
The Product Homomorphism Problem and
Applications
Balder ten Cate1 and Victor Dalmau2

1 LogicBlox Inc. and UC Santa Cruz
2 Universitat Pompeu Fabra

Abstract
The product homomorphism problem (PHP) takes as input a finite collection of structures
A1, . . . ,An and a structure B, and asks if there is a homomorphism from the direct product
A1⊗· · ·⊗An to B. We pinpoint the computational complexity of this problem. Our motivation
stems from the fact that PHP naturally arises in different areas of database theory. In particular,
it is equivalent to the problem of determining whether a relation is definable by a conjunctive
query, and the existence of a schema mapping that fits a given collection of positive and negative
data examples. We apply our results to obtain complexity bounds for these problems.

1998 ACM Subject Classification H.2 Database Management, G.2 Discrete Mathematics

Keywords and phrases Homomorphisms, Direct Product, Data Examples, Definability, Con-
junctive Queries, Schema Mappings

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.161

1 Introduction

Structure identification [7] refers to the general problem of finding a structural description
of some data. When the data is relational, this task is usually formalized as the problem
of determining whether a given relation can be represented in a given logical formalism.
The CQ-definability problem (also called existential inverse satisfiability problem in [6] and
PP-definability problem in [13]) is one of the most studied variants of this problem (see
[5, 6, 10, 13]). The input of the CQ-definability problem is a relation S and a finite set
R1, . . . , Rm of relations over the same domain than S, and the question is to decide whether
S is expressible by a conjunctive query over the instance I that consists of R1, . . . , Rm. This
question is not only relevant in the context of databases, but is also pertinent to constraint
satisfaction. From a constraint satisfaction perspective, CQ-definability can be viewed as
asking whether relation S can be expressed as the projection of the set of solutions of a
constraint satisfaction instance that uses relations from R1, . . . , Rm in its constraints [5] or,
equivalently, whether S belongs to the expressive power of R1, . . . , Rn [10]. In constraint
satisfaction, the notion of expressive power plays an important role in the so-called algebraic
approach in the study of the constraint satisfaction problem (see [10]). Another collection of
problems that can be viewed as instances of structure identification is the fitting problem for
schema mappings, where the input is a finite collection of data examples (I, J), where I and
J are database instances over a source schema and a target schema, respectively, and the
question is whether there exists a schema mapping that fits these data examples.

It turns out that the problems described above are closely related to a certain algorithmic
problem from graph theory: given a collection of graphs, or more generally, relational
structures A1, . . . ,An,B, is there a homomorphism from the direct product A1 ⊗ · · · ⊗An

to B. This problem, which we will refer to as the product homomorphism problem (PHP), is
© Balder ten Cate and Victor Dalmau;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 161–176

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.161
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

162 The Product Homomorphism Problem and Applications

clearly decidable in NExpTime: it suffices to materialize the (exponentially large) direct
product A1 ⊗ · · · ⊗An and guess a homomorphism from it to B. It was recently shown [13]
that PHP is NExpTime-complete if the arity of the relations in the schema is unbounded.
In this paper, we provide a simplified proof, and we establish that the same lower bound
holds under various restrictions, including for a fixed schema. We use this to establish tight
complexity bounds for CQ-definability as well as for various variants of the fitting problem
for schema mappings.

After reviewing basic definitions in Section 2, we study the product homomorphism
problem in Section 3. We then proceed with applications to instance-level query definability
(Section 4) and to fitting problems for schema mappings (Section 5). We conclude in Section 6.

2 Preliminaries

Schemas, Structures, Database Instances, and Homomorphisms

A schema is a nonempty finite set of relation symbols τ of specified arities. A (finite) structure
A of the schema τ (or, τ -structure), consists of a finite set A, called the domain of A and a
relation RA ⊆ Ar for every relation symbol R ∈ τ where r is the arity of R. Throughout the
paper we will use the same boldface and slanted capital letters to denote a structure and its
domain respectively.

Let A and B be structures of the same schema τ . A homomorphism h from A to B,
denoted h : A→ B, is a function from A to B, such that for every R ∈ R and every tuple
a = (a1, . . . , ar) ∈ RA, we have that tuple h(a), defined as (h(a1), . . . , h(ar)), belongs to
RB. We shall write A→ B to indicate that there is a homomorphism from A to B. When
A→ B and B→ A, then we say that A and B are homomorphically equivalent.

In Section 4 and Section 5 we will consider applications involving database instances.
Recall that a database instance is a finite structure with an unspecified domain. In other
words, the specification of a database instance includes the relations but does not include
the domain. For the purposes of this paper, the difference between finite structures and
database instances is inessential. This is because all notions and results in this paper are
invariant for homomorphic equivalence, and modulo homomorphic equivalence, the domain
of a structure can always be assumed to coincide with the active domain, that is, the set of
all elements occurring in the relations of the structure. We will therefore freely switch from
speaking about structures to speaking about instances in Section 4 and Section 5.

Direct products

An n-ary tuple a on A is any element of An (for n ≥ 1). For every 1 ≤ i ≤ n we shall use
a[i] to denote its ith component of a. Let R ⊆ An be a n-ary relation on A. Then the
projection, pri1,...,ij

R over coordinates i1, . . . , ij ∈ {1, . . . , n} is the j-ary relation defined as
{(a[i1], . . . , a[ij]) | a ∈ R}.

Let a = (a1, . . . , an) ∈ An and b = (b1, . . . , bn) ∈ Bn be tuples of the same arity. The
direct product a⊗ b is the n-ary tuple on A⊗B defined as ((a1, b1), . . . , (an, bn)). Similarly,
if R ⊆ An and S ⊆ Bn are n-ary relations then the direct product, R⊗ S is defined to be
{a ⊗ b | a ∈ R, b ∈ S}. The direct product, A ⊗ B, of A and B is the τ -structure with
domain A⊗B such that RA⊗B = RA ⊗RB for every R ∈ τ . We shall use Π1≤i≤nRi as a
shorthand of R1 ⊗ · · · ⊗ Rn (note that the ⊗ operation is associative up to isomorphism).
Furthermore, we shall use Rn to denote Π1≤i≤nR.

B. ten Cate and V. Dalmau 163

The direct product construction is of fundamental importance in the study of graphs
and homomorphisms, as it turns out to capture the meet (or, least upper bound) operation
of the lattice of structures ordered by homomorphic embedding. That is, for all structures
B1, . . . ,Bn, we have (i) Π1≤i≤nBi → Bi for all 1 ≤ i ≤ n, and (ii) for all structures A, if
A→ Bi for all 1 ≤ i ≤ n, then A→ Π1≤i≤nBi.

It is important to distinguish direct products from the construction that is usually referred
to as cartesian product is database theory. Let R ⊆ Ar and S ⊆ Bs be relations of possibly
different arity. The cartesian product of R and S is the r+ s-ary relation on A∪B defined as

R× S = {(a1, . . . , ar, b1, . . . , bs) | (a1, . . . , ar) ∈ R, (b1, . . . , bs) ∈ S} .

Conjunctive queries

An n-ary conjunctive query q (for n ≥ 0) is specified by a first-order formula of the form
φ(x1, . . . , xn) = ∃y1, . . . , ym(α1 ∧ · · · ∧ αk), with m ≥ 0 and k ≥ 1, where α1, . . . , αk are
relational atomic formulas (i.e., atomic formulas not involving equality), and such that each
variable xi occurs in at least one atom αj . We denote by q(A) the n-ary relation over A
defined by q(A) = {a ∈ An | A |= φ(a[1], . . . , a[n])}. For simplicity, we assume that the
atoms in a conjunctive query do not contain any constants (although our results, suitably
adapted, can be shown to apply to queries with constants as well). A fundamental property
of conjunctive queries is that they are preserved by homomorphisms: if h : A → B is a
homomorphism and a ∈ q(A), then (h(a[1]), . . . , h(a[n])) ∈ q(B).

3 The Product Homomorphism Problem

The product homomorphism problem (PHP) takes as input a finite collection of relational
structures A1, . . . ,An and another relational structure B, all over the same schema, and asks
whether there is a homomorphism from the direct product A1⊗· · ·⊗An to B. This problem
is clearly solvable in non-deterministic exponential time. It follows from results in [13] that
the problem is NExpTime-complete. The proof, based on a reduction from an exponential
tiling problem, uses structures of bounded domain size but relations of unbounded arity.
We provide a self-contained proof of NExpTime-hardness of PHP, and we show that it
holds already for directed graphs, as well as for structures of bounded arity with a bounded
domain size (but without a bound on the number of relations). More precisely, we obtain:

I Theorem 1. The PHP is NExpTime-complete [13]. The lower bound holds already for
1. structures with binary relations and a bounded domain size;
2. structures with a single relation and a bounded domain size;
3. structures with a single binary relation

This completes the picture, since PHP is solvable in polynomial time when all three of the
above parameters (i.e., number of relations, arity, and domain size) are bounded, as follows
from the fact that, in this case, there are, up to isomorphism, only a bounded number of
possible structures that can be part of the input.

Theorem 1(1) is proved by an adaptation of the technique used in [13]. Theorem 1(2) is
proved by a reduction from 1(1). Theorem 1(3) is proved by a reduction from 1(2).

3.1 Proof of Theorem 1(1)
Proof. The proof will be a reduction from the exponential tiling problem which we now
define. A domino system is a finite structure D = (D,HD, V D) where the elements in its

ICDT 2015

164 The Product Homomorphism Problem and Applications

domain, D, are called tile types and HD, V D are binary relations on D, called the horizontal
and vertical adjacency relation, respectively. For N > 1, we use [N] to denote the set
{0, . . . , N − 1}. A tiling of [N]⊗ [N] by D is any mapping ρ : [N]⊗ [N]→ D satisfying the
following conditions:

(ρ(i, j), ρ(i, j + 1)) ∈ HD for every i ∈ [N] and j ∈ [N − 1]
(ρ(i, j), ρ(i+ 1, j)) ∈ V D for every i ∈ [N − 1] and j ∈ [N]

The input of an exponential tiling problem is constituted by a domino system D, an integer
N > 1 (written in binary), and a sequence T0, . . . , Tn−1 ∈ D, with n ≤ N . The question is
whether there is a tiling ρ of [N]⊗ [N] such that ρ(0, j) = Tj for every j ∈ [n].

It is shown in [4] that the exponential tiling problem is NExpTime-hard. As discussed in
[13], there exists a single domino system D such that the problem remains coNExpTime-hard
even if the domino system in the input is required to be D and N = 2m for some m > 1.

Let us introduce a bit of notation. For every k ∈ [N], let us denote by bk ∈ {0, 1}m

the m-bit binary representation of k, which we assume starts with the bit of highest weight.
Also, we shall use Π`A` as a shorthand for Π0≤`≤2mA`

Given an instance (D, N, T0, . . . , Tn−1), N = 2m of the exponential tiling problem we
construct in polynomial time an instance A1, . . . ,A2m, B, of the PHP. Each one of the
structures, A1, . . . ,A2m, has domain {0, 1}. In this way, there is a correspondence between
[N]⊗[N] and the domain of Π`A`. More precisely, we associate to every element (i, j) ∈ [N]⊗
[N] the tuple (x1, . . . , x2m) ∈ {0, 1}2m where (x1, . . . , xm) = bi and (xm+1, . . . , x2m) = bj .

The domain of B will be the set, D, of tile types, so that a map h from Π`A` to B can be
viewed as a way of assigning a tile type to each position on the [N]⊗ [N] grid. Furthermore,
by endowing the structures involved with suitable relations, we will ensure that every such
mapping h is an homomorphism from Π`A` to B if and only if it corresponds to a valid
tiling.

For ease of exposition, we will also allow unary relations in the instance of the PHP. It is
straightforward to replace the unary relations by binary ones.

Let H,V be binary relations on the domain {0, 1}2m that denote the horizontal and
vertical successor relations on [N]⊗ [N]. Formally

H = {(bibj ,bibj+1) | i ∈ [N], j ∈ [N − 1]}

V = {(bibj ,bi+1bj) | i ∈ [N − 1], j ∈ [N]}

where bibj ∈ {0, 1}2m denotes the 2m-ary bit string obtained concatenating bi and bj . Also,
let P0 = {b0b0}, . . . ,Pn−1 = {b0bn−1} be unary singleton relations on the domain {0, 1}2m

that denote the first n cells in the zero row of [N]⊗ [N].
In order to make our reduction work, we need to somehow make sure that the relations

H,V,P0, . . . ,Pn−1 are “available” in the product structure Π`A`, by choosing the relations
in structures A1, . . . ,A2m appropriately.

Let us say that an r-ary relation R over domain {0, 1}2m is factorizable if it can be
represented as a direct product R1⊗ · · · ⊗R2m where each R` is an r-ary relation over {0, 1}.

Intuitively, this means that if we include in each structure A` the relation R`, then the
product structure Π`A` will contain the relation R. Each of the unary relations P0, . . . ,Pn,
being a singleton, is trivially factorizable. Indeed, for every j ∈ [n], Pj = {0}m ⊗ {bj [1]} ⊗
· · · ⊗ {bj [m]}.

The binary relation H is not factorizable. However, it turns out to be a union of a small
number of factorizable relations, which will suffice for our purposes. For each k ∈ [m], let
Hk = H ∩ ({0, 1}2m−k−1 ⊗ {0} ⊗ {1}k ⊗ {0, 1}2m). In words, Hk is the subrelation of H
that contains all those (bibj ,bibj+1) ∈ H such that bj finishes with a zero followed by k

B. ten Cate and V. Dalmau 165

ones. Note that for every (bibj ,bibj+1) ∈ H, bj must contain one zero. It follows that
H =

⋃
k∈[m]Hk. Furthermore, it is easy to see that Hk factorizes as

Hk = id2m−k−1 ⊗ {(0, 1)} ⊗ {(1, 0)}k

where id = {(0, 0), (1, 1)} is the equality relation on {0, 1}.
Similarly, we can express V as

⋃
k∈[m] Vk where

Vk = idm−k−1 ⊗ {(0, 1)} ⊗ {(1, 0)}k ⊗ idm .

We are now ready to define the structures A1, . . . ,A2m and B. The scheme consists of
the relations H0, . . . ,Hm−1, V0, . . . , Vm−1, P0, . . . Pn−1. As mentioned above, the domain of
A` is {0, 1} for every 1 ≤ ` ≤ 2m. For k ∈ [n], 1 ≤ ` ≤ 2m, we define

PA`

k =
{
{bk[`−m]} if m < `

{0} otherwise

For k ∈ [m], 1 ≤ ` ≤ 2m, we define

HA`

k =


{(1, 0)} 2m− k < `

{(0, 1)} ` = 2m− k
id otherwise

V A`

k =


{(1, 0)} m− k < ` ≤ m
{(0, 1)} ` = m− k
id otherwise

The domain of structure B is the set, D, of all tile types. For k ∈ [n] we define PB
k = {Tk},

and for k ∈ [m], we define HB
k = HD, and V B

k = V D.
It follows from the definitions that PΠ`A`

k = Pk for all k ∈ [n] and that HΠ`A`

k = Hk and
V Π`A`

k = Vk for every k ∈ [m]. It follows that there is a homomorphism from Π`A` to B if
and only if there is a valid tiling. The reduction we have just defined can be easily carried
out in polynomial time. J

3.2 Proof of Theorem 1(2)
Proof. The proof proceeds by a reduction from the PHP with bounded domain size (The-
orem 1(1)). We shall show how to construct, given an instance A1, . . . ,An,B of the PHP
another one with only one relation in each structure. Furthermore, the reduction will only
increase the domain size of each structure by one.

Let R1, . . . , Rk be the relation symbols in the scheme. The most immediate way to do
the reduction consists in to replace, in every structure C among A1, . . . ,An,B, relations
RC

1 , . . . , R
C
k by a single relation RC

1 × · · · × RC
k . It is not difficult to see that a mapping

h : ΠiAi → B is an homomorphism in the original instance if and only is an homomorphism
in the instance obtained after the transformation. However, this transformation cannot be
carried out in polynomial time as computing the cartesian product of k relations requires
time exponential on k. To overcome this difficulty we shall apply first an step which will
reduce the number of relations to 2.

We can assume that all relation symbols R1, . . . , Rk have arity 2. This assumption
is not essential but simplifies slightly the presentation. Let C be any structure among
A1, . . . ,An,B and let 0 be a fresh element not occurring in B ∪

⋃
1≤i≤n Ai. We denote by

C∗ the structure with domain C ∪ {0} with the following relations:

ICDT 2015

166 The Product Homomorphism Problem and Applications

(i) a unary relation PC∗ = C

(ii) a 2k-ary relation RC∗ defined as

RC∗
= {02k} ∪

⋃
1≤j≤k

{02(j−1)} ×RC
j × {02(k−j)} .

That is, RC∗ contains all-zeroes tuple (0, · · · , 0), and, for every 1 ≤ j ≤ k and every
tuple (a, b) ∈ Rj (1 ≤ j ≤ k), the 2k-ary tuple (a1, . . . , a2k) where all coordinates are 0
with the exception of a2j−1 and a2j which are a and b respectively.

This transformation can be carried out in polynomial time and it increases the domain of
each structure with at most one element. We claim that ΠiA∗i → B∗ if and only if ΠiAi → B.

In one direction, suppose h∗ is an homomorphism from ΠiA∗i to B∗. It follows that h∗
must map every element of ΠiAi = PΠiA∗

i to an element of B = PB∗ . It is then easy to
see that the restriction h of h∗ with domain ΠiAi is in fact a homomorphism from ΠiAi

to B. Indeed, let 1 ≤ j ≤ k and let (a, b) ∈ RΠiAi
j . It follows by the definition of R, that

pr2j−1,2j R
C∗ = RC

j ∪ {(0, 0)} for every C among A1, . . . ,An,B. Consequently we have
that (a, b) ∈ pr2j−1,2j R

ΠiA∗i . It follows that h maps (a, b) to a tuple in RB
j ∪ {(0, 0)}. Since

this tuple must be in B2 we are done.
Conversely, suppose h is an homomorphism from ΠiAi to B. Let h∗ be the map from

ΠiA
∗
i to B∗ that extends h such that every element in ΠiA

∗
i containing a 0 is sent to the

element 0 of B∗. Formally, h∗(a) is defined to be h(a) whenever a ∈ ΠiAi and 0 otherwise.
We shall see that h∗ is an homomorphism from ΠiA∗i to B∗. Let a be any element in
PΠiA∗

i . It follows from the definition of relation P that a ∈ ΠiAi. Then, h∗(a) is h(a) which
necessarily belongs to B = PB∗ . Now, let a = (a1, . . . , a2k) be any tuple in RΠiA∗

i and let
J be the set containing all coordinates j ∈ {1, . . . , 2k} such that aj ∈ ΠiAi. It follows from
the definition of R that J is empty or is of the form {a2j−1, a2j} for some j ∈ {1, . . . , k}.
If J = ∅ then h∗(a) = (0, . . . , 0) ∈ RB∗ (h is applied component-wise). Now assume that
J = {a2j−1, a2j}. Note that h∗(ai) is h(ai) if i ∈ {2j − 1, 2j} and 0 otherwise. We have that
(a2j−1, a2j) ∈ RΠiA

j and hence (h(a2j−1), h(a2j)) ∈ RB
` . Consequently, h∗(a) ∈ RB. J

3.3 Proof of Theorem 1(3)
Proof. We shall give a reduction from the PHP with a single relation (Theorem 1(2)). Let
A1, . . . ,An,B be an instance of the PHP over a scheme containing a single r-ary relation
R. We may assume without loss of generality that, for each structure C = (C,RC) among
A1, . . . ,An,B, the projection of RC to the first coordinate is the entire domain C. This is
because we can always replace the r-ary relation R by the (r + 1)-ary relation C ×R. This
transformation can be carried out in polynomial time and it does not affect the existence or
non-existence of a homomorphism from ΠiAi to B.

For every i ∈ {1, . . . , n}, we denote by G(Ai) the digraph defined as follows. The nodes
of G(Ai) include all elements in Ai. Furthermore, for every tuple t ∈ RAi , G(Ai) contains r
additional nodes, which we denote t1, . . . , tr. Furthermore, we include the following edges:

(tj , tj+1) for every 1 ≤ j < r.
(t[j], tj) for every 1 ≤ j ≤ r.

We define G(B) as the digraph obtained from B in the same way, except that we further
add r − 1 additional elements s1, . . . , sr−1 called sink nodes. We also add edge (sj , sj+1) for
every 1 ≤ j < r − 1. Furthermore we add an edge from every element in B to every sink
node.

B. ten Cate and V. Dalmau 167

Claim: There is a homomorphism h′ : ΠiG(Ai) → G(B) if and only if there is a homo-
morphism h : ΠiAi → B.

In the remainder, we prove this claim, which immediately implies the theorem. We start
with the more difficult direction. Let h be a homomorphism from ΠiAi to B. We shall
define from h a homomorphism h′ from ΠiG(Ai) to G(B). Let v = (v1, . . . , vn) be a node of
ΠiG(Ai).

If vi ∈ Ai for every 1 ≤ i ≤ n then we say that v is of “type 1”. In this case we define
h′(v) = h(v).
If, for every 1 ≤ i ≤ n, vi = tji

i where ti ∈ RAi and ji ∈ {1, . . . , r} then:
If, in addition, there exists some j such that ji = j for every 1 ≤ i ≤ n then we say
that v is of “type 2”. Note that Πiti is a tuple in RP iiAi and hence h(Πiti) (where h
is applied component-wise) is a tuple in RB. In this case, define h′(v) to be h(Πiti)j .
Otherwise we say that v is of “type 3” and we set h(v′) to the sink node sj where
j = min{ji | 1 ≤ i ≤ n}. Observe that, in this case, necessarily j ≤ r − 1.

If v is not of any of the previous types then we say that is of “type 4”. In this case, we
shall prove there exists a vertex u of type 1 such that for every vertex w of type 2 the
following holds:

(v, w) is an edge of ΠiG(Ai)⇒ (u,w) is an edge of ΠiG(Ai) .

In this case we set h′(v) = h′(u). Let us define u to be (u1, . . . , un) where for every
1 ≤ i ≤ n, ui is defined as follows: If vi ∈ Ai then set ui = vi. Otherwise, vi = tji

i for
some ti ∈ RAi . Set ui to be ti[ji + 1] if ji < r and to be any arbitrary element in Ai

otherwise. Let w = (w1, . . . , wn) be any node of type 2. We shall prove that for every
1 ≤ i ≤ n, if (vi, wi) is an edge of G(Ai) then so is (ui, wi). The claim is obvious whenever
ui = vi. Assume now that vi = tji

i for some ti ∈ RAi . Since w is of type 2 it follows that
wi = tji+1

i . The claim follows from the fact that G(Ai) contains edge (ti[ji + 1], tji+1
i).

Let us prove that h′ is indeed a homomorphism. Let (u, v) be an edge in ΠiG(Ai) and
let u = (u1, . . . , un) and v = (v1, . . . , vn). We shall prove that (h(u), h(v)) belongs to G(B)
by means of a case analysis on the types of u and v. Notice that v is necessarliy of type 2 or
3 since nodes of type 1 or 4 do not have incoming edges.

u is of type 1. If v is of type 3 the claim follows from the fact that G(B) has an edge from
every element in B to every sink vertex. Assume now that v is of type 2, that is, v is of
the form (tj1, . . . , tjn). Since (u, v) is an edge of ΠiG(Ai) and u is of type 1 it follows that
ui = ti[j] for every 1 ≤ i ≤ n. Hence u = (Πiti)[j] and, since h defines a homomorphism,
h(u) is the jth component of h(Πiti) (h is applied component-wise). Since h′(u) = h(u),
it follows that G(B) contains the edge from h′(u) to h′(v) = h(Πiti)j .
u is of type 2. Then necessarily there exists t1, . . . , tn and j such that u = (tj1, . . . , tjn)
and v = (tj+1

1 , . . . , tj+1
n) and the claim follows directly from the definitions.

u is of type 3. Then v is necessarily of type 3 as well. Furthermore, it follows that if h′(u)
is sj then necessarily h′(v) = sj+1.
u is of type 4. It follows directly from the definition of h′(u) and the fact that every
vertex of type 3 is mapped by h′ to a sink node.

Conversely, let h′ be a homomorphism from ΠiG(Ai) to G(B). We start by showing
that there exists a conjunctive query q with r free variables x1, . . . , xr such that for every C
among A1, . . . ,An,B,

q(G(C)) = RC . (1)

ICDT 2015

168 The Product Homomorphism Problem and Applications

Let C be among A1, . . . ,An,B. Consider first the unary conjunctive query p(z1) stating
that there is a directed path of lenght r starting at z1. Formally,

p(z1) = ∃z2, . . . , zr+1(
∧

1≤j≤r

E(zj , zj+1))

where E is the edge relation.
By the construction of G(C) it follows that p(G(C)) is precisely the projection of RC to

the fist coordinate, which we have assumed to be C. Now we define q to be the conjunctive
query

q(x1, . . . , xr) = ∃y1 . . . yr(
∧

1≤j≤r

p(xj)
∧

1≤j≤r

E(xj , yj) ∧
∧

1≤j<r

E(yj , yj+1))

where we assume that p(x1), . . . , p(xn) use different existential variables. It is not difficult to
see that q satisfies (1).

With the help of q it is very easy to complete the proof. Indeed, Now, let t be any tuple in
RΠiAi . It follows that t = Πiti, where ti ∈ RAi for every 1 ≤ i ≤ n. It follows from (1) that
ti ∈ q(G(Ai)) for every 1 ≤ i ≤ n. Then, t ∈ q(ΠiG(Ai)) and therefore, since conjunctive
queries are preserved by homomorphisms, h(t) belongs to q(G(B)). It follows from (1) that
h(t) ∈ RB.

Note that for every digraph among G(A1), . . . , G(Am), G(B) the maximum length of a
directed path is r. This will be used in the proof of Theorem 2. J

4 First application: instance-level query definability

Instance-level query definability refers to definability of relations inside a given database
instance, with respect to some query language. We focus here on the CQ-definability problem,
which consists in deciding, given a database instance I and a relation S over the active
domain of I, whether there is a conjuctive query q such that q(I) = S. Recall that a database
instance, for present purposes, can be defined as a finite structure (note that conjunctive
queries are domain-independent).

It has been long known that the CQ-definability problem is decidable in coNExpTime
(see discussion and references in [13]). For the sake of completeness we include a short
description of the algorithm that places the problem in coNExpTime. To describe it, we
need to introduce the notion of polymorphism. A polymorphism of a relation S ⊆ Dr is any
operation f : Dk → D, k ≥ 0 such that the following holds: for every k (not necessarily
different) tuples t1, · · · , tk ∈ S, the tuple, f(t1, · · · , tk), obtained by applying f component-
wise to t1, · · · , tk, belongs also to S. It is well known (see for example [13]) that q(I) = S

for some conjunctive query q if and only if every m-ary operation that is a polymorphism
of all relations in I is also a polymorphism of S, where m is the size (number of tuples) of
S. The coNExpTime algorithm for the CQ-definability is a straightforward application of
the previous result: the algorithm, basically, guesses operation f and verifies that f is a
polymorphism of all relations in I but not of S.

Additionally, it was shown in [13] that the CQ-definability problem is coNExpTime-
complete, even for database instances with a bounded active domain size. However, the proof
used relations of arbitrarily large arity. We show that the same problem is coNExpTime-
complete for a fixed schema (but without a bound on the size of the domains of the database
instances).

I Theorem 2. The CQ-definability problem is coNExpTime-hard already for unary queries
over a fixed schema consisting of a single binary relation.

B. ten Cate and V. Dalmau 169

Proof. We shall give a reduction from the PHP with a single binary relation (Theorem 1(3)).
Let A1, . . . ,An,B be the input of PHP where the schema contains only a binary relation
R. Inspection of the proof of Theorem 1(3) shows that we may assume that, in each of
these stuctures, the maximum length of a directed path is precisely r, for some fixed natural
number r. Let C be the database instance consisting of the disjoint union of A1, . . . ,An

and B, extended with the facts R(ai, x) for all i ≤ n and x ∈ Ai, and R(b, x) for all x ∈ B,
where a1, . . . , an and b are fresh elements. Observe that each ai, and also b, by construction,
has an outgoing path of length r + 1, while no other elements have an outgoing path of
length r + 1. We make use of this below. Let S = {a1, . . . , an}. Then we claim that
A1 ⊗ ... ⊗An → B if and only if S is not definable inside C by a conjunctive query. In
one direction, if A1 ⊗ . . .⊗An → B then clearly S is not definable by a conjunctive query,
because, by homomorphism preservation, the same conjunctive query would have to select b.
On the other hand, if A1 ⊗ ... ⊗An 6→ B, then we can construct a query q defining S as
follows: first we take q1 = ∃y1, . . . , yk ψ(y1, . . . , yk) to be the canonical Boolean conjunctive
query of A1 ⊗ . . .⊗An, and, then, we define q(x) to be the unary conjunctive query

∃y1 . . . , yk (R(x, y1) ∧ · · · ∧R(x, yk) ∧ ψ(y1, . . . , yk))

expressing that q1 holds in the submodel of C consisting of all elements reachable (in one
step) from the element denoted by x. By construction, q(C) includes all of S and excludes
b. It is also easy to see that q(C) contains no elements other than a1, . . . , an and b (we are
using here the fact that structures A1, . . . ,An and B do not contain a path of length r + 1).
Therefore, q defines S. J

It is also natural to consider a generalized version of CQ-definability, where the input is a
finite sequence of pairs (I1, S1), . . . , (In, Sn), where each Ii is a database instance and each
Si is a relation over the active domain of Ii (all of the same arity), and the task is to decide
whether there is a conjunctive query q, such that, for all i ≤ n, q(Ii) = Si.

I Theorem 3. The generalized CQ-definability problem is coNExpTime-complete.

Proof. The lower bound follows immediately from Theorem 2. For the upper bound: let
(I1, S1), . . . , (In, Sn) be a given input for the generalized CQ-definability problem. We may
assume without loss of generality that the active domains of I1, . . . , In are disjoint. We
extend the schema with an additional binary relation E, and construct a new instance I
that is the disjoint union of I1, . . . , In, where E is interpreted as the equivalence relation
consisting of all pairs (a, b), such that a and b belong to the active domain of the same
instance Ii. Furthermore, let S = S1 ∪ · · · ∪ Sn.

Let q be any conjunctive query, over the original schema, such that q(Ii) = Si for all i ≤ n.
Let q′ be obtained from q by adding conjuncts E(x, y) for all pairs of variables x, y occurring
(free or bound) in the query q. Then it is easy to show that q′(I) = S. Conversely, let q be
any conjunctive query (possibly referring to the binary relation E) such that q(I) = S. Let
q′ be obtained from q by dropping all conjuncts involving the relation E. Then it is easy to
show that q′(Ii) = Si for all i ≤ n. We conclude that (I1, S1), . . . , (In, Sn) is a yes-instance
for the generalized CQ-definability problem if and only if (I, S) is a yes-instance for the
CQ-definability problem. J

Analogous to the CQ-definbility problem, one can consider the FO-definability problem,
where the task is to decide, given a database instance I and a relation S over the domain of I,
whether there is a first-order query q such that q(I) = S. This problem was considered, under
the name BP-PAIR, in [9], where it was observed that the Banchilon-Paredaens completeness

ICDT 2015

170 The Product Homomorphism Problem and Applications

theorem [3, 12] implies that this problem is in coNP and co-GI-hard, where GI is the class of
problems reducible to the graph-isomorphism problem. The same holds for the generalized
FO-definability problem, also known as BP-PAIRS. Determining the exact complexity of
BP-PAIR and BP-PAIRS is an open problem [9]. Recently, in [2], instance-level definability
was studied for regular path queries and for conjunctive regular path queries in the context
of graph databases.

5 Second application: the fitting problem for schema mappings

The fitting problem for schema mappings was introduced and studied in [1]. We briefly
review the relevant definitions. Fix two disjoint finite relational schemas, S and T, which
we will call the source schema and the target schema. A GLAV (Global-and-Local-As-View)
constraint is a first-order sentence of the form

∀x(φ(x)→ ∃yψ(x,y))

where φ(x) is a conjunction of one or more atomic relational formulas over the source schema
containing all the variables in x, and where ψ(x,y) is a conjunction of one or more relational
atomic formulas over the target schema containing all variables in y. As in the case of
conjunctive queries, for simplicity, we assume that the atoms in a GLAV constraint do not
contain constants. A GLAV schema mapping is a finite set of GLAV constraints.

GLAV schema mappings are used extensively in data exchange and in data integration
[11]. They provide the formal foundation for these data-interoperability tasks by specifying
the relationships between the two schemas. Two important special cases of GLAV schema
mappings are GAV (Global-As-View) schema mappings and LAV (Local-As-View) schema
mappings. These consists of GAV constraints, and LAV constraints, respectively. A GAV
constraint is a GLAV constraint whose consequent ψ(x) consists of a single atomic formula
without existential quantifiers, while a LAV constraint is a GLAV constraint whose antecedent
φ(x,y) consists of a single atomic formula. Finally, a 1GAV schema mapping is a GAV
schema mapping such that each relation from the target schema occurs in only one constraint.
We can think of a GAV schema mapping (or, a 1GAV schema mapping) as associating, to
each target relation, a UCQ view over the source (respectively, a CQ view over the source),
while we can think of a LAV schema mapping as associating, to each source relation, a CQ
view over the target. GAV, LAV, and GLAV schema mappings are the most widely studied,
and the most widely used, types of schema mappings.

Consider a schema mapping M and a pair (I, J), where I and J are database instances
over the source S and the target schema T, respectively. When (I, J), viewed as a single
database instance over the union of the two schemas, satisfies the constraints of M , then
we say that J is a solution of I (with respect to M). We say that J is a universal solution
for I (with respect to a schema mapping M), if J is a solution for I, and for every solution
J ′ of I, there is a homomorphism from h : J → J ′, where h(a) = a for all a in the active
domain of I. It was argued in [8] that universal solutions are the preferred solutions in data
exchange. Furthermore, it was shown in [8] that, in the case of GLAV schema mappings,
every source instance has a universal solution, and a universal solution can be constructed in
polynomial time (data complexity).

Several methodologies have been proposed and used for obtaining schema mappings in
practice. In particular, in [1], a data example-driven approach to schema mapping design is
advocated. An (unlabelled) data example, here, is a pair (I, J), where I is a finite structure
over the source schema and J is a finite structure over the target schema. Data examples

B. ten Cate and V. Dalmau 171

data examples LAV GAV 1GAV GLAV
universal NP-cmp [1] coNP-cmp [1] coNExpTime-cmp∗ Πp

2-cmp [1]
pos. & neg. coNExpTime-cmp∗ coNP-cmp∗ coNExpTime-cmp∗ in coN2ExpTime and

coNExpTime-hard∗

Figure 1 Complexity of variants of the fitting problem for schema mappings (* marks new
results).

can be used in different ways to describe a schema mapping. We say that a data example
(I, J) is a positive example for a schema mapping M if J is a solution for I with respect to
M , and it is a negative example otherwise. Finally, (I, J) is a universal example for M if J
is a universal solution for I with respect to M .

The fitting problem for GLAV (GAV, LAV) schema mappings with positive/negative/uni-
versal examples is the problem where the input is a finite collection of data examples, each
labeled as being a positive example or a negative example or a universal example, and the
problem is to decide whether there exists a GLAV (GAV, 1GAV, LAV) schema mapping that
is consistent with this marking (in other words, that “fits” these data examples). We will
follow the literature by considering the data complexity of this problem, where the input is
the collection of marked data examples, while the source and target schema are assumed
to be fixed. The fitting problem for universal examples was studied in [1]. It was shown
there that this problem is coNP-complete for GAV schema mappings; NP-complete for LAV
schema mappings; and Πp

2-complete for GLAV schema mappings. It was also shown in [1]
that if, for a given set of universal examples, a fitting GLAV (or GAV, LAV) schema mapping
exists, then there is one whose size is linear in the combined size of the data examples.

Although it is argued in [1] that universal examples are the most natural and well-behaved
type of data examples, it is also important to consider fitting problems where the input is a
collection of positive and negative examples. Indeed, for richer schema mapping languages
(beyond GLAV), in general, a given source instance may not have a universal solution, and
hence, we cannot always work with universal examples. Below, we determine the complexity
of the fitting problem with positive and negative examples, for the various schema mapping
languages introduced above. The main results are summarized in Figure 1.

First, we establish some convenient lemmas. First, the direct product construction
naturally generalizes to instances with designated elements. Let n,m ≥ 0 and let
(I1,a1), . . . , (In,an), where each In is an instance, over the same schema, and where each ai

is a sequence of m elements of the active domain of Ii (m ≥ 0). We denote by Π1≤i≤n(Ii,ai)
the pair (Π1≤i≤n(Ii),b), where b is the m-tuple that is the direct product of a1, . . . ,an.

We will make use of the following fundamental notion from database theory: the canonical
query of (I,a) is the query q(x) = ∃yψ(x,y) obtained by associating a first-order variable to
each element of the active domain of I, taking ψ to be conjunction of all facts of I using
these variables, and existentially quantifying all variables corresponding to elements that do
not belong to a. Note that the free variables x of the query are the variables that correspond
to the elements in a.

I Theorem 4. (i) Let E be a finite collection of positive and negative data examples over a
fixed source and target schema. If there exists a LAV schema mapping that fits E, then
there exists one of size at most 2O(n), where n is the total size of the data examples in
E.

(ii) The fitting problem for LAV schema mappings with positive and negative examples (over
a fixed source and target schema) is coNExpTime-complete.

ICDT 2015

172 The Product Homomorphism Problem and Applications

Proof. (i) Let E be a finite set of positive and negative labeled data examples with source
and target schemas S and T. Let F be the finite set consisting of all atomic formulas over
S, modulo variable renaming. For every R(x) ∈ F , let (J∗R(x),a∗R(x)) be the direct product
Π{(J,a) | (I, J) ∈ E is a positive data example and I |= R(a)}. Let qR(x) be the canonical
query of (J∗R(x),a∗R(x)). Take M∗ to be the schema mapping consisting of all LAV constraints
of the form ∀x(R(x)→ qR(x)(x)), for R(x) ∈ F .

Note that the size of M∗ is single exponential in ||E||: since the schemas S and T are
fixed, the number of formulas over S, modulo variable renaming, is bounded. Moreover, the
cardinality of S is bounded linearly by the number of facts in the data examples belonging
to E. It follows that M∗ consists of polynomially many LAV constraints, each of at most
singly exponential size.

Furthermore, it follows from the construction of M∗ that for every positively labeled
data example (I, J) ∈ E, J is a solution for I with respect to M∗. Indeed, consider any
LAV constraint ∀x(R(x) → qR(x)(x)) of M∗, and suppose R(a) ∈ I. By construction,
(J∗R(x),a∗R(x))→ (J,a), which means that qR(x)(a) is satisfied in J .

It remains to show that every negatively labeled data example (I, J) ∈ E falsifies at least
one LAV constraint fromM∗. For the sake of a contradiction, assume that this is not the case.
Let M be the LAV schema mapping that fits E, which we have assumed exists. We know
that (I, J) falsifies at least one LAV constraint from M . Let this LAV constraint be of the
form ∀x(R(x)→ ∃yψ(x,y), and let R(a) ∈ I be witness to the falsehood of this constraint in
(I, J). Since (I, J) satisfies all constraints of M∗, we know that qR(x), as we defined earlier,
is satisfied in (J,a). In other words, (J∗R(x),a∗R(x)) → (J,a). It follows that ∃yψ(x,y) is
not satisfied in (J∗R(x),a∗R(x)), in other words, the canonical instance of ∃yψ(x,y) does not
homomorphically map to (J∗R(x),a∗R(x)). At the same time, we know that ∃yψ(x,y) maps
homomorphically into each factor instance of which (J∗R(x),a∗R(x)) is the direct product. This
contradicts the basic property of direct products we described in Section 2, namely that every
structure that maps homomorphically into a collection of structures, maps homomorphically
into their direct product. Therefore, we have reached a contradiction.

(ii) The coNExpTime upper bound follows from the proof of item (i): we construct
M∗ from the given data examples, as described above. As we noted, it follows from the
construction that M∗ fits all positively labeled data examples in E. Therefore, we only need
to verify that M∗ fits the negatively labeled data examples in E. We use here the fact that
the problem of checking that a LAV constraint is satisfied in a data example belongs to NP
(which follows from the fact that LAV constraints are existential FO sentences).

Lower bound: by reduction from Theorem 1(3): let A1, . . . ,An and B be given, with a
single binary relation. Let T be the schema of these structures, and let S be the schema
consisting of a single unary relation P . By the way, in this case, every LAV schema mapping
is equivalent to one that consists of a single LAV constraint (this is because there is only
one possible left-hand side for the LAV constraints, due to the particular choice of S, and
multiple LAV constraints with the same left-hand side can be combined using conjunction of
the right-hand sides). Note that this already shows that in essence, here, we are concerned
with finding a fitting conjunctive query again (namely the right-hand side of the unique LAV
constraint). For each i ≤ n, consider the data example ({P (0)},Ai) where 0 is some fresh
value. The PHP then reduces to the complement of the question whether there is a LAV
schema mapping that fits the positively labeled examples ({P (0)},Ai) for i ≤ n and the
negatively labeled example ({P (0)},B). J

In contrast, the situation for GAV is quite different:

B. ten Cate and V. Dalmau 173

I Theorem 5. 1. Let E be a finite collection of positive and negative data examples over a
fixed source and target schema. If there exists a GAV schema mapping that fits E, then
there exists one whose size is polynomial in the total size of the data examples in E.

2. The fitting problem for GAV schema mappings with positive and negative examples is
coNP-complete.

Proof. For the complexity upper bound, we use the following decision procedure: let a finite
set of labeled data examples be given. For each negatively labeled example (I, J), we verify
that there is a target relation R and a tuple t of appropriate arity over the domain of I such
that (i) R(t) is absent in J ; and (ii) for every positively labeled example (I ′, J ′) (from the
given set of examples) and homomorphism h : I → I ′, R(h(t)) belongs to J ′. If this holds,
we answer Yes, otherwise No. Note that item (ii) involves a coNP test. Since this coNP test
is performed at most polynomially many times, this places the entire problem in coNP.

If the procedure answers Yes, then a fitting GAV schema mapping indeed exists, namely the
schema mapping containing, for each negatively labeled example (I, J), the GAV constraint
whose left-hand side is the canonical query of I (where each constant is replaced by a
corresponding fresh universally quantified variable) and whose right-hand side is the chosen
missing fact R(t) (where each constant is again replaced by the corresponding universally
quantified variable). It follows from item (ii) that this GAV constraint is indeed satisfied
in all the positively labeled examples. The GAV schema mapping consisting of all GAV
constraints constructed in this way (one for each negatively labeled data example) therefore
fits E. Note that this schema mapping is of poynomial size.

Conversely, if there is a fitting GAV schema mapping, then the above procedure will
answer Yes: in order for a GAV schema mapping to fit the examples, it must contain, for
each negatively labeled example (I, J), a GAV constraint that fails in (I, J). The conclusion
of this constraint (together with the homomorphism witnessing its failure in (I, J)) provides
the fact R(t) that is missing in J . Since the same GAV constraint holds in all positive data
examples, item (ii) above holds as well.

The coNP-hardness is shown by a reduction from (the complement of) the NP-complete
graph homomorphism problem. Indeed, is easy to see that, for any two graphs G,G′, we have
that G→ G′ if and only if there is no fitting GAV schema mapping for the set consisting of the
positively labeled data example (G′, ∅) and the negatively labeled data example (G, ∅). J

1GAV schema mappings have not been previously considered in the context of schema
mapping discovery. Therefore, we study the fitting problem both in the case with positive
and negative examples and with universal examples.

I Theorem 6. The following problems are coNExpTime-complete:
1. the fitting problem for 1GAV schema mappings with positive and negative examples
2. the fitting problem for 1GAV schema mappings with universal examples
In both settings it holds that, if there is a fitting schema mapping for a given set of data
examples, then there is one of whose size is exponential in the total size of the data examples.

Proof. Before we start, we note that, if M is a GAV schema mapping (in particular, a
1GAV schema mapping), then every source instance I has a universal solution J , such that
the active domain of J is included in the active domain of I (indeed, the chase procedure
described in [1] produces such universal solutions for GAV schema mappings). Moreover, if
J is a universal solution for I and the active domain of J is included in the active domain
of I, the definition of universality implies that J is a subinstance of every solution of I. In
addition, for every pair of instances I, J , we have that J is a universal solution for I with

ICDT 2015

174 The Product Homomorphism Problem and Applications

respect to a GAV schema mapping M if and only if J ′ is a universal solution for I with
respect to M , where J ′ is the subinstance of J induced by the active domain of I. We will
make use of these observations below.

First we show how coNExpTime-hardness of the fitting problem for 1GAV schema map-
pings with universal examples, by reduction from the CQ-definability problem (cf. Theorem 2)
Let (I, S) be a given input for the CQ-definability problem (for a fixed schema S), and let n be
the arity of the relation S. Let T be the schema that the single n-ary relation symbol T , and
let J be the T-instance given by the relation S. First, observe that, since the target schema
T consists of a single relation, every 1GAV schema mapping, in this case, consists of at most
one GAV constraint, which is of the form ∀xy(φ(x,y→ Tx) (where there may be a repetition
of variables in the T -atom). We can associate to this GAV constraint a conjunctive query
q(x) = ∃yφ(x,y) (and, conversely, each conjunctive query is associated to a GAV schema
mapping in this way). It is easy to see that a 1GAV schema mapping M fits the universal
example (I, J), if and only if the corresponding conjunctive query q(x) is such that q(I) = S.

Next, we reduce the fitting problem for 1GAV schema mappings with universal examples
to the fitting problem for 1GAV schema mappings with positive and negative examples. Let
E be a collection of universal examples over source and target schemas S,T. By our earlier
observations, we may assume without loss of generality that the data examples (I, J) ∈ E are
such that the active domain of J is included in the active domain of I. We define a set E′ of
positive and negative examples. For each (I, J) ∈ E, we include in E′ as positive examples
the pair (I, J) itself; and we include in E′ as negative examples all pairs (I, J ′) where J ′ is
a T-instance over the active domain of I such that J 6⊆ J ′. It is easy to show that a 1GAV
schema mappingM fits the positive and negative data examples in E′ if and only ifM fits the
universal examples in E. Moreover, the combined side of the data examples in E′ is polynomial
in the combined size of the data examples in E, given that the schemas S,T are fixed.

Finally, we will show that the fitting problem for 1GAV schema mappings with positive
and negative examples is in coNExpTime, and we will establish the existence of single
exponential size fitting 1GAV schema mappings. Let E be a finite set of data examples over
schemas S and T. We will restrict attention to the case where T = {T} (the generalization
to the case with several target relations is straightforward). Let n be the arity of T . For
each negatively labeled data example (I, J) ∈ E, by a missing fact of (I, J) we will mean
a fact T (a), with values a from the active domain of I, that does not belong to J . If a
negatively labeled example (I, J) ∈ E has no missing fact, then it is easy to see that no
1GAV schema mapping (and in fact, no GLAV schema mapping) fits E. Therefore, we may
assume that each negatively labeled data example has at least one missing fact. Let F be
the set of all functions that map each negatively labeled data example in E to one of its
missing facts. Note that F consists of singly exponentially many maps. We can associate
to each map f ∈ F a 1GAV schema mapping Mf , namely the schema mapping consisting
of the 1GAV constraint ∀x(qf (x) → Tx)), where qf is the canonical query of the direct
product Π{(I,a) | (I, J) ∈ E is a negatively labeled data example and f(I, J) = Ta}. It
follows from the construction that Mf fits every negatively labeled data example in E.

Claim: If there is a 1GAV schema mapping that fits E, then, for some f ∈ F , Mf fits E.

Note that the size of Mf is single exponential. The claim also implies the coNExpTime
complexity upper bound we are after: to check that there is no fitting 1GAV schema
mapping for E, it suffices to guess, for each f ∈ F , a positively labeled data example (I, J)
and a variable assignment witnessing the fact that (I, J) 6|= ∀x(qf (x) → Tx)). Note that
the exponentially many exponential-size non-deterministic guesses can be collected into a
single exponential size non-deterministic guess.

B. ten Cate and V. Dalmau 175

To prove the claim, let M ′ be a 1GAV schema mapping that fits E, and let its constraint
be of the form ∀~x(φ(x)→ T (x)). Let f be the map that sends each negatively labeled data
example (I, J) ∈ E to a missing target fact that witnesses the violation of the constraint in
(I, J). Recall that qf is the canonical query of (I∗,a∗) = Π{(I,a) | (I, J) ∈ E, I |= φ(a), J 6|=
T (a), f(I, J) = T (a)}. It follows that qf is falsified in all negatively labeled data examples
(I, J) ∈ E, and hence, M ′ fits all negatively labeled data examples in E (we had already
noted that M ′ fits all positively labeled data examples). J

The coNExpTime lower bound for the LAV case applies to the GLAV case as well (the
examples involved have a source instance that consists of a single fact, and it is easy to see
that, for such data examples, every GLAV constraint is equivalent to a LAV constraint of at
most the same size). The upper bound technique used in the LAV case can also be adapted
for GLAV schema mappings, but it no longer yields matching complexity and size bounds.

I Theorem 7. 1. Let E be a finite collection of data examples over a fixed source and target
schema. If there exists a GLAV schema mapping that fits E, then there exists one of size
at most 22O(n) , where n is the total size of the data examples in E.

2. The fitting problem for GLAV schema mappings with positive and negative examples is in
coN2ExpTime and coNExpTime-hard.

Proof. (sketch) Clearly, a fitting GLAV schema mapping needs to contain at most one
constraint per negative example (I, J) ∈ E. The left-hand side of that GLAV constraint
can, without loss of generality, be taken to be the canonical conjunctive query of I. The
right-hand side must be a CQ that fails in J under the natural variable assignment. Here, we
can apply the same technique as in the proof of Theorem 4: we can take the right-hand side
of the constraint to be the canonical query of the direct product of all J ′ with (I ′, J ′) ∈ E is
a positive data example and I → I ′. The same arguments used in the proof of Theorem 4
show that, if there exists any GLAV schema mapping that fits E, then the GLAV schema
mapping constructed here fits E.

Since the number of homomorphisms I → I ′ is in general exponential, the above construc-
tion, in general, involves taking the direct product of exponentially many instances. This gives
us a double exponential size GLAV constraint. By the same arguments used in the proof of
Theorem 4, we can derive a coN2ExpTime complexity upperbound for the fitting problem. J

6 Conclusion

We provided a detailed classification of the complexity of PHP under various restrictions.
We used these results to obtain tight complexity bounds for instance-level query definability
problems and for fitting problems for schema mappings. The precise complexity of the fitting
problem for GLAV schema mappings with respect to positive and negative data examples is
left as an open problem.

Acknowledgements. We are grateful to Ross Willard for discussions on the topic and for
comments on an earlier draft. Ten Cate is supported by NSF grant IIS-1217869. Dalmau is
supported by MICCIN grant TIN2013-48031-C4-1.

ICDT 2015

176 The Product Homomorphism Problem and Applications

References
1 Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-Chiew Tan. Designing and

refining schema mappings via data examples. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, SIGMOD ’11, pages 133–144, New York,
NY, USA, 2011. ACM.

2 Timos Antonopoulos, Frank Neven, and Frédéric Servais. Definability problems for graph
query languages. In Proceedings of the 16th International Conference on Database Theory,
ICDT ’13, pages 141–152, New York, NY, USA, 2013. ACM.

3 F. Banchilon. On the completeness of query languages for relational databases. In Proceed-
ings of MFCS, pages 112–123, 1978.

4 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspect-
ives in Mathematical Logic. Springer, 1997.

5 Nadia Creignou, Phokion G. Kolaitis, and Bruno Zanuttini. Structure identification of
boolean relations and plain bases for co-clones. J. Comput. Syst. Sci., 74(7):1103–1115,
2008.

6 Victor Dalmau. Computational Complexity of Problems over Generalized Formulas. PhD
thesis, Universitat Politècnica de Catalunya, 2000.

7 Rina Dechter and Judea Pearl. Structure identification in relational data. Artif. Intell.,
58(1-3):237–270, 1992.

8 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theoretical Computer Science, 336(1):89 – 124, 2005.
Database Theory.

9 G.H.L. Fletcher, M. Gyssens, J. Paredaens, and D. Van Gucht. On the expressive power
of the relational algebra on finite sets of relation pairs. Knowledge and Data Engineering,
IEEE Transactions on, 21(6):939 –942, june 2009.

10 Peter Jeavons, David A. Cohen, and Marc Gyssens. How to determine the expressive power
of constraints. Constraints, 4(2):113–131, 1999.

11 Phokion G. Kolaitis. Schema mappings, data exchange, and metadata management. In Pro-
ceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’05, pages 61–75, New York, NY, USA, 2005. ACM.

12 J. Paredaens. On the expressive power of the relational algebra. Information Processing
Letters, 7(2):107 – 111, 1978.

13 Ross Willard. Testing expressibility is hard. In David Cohen, editor, CP, volume 6308 of
Lecture Notes in Computer Science, pages 9–23. Springer, 2010.

	Introduction
	Preliminaries
	The Product Homomorphism Problem
	Proof of Theorem 1(1)
	Proof of Theorem 1(2)
	Proof of Theorem 1(3)

	First application: instance-level query definability
	Second application: the fitting problem for schema mappings
	Conclusion

