1 i

j |NT,i| = |hom(A,Dj,T , S)|. This is a linear system of equations and the
corresponding matrix is a Vandermonde matrix, so NT = NT,|S| can be computed with an
oracle for #CQ on the instances ((A, S),Dj,T ). The size of the linear system depends only
on |S|. Furthermore, ‖Dj‖ ≤ ‖D‖js ≤ ‖D‖s+1 where s is the bound on the arity of the
relations symbols in τ and thus a constant. It follows that the algorithm described above is
a counting slice reduction. This completes the proof of Lemma 30. J
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7.2 Reducing from hypergraphs to structures
In this section we show that we can in certain situations reduce from #CQhyp to #CQ. This
will later allow us to reduce from the hard cases in Theorem 11 to show the hardness results
of Theorem 22.

We proceed in several steps. Let in this section C be a class of conjunctive queries of
bounded arity. To every query (A, S) we construct a structure Â as follows; note that when
we use this notation, S will be clear from the context. Construct the augmented structure
aug(A, S) of A and compute its core. We define Â to be the structure that we get by
deleting the relations Ra for a ∈ S that we added in the construction of aug(A, S). We set
Ĉ := {(Â, S) | (A, S) ∈ C}.

Note that in any situation where we apply both theˆ- and ∗-operators, theˆis applied
before the ∗.

I Claim 4. There is a parsimonious slice-reduction from #CQ[Ĉ] to #CQ[C].

Proof. The relation U relates to every query (A, S) the query (Â, S). Certainly, U is
computable and by definition assigns to each query in Ĉ a query in C.

We have that Â is a substructure of A and there is a homomorphism from A to Â, because
there is a homomorphism from aug(A, S) to aug(Â, S). Hence, A and Â are homomorphically
equivalent and by Theorem 14 we have that (A, S) and (Â, S) are equivalent. Thus setting
r((A, S), (Â, S),B)) := B yields the desired parsimonious slice-reduction. J

Let Ĉ∗ := {(Â∗, S) | (Â, S) ∈ Ĉ}. Note that, by Lemma 30, there is a counting slice
reduction from p-#CQ[Ĉ∗] to p-#CQ[Ĉ].

Let now G be the class of S-hypergraphs associated to the queries in Ĉ.

I Claim 5. There is a parsimonious slice reduction from #CQhyp[G] to #CQ[Ĉ∗].

Proof. The relation U relates every S-hypergraph (H, S) in G to all queries (Â∗, S) with
the hypergraph (H, S). Certainly, U is computable and by definition of G it assigns to
S-hypergraph in G a query in Ĉ∗.

It remains to describe the function r. So let ((A, S),B) be a p-#CQ-instance such that
(A, S) has the S-hypergraph (H, S) ∈ G. We assume w.l.o.g. that every tuple appears only
in one relation of A. If this is not the case, say a tuple t appears in two relations RA

1 and
RA

2 , then we build a new instance as follows: Delete t from RA
1 and RA

2 , add a new relation
RA
t to A containing only t. Finally, set RB = RB1 ∩RB

2 . This operation does not change the
associated S-hypergraph, so this new instance still has the S-hypergraph (H, S). Moreover
it is easy to see that it has the same set of solutions.

Let the vocabulary of (Â, S) be τ . We construct a structure r((A, S), (Â∗, s),B) =: B̂
over the same relation symbols as Â∗, i.e., over the vocabulary τ ∪ {Ra | a ∈ Â}. The
structure B̂ has the domain B̂ := A×B where A is the domain of A and B is the domain
of B. For R̂ ∈ τ we set

R̂B̂ := {((a1, b1), . . . , (ak, bk)) |(a1, . . . , ak) ∈ R̂Â, (a1, . . . , ak) ∈ RA,

(b1, . . . , bk) ∈ RB}.

Furthermore, for the relations symbols R̂a that are added in the construction of Â∗ from Â
we set R̂B̂

a := {(a, b) | b ∈ B}, where B is the domain of B.
It is easy to see that from a satisfying assignment h : A→ B we get a homomorphism

h′ : Â∗ → B̂ by setting h′(a) := (a, h(a)). Furthermore, this construction is obviously
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bijective. Thus we get |hom(A,B, S)| = |hom(Â∗, B̂, S)|. Since B̂ can be constructed in
polynomial time in ‖A‖ and ‖B‖, this is a parsimonious slice reduction. J

I Corollary 31. Let C be a class of conjunctive queries of bounded arity and let G be the class
of S-hypergraphs of the cores of C. Then there is a counting slice reduction from #CQhyp[G]
to #CQ[C].

7.3 Strict star size
In this section we introduce a notion strict S-star size to simplify some of the arguments
in the next section. We define the strict S-star size of a hypergraph to be the maximum
number of vertices in S that are contained in one S-component of H.

I Lemma 32. Let G be a class of S-hypergraphs of bounded arity. If the strict S-star size of
the S-hypergraphs in G is unbounded, then there is a counting slice reduction from Clique[N]
to #CQhyp[G].

7.4 The main hardness results
In this section we use the results of the last sections to prove the hardness results of
Theorem 22.

The proof of Theorem 11 in [8] directly yields the following result.

I Lemma 33. Let G be a class of S-hypergraphs of bounded arity. If the treewidth of G is
unbounded, then there is a counting slice reduction from to Clique[N] to #CQhyp[G].

Combining Lemma 33 and Corollary 31 yields the following corollary.

I Corollary 34. Let C be a class of queries such that the treewidth of the cores of the queries
in C is unbounded. Then there is a counting slice reduction from Clique[N] to #CQ[C].

I Lemma 35. Let G be a class of hypergraphs such that contract(G) is of unbounded treewidth.
Then there is a counting slice reduction from #Clique[N] to #CQhyp[G].

Proof. Assume first that G is of unbounded strict S-star size. Then #CQhyp[G] is #W[1]-
hard by Lemma 32. So we assume in the remainder of the proof that there is a constant c
such that for every (H, S) in G every S-component of (H, S) contains only c vertices from S.

From Theorem 10 it follows that there is a counting slice reduction from #Clique[N] to
#CQhyp[contract(G)]. Therefore, it suffices to show parsimonious slice reduction (U, r) from
#CQhyp[contract(G)] to #CQhyp[G] to show the lemma.

The relation U is defined as U := {(contract(H, S), (H, S)) | (H, S) ∈ G}. By definition,
this satisfies the covering condition.

For the definition of r, consider an instance ((A, S),B) of #CQhyp[contract(G)] and
let H be the hypergraph of A. Moreover, let (H′, S) ∈ G be an S-hypergraph such that
(H, S) = contract(H′, S). W.l.o.g. assume that for every edge e of H, the structure A contains
one relation Re containing only a single tuple ~e where ~e contains the elements of e in an
arbitrary order. We construct an instance r((H, S), (H′, S), ((A, S),B)) = ((A′, S),B′).
Similarly to A, the structure A′ has for every edge e in H′ a relation Re that contains only
a single tuple ~e with the properties as before. For every S-component C of H we do the
following: Let DC be the tuples encoding the homomorphisms h from A[V (C)∩S] to B. For
every v ∈ V (C) \ S we let DC be the domain of v. Whenever two elements u, v ∈ V (C) \ S
appear in an edge, we set RB′ in such a way that for all tuples in RB

e the assignments to u
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and v coincide. Moreover, whenever u ∈ V (C) ∪ S and v ∈ V (C) \ S we allow only tuples
in which the assignment to u coincides with the assignment to u that is encoded in the
assignment to v. For all edges e of H′ with e \ S 6= ∅, we let RB′

e contain all tuples that
satisfy the two conditions above. Finally, for all edges e with e ∈ S we set RA′ := RA.

It is easy to verify that hom(A,B, S) = hom(A′,B′, S). Thus it only remains to show
that the construction can be done in polynomial time. Note first that the number of variables
from S in any S-component of H′ is bounded by c. Thus we can compute all domains DC in
time ‖B‖O(c). The rest of the construction can then be easily done in polynomial time. J

I Corollary 36. Let C be a class of conjunctive queries such that contract(C) is of unbounded
treewidth. Then there is a counting slice reduction from #Clique[N] to #CQ[C].

Proof. This follows by combination of Lemma 35 and Corollary 31. J

7.5 Putting things together
We now finally show Theorem 22 by putting together the results of the last sections.

Proof of Theorem 22.
1. follows directly from Corollary 26 with the observation that bounded treewidth of
contract(C) implies bounded S-star size.
2. is Corollary 34 and Lemma 27 using the fact that CQ[ALL] counting slice reduces to
Clique[N]; this follows from [9, Section 6.1].
3. is Corollary 36. J

8 Conclusion

In this paper we have proved a complete classification for the counting complexity of
conjunctive queries, continuing a line of work that spans several previous papers [6, 8, 11].
While this solves the bounded arity case completely, the most apparent open question is
what happens for the unbounded arity case. This case is rather well understood for the
decision version CQ of the problem [14], but for counting not much is known. In particular,
it is not known if the results of [14] can even be adapted to the quantifier free setting.

Another interesting problem would be to go from conjunctive queries to more expressive
query languages. This has been done with some success for decision problems (see e.g. [3]
and the references therein), but the situation for counting is much less clear. It is known
that counting and decision differ a lot at least in some settings, e.g. even very simple unions
of conjunctive queries yield hard counting problems [17, 15] while CQ for these queries is
very easy. Can we get a better understanding of counting complexity in this setting and how
it differs from decision?

To prove our results, we have extended the case complexity framework to counting
complexity. We are very optimistic that this will be helpful when studying the research
areas discussed above. Moreover, due to its generic nature, we feel that this framework
should also be of use outside of the query answering context and allow transparent proofs
and presentations in other areas of parameterized complexity.
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