
Coupling Memory and Computation for Locality
Management
Umut A. Acar1,2, Guy Blelloch1, Matthew Fluet3,
Stefan K. Muller1, and Ram Raghunathan1

1 Carnegie Mellon University, Pittsburgh, PA, USA,
{umut,blelloch,smuller,ram.r}@cs.cmu.edu

2 Inria, Paris, France
3 Rochester Institute of Technology, Rochester, NY, USA, mtf@cs.rit.edu

Abstract
We articulate the need for managing (data) locality automatically rather than leaving it to the
programmer, especially in parallel programming systems. To this end, we propose techniques
for coupling tightly the computation (including the thread scheduler) and the memory manager
so that data and computation can be positioned closely in hardware. Such tight coupling of
computation and memory management is in sharp contrast with the prevailing practice of con-
sidering each in isolation. For example, memory-management techniques usually abstract the
computation as an unknown “mutator”, which is treated as a “black box”.

As an example of the approach, in this paper we consider a specific class of parallel computa-
tions, nested-parallel computations. Such computations dynamically create a nesting of parallel
tasks. We propose a method for organizing memory as a tree of heaps reflecting the structure of
the nesting. More specifically, our approach creates a heap for a task if it is separately scheduled
on a processor. This allows us to couple garbage collection with the structure of the computation
and the way in which it is dynamically scheduled on the processors. This coupling enables taking
advantage of locality in the program by mapping it to the locality of the hardware. For example
for improved locality a heap can be garbage collected immediately after its task finishes when
the heap contents is likely in cache.

1998 ACM Subject Classification D.3.3. Dynamic Storage Management

Keywords and phrases Parallel computing, locality, memory management, parallel garbage col-
lection, functional programming, nested parallelism, thread scheduling

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2015.1

1 Introduction

A confluence of hardware and software factors have made the cost of memory accesses and
thus management of data locality an important theoretical and practical challenge.

On the hardware side, we have witnessed, over the past two decades, an increasing
performance gap between the speed of CPU’s and off-chip memory, a.k.a., the memory
wall [59]. Starting with sequential architectures, the growing CPU-memory gap led to the
development of deep memory hierarchies. With the move from sequential to parallel (multi-
and many-core) architectures, the CPU-memory gap has only grown larger due to parallel
components competing for limited bandwidth, the larger latency caused by the increased
scale, and the potential need for memory coherence [15]. To help close the increasing gap,
modern parallel architectures rely on complex memory hierarchies with multiple levels of
caches, some shared among cores, some not, with main memory banks associated with specific

© Umut A. Acar, Guy Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan;
licensed under Creative Commons License CC-BY

1st Summit on Advances in Programming Languages (SNAPL’15).
Eds.: Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Coupling Memory and Computation for Locality Management

processors leading to non-uniform memory access (NUMA) costs, and complicated coherence
schemes that can cause various performance anomalies. To obtain good performance from
such hardware, programmers can employ very low-level machine-specific optimizations that
carefully control memory allocation and the mapping of parallel tasks to specific processors so
as to minimize communication between a processor and remote memory objects. While such
a low-level approach might work in specific instances, it is known that this approach leads
to vast inefficiencies in programmer productivity, and leads to software that is error-prone,
difficult to maintain, and non-portable. It may appear that given these facts of hardware, we
are doomed to designing and coding low-level machine-specific algorithms.

Developments on the software side limit the effectiveness of even such heroic engineering
and implementation efforts: with the broad acceptance of garbage-collection frameworks
and managed runtime systems, it may not even be possible for the programmer to exert
much control over memory allocation, confining the applicability of locality optimizations
to low-level languages such as C. Even in low-level languages, the challenges of locality
management are amplified in the context of parallel programs, where opportunities for
parallelism are expressed by the programmer and utilized by the run-time system by creating
parallel threads as needed and mapping the threads to processors by using a thread scheduler.
Such thread schedulers often make non-deterministic decisions in response to changes in the
work load, making it very difficult if not impossible for the programmer to determine where
and when a piece of computation may be performed.

Based on these observations, we conclude that locality should be managed by the compiler
and the run-time system of the programming languages. Given the importance of locality in
improving efficiency and performance, automatic management of locality in parallel programs
can have significant scientific and broad impacts. But, such automatic management may
seem hard: after all, how can the compiler and the run-time system identify and exploit
locality? Fortunately, it is well known that programs exhibit natural locality. According
to Denning, the reason for this is the “human practice of divide and conquer – breaking a
large problem into parts and working separately on each.” [24]. Research in the last decade
shows that this natural locality of programs extends to nested parallelism as supported by
languages such as Cilk [31], Fork/Join Java [41], NESL [14], parallel Haskell [39], parallel
ML [29, 37, 30, 53], TPL [42], and X10 [16], Habanero Java [36]. This is because these
languages take advantage of the same divide-and-conquer problem-solving methodology that
leads to good locality. As a result, the compiler or runtime does not need to find the locality,
just take advantage of it.

For example, consider the matrix multiply code in Figure 1. The eight recursive calls
as well as the additions (recursively), can be performed in parallel, leading to abundant
parallelism. Furthermore, the computation has abundant natural “temporal” locality: an
m × m matrix multiply deep in the recursion will do O(m3) work but only need to load
O(m2) memory allowing for significant reuse. There is also high “spatial” locality because
quadrants can be laid out in a spatially coherent array. While this simple example considers
only a highly structured algorithm, more irregular parallel algorithms also exhibit similar
locality properties.

Previous work on (thread) scheduling has already shown how such natural locality in
parallel software can automatically be exploited, and has proved bounds on a variety of
machine models, such as multiprocessors with private caches using work stealing [2, 32], with
shared caches using DFS scheduling [12, 18], or with trees of caches using space bounded
schedulers [20, 11, 23]. A limitation of the previous results, however, is that they make very
restrictive assumptions about memory allocation. The work-stealing results, for example,



U.A. Acar, G. Blelloch, M. Fluet, S. K. Muller, and R. Raghunathan 3

function MM(A, B) =
if A and B are small

return SmallMM(A, B)
else

RT L = MM(AT L, BT L) + MM(AT R, BBL)
RBL = MM(ABL, BT L) + MM(ABR, BBL)
RT R = MM(AT L, BT R) + MM(AT R, BBR)
RBR = MM(ABL, BT R) + MM(ABR, BBR)
return compose(RT L, RBL, RT R, RBR)

Figure 1 Parallel Matrix Multiply; XY Z refers to the four quadrants of the matrix X with Y

and Z denoting the left/right and bottom/top parts. The + indicates matrix addition.

assume all memory is allocated on the stack, and the space bounded schedulers assume all
space is preallocated and passed in. The results therefore do not apply to systems with
automatic memory management and remain low-level in how the user has to carefully lay
out their memory, making fine-grained dynamically allocated data structures particularly
difficult to implement efficiently.

We believe that it is possible (and desirable) to manage locality automatically within
the run-time system – specifically the memory manager and the scheduler – of a high-
level garbage-collected parallel language. Why? At a fundamental level, such automatic
management of locality is feasible because of the natural locality of certain software, and
because all the information needed to manage it, such as the structure of the machine memory,
the position of individual objects in memory, is readily available to and possibly controlled
by the runtime system. But how?

In this paper, we suggest and briefly explore the following two ideas that we believe are
important for taking advantage of locality for parallel programs.
1. Memory management and scheduling should be integrated as part of the same runtime

system, such that management decisions are tightly linked with scheduling decisions.
2. The runtime heap structure should match the structure of the computation itself making

it possible to position data and computation closely in hardware.

We describe an application of these ideas by considering purely functional nested-parallel
programs executed on shared memory architectures such as modern multicore machines.
Nested parallel computations, represented by fork-join programs is the mainstay of many
parallel languages such as Cilk [31], Fork/Join Java [41], Habanero Java [36], NESL [14],
parallel Haskell [39], parallel ML [29, 37, 30, 53], TPL [42], and X10 [16]. In this paper, we
further limit ourselves to purely functional programs. While purely functional programming
may seem like a significant restrictions, it often comes at no or little cost. For example, at
Carnegie Mellon University, we teach the introductory undergraduate algorithms class [1],
which covers a whole range of algorithms and data structures, including algorithms on
sequences (arrays), binary search trees, and graphs by using the purely functional, nested-
parallelism paradigm. The work presented in this paper was partly motivated from a desire to
develop a compiler that generates fast parallel executables for modern multicore architectures
from nested parallel programs written in functional languages.

Our approach to managing locality is to structure memory in a way to reflect the
structure of the computation, as shaped by the scheduling decisions, and to couple memory
management and computation via memory, on which they both operate. A key observation

SNAPL 2015



4 Coupling Memory and Computation for Locality Management

behind our approach is that many parallel programs, both purely functional and impure,
observe a disentanglement property, where parallel threads avoid side-effecting memory
objects that might be accessed by other threads. Disentanglement is often quite natural,
because entanglement often leads to race conditions. Taking advantage of disentanglement,
we structure the memory as a tree (hierarchy) of heaps, also by observing scheduling
decisions, thus coupling the computation, scheduling, and the memory. Taking advantage of
disentanglement, we also couple garbage collection with the computation, completing the
circle.

While we assume purely functional code here, there are relaxations to purity that appear
to remain compatible with the techniques proposed here. We discuss some possible directions
for future research in Section 7.

2 Preliminaries

T1
T2 T3

Legend
Task
Thread

T4 T5

Figure 2 Tasks and threads.

We consider shared-memory, nested parallel computa-
tions expressed in a language with managed parallel-
ism, where the creation and balancing of parallelism
is performed automatically by the run time system of
the host language. We allow arbitrary dynamic nest-
ing of fork-join (a.k.a., “par-synch” or “spawn-synch”)
constructs (including parallel loops), but no other syn-
chronizations. A nested-parallel computation can be rep-
resented as a Directed Acyclic Graph (DAG) of threads
(a.k.a., “strands”), each of which represent a sequential
computation uninterrupted by parallel fork and join op-
erations. The vertices of the DAG represent threads and
the edges represent control dependencies between them. The DAG can be thought of as a
“trace” of the computation, in that all threads evaluated during a computation along with
the dependences between them are represented in the DAG. We call a vertex a fork-vertex if
it has out-degree two and a join-vertex if it has in-degree two. Much of the literature on
parallel computing uses this characterization.

We exploit an important hierarchical structure of nested-parallel computations. To see
this structure, note first that in a nested-parallel computation, each fork-vertex matches with
a unique join-vertex where the subcomputations started by the fork come together (join).
We refer to such a subcomputation that starts at the child of a fork-vertex and completes at
the parent of the matching join-vertex as a task. We also consider the whole computation
as a task. We say that two threads are concurrent if there is no path of dependencies
(edges) between them. We say that two tasks are concurrent if all their threads are pairwise
concurrent. Figure 2 illustrates the DAG of an example fork-join computation along with its
threads and some tasks. Tasks T2 and T3 are concurrent, whereas T2 and T4 are not.

At any given time during the computation we have a task tree, in which each node
corresponds to a task. We can also associate with each leaf of the tree the thread that is
currently active within that task. All these threads are said to be ready and a computational
step can be taken on any subset of them. As expected, a fork operation executed on a leaf
tasks T will create some number of new tasks that are children of T , and a join operation
executed on a leaf task will remove the task from the tree. When the last child of a task T

is removed, T becomes a leaf and hence has a ready thread. Note that although the DAG
represents the trace of a computation when done, the task tree represents a snapshot in time



U.A. Acar, G. Blelloch, M. Fluet, S. K. Muller, and R. Raghunathan 5

1

g

4

3o

w

n

c

4

M

L3

4

q r

t

z

L1

M

L2

1

2

1

1

1 3 3

3
L1

L2L2 L2

L1
L1 L1L1

L3

L1L1h

ö p

s

u

b

x

e

j k

ü

d f

y

l m

v

a 1

1

31

2 3 4 2 1

4

1

2

1

3 1

i

Figure 3 An illustration of how a parallel computation can be mapped processors and levels in
the memory hierarchy. The label next to each thread (vertex) illustrates the processors, numbered
from 1 to 4, executing the thread. Boxes illustrate parallel tasks. Each task is mapped to the lowest
(fastest) level in the hierarchy that is large enough to hold its live data set; M denotes a memory
bank and L1,L2, and L3 denote the levels of the cache.

of the computation. Assuming the computation is deterministic, the DAG is deterministic
and does not depend on the schedule, but the task tree very much depends on the schedule.

3 Observations

We start by making some observations, using the following (hypothetical) example to help
motivate them. Consider a nested-parallel program written with fork-join constructs. Suppose
now that we run the program on an 4-processor machine, where each processor has its own
L1 and L2 cache and four processors share an L3 cache, by using a thread scheduler that
performs load balancing so as to minimize completion time. Assume that when run, the
program produces the computation DAG shown in Figure 3. Each thread is labeled with a
letter, a through z (also with accents). We illustrate the schedule by labeling each thread
with the number of the processor that executes it. For example, processor 1 executes thread
a; processor 3 executes threads o, q, r and t. We illustrate a task by drawing a rectangular
box around it. For the purposes of discussion, we assign each task a level in the memory
hierarchy based on the size of the maximum memory needed by the live objects in that task,
i.e., its memory footprint. For example, the task with root d is assigned to L2 because its
live set does not fit into a level-1 cache but it does fit into a level-2 cache.

Disentanglement
Our approach to automatic locality management is based on a key property of nested-parallel
computations, which we call (memory) disentanglement. In a nested-parallel computation,
memory objects allocated by concurrent tasks are often disentangled: they don’t reference
each other. In purely functional languages such as NESL and pure Parallel ML, because of the
lack of side effects, all objects allocated by concurrent tasks are disentangled. For example, in
Figure 3, the memory object allocated by tasks rooted at b and c would be disentangled (they

SNAPL 2015



6 Coupling Memory and Computation for Locality Management

can point to objects allocated by their parent a, but not to objects allocated by each other).
In the presence of side effects, disentanglement is also the common form because side effects
naturally harm parallelism and therefore are rarely used in a way to cause entanglement.
For example, in Cilk, where imperative programming is readily available, disentanglement is
encouraged, is the common case, and can be checked with a race detector.

Task Local Heaps
A key property of generational collection with sequential garbage collection is that the
generations can be sized so they take advantage of the various levels of the cache. If the
newest/smallest generation fits within the L1 cache, for example, and is flushed or compacted
whenever it fills, then most accesses to that space will be L1 cache hits. Short lived data will
therefore rarely cause an L1 miss. Similarly if the second generation fits within L2, slightly
longer lived data will rarely cause an L2 miss. Our goal is to take advantage of this property
in the context of parallel computations in which caches might be local or might be shared
among subsets of processors. In our example, all the tasks that have L1 around them are
scheduled on a single processor so as long as we use a generation within each one, most
accesses will be L1 hits even if the total memory allocated is much larger than L1 (recall
that the size refers to the live data at any given time). More interestingly the task rooted at
b fits within L3 (which is shared). If we allocate a heap proportionally and share that heap
among the subtasks, then their footprint will fit within L3. However this only works if we do
not simultaneously schedule any of the tasks under the root c since together they would not
(necessarily) fit into L3. We therefore would want to link the scheduling decision to heap
sizes.

Independence
With disentanglement it is always safe to garbage collect any task in the task graph by only
synchronizing descendant tasks. This allows garbage collection to proceed independently
without the complications of a concurrent collector at various levels of the hierarchy. This is
true even for a moving (copying or compacting) collector. It is even possible to collect an
ancestor task with a non-moving collector when a descendant task is still running as long as
the root set is properly accounted for.

GC Initiation
Since scheduling is performed at task boundaries, pieces of computation move at those points.
Thus, if we coordinate the garbage collector with the scheduler, we can initiate garbage
collections at scheduling points. For example when finishing the task rooted at o all the data
that was accessed in that task (nodes o, q, r and t) is presumably still in the L1 cache. It
would now be a good time to run a GC on the L1 heap to compact it so a smaller footprint
has to be flushed from the cache, and later reloaded into another cache when used.

4 Hierarchical Memory Management

Based on the aforementioned observations we now outline a particular set of techniques
for managing memory for locality. This is meant to be a concrete example and there are
surely many variants. As mentioned previously, the key components are integrating the
memory management with scheduling, and using a hierarchy (tree) of heaps. Organizing the



U.A. Acar, G. Blelloch, M. Fluet, S. K. Muller, and R. Raghunathan 7

memory as a hierarchy of heaps will enable two key outcomes: 1) it will enable performing
scalable, parallel and concurrent garbage collection, and 2) it will make it possible to map
the hierarchy of heaps onto the caches of a hierarchical memory system, and 3) it allows the
memory manager to collaborate with the scheduler to make effective use of shared caches by
associating heaps with shared caches in the hierarchy.

Hierarchical, task- and scheduler-mapped heaps
We take advantage of the invariant that parallel tasks are disentangled – they create memory
graphs that are disjoint (don’t point to each other) – and partition memory into subheaps
or heaps, which will be managed independently. Heaps can be of any size and can match
the sizes in the cache hierarchy. For good locality, heaps are associated with separately
scheduled tasks that start executing at a processor due to a scheduler task migration action,
and heaps are merged to reflect the structure of the computation. Each heap contains all
the live data allocated by its associated task, except for live data living in the heap of
a migrated descendant task. The heaps are therefore properly nested, becoming smaller
towards the leaves of the task tree. Each child heap is newer than the parent and therefore
references only go up the heap hierarchy. A heap at the leaf corresponds to a computation
that runs sequentially and thus can be garbage collected independently. We note that such
a computation might have nested parallel tasks within it as long as the scheduler has not
migrated them. When a task terminates its heap can be merged into its parent’s heap. This
is a logical merge and might or might not involve actually moving data.

Knot sets
The heaps in the hierarchy are “tied together” with knots; a knot is a pointer that points
from the heap of a separately scheduled task Hc into its parent heap Hp. The knots can be
used as a root set into Hp to allow for separate collection of Hp. Initially the knot set from
Hc consists of only the closure for the task that created Hc. While the computation in the
child runs this is a conservative estimate of what the child can reach. Whenever the child
does a collection on its heap Hc the knot set to its parent can be updated, allowing more to
be collected in the parent. Maintaining the knots therefore requires no read barriers (special
code for every read), and allows garbage collection to proceed independently within each
heap as long as internal heaps do not move their data. The only required synchronization is
when accessing the knots, which is easy to implement with an atomic switch by the child.

An example
As an example, let’s consider a hypothetical task A that starts as shown in Figure 4. We
assume the task is migrated by the scheduler (perhaps to start the computation) and has
a heap HA of a size that fits in the L2 cache. The roots of the task point to two trees
that are stored in the heap. For illustrative convenience, we draw the task (A) within its
heap. We draw memory objects as squares and references between them as edges. We draw
unreachable objects that can be reclaimed in green (appears gray in grayscale). After it
starts executing, A performs some computation and forks two new tasks B and C that
take as argument subtrees from HA (Figure 5). Supposing that these tasks are executed in
parallel by a scheduling action, we will create two separate heaps HB and HC for them. The
arguments to B and C create the initial knot-set of HA (depicted as dark squares). When
forking, A creates the suspended join thread D (continuation) for when B and C complete,

SNAPL 2015



8 Coupling Memory and Computation for Locality Management

A

HA

L2

Figure 4 Start task A and its heap HA.

A

B

D

C

HA

HB HC

L2

L1 L1

Figure 5 Task A forks two new tasks
B and C. Their heaps HB and HC can
be managed and collected independently.

A

B

D

C

HA

HB HC

L2

L1 L1

Figure 6 The suspended heap HA is
collected some time after B and C starts
running.

A

B

D

C

HA

HB HC

L2 L2

L2

Figure 7 By the time tasks B and C complete, they
have grown their heap by adding new objects.

A

B

D

C

HA

HB HC

L2 to L1

Figure 8 When B and C join D, their heaps are
merged with HA, the heap of A. A garbage-collection of
HA is shown some time after the merge.

which can also refer to memory in HA. As B and C run, if needed, the suspended heap HA

can be collected by performing a non-moving garbage collection using the knot sets as roots.
Figure 6 illustrates the reclaimed memory objects in green (light in grayscale).

The heaps HB and HC start out empty (trivially fitting into an L1 cache) and grow
as B and C allocate objects, triggering garbage collection. Since B (C) is independent
from all other tasks running in parallel and its knot-set is empty, its heap is completely
independent from other heaps. It can therefore collect anytime using any algorithm it chooses.
In particular it can use a copying or compacting collector to ensure the footprint of the
remaining live data is minimized. A good time for garbage collection is when the heap size
approaches L1; this would help keep the working set in L1. If significant live memory remains
after a collection, the heap size might be promoted to the next cache size as illustrated in
Figure 7, where the tasks have been promoted to fit into the level-2 cache. When B and C

complete (not necessarily at the same time), they pass their results to the join thread D. At
this point, the heap HB (or HC) can be merged with its parent heap HA and its knot sets
can be dropped. In the example, after thread D starts running it creates a pair of the results
returned to it by B and C. As D runs, its heap can be collected (Figure 8). Such a collection
can reclaim many unreachable objects (essentially any object that does not contribute to the
final result), possibly making the heap fit into L1.



U.A. Acar, G. Blelloch, M. Fluet, S. K. Muller, and R. Raghunathan 9

5 Implementation and Evaluation

We are in the process of developing a compiler and run-time system for an extension of
the Standard ML language that supports nested parallelism and the presented hierarchical
memory management techniques (Section 4). The starting point for our implementation
effort is the MLton compiler infrastructure [48, 58] and the shared-heap-multicore branch
developed by Daniel Spoonhower as part of his dissertation work [55, 54]. MLton is an
open-source, whole-program, optimizing compiler for Standard ML (SML) [47]. The current
release of MLton includes a self-tuning garbage collector that uses copying, mark-compact,
and generational collection algorithms, automatically switching between them at run time
based on both the amount of live data and the amount of physical memory. MLton’s
combination of garbage collection algorithms is inspired by Sansom’s dual-mode garbage
collection [51]. The current release of MLton does not include support for using multiple
processors or processor cores to improve the performance of SML programs.

Using our implementation, we plan to evaluate the quantitative effectiveness of our
proposed techniques by developing a purely-functional nested-parallelism parallel benchmark
suite modeled after the recently announced Problem Based Benchmark Suite (PBBS) [52],
which include standard parallelism benchmarks as well as less traditional benchmarks using
graph algorithms. We also plan to evaluate the approach more quantitatively by using it in
our teaching.

6 Related Work

Scheduling for Locality
There have been thousands of papers that deal with the issue of locality in some way. In the
following discussion we focus on techniques that (1) apply to parallel computations where
tasks are created dynamically and mapped to processors by the runtime, (2) are useful for
reasonably general purpose programs and data structures (e.g. not just dense arrays), (3) are
suited for shared memory (or at least shared address space) cache-based architectures, and
(4) for which at least something theoretical can be said about their properties. There has
been plenty of work on models where the user maps their algorithms directly to processors
(e.g. [56, 4, 57]), or for specific domains such as dense matrices (e.g. [17, 9, 7]).

There has been significant work over the past decade on trying to model and understand
locality in a way that is independent of how a computation is mapped to processors, and then
have a runtime scheduler somehow preserve this locality [2, 12, 32, 21, 10, 22, 13, 20, 23, 50, 11].
By relying an specific scheduling policies, the results from this work can asymptotically
bound cache misses on a concrete parallel machine model in terms of abstract costs derived
from the program. For example, earlier work showed that for a nested parallel computation
with depth (span, critical path length) D and sequential cache complexity Q1, a work-stealing
scheduler on P processors with private caches will incur at most Q1 + O(PDM/B) cache
misses [2], where M is the total size of each cache and B is the block size. Similarly a PDF
scheduler on the same computation with a shared cache of size M + O(PDB) will incur at
most Q1 cache misses [12]. A key point of these results is that cost metrics for a program
that have nothing to do with the particular machine, Q1 and D, can be used to bound costs
on those machines. In addition to theory the approaches have been shown to work well in
practice [18].

More recent work has considered deeper hierarchies of caches, involving levels of private
and shared caches, and has shown that a class of space-bounded schedulers [20, 11, 23]

SNAPL 2015



10 Coupling Memory and Computation for Locality Management

are well suited for such hierarchies. These schedulers try to match the memory footprint
of a subcomputation with the size of a cache/cluster in the hierarchy and then run the
computation fully on that cluster. Under certain conditions these schedulers can guarantee
cache miss bounds at every level of the cache hierarchy that are comparable to the sequential
misses at the same level. However in this case the abstract cache complexity is not the
sequential complexity, but a relatively natural model [11] that considers every access a
miss for subcomputations that don’t fit in the cache and every access a hit for those that
do. Cole and Ramachandran [23] describe a scheduler with strong asymptotic bounds on
cache misses and runtime for highly balanced computations. Recent work [11] describes
a scheduler that generalizes to unbalanced computations. Several heuristic techniques
have also been suggested for improving locality with dynamic scheduling on such cache
hierarchies [28, 40, 50].

Our work builds on ideas developed in this previous work, but as far as we know, none of
this work has considered linking memory management with scheduling to improve locality,
and the previous work assumes very limited memory allocation schemes.

Memory Management
There has also been significant work on incorporating locality into memory management
schemes. Several explicit memory allocators, such as Hoard [8], TCMalloc [33], and SSMal-
loc [43], have been designed to be multithreading-friendly. These schemes create local pools
of memory on each processor so that lock contention is reduced and so that freed memory is
reused while still in the cache. All the approaches are heuristic; in our work, we have found
that they can do exactly the wrong thing in certain contexts. A recent blog discussion [46]
shows just how subtle memory allocation and management can be for a multicore system.
The PIs have independently experienced many of the same issues discussed in the blog as
well as several others. The problem is that the schemes know nothing about the scheduler or
even programming methodology in which they are being embedded. The only information
they have is the allocation request sequence at each thread.

For implicit memory allocation with garbage collection, maintaining locality becomes even
more complicated, although it does give the runtime more flexibility because of the ability to
move data. There have been dozens of proposed techniques for parallel garbage collection
([38]), and many of these suggest the use of processor or thread local heaps [34, 35, 25, 19,
27, 49, 3, 5, 45, 60]. Some of this work uses the idea of creating a nursery for each thread
that handles recent allocations, and then a global heap for shared data [25, 27, 3, 5, 45].
If the nursery is appropriately sized, this organization helps keep recently generated and
accessed data in local cache. The problem is that once promoted to the global heap, locality
is lost. Furthermore since the work uses no knowledge of the scheduler, when a new task is
scheduled on a processor, what is left in the cache will likely be evicted while still fragmented
and not collected. Finally, as far as we know, none of this work has looked at multi-level
hierarchies with private and shared caches nor has it tried to show any theoretical bounds
on cache misses.

Another property of almost all memory management systems is that they try to be
independent of the computation that is running on them and are only accessed through a
minimal interface. Most work on garbage collection has treated the mutator (the program)
as a black box that runs on a fully general purpose GC, perhaps with some heuristics that
work well with typical programs (e.g. generations, more reads than writes) [38]. Although
this might be a benefit for porting a GC across different programming languages, in practice
most GCs are designed for a specific language. We believe that by making them generic



U.A. Acar, G. Blelloch, M. Fluet, S. K. Muller, and R. Raghunathan 11

is giving up significant benefit that might be achieved by tying them more directly to the
program or other aspects of the runtime such as the scheduler.

7 Discussions

In this paper, we only considered purely functional, nested parallel programs. While probably
not straightforward, it appears possible to extend these ideas to more relaxed models of
parallelism to include impure programs with side effects. This is because the primary
assumptions that we make, disentanglement, is guaranteed by purely functional programs but
it is, in general, a weaker condition. For example, side effects that remain local to a thread do
not violate disentanglement. More generally, it appears possible to extend the work presented
here to allow for arbitrary side effects by using techniques such as those used by two-level
garbage collectors employed in memory managers of functional languages [26, 6, 44, 53].
For example, all objects reachable by mutable memory locations can be kept in a separate
region of memory and treated specifically to ensure that memory management does not alter
program invariants.

8 Conclusion

In this paper, we propose techniques for automatic locality and memory management in
nested parallel programs. The basic idea behind these techniques is to take advantage of a
key invariant of much parallel computations – their independence from each other, which
then leads to disentangled memory regions – and structure memory hierarchically to reflect
the structure of the computation and hardware, both of which are also usually hierarchical.

Acknowledgments. This research is partially supported by the National Science Foundation
under grant numbers CCF-1320563 and CCF-1408940, and by the European Research Council
under grant number ERC-2012-StG-308246.

References
1 Umut A. Acar and Guy Blelloch. 15210: Algorithms: Parallel and seqential, 2015. http:

//www.cs.cmu.edu/~15210/.
2 Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing.

Theory of Computing Systems, 35(3):321–347, 2002.
3 Todd A. Anderson. Optimizations in a private nursery-based garbage collector. In ISMM,

pages 21–30, 2010.
4 Lars Arge, Michael T. Goodrich, Michael Nelson, and Nodari Sitchinava. Fundamental

parallel algorithms for private-cache chip multiprocessors. In SPAA, 2008.
5 Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John Reppy. Garbage collection

for multicore NUMA machines. In MSPC’11: Proceedings of the 2011 ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness, pages 51–57. ACM Press,
June 2011.

6 Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John H. Reppy. Garbage collection
for multicore NUMA machines. In Proceedings of the 2011 ACM SIGPLAN workshop on
Memory Systems Performance and Correctness: held in conjunction with PLDI’11, San
Jose, CA, USA, June 5, 2011, pages 51–57, 2011.

7 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Graph expansion and
communication costs of fast matrix multiplication: regular submission. In Proceedings of
the 23rd ACM symposium on Parallelism in algorithms and architectures, pages 1–12, 2011.

SNAPL 2015

http://www.cs.cmu.edu/~15210/
http://www.cs.cmu.edu/~15210/


12 Coupling Memory and Computation for Locality Management

8 Emery Berger, Kathryn McKinley, Robert Blumofe, and Paul Wilson. Hoard: A scalable
memory allocator for multithreaded applications. In ASPLOS, pages 117–128, 2000.

9 Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela,
María J. Garzarán, David Padua, and Christoph von Praun. Programming for parallelism
and locality with hierarchically tiled arrays. In Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 48–57, 2006.

10 Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran, Shimin
Chen, and Michael Kozuch. Provably good multicore cache performance for divide-and-
conquer algorithms. In In the Proceedings of the 19th ACM-SIAM Symposium on Discrete
Algorithms, pages 501–510, 2008.

11 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan Simhadri.
Scheduling irregular parallel computations on hierarchical caches. In Proceedings of the
23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’11, pages
355–366, 2011.

12 Guy E. Blelloch and Phillip B. Gibbons. Effectively sharing a cache among threads. In
SPAA, 2004.

13 Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Low-depth cache
oblivious algorithms. In SPAA, 2010.

14 Guy E. Blelloch and John Greiner. A provable time and space efficient implementation of
NESL. In Proceedings of the 1st ACM SIGPLAN International Conference on Functional
Programming, pages 213–225. ACM, 1996.

15 S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and J. Rattner. Platform
2015: Intel processor and platform evolution for the next decade., 2005.

16 Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
OOPSLA’05, pages 519–538. ACM, 2005.

17 Siddhartha Chatterjee. Locality, communication, and code generation for array-parallel
languages. In PPSC, pages 656–661, 1995.

18 Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastassia Aila-
maki, Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Todd C. Mowry, and
Chris Wilkerson. Scheduling threads for constructive cache sharing on CMPs. In ACM
Symposium on Parallel Algorithms and Architectures, SPAA’07, pages 105–115, 2007.

19 Perry Cheng and Guy Blelloch. A parallel, real-time garbage collector. In PLDI, pages
125–136, 2001.

20 R.A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. Oblivious algorithms for
multicores and network of processors. In International Symposium on Parallel Distributed
Processing (IPDPS), pages 1–12, April 2010.

21 Rezaul Alam Chowdhury and Vijaya Ramachandran. The cache-oblivious gaussian elim-
ination paradigm: theoretical framework, parallelization and experimental evaluation. In
SPAA, 2007.

22 Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-efficient dynamic programming
algorithms for multicores. In SPAA, 2008.

23 Richard Cole and Vijaya Ramachandran. Resource oblivious sorting on multicores. In
ICALP, 2010.

24 Peter J. Denning. The locality principle. Commun. ACM, 48(7):19–24, July 2005.
25 Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for multi-

processor systems. In POPL, pages 70–83, 1994.



U.A. Acar, G. Blelloch, M. Fluet, S. K. Muller, and R. Raghunathan 13

26 Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for mul-
tiprocessor systems. In Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland, Oregon, USA, January
17-21, 1994, pages 70–83, 1994.

27 Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Erez Petrank, and Dafna Sheinwald.
Thread-local heaps for Java. In ISMM, pages 76–87, 2002.

28 Kayvon Fatahalian, Timothy Knight, Mike Houston, Mattan Erez, Daniel Horn, Larkhoon
Leem, Ji Park, Manman Ren, Alex Aiken, William Dally, and et al. Sequoia: Programming
the memory hierarchy. ACMIEEE SC 2006 Conference SC06, 0(November):4–4, 2006.

29 Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-threaded parallelism
in Manticore. In ICFP’08: Proceedings of the Thirteenth ACM SIGPLAN International
Conference on Functional Programming, pages 119–130. ACM Press, September 2008.

30 Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-threaded parallelism
in Manticore. The Journal of Functional Programming, 20(5–6):537–576, November 2010.

31 Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
Cilk-5 multithreaded language. In PLDI, pages 212–223, 1998.

32 Matteo Frigo and Volker Strumpen. The cache complexity of multithreaded cache oblivious
algorithms. In SPAA, 2006.

33 Sanjay Ghemwat and Paul Menage. TCMalloc : Thread-caching malloc, 2010.
34 Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM

Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.
35 Maurice Herlihy and J. Eliot B Moss. Lock-free garbage collection for multiprocessors.

IEEE Transactions on Parallel and Distributed Systems, 3(3):304–311, May 1992.
36 Shams Mahmood Imam and Vivek Sarkar. Habanero-java library: a java 8 framework

for multicore programming. In 2014 International Conference on Principles and Practices
of Programming on the Java Platform Virtual Machines, Languages and Tools, PPPJ’14,
Cracow, Poland, September 23-26, 2014, pages 75–86, 2014.

37 Suresh Jagannathan, Armand Navabi, KC Sivaramakrishnan, and Lukasz Ziarek. The
design rationale for Multi-MLton. In ML’10: Proceedings of the ACM SIGPLAN Workshop
on ML. ACM, 2010.

38 Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook : The
Art of Automatic Memory Management. CRC Press, 2012.

39 Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and
Ben Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell. In Proceedings of
the 15th ACM SIGPLAN international conference on Functional programming, ICFP’10,
pages 261–272, 2010.

40 Milind Kulkarni, Patrick Carribault, Keshav Pingali, Ganesh Ramanarayanan, Bruce Wal-
ter, Kavita Bala, and L. Paul Chew. Scheduling strategies for optimistic parallel execution
of irregular programs. In Proceedings of the twentieth annual symposium on Parallelism in
algorithms and architectures, pages 217–228, 2008.

41 Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 conference on
Java Grande, JAVA’00, pages 36–43, 2000.

42 Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task parallel
library. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented program-
ming systems languages and applications, OOPSLA’09, pages 227–242, 2009.

43 Ran Liu and Haibo Chen. SSMalloc: a low-latency, locality-conscious memory allocator
with stable performance scalability. In Proceedings of the Third ACM SIGOPS Asia-Pacific
conference on Systems, APSys’12, pages 15–15, Berkeley, CA, USA, 2012. USENIX Asso-
ciation.

SNAPL 2015



14 Coupling Memory and Computation for Locality Management

44 Simon Marlow and Simon L. Peyton Jones. Multicore garbage collection with local heaps.
In Proceedings of the 10th International Symposium on Memory Management, ISMM 2011,
San Jose, CA, USA, June 04 - 05, 2011, pages 21–32, 2011.

45 Simon Marlow and Simon L. Peyton Jones. Multicore garbage collection with local heaps.
In ISMM, pages 21–32, 2011.

46 Apurva Mehta and Cuong Tran. Optimizing linux memory management for low-
latency / high-throughput databases. http://engineering.linkedin.com/performance/
optimizing-linux-memory-management-low-latency-high-throughput-databases,
2013.

47 Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Stand-
ard ML (revised). The MIT Press, 1997.

48 MLton web site. http://www.mlton.org.
49 Takeshi Ogasawara. NUMA-aware memory manager with dominant-thread-based copying

GC. In OOPSLA, pages 377–390, 2009.
50 Jean-Noël Quintin and Frédéric Wagner. Hierarchical work-stealing. In Proceedings of the

16th international Euro-Par conference on Parallel processing: Part I, EuroPar’10, pages
217–229, Berlin, Heidelberg, 2010. Springer-Verlag.

51 Patrick Sansom. Dual-mode garbage collection. In Proceedings of the Workshop on the
Parallel Implementation of Functional Languages, 1991.

52 Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: the problem
based benchmark suite. In Proceedinbgs of the 24th ACM symposium on Parallelism in
algorithms and architectures, SPAA’12, pages 68–70, New York, NY, USA, 2012. ACM.

53 K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. Multimlton: A multicore-
aware runtime for standard ML. J. Funct. Program., 24(6):613–674, 2014.

54 Daniel Spoonhower. Scheduling Deterministic Parallel Programs. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 2009.

55 Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gibbons. Space profil-
ing for parallel functional programs. In International Conference on Functional Program-
ming, 2008.

56 Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33:103–111,
August 1990.

57 Leslie G. Valiant. A bridging model for multicore computing. In Proc. 16th European
Symposium on Algorithms, 2008.

58 Stephen Weeks. Whole-program compilation in MLton. In ML’06: Proceedings of the 2006
workshop on ML, pages 1–1. ACM, 2006.

59 Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News, 23(1):20–24, March 1995.

60 Jin Zhou and Brian Demsky. Memory management for many-core processors with software
configurable locality policies. In ISMM, pages 3–14, 2012.

http://engineering.linkedin.com/performance/optimizing-linux-memory-management-low-latency-high-throughput-databases
http://engineering.linkedin.com/performance/optimizing-linux-memory-management-low-latency-high-throughput-databases
http://www.mlton.org

	Introduction
	Preliminaries
	Observations
	Hierarchical Memory Management
	Implementation and Evaluation
	Related Work
	Discussions
	Conclusion

